

Winsock TCP Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjWinsockControlC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjWinsockControlX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjWinsockControlP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjWinsockControlM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjWinsockControlE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjWinsockControlS"}

The TCP control, invisible to the user, provides easy access to TCP network services. It can be used
by Microsoft Access, Visual Basic, Visual C++, or Visual FoxPro developers. To write client or server
applications you do not need to understand the details of TCP or to call low level Winsock APIs. By
setting properties and invoking methods of the control, you can easily connect to a remote machine
and exchange data in both directions. Events notify you of network activities.

BytesReceived Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproBytesReceivedPropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproBytesReceivedPropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproBytesReceivedPropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproBytesReceivedPropertyS"}

Returns the amount of data received (currently in the receive buffer). Use the GetData method to
retrieve data.

Read-only and unavailable at design time.

Syntax
Development
Tool

Syntax

Microsoft Access
and Visual Basic

object.BytesReceived

Visual FoxPro Object.BytesReceived
Visual C++ long GetBytesReceived();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
Development Tool Default

Value
Data Type

Microsoft Access,
Visual Basic, and
Visual C++

0 Long

Visual FoxPro 0 Numeric

LocalHostName Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLocalHostNamePropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLocalHostNamePropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLocalHostNamePropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLocalHostNamePropertyS"}

Returns the local machine name. Read-only and unavailable at design time.

Syntax
Development
Tool

Syntax

Microsoft Access
and Visual Basic

object.LocalHostName

Visual FoxPro Object.LocalHostName
Visual C++ CString GetLocalHostName();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Return Values
Development
Tool

Default Value Data Type

Microsoft Access
and Visual Basic

Empty String

Visual FoxPro Empty string Character
Visual C++ Empty CString

LocalIP Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLocalIPC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLocalIPX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLocalIPA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLocalIPS"}

Returns the IP address of the local machine in the IP address dotted string format
(xxx.xxx.xxx.xxx).Read-only and unavailable at design time.

Syntax
Development
Tool

Syntax

Microsoft Access
and Visual Basic

object.LocalIP = string

Visual FoxPro Object.LocalIP
Visual C++ CString GetLocalIP();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Development Tool Data Type
Microsoft Access and Visual Basic String
Visual FoxPro Character
Visual C++ CString

LocalPort Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproLocalPortPropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproLocalPortPropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproLocalPortPropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproLocalPortPropertyS"}

Returns or sets the local port to use. Read/Write and available at design time.

· For the client, this designates the local port to send data from. Specify port 0 if the application does
not need a specific port. In this case, the control will select a random port. After a connection is
established, this is the local port used for the TCP connection.

· For the server, this is the local port to listen on. If port 0 is specified, a random port is used. After
invoking the Listen method, the property contains the actual port that has been selected.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.LocalPort = long

Visual FoxPro Object.LocalPort[= nPortNumber]
Visual C++ long GetLocalPort();

void SetLocalPort(long nNewValue);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Development Tool Data Type

Microsoft Access, Visual Basic, and
Visual C++

Long

Visual FoxPro Numeric

Remarks
Port 0 is often used to establish connections between computers dynamically.    For example, a client
that wishes to be "called back" by a server can use port 0 to procure a new (random) port number,
which can then be given to the remote computer for this purpose.

RemoteHostIP Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproRemoteHostIPPropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbproRemoteHostIPPropertyS"}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproRemoteHostIPPropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Example":"vbproRemoteHostIPPropertyX":1}

Returns the IP address of the remote machine.

· For client applications, after a connection has been established using the Connect method, this
property contains the IP string of the remote machine.

· For server applications, after an incoming connection request (ConnectionRequest event), this
property contains the IP string of the remote machine that initiated the connection.

· For the WinSock UDP control, after the DataArrival event, this property contains the IP address of
the machine sending the UDP data.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.RemoteHostIP = string

Visual FoxPro Object.RemoteHostIP[= cIPAddress]
Visual C++ CString GetRemoteHostIP();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
String (CString in Visual C++)

SocketHandle Property
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproSocketHandlePropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproSocketHandlePropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproSocketHandlePropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproSocketHandlePropertyS"}

Returns a value that corresponds to the socket handle the control uses to communicate with the
WinSock layer. Read-only and unavailable at design time.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.SocketHandle

Visual FoxPro Object.SocketHandle
Visual C++ long GetSocketHandle();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Development Tool Type
Microsoft Access,
Visual Basic, and
Visual C++

Long

Visual FoxPro Numeric

Remarks
This property was designed to be passed to Winsock APIs.

State Property (WinSock TCP Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbproStatePropertyC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbproStatePropertyX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbproStatePropertyA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbproStatePropertyS"}

Returns the state of the control, expressed as an enumerated type. Read-only and unavailable at
design time.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.State

Visual FoxPro Object.State
Visual C++ short GetState();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Data Type
Development Tool Type
Microsoft Access,
Visual Basic, and
Visual C++

Integer

Visual FoxPro Numeric

Settings
The settings for the State property are:

Constant Value Description
sckClosed 0 Default. Closed
sckOpen 1 Open
sckListening 2 Listening
sckConnectionPending 3 Connection pending
sckResolvingHost 4 Resolving host
sckHostResolved 5 Host resolved
sckConnecting 6 Connecting
sckConnected 7 Connected
sckClosing 8 Peer is closing the connection
sckError 9 Error

Accept Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthAcceptMethodC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthAcceptMethodX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthAcceptMethodA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthAcceptMethodS"}

For TCP server only. This method is used to accept an incoming connection when handling a
ConnectionRequest event.

Return Value
void.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.Accept RequestID

Visual FoxPro Object.Accept(nRequestID)
Visual C++ void Accept(long requestID);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft Access,
Visual Basic, and
Visual C++

RequestID Long The incoming connection
request identifier. This should
be the requestID passed in
the ConnectionRequest
event.

Visual FoxPro nRequestID Numeric The incoming connection
request identifier.    This
should be the requestID
passed in the
ConnectionRequest event.

Remarks
The Accept method should be used on a new control instance (other than the one that is in the
listening state.)

Accept Method, ConnectionRequest Event Example

The example shows the code necessary to connect a WinSock TCP control.    The code runs on the
machine that is accepting the connection request. The RequestID parameter identifies the request.
This is passed to the Accept method which accepts the particular request.
Private Sub WinSockTCP_ConnectionRequest(RequestID As Long)

WinSockTCP.Accept RequestID
End Sub

Close Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthCloseMethodC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthCloseMethodX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthCloseMethodA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthCloseMethodS"}

Closes a TCP connection or a listening socket for both client and server.

Return Value
void.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.Close

Visual FoxPro Object.Close()
Visual C++ void Close();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None.

Listen Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthListenMethodC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthListenMethodX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthListenMethodA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthListenMethodS"}

Creates a socket and sets it in listen mode.

Return Value
void.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.Listen

Visual FoxPro Object.Listen()
Visual C++ void Listen();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None

Remarks
The ConnectionRequest event occurs when there is an incoming connection. When handling
ConnectionRequest, the application should use the Accept method (on a new control instance) to
accept the connection.

PeekData Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthPeekDataMethodC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthPeekDataMethodX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthPeekDataMethodA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthPeekDataMethodS"}

Similar to GetData except PeekData does not remove data from the input queue.

Return Value
void.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object.PeekData Data, [Type,] [maxLen]

Visual FoxPro Object.PeekData(cData [, nType] [, nMaxLen])
Visual C++ void PeekData(Variant* data, const Variant&

type, const Variant& maxLen);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft
Access, Visual
Basic, and
Visual C++

Data Variant. Stores retrieved data after
the method returns
successfully. If there is not
enough data available for
requested type, data will be
set to Empty.
For Output only.

Type Variant Optional. Type of data to
be retrieved. Default Value:
vbArray + vbByte.
For input only.

maxLen Variant Optional. Length specifies
the desired size when
receiving a byte array or a
string. If this argument is
missing for byte array or
string, all available data will
be retrieved. If provided,
for data types other than
byte array and string, this
argument is ignored. For
Input only.

Microsoft
Visual FoxPro

cData Charact
er.

Stores retrieved data after
the method returns
successfully. If there is not
enough data available for
requested type, data will be
set to Empty.

For Output only.
nType Numeri

c
Optional. Type of data to
be retrieved.
For input only.

nMaxLen Numeri
c

Optional. Length specifies
the desired size. If this
argument is omitted, all
available data will be
retrieved.

Currently, the following variant types are supported.

Type Visual Basic
Byte vbByte
Integer vbInteger
Long vbLong
Single vbSingle
Double vbDouble
Currency vbCurrency
Date vbDate
Boolean vbBoolean
SCODE vbError
String vbString
Byte Array vbArray + vbByte

Type Visual C++
unsigned
char

VT_UI1

short VT_I2
long VT_I4
float VT_R4
double VT_R8
CY VT_CY
DATE VT_DATE
BOOL VT_BOOL
SCODE VT_ERROR
BSTR VT_BSTR
SAFEARRAY VT_ARRAY | *

Remarks
If the type is specified as vbString, string data is converted to UNICODE before returning to the user.

SendData Method
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthSendDataC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthSendDataX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthSendDataA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthSendDataS"}

Sends data to peer.

Return Value
void.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.SendData data

Visual FoxPro Object.SendData(cData)
Visual C++ void SendData(const Variant& data);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data Type Description

Microsoft
Access, Visual
Basic, and
Visual C++

data Variant Data to be sent. For binary data,
byte array should be used. For
input only.

Visual FoxPro cData Character Data to be sent. For input only.

Remarks
When a UNICODE string is passed in, it is converted to an ANSI string before being sent out on the
network.

Close Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtCloseEventC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtCloseEventX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtCloseEventA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtCloseEventS"}

Occurs when the remote computer closes the connection. Applications should use the Close method
to correctly close the TCP connection.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object_Close

Visual FoxPro PROCEDURE Object.Close
Visual C++ void dialogclass::OnCloseControl();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None.

ConnectionRequest Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtConnectionReqestEventC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtConnectionReqestEventX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtConnectionReqestEventA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtConnectionReqestEventS"}

Occurs when a remote machine requests a connection.

· For WinSock TCP server only. The event is activated when there is an incoming connection
request. RemoteHostIP and RemotePort properties store the information about the client after the
event is activated.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object_ConnectionRequest (RequestID As Long)

Visual FoxPro PROCEDURE Object.ConnectionRequest
LPARAMETERS nRequestID

Visual C++ void dialogclass::OnConnectionRequestControl(
long requestID);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data Type Description

Microsoft
Access, Visual
Basic, and
Visual C++

RequestID Long The incoming connection
request identifier. This
argument should be
passed to the Accept
method on the second
control instance. For input
only.

Visual FoxPro nRequestI
D

Numeric The incoming connection
request identifier. This
argument should be
passed to the Accept
method on the second
control instance. For input
only.

Remarks
The server can decide whether or not to accept the connection. If the incoming connection is not
accepted, the peer (client) will get the Close event. Use the Accept method (on a new control
instance) to accept an incoming connection.

DataArrival Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtDataArrivalEventC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtDataArrivalEventX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtDataArrivalEventA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtDataArrivalEventS"}

Occurs when new data arrives.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object_DataArrival (BytesTotal As Long)

Visual FoxPro PROCEDURE Object.DataArrival
LPARAMETERS nBytesTotal

Visual C++ void dialogclass::OnDataArrivalControl(long
bytesTotal);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data Type Description

Microsoft
Access, Visual
Basic, and
Visual C++

BytesTotal Long The total amount of
data that can be
retrieved. For input
only.

Visual FoxPro nBytesTotal Numeric The total amount of
data that can be
retrieved. For input
only.

Remarks
This event will not occur if you do not retrieve all the data in one GetData call. It is activated only
when there is new data. Use the BytesReceived property to check how much data is available at any
time.

SendComplete Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtSendCompleteEventC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtSendCompleteEventX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtSendCompleteEventA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtSendCompleteEventS"}

Occurs when the send buffer is empty.

Syntax
Development Tool Syntax
Microsoft Access and
Visual Basic

object_SendComplete

Visual FoxPro PROCEDURE Object.SendComplete
Visual C++ void dialogclass::OnSendCompleteControl();

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
None.

SendProgress Event
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbevtSendProgressEventC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbevtSendProgressEventX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbevtSendProgressEventA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbevtSendProgressEventS"}

Notifies the user of sending progress.

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object_SendProgress (BytesSent As Long,
BytesRemain As Long)

Visual FoxPro PROCEDURE Object.SendProgress
LPARAMETERS nBytesSent, nBytesRemaining

Visual C++ void dialogclass::OnSendProgressControl(long
bytesSent, long bytesRemaining);

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft
Access and
Visual Basic

BytesSent Long The number of
bytes that have
been sent since
the last time this
event was
activated. For
input only.

BytesRemain Long The number of
bytes in the send
buffer waiting to
be sent. For input
only.

Visual FoxPro nBytesSent Numeric The number of
bytes that have
been sent since
the last time this
event was
activated. For
input only.

nBytesRemaining Numeric The number of
bytes in the send
buffer waiting to
be sent. For input
only.

Visual C++ bytesSent long The number of
bytes that have
been sent since
the last time this
event was
activated. For

input only.
bytesRemaining long The number of

bytes in the send
buffer waiting to
be sent. For input
only.

WinSock UDP OLE Control
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbobjWinSockUDPC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbobjWinSockUDPX":1}                  {ewc
HLP95EN.DLL,DYNALINK,"Properties":"vbobjWinSockUDPP"}                  {ewc
HLP95EN.DLL,DYNALINK,"Methods":"vbobjWinSockUDPM"}                  {ewc
HLP95EN.DLL,DYNALINK,"Events":"vbobjWinSockUDPE"}                  {ewc
HLP95EN.DLL,DYNALINK,"Specifics":"vbobjWinSockUDPS"}

The Winsock UDP control implements the Winsock UDP (User Datagram Protocol) for both client and
server. The control represents a communication point utilizing UDP network services. It can be used
to send and retrieve UDP data.

Remarks
The UDP control, invisible to the user, provides easy access to UDP network services. It can be used
by Microsoft Access, Visual Basic, Visual FoxPro, and Visual C++ programmers. To write UDP
applications you do not need to understand the details of UDP or to call low level Winsock APIs. By
setting properties and calling methods on the control, you can easily connect to a remote machine
and exchange data in both directions. Events are used to notify users of network activities.

GetData Method (WinSock Control)
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmthGetDataWinSockC"}                  {ewc
HLP95EN.DLL,DYNALINK,"Example":"vbmthGetDataWinSockX":1}                  {ewc HLP95EN.DLL,DYNALINK,"Applies
To":"vbmthGetDataWinSockA"}                  {ewc HLP95EN.DLL,DYNALINK,"Specifics":"vbmthGetDataWinSockS"}

Retrieves the current block of data and stores it in a variable of type variant.

Return Value
Void

Syntax
Development Tool Syntax
Microsoft Access
and Visual Basic

object.GetData data, [type,] [maxLen]

Visual FoxPro Object.GetData(eData [, eType] [, eMaxLen])

The object placeholder represents an object expression that evaluates to an object in the Applies To
list.

Arguments
Development
Tool

Argument Data
Type

Description

Microsoft
Access and
Visual Basic

data Variant Where retrieved data will be
stored after the method returns
successfully. If there is not
enough data available for
requested type, data will be set
to Empty.

type Variant Optional. Type of data to be
retrieved. Set Settings below
for a list of types supported.

maxLen Variant Optional. Specifies the desired
size when receiving a byte array
or a string. If this parameter is
missing for byte array or string
all available data will be
retrieved. If provided, for data
types other than byte array and
string, this parameter is ignored.

Visual FoxPro eData Variant Where retrieved data will be
stored after the method returns
successfully. If there is not
enough data available for
requested type, eData will be
set to Empty.

eType Variant Optional. Type of data to be
retrieved. Set Settings below
for a list of types supported.

eMaxLen Variant Optional. Specifies the
desired size when receiving a
byte array or a string. If this
parameter is missing for byte
array or string all available

data will be retrieved. If
provided, for data types other
than byte array and string,
this parameter is ignored.

Settings
The settings for type are:

Description Visual C++ Visual Basic    Type
Byte VT_UI1 vbByte
Integer VT_I2 vbInteger
Long VT_I4 vbLong
Single VT_R4 vbSingle
Double VT_R8 vbDouble
Currency VT_CY vbCurrency
Date VT_DATE vbDate
Boolean VT_BOOL vbBoolean
SCODE VT_ERROR vbError
String VT_BSTR vbString
Byte Array VT_ARRAY|VT_UI1 vbArray + vbByte

GetData Method (WinSock Control), DataArrival Event Example

The example uses the GetData Method in the DataArrival event of a WinSock UDP control. When the
event occurs, the code invokes the GetData method to retrieve the data and store it in a string
variable. The data is then written into a TextBox control.
Private Sub UDP1_DataArrival(ByVal bytesTotal As Long)

Dim strData As String
UDP1.GetData strData, vbString
Text1.Text = Text1.Text & strData & vbCrLF

End Sub

Using the WinSock Controls
{ewc HLP95EN.DLL,DYNALINK,"See Also":"vbmscWinSockOverviewC"}

A WinSock control allows you to connect to a remote machine and exchange data between
computers in both directions.

The Internet ActiveX™ controls include two WinSock controls: the WinSock TCP (Transmission
Control Protocol) control, and the WinSock UDP (User Datagram Protocol) control. Both controls can
be used to create client and server applications.

In simple terms, the difference between the two lies in their connection state:

· The WinSock TCP control is a connection-based control, and is analogous to a telephone—the
user must establish a connection before proceeding.

· The WinSock UDP control is a connectionless control and the process by which it sends data is
analogous to passing a note: a message is sent from one computer to another, but there is no
explicit connection between the two.

Both the WinSock TCP and the WinSock UDP control allow data to be exchanged in both directions.

The WinSock TCP Control

Possible Uses
The WinSock controls can be used in the following scenarios:

· Create a client application that collects user information before sending it to a central server.
· Create a server application that functions as a central collection point for data from several

users.

Scenario: Using the WinSock TCP Control to Send a String to a Remote
Computer
The following scenario illustrates the basic mechanics of connecting two computers, in real time, over
a network. One computer, the server, "listens" on a designated port. A second computer, the client,
requests a connection. When the WinSock TCP control on the server receives the request, it creates
a new instance of itself, and establishes a connection using the clone. Once a connection is
established, the server and client can send data to each other. After completing a transaction, the
client closes the connection, and the TCP control on the server destroys the instance.

On the Server computer:

1. Specify a port using the LocalPort property.
2. Listen using the Listen method.
3. Use the Accept Method in the ConnectionRequest event.
4. Send a string using the SendData method.

On the Client computer:

1. Specify a RemoteHost to connect to.
2. Specify a RemotePort to connect to.
3. Request a connection using the Connect method.
4. Notify user of a successful connection with the Connect event
5. Use the GetData method in the DataArrrival event.
6. Close the connection using the Close method.

Setup
To create an array of controls, place a single WinSock TCP control on a form and set its Index
property to 0. Thereafter, you can load and unload instances of the control as connections are
needed. In order to efficiently track the WinSock control instances, declare a single global variable
that reflects the current number of instances of the control. As a connection is made, a new instance
is created and the variable is incremented by one.

In Visual Basic, the code would be written in the Declarations section:
Public gSockInstance As Integer
The Visual Basic code below uses the following objects:

On the Server computer:

· WinSock TCP control named "sktTCPServer"
· Form named "frmServer"
· CommandButton control named "cmdSendData"
· TextBox control named "txtSend"

On the Client computer:

· WinSock TCP control named "sktTCPClient"
· CommandButton control named "cmdConnect"
· CommandButton control named "cmdCloseConnection"
· TextBox control named "txtReceived"
· Label control named " lblStatus"

Server: Specify a Port Using the LocalPort Property
The WinSock TCP control on the server must first be configured to listen on a particular port.
Although you can designate any number, some numbers are reserved for certain protocols. For
example, HTML browsers use port number 80. The code below uses the port number 1007 since it is
not reserved for any other protocol use.
sktTCPsvr.LocalPort = 1007

Server: Listen Using the Listen Method
Besides specifying a port to listen on, the TCP control must also be "listening" for the client computer.
The following code shows how to do this using the Listen method, through the form's Load event:
Private Sub frmServer_Load()

sktTCPServer.LocalPort = 1007 ' Set the local port.
sktTCPServer.Listen ' Use the Listen method.

End Sub

Client: Request a Connection Using the Connect Method
To begin a transaction, a connection must be made first. To accomplish this, the client machine uses
the Connect method which takes two arguments, RemoteHost and RemotePort properties. The
RemoteHost property specifies a machine to which the user wants to connect. This property can be
either a string, the "friendly name" for the server computer, or an Internet Protocol (IP) address, a
unique string of numbers that specifies the remote computer. The code below sets the RemoteHost
and RemotePort, then invokes the Connect method.
Private Sub cmdConnect_Click()

With sktTCPClient
.RemoteHost = "123.123.101.201"
.RemotePort = 1007

.Connect
End With

End Sub
Alternatively, you can use the Connect method alone and supply the RemoteHost and RemotePort
as optional arguments.
Private Sub cmdConnnect_Click()

sktTCPClient.Connect "123.123. 101.201", 1007
End Sub
Server: Use the Accept Method in the ConnectionRequest Event
When the server computer receives a connection request from the client computer, the
ConnectionRequest event occurs. Use this event to respond with the Accept method which accepts
the server application's connection request.

The ConnectionRequest event passes a single argument, the requestID, that uniquely identifies the
request. By no coincidence, the Accept method requires one argument, which should be the value of
the requestID.

The code below executes when the server computer receives a connection request. In the
ConnectionRequest event, the code first increments the global variable gSockInstance and uses the
new value to load a new instance of the control. Then the code passes the value of the requestID to
the Accept method which establishes the connection.
Private Sub sktServer_ConnectionRequest _
(Index As Integer, ByVal requestID As Long)

' Increment the global variable.
gSockInstance = gSockInstance + 1
Load sktTCPServer(gSockInstance)
sktTCPServer(gSockInstance).Accept requestID

End Sub

Client: Notify User of a Successful Connection with the Connect Event
Upon a successful connection, the Connect event is triggered on the client computer. The code
below uses this event with the State property to notify the user of the successful connection.
Private Sub sktClient_Connect()

If sktTCPClient.State = sckConnected Then
' Presuming a Statusbar exists, with one panel.
lblStatus.Caption ="Connection Successful!"
End If

End Sub
Server: Send a String Using the SendData Method
Once a connection has been established, you can send data to the remote computer with the
SendData method. The code below sends a string from the server to the client.
Private Sub cmdSendData_Click()

sktTCPClient.SendData "This is how we begin."
End Sub

Client: Use the GetData Method in the DataArrrival Event
On the client computer, the sent message triggers the DataArrival event. When this event occurs, use
the GetData method to retrieve the data, as shown below.
Private Sub sktTCPServer_DataArrival _
(Index As Integer, ByVal bytesTotal As Long)

Dim vtData ' Declare a variant to hold the data.

sktTCPServer(Index).GetData vtData, vbString
txtReceived.Text = vtData ' Display the data.

End Sub

Client: Close the Connection Using the Close Method.
After completing a transaction, the client uses the Close method to close the connection.
Private Sub cmdCloseConnection_Click()

sktTCPClient.Close
End Sub
This triggers the Close event on the server, which can then unload the instance of the control, and
decrement the global variable.
Private Sub sktTCPServer_Close (Index As Integer)

sktTCPServer(Index).Close
Unload sktTCPServer(Index) ' Unload the instance.
gSockInstance = gSockInstance - 1 ' Decrement the

 ' variable.
End Sub

WinSock UDP Control

Scenario: Using the WinSock UDP Control to Broadcast a Message
The WinSock UDP control behaves much like the WinSock TCP Control.    However, the User
Datagram Protocol is a connectionless protocol. Unlike the TCP control, which must have an
established connection before it can send or receive data, the UDP control doesn't have either a
Connect or a Listen method. Instead, the control needs only to know which RemotePort and
RemoteHost to send data to. In this, it behaves somewhat like a radio—the control sends a message
to the other computer, but it doesn't know if the other computer has received the message.

To send a message from one computer to another:

On the sending computer:

1. Set the RemoteHost and RemotePort properties.
2. Send a message using the SendData method.

On the receiving computer:

1. Set the LocalPort property
2. Use the GetData method in the DataArrival event to retrieve the message.

Setup
The Visual Basic code below uses the following objects:

On the sending computer:

· Form named "frmSend"
· UDP control named "udpSender"
· CommandButton control named "cmdSendData"
· TextBox control named "txtSend"

On the receiving computer:

· Form named "frmReceiver"
· UDP control named "udpReceiver"
· TextBox control named "txtReceived"

Sender: Set the RemoteHost and RemotePort Properties
On the computer which will send the data, it's only necessary to specify the name of the receiving
computer and its port. This is done with the RemoteHost and RemotePort properties, as shown
below:
Private Sub frmSend_Load ()

udpSender.RemoteHost = "123.123.101.201"
udpSender.RemotePort = 1007

End Sub

Receiver: Set the LocalPort Property
On the computer which will receive the message, it's only necessary to specify a LocalPort—this
should correspond to the RemotePort property on the sending computer.
Private Sub frmReceiver_Load()

udpReceiver.LocalPort = 1007
End Sub

Sender: Send a Message Using the SendData Method
On the computer sending the data, use the SendData method.
Private Sub cmdSendData_Click()

udpSender.SendData "Calling all cars..."
End Sub

Receiver: Use the GetData Method in the DataArrival Event to Retrieve the Message
On the receiving computer, use the DataArrival event to process the message. In this case, the
message is put in a TextBox control
Private Sub udpReceiver_DataArrival _
(ByVal bytesTotal As Long)

Dim vtData ' Declare a variant to hold the data.
udpReceiver.GetData vtData, vbString
txtReceived.Text = vtData ' Display the message.

End Sub

