
Vantage Control Set
Version 2.0
Overview

Control Reference

     VPTextBox Text Box Control

 VPStatic Static Control

 VPComboBox Combo Box Control

 VPListBox List Box Control

 VPForm Form Control

 VPFocus Focus Management Control

Custom References
Properties            Events            Methods            Functions

Using Custom Controls

Column Layout Properties Dialog Property Pages

Technical Support Copyright Notice

Overview

Vantage Control Set is a library of custom controls for Visual Basic and other languages
which supports ActiveX technology. This library of custom controls includes enhanced
replacements for many of the standard controls as well as two new controls which help
manage the user interface and operations of a program. The controls of this set are provided
as ActiveX controls (32-bit OCXs) , and as VBX controls. The VBX version can be used in
Visual Basic 3.0 and Visual Basic 4.0 16-bit projects. The ActiveX version will work in Visual
Basic 4.0, Visual Basic 5.0, and other containers that support the ActiveX standard. The one
exception is the VPFocus and VPForm controls which are designed to work with Visual Basic
only.

Vantage Control Set features a ...

VPTextBox TextBox Control - data-aware, 3D effects, data alignment options in either
single or multiple line styles, and new Insert/Overtype modes of operation.

VPStatic Label Control - data-aware with custom 3D display effects.

VPComboBox ComboBox Control - data-aware, multiple columns, 3D effects, optional grid
lines, column headings, output formatting, color settings, data alignment, custom sorting,
matched entry property, locate data functions, standard unbound operations, independent
sizing of edit and list portions, no 64K data limit.

VPListBox ListBox Control - data-aware, multiple columns, 3D effects, optional grid lines,
column headings, output formatting, color settings, data alignment, custom sorting, locate
data functions, standard unbound operations, no 64K data limit.

VPForm Control - used to control the appearance of a Form Object with 3D display effects
and custom background properties. Also includes custom drag-and-drop operations.

VPFocus Management Control - used to manage GotFocus and LostFocus events so you
can do immediate data validation as Focus leaves a control. Allows Visual Basic's
LostFocus event to work similar to the OnExit Control Property of Microsoft Access.

The replacement controls of this library go well beyond the capabilities of the standard
Windows controls. While there are other control collections from 3rd-party vendors which
provide enhanced versions of these same controls, none have the combination of features
found within Vantage Control Set. With the Vantage Control Set we have tried to provide a
set of controls that would typically be used in any programming project. The added
functionality and utility associated with these controls are those that we simply could not get
with the controls from either Microsoft or other 3rd-party vendors. This is not a large set of
controls with the typical large price tag, but a small and useful set of workhorse controls
which provide new and needed properties. They can be used to design a better user
interface and provide increased functionality.

VPTextBox TextBox Control
Custom:    Properties        Standard:    Properties        Events        Methods

A normal TextBox control, sometimes called an edit field or edit control, displays
information entered at design time, entered by the user, or assigned to the control in code
at run time. It is also data-aware. The VPTextBox custom control is similar to the standard
TextBox control but has a number of added properties and features.

Syntax

VPTextBox

Remarks

To display multiple lines of text in a VPTextBox control, set the MultiLine property to
True. If a multiple-line VPTextBox control doesn't have a horizontal scroll bar, text wraps
automatically even when the VPTextBox control is resized. To customize the scroll bar
combination on a VPTextBox control, set the ScrollBars property.

Unlike the normal TextBox control, you can use the Alignment property to set the
alignment of text within the VPTextBox control, irrespective of the MultiLine property.
The text is left-justified by default, but can be set to right or centered justification.

The VPTextBox control includes Insert and Overtype modes of operation. The INS key is
used to toggle the modes of operation during run time. The default mode is the normal
Insert behavior. Different carets are used as a visual cue to indicate the current mode of
operation. There is a normal vertical line caret to indicate the insertion point when in the
Insert mode, and an underscore caret to indicate the replacement position when in the
Overtype mode.

The VPTextBox control has a custom Appearance property that returns or sets the paint
style of the control. This Appearance property includes 3D border effects with support for
both Inset and Raised representations.

Another custom property of the VPTextBox control is the Locked property. This property
returns or sets a value indicating whether a control can be edited. With this property a
VPTextBox control can be placed into a display only mode of operation.

VPStatic Static or Label Control
Custom:    Properties        Standard:    Properties        Events        Methods

A VPStatic control is similar to the standard Label control you use to display text that a
user can't change directly. As a data-aware non-edit control it can be bound to data sources
as a "read-only" field. The VPStatic control is a regular window control, having a hWnd
property unlike the standard Label control which is a graphical control. It also has a
custom Appearance property for 3D display effects.

Syntax

VPStatic

Remarks

You can write code that changes the text displayed by a VPStatic control in response to
events at run time. For example, if your application takes a few minutes to commit a
change, you can display a processing-status message in a VPStatic control. You can also
use the VPStatic control as a "read-only" or "display-only" database field when bound to a
Data control. In addition you can use the VPStatic control to identify controls that don't
have their own Caption properties.

Set the AutoSize and WordWrap properties if you want the VPStatic control to properly
display variable-length lines or varying numbers of lines.

The VPStatic control has a custom Appearance property that returns or sets the paint
style of the control. This Appearance property includes 3D border effects with support for
both Inset and Raised representations.

VPComboBox ComboBox Control
Custom:    Properties        Events        Methods        Functions Standard:    Properties        Events       
Methods

The VPComboBox control, like the standard ComboBox control, combines the features of
a Edit or Static control and a ListBox control. Users can enter information in the Edit
portion or select an item from the List portion of the control. The VPComboBox control has
a number of added properties and features. These include being data-aware, having multi-
columns, 3D display effects, optional grid lines, column headings, output formatting, color
settings, data alignment, custom sorting, matched entry property, locate data functions,
standard unbound operations, independent sizing of Edit and List portions, and no 64K data
limit.

Syntax

VPComboBox

Remarks

Like the standard ComboBox control, the VPComboBox control has three styles or modes
of operation controlled by the Style property. The default Style is a Dropdown Combo
which includes a drop-down list and an Edit control. The user can select from the List or
type in the Edit control portion. Another supported style is the Simple Combo where the
List portion does not drop down, but is always displayed if the height of the VPComboBox
control is sufficient. Like the Dropdown Combo, the user can select from the List or type
in the Edit portion. The other style is the Dropdown List. This style only allows selection
from the drop-down list and includes a Static control instead of an Edit control.

The Edit portion of the VPComboBox control has many of the custom properties and
features of the VPTextBox custom control. This includes Insert and Overtype modes of
operation as well as left, right or center justification of text.

The VPComboBox control has a number of custom properties for controlling the look of
the control. The Appearance property can define either an Inset or Raised 3D display
effect for the Edit or Static portion of the control. The GridLines and GridAppearance

properties control the display for the List portion. There are also separate ForeColor and
BackColor properties for the Edit or Static portion, the fixed Column Heading row of the
List portion, and the other data rows of the List portion of the VPComboBox control.

A custom feature of the VPComboBox control is its support for defining and displaying
multiple columns of information in the List portion of the control. These columns can be
defined in code executed during run time, or before execution, during design time.

During run time, with code, you can set the number of columns and define their
characteristics. The MaxCols property sets or returns the number of columns for the List
portion. Setting this property to a number less than the current number of columns will
delete the trailing columns from the List. Any columns added by setting this property to a
higher number will create new columns with appropriate default values. The Col property
allows a programmer to select a specific column. Once set, any column properties
referenced or modified will be the array values for the specified column.

In design time, as part of the property sheet of the ActiveX version of the VPComboBox
control, there is a tab for Column layout properties which is used to add, delete, or
maintain column properties. In the VBX version there is a Column Layout Properties
dialog which is used to maintain the same properties. This column layout dialog is called
by clicking on the ellipse button that is part of the (ColLayout) property in the Visual Basic
Properties Window or by double-clicking the (ColLayout) property, directly.

Shown below is a list of properties used to define columns in the List portion of the
VPComboBox control. Array properties are italicized.

Property Specifies
 
ColAlign The alignment of text within a each column.

ColBound Which column of a selected row in a List is bound directly to a
data source.

ColFormat An optional VB format string for each column. This property has
the same effect and supports the same formats as the VB Format$
function.

ColHeadingThe text for an optional heading or caption for each column.

ColHeadAlign The alignment of the column heading or caption for each
column.

ColLink Which column of the List is linked to the Edit or Static portion
of the control.

ColListField Name of the Field object in the Recordset specified by the
RowSource property bound to each column in the List.

ColSortBy A Boolean flag which indicates if a given column is used for sorting
the contents of the List.

ColSortOrder Determines if a column of the List used in sorting is sorted in
ascending or descending order.

ColWidth The width in Twips of each column.

You will notice that there are properties for defining a column heading or caption row for
the list portion of the VPComboBox control. Whether this control has a fixed heading row
is determined by the Boolean Heading property.

The VPComboBox control has additional properties which define the colors used. The
foreground and background colors for the fixed heading row are controlled by the
HeadingBackColor and HeadingForeColor properties. The foreground and background
colors for the data rows of the List are defined by the ListBackColor and ListForeColor
properties. The foreground and background colors for the Edit or Static portion of the
VPComboBox control are defined by the standard BackColor and ForeColor properties.

The VPComboBox control can be used as a bound control or used in unbound operations,
equally well. Unbound, the control uses the same methods of the standard ComboBox
control to populate the List portion. To add or delete items in the List portion, use the
AddItem or RemoveItem method. Each string value to be added or updated to a specific
row must use the Tab character, Chr$(09), as a delimiter between the columns of data. Set
the List, ListCount, and ListIndex properties to enable a user to access items in the List
portion of the control. With the RowSource and ColListField properties defined, the
VPComboBox control automatically fills the List portion with fields from one Data control,
and optionally passes data to the selected field of a second Data control, as defined in
either the ColDataSource and ColDataField properties, or the standard DataSource and
DataField properties. With the ColLink property a designated column of the selected row
is copied to the Edit or Static portion of the control which may be used to edit the selected
value. This Edit or Static value is then used to update a database field of a bound
Recordset identified through the DataSource and DataField properties. Alternately, for
the VPComboBox control you can have a different column of the selected row be bound
for update through the use of the ColBound, ColDataSource, and ColDataField
properties.
Shown below is a list of the properties used to fill and manage the List portion, and permit
binding of the selected data to a Data control. Array properties are italicized.

Property Specifies
 
ColBound Index position of designated column bound to a Field object as

defined by the ColDataSource and ColDataField properties.

ColDataSource Name of Data control that is updated once a selection is made.

ColDataField Name of Field object to be updated in the Recordset specified by
ColDataSource based on a selection made and a designated
column identified by the ColBound property.

DataSource Name of Data control that is bound to the Edit or Static portion
of the control.

DataField Name of Field object to be updated in Recordset specified by
DataSource based on data found in the Edit or Static portion
of the control.

RowSource Name of Data control used as a source of items for the List portion
of the control.

ColListField Array of Names of Field objects in Recordset specified by

RowSource to be used to fill the List portion.

ColLink Index position of designated column in List that is linked to the
Edit or Static portion of control. If set to zero, no one column is
linked and the whole row of data is linked to the Edit or Static
portion of the control.

In either the Dropdown or Simple Combo styles, the VPComboBox control permits
users to type data into the Edit portion of the control. Once entered, this data can be used
to locate or match within the linked column (defined by the ColLink property) of the List,
and the matched list item or row is selected. The MatchEntry property determines if
matching occurs and what type of matching is employed. The VPComboBox control
supports Standard matching modeled after the search dialog in the Windows help system,
or Extended matching that is similar to the searches found in controls used in Microsoft
Money and Intuits Quicken. For the Dropdown List style of combo box the VPComboBox
control supports first character matching. This feature has the control search for the next
matching item or row within the List portion for an alphabetic character entered using the
first character of the linked column for matching purposes. Repeatedly typing the same
letter cycles through all the items in the List beginning with the entered letter. Only one
character can be entered at a time when the control has the Dropdown List style.

Other custom properties of the VPComboBox control include a MaxDrop and MaxWidth
property. The MaxDrop property sets the maximum number of items or rows that are
displayed when the drop-down list is dropped. Its default value is 8 items or rows. The
MaxWidth property sets the maximum width for all columns within the List portion. This
width value is expressed in Twips. One unique feature of the VPComboBox control is that
the width of the List portion is not determined by the standard Width property used to set
the width of the Edit or Static portion. If the custom MaxWidth property is set to the
default value of zero (0), the width of the List portion is based on the cumulative widths of
the individual columns. If the MaxWidth property is set to something other than zero, the
width of the List portion is limited by this property and if the combined length of the
columns exceeds this MaxWidth property, a horizontal scrollbar is added to the List
portion.

The VPComboBox control List portion is always displayed in integral heights. This means
the List resizes itself to display only complete items or rows.

One final aspect of the VPComboBox control is that it is not limited to 64K worth of data
like the standard ComboBox control. This does not mean that it functions as a virtual List
Box; it does have a limit on the amount of data, but its limits are not as restrictive as the
standard ComboBox or ListBox control. The VPComboBox control has its own memory
management routines which do not store a row of data within the List portion, but a pointer
to the data. This allows the control to hold significantly more data. There still is a limit to
the number of rows, but no limit to the amount of data within those rows or the number of
columns of information for each row. In Windows 3.1 you are limited to a little over 6,500
rows. In Windows 95 or Windows NT you are limited to 32,767 rows. For most programming
situations this should be sufficient.

VPListBox ListBox Control
Custom:    Properties        Methods        Functions Standard:    Properties        Events       
Methods

The VPListBox control, like the standard ListBox control, displays a list of items from
which the user can select one or more. If the number of items exceeds the number that can
be displayed, a scroll bar is automatically added to the VPListBox control.

If no item is selected, the ListIndex property value is -1. The first item in the list is
ListIndex 0, and the value of the ListCount property is always one more than the largest
ListIndex value.

The VPListBox control has a number of added properties and features. These include
being data-aware, having multi-columns, 3D display effects, optional grid lines, column
headings, output formatting, color settings, data alignment, custom sorting, locate data
functions, standard unbound operations, and no 64K data limit.

Syntax

VPListBox

Remarks

The VPListBox control has a number of custom properties for controlling the look of the
control. The Appearance property can define either an Inset or Raised 3D display effect
for the List border. The GridLines and GridAppearance properties control the display for
the List itself. There are also separate ForeColor and BackColor properties for the fixed
Column Heading row or the other data rows of the List.

A custom feature of the VPListBox control is its support for defining and displaying
multiple columns of information. These columns can be defined in code executed during
run time, or before execution, during design time.

During run time, with code, you can set the number of columns and define their
characteristics. The MaxCols property sets or returns the number of columns for the List.
Setting this property to a number less than the current number of columns will delete the

trailing columns from the List. Any columns added by setting this property to a higher
number will create new columns with appropriate default values. The Col property allows a
programmer to select a specific column. Once set, any column properties referenced or
modified will be the array values for the specified column.

In design time, as part of the property sheet of the ActiveX version of the VPListBox
control, there is a tab for Column layout properties which is used to add, delete, or
maintain column properties. In the VBX version there is a Column Layout Properties
dialog which is used to maintain the same column properties. This column layout dialog is
called by clicking on the ellipse button that is part of the (ColLayout) property in the
Visual Basic Properties Window or by double-clicking the (ColLayout) property, directly.

Shown below is a list of the properties used to define columns in the VPListBox control.
Array properties are italicized.

Property Specifies
 
ColAlign The alignment of text within a each column.

ColBound Which column of a selected row in a List is bound directly to a
data source.

ColFormat An optional VB format string for each column. This property has
the same effect and supports the same formats as the VB Format$
function.

ColHeadingThe text for an optional heading or caption for each column.

ColHeadAlign The alignment of the column heading or caption for each
column.

ColListField Name of the Field object in the Recordset specified by the
RowSource property bound to each column in the List.

ColSortBy A Boolean flag which indicates if a given column is used for sorting
the contents of the List.

ColSortOrder Determines if a column of the List used in sorting is sorted in
ascending or descending order.

ColWidth The width in Twips of each column.

You will notice there are properties for defining a column heading or caption row for the
VPListBox control. Whether this control has a fixed heading row is determined by the
Boolean Heading property.

The VPListBox control has additional properties that define the colors used. The
foreground and background colors for the fixed heading row are controlled by the
HeadingBackColor and HeadingForeColor properties. The foreground and background
colors for the data rows of the List are defined by the standard BackColor and ForeColor
properties.

The VPListBox control can be used as a bound control or used in unbound operations,
equally well. Unbound, the control uses the same methods of the standard ListBox control.

To add or delete items in a VPListBox control, use the AddItem or RemoveItem method.
Each string value to be added or updated to a specific row must use the Tab character,
Chr$(09), as a delimiter between the columns of data. Set the List, ListCount, and
ListIndex properties to enable a user to access items in the VPListBox control. With the
RowSource and ColListField properties defined, the VPListBox control automatically fills
the List with fields from one Data control, and optionally passes data to the selected field
of a second Data control, as defined in the ColDataSource and ColDataField properties.
If the ColDataSource and ColDataField properties are defined, the control is restricted to
a single select mode and the MultiSelect property is set to False.

Shown below is a list of the properties used to fill and manage the List, and bind the
selected data to a Data control.

Property Specifies
 
ColBound Index position of designated column bound to a Field object as

defined by the ColDataSource and ColDataField properties.

ColDataSource Name of Data control that is updated once a selection is made.

ColDataField Name of Field object to be updated in the Recordset specified by
ColDataSource based on a selection made and a designated
column identified by the ColBound property.

RowSource Name of Data control used as a source of items for the List.

ColListField Array of Names of Field objects in Recordset specified by
RowSource to be used to fill the List.

The VPListBox control does not support LongBinary Fields, i.e. you cannot have the
ColListField as a LongBinary field. If you do, nothing will display in the particular list
column.

The VPListBox control is always displayed in integral heights. This means the List resizes
itself to display only complete items or rows.

The VPListBox control has a custom AutoSize property that controls whether the width of
the List is based on standard Width property or the List is automatically sized based on the
cumulative widths of each column. If the AutoSize property is set to False and the sum of
the column widths is greater than the standard Width property, a horizontal scroll bar is
automatically added to the List at run time.

One final aspect of the VPListBox control is that it is not limited to 64K worth of data like
the standard ListBox control. This does not mean that it functions as a virtual List Box; it
does have a limit on the amount of data, but its limits are not as restrictive as the standard
ComboBox or ListBox control. The VPListBox control has its own memory management
routines which do not store a row of data within the List, but a pointer to the data. This
allows the control to hold significantly more data. There still is a limit to the number of
rows, but no limit to the amount of data within those rows or the number of columns of
information for each row. In Windows 3.1 you are limited to a little over 6,500 rows. In
Windows 95 or Windows NT you are limited to 32,767 rows. For most programming
situations this should be sufficient.

VPForm Form Display Control
Custom:    Properties        Events Standard:    Properties

The VPForm control is used to control the appearance of a Form object with 3D display
effects and custom background properties. It also includes a custom Cursor property and
Mouse properties and events to provide enhanced drag-and-drop operations.

Syntax

VPForm

Remarks

The VPForm control is visible only during the design mode of Visual Basic and does things
on a form level basis. It can be used to control the look of the form with a combination of a
BorderStyle property and a custom Appearance property. The appearance options are
Flat, 3D - Inset, or 3D - Raised with the 3D options drawing a 2-pixel border on the
inside of the form's frame if the BorderStyle property is set to Single. This control also
includes a form Background property that can apply a bitmap as a brush in displaying a
form's background.

Both the Appearance and form Background properties take in account any controls on a
form that have their align property set to top, bottom, left, or right. This means that any 3D
or form display effects are within the boundaries of the form excluding aligned controls
which provides for a more appealing visual effect.

The VPForm control also has a custom Cursor property and MouseCapture property that
in conjunction with custom Mouse events, provides a robust and flexible drag-and-drop
mechanism that goes beyond those functions provided by Visual Basic. Once the
MouseCapture property is set to True the VPForms custom mouse events will be fired
for any mouse operations until the MouseCapture property is reset to False. Cursor
references can be assigned to the VPForm's Cursor property, allowing for different
custom mouse pointers during drag-and-drop operations. The purpose of these custom
properties and events is to provide centralized, easy to program, drag-and-drop operations.

VPFocus Focus Management Control
Custom:    Properties        Methods           Standard:    Properties

The VPFocus control is used to manage GotFocus and LostFocus events so a
programmer can do immediate data validation as Focus leaves a control. This control
allows Visual Basic's LostFocus event to work similar to the OnExit Control Property of
Microsoft Access.

Syntax

VPFocus

Remarks

The VPFocus control has a set of properties and custom methods (ActiveX version only)
that provide a mechanism for controlling Focus messages and Focus processing within a
Visual Basic program. A single instance of this control is placed on the first Visual Basic
form to be loaded. In the ActiveX version, a VPFocus control must be placed on each form.
The control is visible only while in the design mode of Visual Basic. It works by serializing
the Focus events generated within a Visual Basic program so that data validation
processing in a LostFocus event can be properly completed before any GotFocus or
LostFocus events are processed in any other controls. This control includes a
FocusAction property that acts as a custom method. The ActiveX version also includes a
set of custom methods. The FocusAction property has three property values or Actions
which include:

0 (vxTrapFocusOff) - This action turns off the Focus control and sets the object
pointer ActiveControl property to nothing. Same as the TrapFocusOff method in the
ActiveX version.

1 (vxSendFocus) - This action is usually set in a LostFocus event procedure of a
control and sets the ActiveControl property to nothing and then sends Focus on to
the control trapped when Focus changed. Same as the SendFocus method in the
ActiveX version.

2 (vxReturnFocus) - This action is usually set in a LostFocus event procedure of a
control and sends Focus back to the currently Active control. Same as the
ReturnFocus method in the ActiveX version.

Most Visual Basic programmers have found that they would like to validate data entered
into a control before Focus leaves that control. And they have all found out the problems
associated with LostFocus/GotFocus event pairs that make this programming task almost
impossible. With the VPFocus custom control, this type of important programming can be
accomplished easily and without any normal Focus transfer issues getting in the way. Most
programmers will find that this VPFocus control, by itself, is worth the price of Vantage
Control Set.

Custom Property Summary

(About)
(ColLayout) (VBX only)
(Custom) (OCX only)

ActiveControl
Alignment
Appearance
AutoHeight
AutoSelect
AutoSize

Background
BorderStyle

CaseSensitive
CellText
Col
ColAlign
ColBound
ColDataField
ColDataSource
ColFormat
ColHeadAlign
ColHeading
ColLink
ColListField
ColSortBy
ColSortOrder
ColWidth
ControlIndex
Cursor

DataChanged
DataField
DataSource

FocusAction
ForceGotFocus (OCX only)
FormControlName
FormIndex

GridAppearance
GridLines

Heading
HeadingBackColor
HeadingForeColor

ListAppearance
ListBackColor
ListForeColor

Locked

MatchEntry
MaxCols
MaxDrop
MaxWidth
MouseCapture

OverType

RowSource

TargetControl

Custom Event Summary

Change
CloseUp
MouseDown
MouseMove
MouseUp

Custom Method Summary (OCX only)

LocateText
ReturnFocus
SendFocus
TrapFocusOff
TrapFocusOn

Custom Function Summary

VLocateText

Using Custom Controls

Custom controls exist as separate files with either a .VBX or .OCX filename extension. They
include specialized controls from Microsoft that are part of Visual Basic, such as the
CommonDialog control, and third-party custom controls such as the library of controls
found in Vantage Control Set.

Custom controls with the .OCX filename extension take advantage of ActiveX OLE
technology and should work in any container that supports the ActiveX OLE interfaces.
Custom controls with the .VBX filename extension use older 16-bit technology and are
limited to working with Visual Basic.

Note      You can use .VBX custom controls in Visual Basic 3.0 and in the 16-bit version of
Visual Basic 4.0. You can't use these controls in the 32-bit version of Visual Basic 4.0, Visual
Basic 5.0, or any other application. You can use ActiveX (.OCX) controls in the 32-bit
version of Visual Basic 4.0 and in Visual Basic 5.0. You may be able to use the ActiveX
controls in other containers that support ActiveX technology.

Visual Basic 3.0

To start using one of the    .VBX controls of Vantage Control Set in a Visual Basic 3.0
project you use the Add File option of the File Menu to select the appropriate .VBX file (Alt-
F-A). Adding a .VBX file will add the icons of the new control at the bottom of the Visual
Basic ToolBox where you can start using them like you would any standard Visual Basic
control.

The following controls are found in these .VBX files within Vantage Control Set.

Control Object Name .VBX File Name

VPTextBox VPTextBox VPTEXT.VBX

VPStatic VPStatic VPSTAT.VBX

VPComboBox VPComboBox VPCOMB.VBX

VPListBox VPListBox VPLIST.VBX

VPForm VPForm VPFORM.VBX

VPFocus VPFocus VPFOCUS.VBX

Visual Basic 4.0 and Visual Basic 5.0

When Visual Basic 4.0 or Visual Basic 5.0 opens a project containing a .VBX control, the
default behavior is to replace the .VBX control with an .OCX control, but only if an .OCX
version of the control is available.

To see a list of the custom controls included in your project

In VB4, from the Tools menu, choose Custom Controls. The checked boxes in the Available

Controls box indicate the .VBX controls, .OCX controls, and insertable objects that can be
included in your project. In VB5, from the Project menu, choose Components. The check
boxes in the Controls tab list indicate the ActiveX controls and insertable objects available
in the Registry that can be included in your project.

To add a custom control

1. For VB4, From the Tools menu, choose Custom Controls. For VB5, from the
Project menu, choose Components.

2. For VB4, under Show, select the Insertable Objects and Controls options. For
VB5, select the Controls tab.

3. Select the check box next to the name of each .OCX control or .VBX control
(VB416-bit only), and then choose OK. Once a custom control is placed
in the Toolbox, you can add it to a Form just as you would with a
standard control.

If the .OCX control or .VBX control that you want to use isn't listed in the Available Controls
box, choose the Browse button to locate the file.

The following controls are found in these .OCX files within Vantage Control Set.

Control Object Name .OCX File Names

VPTextBox VPTextBox VPTEXT32.OCX

VPStatic VPStatic VPSTAT32.OCX

VPComboBox VPComboBox VPCOMB32.OCX

VPListBox VPListBox VPLIST32.OCX

VPForm VPForm VPFORM32.OCX

VPFocus VPFocus VPFOCS32.OCX

Column Layout Properties Dialog
See Also

The Column Layout Properties Dialog, associated with the VBX version, is used to add,
delete, or maintain column properties for either the VPComboBox or VPListBox custom
control (the ActiveX version uses a tabbed dialog associated with the property sheets). This
layout dialog is called by clicking on the ellipse button that is part of the (ColLayout)
property in the Visual Basic Properties Window or by double-clicking the (ColLayout)
property, directly.

Remarks

The upper left corner of the Dialog displays the column currently pointed to and the
number of columns defined for VPComboBox or VPListBox control being edited. The
"VCR" buttons at the top of the Dialog are for navigating between the columns. You can
quickly move to the first column, the previous column, the next column, or the last column
by clicking on one of these "VCR" buttons. The other three command buttons in the top
right of the Dialog are for adding or inserting new column definitions, or deleting
existing column definitions.

The command buttons at the bottom of the Dialog are for saving column properties or for
providing different levels of undoing pending edits or changes to the column properties.
The Close button will save any currently pending changes for all columns edited and close
the Column Layout Properties Dialog. The Undo button is used to undo any changes to
the current column. Pending changes to other columns are not effected by clicking on this
Undo button. The Undo All button will undo any and all changes to all columns and will

close the Column Layout Properties Dialog. The Help button will display this help topic.

The column properties maintained in this Dialog are separated into two sections. The top
section deals with general properties of each column. The lower section defines the
heading properties for each column.

Shown below is a list of the array properties used to define columns that are maintained in
the Column Layout Properties Dialog. Array properties are italicized.

Property Specifies
 
ColAlign The alignment of text within a each column.

ColBound Which column of a selected row in a List is bound directly to a
data source.

ColFormat An optional VB format string for each column. This property has
the same effect and supports the same formats as the VB Format$
function.

ColHeadingThe text for an optional heading or caption for each column.

ColHeadAlign The alignment of the column heading or caption for each
column.

ColLink Which column of the List is will pass back its data to the
DataSource to update the DataField, once a selection is made.

ColListField Name of the Field object in the Recordset specified by the
RowSource property bound to each column in the List.

ColSortBy A Boolean flag which indicates if a given column is used for sorting
the contents of the List.

ColSortOrder Determines if a column of the List used in sorting is sorted in
ascending or descending order.

ColWidth The width in Twips of each column.

Property Pages

Property Pages are a standard interface for displaying and modifying the design time
properties for an ActiveX control. Sometimes referred to as a Property Sheet, Property
Pages are tabbed dialogs that combine several dialog boxes into a single, compound dialog
box. In a Property Sheet, an individual dialog is called a property page.

How you access the Property Pages for a control depends on the container you are using
the control in. To display the Property Pages in Visual Basic, either double-click on the
Custom property in the properties list window, or click on the ellipsis button appearing on
the properties list when the Custom property is selected. You can also right-button-click
the control itself and select the properties menu option.

Property Pages allow the user to change the values for a property and then apply those
changes to the control. The tabbed dialog interface of Property Pages include the following
common command buttons for handling application of property changes:

Command Action

OK Applies all pending changes and closes the property sheet window.

Apply Applies all pending changes but leaves the property sheet window open.

Cancel Discards any pending changes and closes the property sheet window. Does
not cancel or

undo changes already applied.

If a user closes the Property Pages dialog and there are pending changes that have not
been committed, a message box will open to allow the user to save the changes, discard
the changes, or cancel the close, returning to the Property Pages dialog.

Technical Support

You can reach technical support at the following numbers:

Phone: (801) 292-5344
Fax: (801) 292-3142
Email: vantage@vpsoft.com

Copyright Notice

Vantage Control Set is a trademark of VantagePoint Software, Inc.

Copyright    1995-1997 VantagePoint Software, Inc. All Rights Reserved

VantagePoint Software, Inc.
1619 E. Lakeview Drive
Bountiful, UT 84010

Phone: (801) 292-5344
Fax: (801) 292-3142
BBS: (801) 763-0860
Email: vantage@vpsoft.com
Web: http://www.vpsoft.com

(About) Property
Applies To

Displays the About Dialog for the Vantage Control Set. Available only in design mode.

Remarks

The dialog is called by clicking on the ellipse button that is part of the (About) property in
the Visual Basic Properties Window or by double-clicking the (About) property, directly.

(ColLayout) Property
See Also Applies To

Calls the Column Layout Properties Dialog in the VBX version. Available only in design
mode.

Remarks

The layout dialog is called by clicking on the ellipse button that is part of the (ColLayout)
property in the Visual Basic Properties Window or by double-clicking the (ColLayout)
property, directly. This property is available only for the VBX version (the properties
maintained through the column layout dialog are maintained through the property page in
the ActiveX version).

(Custom) Property
See Also Applies To

Displays the Properties Pages dialog in the ActiveX version. This tabbed dialog provides
access to all the properties of the control. Available only in design mode.

Remarks

To display the property pages, either double-click on the (Custom) property in the
properties bar/list or click on the ellipsis button that appears on the properties bar/list when
the (Custom) property is selected. Property pages provide access to all the properties of
the control through a tabbed dialog interface. This property is available only for the ActiveX
version.

ActiveControl Property
See Also Example Applies To

Returns or sets the window handle of the currently active control. Setting this property will
start the trapping of Focus events.

Syntax

object.ActiveControl [= value]

The ActiveControl property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value The Window handle (Integer) of the current control.

Remarks

The ActiveControl property is an object pointer which records which control, if any, is
currently being monitored for Focus events. This property should usually be set in a valid
GotFocus event procedure. The ActiveControl property can be directly set or can be
modified by using the FocusAction property. Setting the FocusAction property to an
action state of 0 (vxTrapFocusOff) or 1 (vxSendFocus) will reset the ActiveControl
property to zero (nothing). In the ActiveX version using the TrapFocusOff or the
SendFocus methods will do the same.

Alignment Property
Applies To

Returns or sets a value that determines the alignment of text in a VPTextBox or VPStatic
control, or the text of the Edit or Static portion of the VPComboBox control. Also returns or
sets a value that determines the alignment of a CheckBox or OptionButton control, text
in a standard TextBox control, or text in a standard Label control. Read-only at run time
for CheckBox, OptionButton, and standard TextBox controls.

Syntax

object.Alignment [= number]

The Alignment property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number An numeric expression which specifies the type of alignment, as described in
Settings.

For VPTextBox and VPStatic controls, the edit portion of a VPComboBox control, the
standard Label control, the standard TextBox control, the settings for number are:

Setting Description

0 Left Justify. (Default)

1 Right Justify.

2 Center.

For CheckBox and OptionButton controls, the settings for number are:

Setting Description

0 Control is left-aligned with text on the right. (Default)

1 Control is right-aligned with text on the left.

Remarks

If the MultiLine property setting of a standard TextBox control is False, the Alignment
property is ignored. For the VPTextBox control this Alignment property applies even if
the MultiLine property is set to False.

You can display text to the right or left of OptionButton and CheckBox controls. Text is
always left-aligned.

Appearance Property
See Also Applies To

Returns or sets the paint style of Form objects and controls.

Syntax

object.Appearance [= number]

The Appearance property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number An numeric expression which specifies the type of appearance, as described
in Settings.

Settings

The settings for number are:

Setting Description

0 Flat. Paints controls and forms without visual effects. (Default)

1 3D Inset. Paints controls with a lowered three-dimensional effect.

2 3D Raised. Paints controls with a raised three-dimensional effect.

Remarks

If set to 1 or 2 at either design time or run time, the Appearance property draws Forms or
controls with three-dimensional effects. Display effects for Form objects are controlled
through the VPForm control and its Appearance property. A Form object can have a
normal flat appearance or acquire a three-dimensional look by drawing a 2-pixel border on
the inside of the Form or window frame. The VPTextBox, VPStatic, VPComboBox, and
VPListBox, controls each have their own Appearance property. This Appearance
property will have no effect If a control's BorderStyle property is set to None (0).

AutoHeight Property
Applies To

Returns or sets a value that determines whether the VPComboBox control's Height
property can be adjusted or is automatically set.

Syntax

object.AutoHeight [= boolean]

The AutoHeight property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies whether the control is resized, as
described in Settings.

Settings

The settings for boolean are:

Setting Description

True Automatically sets the control's height based on the currently defined font.
(Default)

False Allows the Height property to be user defined.

Remarks

The AutoHeight property of the VPComboBox control determines if the Height property
is automatically set or can be modified by the programmer. The normal ComboBox
control's Height property is automatically set based on the font size defined for the
control. You have no way of changing it. By setting the AutoHeight property of the
VPComboBox control to False you can allow the control's height to be set to any value.
This property and custom behavior can be useful if you want to link and match the
VPComboBox control's size and position to that of a cell in a grid control, such as
TrueGrid.

AutoSelect Property
Applies To

Returns or sets a value that determines whether the text of a control's Edit portion is
automatically selected when the control receives Focus.

Syntax

object.AutoSelect [= boolean]

The AutoSelect property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies the behavior described in Settings.

Settings

The settings for boolean are:

Setting Description

True Text of control is automatically selected when control receives Focus.

False Normal operation, text is not automatically selected. (Default)

Remarks

The AutoSelect property, when set to True, is useful for VPTextBox or VPComboBox
controls that are used in "data entry" database applications. It makes it easy for the user to
replace the current contents of a field that needs modification by automatically selecting
all the text upon entering the field. Whatever the user types in will replace the selected
text. If the AutoSelect property is set to True and the user does not want to replace the
complete text, but only wants to edit the existing text, the user can use the keyboard
cursor or arrow keys to reposition within the text and the text will become unselected.

Automatic selection of text works by setting the SelStart property of the control to zero (0)
and the SelLength property of the control to the full length of the text. To have the
VPTextBox or VPComboBox control operate in the same way as a standard TextBox or
ComboBox control, set the AutoSelect property to False.

AutoSize Property
Applies To

Returns or sets a value that determines whether a control is automatically resized to
display its entire contents.

Syntax

object.AutoSize [= boolean]

The AutoSize property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies whether the control is resized, as
described in Settings.

Settings

The settings for boolean are:

Setting Description

True Automatically resizes the control to display its entire contents.

False Keeps the size of the control constant. Contents are clipped when they exceed
the area of the control. (Default)

Remarks

For the VPListBox control the AutoSize    property determines whether the width of the
control is based on the size set at design time (the Width property) or if the List is
automatically sized based on the cumulative widths for each column (the ColWidth array
property). If the AutoSize property is set to True, the control's width is resized to
accommodate all the columns defined. Consequently a horizontal scroll bar will never be
needed for the List. If the AutoSize property is set to False, the control retains its Width
property. If the sum of the column widths is more then the Width property, a horizontal
scroll bar will be added to the List at run time.

Background Property
Example Applies To

Returns or sets a bitmap graphic used as a custom brush to be used when displaying a
Form object's background.

Syntax

object.Background [= picture]

The Background property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

picture A string expression specifying a file containing a bitmap graphic, as described
in Settings.

Settings

The settings for picture are:

Setting Description

(None) No picture. (Default)

(Bitmap) Specifies a bitmap graphic. You can load the graphic from the
Properties window at design time. At run time, you can also set this
property using the LoadPicture function on a bitmap file.

Remarks

The Background property is a property of the VPForm control but effects the Form object
that the VPForm control is placed on. This Background property contains a bitmap image
used as a brush when painting the background of the target Form.

There are a number of pre-defined bitmaps which come with Vantage Control Set that
can be used as a background brush. These bitmap files can be found in the Bitmaps folder
(subdirectory) under the main Vantage Control Set folder (directory).

You can also create your own background brush bitmaps.       In order to be used as a
brush, their dimensions must be 8 pixels by 8 pixels.

When setting the Background property at design time, the bitmap graphic is saved and
loaded with the Form. If you create an executable file, the file contains the bitmap. When
you load a graphic at run time, the graphic isn't saved with the application.

BorderStyle Property
See Also Applies To

Returns or sets the border style for an object. Read-only at run time.

Syntax

object.BorderStyle [= value]

The BorderStyle property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value A value or constant which determines the border style, as described in Settings.

Settings

The settings for value are:

Setting Description

0 None. (Default)

1 Fixed Single. Meaning a single fixed line.

Remarks

If a control's BorderStyle property is set to None (0), the Appearance property of that
control will have no effect.

The BorderStyle property is a custom property for the VPTextBox, VPStatic,
VPComboBox, and VPListBox controls. It is also a property for the ActiveX version of   
the VPForm control. For all the visible controls of Vantage Control Set, setting the
BorderStyle to None will eliminate the line border from the control if the Appearance
property is set to a Flat style. For 3D effects of the Appearance property to be visible, the
BorderStyle must be set to Single. This property can be useful if you want to link and
match the VPComboBox control's size and position to that of a cell in a grid control, and
not display its own border.

Caption Property
Applies To

The Caption property applies to several objects:

Form - determines the text displayed in the Form or MDIForm object's title bar. When
the form is minimized, this text is displayed below the form's icon.

Control - determines the text displayed in or next to a control.

MenuLine object - determines the text displayed for a Menu control or an object in the
MenuItems collection.

Syntax

object.Caption [= string]

The Caption property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list. If
object is

omitted, the form associated with the active form module is assumed to be
object.

stringA string expression which evaluates to the text displayed as the caption.

Remarks

When you create a new object, its default caption is the default Name property setting.
This default caption includes the object name and an integer, such as Command1 or
Form1. For a more descriptive label, set the Caption property.

You can use the Caption property to assign an access key to a control. In the caption,
include an ampersand (&) immediately preceding the character you want to designate as
an access key. The character is underlined. Press the ALT key plus the underlined character
to move the focus to that control. To include an ampersand in a caption without creating an
access key, include two ampersands (&&). A single ampersand is displayed in the caption
and no characters are underlined.

For a Label control, the caption is limited to 2048 characters. For forms and all other
controls that have captions, the limit is 255 characters.

To display the caption for a form, set the BorderStyle property to either Fixed Single (1),
Sizable (2), or Fixed Double (3). A caption too long for the form's title bar is clipped. When
an MDI child form is maximized within an MDIForm object, the child form's caption is
included in the parent form's caption.

Tip      For the Label or VPStatic control, set the AutoSize property to True to
automatically resize the control to fit its caption.

CaseSensitive Property
Applies To

Returns or sets a value that determines if the operation of the List portion of a control is
case sensitive. This property effects how items in a List are selected and how they are
sorted.

Syntax

object.CaseSensitive [= boolean]

The CaseSensitive property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies the behavior described in Settings.

Settings

The settings for boolean are:

Setting Description

True List operations are case sensitive.

False List operations are not case sensitive. (Default)

Remarks

List operations of the standard ListBox or ComboBox control is case insensitive. This means
the uniqueness of text placed within a List is not dependent on the case of the text. The
string value of abc is considered the same as Abc or ABC. In this example, if all three
strings are placed into a List, in the order referenced above, and a match against the string
ABC was attempted, the first abc string would match in a case insensitive operation. The
CaseSensitive property provides a means of setting the type of operations for the List
portions of the VPComboBox control, or the VPListBox control. The default for this
property is False, which indicates that all operations within a List are not case sensitive,
like the standard ListBox or ComboBox control. If this property is set to True, the
VPComboBox and VPListBox control operates in a case sensitive mode. Each instance of
the above example strings would be considered different items within the List. This
property effects how items are selected and how they are sorted.

CellText Property
See Also Example Applies To

Returns the contents of a cell within a List. Not available at design time.

Syntax

object.CellText(index)

The CellText property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

index A numeric expression which uniquely identifies the row within a List.

Remarks

The CellText property provides a mechanism to retrieve text data from a particular column
and row position (or cell) within a List. The column position is first specified by the Col
property, while the row position is determined by the supplied index value. This property,
while it allows you to retrieve the text data of a cell, it does not allow you to assign or set
the contents of a cell. To update the cell of a List you need to use the List property and
update the contents of the complete row.

Col Property
See Also Example Applies To

Returns or sets the column number being addressed when setting column array properties
for the VPComboBox and VPListBox controls. Not available at design time.

Syntax

object.Col [= number]

The Col property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression which specifies a column (1 to 99).

Remarks

In design mode, column array properties for the VPComboBox and VPListBox controls
are set and maintained through the Column Layout Properties Dialog. In run mode, you
must first set the Col property to specific column number before reading or setting any
properties for a given column.

ColAlign Property
See Also Applies To

Returns or sets the alignment of data in a column.

Syntax

object.ColAlign [= value]

The ColAlign property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value A value or constant which determines the column alignment, as described in
Settings.

Settings

The settings for value are:

Setting Description

0 Left Justify. (Default)

1 Right Justify.

2 Center.

Remarks

This is an array property of column alignments. Any column can have an alignment that is
different from other columns. When setting this property in run mode, the affected column
is specified using the Col property. Column alignments based on this property apply to all
rows except the fixed heading row, if defined.

ColBound Property
See Also Applies To

Returns or sets which column is defined as the bound column. In the VPComboBox and
VPListBox controls, this property determines if a column will pass back its data to the
ColDataSource to update the ColDataField, once a selection is made.

Syntax

object.ColBound [= column]

The ColBound property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

column A numeric expression which represents the index position of the column
assigned as the Bound column.

Remarks

The ColBound property determines if there is single bound column, or if the data from all
columns are used for update for the currently selected row. The ColBound property is set
to the index position of the column you want bound. If this property is set to zero (0) then
no one column is bound and all columns of data within the selected row are used for
update. Data associated with the selected item or row is updated to the database field
defined by the ColDataSource and ColDataField properties.

In the VPListBox control, using this property is the normal method for binding selected
data to a data source. In the VPComboBox control you have two ways to bind selected
data for update to a data source. You can use the combination of the ColBound property
associated with the ColDataBound and ColDataField properties, like the VPListBox
control, or you can use the data found in the Edit or Static portion of the VPComboBox
control and bind this data for update through the standard DataSource and DataField
properties. Using this later approach you would also use the ColLink property to link a
given column within the List portion of the VPComboBox control to the Edit or Static
portion of the control. Using the ColLink property to assign the data from a given column
of a selected row to the Edit or Static portion of the control and then having that data be
bound to a data field through the DataSource and DataField properties would be the
normal method of binding for a Combo box type control. But if you want an alternate
column of data to be bound rather than the linked data displayed in the Edit or Static
portion of the control, the use of this ColBound property becomes very handy.

Generally, you use two Recordset objects with the data-aware list controls of Vantage
Control Set. One Recordset contains a read-only list of valid selections, while the other
Recordset is updated with selections from the list. For example, the VPComboBox
control's list could be generated from a query that returned a result set of valid part
numbers and their descriptions. One column of the list would be bound to part numbers
field of the Recordset through the ColListField property. The other column would be
bound to the description field of the Recordset through its ColListField property. The
ColBound property could be used to identify the first column of part numbers as bound to
the part number field of the second Recordset, as defined through the ColDataSource
and ColDataField properties. The second column could be linked to the Edit or Static

portion of the control through the ColLink property, so the user would see the part
description selected, but have the part number used for update.

ColDataField Property
See Also Applies To

Returns or sets a value that binds a control to a field in the current record.

Syntax

object.ColDataField [= value]

The ColDataField property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

value A string expression which evaluates to the name of one of the fields in the
Recordset object specified by a Data control's RecordSource and
DatabaseName properties.

Remarks

Bound controls provide access to specific data in your database. Bound controls that
manage a single field typically display the value of a specific field in the current record. The
ColDataSource property of a bound VPComboBox or VPListBox control specifies a valid
Data control name, and the ColDataField property specifies a valid field name in the
Recordset object created by the Data control. Together, these properties specify what
data appears in the bound column of a control as defined in the ColBound property.

ColDataSource Property
See Also Applies To

Sets a value that specifies the Data control through which a column of the current control
is bound to a database. Not available at run time.

Remarks

To bind a column of a control to a field in a database at run time, using the ColBound
property, you must specify a Data control in the ColDataSource property at design time
using the Properties window.

To complete the connection with a field in the Recordset managed by the Data control,
you must also provide the name of a Field object in the ColDataField property. Unlike the
ColDataField    property, the ColDataSource property setting isn't available at run time.

ColFormat Property
See Also Applies To

Returns or sets an optional format string for data in a column.

Syntax

object.ColFormat [= string]

The ColFormat property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

stringA VB format string to be applied to data of a specific column. Possible
format strings include those listed in Settings.

Settings

Some of the possible settings for string include:

Settings

General Number #,##0;(#,##0) hh:mm AM/PM mmm
Currency #,##0.00;(#,##0.00) hh:mm am/pm

mmmm
Fixed $#,##0 h:mm q
Standard $#,##0,00 h:mm:ss y
Percent $#,##0;($#,##0) ###-#### yy
Scientific $#,##0.00;($#,##0.00) (###) ###-#### yyyy
Yes/No 0% ##### h
True/False 0.00% #####-#### hh
On/Off 0.00E+00 ###-##-#### n
General Date 0.00E-00 c nn
Long Date m/d/yy d s
Medium Date mm/dd/yy dd ss
Short Date d-mmm-yy ddd ttttt
Long Time d-mmmm-yy dddd
Medium Time d-mmm ddddd
Short Time d-mmmm dddddd
0 mmmm-yyyy w
0.00 m/d/yy ww
#,##0 mmm-yy m
#,##0.00 h:mm mm

Remarks

This is an array property of optional column formats. Any column can have a format    that
is different from other columns. When setting this property in run mode, the affected
column is specified using the Col property. Column format based on this property apply to
all rows except the fixed heading row, if defined.

ColHeadAlign Property
See Also Applies To

Returns or sets the alignment of the heading or caption in a column.

Syntax

object.ColHeadAlign [= value]

The ColHeadAlign property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value A value or constant which determines the column alignment, as described in
Settings.

Settings

The settings for value are:

Setting Description

0 Left Justify. (Default)

1 Right Justify.

2 Center.

Remarks

This is an array property of column heading alignments. Any column can have an
alignment that is different from other columns. When setting this property in run mode, the
affected column is specified using the Col property. Column alignments based on this
property apply to only the fixed heading row, if defined.

ColHeading Property
See Also Applies To

Returns or sets the heading or caption in a column.

Syntax

object.ColHeading [= string]

The ColHeading property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

stringA string expression which evaluates to the text displayed as the heading or caption.

Remarks

This is an array property of column headings or captions. Each column can have its own
optional column heading. When setting this property in run mode, the affected column is
specified using the Col property. Whether a column actually displays a column heading is
determined by the Heading property.

ColLink Property
See Also Applies To

Returns or sets which column is defined as the linked column. In the VPComboBox control,
this property determines which column is linked to the Edit or Static portion of the control.

Syntax

object.ColLink [= column]

The ColLink property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

column A numeric expression which represents the index position of the column linked
to the Edit or Static portion of the control.

Remarks

This ColLink property determines if there is single linked column or if all the columns are
linked to the Edit or Static portion of the control for the currently selected row. Any column
can be designated as the linked column by setting the ColLink property to the Index
position of the column. Only one column at a time can be defined as the linked column. If
this property is set to zero (0) then no one column is linked and data for all columns for a
selected row is treated as the linked data.

The data of the linked column is passed to Edit or Static portion of the control when a row
is selected. The data in the Edit or Static portion is subsequently passed to the
DataSource to update the DataField, if the these properties are defined.

ColListField Property
See Also Applies To

Returns or sets the name of the field in the Recordset object used to fill a column in the
list portion of the VPComboBox control or the list of the VPListBox control. Not available
at run time.

Syntax

object.ColListField [= fieldname]

The ColListField property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

fieldname A string expression which specifies the name of a field in the Recordset
created by the Data control specified by the RowSource property.

Remarks

This is an array property of optional field names to be bound to each column. The
ColListField property enables you to select which field in the Recordset is used to fill a
column in the list of a VPComboBox or VPListBox control. This property is used in
conjunction with the RowSource property that specifies which Data control is used to
create the Recordset used to fill the list. When setting this property in run mode, the
affected column is specified using the Col property.

Generally, you use two Recordset objects with the data-aware list controls of Vantage
Control Set. One Recordset contains a read-only list of valid selections, while the other
Recordset is updated with selections from the list. For example, the VPListBox control's
list could be generated from a query that returned a result set of valid part numbers and
their descriptions. One column of the list would be bound to part numbers field of the
Recordset through the ColListField property. The other column would be bound to the
description field of the Recordset through its ColListField property. The ColLink property
would identify the first column of part numbers as bound to the part number field of the
second Recordset, as this is what needs to be updated.

If the field specified by the ColListField property can't be found in the Recordset, a
trappable error occurs. This property can only be referenced within the Column Layout
Properties Dialog at design time.

ColSortBy Property
See Also Applies To

Returns or sets a value that determines if a given column of data will be used in sorting the
contents of a List.

Syntax

object.ColSortBy [= boolean]

The ColSortBy property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies the behavior described in Settings.

Settings

The settings for boolean are:

Setting Description
True A column will be used when determining the order of items within a List.

False Sorting within a List is not based on a given column. (Default)

Remarks

The ColSortBy property is an array of Boolean flags which determines if a given column is
used as a basis for determining the order of items within a List. When setting this property
in run mode, the affected column is specified using the Col property. If no columns have
this property set to True, all the columns as a whole will be used as a basis for determining
sort sequence and each full row of data is evaluated in a left-justified, ascending sort order
to determine the sequence of items within a List. Once a column is designated as a SortBy
column, its sorting sequence is determined by the ColSortOrder, and ColAlign properties,
along with the general CaseSensitive property of the List.

ColSortOrder Property
See Also Applies To

Returns or sets a value that determines the sorting order to be used within a column in a
List.

Syntax

object.ColSortOrder [= value]

The ColSortOrder property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

value A value or constant which determines the sort order, as described in Settings.

Settings

The settings for value are:

Setting Description
0 Ascending. (Default)

1 Descending.

Remarks

This is an array property of sort order definitions for each column. Any column can have a
sorting order that is different from other columns. When setting this property in run mode,
the affected column is specified using the Col property. This property works in conjunction
with the ColAlign property, and the CaseSensitive property, to determine a proper sort
sequence within a column. This sort sequence determines how items within a List are
positioned. The ColSortOrder property determines if the sorting sequence for a column is
in ascending or descending order. The ColAlign property sets how columnar text values
are evaluated in a left-to-right or right-to-left ASCII sequence. Typically column text values
that represent numeric data use a right justification, while alpha or alphanumeric data use
left or center justification. Even with this property set, sorting items within a list will only be
based on a given column if that column's ColSortBy property is set to True.

ColWidth Property
See Also Applies To

Returns or sets the width of the specified column in twips.

Syntax

object.ColWidth [= number]

The ColWidth property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression which specifies the column width.

Remarks

This is an array property of column widths. You can use this property to set the width of any
column in a VPComboBox or VPListBox control. Column widths are always defined in
twips. When setting this property in run mode, the affected column is specified using the
Col property.

ControlIndex Property
See Also Example Applies To

Returns a value that is used as an index into the Control Collection of a Form object.

Syntax

object.ControlIndex

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Return Values

The ControlIndex property return value is an index pointing within a Form object's
Control Collection.

Remarks

The ControlIndex property's return value serves as an index into a Form object's Control
Collection. Which Form object is determined by the FormIndex property. The
ControlIndex and FormIndex properties are used in tandem to identify or test for a
particular control object. The use of the ControlIndex property is dependent on if the
property is being used in conjunction with a VPForm or VPFocus control.

In the VPForm control the ControlIndex property is used in conjunction with the
FormIndex property to identify which control the mouse pointer is currently over. It is used
in custom drag-and-drop operations associated with the VPForm control. If the mouse
pointer is currently over a form or the desktop, and not over a control, the ControlIndex
property will return a -1 value. You should check for this condition before using this
property as an index within a Form object's Control Collection.

In the VPFocus control the ControlIndex property is used in conjunction with the
FormIndex property to identify which control Focus is to be sent to next. This can be
helpful in determining if normal processing in a LostFocus event should be continued or
bypassed.    As an example, you may not want validation criteria to be evaluated for a
control's contents if the Cancel or Exit command button has been clicked.

Cursor Property
See Also Example Applies To

Returns or sets the cursor image to be displayed as the mouse pointer in a drag-and-drop
operation. Not available at design time.

Syntax

object.Cursor [= cursor]

The Cursor property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

cursor Specifies a graphic resource reference within a DLL or VBX.

Settings

The settings for cursor are:

Setting Description

null string Custom cursor is destroyed and the default mouse pointer is restored.

cursor Any code reference which produces a custom mouse pointer. This
code reference is made up of the name of the DLL or VBX module and
the cursor resource name or id number. These two parameters are to
be separated by one or more spaces.

Remarks

The Cursor property is a property of the VPForm control and can be set only during run
time. This property provides a mechanism for assigning and displaying custom cursors
(mouse pointers). It is used in conjunction with the MouseCapture property when using
the custom drag-and-drop features of the VPForm control. Setting the Cursor property will
change the mouse pointer until it is reset to another custom cursor reference or to a null
string. If set to a null string the mouse pointer is returned to its previous Visual Basic
supplied cursor. There are several custom cursor resources which you can use that are part
of the VFORM.VBX file. When using these custom cursor resources, it is not necessary to
include the module name along with the resource id. Actually, it is more efficient if you just
assign the resource id so that the VPForm control does not do a LoadLibrary API call for
each cursor assignment. The custom cursors of the VPForm control include the following:

Cursor Resource Resource ID

IDCUR_NODROP 6001

IDCUR_HANDBOX 6002

IDCUR_HANDOBJ 6003

IDCUR_HANDDOC 6004

IDCUR_HANDDOCS 6005

IDCUR_ARROWDOCS 6006

IDCUR_ARROWFLDR 6007

IDCUR_DROPDOC 6008

IDCUR_DROPFLDR 6009

IDCUR_HANDWAND 6010

IDCUR_HANDPT01 6011

IDCUR_HANDPT02 6012

IDCUR_HANDPT03 6013

IDCUR_ARROWPT01 6014

IDCUR_ARROWPT02 6015

IDCUR_ARROWPT03 6016

IDCUR_ARROWPT04 6017

IDCUR_DISK01 6018

IDCUR_DISK02 6019

IDCUR_FORM 6020

IDCUR_MAIL 6021

IDCUR_CLOCK 6022

IDCUR_IDEA 6023

IDCUR_WATCH 6024

IDCUR_PLUS01 6025

IDCUR_PLUS02 6026

IDCUR_CROSS 6027

IDCUR_KEY 6028

IDCUR_CLIP 6029

IDCUR_BOOK 6030

IDCUR_DOCS01 6031

IDCUR_DOCS02 6032

IDCUR_WRITE 6033

IDCUR_HANDITM01 6034

IDCUR_HANDITM02 6035

DataChanged Property
See Also Applies To

Returns or sets a value indicating that the data in the bound control has been changed by
some process other than that of retrieving data from the current record. Not available at
design time.

Syntax

object.DataChanged [= boolean]

The DataChanged property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression hat indicates whether data has changed, as described in
Settings.

Settings

The settings for boolean are:

Setting Description

True The data currently in the control isn't the same as in the current record.

False The data currently in the control, if any, is the same as the data in the current
record. (Default)

Remarks

When a Data control moves from record to record, it passes data from fields in the current
record to controls bound to the specific field or the entire record. As data is displayed in the
bound controls, the DataChanged property is set to False. If the user or any other
operation changes the value in the bound control, the DataChanged property is set to
True. Simply moving to another record doesn't affect the DataChanged property.

When the Data control starts to move to a different record, the Validate event occurs. If
DataChanged is True for any bound control, the Data control automatically invokes the
Edit and Update methods to post the changes to the database.

If you don't wish to save changes from a bound control to the database, you can set the
DataChanged property to False in the Validate event.

Inspect the value of the DataChanged property in your code for a control's Change event
to avoid a cascading event. This applies to both bound and unbound controls.

For the VPComboBox control this property is effected by either the values in the bound
column or the Edit or Static portion of the control, depending on if you are using one or
both binding methods.

DataField Property
See Also Applies To

Returns or sets a value that binds a control to a field in the current record.

Syntax

object.DataField [= value]

The DataField property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value A string expression which evaluates to the name of one of the fields in the
Recordset object specified by a Data control's RecordSource and
DatabaseName properties.

Remarks

Bound controls provide access to specific data in your database. Bound controls that
manage a single field typically display the value of a specific field in the current record. The
DataSource property of a bound control specifies a valid Data control name, and the
DataField property specifies a valid field name in the Recordset object created by the
Data control. Together, these properties specify what data appears in the bound control.

DataSource Property
See Also Applies To

Sets a value that specifies the Data control through which the current control is bound to a
database. Not available at run time.

Remarks

To bind a control to a field in a database at run time, you must specify a Data control in the
DataSource property at design time using the Properties window.

To complete the connection with a field in the Recordset managed by the Data control,
you must also provide the name of a Field object in the DataField property. Unlike the
DataField    property, the DataSource property setting isn't available at run time.

FocusAction Property
See Also Example Applies To

Returns or sets the type of Focus management action to be executed. Not available at
design time.

Syntax

object.FocusAction [= value]

The FocusAction property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value A numeric expression specifying the type of Focus management action to
be executed, as described in Settings.

Settings

The settings for boolean are:

Setting Description

0 Turns off Focus control, ActiveControl property is set to zero (0). Can use
the constant vxTrapFocusOff instead.

1 Sends Focus on to the trapped control and sets the ActiveControl property
to zero (0). Can use the constant vxSendFocus instead.

2 Returns Focus to the current "active" control. Can use    the constant
vxReturnFocus instead.

Remarks

The FocusAction property is a custom property which acts as a custom method. Setting
this property to one of the three action properties executes certain Focus management
operations.

ForceGotFocus Property
See Also Applies To

Returns or sets a value that determines if special processing must be done to insure that a
GotFocus event is fired in the target control that will next receive Focus. Only the ActiveX
version has this property. Not available at design time.

Syntax

object.ForceGotFocus [= boolean]

The ForceGotFocus property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies whether special processing should be
executed as defined in Settings.

Settings

The settings for boolean are:

Setting Description

True Special processing should be executed to insure a GotFocus event is
generated for the target control.

False No special processing should be executed. (Default)

Remarks

The ForceGotFocus property should only be set to True in the case where a programmer
displays a message box in the LostFocus event code of the current "Active" control before
sending Focus on. Setting this property to True before executing the SendFocus Method,
or setting the FocusAction property to the vxSendFocus value, will insure the control
recieving Focus will fire its GotFocus event. Setting the ForceGotFocus property to True,
when you have not displayed a message box, is not necessary, and can interfere with other
processing of the control that receives Focus, such as a target command button control that
might miss its click event. This property is only needed and is available to the ActiveX
version of the VPFocus control.

FormControlName Property
See Also Example Applies To

Returns a string that represents the form object name, control object name, and optional
array index position.

Syntax

object.FormControlName

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Return Values

The FormControlName property returns a string value which provides an alternate way to
identify or test for a particular form or control object. This property can be used instead of
the FormIndex and ControlIndex properties. The returned string value of this property is
made up of three string parameters delimited by the period character (.). These
parameters or segments include a form name, a control name, and a control array index
position. The index parameter will be null if the referenced control is not part of a control
array.

The use of the FormControlName property is dependent on if the property is being used
in conjunction with a VPForm or VPFocus control.

In the VPForm control, the FormControlName property is used to identify which form and
which control the mouse pointer is currently over. It can be used in custom drag-and-drop
operations associated with the VPForm control.

In the VPFocus control, the FormControlName property is used to identify which form
and which control Focus is to be sent to next. This can be helpful in determining if normal
processing in a LostFocus event should be continued or bypassed. As an example, you
may not want validation criteria to be evaluated for a control's contents if the Cancel or
Exit command button has been clicked.

FormIndex Property
See Also Example Applies To

Returns a value that is used as an index into the Form Collection of an application.

Syntax

object.FormIndex

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Return Values

The FormIndex property return value is an index pointing within an application's Form
Collection.

Remarks

The FormIndex property's return value serves as an index into an application's Form
Collection. The FormIndex and ControlIndex properties are used in tandem to identify
or test for a particular control object. The use of the FormIndex property is dependent on
if the property is being used in conjunction with a VPForm or VPFocus control.

In the VPForm control, the FormIndex property is used in conjunction with the
ControlIndex property to identify which control the mouse pointer is currently over. It is
used in custom drag-and-drop operations associated with the VPForm control.

In the VPFocus control, the FormIndex property is used in conjunction with the
ControlIndex property to identify which control Focus is to be sent to next. This can be
helpful in determining if normal processing in a LostFocus event should be continued or
bypassed. As an example, you may not want validation criteria to be evaluated for a
control's contents if the Cancel or Exit command button has been clicked.

GridAppearance Property
See Also Applies To

Returns or sets the paint style of any grid lines displayed within the list portion of a control.

Syntax

object.GridAppearance [= number]

The GridAppearance property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression which specifies the type of appearance, as described in
Settings.

Settings

The settings for number are:

Setting Description

0 Flat. Paints grids lines without visual effects. (Default)

1 3D Inset. Paints grids with a lowered three-dimensional effect.

2 3D Raised. Paints grids with a raised three-dimensional effect.

Remarks

If set to 1 or 2 at either design time or run time, the GridAppearance property draws the
grid lines within lists with three-dimensional effects. The grid can have a normal flat
appearance or acquire a three-dimensional look by drawing a 2-pixel border on the inside
of each cell frame. This GridAppearance property will have no effect If the GridLines
property is set to None (0).

GridLines Property
See Also Applies To

Returns or sets a value that determines whether the list portion of controls display grid
lines and the type or grid lines displayed.

Syntax

object.GridLines [= number]

The GridLines property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression which specifies the type of grid lines, as described in
Settings.

Settings

The settings for number are:

Setting Description

0 None. (Default)

1 Horizontal grid lines are displayed.

2 Vertical grid lines are displayed.

3 Both horizontal and vertical grid lines are displayed.

Remarks

The GridLines property determines whether lines are display within the list portion of the
VPComboBox or VPListBox controls. This property further determines whether the grid
lines include horizontal lines between the rows of a list, vertical lines between the columns
of a list, or both types of lines. The associated GridAppearance property determines if the
representation of these grid lines are normal lines or take on a 3D display appearance.

Heading Property
See Also Applies To

Returns or sets a value that determines if a fixed row is displayed for column headings or
captions within the List portion of a control.

Syntax

object.Heading [= boolean]

The Heading property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies whether the list has a heading, as
described in Settings.

Settings

The settings for boolean are:

Setting Description

True List portion of control displays a fixed column heading row.

False No heading row is displayed. (Default)

Remarks

The VPComboBox and VPListBox controls can display an optional fixed row which holds
headings or captions for each column of the List. The columns of this heading row have
their own alignment and captions and the fixed row has its own color properties. Whether
this fixed heading row is displayed is determined by the Heading property which can be
set to True or False. If set to False, any properties that define the headings, alignments,
or colors for the heading row are ignored.

HeadingBackColor Property
See Also Applies To

Returns or sets the background color of the fixed heading row associated with the List
portion of an object.

Syntax

object.HeadingBackColor [= color]

The HeadingBackColor property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

color A value or constant which determines the background color of an object, as
described in Settings.

Settings

The settings for color are:

Setting Description

Normal RGB colors Colors specified by using the Color palette or by using the RGB or
QBColor functions in code.

System default colors Colors specified by system color constants listed in the
Visual Basic (VB) object library in the Object Browser (VB4). The

Windows
operating environment substitutes the user's choices as specified in

the
Control Panel settings. (VB4 only)

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue
components are each represented by a number between 0 and 255 (&HFF). If the high byte
isn't 0, Visual Basic uses the system colors, as defined in the user's Control Panel settings
and (in VB4) by constants listed in the Visual Basic (VB) object library in the Object
Browser.

To display text in the Windows operating environment, both the text and background colors
must be solid. If the text or background colors you've selected aren't displayed, one of the
selected colors may be dithered - that is, comprised of up to three different-colored pixels.
If you choose a dithered color for either the text or background, the nearest solid color will
be substituted.

If the Heading property is set to False, the HeadingBackColor property will be ignored.

HeadingForeColor Property
See Also Applies To

Returns or sets the foreground color of the fixed heading row associated with the List
portion of an object.

Syntax

object.HeadingForeColor [= color]

The HeadingForeColor property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

color A value or constant which determines the foreground color of an object, as
described in Settings.

Settings

The settings for color are:

Setting Description

Normal RGB colors Colors specified by using the Color palette or by using the RGB or
QBColor functions in code.

System default colors Colors specified by system color constants listed in the
Visual Basic (VB) object library in the Object Browser (VB4). The

Windows
operating environment substitutes the user's choices as specified in

the
Control Panel settings. (VB4 only)

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue
components are each represented by a number between 0 and 255 (&HFF). If the high byte
isn't 0, Visual Basic uses the system colors, as defined in the user's Control Panel settings
and (in VB4) by constants listed in the Visual Basic (VB) object library in the Object
Browser.

To display text in the Windows operating environment, both the text and background colors
must be solid. If the text or background colors you've selected aren't displayed, one of the
selected colors may be dithered - that is, comprised of up to three different-colored pixels.
If you choose a dithered color for either the text or background, the nearest solid color will
be substituted.

If the Heading property is set to False, the HeadingForeColor property will be ignored.

HideSelection Property
Applies To

Returns a value that determines whether selected text appears highlighted when a control
loses the Focus.

Syntax

object.HideSelection

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Return Values

The HideSelection property return values are:

Value Description

True Selected text doesn't appear highlighted when the control loses the Focus.
(Default)

FalseSelected text appears highlighted when the control loses the Focus.

Remarks

You can use this property to indicate which text is highlighted while another form or a
dialog box has the Focus - for example, in a spell-checking routine.

ListAppearance Property
Applies To

Returns or sets the paint style of the Dropdown List of a control.

Syntax

object.ListAppearance [= number]

The ListAppearance property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number An numeric expression which specifies the type of appearance, as described
in Settings.

Settings

The settings for number are:

Setting Description

0 Flat. Paints List without visual effects. (Default)

1 3D Inset. Paints List with a lowered three-dimensional effect.

2 3D Raised. Paints List with a raised three-dimensional effect.

Remarks

If set to 1 or 2 at either design time or run time, the Listppearance property draws a
Dropdown List with three-dimensional effects.

ListBackColor Property
See Also Applies To

Returns or sets the background color of the List portion of an object.

Syntax

object.ListBackColor [= color]

The ListBackColor property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

color A value or constant which determines the background color of an object, as
described in Settings.

Settings

The settings for color are:

Setting Description

Normal RGB colors Colors specified by using the Color palette or by using the RGB or
QBColor functions in code.

System default colors Colors specified by system color constants listed in the
Visual Basic (VB) object library in the Object Browser (VB4). The

Windows
operating environment substitutes the user's choices as specified in

the
Control Panel settings. (VB4 only)

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue
components are each represented by a number between 0 and 255 (&HFF). If the high byte
isn't 0, Visual Basic uses the system colors, as defined in the user's Control Panel settings
and (in VB4) by constants listed in the Visual Basic (VB) object library in the Object
Browser.

To display text in the Windows operating environment, both the text and background colors
must be solid. If the text or background colors you've selected aren't displayed, one of the
selected colors may be dithered - that is, comprised of up to three different-colored pixels.
If you choose a dithered color for either the text or background, the nearest solid color will
be substituted.

The ListBackColor property is provided for the VPComboBox control to allow for setting
of colors for the List portion of the control, independent from the Edit or Static portion of
the control, which is controlled by the standard BackColor property.

ListForeColor Property
See Also Applies To

Returns or sets the foreground color of the List portion of an object.

Syntax

object.ListForeColor [= color]

The ListForeColor property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

color A value or constant which determines the foreground color of an object, as
described in Settings.

Settings

The settings for color are:

Setting Description

Normal RGB colors Colors specified by using the Color palette or by using the RGB or
QBColor functions in code.

System default colors Colors specified by system color constants listed in the
Visual Basic (VB) object library in the Object Browser (VB4). The

Windows
operating environment substitutes the user's choices as specified in

the
Control Panel settings. (VB4 only)

Remarks

The valid range for a normal RGB color is 0 to 16,777,215 (&HFFFFFF). The high byte of a
number in this range equals 0; the lower 3 bytes, from least to most significant byte,
determine the amount of red, green, and blue, respectively. The red, green, and blue
components are each represented by a number between 0 and 255 (&HFF). If the high byte
isn't 0, Visual Basic uses the system colors, as defined in the user's Control Panel settings
and (in VB4) by constants listed in the Visual Basic (VB) object library in the Object
Browser.

To display text in the Windows operating environment, both the text and background colors
must be solid. If the text or background colors you've selected aren't displayed, one of the
selected colors may be dithered - that is, comprised of up to three different-colored pixels.
If you choose a dithered color for either the text or background, the nearest solid color will
be substituted.

The ListForeColor property is provided for the VPComboBox control to allow for setting
of colors for the List portion of the control, independent from the Edit or Static portion of
the control, which is controlled by the standard ForeColor property.

Locked Property
Applies To

Returns or sets a value indicating whether a control can be edited.

Syntax

object.Locked [= boolean]

The Locked property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies whether the control can be edited, as
described in Settings.

Settings

The settings for boolean are:

Setting Description

True You can scroll and highlight the text in the control, but you can't edit it. The
program can still modify the text by changing the Text property.

False You can edit the text in the control. (Default)

Remarks

The Locked property when set to True, provides a display only mode for the VPTextBox
and VPComboBox controls.

MatchEntry Property
See Also Applies To

Returns or sets a value that determines how the List portion of the VPComboBox control is
searched, based on values entered into the Edit portion of the control. Applies only to a
VPComboBox control with the Style property set to Dropdown Combo.

Syntax

object.MatchEntry [= value]

The MatchEntry property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

value A value or constant which specifies the type of search within the List portion,
as described in Settings.

Settings

The settings for value are:

Setting Description
0 No matching. As characters are type in to the edit portion, no searching

occurs.

1 Standard matching. The control searches for an item with beginning
characters matching all the characters entered. The search is done as
characters are being typed, or backspaced, further refining the search. Any
matching items row will be highlighted within the List portion, but not copied
to the Edit or Static portion of the control until the user hits the Enter key, the
control losses focus,    or the user clicks on an item. This type of matching is
modeled after the search dialog in the Windows help system. (Default)

2 Extended matching. The control waits until the user types in enough
characters into the Edit portion of the control to uniquely match an item in the
List portion. When a match is found the item is selected and the linked column
is loaded and displayed in the Edit portion of the control. The portions not
typed by the user are selected for easy over-typing. This type of matching is
modeled after searches found in controls used in Microsoft Money and Intuits
Quicken.

Remarks

The MatchEntry property allows for specific searching behavior that would otherwise
require significant coding. A matching or auto searching property such as the MatchEntry
property becomes very important when the List portions are either not sorted and have a
large amount of items.

MaxCols Property
See Also Example Applies To

Returns or sets the number of columns for the List portion of a control. Not available during
design time.

Syntax

object.MaxCols [= number]

The MaxCols property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression representing the total number of the columns (1 to 99)
for a List.

Remarks

The MaxCols property provides a mechanism to set the number of columns for a List a run
time. If the number of columns set is less then the current number of columns, the trailing
column definitions are deleted from the List. If the number of columns set is greater then
the current number of columns, new column definitions will be added to the List. Any
columns added will have the following default values:

Property Default Value

ColAlign 0
ColFormat "" (null string)
ColHeading "" (null string)
ColHeadAlign 0
ColListField "" (null string) or the next ordinal Field Name object if the List
is bound
ColWidth 1000 (twips)

MaxDrop Property
Applies To

Returns or sets the number of items or rows that are displayed with the List portion of a
control is dropped down.

Syntax

object.MaxDrop [= number]

The MaxDrop property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression which specifies the number of rows to be displayed.
Default number is 8.

Remarks

The MaxDrop property determines the size of the drop-down List associated with the
VPComboBox control by setting the number of items or rows that are displayed when the
List is dropped down.

MaxLength Property
Applies To

Returns or sets a value indicating whether there is a maximum number of characters that
can be entered in the TextBox or VPTextBox control and, if so, specifies the maximum
number of characters that can be entered.

Syntax

object.MaxLength [= value]

The MaxLength property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value An integer specifying the maximum number of characters a user can enter in a
TextBox    or VPTextBox control. The default for the MaxLength property is 0,
indicating no maximum other than that created by memory constraints
on the user's system for single-line TextBox controls and a maximum of
approximately 32K for multiple-line TextBox or VPTextBox controls. Any
number greater than 0 indicates the maximum number of characters.

Remarks

Use the MaxLength property to limit the number of characters a user can enter in a
TextBox or VPTextBox control.

If text that exceeds the MaxLength property setting is assigned to a TextBox or
VPTextBox from code, no error occurs; however, only the maximum number of characters
is assigned to the Text property, and extra characters are truncated. Changing this
property doesn't affect the current contents of a TextBox or VPTextBox control but will
affect any subsequent changes to the contents.

MaxWidth Property
See Also Applies To

Returns or sets the maximum width for all columns with the List portion of the
VPComboBox control.

Syntax

object.MaxWidth [= number]

The MaxWidth property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression specifying the width dimensions of an object in twips.

Remarks

The MaxWidth property can be used to set the display width of the List portion of the
VPComboBox control. The width is always expressed in twips. If the total of the individual
column widths exceeds this property, a horizontal scrollbar is provided at the bottom of the
List portion of the control. If the total of the individual column widths is less then this
MaxWidth property, the MaxWidth property is ignored.

A MaxWidth property value of zero (0) indicates that there is no maximum width defined
and the List portion of the control will be as wide as necessary to display all the columns.

MouseCapture Property
See Also Example Applies To

Returns or sets a value that determines if the VPForm control traps all mouse events and
fires custom mouse events associated with the VPForm control. Not available at design
time.

Syntax

object.MouseCapture [= boolean]

The MouseCapture property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which controls the capture of mouse events, as
described in Settings.

Settings

The settings for boolean are:

Setting Description

True The VPForm control captures all mouse events and fires custom mouse
events.

False The capturing of mouse events is turned off.

Remarks

The MouseCapture property is a property of the VPForm control and can be set only
during run time. This property turns on or off the capturing of mouse events for an
application. Setting this property to True captures all mouse events and allows for the
firing of custom mouse events associated with the VPForm control. These custom mouse
events include the MouseDown, MouseMove, and MouseUp events. This
MouseCapture property, the Cursor property, and custom mouse events are provided to
enable a unique and centralized approach to drag-and-drop operations for an application.

Normal Visual Basic drag-and-drop operations involve writing code utilizing special
methods in several events and setting several properties for a number of form and control
objects. Typically, you start by setting the DragIcon property for the "source" control
(usually in a Form's Load event) and executing the Drag method in its MouseDown
event. Next you need to code for DragOver and MouseUp events in each object that the
mouse can travel over. This includes forms and any controls. Finally, for any target object,
you also need to code for the DragDrop event to implement any operation associated with
the drag-and-drop process, such as moving a control and transferring data from a source
object to a destination object.

Normal Visual Basic drag-and-drop operations also limit what you can use for a custom
cursor or mouse pointer. You can only reference Icon files and not true Cursor resources.

Under this arrangement you have no control of where a custom mouse pointer's hot spot is
located.

With the VPForm control of Vantage Control Set you can control all drag-and-drop
operations from the one MouseDown event of a "source" control and the custom
MouseMove and MouseUp events of the VPForm control. In the "source" control's
MouseDown event you turn on mouse capturing by setting the MouseCapture property
of the VPForm control to True. From this point, until the MouseCapture property is reset
to False, all mouse events are redirected to the mouse events of the VPForm control. In
these centralized mouse events you can code for all drag-and-drop operations. You can
determine which objects the mouse-pointer is over through the FormIndex and
ControlIndex properties and set any custom mouse pointers using the Cursor property of
the VPForm control. For a full example on how drag-and-drop operations can be controlled
see the example help on this MouseCapture property.

MultiLine Property
Applies To

Returns or sets a value indicating whether a TextBox or VPTextBox control can accept
and display multiple lines of text. Read only at run time.

Syntax

object.MultiLine

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Settings

The MultiLine property settings are:

Setting Description

True Allows multiple lines of text.

FalseIgnores carriage returns and restricts data to a single line. (Default)

Remarks

A multiple-line TextBox or VPTextBox control wraps text as the user types text extending
beyond the edit control.

You can also add scrollbars to larger TextBox or VPTextBox controls using the ScrollBars
property. If no HScrollBar control (horizontal scroll bar) is specified, the text in a multiple-
line TextBox or VPTextBox control automatically wraps.

Note      On a form with no default button, pressing ENTER in a multiple-line TextBox or
VPTextBox control moves the Focus to the next line. If a default button exists, you must
press CTRL+ENTER to move to the next line.

MultiSelect Property
Applies To

Returns or sets a value indicating whether a user can make multiple selections in a
ListBox or VPListBox control and how the multiple selections can be made. Read only at
run time.

Syntax

object.MultiSelect

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Settings

The MultiSelect property settings are:

Setting Description

0 Multiple selection isn't allowed. (Default)

1 Simple multiple selection. A mouse click or pressing the SPACEBAR selects or
deselects an item in the list. (Arrow keys move the Focus.)

2 Extended multiple selection. Pressing SHIFT and clicking the mouse or
pressing

SHIFT and one of the arrow keys (UP ARROW, DOWN ARROW, LEFT
ARROW, and RIGHT ARROW) extends the selection from the previously
selected item to the current item. Pressing CTRL and clicking the mouse
selects or deselects an item in the list.

OverType Property
Applies To

Determines the operational mode of the edit portion of the VPTextBox and VPComboBox
controls. The edit portion can be in an Insert or Overtype mode.

Remarks

The OverType property is not available in design time nor in run time through code. It can
only be toggled on or off by the user using the keyboard INS Key. The different modes of
operation use different carets as a visual cue. There is a normal vertical bar caret to
indicate the insert position when in the Insert mode, and an underscore caret to indicate
the replacement position when in the Overtype mode. The default mode of operation is
the Insert mode.

PasswordChar Property
Applies To

Returns or sets a value indicating whether the characters typed by a user or placeholder
characters are displayed in a TextBox or VPTextBox control; returns or sets the character
used as a placeholder.

Syntax

object.PasswordChar [= value]

The PasswordChar property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value A string expression specifying the placeholder character.

Remarks

Use this property to create a password field in a dialog box. Although you can use any
character, most Windows-based applications use the asterisk (*) (Chr$(42)).

This property doesn't affect the Text property; Text contains exactly what the user types or
what was set from code. Set PasswordChar to a zero-length string (""), which is the
default, to display the actual text.

You can assign any string to this property, but only the first character is significant; all
others are ignored.

Note      If the MultiLine Property is set to True, setting the PasswordChar property will
have no effect.

RowSource Property
See Also Applies To

Sets a value that specifies the Data control from which the list portion of a VPComboBox
or VPListBox control is filled. Not available at run time.

Remarks

To fill the list in a VPComboBox or VPListBox control, you must specify a Data control in
the RowSource property at design time using the Properties window.

To complete the connection with a field in the Recordset object managed by the Data
control, you must also provide the name of a Field object in the ColListField property.
Unlike the ColListField    property, the RowSource property setting isn't available at run
time.

TargetControl Property
See Also Example Applies To

Returns or sets the window handle of the control where Focus will next be sent.

Syntax

object.TargetControl [= value]

The TargetControl property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

value The Window handle (Integer) of a control.

Remarks

The TargetControl property is an object pointer which records the control where Focus will
next be sent to when using the FocusAction property or the SendFocus method.

This property is used for Focus processing within MDI child forms as a further check to
make sure that spurious events are not processed. Within Visual Basic, if you transfer focus
from one MDI child form to another and then back, the control that last had focus within an
MDI child form will temporarily get focus again when you return to that form, even if focus
is being sent to a different target control. Under these circumstances the GotFocus event
procedure must check if the current control is the same as the target control, in addition to
checking if the active control is undefined, before processing the GotFocus procedure
code.

The TargetControl property can also be used to explicitly change the control where Focus
will be sent when setting the FocusAction property to the SendFocus value or using the
SendFocus custom method. You assign the TargetControl property the control handle of
the control where you want Focus to be sent.

ScrollBars Property
Applies To

Returns or sets a value indicating whether an object has horizontal or vertical scroll bars.
Read only at run time.

Syntax

object.ScrollBars [= number]

The ScrollBars property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

number A numeric expression which specifies whether a control has one or more
scrollbars

and the type of scrollbars, as described in Settings.

Settings

The settings for number are:

Setting Description

0 None (Default)

1 Horizontal scrollbar

2 Vertical scrollbar

3 Both types of scrollbars

Remarks

For a TextBox or VPTextBox controls with setting 1 (Horizontal), 2 (Vertical), or 3 (Both),
you must set the MultiLine property to True.

At run time, the Microsoft Windows operating environment automatically implements a
standard keyboard interface to allow navigation in TextBox and VPTextBox controls with
the arrow keys (UP ARROW, DOWN ARROW, LEFT ARROW, and RIGHT ARROW), the HOME
and END keys, and so on.

Scroll bars are displayed on an object only if its contents extend beyond the object's
borders. For example, a vertical scroll bar appears on a TextBox or VPTextBox control
when it can't display all of its lines of text. If the ScrollBars property is set to 0, the
TextBox or VPTextBox won't have scroll bars, regardless of its contents.

Sorted Property
See Also Apples To

Returns a value indicating whether the elements of a control are automatically sorted. Can
only be set at design time.

Syntax

object.Sorted

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies whether the control List contents
are sorted, as described in Settings.

Return Values:

The Sorted property return values are:

Setting Description

True List items are sorted based on defined sort criteria.

False List items are not sorted. (Default)

Remarks

When the Sorted property is True, the control handles almost all necessary string
processing to maintain a proper sort order, including changing the index numbers for items
as required by the addition or removal of items. The type of sorting and which columns are
used as sort keys are determined by the ColSortBy and ColSortOrder properties.

Style Property
Applies To

Returns or sets a value indicating the type of combo box and the behavior of its List
portion. Read only at run time.

Syntax

object.Style

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Settings

The Style property settings are:

Setting Description

0 Dropdown Combo. Includes a drop-down List and an Edit control. The user
can

select from the List or type in the Edit portion. (Default)

1 Simple Combo. Includes an Edit control and a List, which doesn't drop down.
The user can select from the List or type in the Edit portion. The size of a
Simple combo box includes both the Edit and List portions. By default, a
Simple combo box is sized so none of the list is displayed. Increase
the Height property to display more of the list.

2 Dropdown List. This style only allows selection from the drop-down List and
includes a Static portion to display the selection.

Remarks

Follow these guidelines in deciding which setting to choose:

Use setting 0 (Dropdown Combo) or setting 1 (Simple Combo) to give the user a list of
choices. Either style enables the user to enter a choice in the edit portion. Setting 0 saves
space on the form because the List portion closes when the user selects an item. The
Dropdown style allows use of the MatchEntry property and its custom data searching
capabilities.

Use setting 2 (Dropdown List) to display a fixed list of choices from which the user can
select one. The List portion closes when the user selects an item. With this style the control
supports first character matching.

Text Property
Applies To

For ComboBox or VPComboBox controls (Style property set to 0 [Dropdown Combo] or to
1 [Simple Combo]) and TextBox or VPTextBox controls, this property returns or sets the
text contained in the Edit area.

For ComboBox or VPComboBox controls (Style property set to 2 [Dropdown List]) and
ListBox or VPListBox controls, this property returns the selected item in the List; the
value returned is always equivalent to the value returned by the expression
List(ListIndex). Read-only at design time; read-only at run time.

For Grid control, this property returns or sets the text contained in a cell or range of cells.
Not available at design time.

Syntax

object.Text [= string]

The Text property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

stringA string expression specifying text.

Remarks

At design time only, the defaults for the Text property are:

ComboBox, VPComboBox, TextBox, and VPTextBox controls - the control's Name
property.

ListBox and VPListBox controls - a zero-length string ("").

For a ComboBox or VPComboBox control with the Style property set to 0 (Dropdown
Combo) or to 1 (Simple Combo) or for a TextBox or VPTextBox control, this property is
useful for reading the actual string contained in the edit area of the control. For a
ComboBox, VPComboBox, ListBox, or VPListBox control with the Style property set to
2 (Dropdown List), you can use the Text property to determine the currently selected item.

The Text setting for a TextBox or VPTextBox control is limited to 2048 characters unless
the MultiLine property is True, in which case the limit is about 32K.

For a Grid control, you can add text to a single cell by setting the Text property. This
property applies to the cell defined by the current values of the Grid control's Row and Col
properties.

You can use the Text and FillStyle properties to add the same text to a highlighted range
of cells. When FillStyle = 0, the text assigned to the Text property is added only to the
cell defined by the current Row and Col property values. When FillStyle = 1, the text is

added to all cells whose CellSelected property setting is True.

You can also use the Clip property to fill a range of cells. For example, you might want to
paste a large block of information from the Clipboard into a Grid control.

WordWrap Property
Applies To

Returns or sets a value indicating whether a Label or VPStatic control with its AutoSize
property set to True expands vertically or horizontally to fit the text specified in its
Caption property.

Syntax

object.WordWrap [= boolean]

The WordWrap property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression specifying whether the control expands to fit the text, as
described in Settings.

Settings

The settings for boolean are:

Setting Description

True The text wraps; the control expands or contracts vertically to fit the text
and the size of the font. The horizontal size doesn't change.

False The text doesn't wrap; the control expands or contracts horizontally to fit
the length of the text and vertically to fit the size of the font and the
number of lines. (Default)

Remarks

Use this property to determine how a Label or VPStatic control displays its contents. For
example, a graph which changes dynamically might have a Label containing text that also
changes. To maintain a constant horizontal size for the Label or VPStatic control and
allow for increasing or decreasing text, set the WordWrap and AutoSize properties to
True.

If you want a Label or VPStatic control to expand only horizontally, set WordWrap to
False. If you don't want the Label or VPStatic control to change size, set AutoSize to
False.

Note      If AutoSize is set to False, the text always wraps, regardless of the size of the
Label or VPStatic control or the setting of the WordWrap property. This may obscure
some text because the Label or VPStatic control doesn't expand in any direction.

Change Event
Applies To

Indicates that the contents of a control have changed. How and when this event occurs
varies with the control:

ComboBox or VPComboBox controls - changes in the text of the Edit portion of the
control. For the standard ComboBox this event occurs only if the Style property is set to 0
(Dropdown Combo) or 1 (Simple Combo) and the user changes the text or you change the
Text property setting through code. For the VPComboBox control this event also occurs
when a selection is made from the List portion that changes the Text property.

Label or VPStatic controls - changes in the contents of the control. Occurs when a DDE
link updates data or when you change the Caption property setting through code.

TextBox or VPTextBox controls - changes in the contents of the text box. Occurs when a
DDE link updates data, when a user changes the text, or when you change the Text
property setting through code.

Syntax

Sub object_Change([index As Integer])

The Change event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

Remarks

The Change event procedure can synchronize or coordinate data display among controls.
For example, you can use a Change event procedure to display data and formulas in a
work area and results in another area.

Note      A Change event procedure can sometimes cause a cascading event. This occurs
when the control's Change event alters the control's contents, for example, by setting a
property in code that determines the control's value, such as the Text property setting for
a TextBox or VPTextBox control. To prevent a cascading event:    1) If possible, avoid
writing a Change event procedure for a control that alters that control's contents. If you do
write such a procedure, be sure to set a flag that prevents further changes while the
current change is in progress,    2) Avoid creating two or more controls whose Change
event procedures affect each other, for example, two TextBox or VPTextBox controls that
update each other during their Change events.

Click Event
Applies To

Occurs when the user presses and then releases a mouse button over an object. It can also
occur when the value of a control is changed.

For a Form object, this event occurs when the user clicks either a blank area or a disabled
control. For a control, this event occurs when the user:

Clicks a control with the left or right mouse button. With a CheckBox, CommandButton,
or OptionButton control, the Click event occurs only when the user clicks the left mouse
button.

Selects an item in a ComboBox, VPComboBox, VPListBox, or ListBox control, either by
pressing the arrow keys or by clicking the mouse button.

Presses the SPACEBAR when a CommandButton, OptionButton, or CheckBox control
has the Focus.

Presses ENTER when a form has a CommandButton control with its Default property set
to True.

Presses ESC when a form has a Cancel button - a CommandButton control with its
Cancel property set to True.

Presses an access key for a control. For example, if the caption of a CommandButton
control is "&Go", pressing ALT+G triggers the event.

You can also trigger the Click event in code by:

Setting a CommandButton control's Value property to True.

Setting an OptionButton control's Value property to True.

Changing a CheckBox control's Value property setting.

Syntax

Sub object_Click ([index As Integer])

The Click event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

Remarks

Typically, you attach a Click event procedure to a CommandButton control, Menu object,

or PictureBox control to carry out commands and command-like actions. For the other
applicable controls, use this event to trigger actions in response to a change in the control.

You can use a control's Value property to test the state of the control from code. Clicking a
control generates MouseDown and MouseUp events in addition to the Click event. The
order in which these three events occur varies from control to control. For example, for
ListBox, VPListBox, and CommandButton controls, the events occur in this order:
MouseDown, Click, MouseUp. But for FileListBox, Label, Static, or PictureBox
controls, the events occur in this order: MouseDown, MouseUp, and Click. When you're
attaching event procedures for these related events, be sure that their actions don't
conflict. If the order of events is important in your application, test the control to determine
the event order.

Note      To distinguish between the left, right, and middle mouse buttons, use the
MouseDown and MouseUp events.

CloseUp Event
Applies To

Occurs when the List portion of the VPComboBox control is closed.

Syntax

Sub object_CloseUp([index As Integer,])

The CloseUp event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

Remarks

The CloseUp event procedure can be used to trigger any processing that may be required
after the user has made or even canceled a selection from the List portion of a
VPComboBox control. This event will not fire if the Style property is set to 1 (Simple).

DblClick Event
Applies To

Occurs when the user presses and releases a mouse button and then presses and releases
it again over an object.

For a form, the DblClick event occurs when the user double-clicks a disabled control or a
blank area of a form. For a control, it occurs when the user:

Double-clicks a control with the left mouse button.

Double-clicks an item in a ComboBox or VPComboBox control whose Style property is
set to 1 (Simple) or in a FileListBox, ListBox, VPListBox, DBCombo (VB4 only), or
DBList (VB4 only) control.

Syntax

Sub object_DblClick ([index As Integer])

The DblClick event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

Remarks

The argument Index uniquely identifies a control if it's in a control array. You can use a
DblClick event procedure for an implied action, such as double-clicking an icon to open a
window or document. You can also use this type of procedure to carry out multiple steps
with a single action, such as double-clicking to select an item in a List box and to close the
dialog box.

To produce such shortcut effects in Visual Basic, you can use a DblClick event procedure
for a List box or file List box in tandem with a default button - a CommandButton control
with its Default property set to True. As part of the DblClick event procedure for the List
box, you simply call the default button's Click event.

For those objects that receive Mouse events, the events occur in this order: MouseDown,
MouseUp, Click, DblClick, and MouseUp.

If the DblClick event doesn't occur within the system's double-click time limit, the object
recognizes another Click event. The double-click time limit may vary because the user can
set the double-click speed in the Control Panel. When you're attaching procedures for these
related events, be sure that their actions don't conflict. Controls that don't receive
DblClick events may receive two clicks instead of a DblClick.

Note      To distinguish between the left, right, and middle mouse buttons, use the
MouseDown and MouseUp events.

DropDown Event
Applies To

Occurs when the List portion of a ComboBox or VPComboBox control is about to drop
down; this event doesn't occur if a ComboBox or VPComboBox control's Style property
is set to 1 (Simple Combo).

Syntax

Sub object_DropDown ([index As Integer])

The DropDown event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

Remarks

Use a DropDown event procedure to make final updates to a ComboBox or
VPComboBox control's List before the user makes a selection. This enables you to add or
remove items from the List using the AddItem or RemoveItem methods. This flexibility is
useful when you want some interplay between controls - for example, if what you want to
load into a ComboBox or VPComboBox List depends on what the user selects in an
OptionButton group.

MouseDown Event
See Also Example Applies To

Occurs when the user presses a mouse button.

Syntax

Sub Form_MouseDown (button As Integer, shift As Integer, x As Single, y As Single)

Sub MDIForm_MouseDown (button As Integer, shift As Integer, x As Single, y As
Single) (VB4 only)

Sub object_MouseDown ([index As Integer,] button As Integer, shift As Integer, x As
Single, y As Single)

The MouseDown event syntax has these parts:

Part Description

object Returns an object expression which evaluates to an object in the Applies To
list.

index Returns an integer which uniquely identifies a control if it's in a control array.

button Returns an integer which identifies the button that was pressed to cause the
event. The button argument is a bit field with bits corresponding to the
left button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is
set, indicating the button that caused the event.

shift Returns an integer which corresponds to the state of the SHIFT, CTRL, and
ALT keys when the button specified in the button argument is pressed. A
bit is set if the key is down. The shift argument is a bit field with the
least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key
(bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2,
and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL and ALT were
pressed, the value of shift would be 6.

x, y Returns a number which specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the
coordinate system set by the ScaleHeight, ScaleWidth, ScaleLeft,
and ScaleTop properties of the object.

Remarks

Use a MouseDown event procedure to specify actions that will occur when a given mouse
button is pressed. Unlike the Click and DblClick events, the MouseDown event enables
you to distinguish between the left, right, and middle mouse buttons. You can also write
code for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard
modifiers.

When the MouseCapture property of the VPForm control is set to True, all mouse events
are redirected to the mouse events of the VPForm control including the MouseDown
event.

MouseMove Event
See Also Example Applies To

Occurs when the user moves the mouse.

Syntax

Sub Form_MouseMove (button As Integer, shift As Integer, x As Single, y As Single)

Sub MDIForm_MouseMove (button As Integer, shift As Integer, x As Single, y As
Single) (VB4 only)

Sub object_MouseMove ([index As Integer,] button As Integer, shift As Integer, x As
Single, y As Single)

The MouseMove event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

button An integer which corresponds to the state of the mouse buttons in which a
bit is set if the button is down. The button argument is a bit field with bits
corresponding to the left button (bit 0), right button (bit 1), and middle
button (bit 2). These bits correspond to the values 1, 2, and 4,
respectively. It indicates the complete state of the mouse buttons; some,
all, or none of these three bits can be set, indicating that some, all, or
none of the buttons are pressed.

shift An integer which corresponds to the state of the SHIFT, CTRL, and ALT keys. A
bit

is set if the key is down. The shift argument is a bit field with the
least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key
(bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2,
and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL and ALT were
pressed, the value of shift would be 6.

x, y A number which specifies the current location of the mouse pointer. The x
and y values are always expressed in terms of the coordinate system set
by the ScaleHeight, ScaleWidth, ScaleLeft, and ScaleTop properties of
the object.

Remarks

The MouseMove event is generated continually as the mouse pointer moves across
objects. Unless another object has captured the mouse, an object recognizes a MouseMove
event whenever the mouse position is within its borders.

When the MouseCapture property of the VPForm control is set to True, all mouse events

are redirected to the mouse events of the VPForm control including the MouseMove
event.

MouseUp Event
See Also Example Applies To

Occurs when the user releases a mouse button.

Syntax

Sub Form_MouseUp (button As Integer, shift As Integer, x As Single, y As Single)

Sub MDIForm_MouseUp (button As Integer, shift As Integer, x As Single, y As
Single) (VB4 only)

Sub object_MouseUp ([index As Integer,] button As Integer, shift As Integer, x As
Single, y As Single)

The MouseUp event syntax has these parts:

Part Description

object Returns an object expression which evaluates to an object in the Applies To
list.

index Returns an integer which uniquely identifies a control if it's in a control array.

button Returns an integer which identifies the button that was released to cause
the event. The button argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and middle button (bit 2). These
bits correspond to the values 1, 2, and 4, respectively. Only one of the
bits is set, indicating the button that caused the event.

shift Returns an integer which corresponds to the state of the SHIFT, CTRL, and
ALT keys when the button specified in the button argument is released. A
bit is set if the key is down. The shift argument is a bit field with the
least-significant bits corresponding to the SHIFT key (bit 0), the CTRL key
(bit 1), and the ALT key (bit 2). These bits correspond to the values 1, 2,
and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed. For example, if both CTRL and ALT were
pressed, the value of shift would be 6.

x, y Returns a number which specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the
coordinate system set by the ScaleHeight, ScaleWidth, ScaleLeft,
and ScaleTop properties of the object.

Remarks

Use a MouseUp event procedure to specify actions which will occur when a given mouse
button is released. Unlike the Click and DblClick events, the MouseUp event enables you
to distinguish between the left, right, and middle mouse buttons. You can also write code
for mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.

When the MouseCapture property of the VPForm control is set to True, all mouse events

are redirected to the mouse events of the VPForm control including the MouseUp event.

LocateText Method
See Also Example Applies To

Returns an index value to a row or item found based on the search text and locate
parameters supplied. Available only in the ActiveX version.

Syntax

object.LocateText text, col, start, stype, direction, scase

The LocateText method syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

text A string expression which represents the text value to search for. Required
argument.

col A numeric expression which specifies a column to search within the List.
Required argument.

start A numeric expression which specifies the starting row or item to begin the
search. Required argument.

stype A value or constant which specifies the type of search to be conducted, as
described in Settings. Optional argument.

direction A value or constant which specifies the direction to search within the List, as
described in Settings. Optional argument.

scase A value or constant which specifies the behavior of the locate operation, as
described in Settings. Optional argument.

Settings

The settings for stype are:

Setting Description
0 Exact match. Can use the constant vxExactMatch instead. (Default)

1 First characters match. Can use the constant vxFirstCharMatch instead.

2 Last characters match. Can use the constant vxLastCharMatch instead.

3 Sub-string match. Can use the constant vxSubStringMatch instead.

The settings for direction are:

Setting Description
0 Down. Can use the constant vxDown instead. (Default)

1 Up. Can use the constant vxUp instead.

The settings for scase are:

Setting Description
0 Locate operations within a List are not case sensitive. Can use the constant

vxCaseNotSensitive instead.(Default)

1 Locate operations within a List are case sensitive. Can use the constant
vxCaseSensitive instead.

Remarks

The LocateText method is used to search the contents of a List locating the first row or
item which has column data that matches the supplied text. This method returns an integer
index value identifying the location of the row or item that matches. If no match is made,
executing this method, a -1 value is returned. How the search is conducted is determined
by the arguments associated with this method.

The col argument identifies the column within the List to search within. Columns are
numbered from 1 to however many columns are defined for a List. If a zero (0) is supplied,
the search uses the whole row, including data from all columns to check for a match. In the
case where the row is searched as a whole, the column delimiter character, Chr$(9), is
ignored. This argument is required.

The start argument is used to designate the row or item of the List you want to start your
search from. If a zero (0) or -1 value is supplied, the search starts with the first row or item
of the List. To start a search with the last row or item you could pass the ListCount
property -1 for this argument. If you passed the value of the ListIndex property, a search
would start with the currently selected row or item of the List. This argument is required.

The stype argument is used to set what type of search should be conducted through the
items of the List. The Locate Type options include exact matching (0), first characters
matching (1), last characters matching (2), or sub-string matching (3).

Exact matching compares the locate text with the full text of the column being searched.
Where both strings are equal a match is made and the row index position is returned.

First characters matching compares each character of the locate text with the first
characters of the column being searched. Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned. This type of matching is most appropriate for left, or centered justified,
alphanumeric type data, that is part of the search column within a List.

Last characters matching compares each character of the locate text with the last
characters of the column being searched. Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned. This type of matching is most appropriate for right justified, numeric type data,
that is part of the search column within a List.

Sub-string matching compares the locate text with any sub-set of characters within the
column being searched. Where the sub-string of the locate text can be found within the
search column text a match is made and the row index position is returned.

The stype argument is optional and if not supplied the default type is Exact matching.

The direction argument is used to set which direction a search should be conducted
through the items of the List. If the Down option is supplied, the locate method operation
will start at the supplied starting row, and search each subsequent row for the locate text.
If the Up option is supplied, the locate method operation will start at the supplied starting
row, and each previous row will be searched. The direction argument is optional and if not
supplied the default direction is Down.

The scase argument determines if compare functions used by the search engine are case
sensitive or case insensitive. If this argument is passed a zero (0), all locate operations
within the List are not case sensitive. If this argument is passed a value of 1, all locate
operations within the List are case sensitive. The scase argument is optional and if not
supplied the default case is 0, case not sensitive.

This method is available only for the ActiveX version.

ReturnFocus Method
See Also Example Applies To

Returns Focus to the current active control. Available only in the ActiveX version.

Syntax

object.ReturnFocus

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Remarks

The ReturnFocus method is one of several custom methods used in Focus management
by the VPFocus control. Using this method will send focus back to the current active
control and is typically used when the data entered into a control fails the validation
criteria set for the field. This method should usually be used in a valid LostFocus event
procedure. For the ActiveX version of Vantage Control Set, this method should be used
instead of setting the FocusAction property (although for backwards compatibility with
the VBX version, you can still use the FocusAction property with the setting of 2, which
will execute this method).

This method is available only for the ActiveX version.

SendFocus Method
See Also Example Applies To

Sends Focus on to the next control as trapped by the VPFocus control. Available only in
the ActiveX version.

Syntax

object.SendFocus

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Remarks

The SendFocus method is one of several custom methods used in Focus management by
the VPFocus control. Using this method will send focus on to the next control as trapped
by the operation of the VPFocus control. This method also turns off Focus control, like the
TrapFocusOff method and sets the ActiveControl property to zero (0).

This method is typically used when the data entered into a control passes the validation
criteria set for the field. This method should usually be used in a valid LostFocus event
procedure. For the ActiveX version of Vantage Control Set, this method should be used
instead of setting the FocusAction property (although for backwards compatibility with
the VBX version, you can still use the FocusAction property with the setting of 1, which
will execute this method).

TrapFocusOff Method
See Also Applies To

Turns off Focus management operations and sets the ActiveControl property, of the
VPFocus control, to the value zero (0). Available only in the ActiveX version.

Syntax

object.TrapFocusOff

The object placeholder represents an object expression which evaluates to an object in the
Applies To list.

Remarks

The TrapFocusOff method is one of several custom methods used in Focus management
by the VPFocus control. Using this method will set the ActiveControl property of the
VPFocus control to a zero (0) value, turning off any Focus trapping. This method, if used,
should be executed in a valid LostFocus event procedure. For the ActiveX version of
Vantage Control Set, this method should be used instead of setting the FocusAction
property (although for backwards compatibility with the VBX version, you can still use the
FocusAction property with the setting of 0, which will execute this method). Under most
circumstances this method is not needed. In a LostFocus event procedure the SendFocus
or ReturnFocus methods are used instead.

This method is available only for the ActiveX version.

TrapFocusOn Method
See Also Example Applies To

Turns on Focus management operations and sets the ActiveControl property, of the
VPFocus control, to the window handle of the current control. Available only in the ActiveX
version.

Syntax

object.TrapFocusOn (hWnd As Integer)

The TrapFocusOn method syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

hWnd The Window handle (Integer) of the current control.

Remarks

The TrapFocusOn method is one of several custom methods used in Focus management
by the VPFocus control. Using this method will set the ActiveControl property of the
VPFocus control to the Window handle of the current control. This method starts the
trapping of Focus events and should usually be used in a valid GotFocus event procedure.
For the ActiveX version of Vantage Control Set, this method should be used instead of
setting the ActiveControl property directly (although for backwards compatibility with the
VBX version, you can still set the ActiveControl property directly, which will execute this
method).

This method is available only for the ActiveX version.

VLocateText Function
See Also Example Applies To

Returns an index value to a row or item found within a supplied VPComboBox or
VPListBox control, based on the search text, and locate parameters supplied. This
function can be declared from either the VPLIST.VBX or the VPCOMB.VBX control file.

Declare Syntax

Declare Function VLocateText Lib VPLIST.VBX (object As Control, ByVal text As
String, ByVal col As Integer, ByVal start As Integer, ByVal stype As Integer, ByVal
direction As Integer, ByVal scase As Integer) As Integer

Syntax

found = VLocateText (object, text, col, start, stype, direction, scase)

The VLocateText function syntax has these parts:

Part Description
found An integer value returned from the function that identifies the found row or

item.

object An object expression which evaluates to an object in the Applies To list.

text A string expression which represents the text value to search for.

col A numeric expression which specifies a column to search within the List.

start A numeric expression which specifies the starting row or item to begin the
search.

stype A value or constant which specifies the type of search to be conducted, as
described in Settings.

direction A value or constant which specifies the direction to search within the List, as
described in Settings.

scase A value or constant which specifies the behavior of the locate operation, as
described in Settings.

Settings

The settings for stype are:

Setting Description
0 Exact match. Can use the constant vxExactMatch instead.

1 First characters match. Can use the constant vxFirstCharMatch instead.

2 Last characters match. Can use the constant vxLastCharMatch instead.

3 Sub-string match. Can use the constant vxSubStringMatch instead.

The settings for direction are:

Setting Description
0 Down. Can use the constant vxDown instead.

1 Up. Can use the constant vxUp instead.

The settings for scase are:

Setting Description
0 Locate operations within a List are not case sensitive. Can use the constant

vxCaseNotSensitive instead.

1 Locate operations within a List are case sensitive. Can use the constant
vxCaseSensitive instead.

Remarks

The VLocateText function is used to search the contents of a List locating the first row or
item which has column data that matches the supplied text. This function returns an
integer index value identifying the location of the row or item that matches. If no match is
made executing this function, a -1 value is returned. How the search is conducted is
determined by the parameters associated with this function. Unlike the LocateText
Method, all parameters are required for this function.

The object parameter identifies the VPComboBox or VPListBox control that will be
searched. You pass an object variable as Control to the function.

The col parameter identifies the column within the List to search within. Columns are
numbered from 1 to however many columns are defined for a List. If a zero (0) is supplied,
the search uses the whole row, including data from all columns to check for a match. In the
case where the row is searched as a whole, the column delimiter character, Chr$(9), is
ignored.

The start parameter is used to designate the row or item of the List you want to start your
search from. If a zero (0) or -1 value is supplied, the search starts with the first row or item
of the List. To start a search with the last row or item you could pass the ListCount
property -1 for this parameter. If you passed the value of the ListIndex property, a search
would start with the currently selected row or item of the List.

The stype parameter is used to set what type of search should be conducted through the
items of the List. The Locate Type options include exact matching (0), first characters
matching (1), last characters matching (2), or sub-string matching (3).

Exact matching compares the locate text with the full text of the column being searched.
Where both strings are equal a match is made and the row index position is returned.

First characters matching compares each character of the locate text with the first
characters of the column being searched. Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned. This type of matching is most appropriate for left, or centered justified,
alphanumeric type data, that is part of the search column within a List.

Last characters matching compares each character of the locate text with the last

characters of the column being searched. Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned. This type of matching is most appropriate for right justified, numeric type data,
that is part of the search column within a List.

Sub-string matching compares the locate text with any sub-set of characters within the
column being searched. Where the sub-string of the locate text can be found within the
search column text a match is made and the row index position is returned.

The direction parameter is used to set which direction a search should be conducted
through the items of the List. If the Down option is supplied, the locate method operation
will start at the supplied starting row, and search each subsequent row for the locate text.
If the Up option is supplied, the locate method operation will start at the supplied starting
row, and each previous row will be searched.

The scase parameter determines if compare functions used by the search engine are case
sensitive or case insensitive. If this parameter is passed a zero (0), all locate operations
within the List are not case sensitive. If this parameter is passed a value of 1, all locate
operations within the List are case sensitive.

(About) Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control
VPFocus Control

(ColLayout) Property Applies To

VPComboBox Control
VPListBox Control

(Custom) Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control
VPFocus Control

ActiveControl Property Applies To

VPFocus Control

Alignment Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control

Appearance Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control

AutoHeight Property Applies To

VPComboBox Control

AutoSelect Property Applies To

VPTextBox Control
VPComboBox Control

AutoSize Property Applies To

VPStatic Control
VPListBox Control

Caption Property Applies To

VPStatic Control

CaseSensitive Property Applies To

VPComboBox Control
VPListBox Control

CellText Property Applies To

VPComboBox Control
VPListBox Control

Background Property Applies To

VPForm Control

BorderStyle Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control

Col Property Applies To

VPComboBox Control
VPListBox Control

ColAlign Property Applies To

VPComboBox Control
VPListBox Control

ColBound Property Applies To

VPComboBox Control
VPListBox Control

ColDataField Property Applies To

VPComboBox Control
VPListBox Control

ColDataSource Property Applies To

VPComboBox Control
VPListBox Control

ColFormat Property Applies To

VPComboBox Control
VPListBox Control

ColHeadAlign Property Applies To

VPComboBox Control
VPListBox Control

ColHeading Property Applies To

VPComboBox Control
VPListBox Control

ColLink Property Applies To

VPComboBox Control

ColListField Property Applies To

VPComboBox Control
VPListBox Control

ColSortBy Property Applies To

VPComboBox Control
VPListBox Control

ColSortOrder Property Applies To

VPComboBox Control
VPListBox Control

ColWidth Property Applies To

VPComboBox Control
VPListBox Control

ControlIndex Property Applies To

VPForm Control
VPFocus Control

Cursor Property Applies To

VPForm Control

DataChanged Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

DataField Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control

DataSource Property Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control

FocusAction Property Applies To

VPFocus Control

ForceGotFocus Property Applies To

VPFocus Control

FormControlName Property Applies To

VPForm Control
VPFocus Control

FormIndex Property Applies To

VPForm Control
VPFocus Control

GridAppearance Property Applies To

VPComboBox Control
VPListBox Control

GridLines Property Applies To

VPComboBox Control
VPListBox Control

Heading Property Applies To

VPComboBox Control
VPListBox Control

HeadingBackColor Property Applies To

VPComboBox Control
VPListBox Control

HeadingForeColor Property Applies To

VPComboBox Control
VPListBox Control

HideSelection Property Applies To

VPTextBox Control

ListAppearance Property Applies To

VPComboBox Control

ListBackColor Property Applies To

VPComboBox Control

ListForeColor Property Applies To

VPComboBox Control

Locked Property Applies To

VPTextBox Control
VPComboBox Control

MatchEntry Property Applies To

VPComboBox Control

MaxCols Property Applies To

VPComboBox Control
VPListBox Control

MaxDrop Property Applies To

VPComboBox Control

MaxLength Property Applies To

VPTextBox Control

MaxWidth Property Applies To

VPComboBox Control

MouseCapture Property Applies To

VPForm Control

MultiLine Property Applies To

VPTextBox Control

MultiSelect Property Applies To

VPListBox Control

OverType Property Applies To

VPTextBox Control
VPComboBox Control

PasswordChar Property Applies To

VPTextBox Control

RowSource Property Applies To

VPComboBox Control
VPListBox Control

TargetControl Property Applies To

VPFocus Control

ScrollBars Property Applies To

VPTextBox Control

Sorted Property Applies To

VPComboBox Control
VPListBox Control

Style Property Applies To

VPComboBox Control

Text Property Applies To

VPTextBox Control
VPComboBox Control
VPListBox Control

WordWrap Property Applies To

VPStatic Control

Change Event Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control

Click Event Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

CloseUp Event Applies To

VPComboBox Control

DblClick Event Applies To

VPTextBox Control
VPStatic Control
VPListBox Control

DropDown Event Applies To

VPComboBox Control

MouseDown Event Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control

MouseMove Event Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control

MouseUp Event Applies To

VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control
VPForm Control

LocateText Method Applies To

VPComboBox Control
VPListBox Control

ReturnFocus Method Applies To

VPFocus Control

SendFocus Method Applies To

VPFocus Control

TrapFocusOff Method Applies To

VPFocus Control

TrapFocusOn Method Applies To

VPFocus Control

VLocateText Function Applies To

VPComboBox Control
VPListBox Control

VPTextBox Control Custom Properties

(About)
(Custom) (OCX only)
Alignment
Appearance
AutoSelect
Locked
OverType

VPTextBox Control Standard Properties

 For more information on these properties

BackColor
BorderStyle
Container (OCX only)
DataChanged
DataField
DataSource
DragIcon
DragMode
Enabled
Font (OCX only)
FontBold (VBX only)
FontItalic (VBX only)
FontName (VBX only)
FontSize (VBX only)
FontStrikethru (VBX only)
FontUnderline (VBX only)
ForeColor
Height
HelpContextID
HideSelection
hWnd
Index
Left
LinkItem (VBX only)
LinkMode (VBX only)
LinkTimeout (VBX only)
LinkTopic (VBX only)
MaxLength
MouseIcon (OCX only)
MousePointer
MultiLine
Name
Parent
PasswordChar
ScrollBars
SelLength
SelStart
SelText
TabIndex
TabStop
Tag

Text
Top
Visible
WhatsThisHelpID (OCX only)
Width

Return to Vantage Control Set Contents

VPTextBox Control Standard Events

 For more information on these events

Change
Click
DblClick
DragDrop
DragOver
GotFocus
KeyDown
KeyPress
KeyUp
LinkClose (VBX only)
LinkError (VBX only)
LinkNotify (VBX only)
LinkOpen (VBX only)
LostFocus
MouseDown
MouseMove
MouseUp

Return to Vantage Control Set Contents

VPTextBox Control Standard Methods

 For more information on these methods

Drag
LinkExecute (VBX only)
LinkPoke (VBX only)
LinkRequest (VBX only)
Move
Refresh
SetFocus
ShowWhatsThis (OCX only)
Zorder

Return to Vantage Control Set Contents

VPStatic Control Custom Properties

(About)
(Custom) (OCX only)
Alignment
Appearance

VPStatic Control Standard Properties

 For more information on these properties

AutoSize
BackColor
BorderStyle
Caption
Container (OCX only)
DataChanged
DataField
DataSource
DragIcon
DragMode
Enabled
Font (OCX only)
FontBold (VBX only)
FontItalic (VBX only)
FontName (VBX only)
FontSize (VBX only)
FontStrikethru (VBX only)
FontUnderline (VBX only)
ForeColor
Height
hWnd
Index
Left
LinkItem (VBX only)
LinkMode (VBX only)
LinkTimeout (VBX only)
LinkTopic (VBX only)
MouseIcon (OCX only)
MousePointer
Name
Parent
TabIndex
Tag
Top
Visible
WhatsThisHelpID (OCX only)
Width
WordWrap

Return to Vantage Control Set Contents

VPStatic Control Standard Events

 For more information on these events

Change
Click
DblClick
DragDrop
DragOver
LinkClose (VBX only)
LinkError (VBX only)
LinkNotify (VBX only)
LinkOpen (VBX only)
MouseDown
MouseMove
MouseUp

Return to Vantage Control Set Contents

VPStatic Control Standard Methods

 For more information on these methods

Drag
LinkExecute (VBX only)
LinkPoke (VBX only)
LinkRequest (VBX only)
Move
Refresh
ShowWhatsThis (OCX only)
Zorder

Return to Vantage Control Set Contents

VPComboBox Control Custom Properties

(About)
(ColLayout) (VBX only)
(Custom) (OCX only)
Alignment
Appearance
AutoHeight
AutoSelect
BorderStyle
CaseSensitive
CellText
Col
ColAlign
ColBound
ColDataField
ColDataSource
ColFormat
ColHeadAlign
ColHeading
ColLink
ColListField
ColSortBy
ColSortOrder
ColWidth
DataChanged
DataField
DataSource
GridAppearance
GridLines
Heading
HeadingBackColor
HeadingForeColor
ListAppearance
ListBackColor
ListForeColor
Locked
MatchEntry
MaxCols
MaxDrop
MaxWidth
RowSource

VPComboBox Control Custom Events

Change
CloseUp
MouseDown
MouseMove
MouseUp

VPComboBox Control Custom Methods (OCX only)

LocateText

VPComboBox Control Custom Functions

VLocateText

VPComboBox Control Standard Properties

 For more information on these properties

BackColor
Container (OCX only)
DragIcon
DragMode
Enabled
Font (OCX only)
FontBold (VBX only)
FontItalic (VBX only)
FontName (VBX only)
FontSize (VBX only)
FontStrikethru (VBX only)
FontUnderline (VBX only)
ForeColor
Height
HelpContextID
hWnd
Index
ItemData
Left
List
ListCount
ListIndex
MouseIcon (OCX only)
MousePointer
Name
NewIndex
Parent
SelLength
SelStart
SelText
Sorted
Style
TabIndex
TabStop
Tag
Text
Top
TopIndex
Visible
WhatsThisHelpID (OCX only)
Width

Return to Vantage Control Set Contents

VPComboBox Control Standard Events

 For more information on these events

Click
DblClick
DragDrop
DragOver
DropDown
GotFocus
KeyDown
KeyPress
KeyUp
LostFocus

Return to Vantage Control Set Contents

VPComboBox Control Standard Methods

 For more information on these methods

AddItem
Clear
Drag
Move
Refresh
RemoveItem
SetFocus
ShowWhatsThis (OCX only)
Zorder

Return to Vantage Control Set Contents

VPListBox Control Custom Properties

(About)
(ColLayout)
(Custom) (OCX only)
Appearance
AutoSize
BorderStyle
CellText
Col
ColAlign
ColBound
ColDataField
ColDataSource
ColFormat
ColHeadAlign
ColHeading
ColListField
ColSortBy
ColSortOrder
ColWidth
GridAppearance
GridLines
Heading
HeadingBackColor
HeadingForeColor
ListAppearance
MaxCols
RowSource

VPListBox Control Custom Methods (OCX only)

LocateText

VPListBox Control Custom Functions

VLocateText

VPListBox Control Standard Properties

 For more information on these properties

BackColor
Container (OCX only)
DragIcon
DragMode
Enabled
Font (OCX only)
FontBold (VBX only)
FontItalic (VBX only)
FontName (VBX only)
FontSize (VBX only)
FontStrikethru (VBX only)
FontUnderline (VBX only)
ForeColor
Height
HelpContextID
hWnd
Index
Left
List
ListCount
ListIndex
MouseIcon (OCX only)
MousePointer
MultiSelect
Name
NewIndex
Parent
Selected
Sorted
TabIndex
TabStop
Tag
Text
Top
TopIndex
Visible
WhatsThisHelpID (OCX only)
Width

Return to Vantage Control Set Contents

VPListBox Control Standard Events

 For more information on these events

Click
DblClick
DragDrop
DragOver
GotFocus
KeyDown
KeyPress
KeyUp
MouseDown
MouseMove
MouseUp

Return to Vantage Control Set Contents

VPListBox Control Standard Methods

 For more information on these methods

AddItem
Clear
Drag
Move
Refresh
RemoveItem
SetFocus
ShowWhatsThis (OCX only)
Zorder

Return to Vantage Control Set Contents

VPForm Control Custom Properties

(About)
(Custom) (OCX only)
Appearance
Background
BorderStyle (OCX only)
ControlIndex
Cursor
FormControlName
FormIndex
MouseCapture

VPForm Control Custom Events

MouseDown
MouseMove
MouseUp

VPForm Control Standard Properties

 For more information on these properties

Align
DragIcon (OCX only)
DragMode (OCX only)
Height
HelpContextID (OCX only)
Index (OCX only)
Left
Name
Negotiate (OCX only)
TabIndex (OCX only)
TabStop (OCX only)
Tag (OCX only)
Top
Visible (OCX only)
WhatsThisHelpID (OCX only)
Width

Return to Vantage Control Set Contents

VPFocus Control Custom Properties

(About)
(Custom) (OCX only)
ActiveControl
ControlIndex
FocusAction
ForceGotFocus (OCX only)
FormControlName
FormIndex
TargetControl

VPFocus Control Custom Methods (OCX only)

ReturnFocus
SendFocus
TrapFocusOff
TrapFocusOn

VPFocus Control Standard Properties

 For more information on these properties

Align (OCX only)
DragIcon (OCX only)
DragMode (OCX only)
Height
HelpContextID (OCX only)
Index (OCX only)
Left
Name
Negotiate (OCX only)
TabIndex (OCX only)
TabStop (OCX only)
Tag (OCX only)
Top
Visible (OCX only)
WhatsThisHelpID (OCX only)
Width

Return to Vantage Control Set Contents

See Also
Column Layout Properties Dialog
ColAlign Property
ColBound Property
ColFormat Property
ColHeadAlign Property
ColHeading Property
ColLink Property
ColListField Property
ColSortBy Property
ColSortOrder Property
ColWidth Property
VPComboBox Control
VPListBox Control

See Also
Property Pages

See Also
FocusAction Property
TargetControl Property
ReturnFocus Method
SendFocus Method
TrapFocusOff Method
TrapFocusOn Method
VPFocus Control

 ActiveControl Property Example

The ActiveControl property is part of the VPFocus control that is used to manage
GotFocus/LostFocus event processing. This property is usually used in the GotFocus
event of a control.

Rather than placing code in each GotFocus event procedure, one generalized procedure
can be created and called from each event procedure. In this example, we will name the
generalized procedure GotFocusDefProc. The ActiveControl property is used in two
situations;    One, to check if processing for a GotFocus event is valid, and two, to assign the
"current" control as the "active" control when you have a valid event.    This is done by
setting this ActiveControl property to the window handle of the current control.

In the GotFocusDefProc procedure we first check if the GotFocus event is valid. A GotFocus
event will be valid if no control is currently "active". We can test this by seeing if the
ActiveControl property is set to zero (0).

If we have a valid GotFocus event we record the current control as the "active" control by
setting the ActiveControl property to the control's Window handle. This will start the
VPFocus control trapping for Focus events.
Sub GotFocusDefProc (Frm As Form, ctl As Control)
 'Check if GotFocus event is valid
 If Frm.VPFocus1.ActiveControl = 0 Then
 'Set Active control and start trapping for focus events.
 Frm.VPFocus1.ActiveControl = ctl.hWnd
 'If Text Box control then change Colors to help show where focus is
 If TypeOf ctl Is VPTextBox Then
 glBackColor = ctl.BackColor
 glForeColor = ctl.ForeColor
 ctl.BackColor = glHLBackColor
 ctl.ForeColor = glHLForeColor
 End If
 End If
End Sub

See Also
BorderStyle Property

Background Property Example

This example loads a bitmap from the Vantage Control Set bitmap library into the
Background property of a VPForm control.
Private Sub Form_Load ()

'Load the bitmap
VPForm1.Background = LoadPicture("C:\VCS\BITMAPS\VFBGRD01.BMP")

End Sub

See Also
Appearance Property

CellText Property Example

This example uses the CellText property to retrieve the contents of the currently selected
row and a given column and assign the text value to a local string variable.

Sub GetData ()
 Dim sColData As String
 VPListBox1.Col = 3
 sColData = VPListBox1.CellText(VPListBox1.ListIndex)
End Sub

See Also
Col Property
VPComboBox Control
VPListBox Control

Col Property Example

In this example we will change the alignment, format, and width of the second and third
columns in a VPComboBox ComboBox control. In this example the second column will be
used to display a name or description field and the third column will be used to display a
dollar amount field.
VPComboBox1.Col = 2
VPComboBox1.ColAlign = 0 'Left justification
VPComboBox1.ColFormat = "" 'No formatting
VPComboBox1.ColWidth = 3200 'Width in twips
VPComboBox1.Col = 3
VPComboBox1.ColAlign = 1 'Right justification
VPComboBox1.ColFormat = "$#,##0.00;($#,##0.00)" 'Currency format
VPComboBox1.ColWidth = 1600 'Width in twips

See Also
CellText Property
ColAlign Property
ColBound Property
ColDataField Property
ColDataSource Property
ColFormat Property
ColHeadAlign Property
ColHeading Property
ColLink Property
ColListField Property
ColSortBy Property
ColSortOrder Property
ColWidth Property
MaxCols Property
VPComboBox Control
VPListBox Control

See Also
Col Property
ColFormat Property
ColHeadAlign Property
ColHeading Property
MaxCols Property
VPComboBox Control
VPListBox Control

See Also
Col Property
ColDataField Property
ColDataSource Property
ColLink Property
ColListField Property
DataField Property
DataSource Property
RowSource Property
Data Control
VPComboBox Control
VPListBox Control

See Also
Col Property
ColBound Property
ColDataSource Property
ColLink Property
ColListField Property
DataField Property
DataSource Property
RowSource Property
Data Control
VPComboBox Control
VPListBox Control

See Also
Col Property
ColBound Property
ColDataField Property
ColLink Property
ColListField Property
DataField Property
DataSource Property
RowSource Property
Data Control
VPComboBox Control
VPListBox Control

See Also
Col Property
ColAlign Property
ColWidth Property
MaxCols Property
VPComboBox Control
VPListBox Control

See Also
Col Property
ColAlign Property
ColHeading Property
ColWidth Property
Heading Property
MaxCols Property
VPComboBox Control
VPListBox Control

See Also
Col Property
ColAlign Property
ColHeadAlign Property
ColWidth Property
Heading Property
MaxCols Property VCS_MaxCols_Property>main
VPComboBox Control
VPListBox Control

See Also
Col Property
ColBound Property
ColDataField Property
ColDataSource Property
ColListField Property
DataField Property
DataSource Property
MaxCols Property
RowSource Property
Data Control
VPComboBox Control
VPListBox Control

See Also
Col Property
ColBound Property
ColDataField Property
ColDataSource Property
ColLink Property
DataField Property
DataSource Property
MaxCols Property
RowSource Property
Data Control
VPComboBox Control
VPListBox Control

See Also
CaseSensitive Property
Col Property
ColSortOrder Property
MaxCols Property
Sorted Property
VPComboBox Control
VPListBox Control

See Also
CaseSensitive Property
Col Property
ColSortBy Property
MaxCols Property
Sorted Property
VPComboBox Control
VPListBox Control

See Also
Col Property
ColAlign Property
ColFormat Property
MaxCols Property
MaxWidth Property
VPComboBox Control
VPListBox Control

ControlIndex Property Example

When used with the VPForm control the ControlIndex property is used to identify the
control where the mouse pointer is currently over. This property is useful in both the
MouseMove and MouseUp events of the VPForm control.

In the MouseMove event the ControlIndex is tested to see if it equals a -1 value which
would indicate the mouse pointer is not over a control but is either over a Form or outside
the application. In this situation the Cursor property of the VPForm control can be set to
the "No Drop" cursor, which is resource 6001 in the VFORM.VBX file. If the value of the
ControlIndex property is not -1 then this property can be used together with the
FormIndex property to identify the control the mouse pointer is currently over. The local
object variable Cntrl can be set to the identified control in the Controls Collection. This
object variable can further be tested to see if the control, the mouse pointer is over, is the
drop target, VPTextBox2 in this example, or some other control. If the mouse pointer is over
some other control then set the Cursor property to the same "No Drop" cursor. If the mouse
pointer is over the target VPTextBox2 control then set the Cursor property to a valid drag
cursor, such as the cursor resource 6003 in the VFORM.VBX file.
Sub VPForm1_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 If VPForm1.ControlIndex = -1 Then
 VPForm1.Cursor = "6001"
 Else
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPForm1.Cursor = "6003"
 Else
 VPForm1.Cursor = "6001"
 End If
 End If
End Sub

In the MouseUp event the ControlIndex can again be used to see if the drop occurred on a
control or some other object. If ControlIndex does not have a -1 value, the local object
variable Cntrl can be set to the currently pointed to control where the mouse button was
released. If this object variable is the same as our target VPTextBox2 control, the results of
the drag operation can be executed. In this example, the drag-and-drop operation transfers
the contents of the source VPTextBox1 TextBox control to the targeted VPTextBox2
TextBox control. Note: at the time of the original mouse down event the module level object
variable, Source, was set to the VPTextBox1 control.
Sub VPForm1_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 VPForm1.Cursor = ""
 VPForm1.MouseCapture = False
 If VPForm1.ControlIndex > -1 Then

 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPTextBox2.Text = Source.Text
 End If
 End If
End Sub

When used with the VPFocus control, the ControlIndex property is used to identify the
control where Focus should go to next. If Focus is to go to an object that executes an event
code that cancels the current process or exits the application, it may not make sense to
continue the normal processing of a LostFocus event. In this example we use the
ControlIndex property along with the FormIndex property to identify the "next" control
and to test if Focus is next being passed to the "Cancel" command button.
Sub LostFocusDefProc (Frm As Form, ctl As Control, rsDataVal)
 'Check if LostFocus event is valid
 If Frm.VPFocus1.ActiveControl = ctl.hWnd Then
 'Check if next target control is cancel button
 If Forms(Frm.VPFocus1.FormIndex).controls(Frm.VPFocus1.ControlIndex) Is Frm.cmdCancel
Then
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 Else
 Select Case UCase$(rsDataVal)
 Case "BAD"
 Beep
 MsgBox "Invalid Data - Please enter again."
 'Reset data
 ctl.Text = ""
 'Invalid data so send focus back to itself
 Frm.VPFocus1.FocusAction = vxReturnFocus '2
 Exit Sub
 Case "MSG"
 'Having a MsgBox normally eats up any GotFocus and causes real problems
 Beep
 MsgBox "This is a valid entry - Data accepted."
 'Send focus on to Trapped control
 Frm.VPFocus1.ForceGotFocus = True
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 Case Else 'GOOD or any other input
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 End Select
 End If
 'Turn off focus highlight color
 If TypeOf ctl Is VPTextBox Then
 ctl.BackColor = glBackColor
 ctl.ForeColor = glForeColor
 End If
 End If
End Sub

See Also
FocusAction Property
FormIndex Property
FormControlName Property
ReturnFocus Method
SendFocus Method
TrapFocusOff Method
TrapFocusOn Method
VPForm Control
VPFocus Control

Cursor Property Example

The Cursor property is used change the mouse pointer to a custom cursor during drag-and-
drop operations. The appropriate place to make these changes is in the MouseMove and
MouseUp events of the VPForm control, once the MouseCapture property has been set to
True.

In the MouseMove event we set the Cursor property to either the "No Drop" cursor
resource (id 6001), to a valid drag cursor (id 6003), or a valid drop cursor (id 6008). If the
mouse pointer is over some control other than the target control, VPTextBox2, we supply
the "No Drop" cursor resource from the VFORM.VBX file. If the mouse pointer is over our
source control or the form, an appropriate drag cursor is used. If the mouse pointer is over
our target control, an appropriate drop cursor can be used. In this example we assign the
resource id of 6003 from the VFORM.VBX file as our drag cursor and the resource id of 6008
as our drop cursor.
Sub VPForm1_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 If VPForm1.FormIndex = -1 Then
 'Mouse outside any application form - use No Drop cursor
 VPForm1.Cursor = "6001"
 Else
 'Mouse within an application form
 If VPForm1.ControlIndex = -1 Then
 'Mouse not on a control - on form itself - use valid drag cursor
 VPForm1.Cursor = "6003"
 Else
 'Identify control mouse is currently over
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox1 Then
 'Mouse is over source control - use valid drag cursor
 VPForm1.Cursor = "6003"
 Else
 If Cntrl Is VPTextBox2 Then
 'Mouse is over target control - use valid drop cursor
 VPForm1.Cursor = "6008"
 Else
 'Mouse is on some other control - use No Drop cursor
 VPForm1.Cursor = "6001"
 End If
 End If
 End If
 End If
End Sub

In the MouseUp event we turn off any custom cursor being used and return the mouse
pointer to the previous cursor assigned by Visual Basic. This is done by assigning the Cursor
property to a null string.

Sub VPForm1_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 VPForm1.MouseCapture = False
 VPForm1.Cursor = ""
 If VPForm1.ControlIndex > -1 Then
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPTextBox2.Text = Source.Text
 End If
 End If
End Sub

See Also
MouseCapture Property
MouseDown Event
MouseMove Event
MouseUp Event
VPForm Control

See Also
ColBound Property
ColDataField Property
ColDataSource Property
ColLink Property
DataField Property
DataSource Property
Data Control
VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

See Also
ColBound Property
ColDataField Property
ColDataSource Property
ColLink Property
DataChanged Property
DataSource Property
Data Control
VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

See Also
ColBound Property
ColDataField Property
ColDataSource Property
ColLink Property
DataChanged Property
DataField Property
Data Control
VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

FocusAction Property Example

The FocusAction property is part of the VPFocus control that is used to manage
GotFocus/LostFocus event processing. This property is used in conjunction with the
ActiveControl property and is usually used in the LostFocus event of a control.

Rather than placing code in each GotFocus or LostFocus event procedure, one generalized
procedure can be created and called from each event procedure type. In this example, we
will define two generalized procedures, one named GotFocusDefProc and the other
LostFocusDefProc. In the first generalized procedure the ActiveControl property is used in
two situations;    One, to check if processing for a GotFocus event is valid, and two, to
assign the "current" control as the "active" control when you have a valid event.    This is
done by setting this ActiveControl property to the window handle of the current control.

In the GotFocusDefProc procedure we first check if the GotFocus event is valid. A GotFocus
event will be valid if no control is currently "active". We can test this by seeing if the
ActiveControl property is set to zero (0).

If we have a valid GotFocus event we record the current control as the "active" control by
setting the ActiveControl property to the control's Window handle. This will start the
VPFocus control trapping for Focus events.
Sub GotFocusDefProc (Frm As Form, ctl As Control)
 'Check if GotFocus event is valid
 If Frm.VPFocus1.ActiveControl = 0 Then
 'Set Active control and start trapping for focus events.
 Frm.VPFocus1.ActiveControl = ctl.hWnd
 'If Text Box control then change Colors to help show where focus is
 If TypeOf ctl Is VPTextBox Then
 glBackColor = ctl.BackColor
 glForeColor = ctl.ForeColor
 ctl.BackColor = glHLBackColor
 ctl.ForeColor = glHLForeColor
 End If
 End If
End Sub

In the LostFocusDefProc procedure we first check if the LostFocus event is valid. A
LostFocus event will be valid if the object reference in the ActiveControl property is equal
to the current control. We can test this by seeing if the ActiveControl property is equal to
window handle of the current control.

If we have a valid LostFocus event we next check if the control where Focus will next be
sent is a special "Cancel" command button control. In this case, any processing of our
LostFocus event should be by-passed. If Focus is going to any other control we check the
validity of the data entered into the current control. If it fails any validation checks the

FocusAction property is set to 2, returning focus back to the current control. If the data is
acceptable then the FocusAction property is set to 1, sending Focus on to the next control.
Sub LostFocusDefProc (Frm As Form, ctl As Control, rsDataVal)
 'Check if LostFocus event is valid
 If Frm.VPFocus1.ActiveControl = ctl.hWnd Then
 'Check if next target control is cancel button
 If Forms(Frm.VPFocus1.FormIndex).controls(Frm.VPFocus1.ControlIndex) Is Frm.cmdCancel
Then
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 Else
 Select Case UCase$(rsDataVal)
 Case "BAD"
 Beep
 MsgBox "Invalid Data - Please enter again."
 'Reset data
 ctl.Text = ""
 'Invalid data so send focus back to itself
 Frm.VPFocus1.FocusAction = vxReturnFocus '2
 Exit Sub
 Case "MSG"
 'Having a MsgBox normally eats up any GotFocus and causes real problems
 Beep
 MsgBox "This is a valid entry - Data accepted."
 'Send focus on to Trapped control
 Frm.VPFocus1.ForceGotFocus = True
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 Case Else 'GOOD or any other input
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 End Select
 End If
 'Turn off focus highlight color
 If TypeOf ctl Is VPTextBox Then
 ctl.BackColor = glBackColor
 ctl.ForeColor = glForeColor
 End If
 End If
End Sub

See Also
ActiveControl Property
ForceGotFocus Property
ReturnFocus Method
SendFocus Method
TrapFocusOff Method
TrapFocusOn Method
VPFocus Control

See Also
ActiveControl Property
FocusAction Property
SendFocus Method
VPFocus Control

FormControlName Property Example

The FormControlName property can be used to identify a form or control as used within
the VPForm or VPFocus controls. In this example we show how the FormIndex and
ControlIndex properties are used to test against a control. We next show how this same
test might be done using the FormControlName property.

This example tests if the next control to receive focus is the "cancel" command button.
If Forms(Frm.VPFocus1.FormIndex).controls(Frm.VPFocus1.ControlIndex) Is Frm.cmdCancel Then
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
End If

This is an alternate way to test the same thing using the FormControlName property.
If Frm.VPFocus1.FormControlName = "Form1.cmdCancel." Then
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
End If

See Also
ControlIndex Property
FormIndex Property
VPForm Control
VPFocus Control

FormIndex Property Example

When used with the VPForm control the FormIndex property along with the ControlIndex
property is used to identify the control where the mouse pointer is currently over. This
property is useful in both the MouseMove and MouseUp events of the VPForm control.

In the MouseMove event the FormIndex can be used together with the ControlIndex
property to identify the control the mouse pointer is currently over. The local object variable
Cntrl can be set to the identified control in the Controls Collection. This object variable
can further be tested to see if the control, the mouse pointer is over, is the drop target,
VPTextBox2 in this example, or some other control. If the mouse pointer is over some other
control then set the Cursor property to the same "No Drop" cursor. It the mouse pointer is
over the target VPTextBox2 control then set the Cursor property to a valid drag cursor, such
as the cursor resource 6003 in the VFORM.VBX file.
Sub VPForm1_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 If VPForm1.ControlIndex = -1 Then
 VPForm1.Cursor = "6001"
 Else
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPForm1.Cursor = "6003"
 Else
 VPForm1.Cursor = "6001"
 End If
 End If
End Sub

In the MouseUp event the FormIndex property along with the ControlIndex property can
again be used to set the local object variable, Cntrl, to the currently pointed to control,
where the mouse button was released. If this object variable is the same as our target
VPTextBox2 control, the results of the drag operation can be executed. In this example, the
drag-and-drop operation transfers the contents of the source VPTextBox1 TextBox control
to the targeted VPTextBox2 TextBox control. Note: at the time of the original mouse down
event the module level object variable, Source, was set to the VPTextBox1 control.
Sub VPForm1_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 VPForm1.Cursor = ""
 VPForm1.MouseCapture = False
 If VPForm1.ControlIndex > -1 Then
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPTextBox2.Text = Source.Text
 End If
 End If
End Sub

When used with the VPFocus control, the FormIndex property along with the
ControlIndex property is used to identify the control where Focus should go to next. If
Focus is to go to an object which executes an event code that cancels the current process
or exits the application, it may not make sense to continue the normal processing of a
LostFocus event. In this example we use the FormIndex property along with the
ControlIndex property to identify the "next" control and to test if Focus is next being
passed to the "Cancel" command button.
Sub LostFocusDefProc (Frm As Form, ctl As Control, rsDataVal)
 'Check if LostFocus event is valid
 If Frm.VPFocus1.ActiveControl = ctl.hWnd Then
 'Check if next target control is cancel button
 If Forms(Frm.VPFocus1.FormIndex).controls(Frm.VPFocus1.ControlIndex) Is Frm.cmdCancel
Then
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 Else
 Select Case UCase$(rsDataVal)
 Case "BAD"
 Beep
 MsgBox "Invalid Data - Please enter again."
 'Reset data
 ctl.Text = ""
 'Invalid data so send focus back to itself
 Frm.VPFocus1.FocusAction = vxReturnFocus '2
 Exit Sub
 Case "MSG"
 'Having a MsgBox normally eats up any GotFocus and causes real problems
 Beep
 MsgBox "This is a valid entry - Data accepted."
 'Send focus on to Trapped control
 Frm.VPFocus1.ForceGotFocus = True
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 Case Else 'GOOD or any other input
 'Send focus on to Trapped control
 Frm.VPFocus1.FocusAction = vxSendFocus '1
 End Select
 End If
 'Turn off focus highlight color
 If TypeOf ctl Is VPTextBox Then
 ctl.BackColor = glBackColor
 ctl.ForeColor = glForeColor
 End If
 End If
End Sub

See Also
ControlIndex Property
FocusAction Property
FormControlName Property
ReturnFocus Method
SendFocus Method
TrapFocusOff Method
TrapFocusOn Method
VPForm Control
VPFocus Control

See Also
GridLines Property
VPComboBox Control
VPListBox Control

See Also
GridAppearance Property
VPComboBox Control
VPListBox Control

See Also
ColHeadAlign Property
ColHeading Property
HeadingBackColor Property
HeadingForeColor Property
VPComboBox Control
VPListBox Control

See Also
Heading Property
HeadingForeColor Property
ListBackColor Property
ListForeColor Property
VPComboBox Control
VPListBox Control

See Also
Heading Property
HeadingBackColor Property
ListBackColor Property
ListForeColor Property
VPComboBox Control
VPListBox Control

See Also
HeadingBackColor Property
HeadingForeColor Property
ListForeColor Property
VPComboBox Control

See Also
HeadingBackColor Property
HeadingForeColor Property
ListBackColor Property
VPComboBox Control

See Also
Style Property
VPComboBox Control

MaxCols Property Example

In this example we will add two new columns by setting the MaxCols property to a value
two higher then the current number. The List currently had 6 columns and by setting it to 8
we add two new columns. We then set the alignment, format, and width of these new
columns in a VPComboBox control. We also set the heading or caption and the alignment
for a column heading. In this example the first new column will be used to display a name or
description field and the next new column will be used to display a dollar amount field.

VPComboBox1.MaxCols = 8

VPComboBox1.Col = 7
VPComboBox1.ColAlign = 0 'Left justification
VPComboBox1.ColFormat = "" 'No formatting
VPComboBox1.ColWidth = 3200 'Width in twips
VPComboBox1.ColHeading = "Description"
VPComboBox1.ColHeadAlign = 2 'Center justification

VPComboBox1.Col = 8
VPComboBox1.ColAlign = 1 'Right justification
VPComboBox1.ColFormat = "$#,##0.00;($#,##0.00)" 'Currency format
VPComboBox1.ColWidth = 1600 'Width in twips
VPComboBox1.ColHeading = "Amount"
VPComboBox1.ColHeadAlign = 2 'Center justification

See Also
CellText Property
Col Property
ColAlign Property
ColBound Property
ColDataField Property
ColDataSource Property
ColFormat Property
ColHeadAlign Property
ColHeading Property
ColLink Property
ColListField Property
ColSortBy Property
ColSortOrder Property
ColWidth Property
VPComboBox Control
VPListBox Control

See Also
ColWidth Property
VPComboBox Control

MouseCapture Property Example

In this example we will identify all the code that is necessary to implement drag-and-drop
operations using the VPForm control. This will include specific code that involves the
MouseCapture property.

This example involves two TextBox controls (actually two VPTextBox controls) where we
will provide the ability to drag the contents of one TextBox control (VPTextBox1) to
another (VPTextBox2). In order to avoid confusing normal mouse operations, such as
setting an insertion point or selecting text within a TextBox, and the mouse operations
associated with a drag-and-drop operation, we will employ a Timer control. The Timer
control will be set to fire its Timer event in 500 milliseconds. In the first or "source" TextBox
control (VPTextBox1) we will add code to the MouseDown event to enable the Timer
control.
Sub VPTextBox1_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Timer1.Enabled = True
End Sub

In the Timer1 control Timer event we will turn on the mouse capturing feature of the
VPForm control, initialize our drag mouse cursor, and record which control is our "source"
control by setting a form level object variable named Source to the VPTextBox1 control. In
this event we also disable the Timer control. By setting the MouseCapture property we
start the drag-and-drop process.
Sub Timer1_Timer ()
 VPForm1.MouseCapture = True
 VPForm1.Cursor = "6003"
 Set Source = VPTextBox1
 Timer1.Enabled = False
End Sub

Although not part of the drag-and-drop process, we add code to the MouseUp event of the
first TextBox control to turn off the Timer control if the mouse button is released while in
the "source" TextBox control. This is done so that the drag-and-drop process is not started if
it hasn't started already.
Sub VPTextBox1_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Timer1.Enabled = False
End Sub

Once the mouse capture process is initiated, all mouse events for the system are redirected
to the custom mouse events of the VPForm control. In the MouseMove event we check to
see where the mouse pointer is currently pointing to and set the appropriate custom mouse
pointer. If over the form (without being on a control) we set the Cursor property of the
VPForm control to an appropriate drag cursor resource (id 6003)    located in the
VFORM.VBX file. If on any control other than our "source" or "target" control or if outside any
form of our application, we set the mouse pointer to a "No-Drop" cursor resource (id 6001). If
the mouse pointer is over our "source" control we set the mouse pointer to our valid drag
cursor resource (id 6003). And finally, if the mouse is over our "target" control we can set it
to a valid drop cursor resource (id 6008).
Sub VPForm1_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 If VPForm1.FormIndex = -1 Then
 'Mouse outside any application form - use No Drop cursor
 VPForm1.Cursor = "6001"
 Else
 'Mouse within an application form
 If VPForm1.ControlIndex = -1 Then
 'Mouse not on a control - on form itself - use valid drag cursor
 VPForm1.Cursor = "6003"
 Else
 'Identify control mouse is currently over
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox1 Then
 'Mouse is over source control - use valid drag cursor
 VPForm1.Cursor = "6003"
 Else
 If Cntrl Is VPTextBox2 Then
 'Mouse is over target control - use valid drop cursor
 VPForm1.Cursor = "6008"
 Else
 'Mouse is on some other control - use No Drop cursor
 VPForm1.Cursor = "6001"
 End If
 End If
 End If
 End If
End Sub

The last code we need is for the custom MouseUp event of the VPForm control. This event
is fired when the mouse button is released. In this event we reset the mouse pointer to the
cursor defined by Visual Basic previous to our assigning a custom cursor. We also turn off the
drag-and-drop operation by setting the MouseCapture property to False. In this event we
also check to see if the mouse button was release over our target control or somewhere
else. If over the target VPTextBox2 control we transfer the text from our first TextBox
control (VPTextBox1) to the Text property of the target VPTextBox2 control and set focus
to our target control. This completes the drag-and-drop process.
Sub VPForm1_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 VPForm1.Cursor = ""
 VPForm1.MouseCapture = False
 If VPForm1.ControlIndex > -1 Then

 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPTextBox2.Text = Source.Text
 VPTextBox2.SetFocus
 End If
 End If
End Sub

As you can see, only a handful of events need to be programmed for the custom drag-and-
drop operations of the VPForm control as compared to the many MouseUp, MouseDown,
DragOver, and DragDrop events of the normal Visual Basic operations.

See Also
Cursor Property
MouseDown Event
MouseMove Event
MouseUp Event
VPForm Control

See Also
ColBound Property
ColDataField Property
ColDataSource Property
ColLink Property
ColListField Property
DataField Property
DataSource Property
Data Control
VPComboBox Control
VPListBox Control

See Also
CaseSensitive Property
ColSortBy Property
ColSortOrder Property
VPComboBox Control
VPListBox Control

TargetControl Property Example

The TargetControl property is part of the VPFocus control that is used to manage
GotFocus/LostFocus event processing when dealing with MDI Child forms. This property is
usually used in the GotFocus event of a control.

Rather than placing code in each GotFocus event procedure, one generalized procedure
can be created and called from each event procedure. In this example, we will name the
generalized procedure GotFocusDefProc. The TargetControl property is to check if
processing for a GotFocus event is valid in addition to the normal ActiveControl property.

In the GotFocusDefProc procedure we first check if the GotFocus event is valid. A GotFocus
event will be valid if no control is currently active. We can test this by seeing if the
ActiveControl property is set to zero (0). If the ActiveControl property is zero we next check
to see if the TargetControl handle, or the control where the VPFocus control is sending
Focus, is the same as the current controls handle. If the handles are the same, we have a
valid GotFocus event. If not, it is usually because Visual Basic has fired an erroneous
GotFocus event for the last control that had Focus when Focus left the MDI child form. In
this case we want all Focus processing to fail for current control.

If we have a valid GotFocus event we record the current control as the active control by
setting the ActiveControl property to the controls Window handle as we normally would.
This will start the VPFocus control trapping for Focus events.

Sub GotFocusDefProc (Frm As Form, ctl As Control)
 'Check if GotFocus event is valid
 If Form1.VPFocus1.ActiveControl = 0 Then
 'Necessary check for MDI Child forms

 If Form1.VPFocus1.TargetControl = ctl.hWnd Then
 'Set Active control and start trapping for focus events
 Form1.VPFocus1.ActiveControl = ctl.hWnd
 'If Text Box control change Colors to show where focus is
 If TypeOf ctl Is VPTextBox Then
 glBackColor = ctl.BackColor
 glForeColor = ctl.ForeColor
 ctl.BackColor = glHLBackColor
 ctl.ForeColor = glHLForeColor
 End If
 End If
 End If
End Sub

See Also
FocusAction Property
SendFocus Method
VPFocus Control

MouseDown Event Example

This example demonstrates a simple paint application. The MouseDown event procedure
works with a related MouseMove event procedure to enable painting when any mouse
button is pressed. The MouseUp event procedure disables painting.
Dim PaintNow As Integer

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
PaintNow = True 'Brush on

End Sub

Sub Form_MouseUp (Button As Integer, X As Single, Y As Single)
PaintNow = False 'Turn off painting

End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
If PaintNow Then

PSet (X, Y) 'Draw a point
End If

End Sub

Sub Form_Load ()
DrawWidth = 10 'Use wider brush
ForeColor = RGB(0, 0, 255) 'Set drawing color

End Sub

See Also
Cursor Property
MouseCapture Property
MouseMove Event
MouseUp Event
VPForm Control
VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

MouseMove Event Example

This example demonstrates a simple paint application. The MouseDown event procedure
works with a related MouseMove event procedure to enable painting when any mouse
button is pressed. The MouseUp event procedure disables painting.
Dim PaintNow As Integer

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
PaintNow = True 'Brush on

End Sub

Sub Form_MouseUp (Button As Integer, X As Single, Y As Single)
PaintNow = False 'Turn off painting

End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
If PaintNow Then

PSet (X, Y) 'Draw a point
End If

End Sub

Sub Form_Load ()
DrawWidth = 10 'Use wider brush
ForeColor = RGB(0, 0, 255) 'Set drawing color

End Sub

Another example is the MouseMove event of the VPForm control. This example involves
programming drag-and-drop operations through the custom mouse events of the VPForm
control. Once the mouse capture process is initiated with the MouseCapture property, all
mouse events for the system are redirected to the custom mouse events of the VPForm
control. In the MouseMove event we check to see where the mouse pointer is currently
pointing to and set the appropriate custom mouse pointer. If over the form (without being on

a control) we set the Cursor property of the VPForm control to an appropriate drag cursor
resource (id 6003)    located in the VFORM.VBX file. If on any control other than our "source"
or "target" control or if outside any form of our application, we set the mouse pointer to a
"No-Drop" cursor resource (id 6001). If the mouse pointer is over our "source" control we set
the mouse pointer to our valid drag cursor resource (id 6003). And finally, if the mouse is
over our "target" control we can set it to a valid drop cursor resource (id 6008).
Sub VPForm1_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 If VPForm1.FormIndex = -1 Then
 'Mouse outside any application form - use No Drop cursor
 VPForm1.Cursor = "6001"
 Else
 'Mouse within an application form
 If VPForm1.ControlIndex = -1 Then
 'Mouse not on a control - on form itself - use valid drag cursor
 VPForm1.Cursor = "6003"
 Else
 'Identify control mouse is currently over
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox1 Then
 'Mouse is over source control - use valid drag cursor
 VPForm1.Cursor = "6003"
 Else
 If Cntrl Is VPTextBox2 Then
 'Mouse is over target control - use valid drop cursor
 VPForm1.Cursor = "6008"
 Else
 'Mouse is on some other control - use No Drop cursor
 VPForm1.Cursor = "6001"
 End If
 End If
 End If
 End If
End Sub

See Also
Cursor Property
MouseCapture Property
MouseDown Event
MouseUp Event
VPForm Control
VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

MouseUp Event Example

This example demonstrates a simple paint application. The MouseDown event procedure
works with a related MouseMove event procedure to enable painting when any mouse
button is pressed. The MouseUp event procedure disables painting.
Dim PaintNow As Integer

Sub Form_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
PaintNow = True 'Brush on

End Sub

Sub Form_MouseUp (Button As Integer, X As Single, Y As Single)
PaintNow = False 'Turn off painting

End Sub

Sub Form_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
If PaintNow Then

PSet (X, Y) 'Draw a point
End If

End Sub

Sub Form_Load ()
DrawWidth = 10 'Use wider brush
ForeColor = RGB(0, 0, 255) 'Set drawing color

End Sub

Another example is the MouseUp event of the VPForm control. This example involves
programming drag-and-drop operations through the custom mouse events of the VPForm
control. Once the mouse capture process is initiated with the MouseCapture property, all
mouse events for the system are redirected to the custom mouse events of the VPForm
control. In this MouseUp event we reset the mouse pointer to the cursor defined by Visual
Basic previous to our assigning a custom cursor. We also turn off the drag-and-drop

operation by setting the MouseCapture property to False. In this event we also check to
see if the mouse button was release over our target control or somewhere else. If over the
target VPTextBox2 control we transfer the text from our first TextBox control
(VPTextBox1) to the Text property of the target VPTextBox2 control and set focus to our
target control. This completes the drag-and-drop process.
Sub VPForm1_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
 Dim Cntrl As Control
 VPForm1.Cursor = ""
 VPForm1.MouseCapture = False
 If VPForm1.ControlIndex > -1 Then
 Set Cntrl = Forms(VPForm1.FormIndex).Controls(VPForm1.ControlIndex)
 If Cntrl Is VPTextBox2 Then
 VPTextBox2.Text = Source.Text
 VPTextBox2.SetFocus
 End If
 End If
End Sub

See Also
Cursor Property
MouseCapture Property
MouseDown Event
MouseMove Event
VPForm Control
VPTextBox Control
VPStatic Control
VPComboBox Control
VPListBox Control

See Also
VLocateText Function
VPComboBox Control
VPListBox Control

LocateText Method Example

This first example searches the items of a VPListBox control for the sub-string elect,
locating the first row which may have any phrase or word that has the characters elect
(such as the word electronics) within the third column, which, in this example, is the
company name column. The row index returned is set as the selected row or item.

Sub Command1_Click ()
 VPListBox1.ListIndex = VPListBox1.LocateText "elec", 3, 0, vxSubStringMatch, _
 vxDown, vxCaseSensitive
End Sub

This second example recursively searches the items of a VPListBox control for the sub-
string elect, locating any rows which may have any phrase or word that has the characters
elect (such as the word electronics) within the third column, which, in this example, is the
company name column. In this example, the search is executed in a loop, with the starting
position modified each time, continuing the search after each successful locate. When a
row is matched, the row is added to a second VPListBox control. The loop is terminated
upon an unsuccessful match.

Sub Command1_Click ()
 Dim iFound As Integer
 iFound = -1
 Do

 iFound = VPListBox1.LocateText "elec", 3, iFound, vxSubStringMatch, _
 vxDown, vxCaseSensitive
 If iFound <> -1 Then
 VPListBox2.AddItem VPListBox1.List(iFound)
 End If
 Loop Until iFound = -1
End Sub

See Also
FocusAction Property
SendFocus Method
TrapFocusOff Method
TrapFocusOn Method
VPFocus Control

ReturnFocus Method Example

Rather than placing code in each GotFocus or LostFocus event procedure, one
generalized procedure can be created and called from each event procedure type. In this
example, we will define two generalized procedures, one named GotFocusDefProc and the
other LostFocusDefProc. In the first generalized procedure the ActiveControl property is
first used to check if processing for a GotFocus event is valid, and if valid, the
ActiveControl property is assign the "current" control as the "active" control through the
TrapFocusOn method.    This is done by passing the window handle of the current control
as an argument to the TrapFocusOn method.

In the GotFocusDefProc procedure we first check if the GotFocus event is valid. A
GotFocus event will be valid if no control is currently "active". We can test this by seeing if
the ActiveControl property is set to zero (0).

If we have a valid GotFocus event we record the current control as the "active" control by
passing the control's Window handle when we execute the TrapFocusOn method. This will
also start the VPFocus control trapping for Focus events.
Sub GotFocusDefProc (Frm As Form, ctl As Control)
 'Check if GotFocus event is valid
 If Frm.VPFocus1.ActiveControl = 0 Then
 'Set Active control and start trapping for focus events.
 Frm.VPFocus1.TrapFocusOn ctl.hWnd
 'If Text Box control then change Colors to help show where focus is
 If TypeOf ctl Is VPTextBox Then
 glBackColor = ctl.BackColor
 glForeColor = ctl.ForeColor
 ctl.BackColor = glHLBackColor
 ctl.ForeColor = glHLForeColor
 End If
 End If

End Sub

In the LostFocusDefProc procedure we first check if the LostFocus event is valid. A
LostFocus event will be valid if the object reference in the ActiveControl property is
equal to the current control. We can test this by seeing if the ActiveControl property is
equal to window handle of the current control.
If we have a valid LostFocus event we next check if the control where Focus will next be
sent is a special "Cancel" command button control. In this case, any processing of our
LostFocus event should be by-passed. If Focus is going to any other control we check the
validity of the data entered into the current control. If it fails any validation checks the
ReturnFocus method is executed, returning focus back to the current control. If the data is
acceptable then the SendFocus method is executed, sending Focus on to the next
control.
Sub LostFocusDefProc (Frm As Form, ctl As Control, rsDataVal)
 'Check if LostFocus event is valid
 If Frm.VPFocus1.ActiveControl = ctl.hWnd Then
 'Check if next target control is cancel button
 If Forms(Frm.VPFocus1.FormIndex).controls(Frm.VPFocus1.ControlIndex) Is Frm.cmdCancel
Then
 'Send focus on to Trapped control
 Frm.VPFocus1.SendFocus
 Else
 Select Case UCase$(rsDataVal)
 Case "BAD"
 Beep
 MsgBox "Invalid Data - Please enter again."
 'Reset data
 ctl.Text = ""
 'Invalid data so send focus back to itself
 Frm.VPFocus1.ReturnFocus
 Exit Sub
 Case "MSG"
 'Having a MsgBox normally eats up any GotFocus causing real problems
 Beep
 MsgBox "This is a valid entry - Data accepted."
 'Send focus on to Trapped control
 Frm.VPFocus1.ForceGotFocus = True
 Frm.VPFocus1.SendFocus
 Case Else 'GOOD or any other input
 'Send focus on to Trapped control
 Frm.VPFocus1.SendFocus
 End Select
 End If
 'Turn off focus highlight color
 If TypeOf ctl Is VPTextBox Then
 ctl.BackColor = glBackColor
 ctl.ForeColor = glForeColor
 End If
 End If
End Sub

See Also
FocusAction Property
ForceGotFocus Property
TargetControl Property
ReturnFocus Method
TrapFocusOff Method
TrapFocusOn Method
VPFocus Control

SendFocus Method Example

Rather than placing code in each GotFocus or LostFocus event procedure, one
generalized procedure can be created and called from each event procedure type. In this
example, we will define two generalized procedures, one named GotFocusDefProc and the
other LostFocusDefProc. In the first generalized procedure the ActiveControl property is
first used to check if processing for a GotFocus event is valid, and if valid, the
ActiveControl property is assign the "current" control as the "active" control through the
TrapFocusOn method.    This is done by passing the window handle of the current control
as an argument to the TrapFocusOn method.
In the GotFocusDefProc procedure we first check if the GotFocus event is valid. A
GotFocus event will be valid if no control is currently "active". We can test this by seeing if
the ActiveControl property is set to zero (0).
If we have a valid GotFocus event we record the current control as the "active" control by
passing the control's Window handle when we execute the TrapFocusOn method. This will
also start the VPFocus control trapping for Focus events.

Sub GotFocusDefProc (Frm As Form, ctl As Control)
 'Check if GotFocus event is valid
 If Frm.VPFocus1.ActiveControl = 0 Then
 'Set Active control and start trapping for focus events
 Frm.VPFocus1.TrapFocusOn ctl.hWnd
 'If Text Box control then change Colors to help show where focus is
 If TypeOf ctl Is VPTextBox Then
 glBackColor = ctl.BackColor

 glForeColor = ctl.ForeColor
 ctl.BackColor = glHLBackColor
 ctl.ForeColor = glHLForeColor
 End If
 End If
End Sub

In the LostFocusDefProc procedure we first check if the LostFocus event is valid. A
LostFocus event will be valid if the object reference in the ActiveControl property is
equal to the current control. We can test this by seeing if the ActiveControl property is
equal to window handle of the current control.
If we have a valid LostFocus event we next check if the control where Focus will next be
sent is a special "Cancel" command button control. In this case, any processing of our
LostFocus event should be by-passed. If Focus is going to any other control we check the
validity of the data entered into the current control. If it fails any validation checks the
ReturnFocus method is executed, returning focus back to the current control. If the data is
acceptable then the SendFocus method is executed, sending Focus on to the next
control.

Sub LostFocusDefProc (Frm As Form, ctl As Control, rsDataVal)
 'Check if LostFocus event is valid
 If Frm.VPFocus1.ActiveControl = ctl.hWnd Then
 'Check if next target control is cancel button
 If Forms(Frm.VPFocus1.FormIndex).controls(Frm.VPFocus1.ControlIndex) _

 Is Frm.cmdCancel Then
 Frm.VPFocus1.SendFocus 'Send focus on to Trapped control
 Else
 Select Case UCase$(rsDataVal)
 Case "BAD"
 Beep
 MsgBox "Invalid Data - Please enter again."
 'Reset data
 ctl.Text = ""
 Frm.VPFocus1.ReturnFocus 'Invalid data so send focus back to itself
 Exit Sub
 Case "MSG"
 'Having a MsgBox normally eats up any GotFocus causing real problems
 Beep
 MsgBox "This is a valid entry - Data accepted."
 Frm.VPFocus1.ForceGotFocus = True
 Frm.VPFocus1.SendFocus 'Send focus on to Trapped control
 Case Else 'GOOD or any other input
 Frm.VPFocus1.SendFocus 'Send focus on to Trapped control
 End Select
 End If

 'Turn off focus highlight color
 If TypeOf ctl Is VPTextBox Then
 ctl.BackColor = glBackColor
 ctl.ForeColor = glForeColor
 End If
 End If
End Sub

See Also
FocusAction Property
ReturnFocus Method
SendFocus Method
TrapFocusOn Method
VPFocus Control

See Also
FocusAction Property
ReturnFocus Method
SendFocus Method
TrapFocusOff Method
VPFocus Control

TrapFocusOn Method Example

The TrapFocusOn method is usually used in the GotFocus event of a control.

Rather than placing code in each GotFocus event procedure, one generalized procedure
can be created and called from each event procedure. In this example, we will name the
generalized procedure GotFocusDefProc. The ActiveControl property is first used to check
if processing for a GotFocus event is valid, and if valid, the ActiveControl property is
assigned the "current" control as the "active" control through the TrapFocusOn method.   
This is done by passing the window handle of the current control as an argument to the
TrapFocusOn method.

In the GotFocusDefProc procedure we first check if the GotFocus event is valid. A
GotFocus event will be valid if no control is currently "active". We can test this by seeing if
the ActiveControl property is set to zero (0).
If we have a valid GotFocus event we record the current control as the "active" control by
passing the control's Window handle when we execute the TrapFocusOn method. This will
also start the VPFocus control trapping for Focus events.
Sub GotFocusDefProc (Frm As Form, ctl As Control)
 'Check if GotFocus event is valid
 If Frm.VPFocus1.ActiveControl = 0 Then
 'Set Active control and start trapping for focus events
 Frm.VPFocus1.TrapFocusOn ctl.hWnd
 'If Text Box control then change Colors to help show where focus is
 If TypeOf ctl Is VPTextBox Then
 glBackColor = ctl.BackColor
 glForeColor = ctl.ForeColor
 ctl.BackColor = glHLBackColor
 ctl.ForeColor = glHLForeColor
 End If
 End If

End Sub

See Also
LocateText Method
VPComboBox Control
VPListBox Control

VLocateText Function Example

This first example searches the items of a VPListBox control for the sub-string elect,
locating the first row which may have any phrase or word that has the characters elect
(such as the word electronics) within the third column, which, in this example, is the
company name column. The row index returned is set as the selected row or item.
Sub Command1_Click ()
 VPListBox1.ListIndex = VLocateText (VPListBox1, "elec", 3, 0, vxSubStringMatch, _
 vxDown, vxCaseSensitive)
End Sub

This second example recursively searches the items of a VPListBox control for the sub-
string elect, locating any rows which may have any phrase or word that has the characters
elect (such as the word electronics) within the third column, which, in this example, is the
company name column. In this example, the search is executed in a loop, with the starting
position modified each time, continuing the search after each successful locate. When a
row is matched, the row is added to a second VPListBox control. The loop is terminated
upon an unsuccessful match.
Sub Command1_Click ()
 Dim iFound As Integer
 iFound = -1
 Do
 iFound = VLocateText (VPListBox1, "elec", 3, iFound, vxSubStringMatch, _
 vxDown, vxCaseSensitive)
 If iFound <> -1 Then
 VPListBox2.AddItem VPListBox1.List(iFound)
 End If
 Loop Until iFound = -1
End Sub

See Also
ColAlign Property
ColBound Property
ColFormat Property
ColHeadAlign Property
ColHeading Property
ColLink Property
ColListField Property
ColSortBy Property
ColSortOrder Property
ColWidth Property
VPComboBox Control
VPListBox Control

data-aware
A control is data-aware when it can provide access to a specific field in a database through
a Data control. Typically, a data-aware control can be bound to a Data control through its
DataSource and DataField properties. A data-aware control is also referred to as a
bound control.

bound control
A control that provides access to a specific field in a database through a Data control. A
control is bound to a Data control through its DataSource and DataField properties. When
a Data control moves from on record to the next, all bound controls change to display data
from fields in the current record. When users change data in a bound control and then move
to a different record, the changes are automatically saved in the database.

drag-and-drop
Features that enable the user to drag a control or its contents and drop it onto a form or
another control using the mouse. An object can be a source (an item the user drags) or a
target (an item on which the user drops a source).

design time
The time during which you build an application in the development environment by adding
controls, setting control or form properties, and so on. In contrast, during run time, you
interact with the application as a user would.

run time
The time when code is running. During run time, you interact with the application as a user
would.

control array
A group of controls that share a common name, type, and event procedures. Each control in
the array has a unique index number that can be used to determine which control
recognizes an event.

focus
In the Microsoft Windows environment, only one window, form, or control can receive mouse
clicks or keyboard input. This object "has the focus."    The focus can be set by the user or by
the application. Focus is usually indicated by a highlighted caption or border.

object expression
An expression which specifies a particular object. This expression can include any of the
objects' containers.

boolean expression
An expression which evaluates to either True or False.

string expression
Any expression which evaluates to a sequence of contiguous characters. Elements of the
expression can include a function that returns a string, a string literal, a string constant, a
string variable, a string variant, or a function that returns a string variant (VarType 8).

numeric expression
Any expression which can be evaluated as a number. Elements of the expression can include
any combination of keywords, variables, constants, and operators that result in a number.

