
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Who? What? When?
Where? Why? How? Whazzit? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?

Q & AQ & AQ & A

Amiga Mail
Volume II

Amiga Mail News May/June 1992 Page 3

Q: The Autodoc for the Intuition function
ActivateWindow() says:

* RESULT
* V35 and before: None.
* V36 and later: returns zero if
* no problem queuing up
* the request for deferred action

Is this true?

A: No, it’s actually none, even under V36, V37,
etc.

Q: If I use the trackdisk.device to write on a
section of a write-protected floppy, when I read
that section of the floppy, the data I wrote
appears to be there. What is going on?

A: When writing to a write-protected floppy
using the trackdisk.device, the trackdisk.device
does not write on the disk, but it does write to
the disk buffer in memory, which is what you
are reading. This is a bug.

In order to make sure that the state of the disk is
as you expect after a failed write, you should do
a CMD_CLEAR to make it flush the buffer.

This is not normally a problem with the file
system, since it checks write-protect on every
insertion, and doesn’t attempt writes to write-
protected disks.

Q: What’s wrong with calling the Exec function
AllocMem() using the MEMF_REVERSE flag?

A: Under normal conditions, the MEMF_REVERSE
flag makes AllocMem() search Exec’s free
memory list in reverse order. If the MEMF_REVERSE
allocation fails due to low memory, the OS will
either clear low memory or get stuck in an infinite
loop (or, when Enforcer is running, it will cause a
number of Enforcer hits!)

Workaround:

If you really want to do this and don’t want to have
to do the MEMF_REVERSE yourself, you can do the
following workaround. It is not very fast but if
your allocations are rare, it will not be too bad.

 Forbid();
 if (mem=AllocMem(size,
 <normal flags, no MEMF_REVERSE>))
 {
 flags=TypeOfMem(mem);
 FreeMem(mem,size);
 mem=AllocMem(size,
 MEMF_REVERSE|flags);
 }
 Permit();

 if (mem)
 {
 /* Got the memory... */
 }
 else /* Failed! */

Warning: This will only work if there is only one
memory list with the attributes given (which is
usually the case with MEMF_CHIP). If there are
more than one memory lists, AllocMem() may

work in the second list while the reverse will fail in
the first (and crash).

Warning: Tools such as Memoration can cause
errors in the second AllocMem() from the
workaround above.

This bug exists in all versions of Exec to date.

Q: The Autodoc for the DOS function
InternalLoadSeg() states that ReadFunc()
takes it arguments in registers d1/a0/d0. Is that
true?

A: No, it actually takes them in registers d1/d2/d3.

Q: Does the input.device ever try to lock the
blitter?

A: Sure, all the time. All input handlers run on the
input.device task, and the grandest input handler of
all is called ‘‘Intuition’’. When an application
calls Intuition, part or most of the function
executes on the application’s task, but part may
execute on the input.device task. All user-initiated
actions (e.g., dragging a window) always happen
on the input.device task. This means the
input.device does rendering, layer operation,
copper-list and ViewPort operations, etc.

Q: I program in assembler. I hear that many
software compatibility problems are traced to
assembler application code containing a hidden
misuse of a register. How can I check for this?

A: While programming in assembler, it is not
uncommon for programmers to forget to refresh a
scratch register (d1/a0/a1) after a system call, or
even look at the wrong register for the result of the
system call. These registers contain leftover
values from the internal code of the system
function, which may happen to be the original
value which was in the register before the call, or
may happen to be a copy of the result (d0). If this

is the case, the assembler application’s register
misuse bug may have no symptoms or only
sporadic symptoms under one version of the OS.
However, the slightest change to the system
function’s internal code can drastically change the
leftover values in the scratch registers. In some
cases, one instance of register misuse can render a
major application unusable under a new version of
the OS.

Here is a simple example of such a hidden coding
error:

* GfxBase already in A6. Both SetDrMd and
* SetAPen expect a rastport pointer in A1
 MOVEA.L rastport, a1 * Put rport in A1
 MOVE.L #JAM1, d0 * JAM1
 JSR _LVOSetDrMd(a6) * set draw mode
 MOVE.L #3, d0 * pen 3
* Here’s the problem: the programmer assumes
* A1 still contains the rastport pointer.
* Since A1 is a scratch register, SetDrMd
* may have overwritten A1 with garbage, so
* SetAPen will get a bogus RastPort pointer.
 JSR _LVOSetAPen(a6) * set pen

If the rastport pointer passed in A1 happens to be
left over in A1 after the call to SetDrMd(), the call
to SetAPen() will succeed. If not, the call to
SetAPen() will trash memory, and possibly crash
the system.

If you program is assembler, you must test your
code with Scratch (by Bill Hawes) to test for
misuse of registers after system calls. Scratch and
the script that installs it (scratchall.script) are on
the Software Toolkit II disk of the 2.0 Native
Developer Update. It may also be found with the
debugging tools on the Denver/Milan Devcon
disks. Scratch will invalidate the scratch registers
upon the exit from each system library call. If a
program is failing to refresh a scratch register or
looking at a scratch register improperly, you may
get Enforcer hits (if you are running Enforcer and
Scratch), and/or Mungwall hits, and/or obvious
misbehavior or crashing of your code.

Use the scratchall.script to install Scratch before
starting Mungwall. When running running this
script watch out for the scripts with a backtick.
Some versions of the script have a backtick (‘) at
the beginning of a early comment line. The script
will not execute unless the backtick is replaced
with a semicolon (;).

Amiga Mail NewsMay/June 1992Page 4

Volume II
Amiga Mail

