
Programming Practices
and Standards

2.0 Version Strings Page I - 3

Amiga Mail
Volume II

2.0 Version Strings

By Carolyn Scheppner

Unlike the 1.3 version command, the 2.0 version command has the ability to search Amiga files for a
version string. If you try the 2.0 version command on any of the 2.0 Workbench commands, you will
find that almost all Workbench commands now contain these special version strings. For example,
running version on the current version of SYS:Utilities/More will output More 37.2.

This embedded version string provides a simple way for a user to determine the specific version of a
command. This is extremely useful for bug reports and phone support. You may enter these strings in
your code yourself and update them by hand when required, or you may automate updates by using
the bumprev tool (provided on a variety of DevCon disk sets and also in the Preliminary Software
Toolkit II).

Hand-Coded Version Strings

The hand-coded method can be used in text files and is often quite suitable for simple programs with a
single code module. If you code the version strings by hand, they should be formatted like the
examples below. The example hand-coded strings are for a program named myapp, version 37.1, date
20-Mar-91 (20.3.91):

In C:
UBYTE versiontag[] = "\0$VER: appname 37.1 (20.3.91)";

March/April 1991

Programming Practices
and Standards

2.0 Version StringsPage I - 4

Amiga Mail
Volume II

In assembler:
versiontag dc.b 0,’$VER: myapp 37.1 (20.3.91)’,0

In a text file:
$VER: myapp.doc 37.1 (20.3.91)

Note that the NULL ("\0" or 0,) at the beginning of the versiontag string is not necessary but can be
useful if you choose to #define the string and wish to give a version number to a C program with no
data segment. With the initial NULL, you can concatenate a #defined versiontag string onto an
arbitrary immediate string used in your code to get the versiontag into your code segment.

Automating Version Numbering with Bumprev

The bumprev tool and the include files it creates are what we use internally to give version numbers to
system ROM modules, disk-based devices and libraries, and 2.0 Workbench and Extras commands.
Bumprev creates or updates three files -- a name_rev.rev file which contains the current revision
number, and the C and assembler include files called name_rev.h and name_rev.i. These include files
contain #defines (.h) or macros (.i) to define the name, version, revision, and date of your program in a
variety of string and numeric formats.

By using the appropriate include file in one or more of your code modules, you can use these #defines
(or macros) in place of hardcoded version and revision information. This way, whenever you
‘‘bumprev’’ your revision files and recompile (or reassemble) your program, all version, revision, and
date references in your program will be automatically updated. You can even include a bumprev call
in your makefile for automatic revision bumping on every make (although this can update the version
number more often than is really necessary).

The usage of bumprev is: bumprev <version> <name_rev>

For example: bumprev 37 myapp_rev

The first time you use the above example bumprev call, it creates a myapp_rev.rev file containing
‘‘1’’, and myapp_rev.h and .i files containing a variety of version and revision #defines (or macros)
for version 37.1. The next time you use the same bumprev command it updates the files so that all
#defines (or macros) are for version 37.2.

Bumprev does have some caveats. If you accidently type ‘‘bumprev 37 myapp’’ (instead of
myapp_rev), bumprev will gladly overwrite any myapp.h or myapp.i file you happen to have rather
than complain or automatically insert _rev into the output file names. Also, to make a major version
switch (for example from 36 to 37), you must first delete the myapp_rev.rev file to make bumprev
start the revisions over again at 1. Note that the 2.0 convention is for a major version number of 37 (to
match the OS major version).

Programming Practices
and Standards

2.0 Version Strings Page I - 5

Amiga Mail
Volume II

Here are example _rev.h and _rev.i files as generated by bumprev, and fragments of C and assembler
code which include and reference these files.

Example myapp_rev.h generated by bumprev:

#define VERSION 37
#define REVISION 1
#define DATE "20.3.91"
#define VERS "myapp 37.1"
#define VSTRING "myapp 37.1 (20.3.91)\n\r"
#define VERSTAG "\0$VER: myapp 37.1 (20.3.91)"

Code example which includes myapp_rev.h:

/* myapp.c */
#include <exec/types.h>
#include <dos/dos.h>

/* stdlib.h and stdio.h contain prototypes for exit and printf.
 * Amiga.lib IO users could instead use <clib/alib_protos.h>
 * and <clib/alib_stdio_protos.h>
 */
#include <stdlib.h>
#include <stdio.h>

#include "myapp_rev.h"

/* NOTE: we reference VERSTAG version string for C:VERSION to find */
UBYTE versiontag[] = VERSTAG;

/* NOTE: we concatenate program name and version (VERS) with our copyright */
UBYTE Copyright[] = VERS " Copyright (c) 1991 CATS, Inc. All Rights Reserved";

void main(int argc,char **argv)
 {
 /* Print our Copyright string.
 * Copyright string includes our myapp _rev.h version and date
 */
 printf("%s\n",Copyright);
 exit(RETURN_OK);
 }

Example mylib_rev.i generated by bumprev:

VERSION EQU 37
REVISION EQU 1
DATE MACRO
 dc.b ’20.3.91’
 ENDM
VERS MACRO
 dc.b ’mylib 37.1’
 ENDM
VSTRING MACRO
 dc.b ’mylib 37.1 (20.3.91)’,13,10,0
 ENDM
VERSTAG MACRO
 dc.b 0,’$VER: mylib 37.1 (20.3.91)’,0
 ENDM

Programming Practices
and Standards

2.0 Version StringsPage I - 6

Amiga Mail
Volume II

Code example which includes mylib_rev.i:

* This is an example of an initial library code module
* Mylib_rev.i is generated with bumprev

 nolist
 include "exec/types.i"
 include "exec/initializers.i"
 include "exec/libraries.i"
 include "exec/resident.i"

 include "mylib.i"
 include "mylib_rev.i" ; Bumprev revision include file
 list

 ; external
 xref InitLib ; init function
 xref FuncTable ; function table
 xref EndSkip ; End of code segment

; code at start of file in case anyone tries to execute the library as a program

 entry FalseStart
FalseStart
 moveq #-1,d0
 rts

ResidentNode
 dc.w RTC_MATCHWORD ; RT_MATCHWORD
 dc.l ResidentNode ; RT_MATCHTAG
 dc.l EndSkip ; RT_ENDSKIP
 dc.b RTF_AUTOINIT ; RT_FLAGS
 dc.b VERSION ; RT_VERSION ;From mylib_rev.i
 dc.b NT_LIBRARY ; RT_TYPE
 dc.b 0 ; RT_PRI
 dc.l LibName ; RT_NAME
 dc.l IDString ; RT_IDString ;Contains VSTRING
 dc.l InitTable ; RT_SIZE ; from mylib_rev.i

LibName: DC.B ’mylib.library’,0
IDString: VSTRING ;From mylib_rev.i
 CNOP 0,2

InitTable
 dc.l XMyLibBase_Size
 dc.l FuncTable
 dc.l DataTable
 dc.l InitLib

DataTable
 ; standard library stuff
 INITBYTE LN_TYPE,NT_LIBRARY
 INITLONG LN_NAME,LibName
 INITBYTE LIB_FLAGS,LIBF_SUMUSED!LIBF_CHANGED
 INITWORD LIB_VERSION,VERSION ;From mylib_rev.i
 INITWORD LIB_REVISION,REVISION ;From mylib_rev.i
 INITLONG LIB_IDSTRING,IDString ;Contains VSTRING
 ; from mylib_rev.i
 ; library specific stuff

 ; end of init list
 dc.l 0

 end

❖

