Arniga el

Volume Il

May/June 1992

SANA-II Network Device
Driver Specification

Amiga Networ king Group
Brian Jackson, Dale Larson, Greg Miller, and Kenneth Dyke

The SANA-II Network Device Driver Specification is a standard for an Amiga software interface
between networking hardware and network protocol stacks (or for software tools such as network
monitors). A network protocol stack isalayer of software that network applications use to address
particular processes on remote machines and to send datareliably in spite of hardware errors. There
are several common network protocol stacksincluding TCP/IP, OSl, AppleTalk, DECNet and Novell.

SANA-II device drivers are intended to allow multiple network protocol stacks running on the same
machine to share one network device. For example, the TCP/IP and AppleTalk protocol stacks could
both run on the same machine over one ethernet board. The device drivers are aso intended to allow
network protocol stacks to be written in a hardware-independent fashion so that a different version of
each protocol stack doesn’t have to be written for each networking hardware device.

The standard does not address the writing of network applications. Application writers must not use
SANA-II Device Driversdirectly. Network applications must use the API provided by the network
protocol software the application supports. Thereisnot an Amiga standard network API at the time
of thiswriting, though there is the AS225 TCP/IP package and its socket.library as well as other
(third-party) packages.

To write a SANA-II device driver, you will need to be familiar with the specification documents for
the hardware you are writing to and with the SANA-I1 Network Device Driver Specification.

To write anetwork protocol stack which will use SANA-II device drivers, you should have general
familiarity with common network hardware and must be very familiar with the SANA-I1 Network
Device Driver Specification as well as the specification for the protocol you are developing. If you
are creating a new protocol, you must obtain a protocol type number for any hardware on which your
protocol will be used.

Unix and Networking SANA-II Network Device Driver Page VIII - 51
Specification

Ammiga el

Volume Il

Commodore supports the SANA-II specification by providing drivers for the Commodore-Amiga
network hardware. We have an A2065.device (Ethernet) and intend to produce an A2060.device
(ARCNET). Wealso try to examine review copies of third-party SANA-II networking hardware and
software to try to make sure that they interoperate with our products.

This standard has undergone severa drafts with long periods for comment from devel opers and the
Amiga community at large. These drafts include a UseNet release which was also distributed on the
Fish Disksin June, 1991 (as well as published in the’91 DevCon notes), and the November 7 Draft
for Final Comment and Approval distributed via Bix, ADSP and UseNet. There were also severd
intermediate drafts with more limited distribution.

Thisversion of the specificationisfina. Any new version of the standard (i.e., to add new features) is
planned to be backward compatible. No SANA-II device driver or software utilizing those drivers
should be written to any earlier version of the specification.

Distribution of this version of the standard is unlimited. Anyone may write Amiga software which
implements a SANA-II network device driver or which calls a SANA-II network device driver
without restriction and may freely distribute such software that they have written. Amigaisa
registered trademark of Commodore-Amiga, Inc. Ethernet isatrademark of Xerox Corporation.
ARCNET isatrademark of Datapoint Corporation. DECNet is atrademark of Digital Equipment
Corporation. AppleTalk isatrademark of Apple Computer, Inc.

It isimportant to try to test each SANA-II device driver against al software which uses SANA-II
devices. Available example programs are valuable in initial testing. The Amiga Networking Group is
interested in receiving evaluation and/or betatest copies of all Amiga networking hardware, SANA-I1I
device drivers and software which uses SANA-II devices. However, we make no assurances
regarding any testing which we may or may not perform with such evaluation copies. Contact:

Amiga Networking Group

Commodore International Services Corporation
Technology Group

1200 Wilson Drive

West Chester, PA 19380, USA

Driver Form

SANA-II device drivers are Amiga Exec device drivers. They use an extended |ORequest structure
and a number of extended commands for tallying network statistics, sending broadcasts and
multicasts, network addressing and the handling of unexpected packets. The Amiga ROM Kernel
Reference Manual: Devices includes information on how to construct an Exec device.

Page VIII - 52 SANA-II Network Device Driver Unix and Networking
Specification

Arniga el

Volume Il

Opening a SANA-I1 Device

As when opening any other Exec device, on the call to penDevi ce() a SANA-II device receives an
|ORequest structure which the deviceinitializes for the opener’ suse. The opener must copy this
structure if it desires to use multiple asynchronous requests. The SANA-II IORequest is defined as
follows:

struct | OSana2Req
{

struct | ORequest i0s2_Req;
ULONG i 0s2_WreError;
ULONG i 0s2_Packet Type;
UBYTE i 0s2_Sr cAddr [SANA2_MAX_ADDR_BYTES] ;
UBYTE i 0s2_Dst Addr [SANA2_MAX_ADDR_BYTES] ;
ULONG i 0s2_Dat aLengt h;
APTR *i 0s2_Dat a;
APTR *i 0s2_St at Dat a;
b APTR *i os2_Buf f er Managenent ;
i0s2_Req - A standard Exec device |ORequest.
ios2_WireError - A more specific device code which may be set when thereisanio_Error. See
<devices/sana2.h> for the defined WireErrors.
ios2 PacketType - Thetype of packet requested. See the section on ‘‘ Packet Types'’.
i0s2_SrcAddr - The devicefillsin this field with the interface (network hardware) address of
the source of the packet that satisfied aread command. The bytes used to hold
the address will be left justified but the bit layout is dependent on the
particular type of network.
ios2_DstAddr - Before the device user sends a packet, it fills thiswith the interface destination
address of the packet. On receives, the device fillsthis with the interface
destination address. Other commands may use this field differently (see the
SANA-II Network Device Driver Autodocs). The bytes used to hold the
address will be left justified but the bit layout is dependent on the particular
type of network.
ios2_DataLength - The device user initiaizes this field with the amount of data available in the
Data buffer before passing the |0Sana2Req to the device. The devicefillsin
thisfield with the size of the packet data as it was sent on the wire. This does
not include the header and trailer information. Depending on the network type
and protocol type, the driver may have to calculate thisvalue. Thisis
generally used only for reads and writes (including broadcast and multicast).
ios2_Data - A pointer to some abstract data structure containing packet data. Drivers may
not directly manipulate or examine anything pointed to by Datal Thisis

generally used only for reads and writes (including broadcast and multicast).

ios2_StatData - Pointer to a structure in which to place a snapshot of device statistics. The
dataareamust be long word aligned. Thisisonly used on callsto the statistics
commands.

Unix and Networking SANA-II Network Device Driver Page VIII - 53

Specification

Amnige Mefl

Volumell

ios2_BufferManagement - The opener places a pointer to atag list in thisfield before calling
OpenDevi ce() . Functions pointed to in the tag list are called by the device
when processing | OReguests from the opener. When returned from
QpenDevi ce(), thisfield contains a pointer to driver-private information used
to access these functions. See ‘‘Buffer Management’’ below for more details.

The flags used with the device on penDevi ce() are (SANA2OPB_xxx):

SANA2OPB_M NE - Exclusive access to the unit requested.

SANA2OPB_PROM - Promiscuous mode requested. Hardware which supports promiscuous mode
alows al packets sent over the wire to be captured whether or not they are
addressed to this node.

The flags used during /O requests are (SANA2I OB_xxx):

SANA2| OB_RAW - Raw packet read/write requested. Raw packets should include the entire
data-link layer packet. Devices with the same hardware device number
should have the same raw packet format.

SANA2| OB_BCAST - Broadcast packet (received).
SANA2| OB_MCAST - Multicast packet (received).
SANA2| OB_QUI CK - Quick 10 requested.

Buffer Management

Unlike most other Exec Device drivers, SANA-II drivers have no internal buffers. Instead, they
read/write to/from an abstract data structure allocated by the driver user. The driver accesses these
buffers only viafunctions that the driver user provides to the driver. The driver user must provide two
functions--one copies data to the abstract data structure and one copies data from the abstract data
structure. The driver user can therefore choose the data structure used for buffer management by both
the driver and driver user in order to have efficient memory and CPU usage overal.

The 10Sana2Req contains a pointer to data and the length of said data. A driver is not allowed to
make assumptions about how the dataiis stored. The driver cannot directly manipulate or examine the
buffer in any manner. The driver can only access the buffer by calling the functions provided by the
driver user.

Before calling penDevi ce() , the driver user pointsios2_BufferManagement to alist of tags (defined
in <devices/sana2.h>) which include pointers to the buffer management functions required by the
driver (defined below). Thedriver will fail to open if the driver user does not supply al of the
required functions. If the device opens successfully, the driver setsios2_BufferManagement to a
value which this opener must use in all future callsto the driver. This‘‘magic cookie'’ isused from
then on to access these functions (a**magic cookie’’ is avalue which one software entity passes to

Page VIII - 54 SANA-II Network Device Driver Unix and Networking
Specification

Arniga el

Volume Il

another but which is only meaningful to one of the software entities). The driver user may not use the
“*magic cookie'’ in any way--it isfor the driver to do with asit wishes. Thedriver could in theory
choose to just copy the tag list to driver-owned memory and then parse the list for every |ORequest,
but it is much more efficient for the driver to create some sort of table of functions and to point
ios2_BufferManagement to that table.

The specification currently includes only two tags for the OpenDevi ce() 10s2_BufferManagement tag
list:

S2_CopyToBuff - Thisisapointer to afunction which conforms to the CopyToBuff Autodoc.
S2_CopyFronBuf f - Thisisa pointer to afunction which conforms to the CopyFromBuff Autodoc.

Packet Type

Network frames aways have atype field associated with them. These typefields vary in length,
position and meaning by frame type (frame types generally correspond one-to-one with hardware
types, but see *‘ Ethernet Packet Types’ below). The meanings of the type numbers are aways
carefully defined and every type number is registered with some official body. Do not use atype
number which is not registered for any standard hardware you use or in a manner inconsistent with
that registration.

The type field allows the SANA-II device driver to fulfill cMD_READs based on the type of packet the
driver user wants. Multiple protocols can therefore run over the same wire using the same driver
without stepping on each other’ s toes.

Packet types are specified asalong word. Unfortunately, the type field means different things on
different wires. Driver users must allow their software to be configured with a SANA-I1 device name,
unit number and the type number(s) used by the protocol stack with each device. Thisway, if new
hardware becomes available, a hardware manufacturer can supply alisting of type assignments to
configure pre-existing software.

Ethernet Packet Types

Ethernet has a special problem with packet types. Two types of ethernet frames can be sent over the
same wire--ethernet and 802.3. These frames differ in that the Type field of an ethernet frame is the
Length field of an 802.3 frame. This creates a problem in that demultiplexing incoming packets can
be cumbersome and inefficient, as well as requiring driver users to be aware of the frame type used.

All 802.3 frames have numbers less than 1500 in the Type field. The only frames with numbers less
than 1500 in the type field are 802.3 frames. SANA-II ethernet drivers abnormally return packets

Unix and Networking SANA-II Network Device Driver Page VIII - 55
Specification

Amnige Mefl

Volume ll

contained in ethernet frames when the requested Type falls within the 802.3 range--if the Type
requested is within the 802.3 range, the driver returns the next packet contained within an 802.3
frame, regardless of the type specified for the packet within the 802.3 frame. This requires that there
be no more than one driver user requesting 802.3 packets and that it do its own interpretation of the
frames.

ARCNET Frames

ARCNET also has a specia problem with framing. ARCNET frames consist of a hardware header
and a software header. The software header isin the data area of the hardware packet, and includes at
least the protocol ID.

There are two types of software header. Old-style ARCNET software headers consist entirely of a one
or two byte protocol ID. New ARCNET software headers (defined in RFC 1201 and in the paper

““* ARCNET Packet Header Definition Standard’’, Novell, Inc., 1989) include more information. They
alow more efficient use of ARCNET through datalink layer fragmentation and reassembly
(ARCNET has a small Maximum Transmission Unit) and allow sending any size packet up to the
MTU (rather than requiring that packets of size 253, 254 and 255 be padded to at least 256 bytes).

SANA-II device driversfor ARCNET should implement the old ARCNET packet headers. Driver
users which wish to interoperate with platforms using the new software headers must add the new
fields to the data to be sent and must process it for incoming data. A SANA-II driver which
implemented the data link layer fragmentation internally (and advertised alarge MTU) could be more
efficient than requiring the driver user to do it. Thiswould make driver writing more difficult and
reduce interoperability, but if there is ever ademand for that extra performance, a new hardware type
may be assigned by Commodore for SANA-1I ARCNET device drivers which implement the new
framing.

Addressing

In the SANA-II standard, network hardware addresses are stored in an array of n bytes. No meaning
is ascribed by the standard to the contents of the array.

In case there exists a network which does not have an address field consisting of a number of bits not
divisible by eight, add pad bits at the end of the bit stream. For example, if an addressisten bitslong
it will be stored like this:

98765432 10PPPPPP
BYTE 0 BYTE 1

Where the numerals are bit numbersand ' P isapad (ignored) bit.

Page VIII - 56 SANA-II Network Device Driver Unix and Networking
Specification

Arniga el

Volume Il

Driver users which do not implement the bit shifting necessary to use a network with such addressing
(if one exists) should at least check the number of significant bits in the address field (returned from
the device's S2_DEVI CEQUERY function) to make sure that it is evenly divisible by eight.

Driver users will map hardware addresses to protocol addresses in a protocol and hardware dependent
manner, as described by the relevant standards (i.e., RFC 826 for TCP/IP over Ethernet, RFC 1201 or

1051 for TCP/IP over ARCNET). Some protocols will always use the same mapping on all hardware,
but other protocols will have particular address mapping schemes for some particular hardware and a

reasonable default for other (unknown) hardware.

Some SANA-II deviceswill have ‘‘hardware addresses’” which aren’t really hardware addresses. As
an example, consider PPP (Point-to-Point Protocol). PPP is a standard for transmitting | P packets over
aserial line. It uses IP addresses negotiated during the establishment of a connection. In a SANA-II
driver implementation of PPP, the driver would negotiate the address at S2_CONFI G NTERFACE. Thus,
the address in SrcAddr returned by the device on an S2_CONFI G NTERFACE (or in a subsequent
S2_GETSTATI ONADDRESS) Will be a protocol address, not a true hardware address.

Note: Some hardware always uses a ROM hardware address. Other hardware which has a ROM
address or is configurable with DIP switches may be overridden by software. Some hardware always
dynamically allocates a new hardware address at initialization. See *‘ Configuration’’ for details on
how thisis handled by driver writers and by driver users.

Hardware Type

The HardwareType returned by the device’'s S2_DEVI CEQUERY function is necessary for those protocols
whose standards require different behavior on different hardware. Itisaso useful for determining
appropriate packet type numbersto use with the device. The HardwareType values already issued for
standard network hardware are the same as those in RFC 1060 (assigned numbers). Hardware

devel opers implementing networks without a SANA-I1 hardware number must contact CATS to have a
new hardware type number assigned. Driver users should all have reasonable defaults which can be
used for hardware with which they are not familiar.

Errors

The SANA-II extended | ORequest structure (struct |OSana2Req) includes both theios2 Error and
ios2_WireError fields. Driver users must always check 10Sana2Reqs on return for an error in
ios2_Error. i0s2_Error will be zero if no error occurred, otherwise it will contain avalue from
<execl/errors.h> or <devices/sana2.h>. If there was an error, there may be more specific information
inios2_WireError. Driversarerequired to fill in the WireError if there is an applicable error code.

Unix and Networking SANA-II Network Device Driver Page VIII - 57
Specification

Amnige Mefl

Volumell

Error codes are #defined in the * ‘ defined errors’’ sections of <devices/sana2.h>:

|0Sana2Req S2io_Error field (S2ERR_xxx):

S2ERR_NO_RESOURCES - Insufficient resources available.
S2ERR_BAD_ARGUVMENT - Noticeably bad argument.
S2ERR_BAD_STATE - Command inappropriate for current state.
S2ERR_BAD_ADDRESS - Noticeably bad address.

S2ERR_MTU_EXCEEDED - Write datatoo large.

S2ERR_NOT_SUPPORTED - Command is not supported by thisdriver. Thisissimilar to | CERR_NOCMVD
as defined in <exec/errors.h> but S2ERR_NOT_SUPPORTED indicates that
the requested command isavalid SANA-II command and that the driver
does not support it because the hardware is incapable of supporting it
(e.g., S2_MULTI CcAST). Notethat | OERR_NocvDis still valid for reasons
other than alack of hardware support (i.e., commands which are no-opsin
a SANA-II driver).

S2ERR_SOFTWARE - Software error of some kind.

S2ERR_QUTOFSERVI CE - When a hardware device is taken off-line, any pending requests are
returned with this error.

See dso the standard errorsin <exec/errors.h>.
|0Sana2Req S2io_WireError field (S2WERR_xxx):

S2WERR_NOT_CONFI GURED - Command requires unit to be configured.

S2WERR_UNI T_ONLI NE - Command requires that the unit be off-line.
S2WERR_UNI T_OFFLI NE - Command requires that the unit be on-line.
S2WERR_ALREADY_TRACKED - Protocol is aready being tracked.
S2WERR_NOT_TRACKED - Protocol is not being tracked.

S2WERR _BUFF_ERROR - Buffer management function returned an error.
S2WERR_SRC ADDRESS - Problem with the source address field.
S2WERR_DST_ADDRESS - Problem with destination address field.

S2WERR_BAD BROADCAST - Problem with an attempt to broadcast.
S2WERR _BAD MULTI CAST - Problem with an attempt to multicast.
S2WERR_MULTI CAST_FULL - Multicast address list full.

S2WERR_BAD EVENT - Event specified is unknown.

S2WERR_BAD STATDATA - The S210_StatData pointer or the data it points to failed a sanity check.
S2VERR_| S_CONFI GURED - Attempt to reconfigure the unit.

S2WERR_NULL_PQO NTER - A NULL pointer was detected in one of the arguments.

S2ERR_BAD_ARGUMENT should always be the S2ERR.

Page VIII - 58 SANA-II Network Device Driver Unix and Networking
Specification

Amnige el

Volume Il

Standard Commands

See the SANA-II Network Device Driver Autodocs for full details on each of the SANA-II device
commands. Extended commands are explained in the sections below.

Many of the Exec device standard commands are no-opsin SANA-II devices, but this may not always
be the case. For example, cVb_RESET might someday be used for dynamically reconfiguring
hardware. This should present no compatibility problems for properly written drivers.

Broadcast and Multicast

S2_ADDMULTI CASTADDRESS S2_MUILTI CAST
S2_DELMJLTI CASTADDRESS S2_BROADCAST

Some hardware supports broadcast and/or multicast. A broadcast is a packet sent to all other
machines. A multicast is a packet sent to a set of machines. Drivers for hardware which does not
alow broadcast or multicast will return ios2_Error S2ERR_NOT_SUPPORTED as appropriate.

To send a broadcast, use S2_BROADCAST instead of cMD_WRI TE. Broadcasts are received just like any
other packets (using a cvb_READ for the appropriate packet type).

To send amulticast, use S2_MULTI CAST instead of cvD_WRI TE. The device keeps alist of addresses
that want to receive multicasts. You add areceiver’s addressto thislist by using

S2_ADDMULTI CASTADDRESS. The receiver then posts acvD_READ for the type of packet to be received.
Some SANA-II devices which support multicast may have alimit on the number of addresses that can
simultaneously wait for packets. Always check for an S2WERR_MULTI CAST_FULL error return when
adding a multicast address.

Note that when the device adds a multicast address, it is usually added for all users of the device, not
just the driver user which called s2_ADDMULTI CASTADDRESS. |n other words, received multicast
packets will fill aread request of the appropriate type regardless of whether the requesting driver user
is the same one which added the multicast address.

In general, driver users should not care how received packets were sent (normally or
broadcast/multicast), only that it was received. If adriver user really must know, however, it can
check for sANA21 0B_BCAST and/or SANA2| OB_MCAST intheios2_Flagsfield.

Drivers should keep a count for the number of opens on a multicast address so that they don't actually
removeit until it has been S2_DELMULTI CASTADDRESS' d as many times asit has been
S2_ADDMULTI CASTADDRESS' d.

Unix and Networking SANA-II Network Device Driver Page VIII - 59
Specification

Amnige Mefl

Volume ll

Stats
S2_TRACKTYPE S2_CGETTYPESTATS S2_CGETALOBALSTATS
S2_UNTRACKTYPE S2_CGETSPECI ALSTATS S2_READORPHAN

There are many statistics which may be very important to someone trying to debug, tune or optimize a
protocol stack, aswell asto the end user who may need to tune parameters or investigate a problem.
Some of these statistics can only be kept by the SANA-II driver, thus there are severa required and
optional statistics and commands for this purpose.

S2_TRACKTYPE tells the device driver to gather statistics for a particular packet type. S2_UNTRACKTYPE
tellsit to stop (keeping statistics by type causes the driver to use additional resources).
S2_GETTYPESTATS returns any statistics accumulated by the driver for atype being tracked (stats are
lost when atypeis S2_UNTRACKTYPE'd). Driversare required to implement the functionality of type
tracking. The stats are returned in a struct Sana2PacketTypeStats:

struct Sana2Packet TypeStats

ULONG Packet sSent ;

ULONG Packet sRecei ved;

ULONG Byt esSent ;

ULONG Byt esRecei ved;

ULONG Packet sDr opped;
H

PacketsSent - Number of packets of a particular type sent.

PacketsReceived - Number of packets of a particular type that satisfied aread command.

BytesSent - Number of bytes of data sent in packets of a particular type.

BytesReceived - Number of bytes of data of a particular packet type that satisfied aread
command.

PacketsDropped - Number of packets of a particular type that were received while there were no

pending reads of that packet type.

S2_GETGLOBALSTATS returns global statistics kept by the driver. Drivers are required to keep all
applicable statistics. Since al are applicable to most hardware, most drivers will maintain all
statistics. The stats are returned in a struct Sana2DeviceStats:

struct Sana2Devi ceStats

ULONG Packet sRecei ved;
ULONG Packet sSent ;

ULONG BadDat a;

ULONG Overruns;

ULONG UnknownTypesRecei ved;
ULONG Reconfi gurati ons;
struct tineval LastStart;

Page VIII - 60 SANA-II Network Device Driver Unix and Networking
Specification

Amnige el

Volume Il

PacketsReceived - Number of packets that this unit has received.

PacketsSent - Number of packets that this unit has sent.

BadData - Number of bad packets received (i.e., hardware CRC failed).

Overruns - Number of packets dropped due to insufficient resources available in the

network interface.
UnknownTypeReceived - Number of packets received that had no pending read command with the

appropriate packet type.
Reconfigurations - Number of network reconfigurations since this unit was last configured.
LastStart - The time when this unit last went on-line.

S2_GETSPECI ALSTATS returns any special statistics kept by a particular driver. Each new wire type
will have a set of documented, required statistics for that wire type and a standard set of optional
statistics for that wire type (optional because they might not be available from all hardware). The data
returned by S2_GETSPECI ALSTATS will require wire-specific interpretation. See
<devices/'sana2specialstats.h> for currently defined special statistics. The statistics are returned in
the following structures:

struct Sana2Speci al St at Record

ULONG Type;
ULONG Count ;
char *String;
H
Type - Statistic identifier.
Count - Statistic itself.
String - Anidentifying, null-terminated string for the statistic. Should be plain ASCI|

with no formatting characters.

struct Sana2Speci al St at Header

ULONG Recor dCount Max;
ULONG Recor dCount Suppl i ed;
struct Sana2Speci al St at Recor d[Recor dCount Max] ;

H
RecordCountMax - There is space for this many records into which statistics may
be placed.
RecordCountSupplied - Number of statistic records supplied.

S2_READORPHAN is not, strictly speaking, a statistical function. It isarequest to read any packet of a
type for which there is no outstanding CVMD_READ. S2_READORPHAN might be used in the same manner
as many statistics, though, such as to determine what packet types are causing overruns, etc.

Unix and Networking SANA-II Network Device Driver Page VIII - 61
Specification

Ammiga el

Volume ll

Configuration
S2_DEVI CEQUERY S2_CONFI G NTERFACE S2_CGETSTATI ONADDRESS

The device driver needsto configure the hardware before using it. The driver user must know some
network hardware parameters (hardware address and MTU, for example) when using it. These
commands address those needs.

When adriver user isinitialized, it should try to S2_CONFI G NTERFACE even though an interface can
only be configured once and someone else may have doneit. Before you call S2_CONFI G NTERFACE,
first call s2_GETSTATI ONADDRESS to determine the factory address (if any). Also provide for user-
override of the factory address (that address may be optional and the user may need to override it).
When S2_CONFI G NTERFACE returns, check theios2_SrcAddr for the actual address the hardware has
been configured with. Thisis because some hardware (or seria line standards such as PPP) always
dynamically allocates an address at initialization.

Driver users will want to use S2_DEVI CEQUERY to determine the MTU and other characteristics of the
network. The structure returned from S2_DEVI CEQUERY is defined as;

struct Sana2Devi ceQuery

ULONG Si zeAvai | abl g;
ULONG Si zeSuppl i ed;
ULONG DevQuer yFor mat ;
ULONG Devi celLevel ;
UWORD Addr Fi el dSi ze;
ULONG MIY,

ULONG BPS;

ULONG Har dwar eType;

}

SizeAvailable - Size, in bytes, of the space available in which to place device information.
Thisincludes both size fields.

SizeSupplied - Size, in bytes, of the data supplied.

DevQueryFormat - Theformat defined hereisformat O.

Devicel evel - This spec defines level 0.

AddrFieldSize - The number of bitsin an interface address.

MTU - Maximum Transmission Unit, the size, in bytes, of the maximum packet size,
not including header and trailer information.

BPS - Best guess at the raw line rate for this network in bits per second.

HardwareType - Specifies the type of network hardware the driver controls.

Page VIII - 62 SANA-II Network Device Driver Unix and Networking

Specification

Amnige el

Volume Il

On-line
S2_ONLI NE S2_ONEVENT S2_OFFLI NE

In order to run hardware tests on an otherwise live system, the s2_oFFLI NE command allows the
SANA-II device driver to be ‘‘turned off’’ until the tests are complete and an ONLI NE is sent to the
driver. s2_ONLI NE causes the interface to re-configure and re-initialize. Any packets destined for the
hardware while the device is off-line will belost. All pending and new requests to the driver shall be
returned with S2ERR_OUTOFSERVI CE when adevice is off-line.

All driver users must understand that any 10 request may return with S2ERR_OUTOFSERVI CE because
the driver is off-line (any other program may call S2_OFFLI NE to make it s0). In such an event, the
driver will usually want to wait until the unit comes back on-line (for the program which called
S2_OFFLI NE to call s2_ONLI NE). It may do thisby calling S2_ONEVENT to wait for S2EVENT_ONLI NE.
S2_ONEVENT allows the driver user to wait on various events.

A driver must track events, but may not distinguish between some types of events. Driversreturn
S2_ONEVENT with S2_ERR NOT SUPPORTED and S2WERR_BAD_EVENT for unsupported Events. One error
may cause more than one Event (see below). Errors which seem to have been caused by a malformed
or unusual request should not generally trigger an event.

Event types (S2EVENT_xxx):

ERROR - Return when any error occurs.

X - Return on any transmit error (always an error).

RX - Return on any receive error (always an error).

ONLINE - Return when unit goes on-line or return immediately if unit is aready on-line (not an
error).

OFFLI NE - Return when unit goes off-line or return immediately if unit is aready off-line (not an
error).

BUFF - Return on any buffer management function error (always an error).

HARDWARE - Return when any hardware error occurs (always an error, may beaTX or RX, t00).
SOFTWARE - Return when any software error occurs (always an error, may beaTX or RX, too).

Acknowledgments

Many people and companies have contributed to the SANA-I1 Network Device Driver Specification.
The original SANA-II Autodocs and includes were put together by Ray Brand, Perry Kivolowitz
(ASDG) and Martin Hunt. Those original documents evolved to their current state and grew to
include this document at the hands of Dale Larson and Greg Miller. Brian Jackson and John Orr
provided valuable editing. Randell Jesup has provided sage advice on several occasions. The buffer

Unix and Networking SANA-II Network Device Driver Page VIII - 63
Specification

Ammiga el

Volumell

management callback mechanism was hisidea. Dale Luck (GfxBase) and Rick Spanbauer (Ameristar
Technologies) have provided valuable comments throughout the process. Nicolas Benezan
(ADONIS) provided many detailed and useful comments on weaknesses in late drafts of the
specification. Thanksto all the above and the numerous others who have contributed with their
comments, questions and discussions.

Unresolved | ssues

Unfortunately, it isn't possible to completely isolate network protocols from the hardware they run on.
Hardware types and addressing both remain somewhat hardware-dependent in spite of our efforts.
See the *‘Packet Type'’ section for an explanation of how packet types are handled and why protocols
cannot be isolated from them. Seethe ‘‘Addressing’’ section for an explanation of how addressing is
handled any why protocols cannot be isolated fromit.

Additionally, there are at least two cases where a hardware type has multiple framing methods in use
(ethernet/802.3 and arcnet/(Novell) ** ARCNET Packet Header Definition Standard’’). 1n both cases,
software which must interoperate with other platforms on this hardware may need to be aware of the
distinctions and may have to do extra processing in order to use the appropriate frametype. Seethe
sections on *‘ Ethernet Packet Types’ and on ‘** ARCNET frames’ for more details.

(g

Page VIII - 64 SANA-II Network Device Driver Unix and Networking
Specification

