
Intuition and Workbench AppWindow, AppIcons
and AppMenuItems

Page IV - 59

Amiga Mail
Volume II

AppWindows, AppIcons, and
AppMenuItems

By Fred Mitchell and John Orr

Since its inception, the Workbench has had a limitation. Although it is a fairly powerful user
interface, that power is not accessible to application programs. The power is limited to an interface
that only launches other programs. After Workbench launches a program, the program no longer
has any ties to the Workbench GUI. If an application needs an iconic interface, it has to create its
own, independent of Workbench.

Workbench 2.0 is different. Through the workbench.library, applications can utilize the iconic
interface of Workbench 2.0. There are three elements to this interface: AppWindows, AppIcons, and
AppMenuItems. In this article, they are referred to as AppObjects.

When the user drops a Workbench icon onto a special kind of application window called an
AppWindow, Workbench sends a message to the application that created the AppWindow. This
message contains a complete list of the icons that the user dropped on the window. This is useful
for an application like an editor. The editor can open an Intuition window on the Workbench screen
and make it into an AppWindow so that when the user drops an icon on the AppWindow, the editor
will load the icon’s corresponding file. The IconEdit utility that comes on the 2.0 release disks does
this.

July/August 1991

Intuition and WorkbenchAppWindow, AppIcons
and AppMenuItems

Page IV - 60

Amiga Mail
Volume II

An application can also create its own icons for the Workbench window. These icons are called
AppIcons. They are similar to AppWindows in that Workbench will tell an application what icons
the user dropped on its AppIcon. In addition, Workbench will notify the application if the user
double-clicks the AppIcon. This makes AppIcons useful not only as a ‘‘drop box’’ (like an
AppWindow), but they can also be used as some sort of activator for an application. For example, a
word processor that opens a window on the Workbench can use an AppIcon to ‘‘iconify’’ its
window. When the user wants to get rid of a cumbersome window, he iconifies it, which gets rid of
the window and leaves an AppIcon on the Workbench window in its place. When the user wants the
window back, he double-clicks the AppIcon and the window reappears.

The release 2.0 Workbench has a special menu called ‘‘Tools’’. It is special because unlike the
other Workbench menus, any application can add its own menu items to this menu. These menu
items are called AppMenuItems. Like the AppIcon, the AppMenu can be used both as an activator
and as a ‘‘drop box’’. When the user selects one of these menu items, Workbench sends a message
to the application that created the AppMenuItem. If there were any icons selected when the user
selected the AppMenuItem, the application will also get a list of those icons.

The AppMessage Structure

When Workbench notifies an application of AppWindow, AppIcon, or AppMenuItem activity, it
sends an AppMessage to the application’s message port (from <workbench/workbench.h>):

#define AM_VERSION 1

struct AppMessage {
 struct Message am_Message; /* standard message structure */
 UWORD am_Type; /* message type */
 ULONG am_UserData; /* application specific */
 ULONG am_ID; /* application definable ID */
 LONG am_NumArgs; /* # of elements in arglist */
 struct WBArg *am_ArgList; /* the arguments themselves */
 UWORD am_Version; /* will be AM_VERSION */
 UWORD am_Class; /* message class */
 WORD am_MouseX; /* mouse x position of event */
 WORD am_MouseY; /* mouse y position of event */
 ULONG am_Seconds; /* current system clock time */
 ULONG am_Micros; /* current system clock time */
 ULONG am_Reserved[8];
};

The AppMessage’s am_Type field tells the application which type of AppObject the message is
about. The field will be:

MTYPE_APPWINDOW if the message is about an AppWindow,
MTYPE_APPICON if the message is about an AppIcon, or
MTYPE_APPMENUITEM if the message is about an AppMenuItem.

Intuition and Workbench AppWindow, AppIcons
and AppMenuItems

Page IV - 61

Amiga Mail
Volume II

When an application creates an AppObject, it can assign the AppObject application specific data
(most likely a pointer) and an ID. Workbench will pass an AppObject’s data and ID back to the
application when it sends an AppMessage about the AppObject. The AppMessage’s am_UserData
and am_ID fields hold the user data and the ID.

The am_NumArgs field tells how many icons were involved in the user’s AppObject action. For an
AppWindow or AppIcon, am_NumArgs is the number of icons the user dropped on the AppWindow
or AppIcon. For an AppMenuItem, am_NumArgs represents the number of icons that were selected
when the user selected this AppMenuItem. If no icons were selected during an AppMenuItem event
or the user double-clicked on an AppIcon, am_NumArgs will be zero. Workbench does not send
AppMessages if the user double-clicks an AppWindow.

The am_ArgList field is a pointer to a list of WBArgs (from <workbench/startup.h>) corresponding
to each icon dropped (or selected). If there were no icons dropped or selected, this field will be
NULL.

For future expansion possibilities, the AppMessage structure has a version number. The version
number is #defined as AM_VERSION in <workbench/workbench.h>.

The am_MouseX and am_MouseY fields apply only to AppWindows and contain the coordinates of
the mouse pointer when the user dropped the icon(s). These coordinates are relative to the
AppWindow’s upper left corner.

The am_Seconds and am_Micros fields represent the time that the event took place.

Any remaining fields are undefined at present and should be set to NULL.

Adding AppObjects

The V37 workbench.library is made up of functions to add and remove AppObjects, two for each
type of AppObject:

struct AppWindow *AddAppWindow(unsigned long myID, unsigned long userdata,struct Window
*mywindow, struct MsgPort *mymsgport, Tag tag1, ...);

struct AppIcon *AddAppIcon(unsigned long myID, unsigned long userdata, UBYTE *mytext, struct
MsgPort *mymsgport, struct FileLock *mylock, struct DiskObject *diskobj, Tag tag1, ...);

struct AppMenuItem *AddAppMenuItem(unsigned long myid, unsigned long userdata, UBYTE *menutext,
struct MsgPort *mymsgport, Tag tag1, ...);

BOOL RemoveAppWindow(struct AppWindow *appWindow);

BOOL RemoveAppIcon(struct AppIcon *appIcon);

BOOL RemoveAppMenuItem(struct AppMenuItem *appMenuItem);

Intuition and WorkbenchAppWindow, AppIcons
and AppMenuItems

Page IV - 62

Amiga Mail
Volume II

The ‘‘AddApp’’ functions have several parameters in common. The myID and userdata parameters
are values the application assigns to the AppObject. Workbench puts these values in the
AppMessage’s am_ID and am_UserData fields when it sends an AppMessage about an AppObject.
If an application receives AppMessages about several AppObjects at the same message port, the
application can use the am_ID field to tell which AppObject Workbench is talking about.

The mymsgport field tells Workbench where to send this AppObject’s AppMessages. To make it
easy to distinguish AppMessages from other types of messages, an application should devote a
message port exclusively to AppMessages.

In the future, these AddApp functions will be able to process tag pairs in the parameter list.
Currently, there are no tags defined for any of the AppObject functions.

All of the AddApp functions return a NULL if the function failed otherwise they return a pointer to a
private structure. The pointer serves only as a handle for the application to pass to the
‘‘RemoveApp’’ functions. Do not use it for anything else!

Each of the RemoveApp functions removes one type of AppObject using the handle returned by the
corresponding AddApp function. At present, these functions all return TRUE, but this behavior is not
guaranteed to continue in the future.

AppWindows

The workbench.library’s AddAppWindow() call makes an application’s Intuition window into an
AppWindow. It has one parameter that is different from the other AddApp calls, a window pointer.
The mywindow field (from the prototype above) must point to an open Intuition window that is on
the Workbench screen.

The C source code example AppWindow.c at the end of this article is a simple example of how to
create an AppWindow.

There are two interesting things to note about the AppWindow. First, because an AppWindow is
still an Intuition window, an application can use a Workbench AppWindow for any purpose it would
need a normal Workbench based window for. An application can render graphics and text in it,
process its IntuiMessages, or create menus for it. Also, because Workbench tells where on an
AppWindow icons were dropped, an application can use a small region of a window as a drop box
rather than the entire AppWindow. A program can even have several drop boxes on the same
window. Using simple rendering routines, an application can draw the boxes so the user can see
where to drop icons.

Intuition and Workbench AppWindow, AppIcons
and AppMenuItems

Page IV - 63

Amiga Mail
Volume II

AppIcons

The workbench.library function AddAppIcon() adds an AppIcon to the Workbench window. There
are three parameters unique to this AddApp function. The mytext parameter (from the prototype
above) is the string that will appear beneath the AppIcon on the Workbench window. The diskobj
parameter points to a DiskObject structure that Workbench will use for the AppIcon’s imagery. It
should be filled in as follows (from the wb.doc Autodoc):

 diskobj - pointer to a DiskObject structure filled in as follows:
 do_Magic - NULL
 do_Version - NULL
 do_Gadget - a gadget structure filled in as follows:
 NextGadget - NULL
 LeftEdge - NULL
 TopEdge - NULL
 Width - width of icon hit-box
 Height - height of icon hit-box
 Flags - NULL or GADGHIMAGE
 Activation - NULL
 GadgetType - NULL
 GadgetRender - pointer to Image structure filled in as follows:
 LeftEdge - NULL
 TopEdge - NULL
 Width - width of image (must be <= Width of hit box)
 Height - height of image (must be <= Height of hit box)
 Depth - # of bit-planes in image
 ImageData - pointer to actual word aligned bits (CHIP MEM)
 PlanePick - Plane mask ((1 << depth) - 1)
 PlaneOnOff - 0
 NextImage - NULL
 SelectRender - pointer to alternate Image struct or NULL
 GadgetText - NULL
 MutualExclude - NULL
 SpecialInfo - NULL
 GadgetID - NULL
 UserData - NULL
 do_Type - NULL
 do_DefaultTool - NULL
 do_ToolTypes - NULL
 do_CurrentX - NO_ICON_POSITION (recommended)
 do_CurrentY - NO_ICON_POSITION (recommended)
 do_DrawerData - NULL
 do_ToolWindow - NULL
 do_StackSize - NULL

An easy way to create a DiskObject is to make an icon with the V2.0 icon editor, IconEdit. An
application can call GetDiskObject() on the icon and pass that to AddAppIcon().

AddAppIcon()’s mylock parameter is for future enhancements and should be set to NULL.

Because AppIcons are Workbench icons, the user can drop them on an AppWindow or another
AppIcon (or select them with an AppMenuItem). As there is no file, directory, or disk associated
with an AppIcon (at least for the moment), the lock passed for the icon in NULL. Do not try to
process icons with a NULL lock.

The C source code example AppIcon.c at the end of this article is a simple example of how to create
an AppIcon.

Intuition and WorkbenchAppWindow, AppIcons
and AppMenuItems

Page IV - 64

Amiga Mail
Volume II

AppMenuItems

Using the workbench.library’s AddAppMenuItem() call, an application can add an AppMenuItem to
the Workbench’s ‘‘Tools’’ menu. This AppAdd function has one parameter unique to it, menutext
(from the prototype above). It points to the string that appears in the ‘‘Tools’’ menu.

An AppMenuItem performs the same functions as an AppIcon or AppWindow, but it does not
require the overhead of a DiskObject or a window. It also does not require the user to drop icons on
an object. In some cases, the user might prefer to use an AppMenuItem over an AppIcon or
AppWindow because the user doesn’t have to shuffle around the Workbench windows to get to the
‘‘Tools’’ menu. Note that in older versions of release 2.0, Workbench did not supply a list of
WBArgs when the user selected an AppMenuItem.

The C source code example AppMenuItem.c at the end of this article is a simple example of how to
create an AppMenuItem.

