
IFF ECS Display Modes
and ILBM CAMG

Page VII - 17

Amiga Mail
Volume II

ECS Display Modes
and ILBM CAMG

By Carolyn Scheppner

Under versions of the Amiga operating system and hardware prior to release 2.0, the display modes
available to the system (such as HIRES, LACE, HAM, HALFBRITE, DUALPF) could all be described in the
16-bit ViewPort.Modes field. When saving an Amiga display to an ILBM file, the ViewPort mode
field, also referred to as a view mode, was preserved along with the image to make sure it could be
later displayed in the proper display mode. The ILBM CAMG chunk stores a display’s view mode.

When using Amiga operating systems prior to release 2.0, storing the view mode in an ILBM involves
extracting the 16-bit view mode, masking out the GENLOCK_AUDIO, GENLOCK_VIDEO, VP_HIDE, and
SPRITES flags, and storing the result as a 32-bit value in the CAMG chunk. The upper word of the
value should be zero. Reading the view mode requires masking out the undesirable bits mentioned
above from the CAMG’s 32-bit value, and then use the low word of the result as a 16-bit value for
ViewPort.Modes or NewScreen.ViewModes when opening a display.

The 2.0 operating system and the ECS chips support a large number of display modes--too many for
the old 16-bit view mode to represent. Under 2.0, display modes are now specified by a 32-bit
ModeID which is not stored in the ViewPort, but is instead held in private graphics lists. The
graphics.library provides functions for accessing this extended display information. The
GetVPModeID() function returns a ViewPort’s 32-bit ModeID:

ULONG modeID = GetVPModeID(struct ViewPort *vp);

When saving a display under release 2.0, an ILBM writer must preserve the entire 32-bit modeID in
the CAMG chunk. The advantage of this is ILBM readers that don’t know about the release 2.0 32-bit
view mode can still display ILBMs saved under 2.0. Although ModeIDs are numeric values rather
than bit masks, the 2.0 ModeIDs were designed to contain the pre-2.0 bits in their low word for the
matching (or closest match) old ViewPort mode. For example, the 2.0 ModeID for a Hires-Interlace
display has the HIRES and LACE bits set in its low word. The 2.0 ModeID for a Productivity Interlaced

July/August 1991

IFFECS Display Modes
and ILBM CAMG

Page VII - 18

Amiga Mail
Volume II

display also has the HIRES and LACE bits set in its low word because, of the display modes available to
a non-ECS or pre-2.0 system, a Hires-Interlace display is most like the Productivity Interlaced display.

By storing the entire 32-bit ModeID in the CAMG chunk, 2.0 compatible ILBM readers can display
the image in the proper display mode if that display mode is available to the current system. Old
ILBM readers will not be able to use the new display modes, but they will truncate the new 32-bit
ModeID into a 16-bit view mode which will normally provide a reasonable view mode for the image.

There are several CAMG values saved by old ILBM writers which are invalid modeID values. An
ILBM writer will produce ILBMs with invalid modeID values if it:

❏ fails to mask out SPRITES|VP_HIDE|GENLOCK_AUDIO|GENLOCK_VIDEO.
❏ saves a 2.0 extended view mode as 16 bits rather than saving the 32-bit modeID returned

by GetVPModeID().
❏ saves garbage in the upper word of the CAMG value.

All valid modeIDs either have an upper word of 0 and do not have the <graphics/view.h>
EXTENDED_MODE bit set in the low word, or have a non-0 upper word and do have the EXTENDED_MODE
bit set in the lower word. CAMG values which are invalid modeIDs must be screened out and fixed
before using them.

/* Knock bad bits out of old-style CAMGs modes before checking availability.
 * (some ILBM CAMG’s have these bits set in old 1.3 modes, and should not)
 * If not an extended monitor ID, or if marked as extended but missing
 * upper 16 bits, screen out inappropriate bits now.
 */
if((!(modeid & MONITOR_ID_MASK)) ||
 ((modeid & EXTENDED_MODE)&&(!(modeid & 0xFFFF0000))))

modeid &=
 (~(EXTENDED_MODE|SPRITES|GENLOCK_AUDIO|GENLOCK_VIDEO|VP_HIDE));

/* Check for bogus CAMG like some brushes have, with junk in
 * upper word and extended bit NOT set not set in lower word.
 */
if((modeid & 0xFFFF0000)&&(!(modeid & EXTENDED_MODE)))
 {
 /* Bad CAMG, so ignore CAMG and determine a mode based on
 * based on pagesize or aspect
 */
 modeid = NULL;
 if(wide >= 640)modeid |= HIRES;
 if(high >= 400)modeid |= LACE;
 }

The following example, camg.c, illustrates how to handle the possible CAMG values.

