
AmigaDOS Fast AmigaDOS I/O Page II - 77

Amiga Mail
Volume II

Fast AmigaDOS I/O

by Martin Taillefer

Reading and writing data is crucial to most applications and is, in many cases, a major bottleneck.
Using the Amiga’s sophisticated file system architecture can help reduce, and sometimes eliminate,
the time spent waiting for I/O to complete. This article presents six small routines that can greatly
improve an application’s I/O performance.

Typically, an application processes a file in the following manner:

Step 1: Open the file.
Step 2: Read some data (with the DOS library’s Read() function).
Step 3: Process that data.
Step 4: Repeat steps 2 and 3 until the application is finished processing the file.
Step 5: Close file.

This sequence of steps is effective, but it does have a potential bottleneck. Whenever the application
reads some data using the DOS Read() function, the Amiga has to put that task to sleep and ask the
file system to fetch the data. The file system then starts up the disk hardware and reads the data.
After the file system finishes reading the data, the operating system wakes up the application.

The problem is step 2. While the file system is busy reading data from the disk, the application is
idle, waiting for the DOS I/O in Read() to complete. A more sophisticated application would initiate
an asynchronous read, allowing the application to continue to do some other important chore while
the file system is busy reading. If all goes well, the file system will be finished with the asynchronous
read by the time the application is finished with its chore, so the application will not have to wait for
any DOS I/O to complete before the application can access data.

September/October 1992

Using the routines presented in this article, an application processes a file in the following manner:

Step 1: Open the file with OpenAsync(). This function opens the file and, if the file is opened for
reading, OpenAsync() asks the file system to start reading data, asynchronously.

Step 2: Read some data with ReadAsync(). If the asynchronous read request that OpenAsync()
sent has not completed, ReadAsync() will put the application to sleep until that request
returns. Ideally, the read will have returned, so the application won’t have to wait.
ReadAsync() will also initiate a new asynchronous read so new file data is ready when the
application needs it.

Step 3: Process the file data.
Step 4: Repeat steps 2 and 3 until the application processes all its file data.
Step 5: Close the file with CloseAsync().

Immediately after opening the file, OpenAsync() sends a request to the file system to get it reading
data in the background. If all goes well, by the time the application gets around to reading the first
byte of data, the file system has already copied the data into memory. That means the application
doesn’t need to wait and can immediately start processing the data. As soon as the application starts
processing data from the file using ReadAsync(), ReadAsync() sends out a second request to the file
system to fill up a second buffer. Once the application is done processing the first buffer, it starts
processing the second one. When this happens, the file system starts filling up the first buffer again
with new data. This process continues until the application has read all of its data. This technique is
known as ‘‘double-buffered asynchronous I/O’’.

The set of functions presented below offer high-performance I/O using the technique described above.
The interface is very similar to standard AmigaDOS files. These routines enable full asynchronous
read/write of any file.

These functions are especially useful on an Amiga with a DMA (Direct Memory Access) hard drive.
DMA makes it possible to transfer data to memory at the same time the CPU is busy executing a
task’s instructions. A DMA data transfer is truly parallel, so, under normal conditions, the CPU is
operating at full speed, unaffected by the DMA transfer. This parallelism is what makes the set of
accompanying routines so efficient. They exploit the fact that the Amiga can transfer an application’s
data while the application is busy processing other data.

Although these asynchronous routines make disk I/O much faster, they do have an important
limitation. The routines do not support seeking into a file.

AmigaDOSFast AmigaDOS I/OPage II - 78

Amiga Mail
Volume II

