
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Who? What? When?
Where? Why? How? Whazzit? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?

Q & AQ & AQ & A
Amiga Mail

Volume II

Amiga Mail News September/October 1991 Page 3

Q: How do you go about attaching a console
to an Intuition window on a custom screen?

A: That depends on what you mean by a
console. You can open the console.device in
the following manner:

iorequest->io_Data = yourwindowptr;
iorequest->io_Length = sizeof(struct Window);
OpenDevice("console.device", unit, iorequest,
0);

where yourwindowptr = a pointer to the
window you opened, iorequest is a ptr to an
iorequest you allocated with CreateExtIO().
Using this method, you have to send and
receive data from the cosole.device just like
any other Exec device (CMD_READ,
CMD_WRITE,...). For more information on this,
see the console device section of the
RKM:Libraries & Devices Manual

Under 2.0, you can attach a console file
handle (CON:) to a window by doing:

win = OpenWindow(...)
sprintf(str, "CON://///WINDOW0x%lx", win);
confh = Open(str, MODE_OLDFILE);

Using this method, an application can write to
the console using standard I/O routines like
printf(). The window can be on a custom
screen with no problem, just make sure the
window is SIMPLEREFRESH. When you
Close(confh), the window closes too, so only
call CloseWindow(win) if the Open() failed.

Q: How does the program More determine it was
launched into the background?

A: from <libraries/dosextens.h>:

 LONG cli_Background; /* Boolean; True if
 CLI created by RUN */

Q: Is it OK to put a pointer into a BOOL to test
the pointer’s validity?

A: No. BOOL as defined in <exec/types.h> is
only 16 bits wide, so stuffing a pointer into a
BOOL (or returning one as a BOOL) can cause a
pointer to look like a NULL pointer if the address
happens to fall on a 64K boundary.

Q: How do I determine the ROM version of my
A2620/30 card?

A: Boot with both mouse buttons down. Keep
holding. Press ‘‘Shift M’’. Let go of the mouse
buttons. Type ‘‘version’’ and hit return. If the
board has the -06 ROMs, it will print
‘‘01/15/91’’.

The selection screens look identical to older
ROMs and is identical under 1.3 and 2.0. You
must hold both mouse buttons down in order to
get the screens. One button does not enter the
ROMs.

Q: Can I render directly into a requester’s
ReqLayer->rp?

A: Yes, as long as the requester has no
ENDGADGET gadgets. The reason being that if the
user clicks on an ENDGADGET gadget, then the
requester will go away, and you will be notified
through a message (GADGETUP or GADGETDOWN
and REQCLEAR if you like). However, like all
messages, that information arrives
asynchronously. This means that the requester is
gone by the time you find out about it. In
particular, the requester’s ReqLayer and
associated RastPort can vanish while you’re
trying to render into them. The upshot is that it
is unsafe to render into the ReqLayer->rp if you
have ENDGADGETs in that requester.

Q: How do I know what default font to expect
when I open a screen or window?

Q: On page II-23 of the Amiga Mail article
‘‘AmigaDOS Packet Interface Specification’’,
the article mentions that a handler can
disguise an IO request it sends to its
underlying device to look like an incoming
packet, but it doesn’t mention how. How do
you do it?

A:Let i be a pointer to an IOStdReq. Let p be
a pointer to a DosPacket. Make the
corresponding structures point to each other
with the following assignments:

i->io_Message.mn_Node.ln_Name = (char *) packet

p->dp_Link = (struct Message *) i

Then just SendIO(i). The reply will look just
like a packet.

Amiga Mail NewsSeptember/October 1991Page 4

Volume II
Amiga Mail

A: Here is a chart to help...

 What you tell OpenScreen Screen Fonts Window RPort’s Font

A. NewScreen.Font = myfont myfont myfont
B. NewScreen.Font = NULL GfxBase->DefaultFont GfxBase->DefaultFont
C. {SA_Font, myfont myfont myfont
D. {SA_SysFont, 0} GfxBase->DefaultFont GfxBase->DefaultFont
E. {SA_SysFont, 1) Font Prefs Screen text GfxBase->DefaultFont

Notes:
A and B are the options that existed in 1.3.
C and D are new 2.0-expressions equivalent to A and B respectively.
E is a NEW option for 2.0.
GfxBase->DefaultFont should always be monospace. This is the

‘‘System default text’’ from Font Preferences.
Font Preferences ‘‘Screen text’’ can be monospace or proportional.
’myfont’ can be any font of the programmer’s choosing, including a

proportional one. This is true under 1.3 and 2.0.

