syanshor pod [a|jeed
Buroddng—Aejd ues ino4

|9]|eded pue ‘|eliag ‘1awi]

G - X| abed

Amiga Meall

ASM = asm
AFLAGS= -iinclude:
cC =lc
CFLAGS= -cfistE
LN = blink

LIBS = LIB:lc.lib LIB:amga.lib

$(CC) $(CFLAGS) $*.c

.asmo:
$(ASM $(AFLAGS) $*.asm

4pl ay: 4pl ay. o read34. o0

$(LN) FROM LI B:c. o, 4pl ay. o, read34.0 TO 4pl ay LI BRARY $(LIBS)

/*
* 4play.c
*/
#i ncl ude <exec/ types. h>
#i ncl ude <libraries/dos. h>
#i ncl ude <stdlib. h>
#i ncl ude <stdi 0. h>
#i ncl ude <cl i b/ exec_protos. h>

UBYTE portdat a;
UBYTE *portptr = &portdata;

UBYTE firedata,;
UBYTE *fireptr = &firedata;

extern int getport(void);
extern voi d read34(void);
extern void freeport(void);

/*

* Lattice control-c stop...
*/

int CXBRK(void) { return(0); }

int chkabort(void) { return(0); } /* really */

void Quit(char whytext[], LONG return_code)

if(return_code==0) freeport(); /* Assenbly routine to

de-al |l ocate parallel port */
printf("%\n", whytext);

exit(return_code); /* returning non-zero

term nates the program*/

voi d mai n(void)

BOOL done=FALSE;

UBYTE error;

/* getport() is an assenbly routine that allocates the parallel
* and nmekes all the lines we're interested in "read" |ines.

*/

if(error=getport()) Qit("Parallel port in use",25);

/* Disable Lattice CTRL/C handling */

* WARNI NG
* This exanpl e continuously reads the ports and checks for CTRL_C,
* thereby eating a lot of CPUtine. Actual applications that expect
* to be even nore systemfriendly mght want to set up some interrupts
* on the fire button lines, such that the game can read the ports |ess
* often, but never miss a "fire" press.
*/
whi | e(! done)
{
read34(); /* read34() is the assenbly routine that copies the
* relavent data fromthe port into our variables.
*/
/* We'll just print the raw bytes fromthe read, and leave it as an

* exercise for the reader to mask out the relevant bits.
* (Check the pinouts to find which bits the switches appear at.)
*/

printf("portdata = %, firedata = %\n", portdata,firedata);

/* Check CTRL_C */
i f(SetSignal (OL,0L) & SIGBREAKF_CTRL_C) /* Hit since last check? */

Set Si gnal (0L, SI GBREAKF_CTRL_C); /* Cdear old status */
done=TRUE;

}
Qit("Crl-C was pressed.", 0);

}
read34. asm
interface code for the "2 nore players" parallel port hack.
Y csect text ; this here’s the neat

xdef Nane ; Name of our application, so that
Name dc.b ’'4play’,0 ; other applications will know

; who's tying up the port. ;-)

xdef _read34 ; function nanmes for |inker

xdef _getport

xdef _freeport

xref _portptr ; ¢ pointer for port data

xref _fireptr ; ¢ pointer for fire buttons

xref _SysBase ; exec system base (fromc. o)

| NCLUDE "resources/msc.i"

xdef M scNane
M scNane M SCNAME ; macro fromresources/msc.i

xdef _M scResource
_M scResource dc.l 0; place to store misc.resource base

;paral l el port hardware addresses (fromamga.lib)

xref _ciaaprb ; the actual port address
xref _ciaaddrb ; data direction register
xref _ciabpra ; control lines are here

xref _ciabddra data direction register

;fromamga.lib

xref _LVOOpenResource
xref _LVOAl | ocM scResource
xref _LVOFreeM scResource

syonshop Hod [a|jesed
Bunioddng—Ae|d ues ino4

9 - X| abed

|9]|eied pue ‘jenas “awil

Amige Meail

_get port
;This routine sinply all
;way, and sets up the li

’

ocates the parallel port in a systemfriendly
ines we want to use as input lines.

;save registers on the stack

novem | a2- a6/ d2-d7,-(sp); push regs

;open the msc.resource

| ea M scNane, al ; put name of misc.resource in al
novea. | _SysBase, a6; put SysBase in a6
jsr _LVOOpenResour ce(aé)

move. | dO, M scResource; store address of misc.resource
bne.s grabit

; Cops, couldn’t open misc.resource. Sounds |ike big trouble to me.
noveq #20, dO ; error code
bra done

;This is where we grab the hardware. |f some other task has allocated
;the parallel data port or the parallel control bits, this routine will
;return non-zero.

; This part grabs the port itself

grabitlea Nane, al ; The name of our app
noveq #MR_ PARALLELPORT, dO; what we want

novea. | _M scResource, a6; M scResource Base is in A6
jsr _LVQAI | ocM scResour ce(a6)
nove. | dO, d1
beq.s grab2
;wel |, sonebody el se nust’ve got the port first.
noveq #30, dO ; error code

bra done

; This part grabs the control bits (busy, pout, and sel.)
;W really don't need pout, but it comes free with PARALLELBI TS,
;so we'll take it anyway.

grab2 lea Nane, al he name of our app
moveq #MR | PARALLELBI TS d0; what we want
jsr _LVOAl | ocM scResour ce(ab)
nove. | dO, d1
beq.s setread

;well, sonmebody el se nust’ve got the bits first.
noveq #40, d2
bra freepar

;set up parallel port for reading

set read nove. b#0, _ci aaddrb; all lines read
andi . b #$FF, _ci abddra; busy, pout, and sel. to read
;Vell, we nmade it this far, so we’ve got exclusive access to

;the parallel port, and all the lines we want to use are
;set up. From here we can just put back the regs and return to
;the caller.

bra done

;1 f sonething happened AFTER we got exclusive access to the parallel port,

;we' Il need to let go of the port before we return the error.
freepar noveq #MR_PARALLELPORT, dO

novea. | _M scResource, a6

jsr _LVOFreeM scResour ce(a6)

nmove. | d2, d0 ; put error code into dO

;Restore registers and return
;(error code is in d0)

done novem | (sp)+, a2-a6/d2-d7; pop regs

rts

_freeport

; This routine just nakes sure that we let go of the parallel port and
;control lines, so sonebody el se can use 'em now that we're all done.

PS - Don't call this one if you got an error from _getport, as some
of the resources nmight not have been opened, etc.

;save registers on the stack

nmovem | a2- a6/ d2-d7,-(sp); push regs

;free control Ilines

nmoveq #MR PARALLELBI TS, dO
novea. | _M scResource, a6
jsr _LVOFreeM scResour ce(a6)

;free parallel port

noveq #MR_PARALLELPORT, dO
novea. | _M scResource, a6
jsr _LVOFreeM scResour ce(a6)

;Clean up, restore registers, and return

movem | (sp)+, a2- a6/ d2-d7; pop regs
rts

_read34

Al this routine does is copy the data fromthe ports to other addresses.

In this case the destinations happens to be whatever C variables are

;pointed at by _portptr and _fireptr.

novea. | _portptr,al; al now holds the destination
nove. b _ci aaprb, (al); nove byte fromport to dest

nmovea. | _fireptr,al; al now holds the destination
nove. b _ciabpra, (al); nove byte fromport to dest

rts

end

