
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 II-65: Writing a UserShell . 1

1.2 Initialization . 2

1.3 A Word About the Shell’s I/O Handles . 3

1.4 The Main Shell Loop . 4

1.5 Finding a Program . 5

1.6 Running a Program . 6

1.7 Cleanup . 7

1.8 Installing the New User Shell . 7

1.9 Credits . 8

AmigaMail 1 / 8

Chapter 1

AmigaMail

1.1 II-65: Writing a UserShell

by Randell Jesup

One of the features of Release 2.0 is that the OS allows the user to
change the system default shell, or the UserShell. Any time the user
opens a shell with NewShell, executes a script, RUNs a command, or
indirectly calls System() with SYS_UserShell, the OS will call the
UserShell instead of the BootShell (by default the system sets up the
BootShell as the UserShell).

Creating UserShells is not easy, and requires doing a fairly large number
of things for no apparent reason (the reasons are there, they’re just not
obvious to the outsider). This article will attempt to give you the
information you need in order to create a usable, system-friendly
UserShell.

Initialization

A Word About the Shell’s I/O Handles

The Main Shell Loop

Finding a Program

Running a Program

Cleanup

Installing the New User Shell

Credits
myshell.c

AmigaMail 2 / 8

1.2 Initialization

The entity that starts the shell calls the shell code in C style (RTS to
exit). This entity also sends a startup packet to your process port. You
must retrieve this packet before doing any DOS I/O (much like WBMessages).
You can use WaitPkt() for this. The entity will take care of attaching a
CommandLineInterface structure to your process, which will be freed on
exit from the UserShell by the system.

In your process structure, check the SegArray pointed to by pr_Seglist
(note that it’s a BPTR). If SegArray[4] is NULL, you must move the value
from SegArray[3] to SegArray[4], and NULL out SegArray[3]. This is
because SegArray[3] will be used to store the seglist pointer for each
program you run.

The startup packet contains some information that tells the UserShell what
kind of shell to be. At present, the two sets of sources can launch the
UserShell:

The Run command, Execute(), or System()
The NewShell or NewCLI resident commands

The size of the stack that the system gives the UserShell depends on how
the user started the shell. If it was started from Execute() or System(),
the stack is 3200 bytes. If the UserShell was started from Run, NewShell,
or NewCLI, the stack is 4000.

The type of shell required is specified by the combination of the packet’s
dp_Res1 and dp_Res2 fields. Here’s a piece of code for turning them into
a value from 0 to 3:

init_type = (parm_pkt->dp_Res1 == 0 ? 0:2)|(parm_pkt->dp_Res2 == 0 ? 0:1);

Currently, only types 0 and 2 are implemented. For 1 and 3 you should
exit with an error (returning the packet). Type 0 is for Run, Execute()
and System(), type 2 is for NewShell and NewCLI. After setting up your
SegArray as above, for type 0 call CliInitRun(pkt), and for type 2 call
CliInitNewcli(pkt). These both return a value we’ll call ‘‘fn’’. Keep fn
around, it has useful state information that you’ll need later. Note that
these CliInitXxxx functions don’t follow the normal DOS convention of Dn
for arguments (they use A0 for pkt!).

The CliInitXxxx functions do many magic things to get all the streams and
structures properly set up, etc. You shouldn’t need to know anything
about this or what the values in the packet are, other than dp_Res1 and
dp_Res2 (see the Appendix for more information on these functions).

Definitions for the values of fn:

Bit 31 Set to indicate flags are valid
Bit 3 Set to indicate an asynchronous System() call
Bit 2 Set if this is a System() call
Bit 1 Set if user provided input stream
Bit 0 Set if RUN provided output stream

If fn bit 31 is 0 (fn >= 0), then you must check IoErr() to find out what

AmigaMail 3 / 8

to do. If IoErr() is a pointer to your process, there has been an error
in the initialization of the CLI structure and processing the packet. In
this case you should clean up and exit. You don’t have to return the
packet because the CliInitXxxx functions take care of this for you if
there is an error. If IoErr() isn’t a pointer to your process, then if
this is a NewCLI or NewShell command (init_type of 2), reply the packet
immediately.

If the init_type is 0, you have to look at fn to determine when to send
back the startup packet. If the shell was called from an asynchronous
System() function ((fn & 0x8000000C) == 0x8000000C), return the packet
immediately. If this is a synchronous System() call ((fn & 0x8000000C) ==
0x80000004) or the fn flags are valid but this is not a System() call ((fn
& 0x8000000C) == 0x80000000) (Execute() does this), you return the packet
just before exiting from your shell (see the Cleanup section below). If
the fn flags are invalid (bit 31 == 0), but there is something other than
your task pointer in IoErr(), then this shell was called by the Run
command. Here you can either return the packet immediately, or return it
after having loaded the first command (or failed to find/load it). This
delay in reply helps avoid the disk thrashing caused by two commands
loading at the same instant.

When you do a ReplyPkt(), use ReplyPkt(pkt, pkt->dp_Res1, pkt->dp_Res2) to
avoid losing error codes set up by CliInitXxxx.

Initialize pr_HomeDir to NULL, set up any local shell variables, etc.

We’re all set up now, so you can now enter your main loop and start taking
commands.

1.3 A Word About the Shell’s I/O Handles

There are three pairs of I/O handles in a shell process. The shell’s
Process structure contains the pr_CIS (current input stream) and pr_COS
(current output stream) file handles. That Process’s CommandLineInterface
structure contains the other two pairs of I/O handles:
cli_StandardInput/cli_StandardOutput and
cli_CurrentInput/cli_CurrentOutput. Each has different uses within a
normal shell.

Routines that operate on Input() or Output(), such as ReadArgs() or
ReadItem(), use the pr_CIS and pr_COS I/O handles (which they acquire by
calling the dos.library routines Input() and Output(), not by directly
looking at the Process structure). Shell-launched application programs
the run on the shell’s process also use these I/O handles as their normal
input and output channels. This is where functions like scanf() and
printf() get and send their input and output. The shell changes these
file handles (using SelectInput()/SelectOutput()) according to the shell
defaults and according to any I/O redirection.

The cli_StandardInput and cli_StandardOutput I/O handles are the default
input and output channels for the shell. They usually refer to the user’s
console window and will not change while the shell is running. The shell
should use these values as the default values for pr_CIS and pr_COS (via
SelectInput() and SelectOutput()) when it runs a command from a command

AmigaMail 4 / 8

line.

The cli_CurrentInput handle is the current source of command lines. This
normally is the same as cli_StandardInput. The cli_CurrentInput handle
will differ from cli_StandardInput when the shell is executing a script or
when handling an Execute() or System() call. In these cases, it points to
a file handle from which the shell is reading commands. This handle
refers to one of three files: the script file you called with the execute
command, a temporary file created by the execute command, or a pseudo file
created by Execute() or System().

When a shell runs the execute command, If cli_CurrentInput differs from
cli_StandardInput, The execute command will close cli_CurrentInput and
replace it with a new one, so don’t cache the value of cli_CurrentInput as
it will be invalid. In this case, cli_CurrentInput must not be the same
as pr_CIS when you call RunCommand() if the executable could possible be
the execute commands (or anything else that tries to close
cli_CurrentInput).

The cli_CurrentOutput file handle is currently unused by the system. It’s
initialized to the same as cli_StandardOutput.

1.4 The Main Shell Loop

Note: some things in this section assume your UserShell will act similarly
to the Boot Shell in 2.0. If not, modify to see fit, but pay close
attention to things external programs will notice (such as the setup of
the process and CLI structures). In particular, the article assumes that
you handle scripts by redirecting cli_CurrentInput to a file with the
script in it, as the execute command does. Note that the execute command
will attempt to do this if you run it--be careful.

Before reading a command line, you need to SelectInput() on the I/O handle
in the current cli_CurrentInput, and SelectOutput() on cli_StandardOutput.
This makes sure the shell is reading from its command line source and
writing to the the default output handle.

If this shell is executing a script, you should check if the user hit the
break key for scripts (Ctrl-D is what the BootShell uses). If you do
detect a script break, you can print an error message to the current
output stream by calling PrintFault(304, "<your shell name>"). 304 is the
error number (ERROR_BREAK) and the string gets prepended to the error
message (which is currently " :***Break"). This allows the OS to print
the error message using the standard error message which can be
internationalized in future versions of the OS.

Next, determine if you should print a prompt. The nasty statement below
sets up the Interactive flag for you, by setting it if the following are
true:

This shell is not a background shell
input has not been redirected to an Execute/script
file this is not a System() call

You don’t have to handle it precisely this way, but this works (Note:

AmigaMail 5 / 8

0x80000004 is a test for whether this is a System() call, see the ‘‘fn’’
bit definitions above).

#define SYSTEM ((((LONG)fn) & 0x80000004) == 0x80000004)
#define NOTSCRIPT (clip->cli_CurrentInput == clip->cli_StandardInput)

clip->cli_Interactive = (!clip->cli_Background && NOTSCRIPT && !SYSTEM) ?
DOSTRUE : FALSE;

The BootShell prints a prompt if cli_Interactive is DOSTRUE.

Do all your mucking with the input line, alias and local variable
expansion, etc.

1.5 Finding a Program

There are several possible places a shell can look for commands passed to
it. The resident list is an important place to look as it contains many
commands that the user finds important enough to keep loaded into memory
at all times. Some shells have commands built directly into them. Of
course, if the shell cannot find a command in the resident list or in its
collection of internal commands, the shell has to scan the path looking
for the command. If a shell supports the script bit, when it finds a
command on disk with the script bit set, it should read commands from the
script file.

Here’s how you deal with commands on the resident list: After finding the
command (under Forbid()!), if the Segment structure’s seg_UC is >= 0,
increment it; if less than 0, don’t modify it. If seg_UC is less than
CMD_DISABLED, the corresponding resident command is currently disabled and
you should not execute it. The same is true if seg_UC is equal to
CMD_SYSTEM. After incrementing seg_UC, you can Permit(). After using a
resident command, decrement the seg_UC count if it’s greater than 0 (under
Forbid() again).

When identifying scripts, I advise that you use something unique to
identify your scripts, and pass all other scripts to the Boot Shell via
System() for execution. A good method (which was worked out on BIX long
ago) is to include within the first 256 characters or so, the string
"#!<your shell name, ala csh>!#". BootShells could, for example, start
with "; #!c:execute!#. The idea is the string inside the #!...!# should
be the interpreter to run on the script. If none is specified, give it to
the BootShell. If you want, you could extend this to include handling of
the sequence for all interpreters. The programs should be invoked as
"<interpreter> <filename> <args>" as if the user had typed that.

Don’t forget to set pr_HomeDir for programs loaded from disk. The Lock in
pr_HomeDir should be a DupLock() of the directory the program was loaded
from. For programs from the resident list, leave it NULL.

Please support multi-assigned C: directories. The important thing here is
to not lock C:. Instead, prepend ‘‘C:’’ onto the filename you wish to
Lock()/LoadSeg(). Also, if a command is loaded from C:, get its

AmigaMail 6 / 8

pr_HomeDir by Lock()ing the file (with C: prepended), and then using
ParentDir() to get its home directory.

The Path is attached to cli_CommandDir. It is a BPTR to a NULL
terminated, singly-linked list (connected via BPTRs) of directory Locks:

struct pathBPTRlistentry {
BPTR pathBPTRlistentry *next;
struct Lock directorylock

}

Please don’t modify the list; use the Path command instead. This will
make it far easier for us to improve this in the future.

Make sure you clear the SIGBREAK_CTRL_x signals before starting a program.
In order to prevent the user from hitting a break key somewhere between
where you check for the break and where you clear the signals (thus losing
the break signal), you may wish check for a break and clear the signals at
the same time. The safest way is to use:

oldsigs = SetSignal(0L, SIGBREAK_CTRL_C |
SIGBREAK_CTRL_D |
SIGBREAK_CTRL_E |
SIGBREAK_CTRL_F);

Then you can check oldsigs for any signals that you care about.

1.6 Running a Program

To actually invoke a program on your process, use RunCommand()--it does
special compatibility magic that keeps certain third-party applications
working properly. If RunCommand() fails due to lack of memory, it
returns -1 (normally success!). In this case, check IoErr(). If it is
equal to ERROR_NO_FREE_STORE, then RunCommand() really ran out of memory.
Note that RunCommand() stuffs a copy of your arguments into the buffer of
the input handle for use by ReadArgs(), and un-stuffs them when the
program exits. Also note that RunCommand() takes stack size in bytes, and
cli_DefaultStack is the size of the stack in LONGs.

After the program has completed, free the Lock in pr_HomeDir and set it to
NULL. Re-setup your I/O handles with SelectInput() on cli_CurrentInput
and SelectOutput() on cli_StandardOutput. It’s a good idea to NULL
cli_Module here as well, as it can make your exit/cleanup logic easier.

You must eat any unused buffered input. Here’s some tricky code that does
that (read the Autodocs to figure it out if you wish):

ch = UnGetC(Input(),-1) ? 0 : ’\n’;
while ((ch != ’\n’) && (ch != END_STREAM_CH)) ch = FGetC(Input());

Note: ENDSTREAMCH is EOF (-1). Newer include files #define this in
<dos/stdio.h> and <dos/stdio.i>.

To finish the main input loop, use the code below or something like it.
This keeps compatibility with certain hacks people had figured out about

AmigaMail 7 / 8

1.3 (See SYSTEM and NOTSCRIPT #defines above).

/* for compatibility */
/* system exit special case - taken only if they have played */
/* around with the input stream */
if (SYSTEM && NOTSCRIPT) break;

} while (ch != ENDSTREAMCH);

EndCLI sets fh_End = 0, which causes FGetC() to call replenish(), which
returns ENDSTREAMCH on fh_End == 0. EndCLI also sets cli_Background!
This neatly avoids a prompt after EndCLI.

After you’ve gotten an EOF (falling out of the while(ch != ENDSTREAMCH)
statement above), you need to check if the shell was executing a script
file. For Execute-type scripts, if (cli_CurrentInput != cli_StandardInput)
is true, the shell was executing a script. If this is the case, you’ll
need to Close() the cli_CurrentInput, and DeleteFile() the temporary file
cli_CommandFile, if there is a file name there. Next, set
cli_CurrentInput to cli_StandardInput, and restore the fail level. Then
you go back to your normal input loop and accept commands again. Note:
this is based on handling scripts in the same manner as the BootShell--you
may handle them in different ways.

On EOF, you also need to check if this is a System() call. The check for
a System() call is ((fn & 0x80000004) == 0x80000004). If you had been
handling a System() call, or if the shell was not executing a script, you
should go to your cleanup code to exit.

1.7 Cleanup

If you’re exiting, use fn to tell you what to close, etc. First check if
fn contains valid flags ((fn & 0x80000000) != 0)). If it does not have
valid flags, Flush() and Close() cli_StandardOutput (if non-NULL), and
Close() cli_StandardInput (if non-NULL). If fn does contain valid flags,
Flush(Output()), then check the other flags in fn. If (fn&2 == 0) (if the
user didn’t provide an input stream), Close() cli_StandardInput. If (fn&1
== 1) (if Run provided an output stream), Close() cli_StandardOutput
(note, this is opposite the previous flag!) If (fn&8 == 0) (if this is
not an asynchronous System() call), you still have to ReplyPkt() the
initial packet. Before sending back the packet put cli_ReturnCode in the
packet’s result1 and cli_Result2 in the packet’s result2 (i.e. return the
result of the last program run if this was a synchronous System() or
Execute() call).

In cleanup, unlock pr_CurrentDir and set it to NULL, free up anything you
allocated, and exit! The system will take care of your
CommandLineInterface structure, and anything else it allocated.

1.8 Installing the New User Shell

After you have compiled your creation, you need to put its seglist on the
resident list under the name ‘‘shell’’. Adding it to the resident list is

AmigaMail 8 / 8

a simple:

Resident shell <shell-file> SYSTEM

Now anything that calls the user shell (like NewShell, Execute(), and
System()) will call your shell. Note that under 2.04, the Shell icon
actually runs sys:System/CLI, which calls the BootShell (the default
UserShell) and not the current UserShell.

If you need to restore the BootShell as the UserShell, compile and run the
program RestoreShell.c at the end of this article

1.9 Credits

I thank greatly the input and bug reports I got from Bill Hawes during the
development of the 2.0 DOS and it’s shell interface. It’s still extremely
ungainly, but it is now usable.

I also thank Michael B. Smith and Jesper Steen Moller for taking the
initial confusing Usenet article I posted and making working shells from
that information, and John Orr for making me write this article and
producing the example (which helped make me clean up confusing points in
it).

	AmigaMail
	II-65: Writing a UserShell
	Initialization
	A Word About the Shell's I/O Handles
	The Main Shell Loop
	Finding a Program
	Running a Program
	Cleanup
	Installing the New User Shell
	Credits

