
User Manual for SAOimage

A Pseudocolor Display Program for Grayscale Images

M. VanHilst

�

Smithsonian Astrophysical Observatory

Harvard/Smithsonian Center for Astrophysics

Cambridge, Massachusetts

1 January 1991

�

Work supported through NASA Contracts NAS8-30751, NASW-3722, NASS-29350 and NASS-30934

CONTENTS i

Contents

1 SAOimage command line arguments 1

2 SAOimage button menus and submenus 7

2.1 Where to �nd more information : 8

2.2 Explanation of items in the \etc" submenu : 8

2.3 User interface issues : 9

3 Scaling image �le values to the range of the display color map 9

3.1 Range of image data versus size of color map : 9

3.2 Basic scaling theory : 10

3.3 Scaling distributions : 10

3.4 Non-linear distributions : 10

3.5 Histogram equalization : 10

3.6 Windowing the scaling : 11

3.7 Wrapping the color map : 11

3.8 Scaling implementation and e�ciency within SAOimage : : : : : : : : : : : : : : : 11

3.8.1 Linear scaling : 12

3.8.2 Wrapped linear scaling : 12

3.8.3 Log scaling : 12

3.8.4 Square root scaling : 13

3.8.5 Histogram equalization : 13

3.8.6 Image scaling by IRAF : 13

4 Blinking between di�erent stored display images 13

5 Color under the X window system on color workstations 14

5.1 Color mapping : 15

5.2 Color manipulation : 16

5.3 Gamma correction : 16

5.4 Updating the graph and gamma display : 17

5.5 Saving color map entries and reading them back in : : : : : : : : : : : : : : : : : : 17

6 Graphics cursors and cursor mode in SAOimage 17

6.1 Positioning : 18

6.2 Sizing : 18

6.3 Rotation angle : 18

ii CONTENTS

6.4 Point cursor : 19

6.5 Polygon cursor : 19

6.6 Cursor annuli : 19

6.7 Arrow cursor : 20

6.8 Text cursor : 20

6.9 Cursor color : 20

7 SAOimage cursor regions 21

7.1 Saving and unsaving : 21

7.2 Menu controls : 22

7.3 Regions as ASCII disk �les : 22

8 Image panning and zooming in SAOimage 24

9 Using the mouse in SAOimage 24

9.1 Tracking : 25

9.2 Fine movement : 26

10 SAOimage keyboard input 26

10.1 Key commands : 26

10.2 Modi�er keys : 27

10.3 Editable text input : 28

11 Outputting an image to a laser printer 29

1

1 SAOimage command line arguments

The command line is the line you type to start up the SAOimage program. Following the name

of the program, you can include the name of a �le to read as well as various parameters and their

settings. Except for the �lename, all settings are identi�ed by a switch beginning with a `-' (a

hyphen). Some switches are su�cient by themselves, some switches must be followed by a �xed

number of arguments (usually numerical), and some switches may be followed by arguments but

do not require them. These are explained below.

There is no required order to the switches. The �lename can also appear anywhere on the

command line. SAOimage assumes that any token, which is not part of a recognizable switch, is

the �lename.

Many switches have two names, one literal and one abbreviated. In such cases the names are

completely interchangeable. The longer names might be used in a script where a later reader might

wonder what the switches do. The abbreviated names save typing on the command line.

Once SAOimage is running, you may enter a new command line, changing some of the settings

and/or reading in a new image from disk. See the descriptions for the new menu under etc in

section 2.2 and the N key in section 10.1. A few switches cannot be changed from their initial

settings (e.g. -display to change the display server). These are marked by ** below.

The following is a list of the command line switches for SAOimage:

-blue **

Set the color of all graphics to be blue. Some inexpensive systems use a monochrome monitor

connected to one of the three color outputs on the computer. That color must be speci�ed

to make the graphics visible.

-bordercolor <colorname> **

-bc <colorname>

Specify the color of all subwindow borders. The color name must be a recognized X color

(there are many). This is a style issue.

For instance, one can turn on green borders by typing

-bc green

-byteswap

-bswap

Switch the bytes order between big-endian and little-endian order. This may be needed where

data has been copied from another machine or if there is some confusion about the FITS �le

format. This switch toggles the previous setting.

+/-coord

+/-ct

Set the coordinate tracking state initially on or o�. In coordinate tracking, the coordinates

of the mouse and value of the pixel under it are printed in the upper-left text area, above the

main display window.

2 1 SAOimage command line arguments

-display <X server name>:<X server name extension>.<screen number> **

-d <X server name>:<X server name extension>.<screen number> **

Specify the name of the X display server. This makes it possible to run the SAOimage program

on a machine other than the one connected to your display screen, with no di�erence in

appearance or use. By default, SAOimage gets the server name from the DISPLAY environment

variable. See the xhost manual page for more details. The display server cannot be changed

once SAOimage is running.

For example, to connect to the display server on cfa241, one would use

saoimage -d cfa241:0.0 or, equivalently

saoimage -d 128.103.41.241:0.0

-dfits

Image �le is a FITS �le (see -fits), but in unexpected byteswapped order. The FITS

standard is not swapped, but some naive VAX applications may swap it (see -bswap).

-fbconfig <filename>

Specify an alternate frame bu�er con�guration �le for use with IRAF. By default, the �le

installed with SAOimage (/usr/local/lib/imtoolrc) is used.

-fits

Image �le is a FITS �le. If the image �lename ends in .fits, this switch is not necessary.

Only T=SIMPLE array types are supported. The header BITPIX card must be 8 (unsigned

byte), 16 (signed short), 32 (signed int), -32 (
oat), -64 (double), or -16 (unsigned short).

(The last two are not recognized standards). IEEE
oats are not converted if that is not the

machine format.

-gd [<width>x<height>][+-<x>+-<y>] **

Specify the size of the image display subwindow and/or the screen position of SAOimage.

The format is a standard X geometry statement. This switch works like -geometry, except

that width and height (if given) are applied to the display subwindow. The overall SAOimage

window is sized accordingly.

For example, to create an SAOimage in the upper right with a display window that exactly

�ts a 320x512 FITS image, type

saoimage -gd 320x512-5+0 m51.fits

-geometry [<width>x<height>][+-<x>+-<y>] **

-g [<width>x<height>][+-<x>+-<y>] **

Specify the size and/or the screen position of SAOimage. The format is a standard X geometry

statement. Both size and position may be speci�ed, or only the size or the position. Width

and height refer to the dimensions of SAOimage's desktop window (see -gd for sizing just the

image display window). +x and +y refer to the upper left corner in screen coordinates. -x

positions the right edge from the right edge of the screen. -y would positions the lower edge

from the bottom of the screen. Width and height below a minimum size are defaulted to the

minimum. Specifying the default minimum size (-geometry 0x0) also triggers SAOimage

3

to use smaller dimensions for its internal windows. Once SAOimage is running, use the

window manager's normal size and move mechanisms to make adjustments to SAOimage's

main window.

For instance, to create minimum sized SAOimage near the upper left corner, type

saoimage -geometry 0x0+10+20

To create a 500x700 SAOimage window in the lower right corner, type

saoimage -geometry 500x700-5-5

To create a default sized SAOimage window in the upper right corner, type

saoimage -geometry +0-5

-green **

Set the color of all graphics to be green. See -blue.

-histeq

See section 3.8.5 on histogram equalization.

-horizgraph **

-hg

Use a horizontal auxiliary color graph window, with a color bar along the bottom. See -vg.

-i2 <width> <height>

-shortarray <width> <height>

Image �le is a signed short integer array �le of the given dimensions. If the �le is square and

has no added padding, the dimensions are not necessary.

-i4 <width> <height>

-longarray <width> <height>

Image �le is a signed long integer array �le of the given dimensions. If the �le is square and

has no added padding, the dimensions are not necessary.

-idev <pipename>

Specify the name of the named pipe used for listening. The default is /dev/imt1o, which is

the default used by IRAF. See -odev.

+/-imtool

Open/close the named input pipe connection and wait for input from IRAF. When open,

SAOimage emulates IRAF's imtool . IRAF's image loading and cursor read-back functions

are supported. Unlike imtool , SAOimage has only one frame bu�er; IRAF's frame bu�er

numbers are ignored. Listening on the pipe is possible even while reading image �les directly.

The connection may be opened, closed, or re-opened at any time. When supported, the

default mode is commonly to start with the IRAF connection open. See -idev, -odev and

-pros.

4 1 SAOimage command line arguments

-linear

See section 3.8.1 on linear scaling.

-log [<exponent for exponential curve>]

Set the scaling mode to log (exponential), and set the exponent for the curve function e

n

, if

given. See section 3.8.3.

-lowerleft

-ll

First pixel in �le represents the lower left of the image, assuming the lines of input run left

to right on the screen. This is the IRAF standard and the SAOimage default. See -rotate,

-upperleft, and -zero.

-lprbuttons

Include the button menu in the hardcopy image (only on color workstations). The default on

color workstations includes the area above the button panel, but excludes the buttons.

-mag <magnification>

Set the magni�cation factor of the magni�er. This factor relates the magni�er to the magni-

�cation of the display window. The default is 4; the magni�er magni�es the image to 4 times

the magni�cation of the main display window (but never less than zoom 1 of the original

data).

+/-magnifier

+/-mt

Set the magni�er tracking state initially on or o�. With magni�er tracking, the magni�er

window is continuously updated to show a magni�cation of the image the image under the

mouse.

-max [<maximum value for scaling>]

Set the maximum for the image value range used to compute scaling. The default is to take

the maximum from the image shown in the display window. -max with no value resets the

default. If the maximum value in the displayed image is lower than the given maximum, the

image's maximum vale is used for the scaling range.

-min [<minimum value for scaling>]

Set the minimum for the image value range used to compute scaling. The default is to take

the minimum from the image shown in the display window. -min with no value resets the

default. If the minimum value in the displayed image is higher than the given minimum, the

image's minimum vale is used for the scaling range.

-mtf

Give the button panel a chiseled look popularized by HP's widget set. This appearance may

contrast less with other applications being used at the same time.

5

-name <filename>

This switch is only needed if the �lename starts with a number or might otherwise be recog-

nized as a switch.

-odev <pipename>

Specify the name of the named pipe used for sending feedback. The default is /dev/imt1i,

which is the default used by IRAF. See -idev.

-oif

Image �le is an IRAF image header �le in OIF format. If the image �lename ends in .imh,

this switch is not necessary. IRAF STF and QPOE formats are not supported. Complex

data cannot be handled. The data must have at least 2 dimensions. Only the �rst plane of

multidimensional images is read. The data �le is read directly by SAOimage (see -imtool

and -pros).

-one

The �le coordinate of the �rst pixel is (1; 1). The real coordinates of the center of the �rst

pixel are (1:0; 1:0). This is the IRAF standard and the default for SAOimage. The second

pixel is (2; 1). See -zero.

-palette <number of colors in display colormap palette>

-p <number>

Specify the number of read/write color cells to reserve. On color workstations, SAOimage

reserves color cells in the default colormap for its own use (see section 5). SAOimage reserves

as many color cells as it can get, up to the number given (the default is 200). If the number

given is negative, SAOimage comes up in overlay mode, using 1=2 + 2 of the color cells

for overlays and graphics. In verbose mode (see -verbose), SAOimage tells you how many

cells it is able to use for display colors. This number can be re-entered at run-time, unless

-palette 1 is given, in which case SAOimage stays in halftone mode.

-panboxav

-panboxsum

-panboxsamp

-panboxmax

These switches select the kind of image reduction used to �t a picture of the entire image into

the pan window. Each pixel is computed from a block of image pixels by averaging, summing,

sampling, or taking the maximum. The default is to show the maximum from each block.

When zooming in the main display involves reduction, subsampling is always used.

-pros

This command is virtually identical to +imtool. The di�erence occurs when the user writes

the saved regions to a disk �le. imtool emulation includes writing only an IRAF list �le

giving center coordinates only. With -pros, SAOimage's normal region descriptor �le will be

written in place of the simpler list �le. One may switch between this mode and +imtool, or

close the IRAF connection with -imtool.

6 1 SAOimage command line arguments

-quiet

-q

Disable verbose mode. See -verbose.

-r4 <width> <height>

-floatarray <width> <height>

Image �le is a real�4 array �le of the given dimensions. If the �le is square and has no added

padding, the dimensions are not necessary.

-r8 <width> <height>

-doublearray <width> <height>

Image �le is a real�8 array �le of the given dimensions. If the �le is square and has no added

padding, the dimensions are not necessary.

-red **

Set the color of all graphics to be red. See -blue.

-rmax [<maximum value for reading>]

Set maximum value for reading from the image �le. This value is used as the maximum value

when images are pre-scaled to �t the 16 bit (signed short) working bu�er. See section 3.8.

-rmin [<minimum value for reading>]

Set minimum value for reading from the image �le. This value is used as the minimum value

when images are pre-scaled to �t the 16 bit (signed short) working bu�er. See section 3.8.

-rotate <1,2,or 3>

-rot <1,2,or 3>

Rotate the image 90, 180, or 270 degrees (respectively) before displaying it. Rotation is

applied after conversion to a lower left coordinate system (-ll) if such conversion is also

requested. This is useful for images when the CCD was not mounted North-up.

-scalebias <scale> <bias>

-sb <scale> <bias>

The data in the image �le should be scaled and biased to get the true image value (TrueValue

= (scale � FileValue) + bias). This cannot be used with the -fits image type (scale and

bias are in the FITS header), nor with -imtool or -pros (they are passed by IRAF).

-skip <bytes>

-sk <bytes>

-header <bytes>

Skip over the given number of bytes at the head of the �le before reading data. This is used

to skip header information or the �rst image if two images are stored in one �le.

-sqrt [<inverse of exponent for geometric curve>]

Set the scaling function to square root (geometric), and set the inverse of the exponent for

the x

1=n

curve, if given. See section 3.8.4.

7

-u1 <width> <height>

-chararray <width> <height>

Image �le is an unsigned byte array �le of the given dimensions. If the �le is square and has

no added padding, the dimensions are not necessary.

-u2 <width> <height>

-ushortarray <width> <height>

Image �le is a unsigned short integer array �le of the given dimensions. If the �le is square

and has no added padding, the dimensions are not necessary.

-upperleft

-ul

First pixel in �le represents the upper left of the image, assuming the lines of input run left

to right on the screen (see -rotate and -lowerleft). This switch does not override IRAF

WCS image coordinates.

+/-verbose

+/-v

Set verbose mode on or o�. In verbose mode, informative statements are printed to the

terminal window when various actions are taken. The default mode is to be verbose.

-vertgraph **

-vg

Use a vertical auxiliary color graph window, with a color bar along the left side. See -hg.

-wrap [<number of wraps within scaling range>]

Set the scaling mode to wrapped linear, and set the number of wraps for this mode, if given.

See section 3.8.2.

-zero

The �le coordinate of the �rst pixel is (0; 0). The real coordinates of the center of the �rst

pixel are (0:5; 0:5) which makes the very edge (0; 0). This is the standard coordinate system

for image displays, but not the default for SAOimage. The second pixel is indexed (1; 0). See

-one.

2 SAOimage button menus and submenus

SAOimage uses button panels for selecting the most common actions and modes. The button

panel is organized in two rows. The upper row of buttons selects the main mode. The lower row

of buttons controls modes, actions, and selections speci�c to the current main mode.

The upper row of buttons, referred to as the main menu, or just the menu, is always visible.

The lower row of buttons, referred to as the submenu, changes to correspond to the mode selected

in the main menu. For some main menu modes (Color and Cursor), there are two interchangeable

submenus, toggled by the button on the end (cmap and region, respectively).

Main menu modes all correspond to modes of interaction for the mouse and its buttons. For

example, when in Color mode, dragging the mouse in the display window manipulates the color

8 2 SAOimage button menus and submenus

map, while in Cursor mode, the same action a�ects the drawing of a cursor. Making a selection in

the main menu only changes modes and submenus. Selections in submenus often do cause speci�c

actions to be taken. Most of these actions are easily reversible. The user is especially warned

that in the etc submenu, the QUIT button does what it says, and the print button sends a large

PostScript �le to the user's printer.

2.1 Where to �nd more information

For additional information about the Scale menu, see section 3. The mouse interactions that are

possible in the Scale menu are described in section 4 dealing with blinking.

The Color menu is described in section 5. Note that on color workstations, the Color menu has

two di�erent submenus, interchangable by using the cmap button. One can also switch to non-color

mode by toggling the mono button.

Details about the Cursor menu are covered in sections 6 and 7. The Cursor menu has two

submenus, interchangeable by pressing the region button.

For the Pan menu, see section 8.

2.2 Explanation of items in the \etc" submenu

The etc menu groups a numbers of di�erent functions.

new brings up a command line editor. A new command line can be entered to read a new image and

also to change certain internal parameters. The previous command line is initially presented,

should you just want to edit it. Type Ctrl-N if you want to start with an empty line. Ctrl-P

recalls previous lines. Type Ctrl-C to exit the command line editor without taking any new

actions. In most modes, typing N has the same e�ect as the new button. See sections 1 and 10

for further details.

track enables the tracking mode. In tracking mode, the magni�er window magni�es the image

under the mouse when it is in the main display window. Tracking mode also controls whether

the the color graph gets updated continuously when in Color mode, or only at the completion

of some action. Whatever mode tracking is in, the opposite can be temporarily invoked by

holding down the Shift key, or using the CapsLock key. The default is to be initially on (see

section 1 for how to change this).

coord enables coordinate tracking mode. In coordinate tracking mode, the coordinates and pixel

value of the pixel under the mouse are printed, and continuously updated, when the mouse

is over the main display window. This mode is also temporarily negated by using the Shift

key. The default is to be initially on (see section 1 for how to change this).

verb controls verbose mode. When in verbose mode, SAOimage prints information about the

cursors or image to the terminal window of the parent process from which SAOimage was

invoked. This may or may not be desired. The default is to be initially on (see -verbose in

section 1 for how to change this).

print creates (and prints) a PostScript hardcopy. See section 11 for details.

2.3 User interface issues 9

raise tells the window manager to raise SAOimage's windows. Most window managers in use now

have their own features to accomplish this. (Typing the R key also has this e�ect in most

modes).

QUIT terminates SAOimage.

2.3 User interface issues

The user-interface of SAOimage has been the subject of many questions and comments. A common

question is: \Why isn't itMotif?" SAOimage's button menu was developed under X10 and predates

any X toolkits. While successors to SAOimage will undoubtably use toolkits likeMotif or OpenLook,

there is still justi�cation for an xlib-only design.

1. SAOimage is distributed completely free of any license restrictions. It supports a community

characterized by limited funds and a wide variety of machines. Using SAOimage, and making

one's own modi�cations, requires only that one have X11.

2. SAOimage runs well on machines with limited memory and/or processing power. These are

still issues for older workstations and PC's and Mac's running UNIX.

3 Scaling image �le values to the range of the display color map

Workstation displays pose a common problem for imaging applications: how to display an image

with a large range of values on a screen with a small range of colors. Since there aren't enough

colors to use one for each image value, groups of di�erent image values must all be assigned the

same color. The process of grouping image values into a smaller set of values is called scaling or

binning.

Use the Scale submenu to scale the image to the range of display colors. Any of a variety

of linear and non-linear scaling algorithms can be applied simply by clicking on the appropriate

submenu button. When scaling is performed, the range of image values currently visible within the

area of the display window will be assumed. Limits on the range of image values and other scaling

parameters may be input using command line switches. For long integer and
oating point data,

SAOimage uses two stages of scaling, as described below.

3.1 Range of image data versus size of color map

Image data may have a nearly in�nite range of data values. Data values may be very large or very

small, they may be positive or negative, and they may be real or integer.

A typical workstation can only display 256 colors on its screen at any one time. Some of the

256 colors are needed for coloring such things as the mouse cursor, text characters, background

areas, and window borders. On a 256 color workstation, SAOimage typically uses 200 colors to

display images.

For purposes of display, each pixel in the display image is assigned one of 200 integer values in

the range of 0 to 255. Each of these 256 possible values is the index of an entry in the display's

10 3 Scaling image �le values to the range of the display color map

color map table. The color map table associates speci�c colors with the 256 display values (e.g.

0=black, 1=dark blue, etc.). (See section 5 for a detailed discussion of color map manipulation.)

3.2 Basic scaling theory

Take the case of an image with a range of values from 0 to +1199 (a range of 1200), and an image

display with 200 colors. SAOimage might assign one color map entry to each range of six in the

image. Thus values 0 to 5 would be assigned the lowest color map entry, 0. Values 6 to 11 would

be assigned to 1, and so on up to the values between 1195 and 1199 going to entry 199 in the color

map. Then, if entry 0 was black, all pixels in the image with data values between 0 and 5 would

appear black in the display. If color map entry 131 was assigned the color pink, then image pixels

whose data value was between 787 and 792 would appear pink in the display.

3.3 Scaling distributions

The above example is an example of linear scaling. But suppose that it was important to be able

to see the di�erences among levels 2, 3, 4, and 5, and not as important to see a di�erence between

1001 and 1002. Perhaps it would be su�cient to see di�erences between 1001 and 1100, while 1001,

1002, 1003, etc. could all have the same color. Then it would be better to use a scaling that used

more color map entries for the lower image values than the higher image values. Log and square

root scaling do that.

To understand how that works, imagine a graph with image values along the side and color

map values along the bottom. A plot of linear scaling would be a straight line with a constant

slope. In other words, each n consecutive image value units would map to m color map levels. A

log line would be curved, having less slope at the bottom (more color map values per image value

range) and get steeper toward the top (fewer color map values per image value range). The square

root function would be similar but follow a di�erent curve.

3.4 Non-linear distributions

Sometimes weighting toward one end or the other isn't good enough. Perhaps the data values fall

in clusters with big gaps in between. Imagine an image with most of its data clustered between

0 and 200, but two or three pixels with a value of 1000. In the linear scaling 80% of the color

cells would be used for non-existent values between 200 and 1000. Worse, as is common with CCD

images, there may be bad pixels with values like -1200, which have nothing to do with image source

values.

3.5 Histogram equalization

A histogram is a plot with the range of possible values (divided into discrete bins) on one axis

and the frequency of the actual occurrence of each value, or value within the range of each bin, on

the other axis. The image histogram could be divided into as many bins as colors in the display,

with each bin representing the range of image values associated with a single color in the display.

The frequency value of each bin would be the number of pixels in the display that used that color.

3.6 Windowing the scaling 11

In a poor scaling distribution, many of the bins (ranges of image values) have few or no actual

occurrences in the image.

Histogram equalization is a process of adjusting the ranges of the bins such that each bin has

about the same number of image pixels. If the image has many pixels with values between 100

and 200, then histogram equalization would allocate many small bins to that range, (e.g. 100{110,

111{120, etc.). If the image has relatively few pixels with values between 300 and 400, histogram

equalization would allocate few large bins to that range (e.g. 300{350, 351{400). The object of

histogram equalization is to maximize the information in the display by optimizing the usage of

the available colors. It usually produces a dramatic improvement in the amount of visible detail in

the displayed image.

The drawback of histogram equalization is that the ranges can vary greatly in size. A di�erence

between two adjacent color map values may represent a big or a small di�erence in data values,

with much irregularity from one step to the next.

3.6 Windowing the scaling

Often, most of the data falls within a single contiguous range, with bad pixels or infrequent events

in the extremes to either end. It may be useful to restrict the scaling algorithm to a speci�c range,

with all values below that range having the same color as the minimum and all values above that

range having the same color as the maximum. This can either be accomplished by specifying the

scaling limits directly, or by looking for a section of the image which is free from extreme values,

and basing the scaling on the values in that section only.

3.7 Wrapping the color map

Another trick to show more detail with a limited color map is to reuse it. By wrapping the color

map on itself, it could represent the range of values from 0 to 99, and then start over, 100 having

the same color as 0 and 199 having the same color as 99. This works for smoothly varying data

and even has a sort of contoured look to it. Where the data
uctuations are greater than the range

covered by one wrap of the color map, the result is a lot of meaningless noise.

3.8 Scaling implementation and e�ciency within SAOimage

In order to realize reasonable execution times for rescaling the image display, SAOimage does not

apply its scaling functions to real data. Where the image data was real, double, or long, the data

is linearly rescaled to integer values between -32767 and 32767 (a range of 65,535). Each scaling

function produces a 65,535 entry lookup table for this range of values which is used to draw or

redraw the display. If the data has such great extremes that this range linearly applied to the

data's range will be insu�cient, windowing limits for the initial linear scaling can be given on the

command line using -rmin and -rmax.

The scaling function is further windowed by being applied only to the range of image values

actually being displayed at the time the function is invoked. Pixels not appearing in the display

window are not considered in the scaling algorithm. Thus scaling after panning and zooming will

12 3 Scaling image �le values to the range of the display color map

produce di�erent scale lookup table mappings, depending on the contents of the display. Panning

and zooming can be used in this way to �nd a better scaling.

To compensate for extreme data that may appear at the edges of an image (common in CCD

images) data within 2 pixels of the edge of the display are not considered in the assessment of range.

In -verbose mode, the scaling routine reports the range of values which it �nds in the display.

One or both limits of the value range for menu-commanded scaling can be restricted by using

the -min and -max arguments on the command line. When -min is given, the low end of the range

will not extend below the -min value. When -max is given, the upper end will not extend above the

-max value. Limit values are given in terms of original �le values. The user need not know about

the internally used short integer values. The -min and/or -max value can be cleared by giving the

-min or -max switch with no argument.

Panning or zooming after a scale map has been made does not cause a new scale map to be

calculated. The display is drawn with the existing scaling. If the new display has values outside the

range when the map was made, these values are usually clipped (mapped to the color map minimum

or maximum). Wrapped scaling is an exception, in that the color map wrapping is applied all the

way to the maximum possible value.

3.8.1 Linear scaling

Linear scaling is fairly simple. The range of image values is divided by the number of color map

values to determine the range of data values for each color map value. The �xed range is applied

to mapping all image values between the minimum and maximum image value. Values below the

minimum are all mapped to the lowest color map value. Values above the maximum are all mapped

to the highest color map value.

3.8.2 Wrapped linear scaling

Wrapped linear scaling, as described above, divides the range of data values by the number of times

the color table will roll over (the default is 10) and the result is divided by the number of color map

values to determine the range of data values for each color map value. Values below the minimum

are all mapped to the lowest color map value. The mapping continues to be rolled up to the highest

map value (= 32767; see -wrap in section 1).

3.8.3 Log scaling

The distribution of data values to color map values is based on the distribution of e

n

from 0 to X ,

where n is a parameter (the default is 10.0) and X is determined by n and the two ranges (data

and color map). Positive values of n favor the lower data values, while negative values of n favor

the higher data values. Values below the minimum are all mapped to the lowest color map value.

Values above the maximum are all mapped to the highest color map value (see -log in section 1).

13

3.8.4 Square root scaling

The distribution of data values to color map values is based on the distribution of X

1=n

from 0 to

1, where n is a parameter (the default is 2.0) and X varies from 0 to 1 in steps determined by the

number of color map values. Values of n greater than 1 favor the lower data values, while values

of n less than 1 favor the higher data values (negative values and 0 are not allowed). Values below

the minimum are all mapped to the lowest color map value. Values above the maximum are all

mapped to the highest color map value (see -sqrt in section 1).

3.8.5 Histogram equalization

The principle of histogram equalization is described above. The histogram equalization algorithm

in SAOimage di�ers from common one-pass algorithms by accounting for disproportionately large

occurrences of one or a few image values. In an image with 1000 pixels, 500 of which have the value

32, a one-pass algorithm, given 100 colors, will try to get 10 pixels for each color. It will end up

with 49 unused colors, since one color covered 500 pixels. SAOimage's algorithm detects the peak

(or peaks) in the histogram and allocates the remaining 99 colors among the 500 remaining pixels

(5 pixels per color).

3.8.6 Image scaling by IRAF

Images sent directly by IRAF are already scaled to the range 1-200. IRAF 's own scaling defaults

to a windowed linear scaling where the window is determined by �tting a straight line to a small,

200 pixel, subsampled histogram. Further rescaling within SAOimage is not very useful (see the

IRAF section).

4 Blinking between di�erent stored display images

The display, as it currently appears in the main display window, can be stored by your workstation's

display server by clicking on the blink button in the Scale submenu. Three separate images can be

saved, each one associated with a di�erent mouse button. Each saved display is associated with the

same mouse button used to click on the blink button, and replaces any previous image associated

with that mouse button. The saved display image can be redisplayed when in Scale mode, by

pressing its mouse button while the mouse pointer is in the display window. (This mechanism is

admittedly not intuitive. Suggestions from any human-factors types are welcome.)

Because the blink image is saved at the display server end of the X window system, it can be

redisplayed much more quickly than the normal image drawing used by SAOimage. You will see

the di�erence when you release the blink button. To blink between saved images, press down on

another mouse button, before releasing the earlier button.

The blinked image uses the existing color mapping. The colors are not restored to any previous

setting. Therefore, one should keep the same color map settings when choosing displays for blinking,

or manipulate the color map to �nd a setting which works for all of the blinking images.

Saved display images may all be of the current image, or, more likely, may be made from

di�erent, successively loaded images. The saved image can only be used for blinking. Displaying

14 5 Color under the X window system on color workstations

a saved image does not re-enable any other SAOimage functioning for that image. To be able to

use the other functions on an image which is not the most recently read image, the image must be

reloaded from its �le (or IRAF).

All saved displays must match the current display window dimensions. SAOimage unsaves all

saved displays when the display window is resized.

Not all X servers are guaranteed to support display saving (called pixmaps). SAOimage will

attempt to fall back on using image bu�ers within SAOimage for saving image displays. Problems

may occur when the user tries to mix halftone and color pixmaps. (Some early X server implemen-

tations were known to perform the pixmap storage one pixel at a time in 20+ minutes or simply

crash. Hopefully things have matured since those days.)

5 Color under the X window system on color workstations

Most color workstations use an 8-bit color map, making it possible to choose a palette of 256 colors

and to map each pixel on the screen to one of the 256 possible colors. Each of the 256 colors in the

palette can be any color speci�ed by its red, green, and blue intensities. By contrast, early IBM

PC's commonly o�er palettes of 4 or 16 colors selected from a restricted group of colors. At the

other extreme, 24 bit displays allow each pixel to be mapped directly to virtually any color, de�ned

by its red, green, and blue intensities (using 8 bits for each).

X11 uses a color reservation system by which each application reserves a portion of the palette

for its own use. Color reservation prevents an application from changing the colors of other appli-

cations present on the screen. Typically, SAOimage will be able to reserve as many as 240 color

entries in the palette. However, if you (or your window manager) have tailored your X environment

by specifying a variety of unusual colors for terminal windows, the clock, and other commonly used

applications, there will be fewer unreserved colors in the palette. Conversely, if you are running

an SAOimage which has reserved all of the available colors, you may be unable to bring up a new

application which expects to be able to grab new colors of its own. A color in the palette is often

referred to as a color cell (referring to its reservation) or color level (referring to its index between

0 and 255).

SAOimage uses color cells for more than just rendering the image. The adjustable cursor and

the region cursors must also be referenced to colors in the color palette. When the cursor is drawn,

pixels in the display are set to the value of the cursor color, overwriting the original image data.

If no special care was taken, the image would gradually be erased as the cursor was moved about

the display. To avoid this problem, SAOimage uses either of two strategies for tracking the cursor

while it is in motion.

With one strategy, while the cursor is moving, or being adjusted, the bits in the displayed image

are simply reversed to represent the cursor, and
ipped back when the cursor moves away. This

doesn't draw the cursor in its correct color, but, in most cases, it produces a visible cursor. When

the cursor adjustment ends (the mouse button is released), the entire image is redrawn with the

cursor in its new position. This same strategy is used to track the cursor on halftone displays.

The other strategy actually reserves half of the colors just for drawing the cursor. In this

alternative strategy, each image color level has a corresponding level in the palette which has the

cursor color. The image color levels di�er from those of the cursor by one bit, which can be set and

5.1 Color mapping 15

unset to represent either the cursor or the image. Drawing the cursor simply involves manipulating

the distinguishing bit in display memory. In this mode, cursor can be tracked smoothly in its

correct color without erasing the image data. This system is analogous to reserving planes of

display memory to be treated as overlay planes and image planes (X does not as yet recognize true

hardware overlay planes). The advantage of the plane reservation strategy is that cursor tracking

is visually
awless. The disadvantage is that fewer than half of the color levels are available for

rendering the image. Fortunately, it is easy to switch between the two modes (using the ovlay

button), so one can choose whichever coloring strategy is most appropriate for the current activity.

5.1 Color mapping

In order to maximize the use of the available colors, SAOimage o�ers several facilities for assigning

and altering colors in the palette. The association of a palette level with an image data value

is handled by scaling and is explained in a separate section. There are basically three ways of

assigning colors in the palette: true color, gray-scale, and pseudocolor. SAOimage supports the

last. SAOimage also supports half-toning on non-color workstations and by selecting the mono

button in the color submenu (see section 6.9).

In true color, each image data value has associated with it an actual color. True color mapping

tries to associate colors, as near as possible to the true color, with each pixel in the image display.

This is di�cult where there are few colors in the palette. There is no support in SAOimage for

true-color mapping.

In gray-scale, all pixels have the same color, but di�er in intensity. Basically, the colors range

from black to white, with shades of gray in between. It could also be done with some other color

such as shades of red. The lowest data values appear black while the highest appear white (or visa-

versa). The image appears as a black-and-white photograph might render it. SAOimage simulates

this on pseudo-color displays but does not support X terminals with actual gray-scale displays.

In pseudo-color, any color can be assigned to any level, but all pixels with the same value will

have the same color. Typically, one might use an analogy with heat, mapping the low values as

shades of blue, the middle values in shades of red and the highest values as yellow or white. The

idea is to use the colors to highlight di�erences among the data values. Depending on the levels

which best distinguish the detail you wish to study, the shifts from blue to red and red to yellow can

be placed at higher or lower image data values and closer together or farther apart. The changes

in color can be made gradual or sharp.

Color maps may simply be a list of colors for each level, or may be created by specifying a few

colors and levels and interpolating to assign colors for the in-between levels. SAOimage uses the

latter. If one were to graph the color map, having intensity of color on one axis and palette level

on the other, the graph would have �xed points with ramps or steps between them. The simplest

gray-scale has no intensity for any color at one end of the palette and full intensity for all colors at

the other end of the palette, with a straight line representing the interpolated colors in between.

The color graph is in fact physically drawn by SAOimage in a separate window, and can be directly

manipulated.

SAOimage has a basic gray-scale and several pseudo-color maps available in the cmap page

of the Color submenu. Once you have selected a color map, you may choose to manipulate it, as

described below. Reselecting the same color map, or selecting a new color map from cmap submenu,

16 5 Color under the X window system on color workstations

sets the selected color map, eliminating any adjustments you may have made.

5.2 Color manipulation

The color graph window is normally not displayed. It is summoned (and hidden again) by clicking

the mouse on the color bar next to the display window. In the graph, each color is graphed

separately, with little squares to represent the �xed control points in the graph. Where two or

more color lines overlap, the line (or box) appears black. One may create a new �xed point by

positioning the mouse icon in the graph and pressing a mouse button. The three mouse buttons

control red, green, and blue, respectively from left to right. By holding the mouse button (or

buttons) down, the �xed point can be dragged anywhere on the graph. An existing �xed point can

be grabbed for dragging by positioning the mouse icon over it when pressing the button.

The graph can be adjusted, en mass, by moving the mouse in the main display window with

a mouse button depressed. There are two di�erent kinds of adjustment, threshold/saturation and

contrast/bias, and an intensity adjustment called gamma.

With threshold/saturation, moving the mouse horizontally moves the lower (threshold) end of

the graph up or down, while moving the mouse vertically moves the upper (saturation) end of the

graph up and down relative to the palette. With contrast/bias, moving the mouse along the axis

of the color bar shifts the entire graph up or down (bias) relative to the palette, while moving the

mouse perpendicular to the color bar moves the ends of the graph closer together or farther apart

about a middle position (contrast). Threshold/saturation is easy to implement and common in older

pseudo-color display systems. Contrast/bias corresponds more closely to the kinds of adjustments

familiar to photographers. In both cases, the middle of the display window is the default graph

position relative to the palette.

5.3 Gamma correction

The intensities of the colors are normally given relative to voltage applied to the color guns in the

monitor. Half intensity is half of full voltage. Unfortunately, this does not really correspond to the

sensitivity of the eye. Double the voltage does not seem like doubling the intensity. Half voltage

on a gray-scale does not seem like a middle gray. The gray-scale seems to favor the darker shades.

The relationship between voltage and perception is generally thought to be an exponential one and

is represented by the symbol
 (small gamma).

Changing the gamma produces a non-linear (exponential) adjustment in contrast. A gamma

of between 2 and 2.2 is considered correct for a typical monitor. You can play with the gamma

adjustment by selecting the gamma mode in the Color submenu. Moving the mouse horizontally in

the main display window with a mouse button down adjusts the gamma. The gamma values for

each color are printed beside the color graph. Gamma of 1 (linear) is in the middle of the main

window. The intensity adjustment is applied directly to the palette colors and does not a�ect the

points used to map the colors. Gamma values below 1 may be useful for sharpening the contrast

before making a hard copy (see section 11). You can drag beyond the main window for gamma

values outside the normal range.

Normally, all adjustments are applied equally to each of the three colors. However, the adjust-

ments can be applied to any one or two of the colors by holding down the Control key. Then the

5.4 Updating the graph and gamma display 17

three mouse buttons control red, green, and blue, respectively, as in the graph window.

The invert button in the Color submenu inverts the intensities (minimum intensity becomes

maximum intensity) without changing the graph points.

5.4 Updating the graph and gamma display

Drawing the graph and printing the gamma values takes up computing time and may slow the

response to your movement of the mouse. Therefore, while the colors are always continuously

updated, updating of the graph occurs only when you �nish (release the mouse button), unless you

speci�cally request it. The track button in the etc submenu, controls whether the color graph is

updated continuously or only upon completion of the manipulation. Tracking may be temporarily

activated (or deactivated) by pressing a Shift key on the keyboard or toggling the CapsLock key.

5.5 Saving color map entries and reading them back in

The current colormap can be written to a disk �le, and a previously saved colormap can be read

from a disk �le. The format of the disk �le is ASCII and can be edited if the format is followed.

The �le can have comments on any line, starting with a # symbol. The �rst non-comment word in

the �le must be PSEUDOCOLOR. Each color's table is de�ned separately. Each color's table begins

with the color name RED, GREEN, or BLUE. The color name may optionally be followed by the word

GAMMA, then followed by a gamma value for that color. The vertex points in the table are de�ned by

pairs: (level, intensity). The intensities range from 0:0 (minimum) to 1:0 (maximum). The

levels range from 0:0 (lowest level) to 1:0 (highest level). The points must be in ascending order

by level. All three colors must be described, and each color must have at least 2 points.

When a color map is being manipulated, the e�ective levels of points may be shifted or stretched

above 1:0 or below 0:0. These points are preserved in the disk �le, and when read in, they may be

shifted back into the visible range. The novice user should remember that if one starts with the A

colormap, shifts it, and then writes it out, the stored colormap is the shifted map, not the original

A map.

6 Graphics cursors and cursor mode in SAOimage

SAOimage provides a variety of \software" cursors to identify or delineate areas of the image. These

are not to be confused with the workstation's mouse cursor (the icon which moves as you move the

physical mouse on the mouse-pad or desk top). The software cursors are selected and manipulated

while in Cursor mode, which is activated by selecting the Cursor button in the main button menu.

In this section, software cursors will be referred to as cursors and the mouse cursor (also called

the pointer) will be called the mouse. Special cursor interactions which work in conjunction with

IRAF are discussed in the section on IRAF.

There are seven basic cursor shapes: point, polygon, rectangular box, circle, ellipse, arrow, and

text. The cursor type is selectable by the corresponding button in the cursor button submenu

(see section 2). The box, circle, and ellipse cursor types can be used to make annuli of concentric

equivalent cursors.

18 6 Graphics cursors and cursor mode in SAOimage

Only one active cursor can exist at any given time. However, cursors can be stored, written

to disk, and recalled using the region features (see section 7). The cursor is always displayed, even

when it is not active (not in Cursor mode). Since the active point cursor has no visible component,

select it when you do not wish to have a cursor visible in your display.

When a cursor is selected, its position, size, and orientation are manipulated by using the mouse

(see section 9). As a general rule, the left mouse button controls the position of the cursor, the

middle mouse button controls the shape or size of the cursor, and the right mouse button controls

the angular orientation of the cursor (if it has one). You may either click or drag the mouse.

Positions, dimensions, and angles (where applicable) are shared among the latter three cursors.

The point and polygon cursors pose special cases to the rule; read about them separately, below.

The text and arrow cursors are described separately, at the end.

When SAOimage is in its -verbose mode (see section 1), the cursor's coordinates and di-

mensions are printed to the parent process's terminal window, each time a cursor manipulation is

completed.

6.1 Positioning

To position the cursor by clicking, move the mouse to the pixel where you want to center the

cursor and then click the left mouse button. To position the cursor by dragging, press and continue

holding down the left mouse button while moving the mouse. When the cursor is positioned where

you want it to be, release the left mouse button. Note that you can use the magni�er tracking

feature to aid in positioning the cursor and you can use the keyboard arrow keys to aid in �ne

positioning the mouse (see sections 10 and 9).

6.2 Sizing

To adjust the size or shape of the cursor, the same clicking or dragging procedure is used with the

middle mouse button to position the cursor's edge while its center stays �xed. When sizing the

box or ellipse, certain restrictions apply, depending on the position of the mouse when you �rst

press the middle mouse button. If you are near to a line through the center and one corner of the

box, you will be controlling the location of the corners of the box (adjusting both dimensions). If

you are not near one of the diagonals, you will control only the width or height, depending on the

side to which the mouse is closest. The ellipse is adjusted by controlling an imaginary box which

encloses the ellipse. When adjusting the size of a cursor annulus, since the ratio of width to height

is �xed, the mouse controls the actual edge of the cursor, regardless of its type.

6.3 Rotation angle

The right mouse button is used to control the rotation angle of boxes and ellipses. When the right

mouse button is pressed or held down, the angle is determined by a line from the center of the

cursor to the mouse. The initial angle (0 degrees) points toward the top of the screen. To reset

the angle to 0 degrees, click on the ortho button (0 degrees) in the Cursor submenu. For the circle

cursor, the right button has no function, while for points and polygons it performs a special delete

function (see below).

6.4 Point cursor 19

6.4 Point cursor

The point cursor is used to
ag particular image pixels or coordinate points. Its position is de�ned

as that of the mouse. No active cursor is drawn. The mouse buttons are mapped directly to region

functions (see section 7). The left mouse button stores a point include region (to
ag a pixel or

coordinate of interest). The middle mouse button stores a point exclude region (to
ag a bad pixel).

With the mouse positioned to point at the �rst character in the label of a saved point, pressing the

right mouse button deletes that saved point.

Saved points are represented by a label giving either its pixel coordinates or an index number.

By default, the label is stenciled over the image. However, if the label is too hard to read, the

background around the label can be made solid by selecting the appropriate command line option.

The point is at the left edge of the point label, and on a line with the bottom of the characters

(not at the lowest edge of the background). When making hard copies, SAOimage always �lls in

the label backgrounds (see section 11).

6.5 Polygon cursor

A polygon is de�ned by straight lines connecting a set of vertices. For the active polygon cursor,

each vertex is represented by a tiny box. To add additional vertex points, drag or click with the

middle mouse button. The next vertex is always added to the side nearest the mouse pointer

when the middle button is depressed. To move an existing vertex, point the mouse directly at it

when depressing the middle mouse button. To delete an unwanted vertex, point the mouse at the

unwanted vertex and click the right mouse button.

The entire polygon can be be moved at any time by using the left mouse button. When the

left button is depressed, the polygon is moved such that the nearest vertex has the same position

as the mouse pointer.

Clicking on any cursor type submenu button, including the polygon, causes the polygon to be

reduced back to a single point. In other words, if you switch cursor types, you cannot return to

the polygon which you had been constructing, unless you saved it as a region.

6.6 Cursor annuli

Annuli of box, circle, and ellipse cursors are available by selecting the annuli button (concentric box

icon) from the cursor submenu. Set the cursor to the desired shape and angle before selecting the

annuli feature, as these cannot be changed once the annuli feature has been selected. (The annuli

selection changes the functioning of the middle mouse button and disables any angle control.)

Annuli are sized by clicking or dragging with the middle mouse button. The center, angle,

and width to height ratio remain unchanged while sizing. When the middle mouse button is �rst

depressed, three possible events may occur, enabling the user to 1) create an annulus with an

arbitrary radius, 2) create annuli with �xed radius increments, or 3) change the size of an existing

annulus.

1. If the mouse is between existing annuli or not too far from an existing annulus, a new annulus

will be created sized by the mouse position.

20 6 Graphics cursors and cursor mode in SAOimage

2. If the mouse is well outside the existing cursor annuli, a new cursor is create which radius

is initially incremented from the outer annulus by the same increment as that between the

outer two annuli (or the annulus and the center if there is only one annulus). A comparable

situation applies when the mouse is well inside the innermost annulus. However, once the

annulus is created, if you proceed to drag the mouse with the middle mouse button down,

the size of the new annulus reverts to being controlled by the mouse.

3. If the mouse is pointing at the edge of an existing annulus, that annulus will be grabbed for

sizing.

To delete an unwanted annulus, point the mouse at or near the unwanted annulus and click

the right mouse button. The innermost or outermost annulus can be deleted simply by clicking the

right mouse button while the mouse is inside or outside all of the annuli.

All of the annuli are forgotten when any cursor submenu button is selected, or reselected. The

annuli button itself toggles between on and o�.

6.7 Arrow cursor

The arrow cursor consists of three line segments forming the shaft and head of the arrow. The left

button positions the entire arrow (from its tip). The middle and right buttons move the tail end of

the arrow shaft, while the tip stays �xed. Typically, one will place the head by an object of interest

and then adjust the tail for a desired length and angle. Although the length of the tail adjusts to

changes in image magni�cation, the size of the head has a �xed screen dimension.

6.8 Text cursor

The text cursor allows you to put text strings on the image using the cursor mechanisms. The text

string is fully editable, using the same line editor as used for command input (see the list of editor

commands at the end of section 10). The current editor position is marked by an under-bar cursor.

As with other cursors, the text cursor can be moved with the left mouse button. The middle and

right buttons have no e�ect. The position of the text cursor is at its lower-left corner. The size of

the text font does not change with changes in image magni�cation.

To save the string, as a region, use the Return key (include color) or the LineFeed key (exclude

color). The include text string is drawn with a black background, while the exclude text string is

always drawn with a white background. For hard copy, this allows you to choose white-on-black or

black-on-white (see section 11).

6.9 Cursor color

Tracking a cursor means updating the displayed cursor as its shape, size, or location is being

manipulated, enabling the user to see the e�ect of the manipulation. Tracking a visible cursor

across the display poses a special problem; how to quickly draw and undraw the cursor as it moves,

without wiping out the image underneath. SAOimage uses two alternative mechanisms to do this.

On halftone workstations, the tracking cursor is drawn simply as the opposite color (exclusive

or) of the image. Black pixels appear white and white pixels appear black as the cursor tracks

21

across them. When the tracking action is completed (when the mouse button is released), the

entire display is redrawn, along with the new cursor.

The same mechanism, as that used on halftone systems, is used on color workstations when a

large number (more than 100) of display color levels is needed. During tracking, the inverse of the

display pixels may not result in very noticeable colors, but at least the shimmering of the display,

as the cursor moves, makes it possible to see where the cursor is.

When many cursor manipulations are to be performed, a better alternative is available. One

bit in each color value is reserved for the cursor. Then the cursor may be drawn and undrawn

without a�ecting the display. This results in a smooth, continuous display of the cursor throughout

any tracking interaction, with no need to redraw the image at the completion of the action. The

disadvantage is that the number of available colors for the image is cut by a factor of two (plus

two more colors for the saved regions and other overlay graphics). (Note: Some versions of Sun's

OpenWindows do not correctly undraw the text cursor in this mode.)

On color workstations, one may switch freely between the overlay and non-overlay modes by

using the ovlay toggle button in the Color submenu. See section 5 for more details.

7 SAOimage cursor regions

A region is a cursor which has been stored. SAOimage cursors can be stored, recalled, written to

disk, and read from disk using the region features. Region controls work only when SAOimage is

in cursor mode. Regions were designed for use with SAO's PROS/IRAF image analysis software,

but they can be generally useful.

There are two classes of regions; include and exclude. When used by the PROS software, an

include region indicates an area of interest for analysis (e.g. for counts within a region). An exclude

region indicates areas or pixels to be excluded from analysis (e.g. bad pixels or areas a�ected by

other phenomena such as an adjacent source).

7.1 Saving and unsaving

To save the current cursor as a region, type the `S' key for an include region or the `E' key for an

exclude region. To unsave the most recently saved region, type the `Delete' key. To unsave an

arbitrary region, place the mouse within that region and type the `D' key. If the mouse is within

two regions when the `D' key is typed, the smaller region is deleted. Exceptions to these rules apply

to the point or text cursor types.

When a point cursor is the active cursor, the three mouse keys are mapped to perform the

same functions as the `S' key (left mouse button), the `E' key (middle mouse button) and the `D'

key (right mouse button). Only point regions can be deleted with the right mouse button. For

purposes of deleting, the area of a point region is de�ned to be the area of the �rst character of its

label.

When a text cursor is the active cursor, the `S', `E', and `Delete' keys have the above functions

only when the mouse is outside of the main display window. With the mouse inside the main display

window, all keys are used for text entry and editing. Pressing the `Return' key saves the text string

as an include region, while pressing the `LineFeed' key saves the text string as an exclude region.

22 7 SAOimage cursor regions

In either of these cases, the cursor position is advanced for starting a new line of text. See below

for special coloring di�erences which also apply to text regions.

Saved regions are normally drawn and labeled. On color workstations, include regions are

drawn in yellow, while exclude regions are drawn in red. The label usually has three parts: the

coordinates of the center, a line from the center to the edge along the region's positive Y axis, and

the length of the radius along that line. The radius is followed by a `+' for include regions or a `-'

to indicate an exlude region. Only the center coordinate is given for a point (followed by a `+' or

`-'). The point is at the left edge of the label and on a line along the bottom of the label characters.

Polygons have no labels.

The text region also has a background. For the include, this background is black, while for the

exclude, the background is white. When making a hardcopy, the include text region is drawn white

on black, while the exclude text region is drawn black on white.

7.2 Menu controls

In the Cursor submenu, the region button toggles between the cursor control page and the region

submenu page.

In the region submenu page, the label button suppresses labeling of the regions. The view

button completely suppresses display of the regions. These buttons are both toggle buttons which

are turned on or o� when pressed.

The cycle button makes the cursor an exact copy of a region (recalling the cursor). The center

of that region and its sequence number are displayed in the magni�er window. Repeatedly pressing

cycle, copies each region in turn (cycles through the regions). The cycled cursor is a normal cursor

and can be manipulated. The copied region is una�ected by cycle. However, the just copied region

can be deleted by pressing the omit button. The omit button only works if the cursor has just been

cycled to that region. Once you alter the cursor, omit is disabled. To adjust a region, cycle the

cursor to that region, omit the original region, adjust the cursor, and then save the cursor as a new

region.

The reset button clears the memory of all regions (deletes all regions).

The read and write buttons read and write ASCII descriptions of regions to or from a disk �le.

7.3 Regions as ASCII disk �les

After saving one or more regions, the stored regions can be written to a disk �le. Normally the

regions are written in a format which can be parsed by the PROS/IRAF software. If SAOimage

is in -imtool mode, it mimics IRAF 's imtool output, which is simply a list of coordinates for the

centers of cursors. Either type of �le can be read at any time, regardless of the mode.

A PROS region consists of a leading space (include) or `-' sign (exclude) followed by the name

of the region type, its center coordinates in �le pixels, and then its radius on its X axis, its radius

on its Y axis, and its angle in degrees (counter clockwise from straight up as per astronomical

convention). Some regions don't have angles (or the angle 0 is not given), circles have only 1

radius, and points have no radii. Polygons are represented by pairs of coordinates (X,Y,X,Y,...).

Arrows and text are also saved, but appear as comments. While SAOimage can read these back

7.3 Regions as ASCII disk �les 23

in, they will not confuse other programs which are interested only in the spatial regions. See the

PROS region documentation for a full explanation.

images/m51.fits

Mon Jan 16 16:09:43 1989

shape x, y, [x dimension, y dimension], [angle]

BOX(135.67,213.00,18.00,10.67)

BOX(504.00,538.00,16.96,106.53,290.714)

CIRCLE(129.00,306.67,9.89)

-ELLIPSE(486.00,468.00,36.53,44.08,329.036)

-POINT(83.00,349.00)

POLYGON(131.00,245.00,120.67,280.33,165.00,245.00,140.00,234.67)

Annuli of boxes and ellipses are not supported basic PROS region types. They are implemented

as logical combinations of the basic PROS types.

BOX(149.67,205.00,10.00,4.00)

BOX(149.67,205.00,20.00,8.00) & !BOX(149.67,205.00,10.00,4.00)

BOX(149.67,205.00,30.00,12.00) & !BOX(149.67,205.00,20.00,8.00)

The above example de�nes a center area surrounded by two concentric rings.

When write is pressed, a popup window appears to prompt the user for the �lename. The

window may be initialized to a default, or the previously given �lename. To select a di�erent name,

edit the name in the window (see section 10). If the named �le already exists, another popup

window appears with the options to overwrite the existing �le (`o'), append to the existing �le

(`a'), or quit without writing anything (`q').

PROS format �les which were previously written can be read back in. Press the read button

and give the name of the �le. Reading does not support the full PROS region syntax (i.e. PIE

slices are not supported), but much of the syntax is supported, including any syntax used by the

write. Regions read from disk are added to any regions already stored.

The output as an imtool list, equivalent to the �rst example, would look like the following:

images/m51.fits

Fri Jan 20 13:35:36 1989

(x, y)

136 213

504 538

129 307

486 468

83 349

131 245

149 205

If your environment has been properly initialized as for an IRAF imtool user, the default list output

�lename will follow standard IRAF conventions. When read by SAOimage, the list coordinates are

all read as exclude points.

24 9 Using the mouse in SAOimage

8 Image panning and zooming in SAOimage

The loaded image may be panned and/or zoomed for its display in the central display window.

Panning and zooming are interactively controlled by clicking or dragging the mouse in the pan

window. The pan window is the small image window at the top of the desktop, next to the

magni�er.

The pan window shows the entire area of the loaded image. (By default the image in the

pan window was reduced by taking the maximum value in each block of the original image, but

averaging, summing, or subsampling may be used instead|see section 1). A box cursor in the pan

window shows the area of the image currently being displayed in the main display window. This

box can be moved and sized just like the regular box cursor (but without angular rotation control).

The left mouse button controls the location of the center of the box (the display image). The

middle button controls the edge of the box, for the given center, thus determining its size. The size

of the box is restricted to integer zoom factors. (The actual algorithm choses the smallest zoom

that still includes the mouse pointer's position.) With a three button mouse, one can switch from

one type of control to the other, by holding the �rst button down, until after the second button has

been pressed. The interaction can be cancelled by dragging the pointer outside of the pan window's

borders. Only after the last button is released is the main display redrawn, with the indicated pan

and zoom.

When the mouse is in the pan window, the area under the mouse pointer can be magni�ed in

the magni�er by pressing or holding the shift key on the keyboard. The T key table also works with

the pointer in the pan window (see section 10). As anywhere else, the arrow keys can be used for

�ne positioning.

In pan mode, the same types of interactions as those used in the pan window can be performed

in the main display window. Clicking or dragging with the left button controls the center of the

display. Clicking or dragging with the middle button determines the zoom factor. The box cursor

in the pan window tracks these manipulations as the mouse is dragged in the display window, just

as it does when it is being directly manipulated in the pan window.

The pan submenu allows a more basic method of changing the zoom (e.g. x4 or x1/2). The

center button centers the display on the image and the zoom 1 sets it to one display pixel per image

pixel.

9 Using the mouse in SAOimage

As with most interactive workstation programs, SAOimage uses the mouse and its buttons for

many of its interactions. To take full advantage of SAOimage's features, the user must understand

how to use the mouse. There are three basic types of mouse interactions: moving, clicking, and

dragging. Moving means moving the mouse while keeping it
at on its mouse pad or desk surface.

Clicking means pressing one of the buttons on the mouse and then releasing it. Dragging means

holding one or more of the mouse's buttons down while moving the mouse. Rotating the mouse is

not a meaningful action.

The mouse is represented on the screen by an icon, a simple symbol about a half centimeter

on a side, which moves on the screen as you move the mouse on your table. The box with buttons

9.1 Tracking 25

which you hold in your hand and the icon on the screen are interchangeably (or in concert) referred

to as the mouse. In X11 literature, the mouse is commonly referred to as the pointer. The mouse

occupies a window or object when its icon on the screen is within the borders of that window or

object.

Within SAOimage, the mouse interaction (as well as the keyboard interaction) is generally

governed by the mode of the main menu (see section 2) and the window or object which the mouse

occupies. This means that the response to actions taken with the mouse in one window may

di�er from the response when the mouse is in a di�erent window. The window associated with a

particular mouse interaction is called its focus. In some cases, it may be possible to continue a

dragging action beyond the edge of a window without shifting the focus to another window.

Some window managers require the user to click on an application's window before that ap-

plication can receive any events. This is called click-to-focus. Commonly, this initial click is also

passed to the application as an event. Since you may not have intended anything more than to set

the focus, remember to do your click-to-focus in the inactive, upper-left, region of SAOimage's main

window, or better yet, change the window manager's click-to-focus behavior to focus-follows-mouse.

The mouse icon has a point (called the hot spot) which is used to determine its screen coordi-

nates. This point is usually in the center of the icon or at a corner. The shape of the icon should

make it easy to guess where the hot spot is. The mouse location (or where the mouse is pointing)

refers to the hot spot. Often dragging is initiated by pointing the mouse at a particular object (i.e.

the vertex of a graph or polygon) as the appropriate mouse button is pressed, and then dragging

that object while continuing to hold the mouse button down.

For machines with a two-button mouse (e.g. IBM PS/2) the middle button is indicated by

holding both buttons down at the same time. On those machines, the initial response to a mouse

button has a noticeable delay to smooth over di�erences in depression time of the two buttons,

should a two-button event be intended. On machines with a three-button mouse, some interactions

may be performed while dragging with more than one mouse button down at the same time. In the

color graph, for example, where each mouse button corresponds to one of the three display colors

(red, green, blue), one can manipulate all three color simultaneously by dragging a vertex while

holding all three buttons down.

Some actions perform a complete response only after the last mouse button is released. For

example, in the pan window, you may manipulate both the magni�cation and the center of the

main display window (zoom and pan). The main display window is not actually redrawn until all

mouse buttons are released. The area that would appear in the main display window, if the mouse

buttons were released at that point, is represented by a box drawn in the pan window. With a

three-button mouse, you may switch directly from adjusting the zoom to adjusting the pan (or

visa-versa) by pressing the other mouse button down while still holding the former button down.

9.1 Tracking

Some interactions actually track the mouse. By this we mean that which is being controlled is

repeatedly updated as the mouse is moved, giving the impression of smooth, continuous change.

An example of this is moving a cursor with the mouse. As you move the mouse, the displayed cursor

moves across the screen. Another example is the magni�er window. As you move the mouse, the

view in the magni�er shifts (or pans), as if watching moving scenery.

26 10 SAOimage keyboard input

While tracking is generally desirable, your workstation processor may not be fast enough to

make many repeated updates for the illusion of smooth continuous change. This is especially a

problem for complicated processes (e.g. redrawing the main display window or drawing several

elliptical annuli) or when many things are all tracking at the same time (e.g. changing the colors

while also updating the graph which represents the color map). When this happens, the e�ect of

moving the mouse may lag annoyingly behind the actual movement of the mouse.

Recognizing that some processors are slower than others, SAOimage allows some tracking ac-

tions to be enabled or disabled. The magni�er window can track the mouse as it moves across the

main display or pan windows. The color table graph can track changes to the color map as they

are controlled either in the main display window or directly on the graph (see section 5). Both of

these tracking functions are enabled or disabled by the track button in the etc button submenu.

The track selection can be overridden (reversed) temporarily by pressing the Shift key or more

long term by toggling the CapsLock key. The running text display of the mouse coordinates and

the corresponding pixel value can be enabled or disabled by the coord button in the etc button

submenu. This is also overridden by the Shift and CapsLock keys.

9.2 Fine movement

SAOimage uses the user's default mouse movement velocity settings. To move the mouse one pixel

at a time in any direction, use the keyboard arrow keys (see section 10). The arrow keys can be

used at any time in place of physically moving the mouse. Thus to perform a �ne movement while

dragging, hold the mouse steady with the mouse button (or buttons) depressed with one hand,

while pressing the appropriate arrow keys with the other hand. If you are not already tracking, you

may wish to hold the Shift key down as you do so, to better see the e�ect of the �ne movements.

10 SAOimage keyboard input

Many of the keys on the keyboard are mapped to perform useful functions. Striking the key results

in an immediate response. The response may be dependent on the window in which the mouse

cursor is positioned. Some responses are also dependent on the main menu mode (e.g. Cursor).

Both upper and lower case are mapped the same.

In addition to the instant action keys, the Control, Shift, and Meta (left and right) keys

change the response to mouse actions when held down while performing the mouse action.

Sometimes, SAOimage will ask for text or numeric input with a pop-up window. Input in this

situation is as one would expect and is una�ected by the mappings which are otherwise in e�ect.

The cursor read-back mode of IRAF also overrides many keyboard functions.

10.1 Key commands

Up Arrow, Down Arrow, Left Arrow, Right Arrow: The four arrow keys can be used to move the

mouse cursor one screen pixel in the given direction. The mouse interaction is exactly as if

you moved the mouse by hand. This facilitates �ne positioning and works in all windows and

all modes.

10.2 Modi�er keys 27

R: (raise) Raise all SAOimage windows to the front of any other windows on the screen. The `A'

key also performs this function.

A: (refresh) Raise and redraw the display windows. This is equivalent to Ctrl-L in a character

terminal window.

N: (new) enter new command-line arguments. This brings up a popup window for text input.

Use the same switches and arguments as you would on the command line (see COMMAND

LINE). All of the command line arguments which a�ect selection and display of an image

can be used. Some con�guration arguments (e.g. -display, -geometry, and -gd) are not

e�ective at this time.

T: (table) When the mouse is in the main display window or the pan window, this prints a table of

the pixel values surrounding the current mouse position. The table is printed in the terminal

window from which SAOimage was called. If known, the original �le values are shown.

Otherwise, scaled approximations are used. (L has a seemingly similar e�ect but is useful

only for debugging purposes).

S: (save) When in cursor mode, and the mouse is in the display window, the current cursor is saved

as a region (of type include).

E: (exclude) When in cursor mode, and the mouse is in the display window, the current cursor is

saved as a region (of type exclude).

D: (delete) When in cursor mode, and the mouse is in the display window, the smallest region which

encloses the mouse is deleted. In the case of a point region, its area is de�ned as the area of

the �rst character of its label.

Delete: When in cursor mode, and the mouse is in the display window, the most recently saved

region is deleted.

10.2 Modi�er keys

For an explanation of mouse clicking and dragging, see section 9.

Shift: Holding the Shift key down toggles the track and coord tracking actions.

If no tracking was selected and the mouse is in either the main main display window or the

pan window, touching the Shift key will update the magni�er window to the current mouse

location. If the mouse is in the main display window, the coordinates and pixel value will

also appear in the upper right, above the buttons.

If you are in Color mode and dragging the mouse with a button down in either the main or

color graph window, the graph will be updated to the current state of the color table.

By contining to hold the Shift key down, tracking will continue to update as you move the

mouse.

If you were tracking before touching the Shift key, pressing the Shift key will suspend

tracking, enabling you to preserve the existing tracking displays while moving the mouse.

28 10 SAOimage keyboard input

CapsLock: Toggling to caps mode by using the CapsLock key has the same e�ect as holding the

Shift key down. When using this option, you may need to toggle it o� to make normal text

entry in the pop-up or a terminal window.

Control: When manipulating the color map in the main diplay window, holding the Control key

down, restricts the e�ect to only the color(s) corresponding to the mouse button(s) being

pressed (left=red, middle=green, right=blue).

Meta: The Meta keys have traditionally been used for window manager functioning. SAOimage

normally ignores keyboard and mouse input while a Meta key is held down.

10.3 Editable text input

When SAOimage needs string input, such as the name of a �le or new command line arguments, it

presents a pop-up window for you to type in. The line starts with a default already typed in. Many

keyboard editor keys are recognized, including the arrows. The popup window also recognizes many

Emacs style line edit commands. The input is taken when the user strikes the Return key.

Ctrl-A: Move text cursor to beginning of line

Ctrl-B: Move the text cursor back one character (backspace)

Ctrl-C: Abort the interaction and return to SAOimage

Ctrl-D: Delete the character under the text cursor

Ctrl-E: Move the text cursor to the end of the line

Ctrl-F: Move forward one space

Ctrl-G: Clear escape if just typed

Ctrl-K: Delete all characters from the text cursor to the end of the line

Ctrl-N: Recall next input line (clear input line if no next in bu�er)

Ctrl-P: Recall prior input line

Delete: Delete character before the text cursor

Esc-B: Move to beginning of previous word

Esc-D: Delete to end of next word

Esc-F: Move to end of next word

For numeric input, the typed input must be in acceptable integer or real (where allowed) format.

Multiple entries, when desired, must be separated by spaces, commas, or tabs. (The line is read

using scanf).

The above edit commands, with the exception of Ctrl-C, Ctrl-N, and Ctrl-P, also apply to

the text cursor.

29

11 Outputting an image to a laser printer

Clicking on the print button in the etc submenu dumps a hardcopy of the main display image to a

PostScript printer. The output image includes the central display window and the colorbar. Any

cursors showing in the display window are included in the output. This is a monochrome �le, not

color PostScript.

In order to get a hardcopy that looks something like what you have on the screen, it is best to use

the gray colormap. You should �nd a good scaling for the image and manipulate the contrast with

the gamma control. The output image will be dithered by the PostScript printer's own dithering

algorithm.

On color workstations, the image is read from the screen and includes any graphics which

may be showing. The image also includes the upper portion of SAOimage (the title area and two

auxiliary windows). By default, the buttons are not included, but they may be included by �rst

using the -lprbuttons switch on the command line.

Cursor and region graphics are colored, white of black, to contrast with the lowest image value's

color (the low end of the color bar). Saved text cursors are colored white-on-black or black-on-white

depending on whether they were saved as include and exclude regions.

When SAOimage is in its mono (halfone display) mode, an image of the display window, only, is

created and printed. This image is made directly from the internal data, using the current scaling

information, and does not include any cursor graphics. (It will include markings made with IRAF 's

tvmark task).

The output �le can be directed anywhere by setting the R_DISPOSE environment variable. The

R_DISPOSE string is a format statement for an sprintf which creates the UNIX command, where `%s'

will be replaced by the output �le's temporary �lename. The default is `lpr -Plw -r %s'. The -r

in the print statement deletes the PostScript �le after being printed. One could, for example, set

R_DISPOSE to `mv %s /tmp/foo.ps' to save the �le for later use.

If no R_DISPOSE environment variable is set, SAOimage looks for a PRINTER environment vari-

able. If one is set, the hardcopy will be sent to that printer. If no PRINTER variable is found, the

default destination is lw.

The PostScript �le is scaled to �ll an 8.5x11 inch page (regardless of the printer resolution).

To get a smaller image, centered on the page, see the comment included in the ASCII section at

top of the output �le.

Sending an image to a printer over serial lines at 9600 baud, as is common for some Apple

printers, will tie up the printer for about 12 minutes. Be considerate of other users who may wish

to use the printer.

While this is generally a su�cient and convenient form of hardcopy, the user may also wish to

try xwd or one of the other window dump facilities available for X11.

