
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 II-37: Using the AmigaDOS Pattern Matching Functions . 1

1.2 Patterns . 1

1.3 Parsing . 3

1.4 Matching . 3

AmigaMail 1 / 4

Chapter 1

AmigaMail

1.1 II-37: Using the AmigaDOS Pattern Matching Functions

by Ewout Walraven

One of the additions made to dos.library for release 2.0 is a series of
functions to do standard pattern matching. Using a set of standard string
matching tokens, any application can use these functions to test if a
particular string matches a pattern. The Amiga OS uses these functions
for processing file name strings for its new directory scanning functions.

These functions can be used in every circumstance where you would like to
enable the user to enter a pattern to indicate more than one target
string. Using these functions not only makes it unnecessary to implement
your own pattern matching routines, but by using the familiar DOS pattern
tokens in your application, it is easier for the user to learn how to use
your application.

Patterns

Parsing

Matching

1.2 Patterns

An AmigaDOS pattern matching string is a combination of alphanumeric
characters and a series of special token characters. These token
characters are part of the ASCII character set and they denote such things
as string matching wildcards, string repetitions, and string negation.
Pattern matching strings can use parentheses to delimit pattern matching
substrings.

? The question mark matches any single character. For example,

AmigaMail 2 / 4

the pattern matching string "A?B" matches any string that is
three letters long, that starts with an "A" and ends with a
"B".

The number sign matches strings containing zero or more
repetitions of the expression that immediately follows the # in
the pattern matching string. For example, the pattern matching
string "#A" matches any string that consists of one or more of
the "A" character. The pattern matching string "#?" matches
any non-NULL string. The # can apply to entire substrings
delimited by parentheses. For example, the pattern string
"#(AB)" matches any string consisting of one or more
repetitions of the substring "AB" (AB, ABAB, ABABAB...).

% Matches the NULL string.

| This is the OR symbol. This matches strings that contain the
expressions on either side of the OR sign. The expressions and
the OR symbol need to be enclosed in parentheses. For example,
the pattern matching string "(A|B)" matches the string "A"
or the string "B". The pattern matching string A(B|%|C)
matches the strings "AB", "A", and "AC".

~ The tilde negates the expression that follows it. All
strings that do not match the expression that follows the tilde
will match the expression with the tilde. For example, the
pattern matching string "~(#?.info)" matches any string that
does not match the string "#?.info" (does not end with the
substring ".info").

* The star is provided as an synonym to "#?". This is an
option which can be turned on. Note that the star can not be
used by itself on all non-FileSystem devices, like a logical
device name assigned to a directory on a file system. For
example:

Assign A: dh0:tmp
cd a:
list *

will produce an error. The SetStar.c example at the end of this
article is a small, stand-alone utility to turn this option on
and off.

[] All characters within brackets indicate a character class. Any
character in the character class qualifies. Within a character
class, a character range can be indicated by specifing the start
and stop character, separated with a minus sign. Note that
character classes are case sensitive. If character classes are
to be used in a case insensitive form, they should be translated
to uppercase. Here are some example:

AmigaMail 3 / 4

[ACF]#? matches strings starting with ‘A’, ‘C’, or ‘F’
[A-D]#? matches strings starting with ‘A’, ‘B’, ‘C’, or ‘D’
[~ACF]#? matches strings not starting with ‘A’, ‘C’, or ‘F’

’ The quote character neutralizes the special meaning of a
special character. Here are some examples:

’#’? matches only the literal string "#?"
’?(A|B|C|%)’# matches the literal strings "?#", "?A#", "?B#", "?C#"
" matches ’

() Parentheses group special characters. The expression within the
parentheses is a subpattern.

1.3 Parsing

When you want to use a string as an AmigaDOS wildcard pattern, the system
must first parse it. The system builds a token string which the system
uses to match strings. There are two functions in dos.library to parse
pattern matching strings:

LONG ParsePattern(UBYTE *SourcePattern, UBYTE *MyDestination,
LONG DestLength);

LONG ParsePatternNoCase(UBYTE *SourcePattern, UBYTE *MyDestination,
LONG DestLength);

The ParsePattern() function creates a case sensitive token string, whereas
the ParsePatternNoCase() functions creates a case insensitive token
string. Both functions require a pointer to a destination buffer
(MyDestination in the above prototype) to place the tokenized string in.
Since every character in the pattern can be expanded to two tokens (3 in
one case), this buffer should be at twice as as large as the original
pattern plus 2 bytes. As a general rule, allocating a buffer three times
the size of the pattern will hold all patterns. The third argument,
DestLength, indicates the size of the destination buffer provided. These
functions will returns one of three values:

-1 if there is an error (if the buffer is too small to hold all the
tokens or the source string contains an invalid pattern),

1 if the wildcard pattern was parsed successfully and the pattern
contains one of the special token characters.

0 if the wildcard pattern was parsed successfully and pattern
contained only alphanumeric characters (no special token
characters)

1.4 Matching

AmigaMail 4 / 4

Once a pattern is parsed, it can be compared to a string using either the
case sensitive MatchPattern() or the case insensitive MatchPatternNoCase()
functions. These functions have the following synopsis:

BOOL MatchPattern(UBYTE *mytokenpattern, UBYTE *mystring);
BOOL MatchPatternNoCase (UBYTE *mytokenpattern, UBYTE *mystring);

These functions will compare the wildcard pattern string, mytokenpattern
(created by ParsePattern/NoCase()), to mystring. If mystring matches the
pattern in mytokenpattern, these routines return TRUE, otherwise they
return FALSE.

Because these routines are recursive, they can use a lot of stack space,
although they will not use more than 1500 bytes of stack space. Make sure
the stack space is at least 1500 bytes before calling these routines.

In V36, these routines did not perform any stack checking. This was added
in V37. If either of these functions detect a stack overflow, they will
return 0 and IoErr() will return ERROR_TOO_MANY_LEVELS. If IoErr()
returns 0, there was simply no match. The Pattern.c example at the end of
this article shows how to use the parse and match functions and allows you
to test and experiment with patterns.

	AmigaMail
	II-37: Using the AmigaDOS Pattern Matching Functions
	Patterns
	Parsing
	Matching

