
Exec Signalling with SIGF_SINGLE Page III - 17

Amiga Mail
Volume II

Signalling with SIGF_SINGLE

by John Orr

The ROM Kernel Reference Manuals state that sixteen of a task’s 32 signal bits are reserved for the
operating system’s private use, but, like any good rule, there is an exception. One of these sixteen bits,
the SIGF_SINGLE bit, can be useful to some applications, if used correctly.

Many system functions need to put their task to sleep while waiting for a single event, which requires
using one of the task’s signals. Rather than forcing each of these system functions to allocate a signal,
then Wait(), then deallocate the signal, the operating system has permanently allocated one signal, the
SIGF_SINGLE, for this type of signalling. When a system function needs stop a task to Wait() for a
single signal, it can use SIGF_SINGLE.

The only purpose a program can use SIGF_SINGLE for is Wait()ing because the task cannot call any
system functions while it is using SIGF_SINGLE. A program that calls system functions while using
SIGF_SINGLE can cause itself and the operating system serious problems because the system functions
can use SIGF_SINGLE as well. If a program calls a system function while using SIGF_SINGLE, two bad
things can happen:

1) The errant task’s event takes place before the system function waits on SIGF_SINGLE (or
while the system function is waiting on SIGF_SINGLE). In this case, the system function will
think its event has taken place because its signal became set. The errant task will never find
out that its event has taken place, as the system function will clear the SIGF_SINGLE bit after
Wait()ing on it.

2) The errant task’s event and the system function’s event take place while the system function
is waiting on SIGF_SINGLE. In this case, the system function will function normally, clear the
SIGF_SINGLE bit, and exit. The errant task will never know that its event has taken place.

Before Wait()ing on SIGF_SINGLE, clear it using SetSignal():

 SetSignal(0L, SIGF_SINGLE);

This step is necessary because it is possible that the last system function that used the SIGF_SINGLE
signal did not clear the SIGF_SINGLE bit.

Also, an application should not wait on other signals while it is waiting on SIGF_SINGLE. Waiting on
other signals at the same time makes it possible for a program to wake up while the SIGF_SINGLE is still
outstanding. If this happens, the program will still have to go back to sleep, which requires calling a
system function.

SIGF_Single.c is a simple example of using the SIGF_SINGLE signal. It starts a child process and waits
for that child process to signal the main process using the SIGF_SINGLE signal.

September/October 1992

