
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 II-5: AmigaDOS Packet Interface Specification . 1

1.2 Basic Input/Output . 4

1.3 Directory/File Manipulation/Information . 8

1.4 Volume Manipulation/Information . 18

1.5 Handler Maintenance and Control . 20

1.6 Handler Internal . 22

1.7 Obsolete Packets . 22

1.8 Console Only Packets . 23

AmigaMail 1 / 24

Chapter 1

AmigaMail

1.1 II-5: AmigaDOS Packet Interface Specification

AmigaDOS Packet Interface Specification

by John Toebes

AmigaDOS communicates with file systems and other DOS handlers by
sending and receiving packets. Opening and closing file handles
(including console file handles), creating directories, and renaming
disks all require DOS to tell a handler to perform these actions
through sending a packet. The particular action a handler performs
depends on the type of packet it receives.

This article documents the standard AmigaDOS packet types. For
information on how to use packets to communicate with handlers see
the AmigaDOS Manual.

Packets sent to a file system or handler can be divided into several
basic categories:

o
Basic Input/Output
These actions deal with tranferring data to and from objects

controlled by the handler.

o
File/Directory Manipulation/Information
These actions are used to gain access to and manipulate the high

level structures of the file system.

o
Volume Manipulation/Information
These actions allow access to the specific volume controlled by ←↩

the
file system.

o
Handler Maintenance and Control

AmigaMail 2 / 24

These allow control over the handler/file system itself, ←↩
independent

of the actual volume or structure underneath.

o
Handler Internal
These actions are never sent to the handler directly. Instead ←↩

they
are generally responses to IO requests made by the handler. The
handler makes these responses look like packets in order to simplify
processing.

o
Obsolete Packets
These packets are no longer valid for use by handlers and file

systems.

o
Console Only Packets
These packets are specific to console handlers. File Systems can

ignore these packets.

Much of this information can be extracted from Developer Conference
notes, The AmigaDOS Manual, and various Fred Fish disks. However,
because there is no single complete reference to these packet types,
a consolidated view of all the packets is presented here. Several
structures are referenced here which can be found by looking at the
include files <dos/dos.h> and <dos/dosextens.h>. (If you are using
the 1.3 version of the include files, these are in the libraries
directory instead of the dos directory). Before attempting to work
with a file handler you should first become familiar with these files.

Each packet type documented in this article is listed with its action
name, its corresponding number, any AmigaDOS routines which uses this
packet, and the list of parameters that the packets uses. The C
variable types for the packet parameters are one of the following
types:

BPTR This is BCPL pointer (the address of the given object shifted
right by 2). Note: this means that the object must be
aligned on a longword boundary.

LOCK This is a BPTR to a FileLock structure returned by a previous
ACTION_LOCATE_OBJECT. A lock of 0 is legal, indicating the
root of the volume for the handler.

BSTR This is a BPTR to a string where the first byte indicates the
number of characters in the string. This length byte is
unsigned but because it is stored in a byte, the strings are
limited to 255 characters in length.

BOOL A 32-bit boolean value either containing DOSTRUE (-1) or

AmigaMail 3 / 24

DOSFALSE (0). Note: equality comparisons with DOSTRUE should
be avoided.

CODE A 32 bit error code as defined in the dos/dos.h include file.
Handlers should not return error codes besides those defined
in dos/dos.h.

ARG1 The FileHandle->fh_Arg1 field.

LONG A 32 bit integer value.

Summary of Defined Packet Numbers

This is a listing of all the DOS packets defined by Commodore.
Packets 0-1999 are reserved for use by Commodore. Unless otherwise
noted, packets 2050-2999 are reserved for use by third party
developers (see chart below). The remaining packets are reserved for
future expansion (Note: packets 2008, 2009, 4097, and 4098 are in use
by Commodore).

Decimal Hex Action #define

0 0x0000 ACTION_NIL
1 <Reserved by Commodore>
2 0x0002 ACTION_GET_BLOCK
3 <Reserved by Commodore>
4 0x0004 ACTION_SET_MAP
5 0x0005 ACTION_DIE
6 0x0006 ACTION_EVENT
7 0x0007 ACTION_CURRENT_VOLUME
8 0x0008 ACTION_LOCATE_OBJECT
9 0x0009 ACTION_RENAME_DISK
10-14 <Reserved by Commodore>
15 0x000F ACTION_FREE_LOCK
16 0x0010 ACTION_DELETE_OBJECT
17 0x0011 ACTION_RENAME_OBJECT
18 0x0012 ACTION_MORE_CACHE
19 0x0013 ACTION_COPY_DIR
20 0x0014 ACTION_WAIT_CHAR
21 0x0015 ACTION_SET_PROTECT
22 0x0016 ACTION_CREATE_DIR
23 0x0017 ACTION_EXAMINE_OBJECT
24 0x0018 ACTION_EXAMINE_NEXT
25 0x0019 ACTION_DISK_INFO
26 0x001A ACTION_INFO
27 0x001B ACTION_FLUSH
28 0x001C ACTION_SET_COMMENT
29 0x001D ACTION_PARENT
30 0x001E ACTION_TIMER
31 0x001F ACTION_INHIBIT
32 0x0020 ACTION_DISK_TYPE
33 0x0021 ACTION_DISK_CHANGE

AmigaMail 4 / 24

34 0x0022 ACTION_SET_DATE
35-39 <Reserved by Commodore>
40 0x0028 ACTION_SAME_LOCK
41-81 <Reserved by Commodore>
82 0x0052 ACTION_READ
83-86 <Reserved by Commodore>
87 0x0057 ACTION_WRITE
88-993 <Reserved by Commodore>
994 0x03E2 ACTION_SCREEN_MODE
995 0x03E3 ACTION_CHANGE_SIGNAL
996-1000 <Reserved by Commodore>
1001 0x03E9 ACTION_READ_RETURN
1002 0x03EA ACTION_WRITE_RETURN
1003 <Reserved by Commodore>
1004 0x03EC ACTION_FINDUPDATE
1005 0x03ED ACTION_FINDINPUT
1006 0x03EE ACTION_FINDOUTPUT
1007 0x03EF ACTION_END
1008 0x03F0 ACTION_SEEK
1009-1019 <Reserved by Commodore>
1020 0x03FC ACTION_FORMAT
1021 0x03FD ACTION_MAKE_LINK
1022 0x03FE ACTION_SET_FILE_SIZE
1023 0x03FF ACTION_WRITE_PROTECT
1024 0x0400 ACTION_READ_LINK
1025 <Reserved by Commodore>
1026 0x0402 ACTION_FH_FROM_LOCK
1027 0x0403 ACTION_IS_FILESYSTEM
1028 0x0404 ACTION_CHANGE_MODE
1029 <Reserved by Commodore>
1030 0x0406 ACTION_COPY_DIR_FH
1031 0x0407 ACTION_PARENT_FH
1032 <Reserved by Commodore>
1033 0x0409 ACTION_EXAMINE_ALL
1034 0x040A ACTION_EXAMINE_FH
1035-2007 <Reserved by Commodore>
2008 0x07D8 ACTION_LOCK_RECORD
2009 0x07D9 ACTION_FREE_RECORD
2010-2049 <Reserved by Commodore>
2050-2999 <Reserved for 3rd Party Handlers>
4097 0x1001 ACTION_ADD_NOTIFY
4098 0x1002 ACTION_REMOVE_NOTIFY
4099- <Reserved by Commodore for Future Expansion>

1.2 Basic Input/Output

The Basic Input/Output actions are supported by both handlers and
file systems. In this way, the application can get a stream level
access to both devices and files. One difference that arises between
the two is that a handler will not necessarily support an ACTION_SEEK
while it is generally expected for a file system to do so.

These actions work based on a FileHandle which is filled in by one of
the three forms of opens:

AmigaMail 5 / 24

ACTION_FINDINPUT 1005 Open(..., MODE_OLDFILE)
ACTION_FINDOUTPUT 1006 Open(..., MODE_NEWFILE)
ACTION_FINDUPDATE 1004 Open(..., MODE_READWRITE)
ARG1: BPTR FileHandle to fill in
ARG2: LOCK Lock on directory that ARG3 is relative to
ARG3: BSTR Name of file to be opened (relative to ARG1)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

All three actions use the lock (ARG2) as a base directory location
from which to open the file. If this lock is NULL, then the file
name (ARG3) is relative to the root of the current volume. Because
of this, file names are not limited to a single file name but instead
can include a volume name (followed by a colon) and multiple slashes
allowing the file system to fully resolve the name. This eliminates
the need for AmigaDOS or the application to parse names before
sending them to the file system. Note that the lock in ARG2 must be
associated with the file system in question. It is illegal to use a
lock from another file system.

The calling program owns the file handle (ARG1). The program must
initialize the file handle before trying to open anything (in the
case of a call to Open(), AmigaDOS allocates the file handle
automatically and then frees it in Close()). All fields must be
zero except the fh_Pos and fh_End fields which should be set to -1.
The Open() function fills in the fh_Type field with a pointer to the
MsgPort of the handler process. Lastly, the handler must initialize
fh_Arg1 with something that allows the handler to uniquely locate the
object being opened (normally a file). This value is implementation
specific. This field is passed to the READ/WRITE/SEEK/ END/TRUNCATE
operations and not the file handle itself.

FINDINPUT and FINDUPDATE are similar in that they only succeed if the
file already exists. FINDINPUT will open with a shared lock while
FINDUPDATE will open it with a shared lock but if the file doesn’t
exist, FINDUPDATE will create the file. FINDOUTPUT will always open
the file (deleting any existing one) with an exclusive lock.

ACTION_READ ’R’ Read(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle
ARG2: APTR Buffer to put data into
ARG3: LONG Number of bytes to read

RES1: LONG Number of bytes read.
0 indicates EOF.
-1 indicates ERROR

RES2: CODE Failure code if RES1 is -1

This action extracts data from the file (or input channel) at the
current position. If fewer bytes remain in the file than requested,
only those bytes remaining will be returned with the number of bytes
stored in RES1. The handler indicates an error is indicated by
placing a -1 in RES1 and the error code in RES2. If the read fails,
the current file position remains unchanged. Note that a handler may
return a smaller number of bytes than requested, even if not at the

AmigaMail 6 / 24

end of a file. This happens with interactive type file handles which
may return one line at a time as the user hits return, for example
the console handler, CON:.

ACTION_WRITE ’W’ Write(...)
ARG1: ARG1 fh_Arg1 field of the opened file handle
ARG2: APTR Buffer to write to the file handle
ARG3: LONG Number of bytes to write

RES1: LONG Number of bytes written.
RES2: CODE Failure code if RES1 not the same as ARG3

This action copies data into the file (or output channel) at the
current position. The file is automatically extended if the write
passes the end of the file. The handler indicates failure by
returning a byte count in RES1 that differs from the number of bytes
requested in ARG3. In the case of a failure, the handler does not
update the current file position (although the file may have been
extended and some data overwritten) so that an application can safely
retry the operation.

ACTION_SEEK 1008 Seek(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle
ARG2: LONG New Position
ARG3: LONG Mode: OFFSET_BEGINNING,OFFSET_END, or OFFSET_CURRENT

RES1: LONG Old Position. -1 indicates an error
RES2: CODE Failure code if RES1 = -1

This packet sets the current file position. The new position (ARG2)
is relative to either the beginning of the file (OFFSET_BEGINNING),
the end of the file (OFFSET_END), or the current file position
(OFFSET_CURRENT), depending on the mode set in ARG3. Note that ARG2
can be negative. The handler returns the previous file position in
RES1. Any attempt to seek past the end of the file will result in an
error and will leave the current file position in an unknown location.

ACTION_END 1007 Close(...)
ARG1: ARG1 fh_Arg1 field of the opened FileHandle

RES1: LONG DOSTRUE

This packet closes an open file handle. This function generally
returns a DOSTRUE as there is little the application can do to
recover from a file closing failure. If an error is returned under
2.0, DOS will not deallocate the file handle. Under 1.3, it does not
check the result.

ACTION_LOCK_RECORD 2008 LockRecord(fh,pos,len,mod,tim)
ARG1: BPTR FileHandle to lock record in
ARG2: LONG Start position (in bytes) of record in the file
ARG3: LONG Length (in bytes) of record to be locked
ARG4: LONG Mode

AmigaMail 7 / 24

0 = Exclusive
1 = Immediate Exclusive (timeout is ignored)
2 = Shared
3 = Immediate Shared (timeout is ignored)

ARG5: LONG Timeout period in AmigaDOS ticks (0 is legal)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This function locks an area of a file in either a sharable
(indicating read-only) or exclusive (indicating read/write) mode.
Several sharable record locks from different file handles can exist
simultaneously on a particular file area but only one file handle can
have exclusive record locks on a particular area at a time. The
‘‘exclusivity’’ of an exclusive file lock only applies to record
locks from other file handles, not to record locks within the file
handle. One file handle can have any number of overlapping exclusive
record locks. In the event of overlapping lock ranges, the entire
range must be lockable before the request can succeed. The timeout
period (ARG5) is the number of AmigaDOS ticks (1/50 second) to wait
for success before failing the operation.

ACTION_FREE_RECORD 2009 UnLockRecord(file,pos,len)
ARG1: BPTR FileHandle to unlock record in
ARG2: LONG Start position (in bytes) of record in the file
ARG3: LONG Length of record (in bytes) to be unlocked

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This function unlocks any previous record lock. If the given range
does not represent one that is currently locked in the file,
ACTION_FREE_RECORD returns an error. In the event of multiple locks
on a given area, only one lock is freed.

ACTION_SET_FILE_SIZE 1022 SetFileSize(file,off,mode)
ARG1: BPTR FileHandle of opened file to modify
ARG2: LONG New end of file location based on mode
ARG3: LONG Mode. One of OFFSET_CURRENT, OFFSET_BEGIN, or OFFSET_END

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This function is used to change the physical size of an opened file.
ARG2, the new end-of-file position, is relative to either the current
file position (OFFSET_CURRENT), the beginning of the file
(OFFSET_BEGIN), or the end of the file (OFFSET_END), depending on the
mode set in ARG3. The current file position will not change unless
the current file position is past the new end-of-file position. In
this case, the new file position will move to the new end of the
file. If there are other open file handles on this file,
ACTION_SET_FILE_SIZE sets the end-of-file for these alternate file
handles to either their respective current file position or to the
new end-of-file position of the file handle in ARG1, whichever makes

AmigaMail 8 / 24

the file appear longer.

1.3 Directory/File Manipulation/Information

The directory/file actions permits an application to make queries
about and modifications to handler objects. These packets perform
functions such as creating subdirectories, resolving links, and
filling in FileInfoBlock structures for specific files.

ACTION_LOCATE_OBJECT 8 Lock(...)
ARG1: LOCK Lock on directory to which ARG2 is relative
ARG2: BSTR Name (possibly with a path) of object to lock
ARG3: LONG Mode: ACCESS_READ/SHARED_LOCK, ACCESS_WRITE/EXCLUSIVE_LOCK

RES1: LOCK Lock on requested object or 0 to indicate failure
RES2: CODE Failure code if RES1 = 0

The AmigaDOS function Lock() uses this action to create its locks.
Given a name for the object, which may include a path, (ARG2) and a
lock on a directory from which to look for the name (and path),
ACTION_LOCATE_OBJECT will locate the object within the file system
and create a FileLock structure associated with the object. If the
directory lock in ARG1 is NULL, the name is relative to the root of
the file handler’s volume (a.k.a. ‘‘:’’). The memory for the
FileLock structure returned in RES1 is maintained by the handler and
freed by an ACTION_FREE_LOCK. Although it’s not a requirement, if an
handler expects to support the pre-1.3 Format command, it must accept
any illegal mode as ACCESS_READ.

A handler can create an exclusive lock only if there are no other
outstanding locks on the given object. Once created, an exclusive
lock prevents any other locks from being created for that object. In
general, a handler uses the FileLock->fl_Key field to uniquely
identify an object. Note that some applications rely on this
(although a handler is not required to implement this packet).

The fl_Volume field of the returned FileLock structure should point
to the DOS device list’s volume entry for the volume on which the
lock exists. In addition, there are several diagnostic programs that
expect all locks for a volume to be chained together off the
dl_LockList field in the volume entry. Note that relying on this
chaining is not safe, and can cause serious problems including a
system crash. No application should use it.

ACTION_COPY_DIR 19 DupLock(...)
ARG1: LOCK Lock to duplicate

RES1: LOCK Duplicated Lock or 0 to indicate failure
RES2: CODE Failure code if RES1 = 0

This action’s name is misleading as it does not manipulate
directories. Instead, it creates a copy of a shared lock. The copy
is subsequently freed with an ACTION_FREE_LOCK. Note that it is

AmigaMail 9 / 24

valid to pass a NULL lock. Currently, the DupLock() call always
returns 0 if passed a 0, although a handler is not required to return
a 0.

ACTION_FREE_LOCK 15 UnLock(...)
ARG1: LOCK Lock to free

RES1: BOOL TRUE

This action frees the lock passed to it. The AmigaDOS function
Unlock() uses this packet. If passed a NULL lock, the handler should
return success.

ACTION_EXAMINE_OBJECT 23 Examine(...)
ARG1: LOCK Lock of object to examine
ARG2: BPTR FileInfoBlock to fill in

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action fills in the FileInfoBlock with information about the
locked object. The Examine() function uses this packet. This packet
is actually used for two different types of operations. It is called
to obtain information about a given object while in other cases, it
is called to prepare for a sequence of EXAMINE_NEXT operations in
order to traverse a directory.

This seemingly simple operation is not without its quirks. One in
particular is the FileInfoBlock->fib_Comment field. This field used
to be 116 bytes long, but was changed to 80 bytes in release 1.2.
The extra 36 bytes lie in the fib_Reserved field. Another quirk of
this packet is that both the fib_EntryType and the fib_DirEntryType
fields must be set to the same value, as some programs look at one
field while other programs look at the other.

File systems should use the same values for fib_DirEntryType as the
ROM file system and ram-handler do. These are as follows:

ST_ROOT 1
ST_USERDIR 2
ST_SOFTLINK 3 NOTE: this Shows up as a directory unless checked for ←↩

explicitly
ST_LINKDIR 4
ST_FILE -3
ST_LINKFILE -4

Also note that for directories, handlers must use numbers greater
than 0, since some programs test to see if fib_DirEntryType is
greater than zero, ignoring the case where fib_DirEntryType equals 0.
Handlers should avoid using 0 because it is not interpreted
consistently.

ACTION_EXAMINE_NEXT 24 ExNext(...)
ARG1: LOCK Lock on directory being examined

AmigaMail 10 / 24

ARG2: BPTR BPTR FileInfoBlock

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

The ExNext() function uses this packet to obtain information on all
the objects in a directory. ACTION_EXAMINE fills in a FileInfoBlock
structure describing the first file or directory stored in the
directory referred to in the lock in ARG1. ACTION_EXAMINE_NEXT is
used to find out about the rest of the files and directories stored
in the ARG1 directory. ARG2 contains a pointer to a valid
FileInfoBlock field that was filled in by either an ACTION_EXAMINE or
a previous ACTION_EXAMINE_NEXT call. It uses this structure to find
the next entry in the directory. This packets writes over the old
FileInfoBlock with information on the next file or directory in the
ARG2 directory. ACTION_EXAMINE_NEXT returns a failure code of
ERROR_NO_MORE_ENTRIES when there are no more files or directories
left to be examined. Unfortunately, like ACTION_EXAMINE, this packet
has its own peculiarities. Among the quirks that ACTION_EXAMINE_NEXT
must account for are:

· The situation where an application calls ACTION_EXAMINE_NEXT one or
more times and then stops invoking it before encountering the end of
the directory.

· The situation where a FileInfoBlock passed to ACTION_EXAMINE_NEXT
is not the same as the one passed to ACTION_EXAMINE or even the
previous EXAMINE_NEXT operation. Instead, it is a copy of the
FileInfoBlock with only the fib_DiskKey and the first 30 bytes of the
fib_FileName fields copied over. This is now considered to be
illegal and will not work in the future. Any new code should not be
written in this manner.

· Because a handler can receive other packet types between
ACTION_EXAMINE_NEXT operations, the ACTION_EXAMINE_NEXT function must
handle any special cases that may result.

· The LOCK passed to ACTION_EXAMINE_NEXT is not always the same lock
used in previous operations. It is however a lock on the same object.

Because of these problems, ACTION_EXAMINE_NEXT is probably the
trickiest action to write in any handler. Failure to handle any of
the above cases can be quite disastrous.

ACTION_CREATE_DIR 22 CreateDir(...)
ARG1: LOCK Lock to which ARG2 is relative
ARG2: BSTR Name of new directory (relative to ARG1)

RES1: LOCK Lock on new directory
RES2: CODE Failure code if RES1 = DOSFALSE

ACTION_DELETE_OBJECT 16 DeleteFile(...)
ARG1: LOCK Lock to which ARG2 is relative
ARG2: BSTR Name of object to delete (relative to ARG1)

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)

AmigaMail 11 / 24

RES2: CODE Failure code if RES1 = DOSFALSE

ACTION_RENAME_OBJECT 17 Rename(...)
ARG1: LOCK Lock to which ARG2 is relative
ARG2: BSTR Name of object to rename (relative to ARG1)
ARG3: LOCK Lock associated with target directory
ARG4: BSTR Requested new name for the object

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

These three actions perform most of the work behind the AmigaDOS
commands MakeDir, Delete, and Rename (for single files). These
packets take as their parameters a lock describing where the file is
and a name relative to that lock. It is the responsibility of the
file system to ensure that the operation is not going to cause
adverse effects. In particular, the RENAME_OBJECT action allows
moving files across directory bounds and as such must ensure that it
doesn’t create hidden directory loops by renaming a directory into a
child of itself.

For Directory objects, the DELETE_OBJECT action must ensure that the
directory is empty before allowing the operation.

ACTION_PARENT 29 Parent(...)
ARG1: LOCK Lock on object to get the parent of

RES1: LOCK Parent Lock
RES2: CODE Failure code if RES1 = 0

This action receives a lock on an object and creates a shared lock on
the object’s parent. If the original object has no parent, then a
lock of 0 is returned. Note that this operation is typically used in
the process of constructing the absolute path name of a given object.

ACTION_SET_PROTECT 21 SetProtection(...)
ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to ARG2)
ARG4: LONG Mask of new protection bits

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to modify the protection bits of an
object. The 4 lowest order bits (RWED) are a bit peculiar. If their
respective bit is set, that operation is not allowed (i.e. if a
file’s delete bit is set the file is not deleteable). By default,
files are created with the RWED bits set and all others cleared.
Additionally, any action which modifies a file is required to clear
the A (archive) bit. See the dos/dos.h include file for the
definitions of the bit fields.

ACTION_SET_COMMENT 28 SetComment(...)

AmigaMail 12 / 24

ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of object (relative to ARG2)
ARG4: BSTR New Comment string

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set the comment string of an
object. If the object does not exist then DOSFALSE will be returned
in RES1 with the failure code in RES2. The comment string is limited
to 79 characters.

ACTION_SET_DATE 34 SetFileDate(...) in 2.0
ARG1: Unused
ARG2: LOCK Lock to which ARG3 is relative
ARG3: BSTR Name of Object (relative to ARG2)
ARG4: CPTR DateStamp

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set an object’s creation date.

ACTION_FH_FROM_LOCK 1026 OpenFromLock(lock)
ARG1: BPTR BPTR to file handle to fill in
ARG2: LOCK Lock of file to open

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 = NULL

This action open a file from a given lock. If this action is
successful, the file system will essentially steal the lock so a
program should not use it anymore. If ACTION_FH_FROM_LOCK fails, the
lock is still usable by an application.

ACTION_SAME_LOCK 40 SameLock(lock1,lock2)
ARG1: BPTR Lock 1 to compare
ARG2: BPTR Lock 2 to compare

RES1: LONG Result of comparison, one of
DOSTRUE if locks are for the same object
DOSFALSE if locks are on different objects

RES2: CODE Failure code if RES1 is LOCK_DIFFERENT

This action compares the targets of two locks. If they point to the
same object, ACTION_SAME_LOCK should return LOCK_SAME.

ACTION_MAKE_LINK 1021 MakeLink(name,targ,mode)
ARG1: BPTR Lock on directory ARG2 is relative to
ARG2: BSTR Name of the link to be created (relative to ARG1)
ARG3: BPTR Lock on target object or name (for soft links).
ARG4: LONG Mode of link, either LINK_SOFT or LINK_HARD

AmigaMail 13 / 24

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This packet causes the file system to create a link to an already
existing file or directory. There are two kinds of links, hard links
and soft links. The basic difference between them is that a file
system resolves a hard link itself, while the file system passes a
string back to DOS telling it where to find a soft linked file or
directory. To the packet level programmer, there is essentially no
difference between referencing a file by its original name or by its
hard link name. In the case of a hard link, ARG3 is a lock on the
file or directory that the link is ‘‘linked’’ to, while in a soft
link, ARG3 is a pointer (CPTR) to a C-style string.

In an over-simplified model of the ROM file system, when asked to
locate a file, the system scans a disk looking for a file header with
a specific (file) name. That file header points to the actual file
data somewhere on the disk. With hard links, more than one file
header can point to the same file data, so data can be referenced by
more than one name. When the user tries to delete a hard link to a
file, the system first checks to see if there are any other hard
links to the file. If there are, only the hard link is deleted, the
actual file data the hard link used to reference remains, so the
existing hard links can still use it. In the case where the original
link (not a hard or soft link) to a file is deleted, the file system
will make one of its hard links the new ‘‘real’’ link to the file.
Hard links can exist on directories as well. Because hard links
‘‘link’’ directly to the underlying media, hard links in one file
system cannot reference objects in another file system.

Soft links are resolved through DOS calls. When the file system
scans a disk for a file or directory name and finds that the name is
a soft link, it returns an error code (ERROR_IS_SOFT_LINK). If this
happens, the application must ask the file system to tell it what the
link the link refers to by calling ACTION_READ_LINK. Soft Links are
stored on the media, but instead of pointing directly to data on the
disk, a soft link contains a path to its object. This path can be
relative to the lock in ARG1, relative to the volume (where the
string will be prepended by a colon ’:’), or an absolute path. An
absolute path contains the name of another volume, so a soft link can
reference files and directories on other disks.

ACTION_READ_LINK 1024 ReadLink(port,lck,nam,buf,len)
ARG1: BPTR Lock on directory that ARG2 is relative to
ARG2: CPTR Path and name of link (relative to ARG1).

NOTE: This is a C string not a BSTR
ARG3: APTR Buffer for new path string
ARG4: LONG Size of buffer in bytes

RES1: LONG Actual length of returned string, -2 if there isn’t
enough space in buffer,or -1 for other errors

RES2: CODE Failure code

This action reads a link and returns a path name to the link’s
object. The link’s name (plus any necessary path) is passed as a

AmigaMail 14 / 24

CPTR (ARG2) which points to a C-style string, not a BSTR.
ACTION_READ_LINK returns the path name in ARG3. The length of the
target string is returned in RES1 (or a -1 indicating an error).

ACTION_CHANGE_MODE 1028 ChangeMode(type,obj,mode)
ARG1: LONG Type of object to change - either CHANGE_FH

or CHANGE_LOCK
ARG2: BPTR object to be changed
ARG3: LONG New mode for object - see ACTION_FINDINPUT,

and ACTION_LOCATE_OBJECT

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action requests that the handler change the mode of the given
file handle or lock to the mode in ARG3. This request should fail if
the handler can’t change the mode as requested (for example an
exclusive request for an object that has multiple users).

ACTION_COPY_DIR_FH 1030 DupLockFromFH(fh)
ARG1: LONG fh_Arg1 of file handle

RES1: BPTR Lock associated with file handle or NULL
RES2: CODE Failure code if RES1 = NULL

This action requests that the handler return a lock associated with
the currently opened file handle. The request may fail for any
restriction imposed by the file system (for example when the file
handle is not opened in a shared mode). The file handle is still
usable after this call, unlike the lock in ACTION_FH_FROM_LOCK.

ACTION_PARENT_FH 1031 ParentOfFH(fh)
ARG1: LONG fh_Arg1 of File handle to get parent of

RES1: BPTR Lock on parent of a file handle
RES2: CODE Failure code if RES1 = NULL

This action obtains a lock on the parent directory (or root of the
volume if at the top level) for a currently opened file handle. The
lock is returned as a shared lock and must be freed. Note that
unlike ACTION_COPY_DIR_FH, the mode of the file handle is
unimportant. For an open file, ACTION_PARENT_FH should return a
lock under all circumstances.

ACTION_EXAMINE_ALL 1033 ExAll(lock,buff,size,type,ctl)
ARG1: BPTR Lock on directory to examine
ARG2: APTR Buffer to store results
ARG3: LONG Length (in bytes) of buffer (ARG2)
ARG4: LONG Type of request - one of the following:

ED_NAME Return only file names
ED_TYPE Return above plus file type
ED_SIZE Return above plus file size
ED_PROTECTION Return above plus file protection

AmigaMail 15 / 24

ED_DATE Return above plus 3 longwords of date
ED_COMMENT Return above plus comment or NULL

ARG5: BPTR Control structure to store state information. The control
structure must be allocated with AllocDosObject()!

RES1: LONG Continuation flag - DOSFALSE indicates termination
RES2: CODE Failure code if RES1 is DOSFALSE

This action allows an application to obtain information on multiple
directory entries. It is particularly useful for applications that
need to obtain information on a large number of files and directories.

This action fills the buffer (ARG2) with partial or whole ExAllData
structures. The size of the ExAllData structure depends on the type
of request. If the request type field (ARG4) is set to ED_NAME, only
the ed_Name field is filled in. Instead of copying the unused fields
of the ExAllData structure into the buffer, ACTION_EXAMINE_ALL
truncates the unused fields. This effect is cumulative, so requests
to fill in other fields in the ExAllData structure causes all fields
that appear in the structure before the requested field will be
filled in as well. Like the ED_NAME case mentioned above, any field
that appears after the requested field will be truncated (see the
ExAllData structure below). For example, if the request field is set
to ED_COMMENT, ACTION_EXAMINE_ALL fills in all the fields of the
ExAllData structure, because the ed_Comment field is last. This is
the only case where the packet returns entire ExAllData structures.

struct ExAllData {
struct ExAllData *ed_Next;
UBYTE *ed_Name;
LONG ed_Type;
ULONG ed_Size;
ULONG ed_Prot;
ULONG ed_Days;
ULONG ed_Mins;
ULONG ed_Ticks;
UBYTE *ed_Comment; /* strings will be after last used field. Note: */

}; /* Bug in V37 FFS treats this as a BSTR. */

Each ExAllData structure entry has an ead_Next field which points to
the next ExAllData structure. Using these links, a program can
easily chain through the ExAllData structures without having to worry
about how large the structure is. Do not examine the fields beyond
those requested as they certainly will not be initialized (and will
probably overlay the next entry).

The most important part of this action is the ExAllControl structure.
It must be allocated and freed through
AllocDosObject()/FreeDosObject(). This allows the structure to grow
if necessary with future revisions of the operating and file systems.
Currently, ExAllControl contains four fields:

Entries - This field is maintained by the file system and
indicates the actual number of entries present in the
buffer after the action is complete. Note that a value of
zero is possible here as no entries may match the match
string.

AmigaMail 16 / 24

LastKey - This field must be initialized to 0 by the
calling application before using this packet for the first
time. This field is maintained by the file system as a
state indicator of the current place in the list of entries
to be examined. The file system may test this field to
determine if this is the first or a subsequent call to this
action.

MatchString - This field points to a pattern matching
string parsed by ParsePattern() or ParsePatternNoCase().
The string controls which directory entries are returned.
If this field is NULL, then all entries are returned.
Otherwise, this string is used to pattern match the names
of all directory entries before putting them into the
buffer. The default AmigaDOS pattern match routine is used
unless MatchFunc is not NULL (see below). Note that it is
not acceptable for the application to change this field
between subsequent calls to this action for the same
directory.

MatchFunc - This field contains a pointer to an alternate
pattern matching routine to validate entries. If it is
NULL then the standard AmigaDOS wild card routines will be
used. Otherwise, MatchFunc points to a hook function that
is called in the following manner:

BOOL = MatchFunc(hookptr, data,typeptr)
A0 A1 A2

hookptr Pointer to hook being called
data Pointer to (partially) filled in ExAllData for item

being checked.
typeptr Pointer to longword indicating the type of the

ExAll request (ARG4).

This function is expected to return DOSTRUE if the entry is accepted
and DOSFALSE if it is to be discarded.

ACTION_EXAMINE_FH 1034 ExamineFH(fh,fib)
ARG1: BPTR File handle on open file
ARG2: BPTR FileInfoBlock to fill in

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This function examines a file handle and fills in the FileInfoBlock
(found in ARG2) with information about the current state of the file.
This routine is analogous to the ACTION_EXAMINE_OBJECT action for
locks. Because it is not always possible to provide an accurate file
size (for example when buffers have not been flushed or two processes
are writing to a file), the fib_Size field (see dos/dos.h) may be
inaccurate.

ACTION_ADD_NOTIFY 4097 StartNotify(NotifyRequest)
ARG1: BPTR NotifyRequest structure

AmigaMail 17 / 24

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action asks a file system to notify the calling program if a
particular file is altered. A file system notifies a program either
by sending a message or by signaling a task.

struct NotifyRequest {
UBYTE *nr_Name;
UBYTE *nr_FullName; /* set by dos - don’t touch */
ULONG nr_UserData; /* for applications use */
ULONG nr_Flags;

union {

struct {
struct MsgPort *nr_Port; /* for SEND_MESSAGE */

} nr_Msg;

struct {
struct Task *nr_Task; /* for SEND_SIGNAL */
UBYTE nr_SignalNum; /* for SEND_SIGNAL */
UBYTE nr_pad[3];

} nr_Signal;
} nr_stuff;

ULONG nr_Reserved[4]; /* leave 0 for now */

/* internal use by handlers */
ULONG nr_MsgCount; /* # of outstanding msgs */
struct MsgPort *nr_Handler; /* handler sent to (for EndNotify) */

};

To use this packet, an application needs to allocate and initialize a
NotifyRequest structure (see above). As of this writing,
NotifyRequest structures are not allocated by AllocDosObject(), but
this may change in the future. The handler gets the watched file’s
name from the nr_FullName field. The current file system does not
currently support wild cards in this field, although there is nothing
to prevent other handlers from doing so.

The string in nr_FullName must be an absolute path, including the
name of the root volume (no assigns). The absolute path is necessary
because the file or its parent directories do not have to exist when
the notification is set up. This allows notification on files in
directories that do not yet exist. Notification will not occur until
the directories and file are created.

An application that uses the StartNotify() DOS call does not fill in
the NotifyRequest’s nr_FullName field, but instead fills in the
nr_Name field. StartNotify() takes the name from the nr_Name field
and uses GetDeviceProc() and NameFromLock() to expand any assigns
(such as ENV:), storing the result in nr_FullName. Any application
utilizing the packet level interface instead of StartNotify() must
expand their own assigns. Handlers must not count on nr_Name being
correct.

AmigaMail 18 / 24

The notification type depends on which bit is set in the
NotifyRequest.nr_Flags field. If the NRF_SEND_MESSAGE bit is set, an
application receives notification of changes to the file through a
message (see NotifyMessage from dos/notify.h). In this case, the
nr_Port field must point to the message port that will receive the
notifying message . If the nr_Flags NRF_SEND_SIGNAL bit is set, the
file system will signal a task instead of sending a message. In this
case, nr_Task points to the task and nr_SignalNum is the signal
number. Only one of these two bits should be set!

When an application wants to limit the number of NotifyMessages an
handler can send per NotifyRequest, the application sets the
NRF_WAIT_REPLY bit in the nr_Flags field. This bit tells the handler
not to send new NotifyMessages to a NotifyRequest’s message port if
the application has not returned a previous NotifyMessage. This
pertains only to a specific NotifyRequest--if other NotifyRequests
exist on the same file (or directory) the handler will still send
NotifyMessages to the other NotifyRequest’s message ports. The
NRF_WAIT_REPLY bit only applies to message notification.

If an application needs to know if a file or directory exists at the
time the application sets up notification on that file or directory,
the application can set the NRF_NOTIFY_INITIAL bit in the nr_Flags
field. If the file or directory exists, the handler sends an initial
message or gives an initial signal.

Handlers should only perform a notification when the actual contents
of the file have changed. This includes ACTION_WRITE,
ACTION_SET_DATE, ACTION_DELETE, ACTION_RENAME_OBJECT,
ACTION_FINDUPDATE, ACTION_FINDINPUT, and ACTION_FINDOUTPUT. It may
also include other actions such as ACTION_SET_COMMENT or
ACTION_SET_PROTECT, but this is not required (and may not be expected
by the application as there is no need to reread the data).

ACTION_REMOVE_NOTIFY 4098 EndNotify(NotifyRequest)
ARG1: BPTR Pointer to previously added notify request

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This action cancels a notification (see ACTION_ADD_NOTIFY) . ARG1 is
the NotifyRequest structure used to initiate the notification. The
handler should abandon any pending notification messages. Note that
it is possible for a file system to receive a reply from a previously
sent notification message even after the notification has been
terminated. It should accept these messages silently and throw them
away.

1.4 Volume Manipulation/Information

The Volume Manipulation and Information actions are used to allow
access to the underlying volume currently being manipulated by the
file system.

AmigaMail 19 / 24

ACTION_CURRENT_VOLUME 7 <sendpkt only>
RES1: BPTR Pointer to volume node of current volume

This action returns a pointer to the volume node (from the DOS device
list) associated with the file system. As the volume node may be
removed from the device list when the file system mounts a different
volume (such as when directed to by an ACTION_INHIBIT) there is no
guarantee that this pointer will remain valid for any amount of time.
This action is generally used by AmigaDOS to provide the volume line
of a requester.

ACTION_DISK_INFO 25 Info(...)
ARG1: BPTR Pointer to an InfoData structure to fill in

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)

ACTION_INFO 26 <sendpkt only>
ARG1: LOCK Lock
ARG2: BPTR Pointer to a InfoData Structure to fill in

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)

These actions are used to get information about the device and status
of the file handler. ACTION_DISK_INFO is used by the info command to
report the status of the volume currently in the drive. It fills in
an InfoData structure about the volume the file system currently
controls. This structure should be longword aligned. ACTION_INFO
fills in an InfoData structure for the volume the lock (ARG1) is on
instead of the volume currently in the drive. These actions are
generally expected to return DOSTRUE.

The ACTION_DISK_INFO packet has a special meaning for console style
handlers. When presented with this packet, a console style handler
should return a pointer to the window associated with the open handle.

ACTION_RENAME_DISK 9 Relabel(...) in 2.0
ARG1: BSTR New disk name

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)

This action allows an application to change the name of the current
volume. A file system implementing this function must also change
the name stored in the volume node of the DOS device list.

ACTION_FORMAT 1020 Format(fs,vol,type)
ARG1: BSTR Name for volume (if supported)
ARG2: LONG Type of format (file system specific)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

AmigaMail 20 / 24

This packet tells a file system to perform any device or file system
specific formatting on any newly initialized media. Upon receiving
this action, a file system can assume that the media has already been
low level formatted and should proceed to write out any high level
disk structure necessary to create an empty volume.

1.5 Handler Maintenance and Control

A number of packets are defined to give an application some control
over a file system:

ACTION_DIE 5 <sendpkt only>
RES1: BOOL DOSTRUE

As its name implies, the ACTION_DIE packet tells a handler to quit.
All new handlers are expected to implement this packet. Because of
outstanding locks and the fact that the handler address is returned
by the DeviceProc() routine, it is unlikely that the handler can
disappear completely, but instead will have to release as many
resources as possible and simply return an error on all packets sent
to it.

In the future, the system may be able to determine if there are any
outstanding DeviceProc() references to a handler, and therefore make
it is safe to shut down completely.

ACTION_FLUSH 27 <sendpkt only>
RES1: BOOL DOSTRUE

This action causes the file system to flush out all buffers to disk
before returning this packet. If any writes are pending, they must
be processed before responding to this packet. This packet allows an
application to make sure that the data that is supposed to be on the
disk is actually written to the disk instead of waiting in a buffer.

ACTION_MORE_CACHE 18 AddBuffers(...) in 2.0
ARG1: LONG Number of buffers to add

RES1: BOOL DOSTRUE (-1L)
RES2: LONG New total number of buffers

This action allows an application to change the number of internal
buffers used by the file system for caching. Note that a positive
number increases the number of buffers while a negative number
decreases the number of buffers. In all cases, the number of current
buffers should be returned in RES2. This allows an application to
inquire the number of buffers by sending in a value of 0 (resulting
in no change). Note that the OFS and FFS in 1.3 do not accept a
negative number of buffers.

Note that there is a bug in the ROM file system in both Release 2.04
and Release 3.0 that jumbles its return values for this packet. The

AmigaMail 21 / 24

file system erroneously returns the new number of buffers in RES1
instead of RES2 (it returns a failure code in RES2). To work around
this bug when using this packet, test RES1 to see if it is DOSTRUE
(-1L). If it is, look at RES2 for the number of buffers, otherwise
RES1 should contain the new total number of buffers.

ACTION_INHIBIT 31 Inhibit(...) in 2.0
ARG1: BOOL DOSTRUE = inhibit, DOSFALSE = uninhibit

RES1: BOOL Success/failure (DOSTRUE/DOSFALSE)

This action is probably one of the most dangerous that a file system
has to handle. When inhibited (ARG1 = DOSTRUE), the file system must
not access any underlying media and return an error code on all
attempts to access the device. Once uninhibited (ARG1 = DOSFALSE),
the file system must assume that the medium has been changed. The
file system must flush the buffers before the ACTION_INHIBIT ,
popping up a requester demanding that the user put back the current
disk, if necessary. The handler may choose to reject an inhibit
request if any objects are open for writing.

Although it’s not required, a handler should nest inhibits. Prior to
2.0, the system handlers did not keep a nesting count and were
subject to some obscure race conditions. The 2.0 ROM filing system
introduced a nesting count.

ACTION_WRITE_PROTECT 1023 <sendpkt only>
ARG1: BOOL DOSTRUE/DOSFALSE (write protect/un-write protect)
ARG2: LONG 32 Bit pass key

RES1: BOOL DOSTRUE/DOSFALSE

This is a new packet defined for the Fast File System. This packet
allows an application to change the write protect flag of a disk (if
possible - applications cannot write to floppies that have their
write-protect tabs set). This packet is primarily intended to allow
write-protecting non-removable media such as hard disks. The value
in ARG1 toggles the write status. The 32-bit passkey allows a
program to prevent other programs from unwrite-protecting a disk. To
unlock a disk, ARG2 must match the passkey of the packet that locked
the disk, unless the disk was locked with a passkey of 0. In this
case, no passkey is necessary to unlock the disk.

ACTION_IS_FILESYSTEM 1027 IsFileSystem(devname)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

Through this function, a handler can indicates whether or not it is a
file system (whether or not it can support separate files for
storing information). Programs will assume a handler can create
multiple, distinct files through calls to Open() if the handler
returns this packet with a DOSTRUE value. A handler does not need to
support directories and subdirectories in order to qualify as a file

AmigaMail 22 / 24

system. It does have to support the Examine()/ExNext() calls.

Note that the AmigaDOS routine IsFileSystem() will attempt to use
Lock(":",SHARED_ACCESS) if this packet returns ERROR_ACTION_NOT_KNOWN.

1.6 Handler Internal

There are several actions that are generally used by handlers to
allow messages returning from requested services (typically an Exec
device) to look like incoming request packets. This allows the
handler to request an asynchronous operation but be notified of the
completion. For example, a handler sends the serial.device a request
for a read, but instead of sending a plain IO request, it sends a DOS
packet disguised as an IO request. The serial.device treats the
packet like a normal IO request, returning it to the handler when it
is finished. When the handler gets back its disguised DOS packet, it
knows that the read has completed.

ACTION_NIL 0 <internal>

Although not specifically an action, many returns look like this
value because the action field has not been filled in.

ACTION_READ_RETURN 1001 <internal>

Generally used to indicate the completion of an asynchronous read
request.

ACTION_WRITE_RETURN 1002 <internal>

Generally used to indicate the completion of an asynchronous write
request.

ACTION_TIMER 30 <internal>

Used to indicate the passage of a time interval. Many handlers have
a steady stream of ACTION_TIMER packets so that they can schedule
house keeping and flush buffers when no activity has occurred for a
given time interval.

1.7 Obsolete Packets

There are several packet types that are documented within the system
include files that are obsolete. A file system is not expected to
handle these packets and any program which sends these packets can
not expect them to work:

ACTION_DISK_CHANGE 33 <Obsolete>

ACTION_DISK_TYPE 32 <Obsolete>

AmigaMail 23 / 24

ACTION_EVENT 6 <Obsolete>

ACTION_GET_BLOCK 2 <Obsolete>

ACTION_SET_MAP 4 <Obsolete>

Of particular note here is ACTION_DISK_CHANGE. The DiskChange
command uses the ACTION_INHIBIT packet to accomplish its task.

1.8 Console Only Packets

The remaining packets are only used for console handlers and do not
need to be implemented by a file system.

ACTION_SCREEN_MODE 994 SetMode() in 2.0
ARG1: LONG Mode (zero or one)

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

Switch the console to and from RAW mode. An ARG1 of one indicates
the unprocessed, raw mode while an ARG1 of zero indicates the
processed, ‘‘cooked’’ mode.

ACTION_CHANGE_SIGNAL 995 <sendpkt only>
ARG1: LONG The fh_Arg1 of the console file handle
ARG2: APTR MsgPort of the process to signal
ARG3: LONG Reserved, currently this must be zero

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

This packet redirects what process the console handler signals when
the user hits Control-C, Control-D, Control-E, or Control-F.
Normally the process that opened the file handle receives the break
signal.

ACTION_WAIT_CHAR 20 WaitForChar()
ARG1: ULONG Timeout in microseconds

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)
RES2: CODE Failure code if RES1 is DOSFALSE

Performs a timed read of a character. The WaitForChar() function
uses this packet.

ACTION_DISK_INFO 25 <sendpkt only>
ARG1: BPTR Pointer to an InfoData structure to fill in

AmigaMail 24 / 24

RES1: BOOL Success/Failure (DOSTRUE/DOSFALSE)

The ACTION_DISK_INFO packet has a special meaning for console style
handlers. When presented with this packet, a console style handler
should return a pointer to the window associated with the open handle
in the InfoData structure’s id_VolumeNode field (the InfoData
structure is defined in <dos/dos.h>). Note that some consoles can
return a NULL Window pointer (for example, an AUTO CON: or a AUX:
console). The Amiga’s standard console handler, CON:, also returns a
pointer to the console handler’s IO request in the id_InUse field.
In some cases, the IO request’s io_Unit field (which normally point
to a ConUnit structure) will be NULL. See also the ACTION_DISK_INFO
packet in the ‘‘Volume Manipulation/Information’’ section.

	AmigaMail
	II-5: AmigaDOS Packet Interface Specification
	Basic Input/Output
	Directory/File Manipulation/Information
	Volume Manipulation/Information
	Handler Maintenance and Control
	Handler Internal
	Obsolete Packets
	Console Only Packets

