
Appendix F
DVI_ Multimedia File Format

xe "DVI multimedia file format F-"§

This appendix describes the DVI_ multimedia file
format used for motion video and audio objects, and
for storing compressed and uncompressed still
images.

This appendix provides information about:

m File structure and version control strategy

m File organization, including tables that describe
fields, their settings, and detailed comments, as
appropriate

m Derived values

In addition, because of its compatibility with files
produced using the ActionMedia_ II software, the old
still image format is documented in this appendix.

Introduction

DVI technology has defined a file format for storing
audio/video objects. Applications should use this and
other industry standard file formats, to increase
interoperability with other applications such as media
editing and manipulation tools. The DVI multimedia
file format is particularly appropriate for motion

F-1

DVI Multimedia File Format

video objects that use the compression algorithms,
and media objects that use
ActionMedia II board pixel formats.

Although this appendix references the routines and
concepts used with AVK, the file format itself is not
restricted for use only with AVK.

F-2

DVI Multimedia File Format

The DVI multimedia file format was designed to
grow into a general purpose repository for complex
multimedia objects, including information that might
be added by media object editors. Therefore, it has
some reserved fields that are not needed for playback
of existing files.

The AVK specification does not require the use of the
DVI multimedia file format. However, AVK only
supports the data streaming file conventions used in
DVI multimedia files. Applications can use other
data streaming conventions, by converting the data
before passing it to and from group buffers. The
AVKIO sample programs in the AVK software
release provide examples of programs that read and
write files in this format.

General Considerations

Each audio or video file contains one or more streams
of data. The following information applies to streams
and stream data.

m Each stream typically contains digital data that
describes a single audio or video stream. For
example, an audio stream can contain ADPCM4
encoded data describing a waveform audio
channel. Generally, there can be several such
streams, all of which are intended for

F-3

DVI Multimedia File Format

simultaneous playback.

F-4

DVI Multimedia File Format

m To reduce head movement on the storage
device, the data from the various streams must
be interleaved. A frame is the unit of
interleaving, and is nominally 1/30 of a second.
The actual duration of a frame is stored within
the file header.

The following sections specify and describe
recommended field values to use under AVK. Some
existing ActionMedia II software files might use
values different from those recommended in this
appendix.

The descriptions list fields, specify how these fields
should be referenced when playing a file, and
describe fields that can be ignored. To explain how
fields should be referenced, the following criteria are
used:

m Some fields are used only to verify that the file
conforms to a variation of the file structure that
can be played by AVK.

m Some fields are used to access information that
must be passed to AVK through appropriate
API routines.

m Some fields can be safely ignored.

F-5

DVI Multimedia File Format

File Structure

xe "File structure F-"§

A file consists of a set of inter-related data structures
that describe the organization of the data into streams,
the nature of the data in each stream, and the actual
data itself. The following information describes the
various fields in these data structures, and how to
generate and interpret the data they contain.

F-6

DVI Multimedia File Format

Some of these fields are shown as bytes, words, or
longs (U8, I16, U16, I32 or U32). These are standard
AVK data types defined in AVKCOM.H. In the
context of file interchange it is especially important
that the precise length of integer fields be specified
unambiguously. In many cases, this appendix gives
both the symbolic names that are defined in .H
include files provided with the AVK product, and the
current values associated with these symbols.

The data structures also include explicit fields whose
primary purpose is to force compiler-independent
word and long alignment, as appropriate. These
fields use little endian byte ordering. If these files are
used with other processor hardware, the associated
software must convert to and from the corresponding
byte order.

Some of the fields are described as being "offsets".
In this context, an offset is a byte count, measured
from the beginning of the file to the first byte of some
data in the file. While this appendix sometimes
specifies recommended values for these offsets,
during playback the actual offset in the file should
always be used. Otherwise, there might be difficulty
processing existing files and future extensions to the
file format. Generally, software can move the data
pointed at by an offset elsewhere in the file, simply
by changing the offset value.

F-7

DVI Multimedia File Format

As a general rule, an offset of zero means that the
associated data is not present.

F-8

DVI Multimedia File Format

Version Control Strategy

xe "File structure: Version control strategy F-"§

The data structures within this file format use a
common strategy to allow controlled growth in
functionality, without breaking previous
functionality. This strategy is implemented by the
use of three fields at the beginning of each file and
the beginning of many internal data structures. These
fields are a four character ASCII ID, a version
number and a size in bytes. All three fields are
useful, since each deals with a different kind of
version mismatch, or binding mismatch problem.

HdrID Field

xe "Version control strategy:HdrID field F-"§

The HdrID field is used to validate that this structure
is the expected kind of data structure. For the HdrID
field at the beginning of the file, such a validation is
essential, since the host file system allows end users
to move and rename files at will. For the HdrID
fields in internal data structures, validation of this
field merely provides some assurance that the file
data has not been corrupted.

F-9

DVI Multimedia File Format

HdrSize Field

xe "Version control strategy:HdrSize field F-"§

The HdrSize field gives the length of the data
structure in bytes, and is central to the file version
control strategy. The file format is modified by
adding new fields at the end of a data structure.
Software that uses the latest version of the file format
must properly set all fields when it creates a file.

F-10

DVI Multimedia File Format

Fields that are set include those fields that are no
longer needed by the latest version of file-reading
software. Setting fields needed by previous versions
allows older programs that have not been upgraded to
the latest file format version to operate correctly
within the limitations of the older file format version.
In addition, since some data might not have existed
when a software version was compiled, extensions to
the file format have been carefully limited in ways
that prevent old software from misinterpreting data.

File-reading software deals with expected values in
three ways:

1. If the HdrSize in the file is the expected value,
this data structure has the expected format. In
this case, application software can safely
interpret the fields, as described in the section,
"File Organization".

2. If the HdrSize in the file is less than the
expected value, then this is an old format file,
and is missing some expected information. Each
file format version contains enough information
for the level of processing that had been
supported at the time the file was created. In
this case, no missing information was essential
to processing the file(that is, the fields missing
from the file contain clearly-defined default
values that can be used instead of the missing
values).

F-11

DVI Multimedia File Format

F-12

DVI Multimedia File Format

For example, the AvLCim.DCFId field was not
part of the original file format definition. This
field is set by a Digital Compression Facility
(DCF) to provide information on where the
video was compressed. For files that do not
contain this field, as indicated by
AvLCim.HdrSize (or AvLCim.HdrVer), the
default value specifies that the compression site
is unknown.

A convenient software technique for dealing
with the possibility that HdrSize is less than the
expected value is to initialize a copy of the data
structure with default values, and then only read
in HdrSize bytes as given by the actual HdrSize
field in the file.

3. If the HdrSize in the file is greater than the
expected value, then this file has a format which
was extended after the code was written. In this
case, there are new fields that have been
defined, but the application code lacks the
knowledge to interpret them.

For file-reading, therefore, only use the
information that is described in the version of
the file format definition that existed when the
code was written. When an old executable is
provided new format files to process, the
executable might be able to play or process the
new format files by ignoring fields that did not
exist when the old executable was compiled.

F-13

DVI Multimedia File Format

To support this processing scenario,
applications always set all fields with
appropriate values. These fields can be used by
older versions of the software, but are ignored
by the latest version of the software.

F-14

DVI Multimedia File Format

A desirable file format extension might require
the addition of new fields that might produce
files that could not be properly played by old
executables. In this case, a new type or
SubType might be introduced, as discussed in
the section called, "Type and Subtype Fields".
Use of new Types and Subtypes makes the new
data invisible to the old executable.

Although in some situations data can be
transcribed from an old file to a new file, even
without knowing what data is represented in
certain fields, it is recommended that
applications totally ignore data in unknown
Type or Subtype fields. Ignoring the data is the
only guaranteed way to produce software that is
compatible with a later file format definition.

HdrVersion Field

xe "Version control strategy:HdrVersion field F-"§

The corresponding HdrVersion field is incremented
whenever a new software release adds new fields to a
file data structure. Thus, either the HdrVersion or
HdrSize field can be used to detect a file being read
that does not conform to the current file format
definition.

Checking the HdrVersion field before using a MAKE
F-15

DVI Multimedia File Format

utility also provides a convenient way to guard
against the effects of "blind" recompilation. For
example, suppose the file format has been extended to
include new fields. Simply running MAKE against
the new header file can produce a program that
generates files with the new size data structures and
corresponding version numbers, but nevertheless is
invalid because of initialization problems.

F-16

DVI Multimedia File Format

The problem is that the newly-defined fields must be
properly initialized, which is very unlikely to occur
with code that was written before these fields were
defined. For example, the proper way to default the
AvLCim.DCFId field is to -1. However, there is no
method for software that predates this field to provide
the correct default.

Type And SubType Fields

xe "Version control strategy:Type and Subtype fields
F-"§

The AvLStrm data structure contains two fields
AvLStrm.Type and AvLStrm.SubType, whose purpose
is to describe the kind of data that is contained in a
stream. These fields can also be used to make future
extensions to the file format. These fields have a
limited set of defined values. An unknown
AvLStrm.Type or AvLStrm.SubType value indicates
that the file format has been extended to allow the
presence of data whose interpretation is totally
unknown. Existing software, encountering such a
value, should ignore the stream's data.

F-17

DVI Multimedia File Format

File Organization

The file structure organization illustrated in Figure F-1
consists of: standard file header, AvLFile header,
stream headers (one per stream), substream headers
(minimum one per substream), frame data, and a frame
directory.

F-18

DVI Multimedia File Format

Figure F-1 DVI Multimedia File Format Structures

F-19

DVI Multimedia File Format

Standard File Header

xe "Standard file header F-"§

The first two entries in any file consist of a standard
file header and an AvLFile data structure.

xe "Data structure:Standard file header F-"§

typedef struct

{
 U32 FileId;
 I16 HdrSize, HdrVersion;
 U32 AnnOffset;
} StdFileHdr;

The fields in the StdFileHdr data structure are:

Type Field Name Setting/Comments
U32 FileId Must be set to VSTD_HDR_ID, which equals

0x56445649 (that is, VDVI) and should be
validated.

I16 HdrSize Should be set to sizeof(StdFileHdr), which is 12.
On playback, this field should be used as
described in the section, "Version Control
Strategy".

Since files do exist that have this field incorrectly
set, it is recommended that files with
StdFileHdr.HdrVersion = 1 ignore this field, and
respond as if this field is set to 12.

F-20

DVI Multimedia File Format

I16 HdrVersion Must be set to VSTD_HDR_VER, which is 1.
On playback, this field value should be validated.

U32 AnnOffset Can be set to zero when creating a file, and can
be ignored on playback. It can also be set to
point to an otherwise unused portion of the file,
and unstructured data placed there. This pointer
could be useful for adding copyright notices to
the file.

F-21

DVI Multimedia File Format

AvLFile Header

xe "AvLFile header F-"§

The AvLFile data structure always follows
immediately after the StdFileHdr.

xe "Data structure:File header F-"§
typedef struct

{

 U32 HdrID;

 I16 HdrSize, HdrVer, StrmGrpCnt, StrmGrpSize;

 U32 StrmGrpOffset;

 I16 StrmGrpVer, StrmSize, StrmVer, StrmCnt;

 U32 StrmOffset, HdrPoolOffset;

 I32 LabelCnt;

 U32 LabelOffset;

 I16 LabelSize, LabelVer;

 U32 VshOffset;

 U16 VshSize;

 I16 FrmVer;

 I32 FrmCnt, FrmSize;

 U32 FirstFrmOffset, EndOfFrmsOffset;

 I16 FrmHdrSize, FrmDirSize;

 U32 FrmDirOffset;

 I16 FrmDirVer, FrmsPerSec;

F-22

DVI Multimedia File Format

 U32 Flag;

 U32 FreeBlockOffset;

 U8 Patch[32];

} AvLFile;

The AvLFile header is the master directory of data
structures within the file.

F-23

DVI Multimedia File Format

The fields in the AvLFile header data structure are:

Type Field Name Setting/Comments
U32 HdrID Must be set to AVL_FILE_ID, which is

0x41565353 (that is, "AVSS"), and should be
validated on playback.

I16 HdrSize Should be set to sizeof(AvLFile), which is 120.
This field should be used on playback as
described in the section, "Version Control
Strategy".

I16 HdrVer Should be set to AVL_FILE_VER, which is 3.
On playback, the value in the file must be less
than or equal to this value.

I16 StrmGrpCnt Should be set to zero, and need not be validated
on playback.

I16 StrmGrpSize Should be set to sizeof(AvLStrmGrp), which is
28, and need not be validated on playback. The
AvLStrmGrp data structure is not described in
this appendix.

U32 StrmGrpOffset Should be set to zero, and need not be validated
on playback.

I16 StrmGrpVer Must be set to AVL_STRMGRP_VER, which is 3,
and need not be validated on playback.

I16 StrmSize Must be set to sizeof(AvLStrm), which is 44.
This field should be used on playback as
described in the section, "Version Control
Strategy" for the HdrSize field.

I16 StrmVer Should be set to AVL_STRM_VER, which is 3,
and should be used on playback as described in
the section, "Version Control Strategy" for the
HdrVersion field.

F-24

DVI Multimedia File Format

Type Field Name Setting/Comments
I16 StrmCnt The number of streams in the file. This value can

be used as the StreamCount parameter with
AvkGrpBufCreate. A stream typically consists
of a set of bytes that describes a sequence of
images or waveform audio samples. Each
stream type is described in a separate section
later in this appendix.

U32 StrmOffset The offset of the array of AvLStrm structures.
Usually set to sizeof(StdFileHdr) + sizeof(AvLFile)
that is, the offset that points immediately after the
AvLFile.

Other offset values could also be used, provided
the array of AvLStrm headers is placed in the file
so that this offset points to it.

U32 HdrPoolOffset The offset of a pool of substream headers,
described in the section, "Substream Headers".
This field should be set to point to this pool when
a file is created. Typically, this pool begins
immediately after the array of AvLStrm headers
for StrmCnt, so its value could be set to
AvLFile.StrmOffset + (AvLFile.StrmCnt *

sizeof(AvLStrm))
This field need not be used during playback,
since the first substream header for each stream
can be located through AvLStrm.FirstHdrOffset.

I32 LabelCnt Should be set to zero, and need not be validated
on playback.

U32 LabelOffset Should be set to zero, and need not be validated
on playback.

I16 LabelSize Should be set to sizeof(AvLLabel), which is 20,
and need not be validated on playback.

I16 LabelVer Should be set to AVL_LABEL_VER, which is 3,
and need not be validated on playback.

F-25

DVI Multimedia File Format

F-26

DVI Multimedia File Format

Type Field Name Setting/Comments

F-27

DVI Multimedia File Format

U32 VshOffset The offset of the video sequence header (VSH)
for this file. If none of the streams in this file
require a VSH, this field and AvLFile.VshSize are
zero. The VSH contains data required for the
decompression of all PLV video streams in the
file. The VSH data is passed to AVK through the
pWorkData parameter of AvkVidStrmFormat.

When creating new files under AVK with RTV, set
this field to zero.

AVK applications can also create files by
combining audio/video data from existing or
newly created files. Such file editing is legitimate
under AVK, provided that no stream uses more
than one compression algorithm.

However, there are practical difficulties
associated with generating a valid VSH. The
data in the VSH depends on the actual images,
and might differ from file to file, even if the files
were compressed with the same PLV
compression algorithm. Moreover, the file format
only allows for a single VSH per file. Therefore,
the merger of one or more video streams into a
single file requires:

m Combining the original VSHs into a
new VSH

m Modification of the compressed bitstreams

While the PLV algorithms contain sufficient
information to implement such software, the
process is complex. Alternatively, the DOS
media preparation utility called VAvEd can be
used to create a properly merged VSH from
several input video streams. See the Media

F-28

DVI Multimedia File Format

Preparation Utility Reference For DOS for
details on VAvEd.

U16 VshSize The length of the VSH stored in the file. It is
passed to AVK through the pWorkDataSize
parameter of AvkVidStrmFormat. When
creating a file whose only video is an RTV 2.0 or
RTV 2.1 stream, this field should be set to zero.
If you create a file with a validly formed VSH,
then its size should be stored here.

F-29

DVI Multimedia File Format

Type Field Name Setting/Comments
I16 FrmVer Should be set to AVL_FRM_VER, which is 3. On

playback, the value in the file must be less than
or equal to this value.

I32 FrmCnt Should be set to the number of AvLFrm headers
in the file. Typically, this field is initialized after all
the frame data has been written into the file. On
playback, an application can use this field (or
AvLFile.EndOfFrmsOffset) to determine when to

stop delivering data to AvkGrpBufWrite.
I32 FrmSize The size of a frame (frame header plus data for

all streams). This field is set to zero if the frames
in a file have variable length, as is typical of
motion video and audio files.

If, however, all frames have exactly the same
length, this field contains that length. Such a file
could be generated by using an optional
parameter with a DOS media preparation utility
called VLayout (see the Media Preparation
Utility Reference For DOS for details on
VLayout). Stream sizes per frame can vary, but
the sum of all stream data per frame must be
fixed in order for this field to be non-zero.

F-30

DVI Multimedia File Format

U32 FirstFrameOffset The offset to the first frame of interleaved
stream data. The interleaved data consists of a
sequence of AvLFrm headers.

For playback, this interleaved data should get
passed to AvkGrpBufWrite, in order to play the
file from the beginning. For capture,
AvkGrpBufRead is used to extract the frame
data from AVK, which is then formatted into
AvLFrm headers for storage in the file.
When creating a file, the frame data is placed
towards the end of the file, and an appropriate
offset stored in this field.

On playback, this offset is used to locate the first
frame data. To start playing the file from some
other point, the appropriate first AvLFrm must be
located. This location process can be done
either by parsing through the AvLFrm headers, or
by using data stored within the optional frame
directory.

F-31

DVI Multimedia File Format

Type Field Name Setting/Comments
U32 EndOfFrmsOffset Must be set to the offset to the first byte after the

frame data. When creating a file, its value is
typically entered after the last byte of frame data
has been entered into the file. On playback, no
data located at or after this address should ever
be passed to AvkGrpBufWrite.

I16 FrmHdrSize The size of the frame header used for all frames.
This field must be set to the length of the frame
header, which is a value computed as
sizeof(AvLFrm) + 4 * (AvLFile.StrmCnt - 1)

The "-1" is needed because the AvLFrm data
structure, as defined, already accounts for the
presence of one stream. This field does not have
to be validated when a file is played back. A
better check could be implemented using the
AvLFrm.ChkSum field, described in the section,
"Frame Header".

I16 FrmDirSize Must be set to sizeof(AvLFrmDir), which is 4.
U32 FrmDirOffset The offset to the frame directory. The frame

directory provides information that allows random
access to an arbitrary frame within the file. It is
recommended that all new files contain a frame
directory, since it is very useful for random
access. Some older files will, however, contain a
zero for this field, meaning that the frame
directory is missing.

A DOS media preparation utility called VAvCopy
can be used to add a frame directory to such
files (see the Media Preparation Utility
Reference For DOS for details on VAvCopy).
Typically, the frame directory is physically placed
immediately after the frame data.

F-32

DVI Multimedia File Format

I16 FrmDirVer Must be set to AVL_FRMDIR_VER, which is 3.
On playback, the value in the file must be less
than or equal to this value.

F-33

DVI Multimedia File Format

Type Field Name Setting/Comments
I16 FrmsPerSec Must be set to the frame per second rate,

rounded to the nearest integer written. By
convention, a value of 25 means precisely 25 fps,
while any other value is adjusted by the fact that
NTSC is 29.97 frames per second, not 30 frames
per second.

If a file is based on PAL original material, but
intentionally has a frame rate that is not 25
frames per second, then a pad stream must be
created in order to specify a frame rate that does
not have this NTSC adjustment. The use of this
field during playback to help derive
FrameRates to pass to AVK is described in the
section, "Derived Values".

U32 Flag Should be set to AVL_FILE_INP_UPDATE while
a file is being created, and set to zero before the
file is closed. If a file is read when this field is
non-zero, the data in the file might be incomplete,
and should not be used.

U32 FreeBlockOffset Should be set to zero when creating a file, and
need not be validated during file playback.

U8 Patch[32] Should be set to all zeroes when creating a file,
and need not be validated during file playback.

Stream Header

xe "Stream header F-"§

AvLFile.StrmOffset holds the offset to an array of
AvLStrm data structures, one for each of the
AvLFile.StrmCnt streams in the file. The position in
the array defines the stream number.

F-34

DVI Multimedia File Format

F-35

DVI Multimedia File Format

The AvLStrm data structure is:

xe "Data structure:Stream header F-"§

typedef struct
{
 U32 HdrID;
 U16 Type, SubType;
 I16 HdrCnt, NextStrmNum, StrmGrpNum, Pad;
 U32 Flag;
 I32 FrmSize;
 U32 FirstHdrOffset;
 U8 StrmName[16];
} AvLStrm;

This data structure describes the general nature of the
data in a single stream, and points to more detailed
information the substream header.

The fields in the AvLStrm data structure are:

Type Field Name Setting/Comments
U32 HdrID Must be set to AVL_STRM_ID, which is

0x5354524d (that is, "STRM"), and need not be
validated on playback.

F-36

DVI Multimedia File Format

U16 Type Identifies the type of stream data. The stream
type contains the following values:

Type Value Description
AVL_T_AUD 2 Compressed audio stream
AVL_T_CIM 3 Compressed image stream
AVL_T_ULAY 5 Associated per-frame data
AVL_T_UIM 6 Uncompressed Image

Stream
AVL_T_PAD 7 Pad Stream

If a stream has some other value for
AvLStrm.Type, its data can and should be
ignored.

F-37

DVI Multimedia File Format

Type Field Name Setting/Comments
U16 SubType These values depend on the value of

AvLStrm.Type, and are described in the various
sections on substream headers (AvLCim,
AvLUlay, AvLUim, and AvLPad).

I16 HdrCnt Specifies the number of substream headers
associated with this stream. This field should be
set to one.

I16 NextStrmNum Should be set to AVL_STRMGRP_END, which is
-1, and need not be validated on playback.

I16 StrmGrpNum Should be set to zero, and need not be validated
on playback.

I16 Pad Should be set to zero, and need not be validated
on playback.

U32 Flag Should be set to 0x4, if the value in
AvLStrm.FrmSize is variable. This field need not
be validated on playback.

I32 FrmSize The maximum amount of data per frame in a
stream. This field does not include the frame
header size. For example, for the X stream, it is
the size of the frame, and for the Y stream, it is
the size of the largest Y data component for that
stream.

When creating a file, this value could be
computed while the frame data is stored into the
file, and then updated into the header after all the
frame data has been written. This field is useful
in estimating the maximum size of a frame, as
described further in the section, "Derived
Values".

F-38

DVI Multimedia File Format

Type Field Name Setting/Comments
U32 FirstHdrOffset The offset to the stream header for this stream.

The data structure at this offset must correspond
to the AvLStrm.Type value. This data structure
contains additional information about the stream,
and will be described further in the section,
"Substream Headers".

U8 StrmName[16] A null-terminated ASCII string for the stream
name.
StrmName is not used by AVK playback, and can
be set to all zeroes (which is interpreted as a null
string). It is helpful, however, to set this field for
use with the output of a DOS media preparation
utility called VAvCheck. See the Media
Preparation Utility Reference For DOS for details
on VAvCheck.

Substream Headers

xe "Substream headers F-"§

An AvLStrm data structure contains general
information about a stream. Type-dependent
information is stored in substream headers of the
following type: AvLAud, AvLCim, AvLUlay, AvLUim
and AvLPad.

All the substream headers are located in a pool
pointed to by AvLFile.HdrPoolOffset. The pool is
located near the beginning of the file, to minimize the
amount of seeking while the frame data is being
processed. This is especially useful for files stored on
devices like a CD-ROM that have comparatively slow
seek times.

F-39

DVI Multimedia File Format

F-40

DVI Multimedia File Format

AvLAud: The Audio Substream Header

xe "Audio substream header F-"§

The AvLAud substream header describes the global
characteristics of an audio stream.

xe "Data structure:Audio substream header F-"§
typedef struct

{

 U32 HdrID;

 I16 HdrSize, HdrVer;

 U8 OrigFile[80];

 I32 OrigFrm;

 I16 OrigStrm, Pad;

 I32 FrmCnt;

 U32 NextHdrOffset;

 U8 Lib[16], Alg[16];

 I32 Parm1;

 I16 Parm2, Parm3, LeftVol, RightVol;

 I32 LoopOffset, StartFrm;

 U32 Flag;

 I16 Parm4, Pad2;

 I32 DCFId;

} AvLAud;

For an audio stream, AvLStrm.SubType should be set
to and validated for the value zero.

F-41

DVI Multimedia File Format

F-42

DVI Multimedia File Format

The fields in the AvLAud data structure are:

Type Field Name Setting/Comments
U32 HdrID Should be set to AVL_AUD_ID, which is

0x41554449 (that is, "AUDI"), and should be
validated on playback.

I16 HdrSize Should be set to sizeof(AvLAud), which is 168.
This field should be used on playback as
described in the section on version control
strategy.

I16 HdrVer Should be set to AVL_AUD_VER, which is 5. On
playback, the value in the file must be less than
or equal to this value.

U8 OrigFile[80] Should be set to all zeroes, and need not be
validated on playback.

I32 OrigFrm Should be set to zero, and need not be validated.
I16 OrigStrm Should be set to zero, and need not be validated.
I16 Pad Should be set to zero, and need not be validated

on playback.
I32 FrmCnt The number of frames.
U32 NextHdrOffset The offset to the next substream header for this

stream. This field should be set to
AVL_LAST_HDR, which is 0x7ffffff, or zero for
the last header.

U8 Lib[16] Should be set to all zeroes, and need not be
validated.

F-43

DVI Multimedia File Format

U8 Alg[16] When creating a file, this field should be set to a
null-terminated text string that identifies the audio
compression algorithm.

On playback, this field is used to derive other
quantities that are passed to AVK to control
playback, as described in the section, "Derived
Values".

F-44

DVI Multimedia File Format

Type Field Name Setting/Comments
I32 Parm1 Should be set to the audio data rate in bits per

second. This value is related to the
SamplesPerSecond value used with
AvkAudStrmFormat, as described in the
section, "Derived Values".

I16 Parm2 The filter cutoff frequency to be used with the
audio. This should be set to zero.

I16 Parm3 Should be set to zero.
I16 LeftVol Should be set to 100 on file creation. These

RightVol fields are intended to enable an editor to modify
the volume level associated with an audio
stream.

On playback, these volume level numbers should
be treated as a percentage of full volume, and
used to form a multiplier with the application-
specified volume before that volume is passed to
AvkAudStrmVolume.

In a few old files, this value was set to 4096. If
4096 is found in a file, it should be treated as if it
were 100.

I32 LoopOffset Should be set to -1, and need not be validated on
playback.

I32 StartFrm Should be set to zero, and need not be validated
on playback.

U32 Flag Used to signify monophonic or stereo. This field
is zero for mono and AVL_AUD_STEREO, which
is 0x00004000, for stereo. Files might exist in
which the 0x00008000 bit is set. This bit denotes
an old format for adpcm4e stereo which cannot
be played by AVK.

F-45

DVI Multimedia File Format

I16 Parm4 Should be set to the FrameRate used with
AvkAudStrmFormat when audio compression
was requested. Typically, this FrameRate is the
same for all streams of the file, and so this field
can be set to zero. For playback, the proper way
to determine the audio FrameRate is described in
the section, "Derived Values".

I16 Pad2 Should be set to zero, and need not be validated
on playback.

F-46

DVI Multimedia File Format

Type Field Name Setting/Comments
I32 DCFId Should be set to -1, and need not be validated on

playback. This value denotes generation on an
end-user platform. A value of zero means that
the Digital Compression Facility (DCF) it was
generated on is unknown. A current list
of DCFId's can be obtained from compression
services.

AvLCim: The Compressed Image And Compressed
Video Substream Header

xe "Compressed image and compressed video header
F-"§

The AvLCim substream header is used for compressed
motion video streams and compressed still images.

The compressed still images are distinguished by the
use of:

m Specific values of AvLStrm.SubType

m Different values of DeCodeAlg

The various SubTypes that can be used are:

SubType Value Description
AVL_ST_Y 1 Y-channel image data
AVL_ST_U 11 U-channel image data
AVL_ST_V 12 V-channel image data
AVL_ST_YVU 13 YVU image data
AVL_ST_YUV_S 14 YUV image data (Industry Standard

Order)

F-47

DVI Multimedia File Format

F-48

DVI Multimedia File Format

For the PLV algorithms, three streams (Y, V, U) are
used to convey the information within one "logical"
video stream, which explains the stream counting
rules in AvkVidStrmCreate and
AvkAudStrmCreate.

Two SubTypes, AVL_ST_YVU and
AVL_ST_YUV_S, are used to hold sequences of
images, in which the entire image is contained in a
single stream. (The suffix "_S" in AVL_ST_YUV_S
is used only to distinguish the difference between two
otherwise very similar SubType names.) These
SubTypes differ only in respect to the order in which
the color components are stored.

All DVI video images use a YVU order for the color
components, except for JPEG.

AVK does not support the playing of motion video
for arbitrary streams of compressed images, but only
for a few explicitly identified algorithms.

F-49

DVI Multimedia File Format

Such images can, however, be displayed by loading
them into image buffers, using AvkImgDecompress,
and using a suitable connector.

xe "Data structure:Compressed image and
compressed video header F-"§

typedef struct
{
 U32 HdrID;
 I16 HdrSize, HdrVer;
 U8 OrigFile[80];
 I32 OrigFrm;
 I16 OrigStrm, Pad;
 I32 FrmCnt;
 U32 NextHdrOffset;
 I16 XPos, YPos, XLen, YLen;
 I16 XCrop, YCrop, DropFrm, DropPhase;
 I32 StillPeriod;
 I16 BufsMin, BufsMax, DeCodeAlg, Pad2;
 I32 DCFId;
} AvLCim;

This substream data structure can be used to store
several different kinds of compressed images. The
fields in the AvLCim data structure are:

Type Field Name Setting/Comments
U32 HdrID Should be set to AVL_CIM_ID, which is

0x43494d47 (that is, "CIMG"), and should be
validated on playback.

I16 HdrSize Should be set to sizeof(AvLCim), which is 136.
This field should be used on playback as
described in the section, "Version Control
Strategy".

F-50

DVI Multimedia File Format

I16 HdrVer Should be set to AVL_CIM_VER, which is 4. On
playback, the value in the file must be less than
or equal to this value.

U8 OrigFile[80] Should be set to zero, and need not be validated
at playback.

F-51

DVI Multimedia File Format

Type Field Name Setting/Comments
I32 OrigFrm Should be set to zero, and need not be validated

at playback.
I16 OrigStrm Should be set to zero, and need not be validated

at playback.
I16 Pad Should be set to zero, and need not be validated

at playback.
I32 FrmCnt The number of frames until the next substream

header applies. This field should be
AVL_LAST_HDR, which is 0x7fffffff.

U32 NextHdrOffset The offset to the next substream header for this
stream. This field should be set to zero.

I16 XPos Should be set to zero, and need not be validated
YPoson playback.

I16 XLen Specifies the maximum width and height for the
YLen decompressed images in this file.

An AVK application should set these
fields properly, and validate that these fields will
not overflow the limits imposed by the Xres and
Yres passed to the AvkVidStrmFormat call.
When using AvkImgDecompress, AVK should
report an error if the destination image is too
small.
However, when playing motion video, the
microcode might not detect an attempt to
decompress an image into a bitmap too small to
hold it, causing unpredictable results.

I16 XCrop Should be set to zero, and need not be validated
YCrop on playback.

I16 DropFrm Should be set to zero, and need not be validated
DropPhase on playback.

F-52

DVI Multimedia File Format

Type Field Name Setting/Comments
I32 StillPeriod Indicates that the video was compressed such

that every Nth frame was intraframe encoded.
For example, if every image of the stream is a still
image this field should be one. If this value is
three, then frames numbered "0, 3, 6, 9, 12, ..."
are all still images. If this value is one, then
every image is a still frame.

In addition to these intraframe coded images, the
stream might contain additional intraframe
encoded images. The default value of
AVL_CIM_RANDOM_STILL, which is -1,
indicates that intraframe image spacing is
unspecified.

I16 BufsMin Should be set to zero.
BufsMax

I16 DecodeAlg Should be set to the decompression algorithm.

On playback, the AvLCim.DecodeAlg value
should be passed to AvkVidStrmFormat or
AvkImgDecompress.

I16 Pad2 Should be set to zero, and need not be validated
on playback.

I32 DCFId Operates the same as AvlAud.DCFId. This field
should be set to -1, and need not be validated on
playback.

AvLUlay: The Underlay Substream Header

xe "Underlay substream header F-"§

Underlay streams hold digital data associated with the
same interval of time as the other streams that are
present in each frame. Generally, each SubType can

F-53

DVI Multimedia File Format

have its own underlay substream header definition.

F-54

DVI Multimedia File Format

However, for many kinds of underlay data, the
following generic underlay substream header can be
used.

xe "Data structure:Underlay substream header F-"§

typedef struct
{
 U32 HdrID;
 I16 HdrSize, HdrVer;
 U8 OrigFile[80];
 I32 OrigFrm;
 I16 OrigStrm, Pad;
 I32 FrmCnt;
 U32 NextHdrOffset;
 I32 DCFId;
} AvLUlay;

Only one underlay SubType is supported, to be used
for holding SMPTE timecodes (see the section,
"SMPTE Timecode Underlay Streams" for details).
In addition, a range from zero through 32767 has
been reserved for possible registration of specific, to-
be-determined, well-defined uses. SubTypes greater
than 32767 will not be controlled and can be freely
used for application-specific purposes.

In a multiple stream file, several underlay streams can
exist with the same SubType, each associated with
another interleaved stream. In this case, by
convention, the data in the underlay stream applies to
the closest preceding stream of an appropriate type.

F-55

DVI Multimedia File Format

The fields in the AvLUlay data structure are:

Type Field Name Setting/Comments
U32 HdrID Should be set to AVL_ULAY_ID, which is

0x554e4452 (that is, "UNDR"), and need not be
validated on playback.

I16 HdrSize Should be set to sizeof(AvLUlay), which is 108.
This field should be used on playback, as
described in the section, "Version Control
Strategy".

I16 HdrVer Should be set to AVL_ULAY_VER, which is 4.
On playback, the value in the file must be less
than or equal to this value.

U8 OrigFile[80] Should be set to zero, and need not be validated
at playback.

I32 OrigFrm Should be set to zero, and need not
be validated at playback.

I16 OrigStrm Should be set to zero, and need not be validated
at playback.

I16 Pad Should be set to zero, and need not be validated
at playback.

I32 FrmCnt The number of frames until the next substream
header applies. This field should be
AVL_LAST_HDR, which is 0x7fffffff.

U32 NextHdrOffset The offset to the next substream header for this
stream. This field should be set to zero.

I32 DCFId Operates the same as AvlAud.DCFId. This field
should be set to -1, and need not be validated on
playback.

F-56

DVI Multimedia File Format

AvLUim: The Uncompressed Image Substream Header

xe "Uncompressed image substream header F-"§

The AvLUim data structure is used to hold
uncompressed images.

xe "Data structure:Uncompressed image substream
header F-"§

typedef struct
{
 U32 HdrID;
 I16 HdrSize, HdrVer;
 U8 OrigFile[80];
 I32 OrigFrm;
 I16 OrigStrm, Pad;
 I32 FrmCnt;
 U32 NextHdrOffset;
 I16 XPos, YPos, XLen, YLen, PixBits, Pad2;
 I32 DCFId;
} AvLUim;

The fields in the AvLUim data structure are:

Type Field Name Setting/Comments
U32 HdrID Should be set to AVL_UIM_ID, which is

0x55494d47 (that is, "UIMG"), and need not be
validated on playback.

I16 HdrSize Should be set to sizeof(AvLUim), which is 124.
This field should be used on playback, as
described in the section, "Version Control
Strategy".

F-57

DVI Multimedia File Format

I16 HdrVer Should be set to AVL_UIM_VER, which is 4.
On playback, the value in the file must be less
than or equal to this value.

U8 OrigFile Should be set to zero, and need not be validated
at playback.

I32 OrigFrm Should be set to zero, and need not be validated
at playback.

F-58

DVI Multimedia File Format

Type Field Name Setting/Comments
I16 OrigStrm Should be set to zero, and need not be validated

at playback.
I16 Pad Should be set to zero, and need not be validated

at playback.
I32 FrmCnt The number of frames until the next substream

header applies. This field should be
AVL_LAST_HDR, which is 0x7fffffff.

U32 NextHdrOffset The offset to the next substream header for this
stream. This field should be set to zero.

I16 XPos Should be set to zero, and need not be validated
YPoson playback.

I16 XLen Specifies the maximum width and height for the
YLen decompressed images in this file.

I16 PixBits Should be set to the average number of bits per
pixel in the image. Typical values for this field
are 8, 9, 16 and 24. On playback,
AvLUim.PixBits should be used to determine the
value of BitmapFormat to pass on a call of
AvkImgCreate.

I16 Pad2 Should be ignored and set to zero.
I32 DCFId Operates the same as AvLAud.DCFId. This field

should be set to -1, and need not be validated on
playback.

AvLPad: The Pad Substream Header

xe "Pad substream header F-"§

Pad streams files are generated by a DOS media
preparation utility called VLayout. See the Media
Preparation Utility Reference For DOS for details
on VLayout. A pad steam header can tore a frame
rate more accurately than can be done by using
AvLFile.FrmsPerSec.

F-59

DVI Multimedia File Format

F-60

DVI Multimedia File Format

VLayout generates pad data in the various AvLFrm
headers, such that the average rate of data
consumption precisely matches the standard data rate
from a CD-ROM (153,600 bytes per second). For
VLayout, this pad data is set to all zero.

On playback, most of the data in pad streams can be
ignored on playback. However, any existing pad
streams should be used to derive accurate FrameRates
for all streams during playback, as described in the
section, "Derived Values".

xe "Data structure:Pad substream header F-"§

typedef struct
{
 U32 HdrID;
 I16 HdrSize, HdrVer;
 U8 OrigFile[80];
 I16 OrigStrm, Pad;
 I32 FrmCnt;
 U32 NextHdrOffset;
 I32 ImagesPer, Seconds, VidFast, VidVar, VidRev, VidStart;
 I16 UlayFast, UlayVar, UlayRev, UlayStart;
 I16 PipeDepth, PipeStart, MinSeek, MinPad;
 I32 DCFId;
} AvLPad;

The fields of the AvLPad data structure are:

Type Field Name Setting/Comments
U32 HdrID Should be set to AVL_PAD_ID, which is

0x50414421 (that is, "PAD!"), and should be
validated on playback.

F-61

DVI Multimedia File Format

I16 HdrSize Should be set to sizeof(AvLPad), which is 144.
This field should be used on playback as
described in the section, "Version Control
Strategy".

F-62

DVI Multimedia File Format

Type Field Name Setting/Comments
I16 HdrVer Should be set to AVL_PAD_VER, which is 4.

On playback, the value in the file must be less
than or equal to this value.

U8 OrigFile[80] Should be set to zero, and need not be validated
at playback.

I16 OrigStrm Should be set to zero, and need not be validated
at playback.

I16 Pad Should be set to zero, and need not be validated
at playback.

I32 FrmCnt The number of frames until the next substream
header applies. This field should be
AVL_LAST_HDR, which is 0x7fffffff.

U32 NextHdrOffset The offset to the next substream header for this
stream. This field should be set to zero.

I32 ImagesPer Two 32-bit integers whose ratio is the
Seconds frame rate in images per second. These fields

should be set to zero, and need not be validated
on playback

On playback, these fields are used to derive the
frame rate for all streams in the file, as described
in the section, "Derived Values".

I32 VidFast Should be set to zero, and need not be validated
on playback.

I32 VidVar Should be set to zero, and need not be validated
on playback.

I32 VidRev Should be set to zero, and need not be validated
on playback.

I32 VidStart Should be set to zero, and need not be validated
on playback.

I16 UlayFast Should be set to zero, and need not be validated
on playback.

I16 UlayVar Should be set to zero, and need not be validated
on playback.

F-63

DVI Multimedia File Format

I16 UlayRev Should be set to zero, and need not be validated
on playback.

F-64

DVI Multimedia File Format

Type Field Name Setting/Comments
I16 UlayStart Should be set to zero, and need not be validated

on playback.
I16 PipeDepth Should be set to zero, and need not be validated

on playback.
I16 PipeStart Should be set to zero, and need not be validated

on playback.
I16 MinSeek Should be set to zero, and need not be validated

on playback.
I16 MinPad Should be set to zero, and need not be validated

on playback.
I32 DCFId Operates the same as AvLAud.DCFId. This field

should be set to -1, and need not be validated on
playback.

SMPTE Timecode Underlay Streams

xe "SMPTE timecode underlay streams F-"§

If the SubType of an underlay stream is
AVL_ST_TIMECODE (which is 1), the stream
contains SMPTE timecode data. The data in each
frame consists of four bytes which are the Binary-
Coded-Decimal representation of the HH:MM:SS:FF
for that frame, as defined by the SMPTE standard for
time codes.

Generally, several interleaved audio and/or video
streams can exist in a file, each with its own timecode
data. The rule for associating a timecode stream with
audio or video data is that the timecode stream refers
to the immediately preceding audio or video stream.

F-65

DVI Multimedia File Format

For example, a file compressed by compression
services might have the following six stream types:
Y, V, U, Timecode, Audio, Timecode. This stream
order indicates that there is valid (and possibly equal)
timecode information for both the video and audio
data.

Typically, the data to fill this stream is extracted from
a time code reader at the same time as the original
video and audio are digitized.

Frame Data

Each frame of data in a DVI Multimedia file is
preceded by a frame header, identifying the amount
of data per stream.

Frame Header

xe "Frame header F-"§

This data structure is used to introduce the actual data
of the file. All the other headers only describe this
data. The data consists of a sequence of contiguous
AvLFrm header/data pairs, one for each frame of the
file. See Appendix C, "Algorithm Characteristics",
for details on interpreting data during playback or
capture.

F-66

DVI Multimedia File Format

xe "Data structure:Frame header F-"§

typedef struct
{
 I32 FrmNum, RevOffset, ChkSum;
//I32 StrmFrmSize[AvLFile.StrmCnt] This is invalid C syntax.
 I32 StrmFrmSize[1]; //Note, This line has valid C syntax, but has wrong
array size
} AvLFrm;

F-67

DVI Multimedia File Format

The fields of the AvLFrm data structure are:

Type Field Name Setting/Comments
I32 FrmNum The sequential frame number in each file, starting

with zero, allowing several files to be opened and
fed in sequence to AVK.

This field is not used by AVK playback, in order
to allow convenient concatenation of the data
from several files.

This field is generated by AVK capture, for use in
identifying the precise time that each frame's data
occurred.

I32 RevOffset The file offset to the previous AvLFrm in the
file (measured from the beginning of the file). For
the first frame of a file, this file offset is zero.

This field must be properly generated on file
creation. While AvLFrm.RevOffset is typically
ignored on AVK playback, this offset is used by
some DOS media preparation utilities provided
with ActionMedia II software.

F-68

DVI Multimedia File Format

I32 ChkSum Provides an efficient check of whether or not a
given block of data begins with a valid AvLFrm.
Its value is formed by exclusive ORing all
AvLFile.FrmHdrSize 32 bit words in the frame
header (excluding this one) with the constant
AVL_FRM_ID, which is 0x46524d48 (that is,
"FRMH"). This field must be computed by the
application before storing the data received by
AvkGrpBufRead into a file. This field can
be validated by AVK when the data is passed to
AvkGrpBufWrite.

F-69

DVI Multimedia File Format

Type Field Name Setting/Comments

F-70

DVI Multimedia File Format

I32 StrmFrmSize Consists of one long word for each of the
AvLFile.StrmCnt streams in the file. This field
contains the byte count for the actual data within
each stream of the file. This frame data
immediately follows the AvLFrm, with no padding
between the frame data for successive streams.

By convention, there are some special
AvLFrm.StrmFrmSize values, that can be used
with audio streams and compressed image
streams. The size values zero, eight and sixteen
indicate that no data exists for this frame. These
byte values have slightly different interpretations
by AVK playback, namely missing, silent audio
and transparent video frames, respectively.

The value eight is only used for audio streams,
and denotes one frame time's worth of silence.
The associated eight bytes of actual data, may
be set to zero.

The value sixteen is used only for
compressed image streams, and denotes one
frame time in which the image on the display
does not change. The associated 16 bytes of
data must be a valid compressed image
bitstream header. This header is described in the
section, "Compressed Image Bitstream Header".
In this context, the compressed image bitstream
header consists of eight words with the values:
AvLCim.DecodeAlg, 0, 128, 0, 0, 0,
image_height_in_pixels, image_width_in_pixels.

A byte count of zero provides physical spacing of
the frame data, but assumes that some other
mechanism will be used to control the temporal
spacing.

F-71

DVI Multimedia File Format

F-72

DVI Multimedia File Format

Compressed Image BitStream Header

xe "Compressed image bitstream header F-"§

For compressed image streams, the actual data for
each frame begins with a 16-byte bitstream header.
For PLV sequences, the image data is contained in
three separate streams that do not necessarily have the
same values for these fields. This bitstream header
must be present for all compressed images. If the
compression is imported from another system, such as
a JPEG image, then a suitable bitstream header must
be synthesized and pre-pended. While in theory, a
third party JPEG-conformant decompression
processor should ignore this header, it is probably a
good idea to strip this header before exporting JPEG
images.

xe "Data Structure:Compressed image bitstream
header F-"§

typedef struct
{
 U16 AlgNum;
 U16 Flags;
 U32 NumBits;
 U32 AlgSpec;
 U16 YSize;
 U16 XSize;
} AvLBsh;

The fields of the AvLBsh data structure are:

F-73

DVI Multimedia File Format

Type Field Name Setting/Comments
U16 AlgNum Contains the AlgName (as passed to

AvkVidStrmFormat) used to compress the
image.

F-74

DVI Multimedia File Format

Type Field Name Setting/Comments

F-75

DVI Multimedia File Format

U16 Flags Contains information that might be used by editor
programs and for random access. This flag word
contains various bits that might be useful for
making decisions about individual frames.

All bits and bit combinations not explicitly
described in the following questions are reserved
for future use, and should be masked away
before making any of the following decisions.

m Is this image intraframe encoded (that is, a
still frame)?

The status of an image intraframe can always
be determined by examining 0x4. If this bit is
set, this image can be decompressed without
reference to any other image. The first
frame of a file should be a still frame.

m Can this image be used as the last image of a
self-contained edited subsequence?

For simple compression algorithms, the
answer to this question is always yes.
However, in the class of algorithms not
supported by AVK, the compressed data in
the bitstream might not be used until a
subsequent image has also been
decompressed. To write code that will also
work for such compression algorithms, editing
programs should determine this image use as
follows:

- The answer is yes if bit 0x80 is zero.
- The answer is also yes if bit 0x80 is one

and bit 0x40 is one.

F-76

DVI Multimedia File Format

m Can this image be replaced by a transparent
image, with no effect on any other images?

If bit 0x80 is zero, bits 0x300 contain a two bit
count of the number of images until the next
reference frame. That is, if the 0x300 bits
are 01, this image might be discarded. If they
are 10, this image and the next image might
be discarded If they are 11, this image and
the next two images might be discarded. If
the 0x300 bits are 00, there is no information
about the distance to the next intracoded
image. In addition, if AvLCim.StillPeriod is not
AVL_CIM_RANDOM_STILL,
AvLCim.StillPeriod can be used to predict the
distance to the next still image.

If bit 0x80 is one, an image can be discarded
if the 0x700 bits are 000.

F-77

DVI Multimedia File Format

Type Field Name Setting/Comments
U32 NumBits Contains the number of bits in the image,

including this header. For historical reasons,
RTV 1.0 and RTV 1.5 contain a byte count
instead.

U32 AlgSpec Contains information related to the use of the
VSH data with this image. For compression
algorithms that do not require a VSH for
decompression, this field will be zero.

U16 YSize The height and width (respectively) of the image
XSize in pixels. For the subsampled U and V PLV

streams, these fields describe the height and
width of the subsampled chrominance bitmap.

Compressed Audio Bitstream Header

xe "Compressed audio bitstream header F-"§

The frame data for an audio bitstream has an internal
structure. Knowledge of this structure is useful for
conversion between audio bitstream formats, for
editing files containing audio.

xe "Data Structure:Compressed audio bitstream
header F-"§

typedef struct
{
 I16 Word1;
 I16 Word2;
 I16 Word3;
 I16 Word4;
}

This header is generated automatically by AVK when
it digitizes and compresses. However, if a file is

F-78

DVI Multimedia File Format

edited, or a bitstream is converted from another
source, the following information is needed to
generate a valid frame.

F-79

DVI Multimedia File Format

The fields of the compressed audio bitstream header
data structure are:

Type Field Name Setting/Comments
I16 Word1 The number of words in this frame, not counting

the four words of this header.
I16 Word2, byte1 The audio algorithm, which is encoded as

follows:

adpcm4e-mono 1
adpcm4e-stereo 3
pcm8-mono 5
pcm8-stereo 7

Word2, byte2 This field of a four-word header is always 0xFF.
An audio stream that contains some other value
implies that the audio bitstream did not have a
four-byte header. Some adpcm4e files exist that
do not have this header. The format of audio
streams that are missing the audio bitstream
header are not described in this appendix.

AVK will automatically detect the absence of the
audio bitstream header, and apply appropriate
defaults in order to play those bitstreams.

I16 Word3 This field contains the sample rate in samples per
second.

I16 Word4 This field should be set to zero.

F-80

DVI Multimedia File Format

The remaining audio data in a frame consists of a
concatenated sequence of subframes. A monophonic
subframe consists of precisely 32 bytes, while a stereo
subframe consists of precisely 64 bytes. Frames contain an
integral number of subframes. Ideally, for a given
algorithm and sample rate, the number of subframes per
frame would be a constant, generated by a simple formula
(bits-per-second divided by bits-per-subframe).

F-81

DVI Multimedia File Format

In practice, this formula yields a non-integral value.
To deal with this non-integral value, "occasionally" a
frame will have an extra subframe so that audio bit
rate will average to the right value. When converting
audio data from another file format to play under
AVK, these extra subframes must be inserted,
because AVK uses this average bit rate to maintain
lip-synch.

An audio stream can be edited by splicing together
subframes. After editing:

m A valid 4-word audio bitstream header must be
generated at the beginning of each frame.

m The number of subframes per frame must be
adjusted so that the average bit rate is correct.

m In addition, when splicing adpcm4e subframes,
the first 16 bits of data for the first subframe of
a "cut" must be zero. A "cut" is the beginning
of a fragment of continuous audio.

The data in the subframes depends on the audio
algorithm. The adpcm4e bitstream format inside a
subframe is not documented in this appendix, but is
available. The pcm8 bitstream format is very simple.
A mono bitstream consists of a sequence of 8-bit
values representing the instantaneous volume level.
For a stereo bitstream, the data consists of a sequence
of two-byte values, each of which represents the
instantaneous volume to the left and right speakers

F-82

DVI Multimedia File Format

respectively.

F-83

DVI Multimedia File Format

Frame Directory

xe "Frame directory F-"§

The frame directory is useful for random access to a
file, and consists of one AvLFrmDir header for each
AvLFrm header of the file. This data is typically (but
not necessarily) written towards the end of the file,
after all the AvLFrm header data has been entered.

Since this data structure has a fixed length, and is
present for every frame, it is possible to compute the
location of a specific AvLFrmDir header in the file,
and seek directly to it.

xe "Data structure:Frame directory F-"§

typedef struct
{
 U32 FrmOffset;
} AvLFrmDir;

The 31 least significant bits of AvLFrmDir.FrmOffset
is the offset to the associated AvLFrm header in the
file.

The high order bit is 1, if this frame can be used for a
random access to the frame data of every stream in
the file. The first frame of a file must be usable for
random access.

F-84

DVI Multimedia File Format

This bit can be set by using information about each
compressed image, as described in the section,
"Compressed Image Bitstream Header".

F-85

DVI Multimedia File Format

Theoretically, an audio stream is only suitable for
random access if it has the same FrameRate as the
video streams with which it is interleaved. However,
in practice, all the audio algorithms supported will
quickly resynchronize, even if started in the middle of
an audio frame.

A frame directory can also be generated through use
of an optional parameter to the DOS media
preparation utility VAvCopy. See the Media
Preparation Utility Reference For DOS for details
on VAvCopy.

Derived Values

xe "Derived values F-"§

The preceding sections describe the values explicitly
encoded into the current file format. This section
summarizes the rules for deriving the values of
several quantities not explicitly present in a file.

AVK Frame Rate

xe "AVK frame rate F-"§

xe "Frame rate F-"§

F-86

DVI Multimedia File Format

In AVK, the frame rate received is designated as
microseconds per frames. However, since the DVI
multimedia file format designates frame rate as
frames per second, an application must translate the
designation.

F-87

DVI Multimedia File Format

When audio is combined with video in a file with
interleaved streams, each chunk of audio and video
data should have the same playing time. Therefore,
explicitly chunking the audio data so that it has the
same frame rate as the video allows cutting and
pasting of interleaved audio/video data to form edited
files. A DOS media preparation utility such as
VAvEd can be used for this cutting and pasting
process. See the Media Preparation Utility
Reference For DOS for details on VAvEd.

For AVK, the frame rate of the file is also used to
control the synchronization of audio and video data.
To synchronize its play against a wall clock, each
stream processed uses data that is structured into
frames with a known playback duration.

PAL original material is also fully supported in AVK.
Therefore, the following rules apply for determining
the frame rate of the streams of an existing file:

m First, determine if the file has a pad stream. If a
pad stream exists, the pad stream should be used
to compute the frame rates of all streams in the
file.

To determine whether or not a file has a pad
stream, examine the AvLStrm data structures,
looking for a structure whose AvLStrm.Type is
AVL_T_PAD (that is, 7).

F-88

DVI Multimedia File Format

F-89

DVI Multimedia File Format

m In rare cases, a file can contain several pad
streams, in which case the last pad stream
should be used for frame rate calculations.
Since the AvLStrm header data is stored as an
array of fixed length structures, it is straight
forward to search all AvLStrm header data in
reverse order.

m After identifying the pad stream, access
AvLPad.ImagesPer and AvLPad.Seconds.
These values can be converted to a frame rate in
AVK units (microseconds per frame), using the
formula:

FrameRate = Round ((1,000,000 *
AvLPad.Seconds)/AvLPad.ImagesPer))

m If the file does not contain a pad stream, the
frame rate of video steams is found by
examining AvLFile.FrmsPerSec. This value is
stored as an integer.

To convert it to a frame rate, use the formula:

FrameRate = Round ((1,000,000/AvLFile.FrmsPerSec) *
NTSC_ADJUSTMENT)

The symbol NTSC_ADJUSTMENT is
1001/1000 or 1. The value "1" is only used
when AvLFile.FrmsPerSec is exactly 25.

m If the file does not contain a pad stream, the
frame rate for an audio stream can be
determined by examining AvLAud.Parm4. If

F-90

DVI Multimedia File Format

AvLAud.Parm4 is not present (as indicated by
the value in AvLAud.HdrSize or
AvLAud.HdrVer), or if its value is zero, the
audio frame rate is derived from
AvLFile.FrmsPerSec, as described.

F-91

DVI Multimedia File Format

If AvLAud.Parm4 is nonzero, the audio frame
rate is derived by substituting AvLAud.Parm4
for AvLFile.FrmsPerSec in the formula above.

When a file is created, all its streams should have the
same frame rate. If this frame rate can be accurately
represented via AvLFile.FrmsPerSec, there is no need
to include a pad stream. However, if the frame rate
cannot be regenerated by the above calculation, the
file should be created with a pad stream so that an
accurate frame rate can be stored within it.

Maximum Frame Size And Group Buffer Size

xe "Maximum frame size and group buffer size F-"§

When creating a group buffer for AVK, it is
important to know the largest size of a frame that
might be found in the file. While this information is
not explicitly recorded in a file, a reasonable upper
limit can be estimated by using the AvLStrm.FrmSize
values in each AvLStrm. This upper bound is the sum
of the AvLStrm.FrmSize fields from every stream of
the file, plus the length of a frame header (that is,
AvLFile.FrmHdrSize). Generally,
AvLFile.FrmHdrSize is larger than sizeof(AvLFrm).

This calculation only yields an upper bound because
it is possible that different streams achieve their

F-92

DVI Multimedia File Format

maximums at different positions in the file.

F-93

DVI Multimedia File Format

Pixel Aspect Ratio

xe "Pixel aspect ratio F-"§

All images, compressed or uncompressed, that can be
stored within a file are assumed to have a 5:4 pixel
aspect ratio. This pixel aspect ratio results from DVI
technology's use of 256 x 240 images to store full
screen images, and the fact that TV screens have a 4:3
width to height ratio.

The pixel aspect ratio should be considered when
scaling an image to the display. This is no problem
for AVK, since AVK only supports bitmaps with 5:4
pixel aspect ratio.

Audio Algorithm Number And Bits Per Sample

xe "Audio algorithm number F-"§

xe "Bits per sample F-"§

AVK requires the use of a 16-bit integer that
identifies the audio algorithm, while the file contains
a string naming the algorithm. The following table
provides the correspondence between audio algorithm
names and numbers:

F-94

DVI Multimedia File Format

AvLAud.Alg AlgName Symbol AlgName Value BitsPerSample
adpcm4e AVK_ADPCM 0x400 4
pcm8 AVK_PCM8 0x801 8

This table also indicates the number of bits per sample
associated with each supported audio algorithm.

F-95

DVI Multimedia File Format

Audio SamplesPerSecond And AvLAud.Parm1

xe "Audio SamplesPerSecond F-"§

To play a file under AVK, AvkAudStrmFormat
must be called with the audio data rate in units of
samples per second, even though the file contains the
data rate in bits per second. SamplesPerSecond can
be calculated from the bits per second value in
AvLAud.Parm1 by dividing by the BitsPerSample
value from the audio algorithm table. Parm1 has the
same value for mono and stereo. The only difference
between mono and stereo is the stereo bit in
AvLAud.Flag.

When capturing a file this calculation process is
reversed. The value of SamplesPerSecond passed to
AvkAudStrmFormat, and the bits per sample, are
used to compute the proper bits per second value to
store in the file as AvLAud.Parm1. The AvLAud.Flag
stereo bit is set to indicate mono or stereo.

F-96

DVI Multimedia File Format

Still Image Formats

xe "Still image formats F-"§

This section describes the old file format for still
images.

Still Image File Structure

xe "Still image files"§

Image files by convention use the following file
extensions: IMY, IMV, IMU, CMY, CMV, CMU,
I16, and C16.

In addition, the file header in the file describes
whether or not the file contains compressed data and
also the pixel format of the file's image data.

For 9-bit images, there are three separate files, each
containing one component of the data.

That is, a filename such as abcdefgh.imy contains
only the luminance component of the data, stored as
an 8 bit per pixel bitmap.

The associated chrominance data would be stored in
the separate files abcdefgh.imu and abcdefgh.imv,

F-97

DVI Multimedia File Format

each as eight bit per pixel images.

F-98

DVI Multimedia File Format

The file suffix corresponds to the color component in
the file.

To process the data in these image files, an
application would first read in the image file header,
which is defined as follows:

xe "Data structure:Still image files"§

typedef struct
{
 U32 ImIDCode;
 I16 ImByteSize, ImVer;
 U32 ImAnnOffset;
 U32 ImPlaneFlag;
 U16 ImXLen, ImYLen, ImPixBits, ImCodeVer;
 U32 ImImageOff;
 U16 ImClutCnt, ImClutBits;
 U32 ImClutOff;
 U32 ImAppDataOff, ImAppDataSize;
 U32 ImImageSize;
 U16 ImColor, ImPlane;
 U32 pad2, pad3;
} AvLImHdr;

The first four fields are for the standard file header
StdFileHdr, with modified field name, as described
previously for files, and using the same version
control strategies. However, unlike the standard file
header, these fields are imbedded within the
AvLImHdr and are used to control the versions of the
entire header.

F-99

DVI Multimedia File Format

The fields of the image file header AvLImHdr data
structure are:

Type Field Name Setting/Comments
U32 ImIDCode Should be validated to be AVK_IM_FILE_ID,

which is 0x56494d20 (that is, "VIM ").
I16 ImByteSize Must be set to sizeof(AvLImHdr).
I16 ImVer Should be validated to be AVK_IM_HDR_VER

which is 5.
U32 ImAnnOffset Can be set to zero when creating a file, and can

be ignored on playback. It can also be set to
point to an otherwise unused portion of the file,
and unstructured data placed there. This pointer
could be useful for adding copyright notices to
the file.

U32 ImPlaneFlag Not used.
U16 ImXLen The width and height of the image, measured in

ImYLen pixels. These values must be used with
AvkImgCreate. For the chrominance planes of 9
bit images, these fields will indicate the 4:1
subsampling of the chrominance. This should be
validated, since AVK does not support arbitrary
subsampling ratios. The values to pass to
AvkImgCreate should be the value for the
luminance component. 24 bit images are also
stored as three separate files, except that
AvLImgHdr.ImXLen and AvLImgHdr.ImYLen do
not indicate any subsampling for U and V.

F-100

DVI Multimedia File Format

U16 ImPixBits Indicates this plane's pixel width in bits. This has
the value 8 or 16. For a 9-bit image, there are
three image component files, each of which has
the value 8 for this field. This field must be used
to derive the BitmapFormat parameter for
AvkImgCreate.

F-101

DVI Multimedia File Format

Type Field Name Setting/Comments
U16 ImCodeVer The algorithm number associated with this

bitstream, provided it contains compressed data.
If the file contains an uncompressed image, this
field will be zero. The algorithm numbers used
by the DVI multimedia file format to support still
image algorithms are described in Appendix C,
"Algorithm Characteristics".

U32 ImImageOff The offset within the file to where the image data
is placed. This offset should be used to access
the image data. The data for an image is stored
by row (that is, AvLImHdr.YLen pixels exist for
the first line of the image, followed immediately
(since no padding exists) by the next line of
image data.

For a 9 or 24 bit image, the data for each plane
should be passed to AvkImgWrite or
AvkImgBufWrite in the order Y, V, U, with no
padding between planes.

U32 ImageSize Specifies the amount of image data in the file,
measured in bytes. This byte measurement is
especially useful if the image data is
compressed. For an uncompressed image, this
field will be the same as the value calculated,
using the specified height, width, and bits per
pixel.

U16 ImClutCnt These fields can be ignored as they are not
ImClutBits supported under AVK.

U32 ImClutOff This fields is not supported under AVK.
However, if ImClutOff is not equal to zero, the file
cannot be processed.

U32 ImAppDataOff These fields can be ignored as they are not
ImAppDataSize supported under AVK.

F-102

DVI Multimedia File Format

U32 ImImageSize This field can be ignored as it is not
supported under AVK.

U16 ImColor These fields can be ignored as they are not
ImPlane supported under AVK.

U32 pad2 These fields can be ignored as they are not
pad3 supported under AVK.

F-103

DVI Multimedia File Format

Storing Still Images In The DVI Multimedia File Format

xe "Storing still images in DVI multimedia file
format F-"§

The following still image file format descriptions
provide a reference for using the DVI multimedia file
format to store images that originated in various types
of image files.

IMY, IMV, IMU Image Files

xe "Still image file format storage :IMY, IMV, IMU
image files F-"§

xe "Storage:Still image files F-"§

The data from these image files is combined into a
single stream, with the following stream and
substream header values:

Type AVL_T_UIM
Sub-Type AVL_ST_YVU
PixBits 9 or 24

The uncompressed image data from the three files is
concatenated one after the other, in the order Y, V, U, with
no intervening padding.

F-104

DVI Multimedia File Format

F-105

DVI Multimedia File Format

CMY, CMV, CMU Image Files

The data from these files is combined into a single
stream with the following stream and substream
header values:

Type AVL_T_CIM
Sub-Type AVL_ST_YVU
DeCodeAlg 128 or 129 (as read from

AvkImHdr.ImCodeVer)
StillPeriod 1

The compressed image data from the three files would be
concatenated one after the other, in the order Y, V, U, with
no intervening padding.

The BitmapFormat used to store these images can be
inferred from DecodeAlg, since all currently
supported decompression algorithms are associated
with a single BitmapFormat.

I16 Image Files

Type AVL_T_UIM
Sub-Type AVL_ST_YVU
PixBits 16

F-106

DVI Multimedia File Format

C16 Image Files

Type AVL_T_CIM
Sub-Type AVL_ST_YVU
DeCodeAlg 1 or 2 (as read from AvkImHdr.ImCodeVer)
StillPeriod 1

The BitmapFormat used to store these images can be
inferred from DecodeAlg, since all currently supported
decompression algorithms are associated with a single
BitmapFormat.

JPEG Images

New JPEG images will be stored in files as follows:

Type AVL_T_CIM
Sub-Type AVL_ST_YUV_S
DeCodeAlg 129
StillPeriod 1

The only JPEG images that can be stored within a file are
those for which chrominance has been subsampled 4:1 in
both dimensions, and the pixel aspect ratio is 5:4.

F-107

	DVI Multimedia File Format
	Appendix F DVI_ Multimedia File Format
	Introduction
	General Considerations
	File Structure
	Version Control Strategy
	HdrID Field
	HdrSize Field
	HdrVersion Field
	Type And SubType Fields

	File Organization
	Standard File Header
	AvLFile Header
	Stream Header
	Substream Headers
	AvLAud: The Audio Substream Header
	AvLCim: The Compressed Image And Compressed Video Substream Header
	AvLUlay: The Underlay Substream Header
	AvLUim: The Uncompressed Image Substream Header
	AvLPad: The Pad Substream Header
	SMPTE Timecode Underlay Streams

	Frame Data
	Frame Header
	Compressed Image BitStream Header
	Compressed Audio Bitstream Header

	Frame Directory

	Derived Values
	AVK Frame Rate
	Maximum Frame Size And Group Buffer Size
	Pixel Aspect Ratio
	Audio Algorithm Number And Bits Per Sample
	Audio SamplesPerSecond And AvLAud.Parm1

	Still Image Formats
	Still Image File Structure
	Storing Still Images In The DVI Multimedia File Format
	IMY, IMV, IMU Image Files
	CMY, CMV, CMU Image Files
	I16 Image Files
	C16 Image Files
	JPEG Images

