
Vantage Control Set 2.0 Demo

The CTLDEMO project demonstrates the different user interface aspects of the VPTextBox,
VPStatic, VPComboBox, VPListBox, and VPForm controls and how they can be
manipulated through code during run time.    It also demonstrates some of the advanced
features of the VPComboBox and VPListBox controls, such as extended data awareness,
match entry operations (similar to automatic searching found in Access, MS Money, and
Quicken), custom sorting which supports multiple sort key columns, and new flexible data
locate functions and methods.

The main form of the CTLDEMO project displays four sample controls representing a
VPTextBox, VPStatic, VPComboBox, and VPListBox control class.    Associated with each
control are a number of other option button and check box controls which you can use to
manipulate the sample controls.

Within this project you can manipulate each control's appearance and alignment.    For the
VPComboBox and VPListBox controls, you can manipulate a number of properties which
determine the look and operations of the list portion of these controls.    These list properties
are maintained in a separate dialog, available by clicking on the appropriate List Properties
command button.    These properties include:

GridLines MaxDrop    (VPComboBox only)
GridAppearance MaxWidth    (VPComboBox only)
Heading

You can also review and set many of the array properties which define the columns within
the list portion of these controls.      Reviewing and setting column properties are also
handled through a separate dialog, available by clicking on the appropriate Column
Properties command button.    These properties include:

MaxCols ColLink
ColWidth ColHeading
ColAlign ColHeadAlign

From the main form you can also manipulate the appearance of the demo form itself, and
optionally set a custom background brush to be applied to the form's background.    At the
bottom of the main form is a command button which will take you to a form that displays the
additional features of the VPComboBox and VPListBox controls including data binding,
extended data matching features of the VPComboBox control, and other custom sorting
and search capabilities associated with Lists.

New features of the VPComboBox and VPListBox controls

For more information on Vantage Control Set

New features
A number of new features have been added to the VPComboBox and VPListBox controls
of Vantage Control Set.    These include the ability to select case sensitive or non case
sensitive operations, custom sorting options, flexible data locate functions and methods, and
match entry operations which allow the VPComboBox control to operate like the Windows
Help Search Engine or the interactive matching found in Access, Quicken, or Microsoft
Money.    There are also new column binding properties which allow selected values to be
bound to a second data source.    For the VPComboBox control, binding through the
ColBound, ColDataSource, and ColDataField properties can be used in addition to, or in
place of the normal Edit or Static portion binding through the standard DataSource and
DataField properties.    This allows for the flexibility to display one column of information
linked to the Edit control through the ColLink property, and have a different column of data
be bound to a data source.    These new features even include a powerful LocateText
method (ActiveX only) or the VLocateText exported DLL function for searching a
VPComboBox or VPListBox control for data values within the columns of a List.    Many of
these new capabilities are demonstrated in the form loaded by clicking on the "Other
features..." command button at the bottom of the main form of the CTLDEMO project.

The following are some of the new properties, events, methods, and functions of the
VPComboBox and VPListBox controls:

CaseSensitive Property
CellText Property
ColBound Property
ColDataField Property
ColDataSource Property
ColLink Property
ColListField Property
ColSortBy Property
ColSortOrder Property
MatchEntry Property
RowSource Property

CloseUp Event

LocateText Method (ActiveX version)
VLocateText Function (Exported DLL function for VBX version)

CaseSensitive Property

Returns or sets a value that determines if the operation of the List portion of a control is
case sensitive.    This property effects how items in a List are selected and how they are
sorted.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.CaseSensitive [= boolean]

The CaseSensitive property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies the behavior described in Settings.

Settings

The settings for boolean are:

Setting Description

True List operations are case sensitive.

False List operations are not case sensitive. (Default)

Remarks

List operations of the standard ListBox or ComboBox control is case insensitive.    This
means that the uniqueness of text placed within a List is not dependent on the case of the
text.    The string value of abc is considered the same as Abc or ABC.    In this example, if all
three strings are placed into a List, in the order referenced above, and a match against the
string ABC was attempted, the first abc string would match in a case insensitive operation. 
The CaseSensitive property provides a means of setting the type of operations for the List
portions of the VPComboBox control, or the VPListBox control.    The default for this
property is False, which indicates that all operations within a List are not case sensitive,
like the standard ListBox or ComboBox control.    If this property is set to True, the
VPComboBox and VPListBox control operates in a case sensitive mode.    Each instance
of the above example strings would be considered different items within the List.    This
property effects how items are selected and how they are sorted.

CellText Property

Returns the contents of a cell within a List.    Not available at Design time.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.CellText(index)

The CellText property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

index A numeric expression which uniquely identifies the row within a List.

Remarks

The CellText property provides a mechanism to retrieve text data from a particular column
and row position (or cell) within a List.    The column position is first specified by the Col
property, while the row position is determined by the supplied index value.    This property,
while it allows you to retrieve the text data of a cell, it does not allow you to assign or set
the contents of a cell.    To update the cell of a List you need to use the List property and
update the contents of the complete row.

Example

This example uses the CellText property to retrieve the contents of the currently selected
row and given column and assign the text value to a local string variable.
Sub GetData ()
 Dim sColData As String
 VPListBox1.Col = 3
 sColData = VPListBox1.CellText(VPListBox1.ListIndex)
End Sub

ColSortBy Property

Returns or sets a value that determines if a given column of data will be used in sorting the
contents of a List.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.ColSortBy [= boolean]

The ColSortBy property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

boolean A Boolean expression which specifies the behavior described in Settings.

Settings

The settings for boolean are:

Setting Description
True A column will be used when determining the order of items within a List.

False Sorting within a List is not based on a given column. (Default)

Remarks

The ColSortBy property is an array of Boolean flags which determines if a given column is
used as a basis for determining the order of items within a List. When setting this property
in run mode, the affected column is specified using the Col property.    If no columns have
this property set to True, all the columns as a whole will be used as a basis for determining
sort sequence and each full row of data is evaluated in a left-justified, ascending sort order
to determine the sequence of items within a List.    Once a column is designated as a
SortBy column, its sorting sequence is determined by the ColSortOrder, and ColAlign
properties, along with the general CaseSensitive property of the List.

ColSortOrder Property

Returns or sets a value that determines the sorting order to be used within a column in a
List.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.ColSortOrder [= value]

The ColSortOrder property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

value A value or constant which determines the sort order, as described in Settings.

Settings

The settings for value are:

Setting Description
0 Ascending. (Default)

1 Descending.

Remarks

This is an array property of sort order definitions for each column.    Any column can have a
sorting order that is different from other columns.    When setting this property in run mode,
the affected column is specified using the Col property.    This property works in conjunction
with the ColAlign property, and the CaseSensitive property, to determine a proper sort
sequence within a column.    This sort sequence determines how items within a List are
positioned.    The ColSortOrder property determines if the sorting sequence for a column
is in ascending or descending order.    The ColAlign property sets how columnar text values
are evaluated in a left-to-right or right-to-left ASCII sequence.    Typically column text values
that represent numeric data use a right justification, while alpha or alphanumeric data use
left or center justification.    Even with this property set, sorting items within a list will only
be based on a given column if that columns ColSortBy property is set to True.

MatchEntry Property

Returns or sets a value that determines how the List portion of the VPComboBox control is
searched, based on values entered into the Edit portion of the control.    Applies only to a
VPComboBox control with the Style property set to Dropdown Combo.

Applies To

VPComboBox Control

Syntax

object.MatchEntry [= value]

The MatchEntry property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

value A value or constant which specifies the type of search within the List portion,
as described in Settings.

Settings

The settings for value are:

Setting Description
0 No matching.    As characters are type in to the edit portion, no searching

occurs.

1 Standard matching.    The control searches for an item with beginning
characters matching all the characters entered.    The search is done as
characters are being typed, or backspaced, further refining the search.    Any
matching items row will be highlighted within the List portion, but not copied
to the Edit or Static portion of the control until the user hits the Enter key, the
control losses focus,    or the user clicks on an item.    This type of matching is
modeled after the search dialog in the Windows help system. (Default)

2 Extended matching.    The control waits until the user types in enough
characters into the Edit portion of the control to uniquely match an item in the
List portion.    When a match is found the item is selected and the linked
column is loaded and displayed in the Edit portion of the control.    The
portions not typed by the user are selected for easy over-typing.    This type of
matching is modeled after searches found in controls used in Microsoft Money
and Intuits Quicken.

Remarks

The MatchEntry property allows for specific searching behavior that would otherwise
require significant coding.    A matching or auto searching property such as the
MatchEntry property becomes very important when the List portions are either not sorted
and have a large amount of items.

CloseUp Event

Occurs when the List portion of the VPComboBox control is closed.

Applies To

VPComboBox Control

Syntax

Sub object_CloseUp([index As Integer,])

The CloseUp event syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

index An integer which uniquely identifies a control if it's in a control array.

Remarks

The CloseUp event procedure can be used to trigger any processing that may be required
after the user has made or even canceled a selection from the List portion of a
VPComboBox control.    This event will not fire if the Style property is set to 1 (Simple).

LocateText Method

Returns an index value to a row or item found based on the search text and locate
parameters supplied.    Available only in the ActiveX version.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.LocateText text, col, start, stype, direction, scase

The LocateText method syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

text A string expression which represents the text value to search for.    Required
argument.

col A numeric expression which specifies a column to search within the List.   
Required argument.

start A numeric expression which specifies the starting row or item to begin the
search.    Required argument.

stype A value or constant that specifies the type of search to be conducted, as
described in Settings.    Optional argument.

direction A value or constant that specifies the direction to search within the List, as
described in Settings.    Optional argument.

scase A value or constant that specifies the behavior of the locate operation, as
described in Settings.    Optional argument.

Settings

The settings for stype are:

Setting Description
0 Exact match.    Can use the constant vxExactMatch instead. (Default)

1 First characters match.    Can use the constant vxFirstCharMatch instead.

2 Last characters match.    Can use the constant vxLastCharMatch instead.

3 Sub-string match.    Can use the constant vxSubStringMatch instead.

The settings for direction are:

Setting Description
0 Down.    Can use the constant vxDown instead. (Default)

1 Up.    Can use the constant vxUp instead.

The settings for scase are:

Setting Description
0 Locate operations within a List are not case sensitive.    Can use the constant

vxCaseNotSensitive instead.(Default)

1 Locate operations within a List are case sensitive.    Can use the constant
vxCaseSensitive instead.

Remarks

The LocateText method is used to search the contents of a List locating the first row or
item which has column data that matches the supplied text. This method returns an integer
index value identifying the location of the row or item that matches.    If no match is made,
executing this method, a -1 value is returned.    How the search is conducted is determined
by the arguments associated with this method.

The col argument identifies the column within the List to search within.    Columns are
numbered from 1 to however many columns are defined for a List.    If a zero (0) is supplied,
the search uses the whole row, including data from all columns to check for a match.    In
the case where the row is searched as a whole, the column delimiter character, Chr$(9), is
ignored.    This argument is required.

The start argument is used to designate the row or item of the List you want to start your
search from.    If a zero (0) or -1 value is supplied, the search starts with the first row or
item of the List.    To start a search with the last row or item you could pass the ListCount
property -1 for this argument.    If you passed the value of the ListIndex property, a search
would start with the currently selected row or item of the List.    This argument is required.

The stype argument is used to set what type of search should be conducted through the
items of the List.    The Locate Type options include exact matching (0), first characters
matching (1), last characters matching (2), or sub-string matching (3).

Exact matching compares the locate text with the full text of the column being searched.   
Where both strings are equal a match is made and the row index position is returned.

First characters matching compares each character of the locate text with the first
characters of the column being searched.    Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned.    This type of matching is most appropriate for left, or centered justified,
alphanumeric type data, that is part of the search column within a List.

Last characters matching compares each character of the locate text with the last
characters of the column being searched.    Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned.    This type of matching is most appropriate for right justified, numeric type data,
that is part of the search column within a List.

Sub-string matching compares the locate text with any sub-set of characters within the
column being searched.    Where the sub-string of the locate text can be found within the
search column text a match is made and the row index position is returned.

The stype argument is optional and if not supplied the default type is Exact matching.

The direction argument is used to set which direction a search should be conducted
through the items of the List.    If the Down option is supplied, the locate method operation
will start at the supplied starting row, and search each subsequent row for the locate text.   
If the Up option is supplied, the locate method operation will start at the supplied starting
row, and each previous row will be searched.    The direction argument is optional and if not
supplied the default direction is Down.

The scase argument determines if compare functions used by the search engine are case
sensitive or case insensitive.    If this argument is passed a zero (0), all locate operations
within the List are not case sensitive.    If this argument is passed a value of 1, all locate
operations within the List are case sensitive.    The scase argument is optional and if not
supplied the default case is 0, case not sensitive.

This method is available only for the OCX version.

Example

This first example searches the items of a VPListBox control for the sub-string elect,
locating the first row that may have any phrase or word that has the characters elect (such
as the word electronics) within the third column, which, in this example, is the company
name column. The row index returned is set as the selected row or item.
Sub Command1_Click ()
 VPListBox1.ListIndex = VPListBox1.LocateText "elec", 3, 0, vxSubStringMatch, _
 vxDown, vxCaseSensitive
End Sub

This second example recursively searches the items of a VPListBox control for the sub-
string elect, locating any rows that may have any phrase or word that has the characters
elect (such as the word electronics) within the third column, which, in this example, is the
company name column.    In this example, the search is executed in a loop, with the
starting position modified each time, continuing the search after each successful locate.   
When a row is matched, the row is added to a second VPListBox control.    The loop is
terminated upon an unsuccessful match.
Sub Command1_Click ()
 Dim iFound As Integer
 iFound = -1
 Do
 iFound = VPListBox1.LocateText "elec", 3, iFound, vxSubStringMatch, _
 vxDown, vxCaseSensitive
 If iFound <> -1 Then
 VPListBox2.AddItem VPListBox1.List(iFound)
 End If
 Loop Until iFound = -1
End Sub

VLocateText Function

Returns an index value to a row or item found within a supplied VPComboBox or
VPListBox control, based on the search text, and locate parameters supplied.

Applies To

VPComboBox Control VPListBox Control

Declare Syntax

Declare Function VLocateText Lib VPLIST.VBX (object As Control, ByVal text As
String, ByVal col As Integer, ByVal start As Integer, ByVal stype As Integer, ByVal
direction As Integer, ByVal scase As Integer) As Integer          note: function also found
in VPCOMB.VBX

Syntax

found = VLocateText (object, text, col, start, stype, direction, scase)

The VLocateText function syntax has these parts:

Part Description
found An integer value returned from the function that identifies the found row or

item.

object An object expression which evaluates to an object in the Applies To list.

text A string expression which represents the text value to search for.

col A numeric expression which specifies a column to search within the List.

start A numeric expression which specifies the starting row or item to begin the
search.

stype A value or constant that specifies the type of search to be conducted, as
described in Settings.

direction A value or constant that specifies the direction to search within the List, as
described in Settings.

scase A value or constant that specifies the behavior of the locate operation, as
described in Settings.

Settings

The settings for stype are:

Setting Description
0 Exact match. Can use the constant vxExactMatch instead.

1 First characters match. Can use the constant vxFirstCharMatch instead.

2 Last characters match. Can use the constant vxLastCharMatch instead.

3 Sub-string match. Can use the constant vxSubStringMatch instead.

The settings for direction are:

Setting Description
0 Down. Can use the constant vxDown instead.

1 Up. Can use the constant vxUp instead.

The settings for scase are:

Setting Description
0 Locate operations within a List are not case sensitive. Can use the constant

vxCaseNotSensitive instead.

1 Locate operations within a List are case sensitive. Can use the constant
vxCaseSensitive instead.

Remarks

The VLocateText function is used to search the contents of a List locating the first row or
item which has column data that matches the supplied text.    This function returns an
integer index value identifying the location of the row or item that matches.    If no match is
made executing this function, a -1 value is returned.    How the search is conducted is
determined by the parameters associated with this function.    Unlike the LocateText
Method, all parameters are required for this function.

The object parameter identifies the VPComboBox or VPListBox control that will be
searched.    You pass an object variable as Control to the function.

The col parameter identifies the column within the List to search within.    Columns are
numbered from 1 to however many columns are defined for a List.    If a zero (0) is supplied,
the search uses the whole row, including data from all columns to check for a match. In the
case where the row is searched as a whole, the column delimiter character, Chr$(9), is
ignored.

The start parameter is used to designate the row or item of the List you want to start your
search from.    If a zero (0) or -1 value is supplied, the search starts with the first row or
item of the List. To start a search with the last row or item you could pass the ListCount
property -1 for this parameter.    If you passed the value of the ListIndex property, a search
would start with the currently selected row or item of the List.

The stype parameter is used to set what type of search should be conducted through the
items of the List.    The Locate Type options include exact matching (0), first characters
matching (1), last characters matching (2), or sub-string matching (3).

Exact matching compares the locate text with the full text of the column being searched.   
Where both strings are equal a match is made and the row index position is returned.

First characters matching compares each character of the locate text with the first
characters of the column being searched.    Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned.    This type of matching is most appropriate for left, or centered justified,
alphanumeric type data, that is part of the search column within a List.

Last characters matching compares each character of the locate text with the last
characters of the column being searched.    Where both strings are equal, character for
character, up to the length of the locate text, a match is made and the row index position
returned.    This type of matching is most appropriate for right justified, numeric type data,
that is part of the search column within a List.

Sub-string matching compares the locate text with any sub-set of characters within the
column being searched.    Where the sub-string of the locate text can be found within the
search column text a match is made and the row index position is returned.

The direction parameter is used to set which direction a search should be conducted
through the items of the List.    If the Down option is supplied, the locate method operation
will start at the supplied starting row, and search each subsequent row for the locate text.   
If the Up option is supplied, the locate method operation will start at the supplied starting
row, and each previous row will be searched.

The scase parameter determines if compare functions used by the search engine are case
sensitive or case insensitive.    If this parameter is passed a zero (0), all locate operations
within the List are not case sensitive.    If this parameter is passed a value of 1, all locate
operations within the List are case sensitive.

Example

This first example searches the items of a VPListBox control for the sub-string elect,
locating the first row that may have any phrase or word that has the characters elect (such
as the word electronics) within the third column, which, in this example, is the company
name column. The row index returned is set as the selected row or item.
Sub Command1_Click ()
 VPListBox1.ListIndex = VLocateText (VPListBox1, "elec", 3, 0, vxSubStringMatch, _
 vxDown, vxCaseSensitive)
End Sub

This second example recursively searches the items of a VPListBox control for the sub-
string elect, locating any rows that may have any phrase or word that has the characters
elect (such as the word electronics) within the third column, which, in this example, is the
company name column.    In this example, the search is executed in a loop, with the
starting position modified each time, continuing the search after each successful locate.   
When a row is matched, the row is added to a second VPListBox control.    The loop is
terminated upon an unsuccessful match.
Sub Command1_Click ()
 Dim iFound As Integer
 iFound = -1
 Do
 iFound = VLocateText (VPListBox1, "elec", 3, iFound, vxSubStringMatch, _
 vxDown, vxCaseSensitive)
 If iFound <> -1 Then
 VPListBox2.AddItem VPListBox1.List(iFound)
 End If
 Loop Until iFound = -1
End Sub

ColBound Property

Returns or sets which column is defined as the bound column.    In the VPComboBox and
VPListBox controls, this property determines if a column will pass back its data to the
ColDataSource to update the ColDataField, once a selection is made.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.ColBound [= column]

The ColBound property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

column A numeric expression which represents the index position of the column
assigned as the Bound column.

Remarks

The ColBound property determines if there is single bound column, or if the data from all
columns are used for update for the currently selected row.    The ColBound property is set
to the index position of the column you want bound.    If this property is set to zero (0) then
no one column is bound and all columns of data within the selected row are used for
update.    Data associated with the selected item or row is updated to the database field
defined by the ColDataSource and ColDataField properties.

In the VPListBox control, using this property is the normal method for binding selected
data to a data source.    In the VPComboBox control you have two ways to bind selected
data for update to a data source.    You can use the combination of the ColBound property
associated with the ColDataBound and ColDataField properties, like the VPListBox
control, or you can use the data found in the Edit or Static portion of the VPComboBox
control and bind this data for update through the standard DataSource and DataField
properties.    Using this later approach you would also use the ColLink property to link a
given column within the List portion of the VPComboBox control to the Edit or Static
portion of the control.    Using the ColLink property to assign the data from a given column
of a selected row to the Edit or Static portion of the control and then having that data be
bound to a data field through the DataSource and DataField properties would be the
normal method of binding for a Combo box type control.    But if you want an alternate
column of data to be bound rather than the linked data displayed in the Edit or Static
portion of the control, the use of this ColBound property becomes very handy.

Generally, you use two Recordset objects with the data-aware list controls of Vantage
Control Set.    One Recordset contains a read-only list of valid selections, while the other
Recordset is updated with selections from the list.    For example, the VPComboBox
control's list could be generated from a query that returned a result set of valid part
numbers and their descriptions.    One column of the list would be bound to part numbers
field of the Recordset through the ColListField property.    The other column would be
bound to the description field of the Recordset through its ColListField property.    The
ColBound property could be used to identify the first column of part numbers as bound to

the part number field of the second Recordset, as defined through the ColDataSource
and ColDataField properties.    The second column could be linked to the Edit or Static
portion of the control through the ColLink property, so the user would see the part
description selected, but have the part number used for update.

ColDataField Property

Returns or sets a value that binds a control to a field in the current record.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.ColDataField [= value]

The ColDataField property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

value A string expression which evaluates to the name of one of the fields in the
Recordset object specified by a Data control's RecordSource and
DatabaseName properties.

Remarks

Bound controls provide access to specific data in your database.    Bound controls that
manage a single field typically display the value of a specific field in the current record.   
The ColDataSource property of a bound VPComboBox or VPListBox control specifies a
valid Data control name, and the ColDataField property specifies a valid field name in the
Recordset object created by the Data control.    Together, these properties specify what
data appears in the bound column of a control as defined in the ColBound property.

ColDataSource Property

Sets a value that specifies the Data control through which a column of the current control
is bound to a database.    Not available at run time.

Applies To

VPComboBox Control VPListBox Control

Remarks

To bind a column of a control to a field in a database at run time, using the ColBound
property, you must specify a Data control in the ColDataSource property at design time
using the Properties window.

To complete the connection with a field in the Recordset managed by the Data control,
you must also provide the name of a Field object in the ColDataField property.    Unlike
the ColDataField    property, the ColDataSource property setting isn't available at run
time.

ColLink Property

Returns or sets which column is defined as the linked column.    In the VPComboBox
control, this property determines which column is linked to the Edit or Static portion of the
control.

Applies To

VPComboBox Control

Syntax

object.ColLink [= column]

The ColLink property syntax has these parts:

Part Description
object An object expression which evaluates to an object in the Applies To list.

column A numeric expression which represents the index position of the column linked
to the Edit or Static portion of the control.

Remarks

This ColLink property determines if there is single linked column or if all the columns are
linked to the Edit or Static portion of the control for the currently selected row.    Any
column can be designated as the linked column by setting the ColLink property to the
Index position of the column.    Only one column at a time can be defined as the linked
column.    If this property is set to zero (0) then no one column is linked and data for all
columns for a selected row is treated as the linked data.

The data of the linked column is passed to Edit or Static portion of the control when a row
is selected.    The data in the Edit or Static portion is subsequently passed to the
DataSource to update the DataField, if the these properties are defined.

ColListField Property

Returns or sets the name of the field in the Recordset object used to fill a column in the
list portion of the VPComboBox control or the list of the VPListBox control.    Not available
at run time.

Applies To

VPComboBox Control VPListBox Control

Syntax

object.ColListField [= fieldname]

The ColListField property syntax has these parts:

Part Description

object An object expression which evaluates to an object in the Applies To list.

fieldname A string expression which specifies the name of a field in the Recordset
created by the Data control specified by the RowSource property.

Remarks

This is an array property of optional field names to be bound to each column.    The
ColListField property enables you to select which field in the Recordset is used to fill a
column in the list of a VPComboBox or VPListBox control.    This property is used in
conjunction with the RowSource property which specifies which Data control is used to
create the Recordset used to fill the list.    When setting this property in run mode, the
affected column is specified using the Col property.

Generally, you use two Recordset objects with the data-aware list controls of Vantage
Control Set.    One Recordset contains a read-only list of valid selections, while the other
Recordset is updated with selections from the list.    For example, the VPListBox control's
list could be generated from a query that returned a result set of valid part numbers and
their descriptions.    One column of the list would be bound to part numbers field of the
Recordset through the ColListField property.    The other column would be bound to the
description field of the Recordset through its ColListField property.    The ColLink
property would identify the first column of part numbers as bound to the part number field
of the second Recordset, as this is what needs to be updated.

If the field specified by the ColListField property can't be found in the Recordset, a
trappable error occurs.    This property can only be referenced within the Column Layout
Properties Dialog at design time.

RowSource Property

Sets a value that specifies the Data control from which the list portion of a VPComboBox
or VPListBox control is filled.    Not available at run time.

Applies To

VPComboBox Control VPListBox Control

Remarks

To fill the list in a VPComboBox or VPListBox control, you must specify a Data control in
the RowSource property at design time using the Properties window.

To complete the connection with a field in the Recordset object managed by the Data
control, you must also provide the name of a Field object in the ColListField property.   
Unlike the ColListField    property, the RowSource property setting isn't available at run
time.

