
AmigaMail

AmigaMail ii

COLLABORATORS

TITLE :

AmigaMail

ACTION NAME DATE SIGNATURE

WRITTEN BY March 14, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

AmigaMail iii

Contents

1 AmigaMail 1

1.1 I-43: Callback Hooks . 1

1.2 Callback Hook Functions and Structures . 1

1.3 Simple Callback Hook Usage . 2

AmigaMail 1 / 4

Chapter 1

AmigaMail

1.1 I-43: Callback Hooks

by David Junod

The callback features of Release 2 provide a standard means for
applications to extend the functionality of libraries, devices, and
their applications. This standard makes it easy for the operating
system to use custom modules from different high level programming
languages as part of the operating system. For example, the layers
library, which takes care of treating a display as a series of layered
regions, allows an application to attach a pattern function to a
display layer. Instead of filling in the background of a layer with
the background color, the layers library calls the custom pattern
function which fills in the layer display with a custom background
pattern.

Callback Hook Functions and Structures

Simple Callback Hook Usage

1.2 Callback Hook Functions and Structures

An application passes a custom function in the form of a callback Hook
(from <utility/hooks.h>):

/* Standard hook structure */
struct Hook
{

struct MinNode h_MinNode;
ULONG (*h_Entry)(); /* stub function entry point */
ULONG (*h_SubEntry)(); /* the custom function entry point */
VOID *h_Data; /* owner specific */

};

AmigaMail 2 / 4

h_MinNode - This field is reserved for use by the module that will
call the Hook.

h_Entry - This is the address of the Hook stub. When the OS calls
a callback function, it puts parameters for the callback function
in CPU registers A0, A1, and A2. This makes it tough for higher
level language programmers to use a callback function because most
higher level languages don’t have a way to manipulate CPU registers
directly. The solution is a stub function which first copies the
parameters from the CPU registers to a place where a high level
language function can get to them. The stub function then calls
the callback function. Typically, the stub pushes the registers
onto the stack in a specific order and the high level language
callback function pops them off the stack.

h_SubEntry - This is the address of the actual callback function
that the application has defined. The stub calls this function.

h_Data - This field is for the application to use. It could point
to a global storage structure that the callback function utilizes.

There is only one function defined in utility.library for callback
functions.

ULONG CallHookPkt(struct Hook *hook, VOID *object, VOID *paramPkt);
A0 A2 A1

This function invokes a standard callback Hook function.

1.3 Simple Callback Hook Usage

A Hook function must accept the following three parameters in these
specific registers:

A0 Pointer to the Hook structure.
A2 Pointer to an object to manipulate. The object is context

specific.
A1 Pointer to a message packet. This is also context specific.

For a callback function written in C, the parameters should appear in
this order:

myCallbackFunction(Pointer to Hook (A0),
Pointer to Object (A2),
Pointer to message (A1));

This is because the standard C stub pushes the parameters onto the
stack in the following order: A1, A2, A0. The following assembly
language routine is a callback stub for C:

AmigaMail 3 / 4

INCLUDE ’exec/types.i’
INCLUDE ’utility/hooks.i’

xdef _hookEntry

_hookEntry:
move.l a1,-(sp) ; push message packet pointer
move.l a2,-(sp) ; push object pointer
move.l a0,-(sp) ; push hook pointer
move.l h_SubEntry(a0),a0 ; fetch actual Hook entry point ...
jsr (a0) ; and call it
lea 12(sp),sp ; fix stack
rts

If your C compiler supports registerized parameters, your callback
functions can get the parameters directly from the CPU registers
instead of having to use a stub to push them on the stack. The
following C language routine uses registerized parameters to put
parameters in the right registers. This routine requires a C compiler
that supports registerized parameters.

#include <exec/types.h>
#include <utility/hooks.h>

#define ASM __asm
#define REG(x) register __ ## x

/* This function converts register-parameter hook calling

* convention into standard C conventions. It requires a C

* compiler that supports registerized parameters, such as

* SAS/C 5.xx or greater.

*/
ULONG ASM hookEntry(REG(a0) struct Hook *h, REG(a2) VOID *o, REG(a1) VOID *msg ←↩

)
{

return ((*h->h_SubEntry)(h, o, msg));
}

A callback function is executed on the context of the module that
invoked it. This usually means that callback functions cannot call
functions that need to look at environment specific data. For example,
printf() needs to look at the current process’s input and output
stream. Entities like Intuition have no input and output stream. The
limitations on a callback function depend heavily upon the subsystem
that is using them. See that subsystem’s documentation for more
information.

For the callback function to access any of its global data, it needs to
make sure the CPU can find the function’s data segment. It does this
by forcing the function to load the offset for the program’s data
segment into CPU register A4. See your compiler documentation for
details.

The following is a simple function that can be used as a callback Hook.

AmigaMail 4 / 4

ULONG MyFunction (struct Hook *h, VOID *o, VOID *msg)
{

/* A SASC and Manx function that obtains access to the global data segment ←↩
*/

geta4();

/* Debugging function to send a string to the serial port */
KPrintF("Inside MyFunction()\n");

return (1);
}

The next step is to initialize the Hook for use. This basically means
that the fields of the Hook structure must be filled with appropriate
values.

The following simple function initializes a Hook structure.

/* This simple function is used to initialize a Hook */
VOID InitHook (struct Hook *h, ULONG (*func)(), VOID *data)
{

/* Make sure a pointer was passed */
if (h)
{

/* Fill in the hook fields */
h->h_Entry = (ULONG (*)()) hookEntry;
h->h_SubEntry = func;
h->h_Data = data;

}
}

Hooks1.c is a simple example of initializing and using a callback
Hook function.

	AmigaMail
	I-43: Callback Hooks
	Callback Hook Functions and Structures
	Simple Callback Hook Usage

