
Enhanced Metafiles in Win32

Abstract

With the advent of the Microsoft® Win32™ Application
Programming Interface (API), a new metafile format called
enhanced metafiles has been introduced. The overall design goal
of the enhanced metafile was to describe a picture without any
coding restrictions and to make a metafile easier to use.
Enhanced metafiles have many advantages over the older
Windows metafiles found in Microsoft Windows™ version 3.1
(Win16). Improvements found in the enhanced metafile include an
expanded header, a description string, a metafile palette, and an
increase in the number and type of graphics device interface
(GDI) functions that may be recorded. In addition to these
enhancements, the metafile record and playback code in Win32
has been designed to remove all of the restrictions that applied to
Windows metafiles with respect to scaling, clipping, embedding,
and querying, among others. To top it off, enhanced metafiles
may be played on any device in a device-independent manner.
This article describes the differences between Windows metafiles
and enhanced metafiles. Sample code that illustrates the basic
concepts of creating and playing enhanced metafiles is provided
at the end of this article.

Introduction

The tried-and-true Microsoft® Windows™ metafile has been an
invaluable aid to the development of numerous drawing and
presentation applications for Windows. However, the "vanilla"
Windows metafile did not address issues related to scalability
and device independence. Left on their own, developers
attempted to address this issue in various ways. Some
developers embedded application, location, or scaling comments
in the metafiles. This resulted in extremely nonportable metafiles.
Others added headers to the metafile that provided various
application-specific information. The net result of most of these
efforts was, once again, nonportable metafiles. However, one of
these endeavorsplaceable metafilescaught on. Developed by
Aldus Corporation, placeable metafiles include a 22-byte header
that provides, among other things, mapping and measurement
information that can be used to scale the metafile.

The proliferation of the placeable metafile, other homegrown
formats, and the confusion of many developers regarding the use
of metafiles led to a demand for a metafile format that addressed
all of the development community's needs. Thus the Win32
enhanced metafile was born. Developed by Microsoft, the
enhanced metafile distinguishes itself from the Windows metafile
in that it is device-independent and much easier to use. Easier to
use? You bet! Remember having to code two paths to deal with
drawing? One code path drew to the screen; the second code
path drew to metafiles. The only way to get around this was to
use a subset of graphics device interface (GDI) functions that
used logical coordinates. Although this permitted limited scaling
capabilities, it restricted the use of many helpful GDI functions.

You definitely couldn't query the metafile device context (DC) for
information such as window origins and extents. With the advent
of the enhanced metafile, those restrictions are unnecessary! A
single code path is all that is required to draw to any DC,
whether it be a metafile, screen, or printer DC. Furthermore, you
no longer need to use a subset of GDI; for example, you can now
do the following:

DeleteObject(SelectObject(hdcMeta,
hbrOldBrush));

Yes, the old object versus TRUE or FALSE is returned by
SelectObject when used with a metafile DC. This was not
possible with Windows metafiles and is a good indication of the
potential for success of the enhanced metafile. Finally, in an
enhanced metafile, you can query the current position in the
client area.
But what about all of those Windows metafiles? There are
thousands of them in the marketplace. It would be a shame to
see them go to waste. With this in mind, Win32 functions were
written that convert Windows metafiles to enhanced metafiles.
However, enhanced metafiles cannot be used in Win16. Figure 1
illustrates the compatibility of the two metafile formats and
environments.

Figure 1. Metafile compatibility in the Win16 and Win32
environments
This article discusses the differences between the Windows
metafile and the enhanced metafile, the format of the enhanced
metafile, its features, and techniques for its use.

Windows Metafiles vs. Enhanced
Metafiles

A Windows metafile is used for applications written using the
Windows version 3.x application programming interface (API).
The format of a Windows metafile consists of a header and an
array of metafile records. Windows metafiles are limited in their
capabilities and should rarely be used in Win32-based
applications. That being said, the Windows metafile functions are
supported in Win32 to maintain backward compatibility with
applications that use the older Windows metafiles.

An enhanced metafile is used in applications written using the
Win32 API. (Win32s, however, does not implement enhanced
metafiles.) The enhanced format consists of a header, a table of
handles to GDI objects, a private palette, and an array of metafile
records. Enhanced metafiles provide true device independence.
You can think of the picture stored in an enhanced metafile as a
snapshot of the video display taken at a particular moment. This
snapshot maintains its dimensions no matter where it appears:
on a printer, a plotter, the desktop, or in the client area of any
Win32-based application.

Metafile Structure

At first glance, Windows metafiles and enhanced metafiles share
the same overall structure. They are an array of variable-length
structures called metafile records. The first records in the
metafile specify general information such as the resolution of the
device on which the picture was created, the dimensions of the
picture, and so on. The remaining records, which constitute the
bulk of any metafile, correspond to the GDI functions required to
draw the picture.
A closer inspection reveals a number of differences between
them, as shown in Figure 2. Unlike the Windows metafile, the
enhanced metafile has a different header and may include a
description string and an optional palette stored in a special
end-of-file record. The enhanced metafile also provides support
for additional types of records.

Figure 2. Structure of a Windows metafile and an
enhanced metafile

Enhanced metafile header

The major difference between the Windows metafile header and
the enhanced metafile header is that the Windows metafile
header contains only size and version information, whereas the
enhanced metafile header contains dimension and resolution
information, as well as size and version information. The
Windows metafile header has the following form:

typedef struct tagMETAHEADER {
 WORD mtType;
 WORD mtHeaderSize;
 WORD mtVersion;
 DWORD mtSize;
 WORD mtNoObjects;
 DWORD mtMaxRecord;
 WORD mtNoParameters;
} METAHEADER;

In contrast, notice the added dimension and resolution
information in the code for an enhanced metafile header below.
This information is used by the metafile playback functions to
achieve device independence:

typedef struct tagENHMETAHEADER
{
 DWORD iType; // Record type
EMR_HEADER.
 DWORD nSize; // Record size in
bytes. This may be greater
 // than the
sizeof(ENHMETAHEADER).
 RECTL rclBounds; //
Inclusive-inclusive bounds in device units.
 RECTL rclFrame; //
Inclusive-inclusive Picture Frame of

 // metafile in .01
mm units.
 DWORD dSignature; // Signature.
Must be ENHMETA_SIGNATURE.

 DWORD nVersion; // Version number.
 DWORD nBytes; // Size of the
metafile in bytes.
 DWORD nRecords; // Number of
records in the metafile.
 WORD nHandles; // Number of
handles in the handle table.
 // Handle index
zero is reserved.
 WORD sReserved; // Reserved. Must
be zero.
 DWORD nDescription; // Number of chars
in the unicode description string.
 // This is 0 if
there is no description string.

 DWORD offDescription; // Offset to the
metafile description record.
 // This is 0 if
there is no description string.
 DWORD nPalEntries; // Number of
entries in the metafile palette.
 SIZEL szlDevice; // Size of the
reference device in pixels.
 SIZEL szlMillimeters; // Size of the
reference device in millimeters.
} ENHMETAHEADER;

A good question at this point might be, "How much of the header
information in the enhanced metafile do I need to provide?" When
you call CreateEnhMetafile, you provide a long pointer to a
rectangle that specifies the picture frame, and you provide a DC
that serves as a reference. The members szlDevice and
szlMillimeters are derived from the reference DC. You can also
provide a long pointer to a string that describes the metafile.

rclFrame

The picture frame is stored in the metafile header structure
member rclFrame. When you create the metafile using
CreateEnhMetaFile, a pointer to a RECT structure (lpRect) is
among the parameters. It is this rectangle that specifies the
picture frame. The left and top members of the RECT structure
must be values less than the right and bottom members,
respectively. Points along the edges of the rectangle are included
in the picture. If lpRect is NULL, GDI computes the dimensions
of the smallest rectangle that surrounds the picture. The lpRect
parameter should be provided whenever possible.

nDescription and offDescription

Information regarding the description string is maintained in two
structure members of the metafile header, nDescription and
offDescription. This string is also specified when you create the
metafile using CreateEnhMetaFile. The lpDescription parameter
contains the address of the description string. When the metafile
is created, the length of the description string is stored in the
metafile header. When the metafile is closed, GDI writes the
string to the metafile and updates offDescription in the header.

nPalEntries

As palettes are created and selected into a metafile DC, GDI
accumulates the palette entries and places them in a "metafile
palette." This palette is located in the EMR_EOF record. An
application can store the palette in an enhanced metafile by
calling either the CreatePalette or SetPaletteEntries function
and the SelectPalette function before creating the picture.
nPalEntries is updated as the palette is collected in the metafile
palette.

Enhanced metafile records

The Windows metafile record and the enhanced metafile record
are similar in structure and size (see code below). However,
before breathing a sigh of relief, take a closer look at the record
structure. The size and type members are reversed. This could
be a potential pitfall when porting existing 16-bit Windows-based
applications to Win32. Take note that the array of parameters is
now an array of DWORD values to accommodate the 32-bit girth
of GDI.

typedef struct tagMETARECORD
 {
 DWORD rdSize; // Record size
in bytes
 WORD rdFunction; // Record type
META_XXX
 WORD rdParm[1]; // WORD array
of parameters
 } METARECORD;

typedef struct tagENHMETARECORD
{
 DWORD iType; // Record
type EMR_XXX
 DWORD nSize; // Record
size in bytes
 DWORD dParm[1]; // DWORD
Array of parameters
} ENHMETARECORD;

Several new metafile records have been added to an already
extensive list of records. Table 1 lists the records found in
enhanced metafile records with their corresponding iType values,

which can be found in WINGDI.H. Some of the records seem to
be similar, for example, EMR_EXTTEXTOUTA and
EMR_EXTTEXTOUTW. The A specifies that the text is based on
ANSI and the W indicates that it is based on UNICODE. Another
similar pair is EMR_POLYLINE and EMR_POLYLINE16. The 16
indicates that GDI has converted the points for PolyLine to 16
bits for the purpose of saving space in the metafile.

Table 1. Enhanced Metafile Records

Record Value Record
Value

EMR_ABORTPATH 68
EMR_POLYLINE 4
EMR_ANGLEARC 41
EMR_POLYLINE16 87
EMR_ARC 45
EMR_POLYLINETO 6
EMR_ARCTO 55
EMR_POLYLINETO16 89
EMR_BEGINPATH 59
EMR_POLYPOLYGON 8
EMR_BITBLT 76
EMR_POLYPOLYGON16 91
EMR_CHORD 46
EMR_POLYPOLYLINE 7
EMR_CLOSEFIGURE 61
EMR_POLYPOLYLINE16 90
EMR_CREATEBRUSHINDIRECT 39
EMR_POLYTEXTOUTA 96
EMR_CREATEDIBPATTERNBRUSHPT 94
EMR_POLYTEXTOUTW 97
EMR_CREATEMONOBRUSH 93
EMR_REALIZEPALETTE 52
EMR_CREATEPALETTE 49
EMR_RECTANGLE 43

EMR_CREATEPEN 38
EMR_RESIZEPALETTE 51
EMR_DELETEOBJECT 40
EMR_RESTOREDC 34
EMR_ELLIPSE 42
EMR_ROUNDRECT 44
EMR_ENDPATH 60
EMR_SAVEDC 33
EMR_EOF 14
EMR_SCALEVIEWPORTEXTEX 31
EMR_EXCLUDECLIPRECT 29
EMR_SCALEWINDOWEXTEX 32
EMR_EXTCREATEFONTINDIRECTW 82
EMR_SELECTCLIPPATH 67
EMR_EXTCREATEPEN 95
EMR_SELECTOBJECT 37
EMR_EXTFLOODFILL 53
EMR_SELECTPALETTE 48

EMR_EXTSELECTCLIPRGN 75
EMR_SETARCDIRECTION 57
EMR_EXTTEXTOUTA 83
EMR_SETBKCOLOR 25

EMR_EXTTEXTOUTW 84
EMR_SETBKMODE 18
EMR_FILLPATH 62
EMR_SETBRUSHORGEX 13
EMR_FILLRGN 71
EMR_SETCOLORADJUSTMENT 23
EMR_FLATTENPATH 65
EMR_SETDIBITSTODEVICE 80
EMR_FRAMERGN 72
EMR_SETMAPMODE 17
EMR_GDICOMMENT 70
EMR_SETMAPPERFLAGS 16
EMR_HEADER 1
EMR_SETMETARGN 28
EMR_INTERSECTCLIPRECT 30
EMR_SETMITERLIMIT 58
EMR_INVERTRGN 73
EMR_SETPALETTEENTRIES 50
EMR_LINETO 54
EMR_SETPIXELV 15
EMR_MASKBLT 78
EMR_SETPOLYFILLMODE 19
EMR_MODIFYWORLDTRANSFORM 36
EMR_SETROP2 20

EMR_MOVETOEX 27
EMR_SETSTRETCHBLTMODE 21
EMR_OFFSETCLIPRGN 26
EMR_SETTEXTALIGN 22
EMR_PAINTRGN 74
EMR_SETTEXTCOLOR 24
EMR_PIE 47
EMR_SETVIEWPORTEXTEX 11
EMR_PLGBLT 79
EMR_SETVIEWPORTORGEX 12
EMR_POLYBEZIER 2
EMR_SETWINDOWEXTEX 9
EMR_POLYBEZIER16 85
EMR_SETWINDOWORGEX 10
EMR_POLYBEZIERTO 5
EMR_SETWORLDTRANSFORM35
EMR_POLYBEZIERTO16 88
EMR_STRETCHBLT 77
EMR_POLYDRAW 56
EMR_STRETCHDIBITS 81
EMR_POLYDRAW16 92
EMR_STROKEANDFILLPATH 63

EMR_POLYGON 3
EMR_STROKEPATH 64
EMR_POLYGON16 86

EMR_WIDENPATH 66

Of the records listed in Table 1, two are present in every
enhanced metafile. The first record in any enhanced metafile is
the metafile header. The value of this record is EMR_HEADER
(1). The last record of an enhanced metafile is always the
end-of-file record. The value of this record is EMR_EOF (14).
In addition to the enhanced metafile header and metafile records,
two additional pieces of data may be found in an enhanced
metafile. The optional description string follows the enhanced
metafile header. An optional color palette, if it exists, is
contained in a special enhanced metafile record, the EMR_EOF
record. The EMR_EOF is present even when a palette is not
available.

Description string

Have you ever just wanted to know what was in a given metafile
without having to decipher a cryptic filename or play back the
entire metafile? The enhanced metafile provides an optional
description string that provides exactly this information. In
addition to a descriptive name, the string specifies the name of
the application that created the picture. The string must contain
a null character between the application name and the picture
name. It must terminate with two null characters; for example,
"ACME Inc.\0Rocket Skates\0\0", where \0 represents the null
character. If lpDescription is NULL, there is no corresponding
entry in the header of the enhanced metafile. If the description
string is present, it is found offDescription bytes from the
beginning of the ENHMETAHEADER structure. The array found at
that offset contains nDescription characters. A convenient way
to obtain the description string is to use the function
GetEnhMetaFileDescription.

Color palette

When a palette was required in a Windows metafile, you
recorded a CreatePalette, SelectPalette, and RealizePalette
sequence. When the Windows metafile was played back, the
palette was selected as a foreground palette. The realization of
the foreground palette typically resulted in odd screen behavior
as the other palettes went to the background. With the enhanced
metafiles, palette sequences may still be recorded, but they are
never selected and realized as foreground palettes when they are
subsequently played back. These palette functions serve only to
build the metafile palette. Enhanced metafiles place this optional
palette in the metafile end-of-file record (EMR_EOF). Although
the palette is optional, there are advantages to using it. One
palette may be generated and used for the duration of the
playback, thus avoiding the problems associated with foreground
and background palette changes. The optional palette also
makes it easier for a palette-oriented application to examine the
metafile colors and merge them with an existing palette. The
easiest way to get the palette is to call
GetEnhMetaFilePaletteEntries. However, you can locate the
palette yourself if you wish. First, determine whether there is a

palette. This is done by examining nPalEntries in the enhanced
metafile header or in the last record of the metafile, the EMR_EOF
 record (see code below).

typedef struct tagEMREOF
{
 EMR emr; // Base enhanced
metafile record.
 DWORD nPalEntries; // Number of
palette entries.
 DWORD offPalEntries; // Offset to the
palette entries.
 DWORD nSizeLast; // Same as
emr.nSize and must be the
 // last DWORD of
the record. The palette
 // entries, if
they exist, precede this field.
} EMREOF;

If this value is greater than zero, a palette is present. The
nSizeLast member of the EMR_EOF record indicates how many
bytes to seek back to find the beginning of the EMR_EOF record.
Seek forward from this point by offPalEntries and bingo! you
have a palette location. After having used either method to obtain
the palette, you can simply select the palette into the destination
DC, realize it, and then play back the metafile.

Device Independence

Achieving device independence was very difficult, if not
impossible, with Windows metafiles. The placeable variant of the
Windows metafile provided the best shot at this. The additional
header provided in the placeable metafile (see code below)
provided an opportunity for an application to render these
metafiles in a device-relative way.

typedef struct tagPLACEABLEMETAFILEHEADER {
 DWORD key;
 HANDLE hmf;
 RECT bbox;
 WORD inch;
 DWORD reserved;
 WORD checksum;
} PLACEABLEMETAFILEHEADER;

Device independence was typically achieved by setting the
mapping mode to anisotropic, setting the viewport extents to the
physical dimensions of the device, and finally setting the
windows extents to the product of the device's physical
dimensions (in inches) and the metafile units per inch (contained
in the inch member of the header structure). The biggest problem
with this approach was that variants of the placeable Windows
metafile began surfacing. Often the mapping mode and viewport
extents were included in the metafile as records. This
necessitated enumerating the metafile as a method of filtering

out undesirable records. Unfortunately, the bounding box and
metafile units per inch often did not match the environment being
set by the undesirable metafile records! This led to the situation
in which even the placeable metafiles were, once again,
application-specific.

Device independence is a key feature of enhanced metafiles. The
Microsoft Win32 Software Development Kit (SDK) for Windows
NT Programmer's Reference: Overviews states that "...when an
application creates a picture measuring 2 inches by 4 inches on
a VGA display and stores that picture in a metafile, it (the
picture) will maintain those original dimensions when it is printed
on a 300 dpi laser printer or copied over a network and displayed
in another application that is running on an 8514/A video
display." So, just how is this done? The key to achieving this
device independence is the use of a reference device context,
that is, the context of the device on which the picture was
created. When a metafile is created, information regarding the
reference DC is placed in the enhanced metafile header. More
specifically, GDI calls GetDeviceCaps and assigns the
HORZSIZE and VERTSIZE return values to szlMillimeters and
assigns the HORZRES and VERTRES return values to szlDevice
. The rclFrame member is assigned the bounding rectangle
specified in the lpRect parameter of CreateEnhMetaFile. If
lpRect is NULL, GDI determines the bounding rectangle and
assigns it to rclFrame. This information is sufficient to enable
the playback functions to provide device independence. When a
metafile is played back, the picture undergoes a series of
transformations that scale and translate the picture to the output
rectangle that was specified in the call to the PlayEnhMetaFile
or EnumEnhMetaFile playback functions. These
transformations rely on the dimensions of the picture frame (
rclFrame), the dimensions of the device upon which the metafile
was created (szlMillimeters and szlDevice), and the
world-to-page transform values currently set in the destination DC.

Compatibility

Although it is not recommended, Windows metafiles can be used
with Win32-based applications. Unfortunately, enhanced
metafiles cannot be used in Windows version 3.x. The Win32 API
provides these familiar-sounding functions that manipulate
Windows metafiles:

CloseMetaFile Closes a Windows metafile DC.
CopyMetaFile Copies a Windows metafile.
CreateMetaFile Creates a Windows metafile DC.
DeleteMetaFile Invalidates Windows metafile
handle.
EnumMetaFile Returns GDI calls within a
Windows metafile.
EnumMetaFileProc Processes metafile data.
GetMetaFile Creates a Windows metafile.
GetMetaFileBitsEx Copies Windows metafile bits to
a buffer.
PlayMetaFile Plays a Windows metafile to a

DC.

PlayMetaFileRecord Plays a Windows metafile record.
SetMetaFileBitsEx Creates a memory-based
Windows metafile from data.
GetMetaFileBits Obsolete; use
GetMetaFileBitsEx.
SetMetaFileBits Obsolete; use
SetMetaFileBitsEx.

In addition to providing functions that enable the use of Windows
metafiles, the Win32 API also provides functions to convert
Windows metafiles into enhanced metafiles. These include the
following functions:

GetWinMetaFileBits Retrieves enhanced metafile
contents in Windows format.
SetWinMetaFileBits Creates enhanced metafile from
Windows metafile data.

Pulling It All Together

At this point, the differences between a Windows metafile and an
enhanced metafile should be clear:

The enhanced metafile header is larger and more complete
than a Windows metafile.

The enhanced metafile may contain a description string or a
palette.

The enhanced metafile achieves device independence by
means of a reference DC and special transformations in the
playback functions.

A quick look at the enhanced metafile functions and some
example code should help clarify the features of enhanced
metafiles.

Enhanced Metafile Functions

The following functions are very similar to the functions used for
Windows metafiles. The differences that exist do so to
accommodate new features of enhanced metafiles.

CloseEnhMetaFile Closes an enhanced
metafile DC.
CopyEnhMetaFile Copies an enhanced
metafile.
CreateEnhMetaFile Creates an enhanced
metafile DC.
DeleteEnhMetaFile Invalidates enhanced
metafile handle.
EnhMetaFileProcProcesses enhanced
metafile data.
EnumEnhMetaFile Returns GDI calls within
an enhanced metafile.
GdiComment Adds a comment to an

enhanced metafile.
GetEnhMetaFile Creates an enhanced
metafile.

GetEnhMetaFileBits Copies enhanced metafile
bits to a buffer.
GetEnhMetaFileDescription Returns creator and title
for enhanced metafile.
GetEnhMetaFileHeader Returns enhanced
metafile header.
GetEnhMetaFilePaletteEntries Returns enhanced
metafile palette entries.
PlayEnhMetaFile Plays an enhanced
metafile to a DC.
PlayEnhMetaFileRecord Plays an enhanced
metafile record.
SetEnhMetaFileBits Creates a memory-based
enhanced metafile from data.

GdiComment

GdiComment deserves a little elaboration. When a comment
was needed in a Windows metafile, the MFCOMMENT printer
escape was used. These comments were restricted to private
data only. The MFCOMMENT printer escape cannot be used in
enhanced metafiles. Escapes, in general, cannot be used in
enhanced metafiles because they would introduce device
dependence, which is in direct opposition to the goal of device
independence. Realizing that there is still a place for private data
in metafiles, the architects of the Win32 API made GdiComment
 available for embedding private information in enhanced
metafiles. But GdiComment is more than simply an alternative
to MFCOMMENT. It was designed to enable public comments as
well. The currently supported public comments include:

GDICOMMENT_WINDOWS_METAFILE
GDICOMMENT_BEGINGROUP
GDICOMMENT_ENDGROUP
GDICOMMENT_MULTIFORMATS

The use of public comment permits embedding of other metafiles
and encapsulated PostScript (EPS) files within the metafile. The
multiformat public comment is the most exciting of the
comments. (I must be losing touch with reality!) If an EPS file is
embedded in an enhanced metafile and subsequently played
back, GDI will select the best format for the device!
Transparently! When I first heard about the multiformat comment,
I was sure that I was going to be expending a great deal of effort
writing code for rendering EPS files. I was relieved to find out how
wrong I was!

Coding Examples

The example code in the following sections demonstrates the
creation and playback of an enhanced metafile, illustrating how
some of these functions are used. (These examples are

pared-down versions of examples in the Win32 documentation.)

Creating an enhanced metafile

Creating an enhanced metafile is similar to creating a Windows
metafile. The code that follows demonstrates the creation of an
enhanced metafile that is stored on a disk. The example uses a
device context for the application window as the reference DC.
The dimensions of the application's client area are used to define
the dimensions of the picture frame. Using the rectangle
dimensions returned by the GetClientRect function, the example
converts the device units to .01-millimeter units and passes the
converted values to the CreateEnhMetaFile function. The
example also embeds a text description of the picture in the
header of the enhanced metafile.

// Obtain a handle to a reference DC.

hdcRef = GetDC(hWnd);

// Determine the picture frame dimensions.
// iWidthMM is the display width in
millimeters.
// iHeightMM is the display height in
millimeters.
// iWidthPels is the display width in pixels.
// iHeightPels is the display height in
pixels.

iWidthMM = GetDeviceCaps(hdcRef, HORZSIZE);
iHeightMM = GetDeviceCaps(hdcRef, VERTSIZE);
iWidthPels = GetDeviceCaps(hdcRef, HORZRES);
iHeightPels = GetDeviceCaps(hdcRef, VERTRES);

// Use iWidthMM, iWidthPels, iHeightMM, and
iHeightPels to determine the
// number of .01-millimeter units per pixel
in the x and y directions.

iMMPerPelX = (iWidthMM * 100)/iWidthPels;
iMMPerPelY = (iHeightMM * 100)/iHeightPels;

// Retrieve the coordinates of the client
rectangle in pixels.

GetClientRect(hWnd, &rect);

// Convert client coordinates to .01-mm
units.

rect.left = rect.left * iMMPerPelX;
rect.top = rect.top * iMMPerPelY;
rect.right = rect.right * iMMPerPelX;

rect.bottom = rect.bottom * iMMPerPelY;

// Create the metafile DC.

hdcMeta = CreateEnhMetaFile(hdcRef,
(LPTSTR)"MYFILE.EMF", &rect,
 (LPSTR)"ACME
Inc.\0Rocket Skates\0\0");

if (!hdcMeta)
 errhandler("CreateEnhMetaFile", hWnd);

// Release the reference DC.

ReleaseDC(hWnd, hdcRef);

Playing an enhanced metafile

Playing an enhanced metafile is also similar to the method used
to play Windows metafiles. The following example demonstrates
how to open an enhanced metafile stored on disk, and displays
the associated picture in the client area. The example passes
the handle returned by the GetEnhMetaFile function to the
PlayEnhMetaFile function in order to display the picture. Before
diving into the code, consider the following advice about
enumeration of the metafile and some tips on how to maximize
the advanced features of the GDI metafile player.

Using EnumEnhMetaFile

It's common practice to enumerate Windows metafiles, rather
than simply to play them back, to achieve better control over
positioning, scaling, getting access to application-specific
comments, or manipulating the palette records. However, the
improvements to enhanced metafiles reduce the need for
enumeration of the metafile. In Win32, most applications need to
use only PlayEnhMetaFile unless they need to edit the
enhanced metafile by adding, deleting or modifying records, in
which case they'd use EnumEnhMetaFile.

Advanced features

Three advanced features of enhanced metafiles require action by
the application before playing the metafile to the destination DC:

Advanced palette functionality
Advanced clipping capabilities
World-to-page transform values

The advanced palette functionality provides a means of
examining the palette before playing the metafile. This is useful if
the palette is to be merged with another or optimized before the
enhanced metafile is played or enumerated. If the metafile palette
is to be used, it must be retrieved (
GetEnhMetaFilePaletteEntries), manipulated as desired,
created, selected, and realized in the destination DC.
The advanced clipping capabilities permit the enhanced metafile

to be clipped to a predetermined clipping region. To accomplish
this, the metafile player determines if a clipping region exists in
the destination DC. If a clipping region exists, the region is
applied to the metafile contents as they are played. To use the
clipping feature, create and select any clipping regions into the
destination DC prior to playing the metafile.

Finally, the metafile player applies world-to-page transform values
set in the destination DC to the contents of the enhanced
metafile. If any scaling, rotation, reflection, or shearing is desired,
set the world-to-page transform value in the destination DC before
playing the metafile:

hemf =
GetEnhMetaFile((LPSTR)"MYFILE.EMF");
// Open the metafile.

hDC = GetDC(hWnd); //
Retrieve a handle to a window DC.

GetClientRect(hWnd, &rect); // Retrieve the
client rectangle dimensions.

PlayEnhMetaFile(hDC, hemf,
&rect); // Draw the picture.

DeleteEnhMetaFile(hemf); //
Release the metafile handle.

ReleaseDC(hWnd,
hDC); // Release
the window DC.

Summary

Enhanced metafiles are a giant step beyond the Windows
metafile. An expanded metafile header, a description string, a
palette, device independence, and ease of porting from the
Windows metafile format make enhanced metafiles an offer you
can't refuse! It is expected that the advanced features of
enhanced metafiles will make the use of metafiles more
acceptable than Windows metafiles. With the features listed
below, it is easy to understand why enhanced metafiles will
become an invaluable tool for Win32-based applications:

Full transformation support (removes scaling restrictions
found in Windows metafiles)

Unrestricted clipping capabilities
Improved palette support
Query support (as in GetViewportExtent and

GetCurrentPositionEx)
Advanced embedding features (metafiles and EPS files)

Probably the most important point to make about enhanced
metafiles is that there is very little reason to enumerate the
metafile. The playback code is smarter and does much of what

developers have had to do themselves by means of enumeration
for years.

