
Exec Using SetFunction() in
a Debugger

Page III - 1

Amiga Mail
Volume II

Using SetFunction() in
a Debugger

By Ewout Walraven

The Amiga OS consists of a set of libraries (and devices), which reside in ROM or on disk. These
libraries provide a set of routines which are shared by the Amiga tasks (hence the name shared library).

The way in which an Amiga library is organized allows a programmer to change where the system
looks for a library routine. Exec provides a function to do this: SetFunction(). The SetFunction()
routine redirects a library function call to an application-supplied function (Although this article
doesn’t address it, SetFunction() can also be used on Exec devices). The SetPatch utility uses
SetFunction(). SetPatch is a program which replaces some OS routines with improved ones, primarily
to fix bugs in ROM libraries.

Normally, programs should not attempt to ‘‘improve’’ library functions. Because most programmers
do not know exactly what system library functions do internally, OS patches can do more harm than
good. However, a useful place to use SetFunction() is in a debugger. Using SetFunction(), a debugger
can reroute library calls to a debugging function. The debugging function can inspect the arguments to
a library function call before calling the original library routine (if everything is OK). Such a
debugging function doesn’t do any OS patching, it merely inspects.

SetFunction() is also useful for testing an application under conditions it does not encounter normally.
For example, a debugging program can force a program’s memory allocations to fail or prevent a
program’s window from opening. This allows a programmer to find bugs that only arise under special
circumstances. Some programs that use SetFunction() for debugging purposes are IO_Torture,
Memoration and MungWall. A real watchdog is Wedge, which, as its name implies, allows you to
install a wedge for practically every function of a standard library and inform you about the register
values passed to the function. These types of debugging tools helped debug release 2.0 of the OS and
found bugs and 1.3 dependencies in commercial applications.

Although useful, SetFunction()ing library routines poses several problems. First of all, the wedge
routine will have to be re-entrant, like all Exec library functions. Secondly, there is always a problem
with removing the wedge. If another task has SetFunction()ed the same library routine as the debugger
(a very real possibility), it is not normally possible to remove the first wedge, since the other task
depends on the presence of your task’s code. This would force your task to hang around, waiting for

March/April 1991

the other task(s) to remove their wedges. You also need to know when it is safe to unload your
debugging code. Removing it while another task is executing it will quickly lead to a hopelessly
crashed system.

For those of you who might be thinking about writing down the ROM addresses returned by
SetFunction() and using them in some other programs: Forget It. The address returned by
SetFunction() is only good on the current system at the current time. Blindly jumping into ROM will
cause your programs to break.

Exec Library Structure

When a library is opened for the first time, a library node structure, a jump table, and a data area are
created in RAM.

ExecUsing SetFunction() in
a Debugger

Page III - 2

Amiga Mail
Volume II

Fig. 1
An Exec Library Base in RAM

Low Memory

High Memory

JMP to function 6 (LVO -36)

JMP to function 5 (LVO -30)

JMP to Close (LVO -12)

JMP to Expunge (LVO -18)

JMP to Reserved (LVO -24)

Library Data

Library Base

JMP to Open (LVO -6)

The library node structure address is the base address of the library. OpenLibrary() returns this base
address. The library’s jump table, which directly precedes the library node in RAM, consists of six
byte long entries containing a jump instruction (JMP) to a corresponding library function. The jump

Library base

JMP to LibFuncZ

LVO Table

JMP to LibFuncX

...

JMP to LibFuncY

...

Exec Using SetFunction() in
a Debugger

Page III - 3

Amiga Mail
Volume II

table is initialized when Exec opens the library. Each function’s entry in the jump table (also known
as a vector) is always a constant (negative) offset from the library base. These fixed negative offsets
are known as Library Vector Offsets (LVO). Note that the first four function vectors are reserved for
use by Exec. They point to standard library functions for opening, closing, and expunging the library,
plus there is space reserved for a fourth function vector. The base address of a library is determined
dynamically when the library is loaded into RAM. See the Exec introduction chapter in the ROM
Kernel Manual: Libraries and Devices for more information on libraries.

The SetFunction() routine replaces an LVO address with a new address which points to the wedge
routine. SetFunction() returns the old vector address, which the wedge routine can use to call the
original library function from within the wedge. Note that if another task SetFunction()s the same
library function, SetFunction() returns the address of your debugging routine (to the second task) as
the old vector. At that point your task can no longer exit since that would mean that that other task
has an invalid pointer to your function and will most likely crash the system when it tries to use your
function.

There is a way around this problem. Instead of SetFunction()ing a library function with the address of
your wedge code, build your own jump table and use the addresses of its entries as arguments to
SetFunction() calls. This method allows you to unload your code when you want to because if another
task SetFunction()s your routine, that task will get a pointer to a jump table entry, not your routine.

Fig. 2
Calling a Library Function

main()
 ...
 x =
LibFuncY()
 ...

LibFuncY()

A task calls a library function...

...which calls the function’s JMP vector...

...which JMPs to the actual library function.

SomeTask

Debugger’s
Jump Table

...

JMP DebugFuncY

...

ExecUsing SetFunction() in
a Debugger

Page III - 4

Amiga Mail
Volume II

Now when you want to exit, all you need to do is replace the entries in your jump table which point to
your functions with the original function vectors which were returned by SetFunction(). By not
freeing the memory allocated for the jump table your task can exit any time, regardless of other tasks
which SetFunction()ed the same library routines. The other task(s) will never know what happened.

Fig. 3
Using SetFunction() with a Jump Table

Debugging
FunctionDebugger’s

Jump Table
...
JMP FuncY
...

...

JMP JmpTblFuncY

...

Library Base

...

JMP DebugFuncY

...

LVO Table

The Real FuncY()

Fig. 4
Another Debugger SetFunction()s an Entry in the Jump Table

The Real FuncY()

Debugging
Function
...
JMP FuncY
...

...
JMP JmpTblFuncY
...

A Second
Debugger’s

Debug Function

...

JMP SecondDebug

...

Library Base

LVO Table

Exec Using SetFunction() in
a Debugger

Page III - 5

Amiga Mail
Volume II

The next time the debugger is executed, it looks for the jump table it left behind and replaces the
entries in it with pointers to its own functions. Incidentally, this is an easy way to provide a
mechanism to determine if your debugging program has already been installed.

Caveats

There are some things to keep in mind when using SetFunction(). The scheme described above can
force a second task to hang around forever if it SetFunction()ed a routine before you, since your
debugger will not normally release its handle on the second task’s function. Whenever possible,
install jump table based debuggers before any other SetFunction()ing program (but after SetPatch of
course).

Some debuggers interpret the return address of the caller. When a debugger jumps (JMP) to (what it
thinks is) the original function, there will be no problem. However, if a debugger performs a JSR to a
second debugging function which interprets the return address, the second debugging function will
receive the first debugging function’s return address (the one that performed the JSR) rather than the
return address of the application that called the library function in the first place. This can confuse the
second debugger. Two good examples of this are Scratcher and MungWall, which both SetFunction()
FreeMem(). MungWall looks at the return address of the caller. Since Scratcher calls the old
FreeMem() function with a JSR instruction, it would mislead MungWall if run after it. Preferably,
debuggers that interpret the return address should be started after other debuggers.

Although it is not common, some library functions call other library functions and depend on certain
scratch registers to contain valid values. SetFunction()ing one of these functions is likely to change
the values in these scratch registers, leading to problems. Because these dependencies are not always
documented, you might innocently run into one. Scratcher is an excellent tool for finding such
dependencies.

Fig. 5
Original Debugger Removes its Debugging Routine

Debugger’s
Jump Table

...

JMP SecondDebug

...

Library Base

...

JMP FuncY

...

LVO Table

The Real FuncY()...
JMP JmpTblFuncY
...

A Second
Debugger’s

Debug Function

In the past, some system functions did not have a JMP vector in their entry in the LVO table. Instead,
the actual function was in the jump table. SetFunction() will not work on such a function.

Any debugging routine should be careful not to call the function it has patched with SetFunction(),
either directly or indirectly. Doing so will likely cause a stack overflow and crash the machine. This
may seem a bit obvious until you consider how easy it is to indirectly call a system routine. Many
system functions are not atomic. They have to call lower level system functions. If you call a higher
level system functions in the debugging code and you have SetFunction()ed one of the routines the
high level function uses, the machine will probably crash from a stack overflow.

Using SetFunction() on disk-based libraries and devices requires a little extra care. Unlike a ROM
library, libraries (and devices) loaded into RAM can be expunged when memory gets low. To prevent
the system from expunging a library (or device) you have SetFunction()ed, either keep the library (or
device) opened, or use SetFunction() to patch the library’s expunge function.

Remember that when you install a wedge, another program can call it almost instantly. Because of
this, the wedge should be completely set up before you install it.

Note that dos.library is now a standard library and can be SetFunction()ed as of V36. Before V36 you
would have to Forbid(), get the six original bytes of the entry in the function vector table, install the
new vector, perform a SumLibrary() and then Permit().

If it is necessary to put debugging code into a Forbid() or Disable() state, keep it in that state for as
little time as possible to limit system slowdown. Remember that you cannot Disable() for more than
250 microseconds. Be sure to read the Disable()/Enable() Autodocs before using them.

An Example Debugger

The usage of SetFunction() is shown by the example debugging program at the end of this article,
ISpy. ISpy uses a semaphore to gain access to its jump table. This jump table contains pointers to the
wedge routines. When executed, each wedge routine puts a shared lock on the semaphore to indicate
that the code is being executed. To get an idea of who is calling the debugger entries, ISpy uses a little
assembler stub to load a4 with the address of the stack of the caller and calls a C routine where the
actual (simple) argument checking is done. When ISpy is signalled to exit, it tries to get an exclusive
lock on the semaphore in a Forbid()en state. If this succeeds, it can safely assume its code is not being
executed at the moment and can therefore place the original function vectors in the jump table and
exit, leaving the semaphore behind. This semaphore is also used to check whether ISpy is already
installed. If so, the new instance will exit immediately. Because of the use of shared semaphore
locks, this program will only run with V37. By using a global counter (which is incremented each
time a function is entered and decremented when it is exited) ISpy can be adapted to V33. Because of
the way ISpy is set up, it is very easy to add argument checking front ends for functions, and have
multiple versions of ISpy for different libraries.

Memoration and Scratcher by Bill Hawes. IO_Torture by Bryce Nesbitt. Wedge and DevMon by
Carolyn Scheppner. MungWall by Ewout Walraven (inspired by Memwall by Randell Jesup and
MemMung by Bryce Nesbitt).

ExecUsing SetFunction() in
a Debugger

Page III - 6

Amiga Mail
Volume II

