Amnige Mel

Volume Il

March/April 1991

2.0 Version Strings

By Carolyn Scheppner

Unlike the 1.3 version command, the 2.0 version command has the ability to search Amigafilesfor a
version string. If you try the 2.0 version command on any of the 2.0 Workbench commands, you will
find that almost all Workbench commands now contain these special version strings. For example,
running version on the current version of SYS Utilities/More will output More 37.2.

This embedded version string provides a simple way for a user to determine the specific version of a
command. Thisisextremely useful for bug reports and phone support. Y ou may enter these stringsin
your code yourself and update them by hand when required, or you may automate updates by using
the bumprev tool (provided on avariety of DevCon disk sets and also in the Preliminary Software
Toolkit I1).

Hand-Coded Version Strings

The hand-coded method can be used in text files and is often quite suitable for simple programs with a
single code module. If you code the version strings by hand, they should be formatted like the
examples below. The example hand-coded strings are for a program named myapp, version 37.1, date
20-Mar-91 (20.3.91):

InC:
UBYTE versiontag[] = "\0$VER appnanme 37.1 (20.3.91)";
Programming Practices 2.0 Version Strings Pagel-3

and Standards

Arniga el

Volume Il

In assembler:
ver si ont ag dc.b 0,’ $VER nyapp 37.1 (20.3.91)',0

Inatext file:
$VER nyapp.doc 37.1 (20.3.91)

Note that the NULL ("\O" or 0,) at the beginning of the versiontag string is not necessary but can be
useful if you choose to #define the string and wish to give a version number to a C program with no
data segment. With theinitial NULL, you can concatenate a #defined versiontag string onto an
arbitrary immediate string used in your code to get the versiontag into your code segment.

Automating Version Numbering with Bumprev

The bumprev tool and the include files it creates are what we use internally to give version numbers to
system ROM modul es, disk-based devices and libraries, and 2.0 Workbench and Extras commands.
Bumprev creates or updates three files -- aname _rev.rev file which contains the current revision
number, and the C and assembler include files called name_rev.h and name_rev.i. Theseincludefiles
contain #defines (.h) or macros (.i) to define the name, version, revision, and date of your programin a
variety of string and numeric formats.

By using the appropriate include file in one or more of your code modules, you can use these #defines
(or macros) in place of hardcoded version and revision information. This way, whenever you
““bumprev’’ your revision files and recompile (or reassemble) your program, al version, revision, and
date references in your program will be automatically updated. Y ou can even include a bumprev call
in your makefile for automatic revision bumping on every make (although this can update the version
number more often than isreally necessary).

The usage of bumprev is. bunprev <version> <nane_rev>
For example: bunprev 37 nyapp_rev

Thefirst time you use the above example bumprev call, it creates a myapp_rev.rev file containing
“*1"’, and myapp_rev.h and .i files containing a variety of version and revision #defines (or macros)
for version 37.1. The next time you use the same bumprev command it updates the files so that all
#defines (or macros) are for version 37.2.

Bumprev does have some caveats. |f you accidently type ‘‘bumprev 37 myapp’’ (instead of
myapp_rev), bumprev will gladly overwrite any myapp.h or myapp.i file you happen to have rather
than complain or automatically insert _rev into the output file names. Also, to make amaor version
switch (for example from 36 to 37), you must first delete the myapp_rev.rev file to make bumprev
start the revisions over again at 1. Note that the 2.0 convention isfor amajor version number of 37 (to
match the OS major version).

Pagel-4 2.0 Version Strings Programming Practices
and Standards

Amnige Mel

Volume Il

Here are example _rev.hand _rev.i files as generated by bumprev, and fragments of C and assembler
code which include and reference these files.

Example myapp_rev.h generated by bumprev:

#def i ne VERSI ON 37

#def i ne REVI SI ON 1

#def i ne DATE "20.3.91"

#defi ne VERS "myapp 37.1"

#defi ne VSTRI NG “myapp 37.1 (20.3.91)\n\r"
#def i ne VERSTAG "\ 0$VER nyapp 37.1 (20.3.91)"

Code example which includes myapp_rev.h:

/* myapp.c */
#i ncl ude <exec/types. h>
#i ncl ude <dos/ dos. h>

/* stdlib.h and stdio.h contain prototypes for exit and printf.
* Amiga.lib | O users could instead use <clib/alib_protos. h>
* and <clib/alib_stdio_protos.h>
*/

#i ncl ude <stdlib. h>

#i ncl ude <stdio. h>

#i nclude "myapp_rev. h"

/* NOTE: we reference VERSTAG version string for C.VERSION to find */
UBYTE versiontag[] = VERSTAG

/* NOTE: we concatenate program nanme and version (VERS) with our copyright */
UBYTE Copyright[] = VERS " Copyright (c) 1991 CATS, Inc. All Rights Reserved"

voi d main(int argc, char **argv)

{
/* Print our Copyright string.

* Copyright string includes our nyapp _rev.h version and date
*/

printf("%\n", Copyright);
exit (RETURN_OX) ;
}

Example mylib_rev.i generated by bumprev:

VERSI ON EQU 37
REVISSON EQU 1
DATE MACRO
de.b ’20.3.91
ENDM
VERS MACRO
de.b 'mylib 37.1
ENDM
VSTRING MACRO
dc.b mylib 37.1 (20.3.91)’,13,10,0
ENDM

VERSTAG ~ MACRO
dc.b 0,’$VER nylib 37.1 (20.3.91)",0
ENDM

Programming Practices 2.0 Version Strings Pagel-5
and Standards

Arniga el

Volume Il

Code example which includes mylib_rev.i:

* This is an exanple of an initial library code nodul e
* Mylib_rev.i is generated with bunprev
nol i st

ncl ude "exec/types.i"

nclude "exec/initializers.i"
nclude "exec/libraries.i"
nclude "exec/resident.i"

nclude "nylib.i"
"yl i

include "nylib_rev.i" ; Bunmprev revision include file
Iist
; externa
xr ef InitLib ; init function
xr ef FuncTabl e ; function table
xr ef EndSki p ; End of code segnent

; code at start of file in case anyone tries to execute the library as a program

entry Fal seStart
Fal seStart

noveq #-1,d0

rts

Resi dent Node

dc. w RTC_MATCHWORD ; RT_MATCHWORD
dc. | Resi dent Node ; RT_MATCHTAG
dc. | EndSki p ; RT_ENDSKI P
dc. b RTF_AUTO NI T ; RT_FLAGS
dc. b VERS| ON ; RT_VERSI ON ;Fromnylib_rev.
dc. b NT_LI BRARY ; RT_TYPE
dc. b 0 ; RT_PR
dc. | Li bNane ; RT_NAMVE
dc. | IDString ; RT_IDString ; Cont ai ns VSTRI NG
de. | InitTable ; RT_SIZE ;o fromnylib_rev.
Li bNare: DC. B "nmylib.library ,0
I DSt ring: VSTRI NG ;Fromnylib_rev.
CNOP 0,2
I nitTabl e
dc. | XM/Li bBase_Si ze
dc. | FuncTabl e
dc. | Dat aTabl e
dc. | InitLib
Dat aTabl e
; standard library stuff
I NI TBYTE LN_TYPE, NT_LI| BRARY
I NI TLONG LN_NAME, Li bNane
I NI TBYTE LI B_FLAGS, LI BF_SUMJSED! LI BF_CHANGED
I NI TWORD LI B_VERSI ON, VERSI ON s Fromnylib_rev.
I Nl TWORD LI B_REVI SI ON, REVI SI ON s Fromnylib_rev.
I NI TLONG LI B_I DSTRING I DStri ng ; Cont ai ns VSTRI NG
;o fromnylib_rev.
; library specific stuff
; end of init |ist
dc. | 0
end

Pagel-6 2.0 Version Strings Programming Practices
and Standards

