
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Where? Why? How?
Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?
What? When? Where? Why? How? Whazzit? Who? What? When? Who? What? When?
Where? Why? How? Whazzit? Why? How? Whazzit? Who? What? When? Where? Why?
How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who? What? When?
Where? Why? How? Whazzit? Who? What? When? Where? Why? How? Whazzit? Who?

Q & AQ & AQ & A
Amiga Mail

Volume II

Amiga Mail News July/August 1992 Page 3

Q: The DOS Library function FGets() seems
to read too many bytes if it doesn’t come
across a newline character. What’s
happening?

A: This is an excerpt from a recent Autodoc
for FGets:

In V36 and V37, it copies one more byte than
it should if it doesn’t hit an EOF or newline.
In the example above, it would copy 50 bytes
and put a null in the 51st. This is fixed in dos
V39. Workaround for V36/V37: pass in
buffersize-1.

Q: Is there an interaction between DMA
devices (such as hard drive controllers) and
the 68040?

A: Yes. This interaction is only an issue when
the 68040 is in copyback data cache mode and
the timing is just right. Note that the chance of
this interaction affecting any particular
application is rather small. The interaction is
as follows:

The 68040 data cache has a mode called
copyback. In this mode, when the CPU
modifies memory, it does not write the data to
memory right away. It waits until the cache is
needed to cache some other memory or
someone explicitly flushes the cache. This
creates a problem for DMA devices because

they can read directly from memory without
using the CPU. If a DMA device tries to read
memory that happens to be in the CPUs data
cache, the DMA device will read the wrong data.

To prevent problems with DMA, a DMA device
has to call CachePreDMA() before accessing
memory. This function does both address
translations (for future MMU issues) and cache
flushing as needed. When the transfer is
complete, the device has to call
CachePostDMA() which performs some cache
flushes and whatever cleanup it needed.

Unfortunately, there is a nasty interaction
between the copyback mode of the 68040 and
flushed data areas.

In copyback mode, the 68040 uses complete
cache lines (which are four long words in length)
when copying data back and forth from the
cache. There are good reasons for this, including
that the CPU can do a full burst transfer (which
is four long words). However, the 68040 does
this even if only 2 of the long words in the cache
line are changed. So, what does this mean?

Imagine a program that has two memory buffers
right next to each other. The program is running
on a 68040 in copyback mode. These buffers
meet in the middle of a 128 bit boundary, so a
cache line would overlap the end of the first
buffer and the beginning of the second buffer. If
the timing is just right, the following situation
can occur:

The program calls CachePreDMA() and
starts an asynchronous DMA write to the
second buffer.

The program uses the CPU to write to the last
two long words of the first buffer which
causes the CPU to load the end of first buffer
and the beginning of the second buffer as
they are part of the same cache line.

The DMA write writes to the beginning of
the second buffer and finishes the transfer.

The program calls CachePostDMA(), which
causes the CPU to write the cache line that
overlaps the first and second buffer.

Because the overlapping cache line still contains
the data that was in the second buffer before the
DMA transfer took place, the CPU overwrites
the the first two long words of the second buffer.

The current version of 68040.library (37.4) has
the code needed to work around this problem.
Note that if any developer used SetFunction() to
patch some of the cache control functions, it is
important to patch all of these functions with
SetFunction() as needed to work around this
problem. 68040.library already does
SetFunction() all of the cache functions to deal
with copyback issues and this one just happens
to be the most complex of them. Version 37.4
of the 68040.library is available through the
CATS closed developer confoerences on BIX.

Q: I’m using ExAll() (dos.library 37.44)
with ED_COMMENT. Everything works fine except
that the string ead->ed_Comment points to
isn’t NULL-terminated.

Is this a bug or am I doing something wrong? If
it’s a bug, is there a more simple workaround
than looking at the FileInfoBlock?

A: This is a bug. It turns out that the V37 FFS
does the comment wrong when in ExAll(). It
does it as a BSTR rather than a standard C-
String. Other filesystems (such as RAM) do it
right. Also, filesystems that do not directly
support ExAll() but have DOS simulate ExAll()
do it right, too.

Q: The 37.4 DOS library Autodoc says that the
FPutC() function looks like this:

LONG FPutC(BPTR, UBYTE)

while version 37.4 of the <clib/dos_protos.h>
include file looks like this:

LONG FPutC(BPTR fh, unsigned long ch)

Which one is right?

A: Would you believe neither? It’s really:

LONG FPutC(BPTR, LONG ch)

There’s no particularily good reason for it, other
than that’s how BCPL did it, and this is a trans-
literated (directly translated) version of the
BCPL. BCPL has only one real type: LONG.

It wouldn’t make a difference except that the
value returned for success is the longword
passed in, and longword comparisons are done
against things like ’\n’, etc. So you must pass
in a longword value 0-255.

Q: How do I determine the frequency of the CIA
B time of day (TOD) counter?

A: The CIA B time of day counter counts
horizontal sync pulses. The counter rate varies
depending on the video mode the Amiga is
currently displaying. Instead of using the TOD
counter, you want use one of the more
conventioanl CIA timers, and scale the time
constants based on whether the system is PAL or
NTSC.

Amiga Mail NewsJuly/August 1992Page 4

Volume II
Amiga Mail

