Amige Mef

Volume Il

ACTI ON_EXAM NE_OBJECT 23 Exam ne(...)
ARGL: LOCK Lock of object to exam ne
ARG2: BPTR Fil el nfoBlock to fill in

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action fillsin the FileInfoBlock with information about the locked object. The Examine()
function uses this packet. This packet is actually used for two different types of operations. Itis
called to obtain information about a given object whilein other cases, it is called to prepare for a
sequence of EXAM NE_NEXT operations in order to traverse a directory.

This seemingly simple operation is not without its quirks. Onein particular isthe
FilelnfoBlock->fib_Comment field. Thisfield used to be 116 bytes long, but was changed to 80 bytes
inrelease 1.2. The extra 36 bytesliein thefib_Reserved field. Another quirk of this packet is that
both the fib_EntryType and the fib_DirEntryType fields must be set to the same value, as some
programs look at one field while other programs look at the other.

File systems should use the same values for fib_DirEntryType as the ROM file system and ram-
handler do. These are asfollows:

ST_ROOT
ST_USERDI R
ST_SOFTLI NK
ST_LI NKDI R
ST_FILE
ST_LI NKFI LE

NOTE: this Shows up as a directory unless checked for explicitly

o
rWphWNPF

Also note that for directories, handlers must use numbers greater than 0, since some programs test to
seeif fib_DirEntryTypeis greater than zero, ignoring the case where fib_DirEntryType equals O.
Handlers should avoid using 0 because it is not interpreted consistently.

ACTI ON_EXAM NE_NEXT 24 ExNext (...)
ARGL: LOCK Lock on directory being exam ned
ARG2: BPTR BPTR Fi | el nf 0Bl ock

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

The ExNext() function uses this packet to obtain information on all the objectsin a directory.

ACTI ON_EXaM NE fillsin a FilelnfoBlock structure describing the first file or directory stored in the
directory referred to in thelock in ARGL. ACTI ON_EXAM NE_NEXT is used to find out about the rest of
the files and directories stored in the ARGL directory. ARG2 contains a pointer to avalid
FilelnfoBlock field that wasfilled in by either an ACTI ON_EXAM NE or aprevious

ACTI ON_EXAM NE_NEXT call. It usesthis structure to find the next entry in the directory. This packets
writes over the old FilelnfoBlock with information on the next file or directory in the ARG2 directory.
ACTI ON_EXAM NE_NEXT returns afailure code of ERROR_NO_MORE_ENTRI ES when there are no more
files or directories | eft to be examined. Unfortunately, like ACTI ON_EXAM NE, this packet hasits own
peculiarities. Among the quirksthat ACTI ON_EXAM NE_NEXT must account for are:

 The situation where an application calls ACTI ON_EXAM NE_NEXT one or more times and then stops
invoking it before encountering the end of the directory.

AmigaDOS AmigaDOS Packet Interface Page Il - 11
Specification (Revised 5/91)

Arniga el

Volume ll

» The situation where a FilelnfoBlock passed to ACTI ON_EXAM NE_NEXT is hot the same as the one
passed to ACTI ON_EXAM NE or even the previous EXAM NE_NEXT operation. Instead, it isacopy of the
FilelnfoBlock with only the fib_DiskKey and the first 30 bytes of the fib_FileName fields copied
over. Thisisnow considered to beillegal and will not work in the future. Any new code should not
be written in this manner.

 Because ahandler can receive other packet types between ACTI ON_EXAM NE_NEXT operations, the
ACTI ON_EXAM NE_NEXT function must handle any special cases that may result.

» The LOCK passed to ACTI ON_EXAM NE_NEXT is hot always the same lock used in previous
operations. It ishowever alock on the same object.

Because of these problems, ACTI ON_EXAM NE_NEXT is probably the trickiest action to write in any
handler. Failure to handle any of the above cases can be quite disastrous.

ACTI ON_CREATE_DI R 22 CreateDir(...)
ARGL: LOCK Lock to which AR& is relative
ARR2: BSTR Name of new directory (relative to ARGL)

RES1: LOCK Lock on new directory
RES2: CODE Failure code if RES1 = DOSFALSE

ACTI ON_DELETE_OBJECT 16 DeleteFile(...)
ARGL: LOCK Lock to which AR&R is relative
ARR2: BSTR Name of object to delete (relative to ARGL)

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CCDE Failure code if RES1 = DOSFALSE

ACTI ON_RENAME_OBJECT 17 Renane(...)

ARGL: LOCK Lock to which AR® is relative

ARR2: BSTR Nanme of object to renane (relative to ARGL)
ARG3: LOCK Lock associated with target directory

ARGA: BSTR Request ed new nanme for the object

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

These three actions perform most of the work behind the AmigaDOS commands MakeDir, Delete,
and Rename (for singlefiles). These packets take as their parameters alock describing where the file
isand aname relative to that lock. It isthe responsibility of the file system to ensure that the
operation is not going to cause adverse effects. In particular, the RENAVE_OBJECT action allows
moving files across directory bounds and as such must ensure that it doesn't create hidden directory
loops by renaming a directory into achild of itself.

For Directory objects, the DELETE_OBJECT action must ensure that the directory is empty before
alowing the operation.

ACTI ON_PARENT 29 Parent (...)
ARGL: LOCK Lock on object to get the parent of

RES1: LOCK Parent Lock
RES2: CODE Failure code if RES1 = 0

This action receives alock on an object and creates a shared lock on the object’s parent. If the
original object has no parent, then alock of O isreturned. Note that this operation istypicaly used in
the process of constructing the absolute path name of a given object.

Page Il - 12 AmigaDOS Packet Interface AmigaDOS
(Revised 5/91) Specification

Amige Mef

Volume Il

ACTI ON_SET_PROTECT 21 Set Protection(...)
ARGL: Unused

ARR2: LOCK Lock to which ARG is relative
ARG3: BSTR Nanme of object (relative to AR®R)
ARGA: LONG Mask of new protection bits

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to modify the protection bits of an object. The 4 lowest order bits
(RWED) are a bit peculiar. If their respective bit is set, that operation is not alowed (i.e. if afile's
delete bit is set the fileis not deleteable). By default, files are created with the RWED bits set and all
others cleared. Additionally, any action which modifies afileis required to clear the A (archive) bit.
See the dog/dos.h include file for the definitions of the bit fields.

ACTI ON_SET_COMVENT 28 Set Comment (.. .)
ARGL: Unused

ARR2: LOCK Lock to which ARG is relative
ARG3: BSTR Nanme of object (relative to AR®R)
ARAA: BSTR New Comment string

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CCDE Failure code if RES1 = DOSFALSE

This action allows an application to set the comment string of an object. If the object does not exist
then DOSFALSE will be returned in RES1 with the failure code in RES2. The comment string is limited
to 79 characters.

ACTI ON_SET_DATE 34 SetFileDate(...) in 2.0
ARGL: Unused

ARR2: LOCK Lock to which ARG3 is relative

ARG3: BSTR Name of Object (relative to AR®R)

ARGA: CPTR Dat eSt anp

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = DOSFALSE

This action allows an application to set an object’ s creation date.

200y ff ACTI ON_FH_FROM LOCK 1026 QpenFronLock(| ock)
ARGL: BPTR BPTR to file handle to fill in
ARR2: LOCK Lock of file to open

RES1: BOCL Success/fail ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RES1 = NULL

This action open afile from agiven lock. If thisaction is successful, the file system will essentially
steal the lock so a program should not use it anymore. If ACTI ON_FH_FROM LOCK fails, the lock is till
usable by an application.

ACTI ON_SAME_LOCK 40 SaneLock(|l ockl, | ock2)
2000y O} ARGL: BPTR Lock 1 to conpare
ARR2: BPTR Lock 2 to compare

RES1: LONG Resul t of conparison, one of
LOCK_SAME (0) if locks are for the same object
LOCK_SAME_ HANDLER (1) if locks are on different objects of same handl er
LOCK_DI FFERENT (-1) otherwi se

RES2: CODE Failure code if RES1l is LOCK DI FFERENT

AmigaDOS AmigaDOS Packet Interface Page Il - 13
Specification (Revised 5/91)

Arniga el

Volume ll

This action compares the targets of two locks. If they point to the same object, ACTI ON_SAVE_LOCK
should return LOCK_SAME.

ACTI ON_MAKE_LI NK 1021 MakelLi nk(name, t ar g, node)
ARGL: BPTR Lock on directory AR is relative to
ARR2: BSTR Name of the link to be created (relative to ARGL)
ARG3: BPTR Lock on target object or name (for soft |inks).
ARGA: LONG Mode of |ink, either LINK_SOFT or LINK_HARD

RES1: BOCL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RESL is DOSFALSE

This packet causes the file system to create alink to an already existing file or directory. There are
two kinds of links, hard links and soft links. The basic difference between them isthat afile system
resolves a hard link itself, while the file system passes a string back to DOS telling it where to find a
soft linked file or directory. To the packet level programmer, there is essentially no difference
between referencing afile by its original name or by its hard link name. In the case of a hard link,
ARG3isalock onthefile or directory that thelink is*‘linked’’ to, whilein a soft link, ARG3isa
pointer (CPTR) to a C-style string.

In an over-simplified model of the ROM file system, when asked to locate afile, the system scans a
disk looking for afile header with a specific (file) name. That file header points to the actual file data
somewhere on the disk. With hard links, more than one file header can point to the same file data, so
data can be referenced by more than one name. When the user triesto delete a hard link to afile, the
system first checksto seeif there are any other hard links to the file. If there are, only the hard link is
deleted, the actual file data the hard link used to reference remains, so the existing hard links can still
useit. Inthe case where the original link (not ahard or soft link) to afile is deleted, the file system
will make one of itshard linksthe new ‘‘real’’ link to thefile. Hard links can exist on directories as
well. Because hard links*‘link’’ directly to the underlying media, hard links in one file system cannot
reference objects in another file system.

Soft links are resolved through DOS calls. When the file system scans a disk for afile or directory
name and finds that the name is a soft link, it returns an error code (ERROR_| S_SOFT_LI NK). If this
happens, the application must ask the file system to tell it what the link the link refersto by calling
ACTI ON_READ_LI NK. Soft Links are stored on the media, but instead of pointing directly to data on the
disk, a soft link contains a path to its object. This path can be relative to the lock in ARGL, relative to
the volume (where the string will be prepended by acolon :"), or an absolute path. An absolute path
contains the name of another volume, so a soft link can reference files and directories on other disks.

ACTI ON_READ LI NK 1024 ReadLi nk(port, | ck, nam buf, I en)
ARGL: BPTR Lock on directory that ARR is relative to
ARG2: CPTR Path and name of link (relative to ARGL). NOTE: This is a C
string not a BSTR
ARG3: APTR Buffer for new path string
ARAA: LONG Size of buffer in bytes

RES1: LONG Actual length of returned string, -2 if there isn’t enough
space in buffer,or -1 for other errors
RES2: CCDE Fai | ure code

This action reads alink and returns a path name to the link’ s object. The link’s name (plus any
necessary path) is passed as a CPTR (ARG2) which points to a C-style string, not a BSTR.

ACTI ON_READ_LI NK returns the path namein ARG3. The length of the target string is returned in
RES1 (or a-1indicating an error).

Page Il - 14 AmigaDOS Packet Interface AmigaDOS
(Revised 5/91) Specification

Amige Mef

Volume Il

ACTI ON_CHANGE_MODE 1028 ChangeMbde(t ype, obj , node)
ARGL: LONG Type of object to change - either CHANGE _FH or CHANGE_LOCK
ARR2: BPTR object to be changed
ARG3: LONG New nmode for object - see ACTI ON_FI NDI NPUT, and
ACTI ON_LOCATE_OBJECT

RES1: BOCL Success/ Fai | ure (DOSTRUE/ DOSFALSE)
RES2: CODE Failure code if RESL is DOSFALSE

This action requests that the handler change the mode of the given file handle or lock to the modein
ARG3. Thisrequest should fail if the handler can’t change the mode as requested (for example an
exclusive request for an object that has multiple users).

200ny [] ACTI ON_CCPY_DI R_FH 1030 DupLockFr onfH(f h)
ARGL: LONG fh_Argl of file handle

RES1: BPTR Lock associated with file handle or NULL
RES2: CODE Failure code if RES1 = NULL

This action requests that the handler return alock associated with the currently opened file handle.
The request may fail for any restriction imposed by the file system (for example when the file handle

isnot opened in ashared mode). Thefile handleis still usable after this call, unlike the lock in
ACTI ON_FH_FROM LOCK.

200ny [} ACTI ON_PARENT _FH 1031 Par ent OF FH(f h)
ARGL: LONG fh_Argl of File handle to get parent of

RES1: BPTR Lock on parent of a file handle
RES2: CCDE Failure code if RES1 = NULL

This action obtains alock on the parent directory (or root of the volume if at the top level) for a
currently opened file handle. Thelock is returned as a shared lock and must be freed. Note that
unlike ACTI ON_COPY_DI R_FH, the mode of the file handle is unimportant. For an open file,

ACTI ON_PARENT_FH should return alock under all circumstances.

ACTI ON_EXAM NE_ALL 1033 ExAl | (1 ock, buff, size, type, ctl)
ARGL: BPTR Lock on directory to exam ne
ARR2: APTR Buffer to store results
ARG3: LONG Length (in bytes) of buffer (ARRX)
ARAA: LONG Type of request - one of the follow ng:
ED NAME Return only file names
ED TYPE Return above plus file type
ED Sl ZE Return above plus file size
ED PROTECTI ON Return above plus file protection
ED DATE Return above plus 3 | ongwords of date
ED _COMMENT Return above plus comrent or NULL
ARG5: BPTR Control structure to store state information. The control
structure must be allocated with Al ocDosObject()!

RES1: LONG Continuation flag - DOSFALSE indicates termnation
RES2: CCDE Failure code if RES1 is DOSFALSE

This action allows an application to abtain information on multiple directory entries. It is particularly
useful for applications that need to obtain information on alarge number of files and directories.

AmigaDOS AmigaDOS Packet Interface Page Il - 15
Specification (Revised 5/91)

Arniga el

Volume ll

This action fills the buffer (ARG2) with partial or whole ExAllData structures. The size of the
ExAllData structure depends on the type of request. If the request type field (ARG4) is set to
ED_NAME, only theed Namefieldisfilled in. Instead of copying the unused fields of the ExAllData
structure into the buffer, ACTI ON_EXAM NE_ALL truncates the unused fields. This effect is cumulative,
so requests to fill in other fieldsin the ExAllData structure causes all fields that appear in the structure
before the requested field will befilled in aswell. Like the ED_NAME case mentioned above, any field
that appears after the requested field will be truncated (see the ExAllData structure below). For
example, if the request field is set to ED_COMVENT, ACTI ON_EXAM NE_ALL fillsin all the fields of the
ExAllData structure, because the ed_Comment field islast. Thisisthe only case where the packet
returns entire ExAllData structures.

struct ExAllData {
struct ExAl | Data *ed_Next;
UBYTE *ed_Nane;
LONG ed_Type;
ULONG ed_Si ze;
ULONG ed Prot;
ULONG ed_Days;
ULONG ed_M ns;
ULONG ed_Ti cks;
UBYTE *ed_Conment; /* strings will be after last used field */

}s

Each ExAllData structure entry has an ead_Next field which points to the next ExAllData structure.
Using these links, a program can easily chain through the ExAllData structures without having to
worry about how large the structureis. Do not examine the fields beyond those requested as they
certainly will not be initialized (and will probably overlay the next entry).

The most important part of this action is the ExAllControl structure. 1t must be allocated and freed
through AllocDosObject()/FreeDosObject(). This allows the structure to grow if necessary with future
revisions of the operating and file systems. Currently, ExAllControl contains four fields:

Entries- Thisfield is maintained by the file system and indicates the actual number of entries
present in the buffer after the action is complete. Note that avalue of zero is possible here as no
entries may match the match string.

LastKey - Thisfield must be initialized to 0 by the calling application before using this packet
for thefirst time. Thisfield is maintained by the file system as a state indicator of the current
placein thelist of entriesto be examined. The file system may test this field to determineiif this
isthefirst or a subsequent call to this action.

MatchString - Thisfield points to a pattern matching string to control which directory entries are
returned. If thisfield isNULL, then al entries are returned. Otherwise, this string is used to
pattern match the names of al directory entries before putting them into the buffer. The default
AmigaDOS pattern match routine is used unless MatchFunc is not NULL (see below). Note that it
is not acceptable for the application to change this field between subsequent calls to this action
for the same directory.

MatchFunc - Thisfield contains a pointer to an alternate pattern matching routine to validate
entries. If it isNULL then the standard AmigaDOS wild card routines will be used. Otherwise,
MatchFunc points to a hook function that is called in the following manner:

Page Il - 16 AmigaDOS Packet Interface AmigaDOS
(Revised 5/91) Specification

