
T
im

er, S
erial, an

d
 P

arallel

Amiga Mail

P
ag

e IX
 - 5

F
o

u
r C

an
 P

lay−−−−−S
u

p
p

o
rtin

g

P
arallel P

o
rt Jo

ysticks

ASM = asm
AFLAGS = -iinclude:
CC = lc
CFLAGS = -cfistE
LN = blink

LIBS = LIB:lc.lib LIB:amiga.lib

.c.o:
$(CC) $(CFLAGS) $*.c

.asm.o:
$(ASM) $(AFLAGS) $*.asm

4play: 4play.o read34.o
$(LN) FROM LIB:c.o,4play.o,read34.o TO 4play LIBRARY $(LIBS)

/*
 * 4play.c
 */

#include <exec/types.h>
#include <libraries/dos.h>

#include <stdlib.h>
#include <stdio.h>

#include <clib/exec_protos.h>

UBYTE portdata;
UBYTE *portptr = &portdata;

UBYTE firedata;
UBYTE *fireptr = &firedata;

extern int getport(void);
extern void read34(void);
extern void freeport(void);

/*
 * Lattice control-c stop...
 */
int CXBRK(void) { return(0); } /* Disable Lattice CTRL/C handling */
int chkabort(void) { return(0); } /* really */

void Quit(char whytext[], LONG return_code)
{
 if(return_code==0) freeport(); /* Assembly routine to
 de-allocate parallel port */

 printf("%s\n",whytext);

 exit(return_code); /* returning non-zero
 terminates the program */
}

void main(void)
{
 BOOL done=FALSE;
 UBYTE error;

 /* getport() is an assembly routine that allocates the parallel port
 * and makes all the lines we’re interested in "read" lines.
 */
 if(error=getport()) Quit("Parallel port in use",25);

 /* WARNING:
 * This example continuously reads the ports and checks for CTRL_C,
 * thereby eating a lot of CPU time. Actual applications that expect
 * to be even more system friendly might want to set up some interrupts
 * on the fire button lines, such that the game can read the ports less
 * often, but never miss a "fire" press.
 */

 while(!done)
 {
 read34(); /* read34() is the assembly routine that copies the
 * relavent data from the port into our variables.
 */

 /* We’ll just print the raw bytes from the read, and leave it as an
 * exercise for the reader to mask out the relevant bits.
 * (Check the pinouts to find which bits the switches appear at.)
 */
 printf("portdata = %u, firedata = %u\n",portdata,firedata);

 /* Check CTRL_C */
 if(SetSignal(0L,0L) & SIGBREAKF_CTRL_C) /* Hit since last check? */
 {
 SetSignal(0L,SIGBREAKF_CTRL_C); /* Clear old status */
 done=TRUE;
 }
 }
 Quit("Ctrl-C was pressed.",0);
}

;
; read34.asm
;
; interface code for the "2 more players" parallel port hack.
;

csect text ; this here’s the meat

xdef Name ; Name of our application, so that
Name dc.b ’4play’,0 ; other applications will know

; who’s tying up the port. ;-)

xdef _read34 ; function names for linker
xdef _getport
xdef _freeport

xref _portptr ; c pointer for port data
xref _fireptr ; c pointer for fire buttons

xref _SysBase ; exec system base (from c.o)

INCLUDE "resources/misc.i"

xdef MiscName
MiscName MISCNAME ; macro from resources/misc.i

xdef _MiscResource
_MiscResource dc.l 0; place to store misc.resource base

;parallel port hardware addresses (from amiga.lib)

xref _ciaaprb ; the actual port address
xref _ciaaddrb ; data direction register

xref _ciabpra ; control lines are here
xref _ciabddra ; data direction register

;from amiga.lib
xref _LVOOpenResource
xref _LVOAllocMiscResource
xref _LVOFreeMiscResource

P
ag

e IX
 - 6

T
im

er, S
erial, an

d
 P

arallel

 Amiga Mail

F
o

u
r C

an
 P

lay−−−−−S
u

p
p

o
rtin

g

P
arallel P

o
rt Jo

ysticks

_getport
;This routine simply allocates the parallel port in a system friendly
;way, and sets up the lines we want to use as input lines.
;

;save registers on the stack

movem.l a2-a6/d2-d7,-(sp); push regs

;open the misc.resource

lea MiscName,a1 ; put name of misc.resource in a1
movea.l _SysBase,a6; put SysBase in a6
jsr _LVOOpenResource(a6)
move.l d0,_MiscResource; store address of misc.resource
bne.s grabit

;Oops, couldn’t open misc.resource. Sounds like big trouble to me.

moveq #20,d0 ; error code
bra done

;This is where we grab the hardware. If some other task has allocated
;the parallel data port or the parallel control bits, this routine will
;return non-zero.

;This part grabs the port itself

grabit lea Name,a1 ; The name of our app
moveq #MR_PARALLELPORT,d0; what we want
movea.l _MiscResource,a6; MiscResource Base is in A6
jsr _LVOAllocMiscResource(a6)
move.l d0,d1
beq.s grab2

;well, somebody else must’ve got the port first.

moveq #30,d0 ; error code
bra done

;This part grabs the control bits (busy, pout, and sel.)
;We really don’t need pout, but it comes free with PARALLELBITS,
;so we’ll take it anyway.

grab2 lea Name,a1 ; The name of our app
moveq #MR_PARALLELBITS,d0; what we want
jsr _LVOAllocMiscResource(a6)
move.l d0,d1
beq.s setread

;well, somebody else must’ve got the bits first.

moveq #40,d2
bra freepar

;set up parallel port for reading

setread move.b #0,_ciaaddrb; all lines read

andi.b #$FF,_ciabddra; busy, pout, and sel. to read

;Well, we made it this far, so we’ve got exclusive access to
;the parallel port, and all the lines we want to use are
;set up. From here we can just put back the regs and return to
;the caller.

bra done

;If something happened AFTER we got exclusive access to the parallel port,
;we’ll need to let go of the port before we return the error.

freepar moveq #MR_PARALLELPORT,d0
movea.l _MiscResource,a6
jsr _LVOFreeMiscResource(a6)

move.l d2,d0 ; put error code into d0

;Restore registers and return
;(error code is in d0)

done movem.l (sp)+,a2-a6/d2-d7; pop regs
rts

_freeport
;This routine just makes sure that we let go of the parallel port and
;control lines, so somebody else can use ’em, now that we’re all done.
;
;PS - Don’t call this one if you got an error from _getport, as some
;of the resources might not have been opened, etc.
;

;save registers on the stack

movem.l a2-a6/d2-d7,-(sp); push regs

;free control lines

moveq #MR_PARALLELBITS,d0
movea.l _MiscResource,a6
jsr _LVOFreeMiscResource(a6)

;free parallel port

moveq #MR_PARALLELPORT,d0
movea.l _MiscResource,a6
jsr _LVOFreeMiscResource(a6)

;Clean up, restore registers, and return

movem.l (sp)+,a2-a6/d2-d7; pop regs
rts

_read34
;All this routine does is copy the data from the ports to other addresses.
;
;In this case the destinations happens to be whatever C variables are
;pointed at by _portptr and _fireptr.
;

movea.l _portptr,a1; a1 now holds the destination
move.b _ciaaprb,(a1); move byte from port to dest

movea.l _fireptr,a1; a1 now holds the destination
move.b _ciabpra,(a1); move byte from port to dest

rts

end

∞∞

