Ammiga el

Volume Il

& A

Q: The Autodoc for the Intuition function
Acti vat eW ndow() says.

* RESULT

* V35 and before: None.

* V36 and later: returns zero if
* no probl em queui ng up

* the request for deferred action

Isthistrue?

A: No, it's actually none, even under V36, V37,
etc.

Q: If | use the trackdisk.device to write on a
section of a write-protected floppy, when | read
that section of the floppy, the data | wrote
appearsto be there. What is going on?

A: When writing to awrite-protected floppy
using the trackdisk.device, the trackdisk.device
does not write on the disk, but it does writeto
the disk buffer in memory, which iswhat you
arereading. Thisisabug.

In order to make sure that the state of thedisk is
as you expect after afailed write, you should do
aCVD_CLEARto makeit flush the buffer.

Thisisnot normally a problem with the file
system, since it checks write-protect on every
insertion, and doesn’t attempt writes to write-
protected disks.

Q: What’ s wrong with calling the Exec function
Al | ocMent() using the MEMF_REVERSE flag?

A: Under normal conditions, the MEMF_REVERSE
flag makes Al | ocMen() search Exec’'sfree
memory list in reverse order. If the MEMF_REVERSE
alocation fails due to low memory, the OS will
either clear low memory or get stuck in aninfinite
loop (or, when Enforcer is running, it will cause a
number of Enforcer hits!)

Workaround:

If you really want to do this and don’t want to have
to do the MEMF_REVERSE yourself, you can do the
following workaround. It isnot very fast but if
your allocations are rare, it will not be too bad.

For bi d();
if (menmFAll ocMen(si ze,

<normal flags, no MEM-_REVERSE>))
{

fl ags=TypeOf Men(mem) ;
FreeMen{ mem si ze) ;
meneAl | ocMent si ze,
MEM-_REVERSE] f | ags) ;
Permit();
if (mem
{
/* Got the menory... */
else /[* Failed! */
Warning: Thiswill only work if thereis only one
memory list with the attributes given (which is

usually the case with VEMF_CHI P). If thereare
more than one memory lists, Al | ocMen() may

Amiga Mail News

May/June 1992

Page 3

Ammige el

Volume Il

work in the second list while the reverse will fail in
thefirst (and crash).

Warning: Tools such as Memoration can cause
errorsin the second Al | ochMen() from the
workaround above.

Thisbug existsin all versions of Exec to date.

Q: The Autodoc for the DOS function

I nt er nal LoadSeg() statesthat ReadFunc()
takesit argumentsin registers d1/a0/dO0. Isthat
true?

A: No, it actually takes them in registers d1/d2/d3.

Q: Doesthe input.device ever try to lock the
blitter?

A: Sure, dl thetime. All input handlers run on the
input.device task, and the grandest input handler of
al iscalled *‘Intuition’”. When an application
calls Intuition, part or most of the function
executes on the application’ s task, but part may
execute on the input.device task. All user-initiated
actions (e.g., dragging awindow) always happen
on the input.device task. This meansthe
input.device does rendering, layer operation,
copper-list and ViewPort operations, etc.

Q: I programin assembler. | hear that many
software compatibility problems are traced to
assembler application code containing a hidden
misuse of aregister. How can | check for this?

A: While programming in assembler, it is not
uncommon for programmers to forget to refresh a
scratch register (d1l/a0/al) after asystem call, or
even look at the wrong register for the result of the
system call. These registers contain leftover
values from the internal code of the system
function, which may happen to be the origina
value which was in the register before the call, or
may happen to be a copy of the result (d0). If this

isthe case, the assembler application’ s register
misuse bug may have no symptoms or only
sporadic symptoms under one version of the OS.
However, the slightest change to the system
function’ s internal code can drastically change the
leftover valuesin the scratch registers. In some
cases, one instance of register misuse can render a
major application unusable under a new version of
the OS.

Here isasimple example of such a hidden coding
error:

* (fxBase already in A6. Both SetDrM and
* Set APen expect a rastport pointer in Al
MOVEA. L rastport, al * Put rport in Al
MOVE. L #JAML, dO * JAML
JSR _LVOSet Dr Mi(a6) * set draw node
MOVE. L #3, dO * pen 3
Here's the problem the programmer assunes
Al still contains the rastport pointer.
Since Al is a scratch register, SetDrM
may have overwitten Al with garbage, so
Set APen wi ||l get a bogus RastPort pointer.
JSR _LVCOSet APen(a6) * set pen

EE U

If the rastport pointer passed in A1 happensto be
left over in Al after the call to Set br Mi() , the call
to Set APen() will succeed. If not, the call to

Set APen() will trash memory, and possibly crash
the system.

If you program is assembler, you must test your
code with Scratch (by Bill Hawes) to test for
misuse of registers after system calls. Scratch and
the script that installs it (scratchall.script) are on
the Software Toolkit |1 disk of the 2.0 Native
Developer Update. It may also be found with the
debugging tools on the Denver/Milan Devcon
disks. Scratch will invalidate the scratch registers
upon the exit from each system library call. If a
program isfailing to refresh a scratch register or
looking at a scratch register improperly, you may
get Enforcer hits (if you are running Enforcer and
Scratch), and/or Mungwall hits, and/or obvious
misbehavior or crashing of your code.

Use the scratchall.script to install Scratch before
starting Mungwall. When running running this
script watch out for the scripts with a backtick.
Some versions of the script have a backtick (') at
the beginning of aearly comment line. The script
will not execute unless the backtick is replaced
with asemicolon (;).

Page 4

May/June 1992

Amiga Mail News

