Synchronet Message Base Specification
Version 1.11
Updated 04/21/94

Copyright 1994 Digital Dynamics

PO Box 501
Yorba Linda, CA 92686

Voice: 714-529-6328 BBS: 714-529-9525 V.32/V.32bis
FAX: 714-529-9721 529-9547 V.FC
FIDO: 1:103/705 529-9721 ZyXEL

Table of Contents

Introduction
Implementation Levels
Definitions
Acronyms
Data Types
File Formats

CRC History
Header Field Types
Data Field Types
Messsage Attributes
Translation Types
Agent Types
Network Types
Media Types
Message Storage Protocol
Message Retrieval Protocol
SMBUTIL
CHKSMB
SMBLIB

(C library)

Data Types and Constants.. (SMBDEFS.H)
(SMBVARS.C)

Global Variables
Function Prototypes
Library Functions
Bibliography
Implementations

(SMBLIB.H)
(SMBLIB.C)

Synchronet

Introduction

Q. What is SMB?

A. SMB (Synchronet Message Base) is a technical specification for the st
format of electronic mail messages. These e-mail messages may all be
contained in one database, or, more commonly, separated into catagori
databases. These message databases (or message bases) are also referr
as 'sub-boards', 'forums', 'conferences,' and 'SIGs'. The messages ma
directed to an individual person, sent to a group of individuals, or
to everyone who can read messages in that message base. Messages may
created and read soley at one physical location, or imported from and
exported to a message network that may span continents. Message bases
are connected to a message network are often called 'echoes'.

Q. Why SMB?

A. The Synchronet Message Base is designed to store high volumes of mess
while maintaining optimum search, retrieval, and creation performance
These messages are not defined as merely text. In addition to text, S
defines the storage of digitized sound, MIDI, graphics, fonts, animat
as well as other multimedia data and triggers for localized multimedi
SMB thrives on a multi-user environment where messages are being crea
read, modified, and deleted by multiple tasks simultaneously. With th
large message networks of today being the rule, rather than the excep
and high volumes of messages being imported on a daily, sometimes hou
basis, creation and deletion speed is of the utmost importance. This
where SMB really shines. Being extensible enough to handle message fo
from networks of today and tomorrow, and fast enough to import more m
that humanly readable, the SMB format will more than meet your messag
storage needs.

Q. Why a specification?

A. Message bases are often accessed and modified by a number of differen
programs. Often these programs are developed by individuals or compan
other than the original designer of the message base format. This
specification is an attempt to aid developers in creating programs th
access or modify a message base stored in the SMB format.

Q. Who can use this specification?

A. Anyone that has interest in the Synchronet Message Base format at eit
an educational or professional level. Specifically, software develope
interested or currently involved in the development of message reader
editors, echomail (toss/scan) programs, message transfer agents (MTAs
network gateways, and bulletin board systems. Much of the information
this specification is intended for those with preexisting programming
knowledge, so those with little or no programming experience may find
hard to comprehend.

Synchronet 3 Intro

Q. What does the SMB specification include?

A. The text you are reading is part of the SMB specification: a single t
document that defines the storage format of each of the six files of
SMB format message base and how they are related to each other.

Included with this specification is C source code to be used as an ex
to programmers of how to access an SMB format message base and public
library functions (SMBLIB) that can be compiled and linked into progr
that access an SMB format message base developed by third parties. An
utility program (SMBUTIL) is also included with C source code as an e
of how to use the SMBLIB functions.

Q. Where did the SMB specification come from?

A. Digital Dynamics (southern California based software development comp
released "Synchronet Multinode BBS Software Version la" in June of 19
one of the first BBS packages to be designed from the ground-up to op
in a multinode environment with incredible speed and reliability, wit
large suite of multinode specific features and design innovations.

The original message base format was designed with localized messagin
low volume message networks in mind. By January of 1993, it was clear
high volume message networks (FidoNet, RelayNet, Usenet, etc.) were t
preference of most BBS users and a new message base format was requir
allow for high volume message storage, improved storage, retrieval, a
maintenance performance, as well as lower storage space reguirements.

Rather than introduce another new message format, Digital Dynamics so
to implement an existing public specification for a format that would
current and future message storage needs. More than a few specificati
were seriously considered at one time or another, but after careful
examination, design flaws and lack of extensibility eliminated them f
long term plans of Digital Dynamics and Synchronet BBS Software. Thus
the design of the "Synchronet Message Base" (SMB) format.

At the request of many message related program developers, Digital Dy
created and released the SMB specification before the release of "Syn
Version 2.00" to allow lead-time on developing support programs for t
format.

Digital Dynamics strongly encourages developers of message related pr
(including software that directly competes with Synchronet or other D
Dynamics products) to implement support for SMB. Though this is a pub
specification and Digital Dynamics encourages developer suggestions,
remain under the sole control of Digital Dynamics unless specifically
otherwise in a future revision of this specification.

Digital Dynamics requests that any organizations that wish to adopt o
ratify this specification, in part or whole, notify Digital Dynamics
any of the contact methods listed at the beginning of this document.

Synchronet 4 Intro

Q. How does SMB store messages?

A. Each message base is stored in a set of six binary files. The base fi
(maximum of eight characters) is the same for all six files of the sa
message base and unique amoung the filenames of other message bases.
files each have a different three character extension. The first char
of the extension is always the letter 'S' (for SMB), while the second
third characters define the contents of the file.

Two of the six files associated with each message base are not recrea
and therefore are the most important when considering data integrity.
two files are the data file (with a .SDT extension) and variable leng
header file (.SHD extension). Both of these files use 256 byte blocks
have associated block allocation tables (stored in .SDA and .SHA
respectively) so that deleted message blocks may be used by new messa
without creating odd sized unused 'holes' in the files. The block all
table files (.SDA and .SHA) can be recreated with the information sto
the header (.SHD) file.

For fast indexing, there is a small fixed length index file (with a
extension). This file allows for the immediate location of message he
records based on sender's name or user number, recipient's name or us
number, subject, message number, or message attributes. This file can
recreated with the data stored in the header (.SHD) file.

The last file is an optional CRC history (.SCH) file. It contains 32-
CRCs of a configurable number of messages imported or created locally
is to help eliminate duplicate messages created by user or program er
The CRC history file can be recreated with the combination of informa
stored in the data (.SDT) and header (.SHD) files.

Synchronet 5 Intro

Q. How fast do messages import into an SMB message base?

A. This is a very important question for systems for that import large v
of messages. Of course, the answer depends on the storage format whic
are importing from, the average length of messages, the design of the
program which is peforming the import process, as well as the hardwar
system software being used. What's important is that SMB will allow t
fastest import process possible with any given combination of the abo
factors.

Since system storage capacity is rarely infinite, neither is the numb
of messages which can be stored. System operators must define the max
number of messages to be stored in a message base, the maximum age of
messages in that message base, or a combination of both. Generally, t
smaller the number of messages stored in a message base, the faster t
import process. The SMB format is flexible enough to support multiple
levels of import performance based on optimizations for storage space
speed. Most system operators will almost invariably choose speed over
space, but which choices are available is determined by the importing
program.

Q. How much storage is required for an SMB message base?

A. The biggest factor in determining storage requirements for a message
is the maximum number of messages to be stored in the base (defined b
system operator) and the average size of each message. The minimum re
storage for a message base is 32 bytes plus 535 bytes per message (53
per message if duplicate message checking is used).

The SMB format is designed to be "self-packing", meaning purged (dele
message header and data blocks will be used automatically by new mess
Relying solely on self-packing, an SMB format message base will never
"shrink" in size. This is not to say that it will continually "grow"

size, but that without specific packing procedures, deleted message b
may remain unused for extended periods of time, meanwhile using some

of storage space that could be freed using specific packing procedure

Limiting the maximum age of messages in an SMB message base is anothe
to control the storage requirements. While maximum message age defini
optional, the definition of the maximum number of messages is not.

Synchronet 6 Intro

Q. How many messages can be stored per SMB message base?

A. Without considering storage limitations or message data lengths great
256, the theoretical maximum number of messages that can be stored in
single SMB message base is 16.7 million. Considering the variable len
nature of message and header data, it is suggested that the system op
allow no more than 1 million messages per base.

To determine an estimated maximum number of messages for a message ba

using the average message data length as a factor, use the following
formula:

4.2 billion divided by the average message length rounded up to be ev
divisible by 256.

If the average message data length is 1500 bytes, the estimated maxim
number of messages would be 2,734,375 (4.2 billion divided by 1536).

Synchronet 7 Intro

Implementation Levels

The SMB format can be implemented to varying degrees between programs wi
creating compatibilty issues. Rather than have developers specifically s
which features they have and have not implemented, we have defined five

of implementation (represented by Roman numerals I through VII). For a p
or software package to meet an implementation level, it must have all of
features listed for that level and all of those for each level below it.
minimum suggested imlementation is level I. The SMBUTIL program included
this specification is an example of a level I implementation.

Level I

The minimum suggested level of implementation. Messages contain merely A
text displayable on an ANSI terminal. Messages can be added to the messa
base and if the maximum number of messages is exceeded, messages are rem
or marked for deletion.

The SMBUTIL program included with this specification, is the perfect exa
of level I implementation.

The addition of file attachments, multiple index/header entries per mess
(multiple destinations), multiple text bodies for the separation of mess
text and tag/origin lines (for example), forwarding, threading, and spec
FidoNet kludge header field support makes this level of implementation m
realistic for bulletin board system and EchoMail software implementation

Synchronet Multinode BBS Software v2.00 has a level II implementation of
specification.

Level TIII
This implementation adds support for translation strings defined later i
document for data compression, encryption, escaping, and encoding. This
is still limited to basic ASCII text and ANSI escape sequence entry and
retrieval.

The storage and retrieval of embedded and attached images is added in th
level of implementation. Supported images are limited to single binary o
data blocks that can be displayed or transferred to the user (automatica
or by request) if their display and translation protocols define specifi
support for the image type.

Level V

This level of implementation adds support for embedded and attached soun
This includes digitized sound and MIDI data. Supported sounds are limite
single binary or text data blocks that can be played or transferred to t
(automatically or by request) if their presentation and translation prot
define specific support for the sound type.

Synchronet 8 Implementation

Level VI

Localized sound and image data can be triggered by messages stored and
retrieved in an implementation of this level.

Level VII

Complete multimedia support is reached in this implementation level with
support for embedded and attached animation, sound, and video data.

Synchronet 9 Implementation

Definitions

When specifying control characters (ASCII 1 through 31), the caret symbo

or the abreviation "ctrl-" followed by a character will be used to indic
value. "A is equivalent to ASCII 1, "B ASCII 2, etc. The case of the con
character is not significant (i.e. "z and "“Z are equivalent). The contro

character *@ (ASCII 0) will be specified as NULL or O.

Hexidecimal

Base sixteen numbering system which includes the digits 0-9 and A-F.
Hexidecimal numbers are represented in this document with a prefix of "0
"\x" or a suffix of "h". Hexidecimal letter digits are not case sensitiv
(i.e. the number Oxff is the same as OxFF).

File dump

When example file dumps are displayed, the format is similar to that of
output from the DOS DEBUG program. With the exception of the ASCII chara
all numbers are in hexidecimal.

Offset Byte values ASCII cha
000000 53 4D 42 1A 10 01 20 00 F4 01 00 00 F4 01 00 00 SMB... .|
000010 20 00 00 00 DO 07 00 0O DO 07 00 00 00 00 00 00 R

Bit values

Bit (or flag) values are represented in C notation as (1<<x) where x is
number. (i.e. bit number 7 (1<<7) 1s the same as 0x80).

Word storage

All words (1l6-bit) and double words (32-bit) are stored in Intel 80x86 (
endian) format with bytes stored from low to high (reverse of the Motoro
680x0 word storage format).

A 16-bit word with the value 1234h is stored as 34h 12h.

Synchronet 10 Defi

Translation strings

Translation strings (xlat variables) are arrays of words (1l6-bit) in the
of the original storage translation. The last translation type is follow
16-bit zero (defined later as XLAT _NONE). If there are no translations,
the first and only element of the array is XLAT_NONE.

When translating data upon retrieval, the translation order must be reve
to obtain the proper data.

Synchronet 11 Defi

Acronyms:

ANST American National Standards Institute

ASCII American Standard Code for Information Interchange

BBS Bulletin Board System

C The C programming language as defined by ANSI X3.159-198
CR Carriage Return character (ASCII 13)

CRC Cyclic Redundancy Check

CRC-16 Standard 16-bit CRC using 1021h polynomial

CRC-32 Standard 32-bit CRC using EDB88320h polynomial

CRLF Carriage Return character followed by a Line Feed charac
FSC FidoNet Standards Commitee (FTS proposal)

FTN FidoNet Technology Network

FTS FidoNet Technical Standard

LF Line Feed character (ASCII 10)

QWK Compressed message packet format for message reading/net
REC Request for Comments

SMB Synchronet Message Base

UuT Universal Time (formerly called "Greenwhich Mean Time")
Synchronet 12 Definition of A

Data types

short

ushort

ulong

time_t

ASCII

ASCIIZ

Unsigned 8-bit wvalue (0 through 255).
C example:

#define uchar unsigned char

Signed 16-bit value (-32768 through 32767).
"short" is a C keyword indicating "short int".

Unsigned 16-bit value (0 through 65535).
C example:

#define ushort unsigned short

Unsigned 32-bit value (0 through 4294967295).
C example:

#define ulong unsigned long

Unsigned 32-bit wvalue.

Seconds since 00:00 Jan 01 1970 (Unix format).

Used for all time/date storage in SMB as part of the whe
data type. This time format will support dates through t
2105.

time_t is defined by ANSI C as a long (signed) which can
limit its date support to the year 2038 depending on the
library routines used.

String (aka character array) of 8-bit ASCII characters.
Characters with the bit 7 set (80h through FFh) represen
the IBM PC extended ASCII character set. When data or he
fields of this type are stored in the header, a NULL
terminator may or may not be present.

C example:

uchar str[807];
ASCII string with (non-optional) NULL terminator.
C example:

uchar str[81];

Synchronet

13 Definition of Dat

nulstr

undef

when_t

ASCII string immediately terminated by NULL.
C example:

uchar *nulstr="";

Data buffer with undefined contents.
C example:

uchar buf[BUF_LEN];

Date/Time stamp including time-zone adjustment informati
C example:

typedef struct {

time_t time; // Time stamp (in local time)
short zone; // Zone constant or Minutes (+/-) fr
} when_t;

time:

A time value of 0 is invalid and indicates an uninitiali
time stamp.

Time stamps are always stored in universal time. i.e.
Regardless of what the local time zone is, Jan 1lst 1994
will always be stored as 2D24BDO00Oh.

zone:
If the zone is the range -720 to +720, it represents the
of minutes east or west of UT. Values in this range shou

be used for time zones not otherwise represented here.

If the zone is greater than 720 or less than -720, then
following bits have special meaning:

(1<<12) // Non-US time zone (east of UT)
(1<<13) // Non-US time zone (west of UT)
(1<<14) // U.S. time zone

(1<<15) // Daylight savings

The lower 12 bits (0 through 11) contain the number of m
east or west of UT (not accounting for daylight savings)

Synchronet

14 Definition of Dat

If the time zone is one specified in the U.S. Uniform Ti
the following values represent the zone:

AST 0x40F0 // Atlantic ()
EST 0x412C // Eastern ()
CST 0x4168 // Central ()
MST O0x41A4 // Mountain (:00)
PST 0x41EO0 // Pacific (-08:00)
YST 0x421C // Yukon ()
HST 0x4258 // Hawaii/Alaska ()
BST 0x4294 // Bering ()

With bit 15 set, the following values represent the same
with the presence of daylight savings:

ADT 0xCOFO // Atlantic ()
EDT 0xCl2cC // Eastern ()
CDT 0xC168 // Central ()
MDT OxClA4 // Mountain (:00)
PDT OxCl1EO // Pacific (-07:00)
YDT 0xC21C // Yukon ()
HDT 0xC258 // Hawaii/Alaska ()
BDT 0xC294 // Bering ()
The following non-standard time zone specifications may
used:

MID 0x2294 // Midway (- 00)
VAN 0x21EO0 // Vancouver (- 00)
EDM 0x21A4 // Edmonton (- 00)
WIN 0x2168 // Winnipeg (- 00)
BOG 0x212C // Bogota (- 00)
CAR 0x20FO0 // Caracas (- 00)
RIO 0x20B4 // Rio de Janeiro (- 00)
FER 0x2078 // Fernando de Noronha (- 00)
AZO 0x203C // Azores (-01:00)
LON 0x1000 // London (+OO: 0)
BER 0x103C // Berlin (+01:00)
ATH 0x1078 // Athens (+02:00)
MOS 0x10B4 // Moscow (+03:00)
DUB 0x10FO // Dubai (+04:00)
KAB 0x110E // Kabul (+04:30)
KAR 0x1l12C // Karachi (+05:00)
BOM 0x114A // Bombay (+05:30)
KAT 0x1159 // Kathmandu (+05:45)
DHA 0x1168 // Dhaka (+06:00)
BAN Ox11A4 // Bangkok (+07:00)
HON 0x11EO // Hong Kong (+08:00)
TOK 0x121C // Tokyo (+09:00)
SYD 0x1258 // Sydney (+10:00)
NOU 0x1294 // Noumea (+11:00)
WEL 0x12DO // Wellington (+12:00)

Synchronet 15 Definition of Dat

fidoaddr_t

typestr_t

mattach_t

vattach_t

FidoNet address stored as four ushorts that represent th
network, node, and point (in that order).
C example:

typedef struct {
ushort zone,
net,
node,
point;
} fidoaddr_t;
ASCIIZ string with ushort type prefix.
C example:

typedef struct {

ushort type; // Specifier for type of 'str'
uchar str[]; // ASCIIZ filename or other string d

} typestr_t;
File attachment information with type prefix, translatio
string, and filename.
C example:
typedef struct {
ushort type; // Attachment type
ushort xlat[]; // Translations of data in attachmen
uchar str([]; // ASCIIZ filename
} mattach_t;
Video file attachment information with type, compression
translation string, and filename.
C example:
typedef struct {
ushort type; // Attachment type
ushort comp; // Compression method
ushort xlat[]; // Translations of data in attachmen
7

uchar str[] // ASCIIZ filename

} vattach_t;

Synchronet

16 Definition of Dat

mtext_t

ftext_t

membed_t

vembed_t

Message text with translation string prefix.
C example:

typedef struct {

ushort xlat[]; // Translations of text
uchar text[]; // Actual text data

} mtext_t;
Formatted message text with translation string prefix an
format type.
C example:
typedef struct {
ushort type; // See Image Types for valid types
ushort xlat[]; // Translations of data
uchar datal]l; // Actual formatted text data
} ftext_t;
Embedded data with type prefix, translation string, and
description.
C example:
typedef struct {
ushort type; // Specifier for type of 'dat'
ushort xlat[]; // Translations of embedded data
uchar name[]; // ASCIIZ char description of embedd
uchar dat[]; // Binary data
} membed_t;
Embedded video data with type, compression method, trans
string, and ASCIIZ description.
C example:

typedef struct {

ushort type; // Specifier for type of 'dat'

ushort comp; // Compression method

ushort xlat[]; // Translations of embedded data
uchar name[]; // ASCIIZ char description of embedd
uchar dat[]; // Binary data

} vembed_t;

Synchronet

17 Definition of Dat

File forma

ts

The index file for each message base contains one record per message in

base.

Index Record:

C example:

typedef struct {

Each record is fixed length using the following format:

ushort to; // 16-bit CRC of recipient name (lower case)

ushort from; // 16-bit CRC of sender name (lower case) or

ushort subj; // 16-bit CRC of title/subject (lower case)

ushort attr; // attributes (read, permanent, etc. flags)

ulong offset; // offset into header file

ulong number; // message number

time_t time; // import date/time stamp (Unix format)

} idxrec_t;
Example file dump (16 messages starting with message number
000000 36 4 13 07 2A 77 00 00 20 00 00 00 OF 00 0O 00 60..%w..
000010 BE 62 76 2C 36 4F 46 OA 7F B2 00 00 20 01 00 00 dbv, 60F.0
000020 10 00 00 00 C7 29 78 2C 36 4F 70 oF 46 FF 00 00W)x,6
000030 20 02 00 00 11 00 0O 00 AD D3 7A 2C 70 oF 13 07 i
000040 46 FF 00 00 20 03 00 00 12 00 00 00 D6 F8 7TF 2C F .. .
000050 36 4F E1 EA E7 E9 00 00 20 04 00 00 13 00 0O 00 60 16..
000060 1E 7B 85 2C 37 0D 2E DF 4D 79 00 00 20 05 00 00 (a,7..my
000070 14 00 00 00 5C E1 Al 2C 90 54 2D 5A 86 62 00 00 ...\Bi,E
000080 20 06 00 00 15 00 0O 00 39 2E A2 2C 70 6F 1A 8B = 9
000090 46 FF 00 00 20 07 00 00 16 00 00 00 DO 7B A8 2C F .o
0000A0 2E DF 1A 8B 4D 79 00 00 20 08 00 00 17 00 0O 0O u IMy. .
0000BO FF 7B A8 2C B4 D9 35 7C 23 B1 00 00 20 09 00 00 {ey J5|#
0000CO 18 00 00 00 CE D4 BA 2C 36 4F BC D8 B2 E7 00 00 L[|, 6
0000DO 20 0A 00 00 19 00 00 00 14 5F C3 2C BA A8 4E BO
0000EOQ 67 76 00 00 20 OB 00 0O 1A 00 00 00 oF 89 C3 2C gv.
0000FO0 36 4F 0OC 01 19 9C 00 00 20 0C 00 00 1B 00 0O 0O 60...£.
000100 F8 30 Co6 2C 36 4F FA 48 OE 55 00 00 20 0D 00 00 oO|=,6O-H.
000110 1C 00 00 00 oA 94 D3 2C 36 4F F1 CE CF A2 00 00 .jolk, 6
000120 20 OE 00 00 1D 00 0O 00 53 DB D5 2C 8D A6 21 CE S
000130 F7 AB 00 00 20 OF 00 0O 1E 00 00 00 31 29 DC 2C =Y,
Synchronet 18 Index (*.SID) File

Field descriptions:

To:

The 'To' field is the CRC-16 of the name of the intended recipient agent
this message or the intended recipient's user number. If the CRC is stor
text must be converted to lower case (A-Z changed to a-z) before the CRC
calculated. If the message is forwarded to another agent, the original o
index record must be changed to contain the CRC-16 of the new recipient
user number.

From:

This field, similar to the 'To' field, contains the CRC-16 of the name o
the sending agent of this message or the sender's user number. If the CR
is stored, the text be converted to lower case (A-Z changed to a-z) befo
CRC is calculated. If the message is forwarded to another agent, the ori
or new index record must be changed to contain the CRC-16 of the new sen
name or user number.

Subj:

The 'Subj' field contains the CRC-16 of the message's subject. The subje
must be converted to lower case (A-Z changed to a-z) and all preceeding
"re: "'s and "re:"'s removed before calculating the CRC-16.

Attr:
This field is a ushort bit-map of the specific attributes for this messa
It is a clone of the 'attr' element of the smbhdr_t structure.

Offset:
This ulong is the offset (in bytes) in the header file for this message'
header record.

Number:

This ulong is the serial number of this message. Valid values are 1 thro
Oxffffffff. No two index records in the same message base may have the s
message number.

Time:

This field is the date/time stamp the message was imported to or posted
the message base. It is a clone of the 'when_ imported.time' element of t
smbhdr_t structure.

Synchronet 19 Index (*.SID) File

Each SMB header file is made up of two distinct sections: base header re
and message header records.

Base Header Records:

Base header records are blocks of data that apply to the entire message

and are of variable length. This specification defines only one base hea
record, the "Status info" (smbstatus_t) record. This status info record

the first base header record in the file and must be modified if additio
base header records are added.

Additional header records allow other developers to store configuration
status information particular to their application needs. It also allows
future header record definitions as part of this specification without c
backward compatibility issues.

Each base header record contains a fixed length portion (smbhdr_t) and a
optional variable length portion.

Whenever a base header record is read or updated (written), it must firs
be successfully locked and subsequently unlocked.

Message Header Records:

Following the last base header record is the first message header record
header record is stored in one or more 256 byte blocks. There must be ex
one active message header record for every index record in the index fil
(Note: This does not include deleted message headers that have not been
overwritten by a new message header).

Each message header record contains a fixed length portion (msghdr_t), a
of zero or more fixed length data fields (dfield_t), and a list of three
more variable length header fields (hfield t).

The value of the data stored in the zero or more unused bytes of the las
header record block have an undefined value, though whenever possible
developers should initialize to binary zero for human readability.

Whenever a message header record is read or updated (written), it must £
be successfully locked and subsequently unlocked.

Synchronet 20 Header File (*.SHD)

C example:

typedef struct {

uchar id[(4]; // text or binary unique hdr ID

ushort version; // version number (initially 100h for 1.00)
ushort length; // length including this struct

} smbhdr_t;

Base Header #1 (Status info) Record (Variable Portion):

C example:

typedef struct {

ulong last_msg; // last message number

ulong total_msgs; // total messages

ulong header_offset; // byte offset to first header record

ulong max_crcs; // Maximum number of CRCs to keep in history
ulong max_msgs; // Maximum number of messages to keep in bas
ushort max_age; // Maximum age of messages (days) to keep in
ushort reserved; // Reserved for future use

} smbstatus_t;

Base Header #1 (Status info) Record Contents:
smbhdr.id="SMB\xla"; // SMB"7Z
smbhdr.version=0x110; // v1.10
smbhdr.length=sizeof (smbhdr_t)+sizeof (smbstatus_t);
smbstatus_t status;

Additional Base Headers:

Additional headers from developers must have initial 8 bytes in smbhdr_t
format, length must include size of smbhdr_t, and header_offset of smbst
must be changed to include the size of the additional header (s).

Example file dump (base header portion only) :

000000 53 4D 42 1A 10 01 20 0O F4 01 00 00 F4 01 00 0O SMB... .|
000010 20 00 00 00 DO 07 00 OO DO 07 00 00 00 00 00 0O ol oL

Synchronet 21 Header File (*.SHD)

Message Header Record

(Fixed portion):

C example:

typedef struct {

uchar id[4];

ushort type;

ushort wversion;
ushort length;

ushort attr;

ulong auxattr;

ulong netattr;
when_t when_written;
when_t when_imported;
ulong number;

ulong thread_orig;
ulong thread_next;
ulong thread_first;
uchar reserved[1l6];
ulong offset;

ushort total_dfields;
} msghdr_t;

typedef struct {

ushort type;
ulong offset;
ulong length;
} dfield_t;

typedef struct {

ushort type;

ushort length;
uchar dat [length];
} hfield t;

//
//
//
//
//
//
//
//
/7
//
//
//
/7
//
//
/7

//
//
//

//
//

SHD"Z (same for all types and versions)
Message type (this is the definition of t
Version of type (initially 100h for 1.00)
Total length of fixed portion + all field
Attributes (bit field) (duplicated in SID
Auxillary attributes (bit field)

Network attributes (bit field)

Date/Time message was originally created
Date/Time message was imported (locally)
Message number (unique, not necessarily s
Original message number in thread

Next message in thread

Number of first reply to this message

16 reserved bytes for future use
Offset for buffer into data file
Total number of data fields

(0 or mo

See "Data Field Types" wvalues
Offset into buffer
Length of data field in buffer

See "Header Field Types" for values

Length of buffer

Synchronet

22 Header File (*.SHD)

Example file dump (one header record, both fixed and variable length por

000020 53 48 44 1A 00 00 10 01 F5 00 00 00 00 00 00 0O SHD..... J
000030 00 00 00 00 46 DB F7 2C 00 00 7D D7 29 2D 00 0OF~, .
000040 01 00 00 00 00 00 Q0 OO 00 00 00 00 00 OO0 00 OO0 ...,
000050 00 00 00 00 00 00 Q00 OO 00 00 00 00 00 OO0 00 OO0 ...,
000060 00 00 00 00 02 00 Q00 OO 00 00 00 00 4A 01 00 00 ...
000070 02 00 4A 01 00 00 53 0O 00 00 00 00 13 00 4D 61 .J...S..
000080 72 69 61 6E 6E 65 20 4D 6F 6E 74 67 6F 6D 65 72 rianne Mo
000090 79 30 00 0OC 00 43 61 72 6F 6C 20 47 61 69 73 65 y0...Caro
0000A0 72 60 00 07 00 46 61 72 6E 68 61 6D A4 00 14 0O r ...Farn
0000BO 31 3A 31 33 38 2F 31 30 32 2E 30 20 32 63 66 38 1:138/102
0000CO 30 35 37 36 A5 00 14 0O 31 3A 33 34 33 2F 31 30 0576N...1
0000DO 30 2E 30 20 32 63 66 33 62 39 30 61 A3 00 23 00 0.0 2cf3b
0000EO 31 33 38 2F 31 30 32 20 31 20 32 37 30 2F 31 30 138/102 1
0000FO0 31 20 32 30 39 2F 32 30 39 20 31 30 33 2F 30 20 1 209/209
000100 33 35 35 02 00 02 00 02 00 03 00 08 00 01 00 8A 355......
000110 00 66 00 00 00 00 Q00 OO 00 00 00 00 00 00 QO OO B

Synchronet 23 Header File (*.SHD)

Contents of example header:

id

type
version
length
attr
auxattr
netattr

when_written
when_imported

number

thread_orig
thread_next
thread_first
reserved[16]

offset

total dfields

dfield]
dfield]
dfield]
dfield]
dfield]

[

0
0
0
1
1
dfield][1l

[T O S B By Sy S

hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[
hfield[

.type
.0offset
.length
.type
.0offset
.length

.type
.length
dat

.type
.length
dat

.type
.length
_dat
.type
.length
_dat
.type
.length
_dat
.type
.length
_dat
.type
.length
_dat
.type
.length
_dat

00000000h
00000000h

Sat Nov 27 17:57:10 1993
Tue Jan 04 15:54:21 1994

1

0
0
0

N O

00h
0
330
02h
330
83

00h
19

Marianne Montgomery

30h
12

Carol Gaiser

60h

7
Farnham
Adh

20

1:138/102.0 2c£80576

Abh
20

1:343/100.0 2c£f3b90a

A3h
35

138/102 1 270/101 209/209 103/0 355

02h

2

02 00
03h

8

01 00 8A 00 66 00 00 OO

Synchronet

Header File

Fixed Portion Field descriptions:

Id:
This field (regardless of the header type or version) must always contai
the string "SHD"Z". This is to aid in the restoration of a corrupted hea

file and give a visual indication of the beginning of a new header recor
viewing hex/ASCII dumps of the header file.

Type:

This is the message header type. Only one type is currently defined by t
specification (type 0). Any and all future header types will have the fi
4 fields (10 bytes) in the same format of type 0. This allows other type
(with different lengths) to be skipped because the 4th field (length) wi
always be in the same position.

Version:
This is the version of this header type. This specification defines vers
1.10 of message header type 0 (stored as 110h).

Length:
This is the total length of this message header record (including both f
and variable length portions, but NOT including unused block space).

Attr:

This is a bit field (16-bit) containing basic message attributes (flags)
this message. An exact duplicate of this field is stored in the index fi
well. They must always match.

Auxattr:

This is a bit field (32-bit) containing the auxillary attributes (flags)
this message. The attributes stored in this wvariable are more specific i
nature and less critical than those in the Attr field.

Netattr:

This is a bit field (32-bit) containing the network attributes (flags) f
message. The attributes stored in this variable are related solely to me
networking.

When_written:
This is the date and time when the message was originally created.

When_imported:
This is the date and time when the message was posted on or imported int
local message system.

Number:
This is the message's unique serial number (from 1 to FFFFFFFFh). This f
is duplicated in the index file. They must always match.

Synchronet 25 Header File (*.SHD)

Thread_orig:

If this message is a reply, then this field contains the number of the o
message that was replied to. If this message was not a reply, this field
contain the wvalue 0.

Thread_next:

If this message is a reply, and there are later replies to that message
(the message number contained in the Thread_orig field), then this field
contain the number of the next reply in the chain. If this message is th
reply to the orignal message, this field will contain the wvalue 0.

Thread_first:

If there are any replies to this message (after it has been posted), thi
will contain the number of the first reply to this message. If there are
replies to this message, this field will contain the wvalue 0.

Reserved:
Unused bytes, reserved for future definition in the message header type
specification.

Offset:

The byte offset into the data file, specifying the start of the buffer f
all data associated with this message. This value must be either 0 or mo
256. When retrieving the actual data portion of data fields, the physica
offset into the file will be the offset of the message data buffer (this
plus the offset of the individual data field (msghdr_t.offset+dfield _t.o

Total_dfields:

This field contains the total number of data fields associated with this
message. The value of this field must match the actual number of data fi
stored in the header (dfield_t data types following the fixed portion of
message header).

Variable Portion Field descriptions:

See the Header Field Type and Data Field Type sections for the descripti
of the values contained in these fields.

Synchronet 26 Header File (*.SHD)

This file contains no header or signature data. Each byte (uchar) in the
specifies the allocation state of the corresponding 256 byte block in th
header (*.SHD) file. A value of 0 indicates a free header block, and a v
1 indicates an allocated block. Other non-zero values are undefined.

This file must always be opened DENY ALL (non-shareable).

Synchronet 27 Header Allocation File (*.SHA)

Message Data (*.SDT)

This file contains no header or signature data. It contains the text and
embedded data for the messages in a single message base. The data for ea
message always begins on a 256 byte block boundary. The data in the unus
portion of a data block is undefined, but should be initialized to NULL

whenever possible.

This file must always be opened DENY NONE (shareable).

Data fields of type TEXT_BODY and TEXT_TAIL must have all trailing white
and control characters removed (i.e. the last character of the data reco
must be in the range 21h to FFh). The only exception to this rule, is if
TEXT_BODY is terminated with multiple contiguous CRLFs, only the last CR
should be removed. A CRLF should always be appended to the text data whe
displayed.

Synchronet 28 Data File (*.SDT)

This file contains no header or signature data. Each word (ushort) in th
specifies the allocation state of the corresponding 256 byte block in th
(*.SDT) file. A value of 0O indicates a free block, and a non-zero value

indicates the number of message header records associated with this mess
data (most often 1). Each block can be used by up to 65,535 header recor

This file must always be opened DENY ALL (non-shareable).

Synchronet 29 Data Allocation File (*.SDA)

This file is optional and contains no header or signature data. Each lon
(ulong) in the file contains a CRC-32 of previously posted/imported mess
These CRCs can be used to check a candidate message for posting/import t
sure the message isn't a duplicate created by human or program error. Th
maximum number of CRCs to store is defined in the first message base hea
record (smbstatus_t.max_crcs).

This file must always be opened DENY ALL (non-shareable).

Synchronet 30 CRC History File (*.SCH)

Header Field Types:

These are the defined wvalid values for hfield_t.type:

Name : SENDER

Value : 00h

Data : ASCIT

Multiple : Yes, order significant

Required : Yes

Summary : Name of agent that sent this message

If blank (0 length or nulstr), assumed "Anonymous". If multiple SENDER f
exist, then the message has been forwarded and the order of the fields 1
record must match the forwarding order (chronologically). When forwardin
message, the original SENDER field should be left intact and new SENDER,
FORWARDED, and RECIPIENT fields added to the end of the record.

Name : SENDERAGENT

Value : 0l1h

Data : ushort

Multiple : Yes, order significant

Required : No

Default : AGENT_PERSON or previous SENDERAGENT if exists
Summary : Type of agent that sent this message

If multiple SENDER fields exist, then the message has been forwarded. If
forwarding agents is of a type other than AGENT_PERSON, then this field
follow that SENDER field to specify the agent type.

Name : SENDERNETTYPE

Value : 02h

Data : ushort

Multiple : Yes, order significant

Required : No

Default : NET_NONE or previous SENDERNETTYPE if exists
Summary : Type of network message was sent from

If multiple SENDERNETADDR fields are included, a SENDERNETTYPE field sho
included before each to determine what data type the address is stored i

Name : SENDERNETADDR

Value : 03h

Data : undef

Multiple : Yes, order significant

Required : No

Default : Previous SENDERNETADDR if exists

Summary : Network address for agent that sent this message

The SENDERNETTYPE field indicates the data type of this field. If the
SENDERNETTYPE is of type NET_INTERNET, the local-part of the Internet
address 1i1s optional. If the local-part separator character ('@') is omit
the SENDER field is assumed to be the local-part of the address.

Synchronet 31 Header Fiel

Name : SENDEREXT

Value : 04h

Data : ASCIT

Multiple : Yes, order significant
Required : No

Default : Previous SENDEREXT if exists
Summary : Extension of sending agent

This field is useful for storing the sending agent's extension, when the
agent's extension binds more tightly than the agent's name.

For example, Synchronet Multinode BBS Software stores local e-mail with
sending and receiving agent's user numbers stored as their respective
extensions. This is done so that if a user name changes for some reason,
messages will not "disappear" from the users's mail box. In Synchronet 1
e-mail, user numbers bind more tightly than user names.

If the SENDEREXT field is specified, then the "From" field in the index
contain the CRC-16 of this field rather than the SENDER (name) field.

Name : SENDERPOS

Value : 05h

Data : ASCIT

Multiple : Yes, order significant
Required : No

Default : Previous SENDERPOS if exists
Summary : Position of sending agent

Primarily for documentary purposes, this field contains the position of
sending agent (i.e. President, Sysop, C.E.O., MIS Director, etc).

It can also be useful for getting a message or reply to the intended
recipient when the agent name is not located or is unknown, but the posi
of the agent is known and specified.

Name : SENDERORG

Value : 06h

Data : ASCIT

Multiple : Yes, order significant

Required : No

Default : Previous SENDERORG if exists
Summary : Organization name of sending agent

Primarily for documentary purposes, this field contains the organization
which the sending agent belongs (i.e. Microsoft, Joe's BBS, SoCal User's
etc).

Synchronet 32 Header Fiel

Name AUTHOR

Value 10h

Data ASCII

Multiple Yes

Required No

Default First SENDER

Summary Name of agent that created this message

This field can only be added by the process that originally creates the

message.

It should not be included if same as first SENDER field.
AUTHOR fields exist,

If mul
then the message was created by multiple agents and

considered valid. The order of multiple AUTHOR fields in the record is n

significant.

Name AUTHORAGENT

Value 11h

Data ushort

Multiple Yes, order significant

Required No

Default SENDERAGENT or previous AUTHORAGENT if exists

Summary

Type of agent that created this message

This field can only be added by the process that originally creates the

message. It should not be included if same as first SENDERAGENT field. I
multiple AUTHOR fields exist, then the message was created by multiple a
and if the agent type for any of the authors is other than AGENT_PERSON,
AUTHORAGENT field must follow to specify the agent type.

Name AUTHORNETTYPE

Value 12h

Data ushort

Multiple Yes, order significant

Required No

Default SENDERNETTYPE or previous AUTHORNETTYPE if exists
Summary Type of network this author is member of

Name AUTHORNETADDR

Value 13h

Data undef

Multiple Yes, order significant

Required No

Default SENDERNETADDR or previous AUTHORNETADDR if exists
Summary Network address of this author

Synchronet

33 Header Fiel

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

AUTHOREXT

14h

ASCITI

Yes, order significant

No

SENDEREXT or previous AUTHOREXT if exists
Extension of this author

AUTHORPOS

15h

ASCITI

Yes, order significant

No

SENDERPOS or previous AUTHORPOS if exists
Position of this author

AUTHORORG

16h

ASCITI

Yes, order significant

No

SENDERORG or previous AUTHORORG if exists
Organization this author belongs to

Synchronet

34

Header Fiel

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

REPLYTO

20h

ASCII

Yes, but only last is wvalid

No

SENDER

Name of agent that replies should go to

REPLYTOAGENT

21h

ushort

Yes, but only last is wvalid

No

SENDERAGENT

Type of agent that replies should go to

REPLYTONETTYPE

22h

ushort

Yes, but only last is wvalid

No

SENDERNETTYPE

Type of network that replies should go to

REPLYTONETADDR

23h

undef

Yes, but only last is wvalid

No

SENDERNETADDR

Network address that replies should go to

Synchronet

35

Header Fiel

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

REPLYTOEXT

24h

ASCITI

Yes, but only last is wvalid

No

SENDEREXT

Extension of agent that replies should go to

REPLYTOPOS

25h

ASCITI

Yes, but only last is wvalid

No

SENDERPOS

Position of agent that replies should go to

REPLYTOORG

26h

ASCITI

Yes, but only last is wvalid
No

SENDERORG

Organization of agent that replies should go to

Synchronet

36

Header Fiel

Name
Value
Data
Multiple
Required
Default
Summary

If multiple RECIPIENT fields exist,
additional RECIPIENT field
FORWARDED field. The order of the RECIPIENT fields in the record must ma
order in which the message was sent and forwarded

Name
Value
Data
Multiple
Required
Default
Summary

If multiple RECIPIENT fields exist,

RECIPIENT
30h
ASCITI
Yes,
Yes
"Al l "
Name of agent to receive this message

order significant

(after the initial RECIPIENT),
(chronologically) .

RECIPIENTAGENT

31h

ushort

Yes, order significant

No

AGENT_PERSON or previous RECIPIENTAGENT if exists
Type of agent to receive this message

the message has been forwarded.

the recipient agents are of a type other than AGENT_PERSON, this field
follow the RECIPIENT field to specify the agent type.

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

RECIPIENTNETTYPE

32h

ushort

Yes, order significant

No

NET_NONE or previous RECIPIENTNETTYPE if exists
Type of network to receive this message

RECIPIENTNETADDR
33h
undef
Yes,
No
Previous RECIPIENTNETADDR if exists
Address of network to receive this message

order significant

Synchronet

37 Header Fiel

the message has been forwarded and £
there should b

If a

Name
Value
Data
Multiple
Required
Default
Summary

RECIPIENTEXT
34h
ASCITI
Yes,
No
Previous RECIPIENTEXT if exists

Extension of agent to receive this message

order significant

If the RECIPIENTEXT field is specified, then the "To" field in the index

contain the CRC-16 of this field rather than the RECIPIENT (name) field.
Name RECIPIENTPOS

Value 35h

Data ASCITI

Multiple Yes, order significant

Required No

Default Previous RECIPIENTPOS if exists

Summary Position of agent to receive this message

Name RECIPIENTORG

Value 36h

Data ASCITI

Multiple Yes, order significant

Required No

Default Previous RECIPIENTORG if exists

Summary Type of agent to receive this message

Synchronet 38 Header Fiel

Name
Value
Data
Multiple
Required
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

FORWARDTO
40h
ASCITI
Yes,
No
Name of agent this message is to be forwarded to

order significant

FORWARDTOAGENT

41h

ushort

Yes, order significant

No

RECIPIENTAGENT or previous FORWARDTOAGENT if exists
Type of agent this message is to be forwarded to

FORWARDTONETTYPE

42h

ushort

Yes, order significant

No

RECIPIENTNETTYPE or previous FORWARDTONETTYPE if exists
Type of network this message is to be forwarded to

FORWARDTONETADDR
43h
undef
Yes,
No
RECIPIENTNETADDR or previous FORWARDTONETADDR if exists
Network address this message is to be forwarded to

order significant

Synchronet

39 Header Fiel

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Summary

FORWARDTOEXT

44h

ASCITI

Yes, order significant

No

RECIPIENTEXT or previous FORWARDTOEXT if exists

Extension of agent this message is to be forwarded to

FORWARDTOPOS

45h

ASCITI

Yes, order significant

No

RECIPIENTPOS or previous FORWARDTOPOS if exists

Position of agent this message is to be forwarded to

FORWARDTOORG

46h

ASCITI

Yes, order significant

No

RECIPIENTORG or previous FORWARDTOORG if exists

Organization of agent this message is to be forwarded to

FORWARDED

48h

when_t

Yes, order significant
Yes, if forwarded

Date/Time this message was forwarded to another agent

Synchronet

40

Header Fiel

Name
Value
Data
Multiple
Required
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

RECEIVEDBY

50h

ASCITI

Yes, order significant

Yes, if receiving agent is other than RECIPIENT
Name of agent that received this message

RECEIVEDBYAGENT

51h

ushort

Yes, order significant

No

RECIPIENTAGENT or previous RECEIVEDBYAGENT if exists
Type of agent that received this message

RECEIVEDBYNETTYPE

52h

ushort

Yes, order significant

No

RECIPIENTNETTYPE or previous RECEIVEDBYNETTYPE if exists
Type of network that received this message

RECEIVEDBYNETADDR
53h
undef
Yes,
No
RECIPIENTNETADDR or previous RECEIVEDBYNETADDR if exists
Network address that received this message

order significant

Synchronet

41 Header Fiel

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

Name
Value
Data
Multiple
Required
Default
Summary

RECEIVEDBYEXT
54h
ASCITI
Yes,
No
RECIPIENTEXT or previous RECEIVEDBYEXT if exists
Extension of agent that received this message

order significant

RECEIVEDBYPOS
55h
ASCITI
Yes,
No
RECIPIENTPOS or previous RECEIVEDBYPOS if exists
Position of agent that received this message

order significant

RECEIVEDBYORG
56h
ASCITI
Yes,
No
RECIPIENTORG or previous RECEIVEDBYORG if exists
Organization of agent that received this message

order significant

RECEIVED

58h

when_t

Yes, order significant

Yes, 1f received

NULL

Date/Time this message was received

Synchronet

42

Header Fiel

Name
Value
Data
Multiple
Required
Summary

Name
Value
Data
Multiple
Required
Summary

Name
Value
Data
Multiple
Required
Summary

This field
recipient.

Name
Value
Data
Multiple
Required
Summary

SUBJECT

60h

ASCIT

No

Yes, but may be blank (0 length or nulstr)
Subject/title of message

SUMMARY

61lh

ASCITI

No

No

Summary of message contents, created by AUTHOR
COMMENT

62h

ASCITI

Yes

No

Comment about this message, created by SENDER

is useful for adding notes to a message when forwarding to a

CARBONCOPY

63h

ASCITI

Yes

No

List of agents this message was also sent to

This field is optional and only for the use of notifying the recipient o
else received the message.

Name
Value
Data
Multiple
Required
Summary

GROUP

64h

ASCII

Yes

No

Name of group of users to receive message on recipient system

This field is used when sending to a group name across a network, where
group can be expanded into multiple header records for each agent on the
destination system.

Name
Value
Data
Multiple
Required
Summary

EXPIRATION

65h

when_t

No

No

Date/Time that this message will expire

Synchronet

43 Header Fiel

Name : PRIORITY
Value : 66h

Data : ulong
Multiple : No
Required : No

Default : 0
Summary : Message priority (0 is lowest, FFFFFFFFh is highest)
Synchronet 44 Header Fiel

Name : FILEATTACH

Value : 70h

Data : ASCII

Multiple : Yes

Required : No

Summary : Name/file specification of attached file(s)

Name of attached file(s). Wildcards allowed. MSG FILEATTACH attribute mu
set. If the MSG_FILEATTACH attribute is set but this field is not includ
the SUBJECT field is assumed to be the filename(s).

Name : DESTFILE

Value : 71h

Data : ASCIT

Multiple : Yes, order significant

Required : No

Summary : Destination name for attached file(s)

Wildcards allowed. FILEATTACH field must also be included.

Name : FILEATTACHLIST
Value : 72h
Data : ASCIT

Multiple : Yes
Required : No
Summary : Name of ASCII list of attached filenames

Wildcards not allowed in ASCII list filename. Wildcards allowed in ASCII
MSG _FILEATTACH attribute must be set.

Name : DESTFILELIST

Value : 73h

Data : ASCIT

Multiple : Yes, order significant

Required : No

Summary : Name of ASCII list of destination filenames

Wildcards not allowed in ASCII list filename. Wildcards allowed in ASCII

Name : FILEREQUEST
Value : 74h
Data : ASCIT

Multiple : Yes
Required : No
Summary : Name of requested file

Wildcards allowed. MSG_FILEREQUEST attribute must be set

Name : FILEPASSWORD

Value : 75h

Data : ASCIT

Multiple : Yes, order significant
Required : No

Summary : Password for FILEREQUEST

Synchronet 45 Header Fiel

Name
Value
Data
Multiple
Required
Summary

FILEREQUESTLIST

76h

ASCITI

Yes

No

Name of ASCII list of filenames to request

Wildcards allowed.

Name
Value
Data
Multiple
Required
Summary

FILEPASSWORDLIST

77h

ASCITI

Yes, order significant
No

Name of ASCII list of passwords for FILEREQUESTLIST

Synchronet

46

Header Fiel

Name : IMAGEATTACH

Value : 80h

Data : mattach_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of attached image file for display

MSG_FILEATTACH attribute must be set. See Image Types for valid
mattach_t.type values.

Name : ANIMATTACH

Value : 81h

Data : mattach_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of attached graphical animation file for di

MSG_FILEATTACH attribute must be set. See Animation Types for valid
mattach_t.type values.

Name : FONTATTACH

Value : 82h

Data : mattach_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of attached font definition file

MSG_FILEATTACH attribute must be set. See Font Types for valid mattach_t
values.

Name : SOUNDATTACH

Value : 83h

Data : mattach_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of attached sound file for playback

MSG_FILEATTACH attribute must be set. See Sound Types for valid mattach_
values.

Name : PRESENTATTACH

Value : 84h

Data : mattach_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of attached presentation definition file

MSG_FILEATTACH attribute must be set. See Present Types for wvalid
mattach_t.type values.

Synchronet 47 Header Fiel

Name : VIDEOATTACH

Value : 85h

Data : vattach_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of attached interleaved video/sound file

MSG_FILEATTACH attribute must be set. See Video Types for valid
vattach_t.type values and Video Compression Types for valid vattach_t.co
values.

Name : APPDATAATTACH

Value : 86h

Data : mattach_t

Multiple : Yes, order significant

Required : No

Summary : Name of attached application data file for process/display

MSG_FILEATTACH attribute must be set. See Application Data Types for val
mattach_t.type values.

Synchronet 48 Header Fiel

Name : IMAGETRIGGER

Value : 90h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of image file to trigger for display

See Image Types for valid typestr_t.type values.

Name : ANIMTRIGGER

Value : 91h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of animation file to trigger for display

See Animation Types for valid typestr_t.type values.

Name : FONTTRIGGER

Value : 92h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of font definition file to trigger

See Font Types for valid typestr_t.type values.

Name : SOUNDTRIGGER

Value : 93h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of sound file to trigger for playback

See Sound Types for valid typestr_t.type values.

Name : PRESENTTRIGGER

Value : 94h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of presentation definition file to trigger

See Present Types for valid typestr_t.type values.

Name : VIDEOTRIGGER

Value : 95h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of interleaved video/sound file to trigger

See Video Types for valid typestr_t.type values.

Synchronet 49 Header Fiel

Name : APPDATATRIGGER

Value : 96h

Data : typestr_t

Multiple : Yes, order significant

Required : No

Summary : Type and filename of application data file to trigger

See Application Data Types for wvalid typestr_t.type values.

Synchronet 50 Header Fiel

Name : FIDOCTRL

Value : AOh

Data : ASCIT

Multiple : Yes, order significant

Required : No

Format : keyword ":" [" "] appdata

Summary : FTS/FSC-compliant control information line

Any FidoNet FTS/FSC-compliant control information ("kludge") line that
does not have an equivalent representation here. All data not unique to
actual control line, including leading and trailing white space, Ctrl-A
character and terminating CR must be ommited. Defined in FTS-0001.

Name : FIDOAREA
Value : Alh
Data : ASCIT

Multiple : No
Required : No
Summary : FTN EchoMail conference name.

Defined in FTS-0004.

Name : FIDOSEENBY

Value : A2h

Data : ASCII

Multiple : Yes, order significant

Required : No

Format : net"/"node [" "[net"/"]lnode] [...]

Summary : Used to store two-dimensional (net/node) SEEN-BY information

Often used in FTN EchoMail environments. Only the actual SEEN-BY data is
and SEEN-BY: is stripped along with any leading and trailing white space
characters. Defined in FTS-0004.

Name : FIDOPATH

Value : A3h

Data : ASCII

Multiple : Yes, order significant

Required : No

Format : net"/"node [" "[net"/"]lnode] [...]
Summary : Used to store two-dimensional (net/node)

Defined in FTS-0004. "aPATH: is stripped along with any leading and trai
white space characters.

Synchronet 51 Header Fiel

Name
Value
Data
Multiple
Required
Format
Summary

Name
Value
Data
Multiple
Required
Format
Summary

Name
Value
Data
Multiple
Required
Format
Summary

FIDOMSGID

A4dh

ASCITI

No

No

origaddr " " serialno

MSGID field as specified in FTS-0009.

FIDOREPLYID

AbSh

ASCITI

No

No

origaddr " " serialno

REPLY field as specified in FTS-0009.

FIDOPID

A6h

ASCITI

No

No

pID " " version [" "serialno]

Indentification string of program that created this message

Defined FSC-0046. "7aPID:" and any white space is not included.

Name
Value
Data
Multiple
Required
Summary

FIDOFLAGS

A7h

ASCITI

Yes

No

Used to store the FTN FLAGS kludge information

Note that all FLAG options that have binary representation in the messag
header must be removed from the FLAGS string prior to storing it. Only t
actual flags option string is stored and "aFLAGS is stripped along with
leading and trailing white space characters. Defined in FSC-0053.

Synchronet

52 Header Fiel

Name
Value
Data
Multiple
Required
Format
Summary

RFC822HEADER

BOh

ASCITI

Yes, order significant
No

field-name ":" [field-body]
Undefined RFC-822 header field

Internet Message storage format,

representation here.

ommited.

Name
Value
Data
Multiple
Required
Format
Summary

Name
Value
Data
Multiple
Required
Format
Summary

RFC822MSGID

Blh

ASCII

No

No

"<" addr_spec ">"

Message-ID field as specified in RFC-822.

RFC822REPLYID
B2h

ASCII

No

No

"<" addr_spec ">"

In-Reply-To field as specified in RFC-822.

[CRLF]

that does not have an equivalent
Folded header fields are allowed. Terminating CRLF

Synchronet

53

Header Fiel

Name : UNKNOWN

Value : FOh

Data : undef

Multiple : Yes

Required : No

Summary : Undefined header field of undefined type

This field is useful for retaining binary header fields (that do not hav
equivalent representation here) between message storage formats.

Name : UNKNOWNASCIT
Value : Flh
Data : ASCIT

Multiple : Yes
Required : No
Summary : Undefined header field of type ASCII

This field is useful for retaining ASCII header fields (that do not have
equivalent representation here) between message storage formats.

Name : UNUSED
Value : FFh
Data : undef

Multiple : Yes
Required : No
Summary : Unused (deleted) header field

The data contained in this header field is of an unknown type and should
processed.

Note:

Specifically, not defined are the values F000h through FFFFh. These wvalu
are to be used for user or system defined header fields. Digital Dynamic
requests that any developers or organizations that wish to have addition
header fields added to this specification notify Digital Dynamics throug
of the contact methods listed at the beginning of this document.

Synchronet 54 Header Fiel

Data Field Types:

These are the

Val

00h

01lh

02h

03h

10h

12h

Name

TEXT_BODY

TEXT_SOUL

TEXT_TAIL

TEXT_WING

FTEXT_BODY

FTEXT_TAIL

defined valid wvalues

Data

mtext_t

mtext_t

mtext_t

mtext_t

ftext_t

ftext_t

for dfield_t.type:

Description

Displayable text (body of message).

Included in duplicate message checki
All terminating white space and cont
characters are to be truncated from

(except when multiple contiguous CRL
terminate the text, only the last CR
is removed) .

Non-displayed text.

Not normally displayed. Not necessar
displayable.

Included in duplicate message checki

Displayable text (tag/tear/origin 1i
etc) .

Not included in duplicate message ch
All terminating white space and cont
characters are to be truncated from

Non-displayed text.

Not normally displayed. Not necessar
displayable.

Not included in duplicate message ch

Formatted equivalent of TEXT_BODY to
displayed in place of TEXT_BODY if f
is supported. See Image Types for va
values of ftext_t.type.

Formatted equivalent of TEXT_TAIL to
displayed in place of TEXT_TAIL if f
is supported. See Image Types for va
values of ftext_t.type.

Synchronet

55 Data Fiel

20h

21h

22h

23h

24h

25h

26h

FFh

Specifically,

IMAGEEMBED

ANIMEMBED

FONTEMBED

SOUNDEMBED

PRESENTEMBED

VIDEOEMBED

APPDATAEMBED

UNUSED

membed_t

membed_t

membed_t

membed_t

membed_t

vembed_t

membed_t

undef

Type and data of embedded raster ima
for display.

See Image Types for valid membed.typ
values.

Type and data of embedded graphical
animation file for display.

See Animation Types for valid membed
values.

Type and data of embedded font defin
file. See Font Types for valid
membed_t.type values.

Type and data of embedded sound file
playback.

See Sound Types for valid membed_t.t
values.

Type and data of embedded presentati
definition file.

See Present Types for valid membed_t
values.

Type and data of embedded video/soun
for playback.

See Video Types for valid vembed_t.t
values.

See Video Compression Types for vali
vembed_t.comp values.

Type and data of embedded applicatio
file for process/display.

See Application Data Types for wvalid
membed_t.type values.

Space allocated for future update/ex

not defined are the values F000h through FFFFh. These valu

are to be used for user or system defined data fields. Digital Dynamics

requests that any developers or organizations that wish to have addition
data fields added to this specification notify Digital Dynamics through

of the contact methods listed at the beginning of this document.

Synchronet

56 Data Fiel

Message Attributes:

These are the bit values for idxrec_t.attr and msghdr_t.attr:

MSG_PRIVATE 1<<0 // Private

MSG_READ 1<<1 // Read by addressee

MSG_PERMANENT 1<<2 // Permanent

MSG_LOCKED 1<<3 // Msg 1is locked, no editing possible

()
()
()
()
MSG_DELETE (1<<4) // Msg is marked for deletion
()
()
()
()

MSG_ANONYMOUS 1<<5 // Anonymous author

MSG_KILLREAD 1<<6 // Delete message after it has been read
MSG_MODERATED 1<<7 // This message must be validated
MSG_VALIDATED 1<<8 // This message has been validated by a mode

These are the bit values for msghdr_t.auxattr:

MSG_FILEREQUEST 1<<0 // File request
MSG_FILEATTACH 1<<1 // File(s) attached to Msg
MSG_TRUNCFILE 1<<2 // Truncate file(s) when sent

()
()
()
MSG_KILLFILE (1<<3) // Delete file(s) when sent
()
()
()

MSG_RECEIPTREQ 1<<4 // Return receipt requested
MSG_CONFIRMREQ 1<<5 // Confirmation receipt requested
MSG_NODISP 1<<6 // Msg may not be displayed to user

Network Attributes:

MSG_TYPELOCAL
MSG_TYPEECHO
MSG_TYPENET

// Msg is for conference distribution
// Msg 1s direct network mail

MSG_LOCAL (1<<0) // Msg created locally
MSG_INTRANSIT (1<<1) // Msg is in-transit
MSG_SENT (1<<2) // Sent to remote
MSG_KILLSENT (1<<3) // Kill when sent
MSG_ARCHIVESENT (1<<4) // Archive when sent
MSG_HOLD (1<<5) // Hold for pick-up
MSG_CRASH (1<<6) // Crash
MSG_IMMEDIATE (1<<7) // Send Msg now, ignore restrictions
MSG_DIRECT (1<<8) // Send directly to destination
MSG_GATE (1<<9) // Send via gateway
MSG_ORPHAN (1<<10) // Unknown destination
MSG_FPU (1<<11) // Force pickup

(

(

(

)
)
1<<12) // Msg is for local use only
)
)

Synchronet 57 Message Att

Translation Types:

Definition for values of *.xlat[x]:

XLAT_NONE
XLAT_LF2CRLF
XLAT_ESCAPED
XLAT_HUFFMAN
XLAT_LZW
XLAT_MLZ78
XLAT_RLE
XLAT_IMPLODE
XLAT_SHRINK

OJoyUurdbd WN RO

//
//
//
//
//
//
//
//
//

No translation/End of translation list
Expand sole LF to CRLF

7-bit ASCII escaping for ctrl and 8-bit d
Static and adaptive Huffman coding compre
Limpel/Ziv/Welch compression

Modified LZ78 compression

Run length encoding compression

Implode compression (PKZIP)

Shrink compression (PKZIP)

Synchronet

58 Translatio

Agent Types:

AGENT_PERSON 0 // To or from person
AGENT_PROCESS 1 // Unknown process, identified by agent name

Agent types E000h through EFFFh are reserved for Synchronet process type
(defined specifically by Digital Dynamics) .

Note:

Specifically not defined are agent types FO000h through FFFFh. These wvalu
are to be used for user or system defined agent types. Digital Dynamics

requests that any developers or organizations that wish to have addition
agent types added to this specification notify Digital Dynamics through

of the contact methods listed at the beginning of this document.

Synchronet 59 Agen

Network Types:

NET_NONE
NET_UNKNOWN
NET_FIDO
NET_POSTLINK
NET_QWK
NET_INTERNET
NET_WWIV

ocudbdwbhEFE O

//
//
//
//
//
//
//
//
//

Locally created
Unknown

FTN network
PostLink network
OWK based network
The Internet

WWIV based network

Address Format

none
undef
fidoaddr_t
none

ASCIT
ASCIT
ulong

Synchronet

60

Networ

Media Types:

IMAGE__UNKNOWN
IMAGE_ASC
IMAGE_ANS
IMAGE_AVT
IMAGE_LVI
IMAGE_GIF
IMAGE_TIF
IMAGE_JPG
IMAGE_T16
IMAGE_T24
IMAGE_T32
IMAGE_PCX
IMAGE_BMP
IMAGE_RLE
IMAGE_DIB
IMAGE_PCD
IMAGE_G3F
IMAGE_EPS
IMAGE_RTF
IMAGE_RTIP
IMAGE_NAP
IMAGE_CDR
IMAGE_CGM
IMAGE_WMF
IMAGE_DFX
IMAGE_IFF

Animation Types:

ANIM UNKNOWN
ANIM FIT
ANIM FIC
ANIM GL
ANIM TFF

Video Types:

VIDEO_UNKNOWN
VIDEO_QTIME
VIDEO_FQTIME
VIDEO_AVI
VIDEO_ULT

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0a
0x0b
0x0c
0x0d
0x0e
0x0f
0x10
O0x11
0x12
0x13
0x14
0x15
0x16
0x17
0x18
0x19

WP O

WDk O

//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//
//

//
//
//
//
//

//
//
//
//
//

Use image signature header to determine £
ASCII text/IBM extended ASCII graphics
ANSI X3.64 terminal escape sequences
AVATAR terminal escape sequences

LVI terminal escape sequences

Compuserve Graphics Interchange Format (G
Tagged Image Format (AKA TIFF)

Joint Photographers Electronics Group (JP
TrueVision 16-bit bitmap (TGA)

TrueVision 24-bit bitmap (TGA)

TrueVision 32-bit bitmpa (TGA)

ZSoft PaintBrush graphics

Windows bitmap

Windows bitmap (compressed)

Display independant bitmap

Kodak PhotoCD

Group 3 FAX

Ecapsulated PostScript

Rich text format

Remote Imaging Protocol Script (RIPscrip)
NAPLPS

Corel Draw!

Computer graphics metafile

Windows metafile

Autodesk AutoCAD

Amiga Interchange File Format

Use file signature header to determine fo
Autodesk animator

Autodesk

Grasprt

Amiga Interchange File Format

Use file signature header to determine fo
Apple Quick-time

Apple Flattened Quick-time

Windows Auto/Video Interleave

0S/2 Ultimotion

Synchronet

61 Medi

Video Compression Types:

VCOMP__UNKNOWN 0 // Use file signature header to determine co
VCOMP_RLE 1 // Apple animation

VCOMP__SMC 2 // RApple graphics

VCOMP_RPZA 3 // Apple video

VCOMP_KLIC 4 // Captain crunch

VCOMP_CVID 5 // CinePak

VCOMP_RT21 6 // Intel indeo R2

VCOMP_1IV31 7 // Intel indeo R3

VCOMP_YVU9 8 // Intel YVU9

VCOMP_JPEG 9 // JPEG

VCOMP_MRLE 10 // Microsoft RLE

VCOMP_MSVC 11 // Microsoft video 1

Font Types:

FONT_UNKNOWN 0 // Use file signature header to determine fo
FONT_TTF 1 // Windows TrueType

FONT_PFB 2 // PostScript Type 1 Font Binary

FONT_PFM 3 // PostScript Type 1 Font Metric

FONT_AMIGA 4 // Amiga Bitmapped

FONT_AGFA 5 // CompuGraphic Fonts

Sound Types:

SOUND_UNKNOWN 0 // Use file signature header to determine fo
SOUND_MOD 1 // MOD format

SOUND_VOC 2 // Sound Blaster VOC format

SOUND_WAV 3 // Windows 3.1 WAV RIFF format

SOUND_MID 4 // MIDI format

SOUND_GMID 5 // General MIDI format (standardized patches
SOUND__SMP 6 // Turtle Beach SampleVision format

SOUND_ SF 7 // IRCAM format

SOUND_AU 8 // Sun Microsystems AU format

SOUND_TIFF 9 // Amiga Interchange File Format

Application Data Types:

APPDATA_ UNKNOWN
APPDATA WORDPERFECT
APPDATA_ WKS
APPDATA_WK1
APPDATA_WK2
APPDATA_WK3
APPDATA_ DBF

APPDATA PDX

// Use file signature header to determine fo
// WordPerfect Document

// Lotus 123 Worksheet (?)

// Lotus 123 Worksheet rev 1

// Lotus 123 Worksheet rev 2

// Lotus 123 Worksheet rev 3

// dBase III data file

// Paradox data file

~NouodbdhwbdhhEFE o

Synchronet 62 Medi

APPDATA_ EXCEL 8 // Excel data file
APPDATA_QUATRO 9 // Borland Quatro Pro file
APPDATA_WORD 10 // Microsoft Word

Synchronet 63 Medi

Message Storage Protocol

10.

11.

12.

13.

14.

15.

l6.

17.

18.

19.

20.

21.

Open SDT, SHD, and SID files read/write deny-none (shareable).

Determine length of all message data and number of 256 byte blocks
required to store the data.

Open SDA file read/write deny-all.

If fast allocation mode, seek to end of SDA file and go to step 6.
Search SDA file for enough consecutive unused blocks to store all of
message data. If found, seek back to beginning of unused blocks. Oth
stay at end of file.

Write to the SDA file the number of index entries that are going to
to this data (normally 1) for the number of blocks that will be used
data block(s) have now been allocated.

Close the SDA file.

Determine length of header record and number of 256 byte blocks
required to store the record.

Open SHA file read/write deny-all.

If fast allocation mode, seek to end of SHA file and go to step 12.
Search SHA file for enough consequetive unused blocks to store all o
header record. If found, seek back to beginning of unused blocks. Ot

stay at end of file.

Write to the SHA file a 1 (single byte) for each block that will be
The header block(s) have now been allocated.

Close the SHA file.

Lock message base header in SHD file.

Read SHD base header #1 (config info).

Increment the total number of messages and last message number in he
Write SHD base header #1 (config info).

Write header record to SHD file.

Write index record to SID file.

Unlock SHD base header.

Write message data to SDT file.

Synchronet 64 Message Storage P

Message Retrieval Protocol

1. Open SDT, SHD, and SID files read/write deny-none (shareable).

2. Read index record from SID file.

3. Seek to the byte offset in the SHD file specified in the index recor

4. Lock the message header record.

5. Read the message header record.

6. Unlock the message header record.

7. Compare the message number to the one specified in the index record.
they don't match, re-read the index record and goto step 3. If they
continue to mismatch, the index has been corrupted and must be recre

8. For each data field specified in the header, seek to the byte offset

in the SDT file plus the offset specified in the data field, read fr
the SDT file the length (in bytes) specified in the data field.

Synchronet 65 Message Retrieval P

SMBUTIL

SMBUTIL is a utility that can perform various functions on an SMB format
message base. The primary purpose of SMBUTIL is as an example to C progr
of how to use the SMBLIB functions to access and modify an SMB message b
The complete C source code for SMBUTIL is included and functions from it
be used or modified by developers at their own discretion. The following
make up SMBUTIL:

SMBUTIL.EXE Compiled and linked (ready to run)
SMBUTIL.C C functions

SMBUTIL.H C definitions and variable prototypes
SMBUTIL.MAK Makefile (for Borland C++)

CRC32.H C header file for CRC-32 calculations

The usage syntax is as follows:
SMBUTIL [/opts] cmd smb_filespec.shd
where cmd is one or more of the following:

= list msgs starting at number n

read msgs starting at number n

view msg headers starting at number n
kill (delete) n msgs

import from text file f

display msg base status

bR
MBS 555
\/|_||_||_||_|
Il [

0]
[

c = change msg base status
m = maintain msg base - delete old msgs and msgs over max
P = pack msg base

where opts is one or more of the following:

a = always (force) packing

f = fast msg creation mode

d = disable duplicate message checking

z<n> = set time zone (n=min +/- from UT or 'EST', 'EDT', 'CST', etc)

and smb_filespec is the base filename or file specification (wildcards)
message base. If wildcards are used, the ".SHD" extension must be specif

An example command line:

SMBUTIL R FORSALE

would read all the messages in the forsale message base. If the forsale
base files are not stored in the current directory, the complete path mu
specified. (i.e. smbutil r c:\msgs\forsale)

SMBUTIL MP C:\SBBS\DATA\SUBS*.SHD

would maintain and pack all the message bases found in the C:\SBBS\DATA\
directory.

Synchronet 66

CHKSMB

CHKSMB is a utility that performs a comprehensive analysis of a message
to find any possible errors. It does not "fix" a message base if any err
are found, it only reports the specific errors (and exits with a non-zer
error level).

C source code for CHKSMB is also included as an example to programmers O
to use SMBLIB functions.

The usage syntax is as follows:
CHKSMB [/opts] smb_filespec.shd

where opts is one or more of the following:

q = guiet mode (no beeps)
S = stop after an errored message base (for use with wildcards
P = pause after an errored message base (wait for key press)

An example command line:
CHKSMB /QP C:\SBBS\DATA\SUBS*.SHD

would check all the message bases in the C:\SBBS\DATA\SUBS directory, wi
beeping on errors, and pausing after an errored message base.

Synchronet 67

SMBLIB

SMBLIB is a library of C functions for accessing and storing messages in
SMB format message base. It can eliminate much of the development time f
developers that wish to use the library in whole or in part, or use the

functions as examples for their own message base function library. The 1
consists of the following files:

SMBDEFS.H Constant definitions, macros, and data types

SMBLIB.H Function prototypes

SMBLIB.C Function definitions

SMBVARS.C Global variable definitions (doubles as declaration file

For developers to use this library with their program, they must include
"SMBLIB.H" header file at the top of each C file that uses any of the 1i
functions, global variables, data types, macros, constants. This can be
by simply add the following line to each .C file:

#include "smblib.h"
If SMBLIB.H is included, there is no need to include SMBDEFS.H or SMBVAR

To link the library functions and variables with a main program, the fil
SMBVARS.OBJ and SMBLIB.OBJ must be linked with the main program .0BJ fil
If the operating system is DOS, be sure that all .OBJ files are compiled
the same memory model.

An example MAKEFILE for compiling and linking SMBUTIL with Borland C++ i
included.

Synchronet 68

SMBDEFS.H

The SMBDEFS.H file contains important constant definitions and data type
defined in this document). If ever this document and SMBDEFS.H are incon
with each other, then SMBDEFS.H is to be considered correct and this doc
in error. If such a discrepency is found, please notifiy Digital Dynamic
can be corrected in a future revision of the specification.

Most notable of the data types is a structure called smbmsg_t (not defin
in this document). It contains the fixed and variable portions of a mess
header record as well as convenience pointers to the sender's name
(smbmsg_t.to), recipient's name (smbmsg_t.from), network addresses, and
If multiple SENDER header fields are included (for example), then smbmsg
will point to the last SENDER header field in the header record. Conveni
pointers for other data items work in the same fasion if multiple header
of the same type exist in the header record.

Variables of the smbmsg_t data type (and pointers to variables of smbmsg
type) are used as arguments to many of the SMBLIB functions.

Synchronet 69 SM

SMBVARS.C

The SMBVARS.C file contains definitions of the global variables used by
SMBLIB functions. It is a fairly small file since their are a small numb
global variables (by design). This file is used for both definitions and
declarations, so no "extern" declarations need to be made in developers
code as long as SMBVARS.C or (preferably) SMBLIB.H is included in the so
code.

Synchronet 70 SM

SMBLIB.H

The SMBLIB.H file contains prototypes of all the functions in the SMBLIB
file. It is necessary to include this file in C source code if any of th
SMBLIB functions are used. The following C source line will include this

#include "smblib.h"

and should be placed near the top of all C source files that use SMBLIB
functions, variables, constants, or data types.

Function prototypes are necessary for compilers to know the correct call
syntax of a function and detect incorrect usage. Prototypes are also use
as a quick reference for programmers as to the correct calling syntax of
specific function.

Synchronet 71 S

SMBLIB.C

The SMBLIB.C file contains the actual SMBLIB library functions. This sou
file is not a stand alone program, but instead must be compiled and link
with a main source file to create the executable program.

The functions in this file are organized in a logical order, but their o
is actually irrelevant to the compiling, linking, and execution of the
resulting program.

A comment block preceeds each function, explaining what the function doe
how the passed parameters are used, and what the return code (if any)
indicates. A more detailed explanation of each function is included here

int smb_open (int retry_ time)

The smb_open () function must be called before the message base is access
(read from or written to). The parameter, retry time, is the maximum num
of seconds to wait while retrying to lock the message base header. The g
variable smb_file must be initialized with the path and base filename of
message base. This function returns 0 on success, 1 if the .SDT file cou
be opened, 2 if the .SHD file could not be opened, and 3 if the .SID fil
not be opened. If the message base header could not be locked, this func
returns -1. If the message base ID is incorrect, it returns -2. And if t
message base is of an incompatible version, it returns -3.

The errno global variable (standard of most C libraries) will most likel
contain the error code for open failure.

int smb_open_da(int retry_ time)

The smb_open_da () function is used to open the data block allocation fil
writing messages to a message base. The parameter, retry_time, is the ma
number of seconds to wait while retrying to open the file. This function

returns 0 on success. -1 is returned if an open error other than "Access
Denied" is returned from the operating system, and the global variable e
will contain the error code. -2 is returned if the retry_time has been

reached, and -3 is returned if the file descriptor could not be converte
a stream by the fdopen() function.

fclose (smb_sda) should be called immediately after all necessary file ac
has been completed.

Synchronet 72 S

int smb_open_ha(int retry_ time)

The smb_open_ha () function is used to open the header block allocation f
writing messages to a message base. The parameter, retry_time, is the ma
number of seconds to wait while retrying to open the file. This function

returns 0 on success. -1 is returned if an open error other than "Access
Denied" is returned from the operating system, and the global variable e
will contain the error code. -2 is returned if the retry_time has been

reached, and -3 is returned if the file descriptor could not be converte
a stream by the fdopen() function.

fclose (smb_sha) should be called immediately after all necessary file ac
has been completed.

int smb_create (ulong max_crcs, ulong max_msgs, ushort max_age, int retry
The smb_create() function is used to create a new message base or reset
existing message base. The parameters max_crcs, max_msgs, and max_age ar
to set the initial status of the message base status header. The paramet
retry_time is the maximum number of seconds to wait while retrying to lo
message base header. This functions returns 0 on success or 1 if the mes
base header could not be locked.

int smb_trunchdr (int retry_time)

The smb_trunchdr () function is used to truncate the header file when pac
the message base and writing the new header information back to the head
file. The parameter, retry time is the maximum number of seconds to wait
retrying to truncate the header file. Returns 0 on success, -1 if error

other than "Access Denied", or -2 if retry_ time reached.

int smb_locksmbhdr (int retry_ time)

The smb_locksmbhdr () function is used to lock the first message base (st
header. The parameter, retry_time is the number of seconds to wait while
retrying to lock the header. The smb_unlocksmbhdr () function should alwa
used to unlock the header after accessing the message base header (usual
with smb_getstatus () and/or smb_putstatus()). Returns 0 if successful, -
unsuccessful.

int smb_unlocksmbhdr ()

The smb_unlocksmbhdr () function is used to unlock a previously locked me
base header (using smb_lockmsghdr()). Returns 0 on success, non-zero on
failure.

int smb_getstatus (smbstatus_t *hdr)

The smb_getstatus () function is used to read the status message base hea
into the hdr structure. Returns 0 on success, 1 on failure.

Synchronet 73 S

int smb_putstatus (smbstatus_t hdr)

The smb_putstatus () function is used to write the status information to
first message base header. The parameter hdr, contains the status inform
to be written. Returns O on success, 1 on failure.

int smb_getmsgidx (smbmsg_t *msqg)
The smb_getmsgidx () function is used to get the byte offset for a specif
message header in the message header file based on the message base inde

If msg->hdr.number is non-zero when this function is called, then the in
will be searched for this message number. If the message number is found
the index, the msg->idx.offset is set to the byte offset of the message
record in the header file and msg->offset is set to the record offset of
index record in the index file, and the function returns 0. If the messa
number i1s not found in the index, the function returns 1.

If msg->hdr.number is zero, msg->idx.offset and msg->idx.number are obta
from the index record at record offset msg->offset. If msg->offset is an
invalid record offset when this function is called, the function returns
Otherwise, the function returns 0.

int smb_getmsghdrlen (smbmsg_t msqg)

The smb_getmsghdrlen () function is used to calculate the total length of
message header msg including both fixed and variable length portions. Th
function returns the length of the header record in bytes.

long smb_getmsgdatlen (smbmsg_t msg)

The smb_getmsgdatlen () function is used to calculate the total length of
data for message msg. This function returns the length of all data field
combined.

int smb_lockmsghdr (smbmsg_t msg, int retry_ time)

The smb_lockmsghdr () function is used to lock the header record for mess
msg. The parameter retry_time is the maximum number of seconds to wait w
retrying to lock the header. Returns 0 on success, -1 on failure. The fu
smb_unlockmsghdr () should immediately be called after accessing the mess
header (usually with smb_getmsghdr () or smb_putmsghdr()).

Synchronet 74 S

int smb_getmsghdr (smbmsg_t *msqg)

The function smb_getmsghdr () is used to read the header record for messa
msg. msg->idx.offset must be initialized to the byte offset of the heade
record in the header file before this function is called. The function
smb_freemsgmem () must be called to free the memory allocated by this fun
for the header and data felds. This function returns 0 on success, -1 if
the fixed portion of the message header record could not be read, -2 if
message header ID was incorrect, -3 if memory could not be allocated, -4
if a data field could not be read, -5 if the fixed length portion of a h
field could not be read, -6 if the variable length portion of a header f
could not be read, -7 if one or more of the mandatory header fields (SEN
RECIPIENT, or SUBJECT) are missing, -8 if total_dfields extends beyond t
end of the header reocord, or -9 if incompatible header version.

Several convenience pointers in the msg structure are initialized by thi
function to point to the last occurance of the SENDER (msg->from), RECIP
(msg->to), SUBJECT (msg->subj), etc.

int smb_unlockmsghdr (smbmsg_t msqg)

The smb_unlockmsghdr () function is used to unlock a previously locked me
header (with smb_lockmsghdr()). This function returns 0 on success, non-
on failure.

int smb_addcrc(ulong max_crcs, ulong crc, int retry_ time)

The smb_addcrc () function is used to add a CRC-32 to the CRC history fil
for a message base, automatically checking for duplicates. The parameter
max_crcs should be the max_crcs defined in the status header of the mess
base. The parameter crc, is the CRC-32 of the TEXT_BODY and TEXT_SOUL da
fields for the message. The parameter retry time is the maximum number o
seconds to wait when retrying to open the CRC history file.

This function returns -1 if there was an open error, -2 if the retry_tim
was reached, -3 if there was a memory allocation error, 1 if the CRC alr
exists in the CRC history file (indicating a duplicate message), or 0 on
success (and no duplicate).

int smb_hfield(smbmsg_t *msg, ushort type, ushort length, void *data)
The smb_hfield() function is used to add a header field to the structure
The parameters type, length, and data, must be specified according to th
header field values listed in this specification. This function returns
on success, non-zero on memory allocation error. The function smb_freems
must be called to free the memory allocated by this function.

int smb_dfield(smbmsg_t *msg, ushort type, ulong length)

The smb_dfield() function is used to add a data field to the structure m
The parameters type and length must be specified according to the data f
values listed in this specification. This function returns 0 on success,
non-zero on memory allocation error. The function smb_freemsgmem() must

called to free the memory allocated by this function.

Synchronet 75 S

int smb_addmsghdr (smbmsg_t *msg, smbstatus_t *status, int fast, int retr
The smb_addmsghdr () function is used to add a new message header to the

header file. The msg and status structures are updated to reflect the ne
total messages, last message number, etc. The fast parameter is used to

indicate if the fast allocation mode should be used. If the fast paramet
0 (off), the header block allocation file will be searched for unused bl
to store this header. If the fast parameter is 1 (on), the header is sto
the end of the header file. Returns 0 on success, non-zero on failure. T
parameter retry_time is the maximum number of seconds to wait while retr
to lock and open files.

int smb_putmsg (smbmsg_t msqg)

Ths smb_putmsg () function calls both the smb_putmsghdr () and smb_putmsgi
functions to write the header and index elements of a message to the
appropriate files. Returns 0 on success, non-zero on failure.

int smb_putmsgidx (smbmsg_t msqg)

The smb_putmsgidx () function is used to store a message index in the mes
index file. The message index can be for a new message or an existing
message. Returns 0 on success, non-zero on failure.

int smb_putmsghdr (smbmsg_t msqg)

The smb_putmsghdr () function is used to store a message header in the me
header file. The message header can be for a new message or an existing
message. Returns 0 on success, non-zero on failure.

void smb_freemsgmem (smbmsg_t msqg)

Frees allocated memory for the header and data fields in the msg structu
This function must be called to free the memory allocated by the functio
smb_hfield(), smb_dfield(), and smb_getmsghdr ().

long smb_hdrblocks (ulong length)

The smb_hdrblocks () function is used to calculate the number of blocks
required to store a message header of length size (in bytes). This funct
returns the number of blocks required.

long smb_datblocks (ulong length)

The smb_datblocks () function is used to calculate the number of blocks
required to store message data of length size (in byte). This function r
the number of blocks required.

Synchronet 76 S

long smb_allochdr (ulong length)

The smb_allochdr () function is used to search for free blocks to store a
message header of length bytes and mark the free blocks as allocated in
header allocation file. This function returns the byte offset to the hea
record or a negative number on error. The function smb_open_ha () should
called prior to calling this function and fclose (sha_fp) should be calle
after.

long smb_fallochdr (ulong length)

The smb_fallochdr () function works exactly the same as the smb_allochdr (
function except it is much faster because the header allocation file is
searched for free blocks.

long smb_allocdat (ulong length, ushort headers)

The smb_allocdat () function is used to search for free blocks to store 1
amount of data for a message. The parameter headers, indicates the numbe
message headers that are associated with this data. Normally, the header
parameter will be 1, unless this message is part of a mass mailing. The
to the allocated data blocks is returned, or a negative value on error.
function smb_open_da () should be called prior to calling this function a
fclose(sda_fp) should be called after.

long smb_fallocdat (ulong length, ushort headers)

The smb_fallocdat () function works exactly the same as the smb_allocdat (
function except it is much faster because the data allocation file is no
searched for free blocks.

Synchronet 77 S

int smb_incdat (ulong offset, ulong length, ushort headers)

The smb_incdat () function is used to increment the header counter in the
allocation file for the data starting at the byte offset and length size
bytes. The parameter headers, indicates the number of headers to add to
current allocation value in the data allocation file. Returns 0 on succe
non-zero on failure.

int smb_freemsg(smbmsg_ t msg, smbstatus_t status)

The smb_freemsg () function is used to free the memory allocated for the
and data fields in the msg structure. Returns 0 on success, non-zero on
failure. The parameter, status, must be the current status from the mess
base header for this message base.

int smb_freemsgdat (ulong offset, ulong length, ushort headers)

The smb_freemsgdat () function is used to decrement the data block alloca
records in the data allocation file associated with the data in the data
by the value of the headers parameter (normally 1). The parameter offset

indicates the byte offset to the beginning of the message data in the da
file and the parameter length is the total length of the message data.
Returns 0 on success, non-zero on failure.

int smb_freemsghdr (ulong offset, ulong length)

The smb_freemsghdr () function is used to set the header block allocation
records in the header allocation file to 0 (indicated non-allocated bloc
The parameter offset indicates the byte offset to the beginning of the h
record being freed and the parameter length indicates the total length o
header record. Returns 0O on success, non-zero on failure.

Synchronet 78 S

Bibliography

Title
Publisher
Author

Document
Title
Publisher
Author

Document
Publisher
Author

Document
Title
Publisher
Author

Document
Title
Publisher
Author

Document
Title
Publisher
Author

Document
Title
Publisher
Author

The C Programming Language

Prentice Hall

Brian W. Kernighan and Dennis M. Ritchie

ARPANET Request for Comments (RFC) #822

Standard for the Format of ARPA Internet text messages
SRI International
David H. Crocker,

FTS-0001
FSC

University of Delaware

Randy Bush, Pacific Systems Group

FTS-0004

EchoMail Specification

FSC

Bob Hartman

FTS-0009

A standard for unigque message identifiers and reply chain 1i

FSC
Jim Nutt

FSC-00046

A Product Idenfifier for FidoNet Message Handlers

FSC

Joaquim H. Homrighausen

FSC-00053

Specifications for the "aFLAGS field

FSC

Joaquim H. Homrighausen

Synchronet

79

Bibli

Implementations

Product Synchronet Multinode BBS Software

Developer Digital Dynamics

Level IT

Version 2.00

Product Synchornet/FidoNet Import/Export Utility (SBBSFIDO)
Developer Digital Dynamics

Level IT

Version 2.00

Product Synchronet UTI (Universal Text Interface) Driver
Developer Digital Dynamics

Level IT

Version 2.00

Synchronet 80 Implemen

