
About True DBGrid Pro 5.0
{button ,JI(`',`Product_Profile')}    Product Profile
{button ,JI(`',`Whats_New')}    What's New in Version 5.0?
{button ,JI(`',`License_and_Redistributable_Files')}    License and Redistributable Files
{button ,JI(`',`Technical_Support')}    Technical Support

Part 1 - True DBGrid 101 Part 3 - Data Display and Editing
{button ,JI(`',`Getting_Started')}    Getting Started {button ,JI(`',`Customizing_the_Grids_Appearance')}   
Customizing the Grid's Appearance
{button ,JI(`',`The_Basics')}    The Basics {button ,JI(`',`Data_Presentation_Techniques')}    Data
Presentation Techniques
{button ,JI(`',`Tutorials')}    Tutorials {button ,JI(`',`How_to_Use_Splits')}    How to Use Splits
{button ,JI(`',`Object_Model')}    Object Model {button ,JI(`',`How_to_Use_Styles')}    How to Use Styles
{button ,JI(`',`Design_Time_Interaction')}    Design Time Interaction{button ,JI(`',`Cell_Editing_Techniques')}   
Cell Editing Techniques
{button ,JI(`',`Run_Time_Interaction')}    Run Time Interaction

Part 2 - Data Access Part 4 - Reference
{button ,JI(`',`Bound_Mode')}    Bound Mode {button ,JI(`',`Property_Reference')}    Property
Reference
{button ,JI(`',`Storage_Mode')}    Storage Mode {button ,JI(`',`Method_Reference')}    Method Reference
{button ,JI(`',`Application_Mode')}    Application Mode {button ,JI(`',`Event_Reference')}    Event Reference
{button ,JI(`',`Unbound_Mode')}    Unbound Mode {button ,JI(`',`Constant_Reference')}    Constant
Reference
{button ,JI(`',`Database_Programming_Techniques')}    Database Programming Techniques

{button ,JI(`',`XArray_Reference')}    XArray Reference

"Rio Bravo" Version (5.0)

Copyright © 1995-1997 APEX Software Corporation.    All rights reserved.

Product Profile
True DBGrid Pro 5.0 is a data-aware ActiveX grid control for Microsoft Visual Basic 4.0 and 5.0 and Visual C++
4.2 and 5.0.    Developed by APEX Software Corporation, True DBGrid Pro 5.0 is the upgrade to the DBGrid
control included in these Microsoft products.

True DBGrid Pro 5.0 allows end users to browse, edit, add, and delete data in a tabular format.    Using the
latest data binding technologies built into Visual Basic, True DBGrid Pro 5.0 completely manages the database
interface, allowing developers to concentrate on important application-specific tasks.    True DBGrid Pro 5.0
can also be used in unbound mode with a programmer's own data source without binding to the Visual Basic
Data control.

True DBGrid Pro 5.0 was designed to be a powerful, versatile, and easy-to-use data presentation tool.    Novice
programmers can use True DBGrid Pro 5.0 to create a fully functional database browser without writing a
single line of code.    Professional developers can use the grid control's many properties and events to create
sophisticated and user-friendly database front-end applications.

In addition to being the fastest database grid on the market, True DBGrid Pro 5.0 includes dozens of advanced
data access, data presentation, and user interface features that enable developers to build intuitive,
professional-looking applications:

100% DBGrid compatibility True DBGrid Pro 5.0 supports all of the features of the Microsoft
Data Bound Grid control (DBGrid).

Excel and Word-like styles Style objects encapsulate font, color, and formatting information,
facilitating easy customization of grid components at design time
and run time.

Excel-like splits Developers and end-users can divide the grid into separate
vertical panes to provide multiple views of the data.    The splits
can scroll independently or simultaneously.

Fixed, nonscrolling columns Splits can also be used to create nonscrolling columns anywhere
in the grid (at the left or right edges, or in the middle).

In-cell objects The grid supports a variety of in-cell objects for data display and
editing, including bitmaps, command buttons, check boxes, and
radio buttons.

Drop-down objects The grid supports a variety of drop-down objects for data entry,
including a data-aware multicolumn control (TDBDropDown), a
combo box, and a multiline text editor.    Third-party drop-down
controls also supported.

Automatic data translation Database values can be automatically translated into alternate
text or graphics without coding.    For example, numeric codes
can be rendered as words or even bitmaps.

Data-sensitive display Powerful regular expression facility can be used to apply different
styles to individual cells depending upon their contents.    For
example, negative numbers can be shown in red, or fields
containing a particular substring can be shown in bold.

Drag-and-drop features Programmers can implement drag-and-drop interfaces that are
sensitive to the grid's rows, columns, or individual cells.

Interactive visual editing Programmers can create columns, retrieve field layouts from a
bound data source, resize grid components, and configure all
aspects of the grid layout at design time---no coding is required.

Flexible unbound modes Event-driven unbound modes handle any data source and are
ideal for displaying array data, connecting to a proprietary
database, or eliminating the overhead associated with data
controls.

Unbound columns The grid supports unbound columns while other columns are
bound to a data control.

Excellent documentation True DBGrid Pro 5.0 includes an extensive manual and on-line
help with plenty of tutorials and examples.

Responsive technical support Free technical support via e-mail, phone, fax, and peer-to-peer
newsgroups.    Product updates, sample programs, and answers
to frequently asked questions are also available from the APEX
Web site at www.apexsc.com.

Free run-time distribution No royalty fees required.

What's New in Version 5.0?
True DBGrid Pro 5.0 is fully compatible with its predecessor, True DBGrid 4.0, and includes an add-in migration
utility to automate the conversion of existing Visual Basic projects.    The following features are new in version
5.0:

Array-based storage mode The XArray object included with True DBGrid Pro 5.0 works just
like a Visual Basic array, but also acts as a data source for the
grid.    No unbound events to code!

Data-aware drop-down list box The TDBDropDown control included with True DBGrid Pro 5.0 can
be bound to a different data control than the grid or used in
unbound mode.    It also supports incremental search.

Resuable grid layouts Grid layouts can be saved to a file, then reused in other projects. 
Multiple layouts can be stored in a single grid at design time,
then loaded as needed in code.    End-user layout preferences
can also be saved to a file, then recalled the next time the
application is run.

Input masking Input templates similar to Visual Basic format strings can be
assigned to columns in order to reduce end-user data entry
errors.

Multiline displays The cells in a single record can now span multiple lines, making
all columns visible.

Run-time CellTips Provides context-sensitive help for end-users.
Alternating row colors Enhances the readability of the grid's display.
Design Assistant add-in Automates repetitive tasks, facilitates column and split

configuration, and enables per-column color and font
customizations that would otherwise require coding.

And much more... New built-in styles, style properties, and database navigation and
manipulation methods.

License and Redistributable Files
True DBGrid Pro 5.0 is developed and published by APEX Software Corporation.    You may use it for
development with Microsoft Visual Basic 4.0 and 5.0 or any other programming environment.    You may also
distribute the following control files, royalty free, with any application you develop:

TDBG5.OCX For Visual Basic 5.0 or other compatible programming environments
TDBG5_32.OCX For 32-bit Visual Basic 4.0
TDBG5_16.OCX For 16-bit Visual Basic 4.0
XARRAY32.OCX For Visual Basic 5.0 or 32-bit Visual Basic 4.0

End-users of your applications are not licensed to use True DBGrid for development, and may not redistribute
any of the above control files.

You are not licensed to distribute any True DBGrid file to users for development purposes.    You are not
allowed to add or transfer the True DBGrid license key to the registry of your users' computer(s).

In particular, if you create a control using a True DBGrid component as a constituent control, you are not
licensed to distribute the control you created with the True DBGrid component to users for development
purposes.

It is your responsibility to make such restrictions clear to your users.

Technical Support
True DBGrid Pro 5.0 is developed and supported by APEX Software Corporation.    You can obtain technical
support using any of the following methods:

APEX Web site

The APEX Web site at www.apexsc.com provides a wealth of information and software downloads for True
DBGrid users:

· Answers to frequently asked questions (FAQs) about True DBGrid, organized by functionality.    Please
consult the FAQs before contacting us directly, as this can save you time and also introduce you to
other useful information pertaining to True DBGrid.

· Free product updates, which provide you with bug fixes and new features.

· Sample programs, which provide detailed illustrations of advanced concepts.

· Carl and Gary's Visual Basic Home Page, a comprehensive resource for Visual Basic developers.

Internet e-mail

The best way to get direct technical support is through Internet e-mail (you can also send and receive Internet
e-mail if you have a CompuServe account).    We respond to e-mail quickly and efficiently---you will receive a
response within one business day:

E-mail support@apexsc.com

Phone and fax

If you don't have an Internet account, please use these telephone numbers:
Voice (412) 681-4738
Fax (412) 681-4384

Our office hours are 9 AM to 6 PM (EST).

Peer-to-Peer newsgroup

APEX also sponsors a peer-to-peer newsgroup for True DBGrid users.    APEX does not offer formal technical
support in this newsgroup, but instead sponsors it as a forum for users to post and answer each other's
questions regarding True DBGrid.    However, APEX may monitor the newsgroup to ensure accuracy of
information and provide comments when necessary.    You can access the newsgroup from the APEX Web site
or connect your news reader to vger.apexsc.com.

Getting Started
{button ,JI(`',`Installation')}    Installation
{button ,JI(`',`Adding_True_DBGrid_Pro_5.0_to_a_Visual_Basic_Project')}    Adding True DBGrid Pro 5.0 to a
Visual Basic Project
{button ,JI(`',`Migrating_to_True_DBGrid_Pro_5.0')}    Migrating to True DBGrid Pro 5.0
{button ,JI(`',`Syntax_Changes_in_Version_5.0')}    Syntax Changes in Version 5.0

Installation
Insert the True DBGrid Pro 5.0 product CD in your CD-ROM drive.    Run SETUP.EXE and follow the instructions.

Adding True DBGrid Pro 5.0 to a Visual Basic Project
After you have opened a new or existing project in Visual Basic, you can add the True DBGrid Pro 5.0 control
to the Visual Basic Toolbox by following these instructions:

· If you are using Visual Basic 5.0, click Project, then click Components... to display the Components
dialog.

· If you are using Visual Basic 4.0, click Tools, then click Custom Controls... to display the Custom
Controls dialog.

· The control will be listed as APEX True DBGrid Pro 5.0 (or APEX True DBGrid Pro 5.0 for VB4) in
the appropriate dialog.    Select the control's check box and then press the OK or Apply button.

· The True DBGrid Pro 5.0 control icons will be added to the Visual Basic Toolbox.

True DBGrid

True DBDropDown

Migrating to True DBGrid Pro 5.0
If you have projects which use versions of True DBGrid other than True DBGrid Pro 5.0, you can easily convert
them to use True DBGrid Pro 5.0 by running the appropriate add-in migration utility.    The migration utilities
handle the following conversions:

Platform From To

16-bit VB4 DBGrid16.OCX for VB4 TDBG5_16.OCX

TDBGS16.OCX TDBG5_16.OCX

TDBG16.OCX TDBG5_16.OCX

EDBG5_16.OCX TDBG5_16.OCX

32-bit VB4 DBGrid32.OCX for VB4 TDBG5_32.OCX

TDBGS32.OCX TDBG5_32.OCX

TDBG32.OCX TDBG5_32.OCX

EDBG5_32.OCX TDBG5_32.OCX

VB5 DBGrid32.OCX for VB5 TDBG5.OCX

TDBGS32.OCX TDBG5.OCX

TDBG32.OCX TDBG5.OCX

TDBGS5.OCX TDBG5.OCX

EDBG5.OCX TDBG5.OCX

TDBG5_32.OCX TDBG5.OCX

Follow these instructions to add the True DBGrid Pro 5.0 Migration Utility to the Visual Basic Add-Ins menu:

· If you are using Visual Basic 5.0, run Visual Basic and select Add-In Manager... from the Add-Ins
menu.    The Add-In Manager dialog will appear.    Check the box labeled True DBGrid Pro 5.0
Migration Utility, then press the OK button.    The True DBGrid Pro 5.0 Migration Utility icon will be
placed on the toolbar.

· If you are using Visual Basic 4.0, run Visual Basic and select Add-In Manager... from the Add-Ins menu.   
The Add-In Manager dialog will appear. Check the box labeled True DBGrid Pro 5.0 Migration Utility (16-bit) or
True DBGrid Pro 5.0 Migration Utility (32-bit). The Add-Ins menu now contains a menu item labeled True
DBGrid Pro 5.0 Migration Utility.

After you have added the True DBGrid Pro 5.0 Migration Utility to the list of available add-ins, you can use it
by following these steps:

· Make backup copies of any projects that you plan to convert.

· Open a project that contains one of the controls listed in the From column in the migration chart.

· If you are using Visual Basic 4.0, select True DBGrid Pro 5.0 Migration Utility (16-bit) or True
DBGrid Pro 5.0 Migration Utility (32-bit) from the Add-Ins menu.

· If you are using Visual Basic 5.0, click the True DBGrid Pro 5.0 Migration Utility icon on the
toolbar.

· Choose the type of migration that applies to your project (for example, from DBGrid 1.0 to True DBGrid Pro

5.0, or from True DBGrid 4.0 to True DBGrid Pro 5.0), and then click OK.

· If the conversion succeeds, a message box will appear to inform you that "The current project was
converted successfully."

· To avoid conflict, the migration utilities also remove the From control from the Visual Basic Toolbox.

Please note that the migration utilities may also need to modify your source code.    Whenever source code is
modified, the original code will be commented out and the modification will be tagged with the following
comment:

*** APEX Migration Utility Code Change ***

Syntax Changes in Version 5.0
If you are using DBGrid 1.0, True DBGrid Standard Edition 1.0, or True DBGrid 4.0, you should be aware of the
following changes in syntax that may require modifications to your existing code.

FetchCellStyle argument is now qualified

In True DBGrid 4.0, the last argument of the FetchCellStyle event is declared as follows:

CellStyle As Object

In True DBGrid 5.0, this was changed to accommodate the Automatic Code Completion feature:
CellStyle As TrueDBGrid50.StyleDisp

In Visual Basic 4.0, object qualifiers are not automatically supplied for event arguments, so the last argument
appears in the code window as follows:

CellStyle As StyleDisp

The migration utilities will change the FetchCellStyle event handlers accordingly.

FirstRowChange and LeftColChange events pass a split index

In True DBGrid 4.0, the FirstRowChange and LeftColChange events did not pass any arguments and were
only fired for the current split:

Private Sub TDBGrid1_FirstRowChange()
Private Sub TDBGrid1_LeftColChange()

In True DBGrid Pro 5.0, the FirstRowChange and LeftColChange events pass the index of the split in which
the change occurred:

Private Sub TDBGrid1_FirstRowChange(ByVal SplitIndex As Integer)
Private Sub TDBGrid1_LeftColChange(ByVal SplitIndex As Integer)

The migration utilities will change these event handlers accordingly.

Add method returns the newly added object

In True DBGrid 4.0, you can invoke the Add method of the Columns and Splits collections as follows,
ignoring the return value:

TDBGrid1.Columns.Add 0
TDBGrid1.Splits.Add 0

This is also true of the Columns collection in DBGrid 1.0 and True DBGrid Standard Edition 1.0.    Although this
syntax is convenient at times, it is incompatible with the Automatic Code Completion feature of Visual Basic
5.0, which requires that the Add method return the object that was just added to the collection.    For this
reason, the old syntax is no longer supported in True DBGrid Pro 5.0, and the standard collection syntax must
be used instead:

Dim C As TrueDBGrid50.Column
Set C = TDBGrid1.Columns.Add(0)

Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(0)

The migration utilities will not make any of these changes.

Note the use of the object qualifier TrueDBGrid50 in the preceding code samples.    Although not required,
supplying a qualifier eliminates any chance that an object name such as Column will conflict with an object of
the same name in another control.    Object qualifiers are not automatically provided for event handlers in
Visual Basic 4.0; however, you can still qualify True DBGrid Pro 5.0 for VB4 objects with the TrueDBGrid45

object qualifier.

The Basics
This chapter explains the three fundamental concepts that you need to master in order to use True DBGrid
effectively:

1. Data sources

2. Column layouts

3. Bookmarks

{button ,JI(`',`Specifying_a_Data_Source')}    Specifying a Data Source
{button ,JI(`',`Choosing_a_Column_Layout')}    Choosing a Column Layout
{button ,JI(`',`Configuring_Columns_at_Design_Time')}    Configuring Columns at Design Time
{button ,JI(`',`Configuring_Columns_at_Run_Time')}    Configuring Columns at Run Time
{button ,JI(`',`Understanding_Bookmarks')}    Understanding Bookmarks

Specifying a Data Source
True DBGrid offers unprecedented flexibility in choosing a data source.    You can bind directly to Visual Basic's
intrinsic Data control, an external ActiveX control such as Microsoft's Remote Data Control (RDC) or ActiveX
Data Connector (ADC), or a third-party data control such as APEX's MyData Control.    Using True DBGrid in
bound mode greatly simplifies database development by enabling you to focus on your application's interface
instead of data access details.

However, there are times when binding to a data control is neither practical nor desirable, and an unbound
mode of operation is necessary.    By their nature, data controls add layers of overhead, which may result in
performance degradation for large datasets.    Bound mode is not an option if you are using a proprietary
database format or one that is not supported by the standard data controls.    You may even need to display a
simple two-dimensional array within a grid---why bother with a database?

True DBGrid provides a sensible strategy for handling all of these situations.    Regardless of which data access
strategy you choose, you won't be penalized for switching to another one at a later date, as True DBGrid
provides a clean separation between the data source and the grid's programmatic interface.    In other words,
if you write data validation or record manipulation code that works in bound mode, it will continue to work if
you switch to unbound mode.

True DBGrid supports the following data access modes:

Bound The grid receives data and notifications from an intrinsic or external data
control according to the Microsoft data binding specifications.

Storage The grid receives data from an APEX XArray object, which can be
redimensioned and populated in code much like a standard Visual Basic
array.

Application The grid fires data retrieval and update events for individual grid cells.

Unbound The grid fires data retrieval and update events for a small set of records
all at once.

{button ,JI(`',`What_is_bound_mode?')}    What is bound mode?
{button ,JI(`',`What_is_storage_mode?')}    What is storage mode?
{button ,JI(`',`What_is_application_mode?')}    What is application mode?
{button ,JI(`',`What_is_unbound_mode?')}    What is unbound mode?

What is bound mode?

When the DataMode property of a TDBGrid control is set to the default value of 0 - Bound, the grid
communicates directly with an intrinsic or external data control to retrieve and update data.    If you are using
a data source that is supported by the Visual Basic built-in Data control or the Microsoft Remote Data Control
(RDC), bound mode is your best option.    Simply configure the data control as you normally would, then
attach it to the DataSource property of a TDBGrid control at design time.   

For more information on using True DBGrid in bound mode, see Bound Mode.

What is storage mode?

The easiest way to display two-dimensional array data in a grid is with storage mode.    At design time, set the
DataMode property of a TDBGrid control to 4 - Storage.    At run time, create an instance of the APEX
XArray object included with True DBGrid, populate it as you would a standard Visual Basic array, then attach
it to the Array property of a TDBGrid control in code.

For more information on using True DBGrid in storage mode, see Storage Mode.

NOTE: APEX does not provide a 16-bit XArray object, so storage mode is only available on 32-bit development
platforms.

What is application mode?

If you prefer to work with standard Visual Basic arrays, or cannot use storage mode because you need to
deliver 16-bit versions of your programs, application mode is recommended, as it is well-suited to array
manipulation.

To use application mode, set the DataMode property of a TDBGrid control to 3 - Application at design time.   
At a minimum, you will need to write code to handle two events: ClassicRead and
UnboundGetRelativeBookmark.    The former is fired whenever the grid requests a value to be displayed in
a particular cell; the latter is fired whenever the grid needs to determine the bookmark used to identify a
particular row.

For more information on using True DBGrid in application mode, see Application Mode.

What is unbound mode?

If you are working with a database API that supports multiple-row fetches (such as ODBC), or are converting
applications that use unbound DBGrid controls, then the row-based unbound mode should be used.   
Although unbound mode is the most difficult data access mode to implement, it tends to be more efficient
than application mode, since fewer events need to be fired.

DataMode setting 2 - Unbound Extended is the preferred method.    Setting 1 - Unbound is a remnant of the
original DBGrid control and is included for backward compatibility.

For more information on using True DBGrid in unbound mode, see Unbound Mode.

Choosing a Column Layout
In a True DBGrid display, each column represents a single field of data.    For each column, the grid needs to
know the field name associated with the data, and optionally a heading to be displayed above the data
column.

True DBGrid gets information about field names and headings in one of three ways:

1. Automatic layouts, derived at run time from the Data control's Recordset.

2. Customized layouts, derived at design time from the Data control's Recordset, and optionally tailored
using the control's property pages.

3. Run-time layouts, created or modified in code by manipulating the Columns collection and its
Column object members.

{button ,JI(`',`Automatic_layouts')}    Automatic layouts
{button ,JI(`',`Customized_layouts')}    Customized layouts
{button ,JI(`',`Run-time_layouts')}    Run-time layouts
{button ,JI(`',`Switching_between_layout_types')}    Switching between layout types

Automatic layouts

If you do not define a column layout at design time, True DBGrid will automatically create one based upon the
database used when you run your program.    All fields from the Data control's Recordset will be displayed,
using the field names for column captions.    At run time, you can perform database actions that may alter the
layout needed to display the data.    For example, you may change the DatabaseName, RecordSource, or
Recordset properties of the Data control, resulting in a different Recordset.    When the new Recordset is
created the grid will automatically sense the new column layout and reconfigure.    This mode is the most
automatic and is quite useful for most applications.    You can cancel the grid's automatic layout behavior by
invoking the grid's HoldFields method in code.

Customized layouts

At design time, you can cause True DBGrid to configure to the Data control's Recordset by selecting
Retrieve Fields from the grid's context menu.    The grid will create a column for each field in the
Recordset, using the corresponding field name for each column's caption.    You can customize each column
using the Columns and Layout property pages.    The design-time custom layout can be canceled using the
Clear Fields option of the grid's context menu, or by invoking the grid's ClearFields method in code.

Run-time layouts

True DBGrid gives you complete control over the grid layout at run time via Column object properties and
Columns collection methods.    You can always modify the grid layout at run time using code, regardless of
whether you use the grid's automatic layout feature or define your own.

Switching between layout types

If you define a design-time column layout, the grid will not automatically change the layout at run time, as it
assumes that you want total control of the display.    The grid considers you to have defined a design-time
column layout if you chose the Retrieve Fields option from the grid's context menu or modified any
properties in either the Columns or Layout property pages.

You can clear the design-time layout by choosing the Clear Fields option of the grid's context menu, or by
invoking the grid's ClearFields method in code:

TDBGrid1.ClearFields ' Clear column layout

After this statement is executed, the grid will again respond automatically to layout changes at run time.

Conversely, you can cancel the grid's automatic layout behavior by invoking the grid's HoldFields method in
code:

TDBGrid1.HoldFields ' Cancel automatic layout

After this statement is executed, the grid will stop automatically changing the layout at run time, and uses the
current column layout for all subsequent Recordset display. This is especially useful if you need to Refresh
the data control the grid is bound to while maintaining the current grid layout.

By using the ClearFields and HoldFields methods, you can alternate the grid's display between automatic
layout and customized layout.

Configuring Columns at Design Time
True DBGrid provides unique visual editing capabilities that streamline design-time column configuration.   
Instead of adding and removing columns with command buttons on a property page, you manipulate the grid
directly on the form with the mouse.    You can even copy columns to the Clipboard and paste them into
another grid on a different form!

Once you have created and resized columns to your liking, you can use the Columns and Layout property
pages to further refine their appearance and behavior.

{button ,JI(`',`Visual_editing')}    Visual editing
{button ,JI(`',`Specifying_database_fields')}    Specifying database fields
{button ,JI(`',`Specifying_other_column_properties')}    Specifying other column properties

Visual editing

At design time, you can use True DBGrid's visual editing mode to perform the following tasks:

· Add and remove columns.

· Copy columns to and from the Clipboard.

· Move and resize columns.

· Adjust the grid's row height.

· Retrieve field layouts from a bound data source.

· Split the grid into separate vertical scrolling regions.

· Save the current grid layout to a file.

· Load an existing grid layout from a file.

· Access the grid's property pages.

To enter visual editing mode, click anywhere on the grid with the right mouse button to display the grid's
context menu, then choose the Edit command.   

The grid control is now activated in-place, which means that you can work with its columns directly on the
form.    For example, if you point to a dividing line between two columns, the mouse pointer changes to the
following symbol.

This indicates that the column you are pointing to is ready to be resized.    If you drag the dividing line to a different
position, the column will change its width accordingly, and the grid will reposition any adjacent columns.
Similarly, if you point to a column header, the mouse pointer changes again.

This symbol indicates that the column is ready to be selected.    If you click its header, the entire column is
highlighted.    You can also drag the mouse pointer within the column header area to extend the selection to other
adjacent columns.    To cancel the selection and return the columns to their normal, unhighlighted state, click any
cell within the grid's data area.
Column selection serves two purposes in visual editing mode:

1. Selected columns can be moved to a different position within the grid by dragging within the column

header (provided that AllowColMove is True for the current split).

2. Selected columns act as arguments for some visual editing menu commands.

If the grid is already in visual editing mode, right-clicking it again displays a different context menu.    This is
the visual editing menu, which provides commands for manipulating columns, splits, and layouts.

For more information on visual editing, as well as an explanation of the visual editing menu commands, see
Design Time Interaction.

Specifying database fields

At design time, the easiest way to bind database fields to grid columns is with the Retrieve Fields
command.    However, if the grid is not bound at design time, this command has no effect.    Fortunately, you
can still set column properties manually using the grid's property pages, but you must first create blank
columns using the Insert or Append commands of visual editing mode.

To associate a database field with a grid column, choose Properties... from the visual editing menu (or
context menu) to display the Property Pages dialog, then click the Columns tab to display the Columns
property page.

Select a column from the combo box at the top of the page, then choose or type a DataField value.    You can
also enter a value for the Caption property, which specifies the text to be displayed in the column header.

When you are done specifying column properties, click the OK button.

Specifying other column properties

Not all column properties can be set from the Columns property page.    This is because some properties, such
as Width, may differ from split to split.    In True DBGrid, a split is similar to the split window features of
products such as Microsoft Excel and Word, and is often used to present data in multiple vertical panes.    Two
common applications of splits in True DBGrid are:

1. Independent vertical scrolling panes

2. Fixed nonscrolling columns

If you are just getting started with True DBGrid, you don't need to learn about splits right away, but you
should know that the Layout property page is used to specify split-specific column properties.

Configuring Columns at Run Time
True DBGrid provides complete control over column layouts at run time.    Regardless of which data access
mode you are using, you can always add, remove, and manipulate columns in code.

The techniques used to configure columns in code follow the conventions for collection objects in Visual Basic.

{button ,JI(`',`Adding_and_removing_columns')}    Adding and removing columns
{button ,JI(`',`Referencing_column_objects')}    Referencing column objects
{button ,JI(`',`Adjusting_column_properties_in_code')}    Adjusting column properties in code

Adding and removing columns

By manipulating the Columns collection, you can add or remove columns from the grid at run time.    You can
even perform complete grid configurations in code, rather than using the visual editing features.

Here is an example of how a column can be added to the grid using the Columns collection:

' Create a new Column 0
Dim C As TrueDBGrid50.Column
Set C = TDBGrid1.Columns.Add(0)

' Initialize the new Column 0
With C
 .Visible = True ' Make it visible
 .DataField = "LAST" ' Set the column's database field
 .Caption = "Last Name" ' Set the column's caption
End With

' Make Column 0 as wide as Column 1
C.Width = TDBGrid1.Columns(1).Width

Several key points should be noted in this example:

· The Columns collection is referenced as TDBGrid1.Columns, while an individual Column object is
referenced with a numeric index, TDBGrid1.Columns(1).    All indexes for a collection are zero-based,
so index position 1 refers to the second column.    This is the general syntax for referencing a collection
and its individual elements.

· You can add a new Column object to the Columns collection using the collection's Add method,
which accepts a numeric index and returns the newly created object.    This is the general technique
used to add an item to a collection.

· The Visual Basic Set statement is needed to store the new column object in the variable C.    Without it,
the run-time error "Object variable or With block variable not set" will occur.

· The newly added column is Column 0 of the grid.    The previous Column 0 becomes Column 1, the
previous Column 1 becomes Column 2, and so on.

You can insert a new column at any position.    For example:

Set C = TDBGrid1.Columns.Add(3)

After this statement executes, the new column will be Column 3.    The previous Column 3 becomes Column 4,
the previous Column 4 becomes Column 5, and so on.

After a new column is added, the Count property of the Columns collection will be automatically
incremented by one.    You cannot create a column with an index larger than the current value of the Count
property.    The Count property is read-only, so you cannot append columns by setting it to a larger value.

To delete a member of the Columns collection and remove it from the grid's display, use the Remove
method.    This is the general technique to remove an item from a collection:

TDBGrid1.Columns.Remove 1

Or, to remove all columns from a grid:

While TDBGrid1.Columns.Count <> 0
 TDBGrid1.Columns.Remove 0
Wend

At run time, a newly created column is made invisible to avoid unnecessary flicker when multiple columns are
created.    Therefore, you must explicitly set its Visible property to True.    Also, you must set the column's

DataField and Caption properties, otherwise the grid will display a blank column with no heading.

Note that when you set the DataField property of a column in code, you must ReBind the grid to the data
source in order for the new column binding to take effect.

Referencing column objects

When a column is added to or removed from a grid, the associated Column object is added to or removed
from the grid's Columns collection.    This may cause a change in the index numbers of the existing columns,
making it very inconvenient to reference columns numerically.    For this reason, True DBGrid also allows you
to reference columns using either the DataField or Caption strings.    Thus, the following references are
identical:

TDBGrid1.Columns(n) ' Reference by the Column index
TDBGrid1.Columns("LAST") ' Reference by the DataField name
TDBGrid1.Columns("Last Name") ' Reference by the Caption string

Referencing column objects by DataField or Caption is not case-sensitive.    TDBGrid1.Columns("LAST")
refers to the same column as TDBGrid1.Columns("last").

When you reference a Column object and its properties at run time, Visual Basic creates an instance of the
object.    For example, if you duplicate certain properties of a column:

TDBGrid1.Columns("First").Width = _
 TDBGrid1.Columns("Last").Width
TDBGrid1.Columns("First").Alignment = _
 TDBGrid1.Columns("Last").Alignment
TDBGrid1.Columns("First").AllowSizing = _
 TDBGrid1.Columns("Last").AllowSizing

The Columns("First") and Columns("Last") objects will each be created and discarded three times in the
preceding example.    The same results are achieved more efficiently by creating object variables that refer to
these columns:

' Declare Column objects
Dim FirstCol As TrueDBGrid50.Column
Dim LastCol As TrueDBGrid50.Column

' Reference First and Last Column objects
Set FirstCol = TDBGrid1.Columns("First")
Set LastCol = TDBGrid1.Columns("Last")

' Copy properties from Last to First
FirstCol.Width = LastCol.Width
FirstCol.Alignment = LastCol.Alignment
FirstCol.AllowSizing = LastCol.AllowSizing

The same technique can be applied to other objects in Visual Basic.    For more details, see Object Model.

Adjusting column properties in code

Properties of the Column object can be changed at run time using Visual Basic code.    For example, changing
the DataField property can be done as follows:

With TDBGrid1.Columns(0)
 .DataField = "New DataField"
 TDBGrid1.ReBind
 .Caption = "New Caption"
End With

Note that after changing the DataField property, you must ReBind the grid columns so that the new data
will appear in the column.    You should also change the caption to describe the new field.

Other Column object properties can be changed in a similar fashion.    Please refer to Column Object
Properties for a complete listing.

Understanding Bookmarks
Both True DBGrid and the Microsoft Data Access Objects (DAO) library use bookmarks to identify records and
navigate through the database.    A bookmark is a variant that uniquely identifies a particular row in a
database.    As such, it is a generalization of the concept of row numbers.

Programmers who are accustomed to using row numbers to reference a record (as with dBASE databases)
may need to adjust conceptually.    In a relational database, the ordinal position of a record (that is, its row
number) is irrelevant, since the total number of rows in the database or in a query result set is generally not
available.    After performing certain operations such as FindFirst or FindNext, the current record moves an
unspecified number of rows forward and there is no efficient way to determine how many.    To avoid time-
consuming counting operations, most relational database systems have abandoned the practice of using row
numbers and have adopted the bookmark approach.

Bookmarks are actually quite simple to use.    The following are the basic rules to remember when using
bookmarks in True DBGrid and in Visual Basic:

· Each record, or row, has a unique bookmark.

· You can move to a specific record by setting the Bookmark property of either the grid or the Data
control:

TDBGrid1.Bookmark = SomeBookmark
Data1.Recordset.Bookmark = SomeBookmark

SomeBookmark is usually a bookmark you have obtained from the Data control, a clone, or a collection
of bookmarks, such as True DBGrid's SelBookmarks collection.    The Bookmark property of the grid
and the Data control will always contain the bookmark of the current record.

· You navigate through the database by moving to the first or last record, or by moving relative (next or
previous) to the current bookmark:

Data1.Recordset.MoveFirst
Data1.Recordset.MoveLast
Data1.Recordset.MoveNext
Data1.Recordset.MovePrevious

· In bound mode, you generally do not know the format, or semantics, of a bookmark, so do not attempt
to read the details of a bookmark or construct a bookmark yourself.    The only legitimate operations to
perform on a bookmark are saving it to a variable,    assigning it to an appropriate property or method,
and comparing it to another bookmark to determine if the two are identical:

' Saving a bookmark:
Dim SomeBookmark as Variant
SomeBookmark = Data1.Recordset.Bookmark

' Assigning a bookmark:
Data1.Recordset.Bookmark = SomeBookmark

' To reliably compare bookmarks, you must first convert them
' into strings:
Dim Bk1 As String, Bk2 As String
Bk1 = SomeBookmark1
Bk2 = SomeBookmark2
If Bk1 = Bk2 Then
 ...
End If

Note that to reliably compare two bookmarks in Visual Basic, you must first convert them into strings as

shown in the preceding example.    For more information, see Application Mode Bookmarks.

Tutorials
{button ,JI(`',`Introduction')}    Introduction
{button ,JI(`',`Tutorial_1')}    Tutorial 1 - Binding True DBGrid to a Data Control
{button ,JI(`',`Tutorial_2')}    Tutorial 2 - Using True DBGrid with SQL Query Results
{button ,JI(`',`Tutorial_3')}    Tutorial 3 - Linking Multiple True DBGrid Controls
{button ,JI(`',`Tutorial_4')}    Tutorial 4 - Interacting with Code and Other Bound Controls
{button ,JI(`',`Tutorial_5')}    Tutorial 5 - Selecting Multiple Rows Using Bookmarks
{button ,JI(`',`Tutorial_6')}    Tutorial 6 - Defining Unbound Columns in a Bound Grid
{button ,JI(`',`Tutorial_7')}    Tutorial 7 - Displaying Translated Data with the Built-in Combo
{button ,JI(`',`Tutorial_8')}    Tutorial 8 - Attaching a True DBDropdown Control to a Grid Cell
{button ,JI(`',`Tutorial_9')}    Tutorial 9 - Attaching an Arbitrary Drop-down Control to a Grid Cell
{button ,JI(`',`Tutorial_10')}    Tutorial 10 - Enhancing the User Interface with In-Cell Bitmaps
{button ,JI(`',`Tutorial_11')}    Tutorial 11 - Using Styles to Highlight Related Data
{button ,JI(`',`Tutorial_12')}    Tutorial 12 - Displaying Rows in Alternating Colors
{button ,JI(`',`Tutorial_13')}    Tutorial 13 - Implementing Drag-and-Drop in True DBGrid
{button ,JI(`',`Tutorial_14')}    Tutorial 14 - Creating a Grid with Fixed, Nonscrolling Columns
{button ,JI(`',`Tutorial_15')}    Tutorial 15 - Displaying Array Data in Unbound Mode
{button ,JI(`',`Tutorial_16')}    Tutorial 16 - Displaying Array Data in Unbound Extended Mode
{button ,JI(`',`Tutorial_17')}    Tutorial 17 - Displaying Array Data in Unbound Application Mode
{button ,JI(`',`Tutorial_18')}    Tutorial 18 - Displaying Array Data in Unbound Storage Mode

Introduction
Eighteen tutorials are presented in this chapter.    The tutorials were written for users of True DBGrid Pro 5.0
for Visual Basic 5.0, although they are backward compatible with True DBGrid Pro 5.0 for Visual Basic 4.0
(both 16- and 32-bit versions).    The only exception to this is the final tutorial, which runs on 32-bit platforms
only.

The tutorials assume that you are familiar with programming in Visual Basic, know what a Data control is, and
know how to use the Visual Basic built-in Data control with bound controls in general.    The tutorials provide
step-by-step instructions---no prior knowledge of True DBGrid is needed.    By following the steps outlined in
this chapter, you will be able to create projects demonstrating a variety of True DBGrid features, and get a
good sense of what the grid can do and how to do it.

The tutorials use an Access database, TDBGDemo.MDB.    The database files TDBGDemo.MDB,
TDBGDemo.SAV, and the tutorial projects are in the TUTORIAL subdirectory of the True DBGrid installation
directory.    TDBGDemo.SAV is a backup copy of TDBGDemo.MDB.    If you want to restore TDBGDemo.MDB
after editing, adding, or deleting records while using the tutorials, make a new copy of TDBGDemo.MDB from
TDBGDemo.SAV.

We encourage you to run the tutorial projects in Visual Basic, examine the code, and experiment with your
own modifications.    This is the best and quickest way to learn how to realize the full potential of True DBGrid. 
You will find that True DBGrid is very easy to use, and it enables you to create powerful database applications.

The tutorials assume that the database file TDBGDemo.MDB is in the C:\TDBG5\TUTORIAL directory, and refer
to it by filename instead of the full pathname for the sake of brevity.

NOTE:    Depending on where you store the projects and database files in the TUTORIAL subdirectory, you may
need to change the DatabaseName property of the Data control in the tutorial projects in order for the
projects to work properly.

Tutorial 1 - Binding True DBGrid to a Data Control
In this tutorial, you will learn how to bind True DBGrid to a Visual Basic Data control and create a fully
functional database browser without writing a single line of code.    You will also learn about the basic
properties associated with the Data control and True DBGrid.    You will then be able to run the program and
observe the run-time features of the grid.

Step 1. Start a new project.

Step 2. Place a Data control (Data1) and a True DBGrid control (TDBGrid1) on the form (Form1) as shown in
the following figure.

Step 3. Set the DatabaseName property of Data1 to TDBGDemo.MDB, and the RecordSource property to
Composer.   

Step 4. Set the DataSource property of TDBGrid1 to Data1.

Step 5. Set the AllowAddNew and AllowDelete properties of TDBGrid1 to True (note that the default value
of AllowUpdate is True).

Run the program and observe the following:

Þ True DBGrid retrieves the database schema information from the Data control and automatically
configures itself to display all of the fields contained in the    database table.    Note that the field
names are used as the default column headings.

Þ True DBGrid automatically communicates with the Data control.    Any actions taken on the Data
control will be reflected in the grid.    Click the navigation buttons on the Data control to move
forward a record, back a record, to the last record, and to the first record.    Note that the grid's
current record stays in sync with the Data control.

Þ You have created a fully functional database browser without writing a single line of code!

Refer to Run Time Interaction and try out the instructions for navigating, editing, and configuring the grid at
run time.

To end the program, press the End button on the Visual Basic toolbar.    Congratulations, you have successfully
completed Tutorial 1!

Tutorial 2 - Using True DBGrid with SQL Query Results
An important feature of True DBGrid is its ability to automatically sense changes to the database at run time.   
In this tutorial, you will learn how to use True DBGrid to display the results of ad-hoc SQL queries.    Note that
no code is necessary to tell the grid what to do---the grid will automatically change its field layout to match
the new configuration of the query result.    Also note that in order for the grid to automatically respond to
field layout changes, you must not have defined any column properties at design time.    If a layout is already
defined, use the grid's Clear Fields context menu command to remove it.    This will allow the grid to
configure itself automatically.

Step 1. Start a new project.

Step 2. Place a Data control (Data1), a True DBGrid control (TDBGrid1), a command button (Command1) and
a TextBox control (Text1) on the form (Form1) as shown in this figure.

Step 3. Set the DatabaseName property of Data1 to TDBGDemo.MDB, and the RecordSource property to
Customer.

Step 4. Set the DataSource property of TDBGrid1 to Data1.

Step 5. Set the Caption property of Command1 to Execute SQL and the MultiLine property of Text1 to True.

Step 6. Add the following code to Command1:

Private Sub Command1_Click()

' Execute the SQL statement in Text1, and trigger an error
' message if something goes wrong.
 On Error GoTo SQLErr
 Data1.RecordSource = Text1.Text
 Data1.Refresh
 TDBGrid1.SetFocus
 Exit Sub

SQLErr:
 MsgBox "Error Executing SQL Statement"
 Exit Sub
End Sub

Run the program and observe the following:

Þ As in Tutorial 1, True DBGrid retrieves the database schema information from the Data control and
automatically configures itself to display the data for all    fields in the database table.    Note that the
field names are used as the default column headings.

Step 7. In the TextBox control, type the following SQL statement:

SELECT * FROM Customer

then press the Execute SQL command button.    The grid display will not change.    The above SQL
statement displays all fields from the Customer table and is equivalent to the default display.

Step 8. In the TextBox control, type the following SQL statement:

SELECT Company FROM Customer

then press the Execute SQL command button.    The grid responds by displaying only one column
for the Company field.

Step 9. In the TextBox control, type the following SQL statement:

SELECT LastName, Company FROM Customer

then press the Execute SQL command button.    This is similar to the previous SQL statement
except that two columns (LastName and Company) are now displayed.

Step 10. In the TextBox control, type the following SQL statement:

SELECT Count(*) FROM Customer

then press the Execute SQL command button.    The above SQL statement uses an aggregate
function, Count(*), to return the total number of records in the Customer table.    Even though the
SQL result is not a set of records, the grid faithfully responds by displaying the number of records
in a single column.    By default, Expr1000 is used as the column heading, indicating that the
display is the result of an expression.

To display a more meaningful heading, you can type:

SELECT Count(*) AS Count FROM Customer

The column heading will display Count instead of Expr1000.

Step 11. In the TextBox control, type the following SQL statement:

SELECT UCase(LastName) AS ULAST, UCase(FirstName) AS UFIRST FROM Customer

then press the Execute SQL command button.    The above SQL statement produces two calculated
columns which display the LastName and FirstName fields in upper case.    The grid also displays
the (assigned) calculated column names, ULAST and UFIRST, as the column headings.

Step 12. In the TextBox control, type the following SQL statement:

SELECT * FROM Customer WHERE FirstName = "Jerry"

then press the Execute SQL command button.    The above SQL statement displays only records
with FirstName equal to Jerry.

Step 13. In the TextBox control, type the following SQL statement:

SELECT * FROM Customer ORDER BY LastName

then press the Execute SQL command button.    The above SQL statement displays records in
alphabetical order according to the LastName field.

You can also use an SQL statement to join two database tables, as demonstrated in Tutorial 3.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 2.

Tutorial 3 - Linking Multiple True DBGrid Controls
This tutorial demonstrates how you can link multiple True DBGrid controls using the RowColChange event to
trigger related actions.    This technique is particularly useful for displaying master-detail relationships.

Step 1. Start a new project.

Step 2. Place two Data controls (Data1 and Data2) and two True DBGrid controls (TDBGrid1 and TDBGrid2)
on the form (Form1) as shown in this figure.

Step 3. Set the DatabaseName property of Data1 to TDBGDemo.MDB, the RecordSource property to
Composer, and the Caption property to Composers.

Step 4. Set the DatabaseName property of Data2 to TDBGDemo.MDB, the RecordSource property to
Opus, and the Caption property to Their Compositions.

Step 5. Set the DataSource properties of TDBGrid1 and TDBGrid2 to Data1 and Data2, respectively.

Step 6. Add the following code to the RowColChange event of TDBGrid1:

Private Sub TDBGrid1_RowColChange(LastRow As Variant, ByVal
 LastCol As Integer)

' A query is performed by taking the "LAST" name field from
' the Data1 control and building an SQL query on the LAST
' name field in the Data2 (compositions) file.

' The Second grid will respond automatically when the Data
' Control causes the change. We put up an hourglass so that
' there's a bit of feedback if Access is slow at finishing
' the query.

Dim lastname$
Dim bk1 As String, bk2 As String

' To reliably compare bookmarks, you must first convert them

' into strings. You will also need to test for Null
' Bookmarks being passed by LastRow. This will occur on the
' initial display of the grid and if the user places the
' cursor on the AddNewRow and then moves off.

If IsNull(LastRow) Then
 bk1 = ""
Else
 bk1 = LastRow
End If

bk2 = TDBGrid1.Bookmark

If bk1 <> bk2 Then
 Screen.MousePointer = vbHourglass

 lastname$ = Data1.Recordset("Last")
 Data2.RecordSource = "SELECT * FROM OPUS WHERE LAST = " _
 + Chr$(34) + lastname$ + Chr$(34)
 Data2.Refresh

 Screen.MousePointer = vbDefault
End If
End Sub

Run the program and observe the following:

Þ When Form1 is loaded, TDBGrid1 and TDBGrid2 retrieve the database schema information from
Data1 and automatically configure themselves to display all of the fields in the Composer and Opus
tables, respectively.

Þ However, when TDBGrid1 receives focus and sets the first row as the current row, the
RowColChange event of TDBGrid1 will be fired.      The RecordSource of Data2 will be modified and
TDBGrid2 will reconfigure itself to display only compositions by Isaac Albeniz.    If you observe
carefully, when Form1 is first loaded, TDBGrid2 first displays all records in the Opus table, and then
refreshes itself quickly to display only one record.

Þ Change the current record position of    Data1 by clicking on different rows of TDBGrid1.    Observe
that TDBGrid2 (the detail grid) will configure itself to display a new record set every time the row
changes in TDBGrid1 (the master grid).

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 3.

Tutorial 4 - Interacting with Code and Other Bound Controls
In this tutorial, you will learn how True DBGrid interacts with other bound controls and with Visual Basic code
that manipulates the same Recordset to which the grid is bound.

Step 1. Start a new project.

Step 2. Place the following controls on the form (Form1) as shown in the figure: a Data control (Data1),    a
True DBGrid control (TDBGrid1), a DBList control (DBList1), three text controls (Text1 to 3), seven
command buttons (Command1 to 7), and four labels (Label1 to 4).

Step 3. Set the DatabaseName property of Data1 to TDBGDemo.MDB, and the RecordSource property to
Customer.   

Step 4. Set the DataSource property of TDBGrid1 to Data1, and the AllowAddNew and AllowDelete
properties to True.

Step 5. Set the DataSource and RowSource properties of DBList1 to Data1, and the ListField, DataField,
and BoundColumn properties to LastName.

Step 6. Set the DataSource properties of Text1, Text2 and Text3 to Data1, and the DataField properties to
FirstName, LastName, and Company, respectively.

Step 7. Set the Caption properties of Label1-Label4 and Command1-Command7 as shown in the preceding
figure.

We will be using code to affect the record position and data of the database.    The seven buttons on this form
will contain all of the code we use in this tutorial (the bound controls require no code).

Step 8. Add the following code to the Update button, Command1:

Private Sub Command1_Click()
 ' True DBGrid will automatically respond to the
 ' update and will clear the "modified indicator"

 ' (the pencil icon) on the record selector column
 ' to indicate that the modified data has been written
 ' to the database.

 Data1.Recordset.Edit
 Data1.Recordset.Update
 TDBGrid1.SetFocus
End Sub

This button triggers an immediate update of all modified data in the bound controls (the grid and
the three text controls) without moving the current row position.

Step 9. Add the following code to the Delete button, Command2:

Private Sub Command2_Click()
 ' When the current record is deleted, Jet Engine leaves
 ' the record pointer at the deleted record. Use MoveNext
 ' to move the current record to the row after the deleted
 ' record.

 Data1.Recordset.Delete
 Data1.Recordset.MoveNext

 ' If the last record is deleted, move the current record
 ' to the previous record

 If Data1.Recordset.EOF = True Then
 Data1.Recordset.MovePrevious
 End If

 TDBGrid1.SetFocus
End Sub

When the current record is deleted from code, the Data control leaves the record pointer at the
deleted record.    Therefore, the preceding code uses the MoveNext method of the Recordset to
move the current record to the row after the deleted record.

Step 10. Add the following code to the AddNew button, Command3:

Private Sub Command3_Click()
 ' This "Add New" button moves the cursor to the
 ' "new (blank) row" at the end so that user can start
 ' adding data to the new record.

 ' Move to last record so that "new row" will be visible
 Data1.Recordset.MoveLast

 ' Move the cursor to the "addnew row"
 TDBGrid1.Row = TDBGrid1.Row + 1
 TDBGrid1.SetFocus

End Sub

The above code demonstrates how to move the current cell to the new (blank) row at the end so
that the user can start adding data to the new record.

Step 11. Add the following code to the First button, Command4:

Private Sub Command4_Click()

' True DBGrid will follow the record movement.
 Data1.Recordset.MoveFirst
 TDBGrid1.SetFocus
End Sub

This button positions the record pointer to the first record in the Recordset.

Step 12. Add the following code to the Next button, Command5:

Private Sub Command5_Click()
 ' True DBGrid will follow the record movement.

 Data1.Recordset.MoveNext

 ' Keep the record away from EOF which is not
 ' a valid position
 If Data1.Recordset.EOF = True Then
 Data1.Recordset.MovePrevious
 End If

 TDBGrid1.SetFocus
End Sub

This button moves the current row to the next record.

Step 13. Add the following code to the Previous button, Command6:

Private Sub Command6_Click()
 ' True DBGrid will follow the record movement.

 Data1.Recordset.MovePrevious

 ' Keep the record away from BOF which is not
 ' a valid position
 If Data1.Recordset.BOF = True Then
 Data1.Recordset.MoveNext
 End If

 TDBGrid1.SetFocus
End Sub

This button moves the current row to the previous record.

Step 14. Add the following code to the Last button, Command7:

Private Sub Command7_Click()
 ' True DBGrid will follow the record movement.

 Data1.Recordset.MoveLast
 TDBGrid1.SetFocus
End Sub

This button positions the record pointer to the last record in the Recordset.

Run the program and observe the following:

Þ Use the mouse or the keyboard to change the current row position in the grid, and observe the other
bound controls (DBList and Text) changing their record positions along with the grid, even though
they contain no code.

Þ Click the Next, Previous, Last, and First buttons of the Data control and observe that the record

positions on all bound controls are automatically synchronized.

Þ Click the Next, Previous, Last, and First command buttons and observe that they have the same
effects as the corresponding buttons on the Data control.

Þ Modify data in a few cells (in the same row) on the grid.    Press the Update command button.   
Observe that the modified data has been updated to the database and the pencil icon on the record
selector column disappears.    Other bound controls on the form now display the modified data.

Þ Modify data in one or more of the Text controls.    Press the Update or the Next command button.   
The grid will automatically update its data to reflect the new changes.

Þ Move the current cell of the grid to any record you wish to delete, then click the Delete command
button.    The record will be deleted and disappears from the grid.    The grid automatically moves the
current row to the record after the deleted record.    Other bound controls on the form also respond
by moving their record positions.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 4.

Tutorial 5 - Selecting Multiple Rows Using Bookmarks
In this tutorial, you will learn how to select and highlight records that satisfy specified criteria.    A group of
similar items is generally implemented as a collection in True DBGrid.    When manipulating a group of items in
True DBGrid, use techniques similar to those described here.    In this case, a row or record is represented by a
bookmark and a group of selected rows is represented by a SelBookmarks collection.

To make the project a bit more interesting, when setting up the RecordSource property of the Data control,
you will also learn how to use an SQL statement to create a join between two tables in a database.

Step 1. Start a new project.

Step 2. Place the following controls on the form (Form1) as shown in the figure: a Data control (Data1),    a
True DBGrid control (TDBGrid1), and two command buttons (Command1 and Command2).

Step 3. Set the DatabaseName property of Data1 to TDBGDemo.MDB, and the RecordSource property to
the following SQL statement:

SELECT * FROM composer, opus, composer INNER JOIN opus ON composer.last = opus.last

This will create a Recordset containing all records from Composer joined with Opus having the
same values of the data field Last.

Step 4. Set the DataSource properties of TDBGrid1 to Data1.

Step 5. Set the Caption properties of Command1 and Command2 to Select and Clear, respectively.

Step 6. We can easily select and deselect rows in True DBGrid by manipulating the SelBookmarks
collection.    To select rows, place the following code in the Click event of Command1:

Private Sub Command1_Click()
' This routine loops through the Recordset to find and
' highlight all records with Country = "Germany"

' We shall use a clone so that we do not move the actual
' record position of the Data control
Dim dclone As Recordset
Set dclone = Data1.Recordset.Clone()

' In case there is a large Recordset to search through
Screen.MousePointer = vbHourglass

' For each matching record, add the bookmark to the
' SelBookmarks collection of the grid. The grid will
' highlight the corresponding rows. Note that the bookmarks
' of a clone are compatible with the original set.
' This is ONLY true of clones.
Dim SelBks As TrueDBGrid50.SelBookmarks
Set SelBks = TDBGrid1.SelBookmarks

Dim Criteria$
Criteria$ = "Country = " & Chr$(34) & "Germany" & Chr$(34)
dclone.FindFirst Criteria$
While Not dclone.NoMatch
 SelBks.Add dclone.Bookmark
 dclone.FindNext Criteria$
Wend

' Restore regular mouse pointer
Screen.MousePointer = vbDefault
End Sub

Step 7. To deselect rows, place the following code in the Click event of Command2:

Private Sub Command2_Click()
' Clear all selected rows by removing the selected records from
' the SelBookmarks collection.

Dim SelBks As TrueDBGrid50.SelBookmarks
Set SelBks = TDBGrid1.SelBookmarks

While SelBks.Count <> 0
 SelBks.Remove 0
Wend
End Sub

Run the program and observe the following:

Þ TDBGrid1 retrieves the database schema information from the Data control and automatically
configures itself to display all of the fields in the joined database tables.    This is again similar to the
behavior of the grid in Tutorial 1.

Þ Click the Select command button and observe that all records with the Country field equal to
Germany will be highlighted.

Þ To deselect the highlighted records, click the Clear command button.    Alternatively, clicking
anywhere on a grid cell will also clear the selected rows.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 5.

Tutorial 6 - Defining Unbound Columns in a Bound Grid
In this tutorial, you will learn how to use the UnboundColumnFetch event to display two fields (FirstName
and LastName) together in one column.    You will also learn how to use an SQL statement to create a join
between two tables in a database.    The project we set up for this tutorial will also be used in Tutorials 7
through 12.

Step 1. Start a new project.

Step 2. Place a Data control (Data1) and a True DBGrid control (TDBGrid1) on the form (Form1).

Step 3. Set the DatabaseName property of Data1 to TDBGDemo.MDB, and the RecordSource property to
the following SQL statement:

SELECT * FROM Contacts INNER JOIN Customers ON Contacts.UserCode =
Customers.UserCode

The Contacts table contains records of recent customer contacts, but in the table, the customers
contacted are recorded by their internal UserCode only, making the table difficult to use by itself.   
The Customers table contains customer data such as UserCode, FirstName, LastName, and so forth.   
Therefore, we create a join so that we can view the recent contact information along with the
corresponding customer data.

Step 4. Set the Caption property of Data1 to Customer Contact.

Step 5. Set the DataSource property of TDBGrid1 to Data1.

Configuring the grid at design time

We shall configure the grid using its context menus and property pages.    For more details, see Design Time
Interaction.

Step 6. Right-click the grid to display its context menu.

Step 7. Choose Edit from the context menu.    The grid will enter its visual editing mode, enabling you to
interactively change the grid's row and column layout.

Step 8. By default, the grid contains two columns.    We are going to create three more.    Right-click
anywhere in the grid to display the visual editing menu.    Choose the Append command to add a
new column at the end of the grid.    Execute this command two more times to create two more
columns.    A total of five columns are now in the grid.

Step 9. Right-click again to display the visual editing menu.    This time choose Properties... to display the
Property Pages dialog.    Select the Columns property page by clicking the Columns tab.    The Column
combo box will display Column0.    We are going to configure Column0 as an unbound column.    In
the Caption text box, enter Customer Name.    The DataField combo box and the other properties
on the page will remain blank.    If the DataField property of a column is blank (that is, equal to an
empty string), but its Caption property is not, True DBGrid considers it an unbound column.

Step 10. Click the drop-down button of the Column combo box to display the default names of the five
columns created in step 8 above: Column0, Column1, Column2, Column3, and Column4.    Choose
Column1 from the list to display its property values.    Click the drop-down button of the DataField
combo box to reveal a list of all the fields in the joined table.    Choose CustType (the last item) from
the list.    The Caption property will default to the same name.

Step 11. Repeat the previous step with the remaining three columns.    Column2:    DataField = ContactType,
Column3:    DataField = Callback, Column4:    DataField = ContactDate.

Step 12. After configuring the five columns, click the OK button at the bottom of the property page dialog to
accept the changes.

Step 13. Note that you are still in the grid's visual editing mode.    Place the mouse cursor over the column
dividers within the column header area.    It will turn into a horizontal double-arrow cursor, indicating
that column resizing can now occur.    Drag the dividers (use the horizontal scroll bar to bring a
column into view if necessary) so that the grid looks like the one in the following figure.

Notice that there is a gray area between the rightmost column (Contact Date) and the right edge
of the grid.    We can eliminate this gray area by setting the ExtendRightColumn property to True.

Step 14. Bring up the Property Pages dialog again as in step 9.    This time select the Splits property page by
clicking the Splits tab.    Check the ExtendRightColumn box and accept the change by clicking the
Apply button, which is used to commit changes without closing the dialog.    The rightmost column is
now extended to the right edge of the grid, which now looks like this (move the Property Pages
dialog to observe if necessary).

By default, the grid has one split.    Although you have not created any additional splits, you are
still working with the properties of the default split.    The ExtendRightColumn property is on the
Splits property page because each split in the grid can have a different value for this property.   
Properties such as this are referred to as split-specific properties.   

Step 15. Finally, drop down the MarqueeStyle combo box and select 2 - Highlight Cell.    For more
information on this property, see Highlighting the Current Row or Cell.

Step 16. Click Form1 anywhere outside TDBGrid1 to exit visual editing mode.    You have now finished
configuring the grid.

Displaying data in the unbound column

In step 9, Column0 of the grid was configured as an unbound column, so you must supply its data using the

UnboundColumnFetch event.    When the grid needs to display data in an unbound column, it calls this
event to get the necessary data.    The following code shows how to display the combined FirstName and
LastName fields in the unbound column.    For more information on unbound columns, see Unbound Columns.

Step 17. Declare RSClone as a Recordset in the General section of Form1 so that the RSClone variable will
be available in all procedures in Form1:

Dim RSClone As Recordset

Step 18. In the Form_Load event, set RSClone to be a clone of Data1.Recordset.    The Data1.Refresh
statement is necessary to make sure Data1 is initialized before cloning its Recordset.

Private Sub Form_Load()
 Data1.Refresh
 Set RSClone = Data1.Recordset.Clone
End Sub

Step 19. Finally, define data in the unbound column by combining the FirstName and LastName fields of the
Recordset in the grid's UnboundColumnFetch event:

Private Sub TDBGrid1_UnboundColumnFetch(_
 Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)
 RSClone.Bookmark = Bookmark
 Value = RSClone("FirstName") & " " & RSClone("LastName")
End Sub

When the UnboundColumnFetch event is called, the Bookmark argument specifies which row of data is
being requested by the grid.    Note that Bookmark does not usually refer to the current row, since the grid
displays more than one row at a time.    Hence we use a clone (RSClone) to get data from the Recordset so
that we do not change the current row position of the Data control.    In this example, we only have one
unbound column, so we ignore the Col argument.

Run the program and observe the following:

Þ TDBGrid1 displays data from the joined table according to the five columns configured at design
time.

Þ The first column displays the combined FirstName and LastName fields as defined in the
UnboundColumnFetch event.

Þ Since the MarqueeStyle is 2 - Highlight Cell, the entire cell is highlighted (not just the cell text) and
there is no blinking cursor---the cell is not in edit-ready mode.    If you click the current cell, it will
enter edit mode with the blinking text cursor (caret) appearing at the beginning of the cell's
contents.    You can also initiate editing simply by typing, in which case the current cell contents will
be replaced by what you type.

NOTE:    The default MarqueeStyle is 6 - Floating Editor.    The floating editor highlights the cell text
(not the entire cell) as does the datasheet in Microsoft Access.    The cell is in edit-ready mode with a
blinking caret present at the beginning of the highlighted text.    In this mode, you can click anywhere
within the floating editor to position the insertion point.

Þ The CustType, ContactType and Callback columns display numeric values which are quite cryptic to
users.    You might also comment that the data presentation is not so appealing.    In the next three
tutorials (7, 8, and 9), we will illustrate techniques to improve both the display and the user
interface.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 6.

Tutorial 7 - Displaying Translated Data with the Built-in Combo
In this tutorial, you will learn how to use the ValueItems collection to display translated text and enable the
grid's built-in drop-down combo for editing---all without writing a single line of code.

Step 1. Start with the project created in Tutorial 6.

Step 2. Right-click TDBGrid1 to display its context menu.

Step 3. Choose Properties... to display the Property Pages dialog.    Select the Values property page by
clicking the Values tab.    This property page is used to specify the ValueItems collection associated
with a column.

Step 4. Drop down the Column combo box and select Column1 (CustType).

Step 5. Check the Translate box to instruct the grid to translate the data in Column1 before displaying it.   
Note that the grid at the bottom of the property page now displays two columns labeled Value and
DisplayValue.

Step 6. Drop down the Presentation combo box and select 2 - Combo Box.    This instructs the grid to
display a combo box in Column1 when requested.

Step 7. Now enter the Value - DisplayValue pairs in the grid as follows:

Value Display Value

1 Prospective
2 Normal
3 Buyer
4 Distributor
5 Other

Entries in the Value column are data values from the CustType field in the database table.    The grid
treats the Value property as a string.    Entries in the DisplayValue column are translated values to
be displayed in the CustType column of the grid.    For example, a CustType of 1 will be displayed as
Prospective, 2 will be displayed as Normal, and so forth.

NOTE:    Some databases store numbers with a leading space character to hold the place of a minus
sign, so it may be necessary to prefix Value column entries with a space.

When you are finished entering data, the Values property page should look like this.

Step 8. Click the OK button at the bottom of the Property Pages dialog to accept the changes.

Run the program and observe the following:

Þ TDBGrid1 displays data from the joined tables as in Tutorial 6.

Þ The CustType column now displays the translated text instead of numeric values.

Þ Click a cell in the CustType column to make it the current cell.    Notice that a dropdown button
appears at the right edge of the cell.

Þ Click the dropdown button or press ALT+DOWN ARROW to display the built-in combo box containing
translated values, as shown in the following figure.    You can change the data in the current cell by
selecting the desired item from the combo box.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 7.

Tutorial 8 - Attaching a True DBDropDown Control to a Grid Cell
In this tutorial, you will learn how to attach a multicolumn True DBDropDown control to a grid cell.    Unlike the
built-in combo demonstrated in Tutorial 7, the TDBDropDown control can be bound to a Data control, which
makes it ideal for data entry involving a secondary lookup table.    The drop-down control appears whenever
the user clicks a button within the current cell.    This button appears automatically when the user gives focus
to a column that has a drop-down control connected to it.

Step 1. Start with the project constructed in Tutorial 6.

Step 2. Add a True DBDropDown control (TDBDropDown1) and another Data control (Data2) to the form
(Form1) as shown in the figure:

Step 3. Set the DatabaseName property of Data2 to TDBGDemo.MDB, and the RecordSource property to
CustType.

Step 4. Set the DataSource property of True DBDropDown to Data2, and the ListField property to TypeId.

Modifying the True DBDropDown control

Step 5. Right-click the True DBDropDown control to display its context menu.

Step 6. Choose Edit to enter visual editing mode just as you would with a True DBGrid control.    You can now
interactively change the drop-down control's column layout.

Step 7. Resize the first column so that it is approximately 3/8 of an inch wide.

Step 8. Choose Properties... from the visual editing menu to display the Property Pages dialog for the True
DBDropDown control.

Step 9. In the General property page, check ColumnHeaders and IntegralHeight.    Clear AllowColMove,
AllowColSelect, and AllowRowSizing.    Set the ScrollBars property to 2 - Vertical.    The
IntegralHeight property is only supported by the TDBDropDown control.    When set to True, it
prevents the drop-down control from displaying partial rows.

Step 10. In the Columns property page, set the DataField property for Column0 to TypeId and the DataField
property for Column1 to TypeDesc.

Step 11. Set the Caption properties for Column0 and Column1 to Type and Description.    The form should
now appear as follows.

Run the program and observe the following:

Þ TDBGrid1 displays data from the joined table as in Tutorial 6.

Þ Click a cell in the CustType column to make it the current cell as indicated by the highlight.    A button
will be displayed at the right edge of the cell.    Click the button to display the True DBDropDown
control as shown in the following figure.

Þ You can use the UP ARROW and DOWN ARROW keys to move the highlight bar of True DBDropDown.    If
you click another cell in the grid, True DBDropDown will lose focus and become invisible.

Þ Select any item in True DBDropDown.    The current cell in the grid will be updated with the selected
item, and True DBDropDown will disappear until you initiate editing again.

Þ If you move the current cell to another column, the button will disappear from the cell in the
CustType column.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 8.

Tutorial 9 - Attaching an Arbitrary Drop-down Control to a Grid Cell
In this tutorial, you will learn how to drop down an arbitrary control from a grid cell.    This example uses a
ListBox control containing pre-defined input values in order to facilitate user data entry.    The list will drop
down whenever the user initiates editing, such as by clicking the current cell.    You will also learn how to place
a button in the cell which, when clicked, will cause the ListBox control to appear.    You can drop down any
control from a grid cell using techniques similar to those described in this tutorial.

Step 1. Start with the project constructed in Tutorial 6.

Step 2. Add a ListBox control (List1) to the form (Form1) as shown in the figure.

Step 3. Set the Visible property of List1 to False.

Adding code to drop down a ListBox control

The CustType field in the second column (Column1) of the grid displays numeric values ranging from 1
through 5 which represent the following customer types:

1 = Prospective
2 = Normal
3 = Buyer
4 = Distributor
5 = Other

We shall drop down List1, which will contain textual customer type descriptions, and allow users to double-
click an item in order to enter the associated value into the grid.

Step 4. In the Form_Load event, we place code to add the customer types to List1.    We also place a button
in the CustType column using the Button property.    The Form_Load event handler now looks like
this:

Private Sub Form_Load()
 ' Define RSClone as a clone
 Data1.Refresh
 Set RSClone = Data1.Recordset.Clone

 ' Add customer types to List1
 List1.AddItem "Prospective"
 List1.AddItem "Normal"
 List1.AddItem "Buyer"
 List1.AddItem "Distributor"
 List1.AddItem "Other"

 ' Place a button in the CustType column
 TDBGrid1.Columns("CustType").Button = True
End Sub

Step 5. If a cell in the CustType column becomes current, a button will be placed at the right edge of the cell.
Clicking the button will trigger the grid's ButtonClick event.    We will drop down List1 whenever the
button is clicked:

Private Sub TDBGrid1_ButtonClick(ByVal ColIndex As Integer)
 ' Assign the Column object to Co because it will be used
 ' more than once.
 Dim Co As Column
 Set Co = TDBGrid1.Columns(ColIndex)

 ' Position and drop down List1 at the right edge of the
 ' current cell.
 List1.Left = TDBGrid1.Left + Co.Left + Co.Width
 List1.Top = TDBGrid1.Top + TDBGrid1.RowTop(TDBGrid1.Row)
 List1.Visible = True
 List1.ZOrder 0
 List1.SetFocus
End Sub

Step 6. In the grid's BeforeColEdit event, we add the following code to drop down List1 if we are editing
the CustType column (Column1).    Note that the code below will not work if the MarqueeStyle
property is set to 6 - Floating Editor.    See Highlighting the Current Row or Cell for more details.

Private Sub TDBGrid1_BeforeColEdit(_
 ByVal ColIndex As Integer, _
 ByVal KeyAscii As Integer, Cancel As Integer)
 ' BeforeColEdit is called before the grid enters into
 ' edit mode. You can decide what happens and whether
 ' standard editing proceeds. This allows you to
 ' substitute different kinds of editing for the current
 ' cell, as is done here.

 If ColIndex = 1 Then
 ' Let the user edit by entering a key.
 If KeyAscii <> 0 Then Exit Sub

 ' Otherwise, cancel built-in editing and call the
 ' ButtonClick event to drop down List1.
 Cancel = True
 TDBGrid1_ButtonClick (ColIndex)
 End If
End Sub

Step 7. We allow the user to enter data into the CustType column of the grid by double-clicking the desired
selection in List1:

Private List1_DblClick()
 ' When an item is selected in List1, copy its index to the
 ' proper column in TDBGrid1, then make List1 invisible.
 TDBGrid1.Columns(1).Text = List1.ListIndex + 1
 List1.Visible = False
End Sub

Step 8. Finally, we make List1 invisible whenever it loses focus or when the user scrolls the grid:

Private Sub List1_LostFocus()
 ' Hide the list if it loses focus.
 List1.Visible = False
End Sub

Private Sub TDBGrid1_Scroll(Cancel As Integer)
 ' Hide the list if we scroll.
 List1.Visible = False
End Sub

Run the program and observe the following:

Þ TDBGrid1 displays data from the joined table as in Tutorial 6.

Þ Click a cell in the CustType column to make it the current cell as indicated by the highlight.    A button
will be displayed at the right edge of the cell.    Click the button to fire the ButtonClick event.    List1
will drop down at the right edge of the cell as shown in the following illustration.

Þ You can use the mouse or the UP ARROW and DOWN ARROW keys to move the highlight bar of List1.    If
you click another cell in the grid, List1 will lose focus and become invisible.

Þ Double-click any item in List1.    The current cell in the grid will be updated with the selected item,
and List1 will disappear until you initiate editing again.

Þ If you move the current cell to another column, the button will disappear from the cell in the
CustType column.

Þ Make a cell in the CustType column current again.    This time, instead of clicking the button, click the
text area of the current cell to put it in edit mode.    Before the grid enters edit mode, it fires the
BeforeColEdit event, and List1 appears at the right edge of the current cell as if you had clicked
the in-cell button.    You can use the list to select an item for data entry as in the previous steps.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 9.

Tutorial 10 - Enhancing the User Interface with In-Cell Bitmaps
In this tutorial, you will learn how to use the ValueItems collection to display bitmaps and check boxes in a
cell---without writing a single line of code!

Step 1. Start with the project used in Tutorial 9.

Step 2. First, we will change the captions of the ContactType and Callback columns.    Right-click TDBGrid1 to
display its context menu.

Step 3. Choose Properties... to display the Property Pages dialog.    Select the Columns property page by
clicking the Columns tab.    Drop down the Column combo box and select Column2 (ContactType).   
Change the Caption property from ContactType to How.    Repeat with Column3 (Callback) and
change the Caption property from Callback to Call?

Step 4. Next, we assign bitmaps and check boxes to selected columns by populating the corresponding
ValueItems collection.    Select the Values property page by clicking the Values tab.

Step 5. Drop down the Column combo box and select Column2 (ContactType).    Check the Translate box to
instruct the grid to translate the data in Column2 before displaying it.    Note that the grid at the
bottom of the page now displays two columns labeled Value and DisplayValue.    The Value column is
for data values from the database.    The DisplayValue column is for translated values you wish the
grid to display.

Step 6. Check the CycleOnClick box so that when you click a cell in Column2 at run time, the cell will
automatically cycle through all the values defined in the Value - DisplayValue table.

Step 7. The possible values of the ContactType field are 0, 1, and 2 which represent    telephone, mail, and
personal contact, respectively.    We shall display bitmaps in the cell instead of these numeric values. 
If you installed the full product, you will find the following files in the BITMAPS subdirectory of the
True DBGrid installation directory: PHONE.BMP, MAIL.BMP, and PERSON.BMP.

Click the first row within the Value column and enter 0 as the first value.    Click the same row within
the DisplayValue column to enable the Picture... button on the right.    Click this button to show an
open file dialog.    To associate a bitmap with the value 0, choose PHONE.BMP and click the dialog's
OK button to accept the selection.    The phone bitmap will then appear in the DisplayValue column.   
Repeat this step with the following values and bitmaps:

Value DisplayValue

1 MAIL.BMP
2 PERSON.BMP

Step 8. After defining the bitmap entries for Column2 (ContactType), drop down the Column combo box
again and select Column3 (Callback).    This column contains a boolean field with allowable values of
0 and -1 (False and True), which in this case represent whether a call needs to be returned.    We shall
display check boxes instead of boolean values.    The bitmaps CHKOFF1.BMP and CHKON1.BMP are
provided in the BITMAPS directory for this purpose.

Step 9. Check the Translate, and CycleOnClick boxes as with the ContactType column.    Then enter the
following Value - DisplayValue pairs as in step 7:

Value DisplayValue

0 CHKOFF1.BMP
-1 CHKON1.BMP

Step 10. Click the OK button at the bottom of the Property Pages dialog to accept the changes.    You should
see the column captions on the grid modified according to the changes you made in step 3.

Step 11. Display the primary context menu again as in step 2, but this time choose the Edit option to enter

the grid's visual editing mode, which enables you to interactively change the grid's row height and
column layout.

Step 12. Place the mouse cursor over a column divider in the column header area, changing it to a horizontal
double-arrow resizing cursor.    Drag the divider to the left to shorten the How and Call? columns.

Step 13. Now place the mouse cursor over the row divider, changing it to a vertical double-arrow resizing
cursor.    Drag the divider downward to increase the row size to about double the current height.

Step 14. Click Form1 anywhere outside TDBGrid1 to exit visual editing mode.    You have now completed
reconfiguring the grid, which should look like the figure below.

Run the program and observe the following:

Þ TDBGrid1 displays data from the joined table as in Tutorials 10 through 11.

Þ The How and Call? columns now display bitmaps instead of numeric values as shown in the figure
below.

Þ Click a cell in the How column to make it the current cell.    Then click it again several times and
observe how the cell cycles through the PHONE, MAIL, and PERSON bitmaps.

Þ Click a cell in the Call? column to make it the current cell.    Then click it again several times and
observe how the cell cycles through the CHKON1 and CHKOFF1 bitmaps.    We have used the bitmap
display to simulate check box behavior in a cell.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 10.

Tutorial 11 - Using Styles to Highlight Related Data
In this tutorial, you will learn how to change the grid's display to highlight rows by defining new styles at run
time.    True DBGrid uses Style objects to apply font and color characteristics to rows, columns, and individual
cells.

Step 1. Start with the project used in Tutorial 10.

Step 2. Add three command buttons to the form.    Change the Caption property for Command1 to
Prospective Customers, Command2 to Distributors, and Command3 to Reset the Grid so that the
form appears as follows.

Step 3. Add the following declarations to the General section of Form1:

Dim ButtonFlag As Variant
Dim RSClone As Recordset
Dim Col As TrueDBGrid50.Column
Dim Cols As TrueDBGrid50.Columns
Dim Prospective As New TrueDBGrid50.Style
Dim Buyers As New TrueDBGrid50.Style

Step 4. Enter the following code in the Click event of Command1:

Private Sub Command1_Click()
 ButtonFlag = 1

 Set Cols = TDBGrid1.Columns

 For Each Col In Cols
 Col.FetchStyle = True
 Next

 TDBGrid1.Refresh
End Sub

Step 5. Enter the following code in the Click event of Command2:

Private Sub Command2_Click()
 ButtonFlag = 2

 Set Cols = TDBGrid1.Columns

 For Each Col In Cols
 Col.FetchStyle = True
 Next

 TDBGrid1.Refresh
End Sub

Step 6. Enter the following code in the Click event of Command3:

Private Sub Command3_Click()
 ButtonFlag = 3

 Set Cols = TDBGrid1.Columns

 For Each Col In Cols
 Col.FetchStyle = True
 Next

 TDBGrid1.Refresh
End Sub

Step 7. Enter the following code in the Form_Load event:

Set Prospective = TDBGrid1.Styles.Add("Prospective")
Prospective.Font.Italic = True
Prospective.Font.Bold = True
Prospective.ForeColor = vbBlue

Set Buyers = TDBGrid1.Styles.Add("Distributors")
Distributors.BackColor = vbRed
Distributors.ForeColor = vbWhite

Step 8. Enter the following code in the FetchCellStyle event of TDBGrid1:

RSClone.Bookmark = Bookmark

If ButtonFlag = 1 And RSClone("CustType") = 1 Then
 CellStyle = Prospective
End If

If ButtonFlag = 2 And RSClone("CustType") = 4 Then
 CellStyle = Buyers
End If

If ButtonFlag = 3 Then
 CellStyle = TDBGrid1.Styles("Normal")
End If

Run the program and observe the following:

Þ TDBGrid1 displays data as in Tutorial 10.

Þ Click the Prospective Customers button.    The grid should appear as follows.

Þ Click the Distributors button.    The grid should now appear as follows:

Þ Finally, click the Reset The Grid button.    The grid should now appear as follows.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 11.

Tutorial 12 - Displaying Rows in Alternating Colors
In this tutorial, you will learn how to use the AlternatingRowStyle property and built-in styles to apply
alternating colors to grid rows to improve their readability.

Step 1. Start with the project used in Tutorial 10.

Step 2. Right-click the grid and select Properties... from the context menu to display the Property Pages
dialog.    Click the Splits tab and select the AlternatingRowStyle check box.

The grid has default settings for both the EvenRow and OddRow styles.    We will use the default settings first
then change the settings for the EvenRow style.

Run the program and observe the following:

Þ TDBGrid1 displays data as in Tutorial 10, except that even-numbered rows have a light cyan
background.

Step 3. Right-click the grid and select Properties... from the context menu to display the Property Pages
dialog.    Click the Styles tab and from the Style Name combo box choose EvenRow.

Step 4. Next, select the Colors option button and change the BackColor of the EvenRow style by clicking
the light gray color button and then clicking OK.

Run the program and observe the following:

Þ TDBGrid1 displays data as in the previous figure, except that even-numbered rows now have a light
gray background.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 12.

Tutorial 13 - Implementing Drag-and-Drop in True DBGrid
This tutorial demonstrates how you can use the drag-and-drop features of True DBGrid to drag data from one
grid and drop it into another.

Step 1. Start a new project.

Step 2. Place two Data controls (Data1 and Data2), two True DBGrid controls (TDBGrid1 and TDBGGrid2),
and two Labels (Label1 and Label2) on the form (Form1) as shown in this figure:

Step 3. Set the DatabaseName property of Data1 and Data2 to TDBGDemo.MDB, the RecordSource
property of Data1 to Customers, and the RecordSource property of Data2 to CallList.

Step 4. Set the DataSource property of TDBGrid1 to Data1, and the DataSource property of TDBGrid2 to
Data2.

Step 5. Set the DragIcon property of TDBGrid1 to DRAG.ICO, which can be found in the BITMAPS subdirectory
of the True DBGrid installation directory, or in the ICONS\ARROWS subdirectory of the Visual Basic
installation directory.

Step 6. Set the Visible property of Data2 to False.

Step 7. Set the Caption property of Label1 to Drag from here: and the Caption property of Label2 to To
here:.

Configuring the grids at design time

We shall configure TDBGrid1 and TDBGrid2 at design time using techniques described in previous tutorials.   
We will only briefly outline the steps below.    If you are not familiar with the basic techniques, please refer to
Tutorial 6 and Design Time Interaction before continuing.

Step 8. Right-click TDBGrid1 to display its context menu.    Choose Retrieve Fields to configure TDBGrid1's
layout to the Recordset defined by the RecordSource property of Data1.

Step 9. Right-click TDBGrid1 again to display its context menu.    This time choose Edit to enter the grid's
visual editing mode.

Step 10. Use the visual editing menu to delete the following columns from TDBGrid1: UserCode, Contacted,
and CustType.    To delete a column, first select it by clicking its header, then right-click the grid to
display the visual editing menu, then select Delete from the menu.

Step 11. Adjust the column widths of the grid (by dragging the column dividers in the column header area) so
that all columns will fit within the grid's display area.

Step 12. Right-click the grid to display the visual editing menu and choose Properties... to display the
Property Pages dialog.    On the Splits page, set the MarqueeStyle to 1 - Solid Cell Border.    On the
Columns page, select Column3 (Phone) and type (###)###-#### in the NumberFormat combo
box.    The grid's NumberFormat property provides the same functionality as Visual Basic's
Format$ function.

Step 13. Repeat steps 8, 9, and 11 with TDBGrid2.    Omit step 10 since we want to keep all three columns
(Customer, Phone, and CallDate) in the grid.

Step 14. Right-click the grid to display the visual editing menu and choose Properties... to display the
Property Pages dialog.    On the Splits page, set the MarqueeStyle to 1 - Solid Cell Border.    On the
Columns page, select Column1 (Phone) and type (###)###-#### in the NumberFormat combo
box.    Then select Column2 (CallDate) and type MM/DD HH:NNa/p in the NumberFormat combo
box.

Step 15. Click the OK button at the bottom of the Property Pages dialog to accept the changes.    The grids on
your form should now look like this.

If you choose, you can also set the ExtendRightColumn property of both grids to True (on the
Splits property page) to eliminate the gray area between the rightmost column and the grid's right
border.

Adding code to your project

This section describes the code needed to drag the contents of a cell or row from TDBGrid1 to TDBGrid2.    The
code assumes that if you drag from the Phone column, you want to drag only the phone number data to
another cell in TDBGrid2.    If you drag from any other column, however, the code assumes that you want to
drag the entire row of data to TDBGrid2 in order to add a new record there.

Step 16. Add the following subroutine to your project to reset the MarqueeStyle property of each grid, which

is used to provide visual feedback while dragging is in progress.    The reset routine will be called to
perform clean-up after a drag-and-drop operation concludes.

Private Sub ResetDragDrop()
' Turn off drag-and-drop by resetting the highlight and data
' control caption.
If TDBGrid1.MarqueeStyle = dbgSolidCellBorder Then Exit Sub
TDBGrid1.MarqueeStyle = dbgSolidCellBorder
TDBGrid2.MarqueeStyle = dbgSolidCellBorder
Data1.Caption = "Drag a row, or just phone #"
End Sub

Step 17. The DragCell event is called when dragging is initiated in a grid cell.    The following code prepares
for dragging data from the cell:

Private Sub TDBGrid1_DragCell(ByVal SplitIndex As Integer, _
 RowBookmark As Variant, ByVal ColIndex As Integer)
' DragCell is triggered when True DBGrid detects an attempt
' to drag data from a cell.

' Set the current cell to the one being dragged.
TDBGrid1.Col = ColIndex
TDBGrid1.Bookmark = RowBookmark

' See if the starting cell is in the "Phone" column
Select Case TDBGrid1.Columns(ColIndex).Caption
 Case "Phone"
 ' Highlight the phone number cell to indicate data
 ' from the cell is being dragged.
 TDBGrid1.MarqueeStyle = dbgHighlightCell
 Data1.Caption = "Dragging phone number..."
 Case Else
 ' Highlight the entire row to indicate data from the
 ' entire row is being dragged.
 TDBGrid1.MarqueeStyle = dbgHighlightRow
 Data1.Caption = "Create new call when dropped..."
End Select

' Use Visual Basic manual drag support
TDBGrid1.Drag vbBeginDrag
End Sub

Step 18. The following code provides different visual feedback to the user when dragging over TDBGrid2:

Private Sub TDBGrid2_DragOver(Source As Control, _
 X As Single, Y As Single, State As Integer)
' DragOver provides different visual feedback as we are
' dragging a row, or just the phone number.

Dim dragFrom As String
Dim overCol As Integer
Dim overRow As Long

dragFrom = TDBGrid1.Columns(TDBGrid1.Col).DataField

Select Case State
 Case vbEnter

 If dragFrom = "Phone" Then
 TDBGrid2.MarqueeStyle = dbgHighlightCell
 Else
 TDBGrid2.MarqueeStyle = dbgNoMarquee
 End If
 Case vbLeave
 TDBGrid2.MarqueeStyle = dbgHighlightCell
 Case vbOver
 If dragFrom = "Phone" Then
 overCol = 1
 Else
 overCol = TDBGrid2.ColContaining(X)
 End If
 overRow = TDBGrid2.RowContaining(Y)
 If overCol >= 0 Then TDBGrid2.Col = overCol
 If overRow >= 0 Then TDBGrid2.Row = overRow
End Select
End Sub

Step 19. When data is dropped on TDBGrid2, we either update the Phone column of TDBGrid2 or add a new
record, as shown below:

Private Sub TDBGrid2_DragDrop(Source As Control, _
 X As Single, Y As Single)
' Allow phone drops right into the cell, other
' drops cause a new row to be added

If TDBGrid1.Columns(TDBGrid1.Col).Caption = "Phone" Then
 TDBGrid2.Columns(TDBGrid2.Col).Value = _
 TDBGrid1.Columns(TDBGrid1.Col).Value
 Data2.UpdateRecord
Else
 Data2.Recordset.AddNew
 Data2.Recordset!CallDate = Now
 Data2.Recordset!Phone = Data1.Recordset!Phone
 Data2.Recordset!Customer = Data1.Recordset!FirstName & _
 " " & Data1.Recordset!LastName & ", " & _
 Data1.Recordset!Company
 Data2.Recordset.Update
 Data2.Recordset.MoveLast
End If

ResetDragDrop
End Sub

Step 20. The following code performs clean-up when the mouse returns to TDBGrid1 with the button up:

Private Sub TDBGrid1_MouseMove(Button As Integer, _
 Shift As Integer, X As Single, Y As Single)
 ' If the button is up and we get MouseMove, that means
 ' we exited the form and tried to drop elsewhere.
 ' Reset the drag upon returning.
 If Button = 0 Then ResetDragDrop
End Sub

Run the program and observe the following:

Þ Hold down the left mouse button and drag from a cell in the Phone column of TDBGrid1.    As you
start dragging, the cell becomes current and is highlighted.    The mouse pointer turns into the drag
icon specified in step 5.

Þ As you drag over TDBGrid2, the current cell in TDBGrid2 moves to the Phone column and is also
highlighted.    The current (highlighted) cell of TDBGrid2 stays in the Phone column and moves up
and down with the drag motion as shown below:

Þ If you drop (release the left mouse button) on a row in TDBGrid2, the phone number from the
highlighted cell in TDBGrid1 will be copied to the phone number column of the row where the drop
occurs.

Þ If you start dragging from a column in TDBGrid1 other than the Phone column, the entire row in
TDBGrid1 is highlighted, indicating that the entire row of data is being dragged.

Þ As you drag over TDBGrid2, the current cell marquee (a solid border around the cell) disappears as
in the following figure.

Þ If you drop the data on TDBGrid2, a new record is created using the data from the current row of
TDBGrid1.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 13.

Tutorial 14 - Creating a Grid with Fixed, Nonscrolling Columns
Often, you would like to prevent one or more columns from scrolling horizontally so that they will always be in
view.    The Splits collection of True DBGrid provides a generalized mechanism for defining groups of adjacent
columns, and can be used to implement any number of fixed, nonscrolling columns.    In this tutorial, you will
learn how to write code to create a grid with two splits, and then "fix" a pair of columns in the leftmost split.

Step 1. Follow steps 1 through 5 of Tutorial 1 to create a project with a TDBGrid bound to a Data control.

Step 2. In the Form_Load event, place the following code to create an additional split and to fix columns 0
and 1 in the leftmost split:

Private Sub Form_Load()
 ' Before modifying the grid's properties, make sure the
 ' grid is initialized by refreshing the Data control.
 Data1.Refresh

 ' Create an additional split:
 Dim S As TrueDBGrid50.Split
 Set S = TDBGrid1.Splits.Add(0)

 ' Hide all columns in the leftmost split, Splits(0),
 ' except for columns 0 and 1
 Dim C As TrueDBGrid50.Column
 Dim Cols As TrueDBGrid50.Columns
 Set Cols = TDBGrid1.Splits(0).Columns
 For Each C In Cols
 C.Visible = False
 Next C
 Cols(0).Visible = True
 Cols(1).Visible = True

 ' Configure Splits(0) to display exactly two columns,
 ' and disable resizing
 With TDBGrid1.Splits(0)
 .SizeMode = dbgNumberOfColumns
 .Size = 2
 .AllowSizing = False

 End With

 ' Usually, if you fix columns 0 and 1 from scrolling
 ' in a split, you will want to make them invisible in
 ' other splits:
 Set Cols = TDBGrid1.Splits(1).Columns
 Cols(0).Visible = False
 Cols(1).Visible = False

 ' Turn off the record selectors in Split 1:
 TDBGrid1.Splits(1).RecordSelectors = False

End Sub

Run the program and observe the following:

Þ TDBGrid displays data from the Data control as in Tutorial 1.

Þ The two columns (First and Last) in the leftmost split are fixed and cannot be scrolled.    In fact, there

is no horizontal scroll bar present under the left split.    A horizontal scroll bar appears under the
rightmost split, allowing users to scroll the columns in this split.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 14.

You can use splits to create fixed, nonscrolling columns anywhere within the grid---even in the middle!    You
can also use splits to present different views of your data.    For example, you can create splits which scroll
independently (in the vertical direction) so that users may compare records at the beginning of the database
with those at the end.    For more information, see How to Use Splits.

Tutorial 15 - Displaying Array Data in Unbound Mode
In this tutorial, you will learn how to use the unbound mode (DataMode property set to 1 - Unbound) of True
DBGrid to display an array of strings.

NOTE: This unbound mode has been retained for backward compatibility with DBGrid and earlier versions of
True DBGrid.    APEX recommends using unbound extended mode (Tutorial 16), application mode (Tutorial 17),
or storage mode (Tutorial 18) instead.    For detailed instructions on how to use unbound mode 1, see Unbound
Mode.

For simplicity, this tutorial does not cover updating, adding, or deleting records.    However, the
UNBOUND1.VBP project provides a complete sample that you can use as a template for implementing
unbound mode 1.    This project is located in the TUTORIAL\UNBOUND1 subdirectory of the True DBGrid
installation directory.

Step 1. Start a new project.

Step 2. Place a True DBGrid control (TDBGrid1) on the form (Form1).

Step 3. Set the DataMode property of TDBGrid1 to 1 - Unbound (the default value of this property is 0 -
Bound).

Configuring the grid at design time

This example uses the grid to display an array with two columns.    Since True DBGrid displays two columns by
default, you do not have to add or delete columns at design time.

Step 4. Right-click TDBGrid1 to display its context menu.

Step 5. Choose Properties... to display the Property Pages dialog.    On the General property page, clear the
AllowUpdate check box so that data displayed in the grid will be read-only.

Step 6. Select the Columns properties page by clicking the Columns tab.    The Column combo box will
display Column0.    Set the Caption property to Column 0.    Select Column1 from the Column combo
box and set the Caption property to Column 1.    The grid should look like this.

Initializing the array data

We first create and initialize a two-dimensional array to hold the data to be displayed in the grid.

Step 7. In the General section of Form1, insert the following declarations:

' General declarations
Option Explicit

' Special Note: Variables that store Row indices will be
' of data type Long (It is reasonable to assume there may
' be larger than 32,767 rows). Those storing Column
' indices will be of type Integer. (It is very unlikely
' there will be more than 32,767 columns.)

Dim MaxCol As Integer ' Number of columns
Dim MaxRow As Long ' Number of rows
Dim GridArray() As Variant ' Array to store the data

Step 8. In the Form_Load event, initialize the elements of GridArray and set the ApproxCount property of
the grid accordingly.    The ApproxCount property is optional, but setting this value will enable the
grid to position the vertical scroll bar accurately.    If you want to initialize the current cell to a specific
location, the Form_Activate event is a good place to do it.

Private Sub Form_Load()
 ' Initialize the data array. Data must be ready
 ' before the grid is loaded. Form_Load or Main is a
 ' good place to initialize the data.

 Dim I As Integer ' column index
 Dim J As Long ' row index
 Dim C As TrueDBGrid50.Column
 Dim Col0 As TrueDBGrid50.Column
 Dim Col1 As TrueDBGrid50.Column
 Dim Col2 As TrueDBGrid50.Column
 Dim Col3 As TrueDBGrid50.Column

 ' Use a 4 columns by 22 rows array as data source.
 ' Since user will be allowed to add data to the grid,
 ' the array may grow in size.

 ' This tutorial project assumes there are 3 columns in
 ' the grid for simplicity. If you wish to change this
 ' number, you will need to modify the code below to
 ' add the correct number of columns.
 MaxCol = 4

 ' You can change MaxRow to show a different number of
 ' rows when the program loads. MaxRow must be >= 0.
 MaxRow = 22

 If MaxRow > 0 Then
 ' If MaxRow = 0, then (MaxRow - 1) equals -1. This
 ' causes an error in the statement below, so we
 ' handle this special case in the Else clause.
 ReDim GridArray(0 To MaxCol - 1, 0 To MaxRow - 1)
 Else
 ReDim GridArray(0 To MaxCol - 1, 0)
 End If

 For I = 0 To MaxCol - 1
 For J = 0 To MaxRow - 1
 GridArray(I, J) = "Row" + Str$(J) + ", Col" _
 + Str$(I)
 Next J

 Next I

 ' Allow the user to add and delete rows in the grid.
 ' (By default, the grid already allows update.)
 TDBGrid1.AllowAddNew = True
 TDBGrid1.AllowDelete = True

 ' You can configure the grid either at design time or
 ' run time. Assuming you have not done this at
 ' design-time, the following code configures a grid
 ' with 4 columns. By default, the grid already has 2
 ' columns, so we just need to add 4 more (don't forget
 ' to make the new column visible). The existing
 ' columns are numbered 0 and 1, so we will add new
 ' columns at positions 2 and 3.
 Set C = TDBGrid1.Columns.Add(2)
 TDBGrid1.Columns(2).Visible = True
 Set C = TDBGrid1.Columns.Add(3)
 TDBGrid1.Columns(3).Visible = True

 ' For the sake of efficiency, we use Column objects
 ' to reference column properties instead of repeatedly
 ' going through the grid's Columns collection object.
 Set Col0 = TDBGrid1.Columns(0)
 Set Col1 = TDBGrid1.Columns(1)
 Set Col2 = TDBGrid1.Columns(2)
 Set Col3 = TDBGrid1.Columns(3)

 ' Set column heading text
 Col0.Caption = "Column 0"
 Col1.Caption = "Column 1"
 Col2.Caption = "Column 2 - Locked"
 Col3.Caption = "Column 3"

 ' Set column display widths (in container units)
 Col0.Width = 1500
 Col1.Width = 1500
 Col2.Width = 1500
 Col3.Width = 1500

 ' Set column default values
 Col0.DefaultValue = "Default-0"
 Col1.DefaultValue = "Default-1"
 Col2.DefaultValue = "Default-2"
 Col3.DefaultValue = "Default-3"

 ' Set column text alignment (left-, center-, or
 ' right-justified)
 Col0.Alignment = 0 ' 0 - Left
 Col1.Alignment = 2 ' 2 - Center
 Col2.Alignment = 1 ' 1 - Right
 Col3.Alignment = 1 ' 1 - Right

 ' Set column locking, which specifies if a column is
 ' read-only (i.e., the user cannot edit that column)

 Col0.Locked = False ' Column 0 is editable
 Col1.Locked = False ' Column 1 is editable
 Col2.Locked = True ' Column 2 is read-only
 Col3.Locked = False ' Column 3 is editable

 ' Inform the grid of how many rows are in the data set.
 ' This helps with scroll bar positioning.
 TDBGrid1.ApproxCount = MaxRow
End Sub

Private Sub Form_Activate()
 ' Initialize current cell position to upper left corner
 TDBGrid1.Row = 0
 TDBGrid1.Col = 0
End Sub

Displaying data in the unbound grid

When using the ListBox control in Visual Basic, you store all of the data in the control using its AddItem
method.    This storage method is neither adequate nor efficient when you have a large amount of data or
when the data source continuously changes.

Unlike the ListBox control, True DBGrid's unbound modes do not store your data.    You manage the data while
the grid handles all display and end-user interactions.    Whenever the grid needs to display more rows of
data, such as during vertical scrolling, it will fire the UnboundReadData event to ask for data from your data
source.    The grid generally asks for only what it needs to display, but may cache some data for efficiency
considerations.    You cannot predict when the grid will ask for data, nor can you assume data will be
requested in any particular order.    Furthermore, since the grid does not store the data, any data that has
been requested once may be requested again.

Step 9. Place the following code in the UnboundReadData event of TDBGrid1.    This example shows how
data is provided to the grid via the RowBuffer object.

Private Sub TDBGrid1_UnboundReadData (_
 ByVal RowBuf As RowBuffer, StartLocation As Variant, _
 ByVal ReadPriorRows As Boolean)

 ' UnboundReadData is fired by an unbound grid whenever
 ' it requires data for display. This event will fire
 ' when the grid is first shown, when Refresh or ReBind
 ' is used, when the grid is scrolled, and after a
 ' record in the grid is modified and the user commits
 ' the change by moving off of the current row. The
 ' grid fetches data in "chunks", and the number of rows
 ' the grid is asking for is given by RowBuf.RowCount.

 ' RowBuf is the row buffer where you place the data and
 ' the bookmarks for the rows that the grid is requesting
 ' to display. It will also hold the number of rows that
 ' were successfully supplied to the grid.

 ' StartLocation is a bookmark which specifies the row
 ' before or after the desired data, depending on the
 ' value of ReadPriorRows. If we are reading rows after
 ' StartLocation (ReadPriorRows = False), then the first
 ' row of data the grid wants is the row after
 ' StartLocation, and if we are reading rows before

 ' StartLocation (ReadPriorRows = True) then the first
 ' row of data the grid wants is the row before
 ' StartLocation.

 ' ReadPriorRows is a boolean value indicating whether
 ' we are reading rows before (ReadPriorRows = True) or
 ' after (ReadPriorRows = False) StartLocation.

 Dim Bookmark As Variant
 Dim I As Long, RelPos As Long
 Dim J As Integer, RowsFetched As Integer

 ' Get a bookmark for the start location
 Bookmark = StartLocation

 If ReadPriorRows Then
 RelPos = -1 ' Requesting data in rows prior to
 ' StartLocation
 Else
 RelPos = 1 ' Requesting data in rows after
 ' StartLocation
 End If

 RowsFetched = 0
 For I = 0 To RowBuf.RowCount - 1
 ' Get the bookmark of the next available row
 Bookmark = GetRelativeBookmark(Bookmark, RelPos)

 ' If the next row is BOF or EOF, then stop
 ' fetching and return any rows fetched up to this
 ' point.
 If IsNull(Bookmark) Then Exit For

 ' Place the record data into the row buffer
 For J = 0 To RowBuf.ColumnCount - 1
 RowBuf.Value(I, J) = GetUserData(Bookmark, J)
 Next J

 ' Set the bookmark for the row
 RowBuf.Bookmark(I) = Bookmark

 ' Increment the count of fetched rows
 RowsFetched = RowsFetched + 1
 Next I

 ' Tell the grid how many rows we fetched
 RowBuf.RowCount = RowsFetched
End Sub

Step 10. The UnboundReadData event handler listed in the previous step calls the following support
functions to manage the array data and bookmarks: MakeBookmark, IndexFromBookmark,
GetRelativeBookmark, and GetUserData.

Private Function MakeBookmark(Index As Long) As Variant
 ' This support function is used only by the remaining
 ' support functions. It is not used directly by the

 ' unbound events. It is a good idea to create a
 ' MakeBookmark function such that all bookmarks can be
 ' created in the same way. Thus the method by which
 ' bookmarks are created is consistent and easy to
 ' modify. This function creates a bookmark when given
 ' an array row index.

 ' Since we have data stored in an array, we will just
 ' use the array index as our bookmark. We will convert
 ' it to a string first, using the CStr function.

 MakeBookmark = CStr(Index)
End Function

Private Function IndexFromBookmark(Bookmark As Variant, _
 ReadPriorRows As Boolean) As Long

 ' This support function is used only by the remaining
 ' support functions. It is not used directly by the
 ' unbound events.

 ' This function is the inverse of MakeBookmark. Given
 ' a bookmark, IndexFromBookmark returns the row index
 ' that the given bookmark refers to. If the given
 ' bookmark is Null, then it refers to BOF or EOF. In
 ' such a case, we need to use ReadPriorRows to
 ' distinguish between the two. If ReadPriorRows = True,
 ' the grid is requesting rows before the current
 ' location, so we must be at EOF, because no rows exist
 ' before BOF. Conversely, if ReadPriorRows = False,
 ' we must be at BOF.

 Dim Index As Long

 If IsNull(Bookmark) Then
 If ReadPriorRows Then
 ' Bookmark refers to EOF. Since (MaxRow - 1)
 ' is the index of the last record, we can use
 ' an index of (MaxRow) to represent EOF.
 IndexFromBookmark = MaxRow
 Else
 ' Bookmark refers to BOF. Since 0 is the
 ' index of the first record, we can use an
 ' index of -1 to represent BOF.
 IndexFromBookmark = -1
 End If
 Else
 ' Convert string to long integer
 Index = Val(Bookmark)

 ' Check to see if the row index is valid:
 ' (0 <= Index < MaxRow).
 ' If not, set it to a large negative number to
 ' indicate that the bookmark is invalid.
 If Index < 0 Or Index >= MaxRow Then Index = -9999

 IndexFromBookmark = Index
 End If
End Function

Private Function GetRelativeBookmark(Bookmark As Variant, _
 RelPos As Long) As Variant
 ' GetRelativeBookmark is used to get a bookmark for a
 ' row that is a given number of rows away from the given
 ' row. This specific example will always use either -1
 ' or +1 for a relative position, since we will always be
 ' retrieving either the row previous to the current one,
 ' or the row following the current one.

 ' IndexFromBookmark expects a Bookmark and a Boolean
 ' value: this Boolean value is True if the next row to
 ' read is before the current one [in this case,
 ' (RelPos < 0) is True], or False if the next row to
 ' read is after the current one [(RelPos < 0) is False].
 ' This is necessary to distinguish between BOF and EOF
 ' in the IndexFromBookmark function if our bookmark is
 ' Null. Once we get the correct row index from
 ' IndexFromBookmark, we simply add RelPos to it to get
 ' the desired row index and create a bookmark using
 ' that index.

 Dim Index As Long

 Index = IndexFromBookmark(Bookmark, RelPos < 0) + RelPos
 If Index < 0 Or Index >= MaxRow Then
 ' Index refers to a row before the first or after
 ' the last, so just return Null.
 GetRelativeBookmark = Null
 Else
 GetRelativeBookmark = MakeBookmark(Index)
 End If
End Function

Private Function GetUserData(Bookmark As Variant, _
 Col As Integer) As Variant
 ' In this example, GetUserData is called by
 ' UnboundReadData to ask the user what data should be
 ' displayed in a specific cell in the grid. The grid
 ' row the cell is in is the one referred to by the
 ' Bookmark parameter, and the column it is in it given
 ' by the Col parameter. GetUserData is called on a
 ' cell-by-cell basis.

 Dim Index As Long

 ' Figure out which row the bookmark refers to
 Index = IndexFromBookmark(Bookmark, False)

 If Index < 0 Or Index >= MaxRow Or _
 Col < 0 Or Col >= MaxCol Then
 ' Cell position is invalid, so just return null
 ' to indicate failure

 GetUserData = Null
 Else
 GetUserData = GridArray(Col, Index)
 End If
End Function

Run the program and observe the following:

Þ The grid displays the elements of GridArray and otherwise behaves as if it were bound to a Data
control.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 15.

Tutorial 16 - Displaying Array Data in Unbound Extended Mode
In this tutorial, you will learn how to use the unbound extended mode (DataMode property set to 2 -
Unbound Extended) of True DBGrid to display an array of strings.    As its name implies, the unbound extended
mode is an extension of the unbound mode introduced in Tutorial 15.    Unbound mode 2 is both easier to use
and more efficient than unbound mode 1.    For detailed instructions on how to use unbound mode 2, see
Unbound Mode.

For simplicity, this tutorial does not cover updating, adding, or deleting records.    However, the
UNBOUND2.VBP project provides a complete sample that you can use as a template for implementing
unbound mode 2.    This project is located in the TUTORIAL\UNBOUND2 subdirectory of the True DBGrid
installation directory.

Step 1. Start a new project.

Step 2. Place a True DBGrid control (TDBGrid1) on the form (Form1).

Step 3. Set the DataMode property of TDBGrid1 to 2 - Unbound Extended    (the default value of this
property is 0 - Bound).

Configuring the grid at design time

We shall configure the grid as in Tutorial 15.

Step 4. Right-click TDBGrid1 to display its context menu.

Step 5. Choose Properties... to display the Property Pages dialog.    On the General property page, clear the
AllowUpdate check box so that data displayed in the grid will be read-only.

Step 6. Select the Columns properties page by clicking the Columns tab.    The Column combo box will
display Column0.    Set the Caption property to Column 0.    Select Column1 from the Column combo
box and set the Caption property to Column 1.    The grid should look like this.

Initializing the array data

We first create and initialize a two-dimensional array to hold the data to be displayed in the grid.

Step 7. In the General section of Form1, insert the following declarations:

' General declarations
Option Explicit

' Use a 2 columns by 100 rows array as data source,
Const MaxCol = 2

Const MaxRow = 100
Dim GridArray(MaxCol, MaxRow) As Variant

Step 8. In the Form_Load event, initialize the elements of GridArray and set the ApproxCount property of
the grid accordingly.    The ApproxCount property is optional, but setting this value will enable the
grid to position the vertical scroll bar accurately.    If you want to initialize the current cell to a specific
location, the Form_Activate event is a good place to do it.

Private Sub Form_Load()
 ' Initialize the data array. Data must be ready
 ' before the grid is loaded. Form_Load or Main is a
 ' good place to initialize the data.
 Dim I As Integer, J As Long
 For I = 0 To MaxCol - 1
 For J = 0 To MaxRow - 1
 GridArray(I, J) = "Row" + Str$(J) + ", Col" _
 + Str$(I)
 Next J
 Next I

 ' Inform the grid of how many rows are in the data set.
 ' This helps with scroll bar positioning.
 TDBGrid1.ApproxCount = MaxRow
End Sub

Private Sub Form_Activate()
 ' Initialize current cell position to upper left corner
 TDBGrid1.Row = 0
 TDBGrid1.Col = 0
End Sub

Displaying data in the unbound grid

As explained in Tutorial 15, True DBGrid does not store your data in any of its unbound modes.    In unbound
mode 2, whenever the grid needs to display more rows of data, it will fire the UnboundReadDataEx event
(instead of UnboundReadData) to ask for data from your data source.

Step 9. Place the following code in the UnboundReadDataEx event of TDBGrid1.    This example shows how
data and the row's ordinal position are provided to the grid via the RowBuffer object and the
ApproximatePosition arguments, respectively:

Private Sub TDBGrid1_UnboundReadDataEx(_
 ByVal RowBuf As RowBuffer, StartLocation As Variant, _
 ByVal Offset As Long, ApproximatePosition As Long)

 ' UnboundReadData is fired by an unbound grid whenever
 ' it requires data for display. This event will fire
 ' when the grid is first shown, when Refresh or ReBind
 ' is used, when the grid is scrolled, and after a
 ' record in the grid is modified and the user commits
 ' the change by moving off of the current row. The
 ' grid fetches data in "chunks", and the number of rows
 ' the grid is asking for is given by RowBuf.RowCount.

 ' RowBuf is the row buffer where you place the data
 ' the bookmarks for the rows that the grid is
 ' requesting to display. It will also hold the number
 ' of rows that were successfully supplied to the grid.

 ' StartLocation is a bookmark which, together with
 ' Offset, specifies the row for the programmer to start
 ' transferring data. A StartLocation of Null indicates
 ' a request for data from BOF or EOF.

 ' Offset specifies the relative position (from
 ' StartLocation) of the row for the programmer to start
 ' transferring data. A positive number indicates a
 ' forward relative position while a negative number
 ' indicates a backward relative position. Regardless
 ' of whether the rows to be read are before or after
 ' StartLocation, rows are always fetched going forward
 ' (this is why there is no ReadPriorRows parameter to
 ' the procedure).

 ' If you page down on the grid, for instance, the new
 ' top row of the grid will have an index greater than
 ' the StartLocation (Offset > 0). If you page up on
 ' the grid, the new index is less than that of
 ' StartLocation, so Offset < 0. If StartLocation is
 ' a bookmark to row N, the grid always asks for row
 ' data in the following order:
 ' (N + Offset), (N + Offset + 1), (N + Offset + 2)...

 ' ApproximatePosition is a value you can set to indicate
 ' the ordinal position of (StartLocation + Offset).
 ' Setting this variable will enhance the ability of the
 ' grid to display its vertical scroll bar accurately.
 ' If the exact ordinal position of the new location is
 ' not known, you can set it to a reasonable,
 ' approximate value, or just ignore this parameter.

 Dim ColIndex As Integer, J As Integer
 Dim RowsFetched As Integer, I As Long
 Dim NewPosition As Long, Bookmark As Variant

 RowsFetched = 0

 For I = 0 To RowBuf.RowCount - 1
 ' Get the bookmark of the next available row
 Bookmark = GetRelativeBookmark(StartLocation, _
 Offset + I)

 ' If the next row is BOF or EOF, then stop fetching
 ' and return any rows fetched up to this point.
 If IsNull(Bookmark) Then Exit For

 ' Place the record data into the row buffer
 For J = 0 To RowBuf.ColumnCount - 1
 ColIndex = RowBuf.ColumnIndex(I, J)
 RowBuf.Value(I, J) = GetUserData(Bookmark, _
 ColIndex)
 Next J

 ' Set the bookmark for the row
 RowBuf.Bookmark(I) = Bookmark

 ' Increment the count of fetched rows
 RowsFetched = RowsFetched + 1
 Next I

 ' Tell the grid how many rows were fetched
 RowBuf.RowCount = RowsFetched

 ' Set the approximate scroll bar position. Only
 ' nonnegative values of IndexFromBookmark() are valid.
 NewPosition = IndexFromBookmark(StartLocation, Offset)
 If NewPosition >= 0 Then _
 ApproximatePosition = NewPosition
End Sub

Step 10. The UnboundReadDataEx event handler used in the previous step calls the following support
functions to manage the array data and bookmarks: MakeBookmark, IndexFromBookmark,
GetRelativeBookmark, and GetUserData.

Private Function MakeBookmark(Index As Long) As Variant
 ' This support function is used only by the remaining
 ' support functions. It is not used directly by the
 ' unbound events. It is a good idea to create a
 ' MakeBookmark function such that all bookmarks can be
 ' created in the same way. Thus the method by which
 ' bookmarks are created is consistent and easy to
 ' modify. This function creates a bookmark when given
 ' an array row index.

 ' Since we have data stored in an array, we will just
 ' use the array index as our bookmark. We will convert
 ' it to a string first, using the CStr function.

 MakeBookmark = CStr(Index)
End Function

Private Function IndexFromBookmark(Bookmark As Variant, _
 Offset As Long) As Long
 ' This support function is used only by the remaining
 ' support functions. It is not used directly by the
 ' unbound events.

 ' IndexFromBookmark computes the row index that
 ' corresponds to a row that is (Offset) rows from the
 ' row specified by the Bookmark parameter. For example,
 ' if Bookmark refers to the index 50 of the dataset
 ' array and Offset = -10, then IndexFromBookmark will
 ' return 50 + (-10), or 40. Thus to get the index of
 ' the row specified by the bookmark itself, call
 ' IndexFromBookmark with an Offset of 0. If the given
 ' Bookmark is Null, it refers to BOF or EOF. If
 ' Offset < 0, the grid is requesting rows before the
 ' row specified by Bookmark, and so we must be at EOF
 ' because prior rows do not exist for BOF. Conversely,

 ' if Offset > 0, we are at BOF.

 Dim Index As Long

 If IsNull(Bookmark) Then
 If Offset < 0 Then
 ' Bookmark refers to EOF. Since (MaxRow - 1)
 ' is the index of the last record, we can use
 ' an index of (MaxRow) to represent EOF.
 Index = MaxRow + Offset
 Else
 ' Bookmark refers to BOF. Since 0 is the index
 ' of the first record, we can use an index of
 ' -1 to represent BOF.
 Index = -1 + Offset
 End If
 Else
 ' Convert string to long integer
 Index = Val(Bookmark) + Offset
 End If

 ' Check to see if the row index is valid:
 ' (0 <= Index < MaxRow).
 ' If not, set it to a large negative number to
 ' indicate that it is invalid.
 If Index >= 0 And Index < MaxRow Then
 IndexFromBookmark = Index
 Else
 IndexFromBookmark = -9999
 End If
End Function

Private Function GetRelativeBookmark(Bookmark As Variant, _
 Offset As Long) As Variant
 ' GetRelativeBookmark is used to get a bookmark for a
 ' row that is a specified number of rows away from the
 ' given row. Offset specifies the number of rows to
 ' move. A positive Offset indicates that the desired
 ' row is after the one referred to by Bookmark, and a
 ' negative Offset means it is before the one referred
 ' to by Bookmark.

 Dim Index As Long

 ' Compute the row index for the desired row
 Index = IndexFromBookmark(Bookmark, Offset)
 If Index < 0 Or Index >= MaxRow Then
 ' Index refers to a row before the first or after
 ' the last, so just return Null.
 GetRelativeBookmark = Null
 Else
 GetRelativeBookmark = MakeBookmark(Index)
 End If
End Function

Private Function GetUserData(Bookmark As Variant, _

 Col As Integer) As Variant
 ' In this example, GetUserData is called by
 ' UnboundReadData to ask the user what data should be
 ' displayed in a specific cell in the grid. The grid
 ' row the cell is in is the one referred to by the
 ' Bookmark parameter, and the column it is in it given
 ' by the Col parameter. GetUserData is called on a
 ' cell-by-cell basis.

 Dim Index As Long

 ' Figure out which row the bookmark refers to
 Index = IndexFromBookmark(Bookmark, 0)

 If Index < 0 Or Index >= MaxRow Or _
 Col < 0 Or Col >= MaxCol Then
 ' Cell position is invalid, so just return null to
 ' indicate failure
 GetUserData = Null
 Else
 GetUserData = GridArray(Col, Index)
 End If
End Function

Run the program and observe the following:

Þ The grid displays the elements of GridArray and otherwise behaves as if it were bound to a Data
control.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 16.

Tutorial 17 - Displaying Array Data in Unbound Application Mode
In this tutorial, you will learn how to use the unbound application mode (DataMode property set to 3 -
Application) of True DBGrid to display an array of strings.    When the data source is an array, application mode
is easier to use than either unbound mode (1) or unbound extended mode (2).    In application mode, the grid
fetches data one cell at a time, and you must program the UnboundGetRelativeBookmark event in order
for the grid to obtain the bookmark of a row.    For detailed instructions on how to use unbound mode 3, see
Application Mode.

For simplicity, this tutorial does not cover updating, adding, or deleting records.    However, the
UNBOUND3.VBP project provides a complete sample that you can use as a template for implementing
application mode.    This project is located in the TUTORIAL\UNBOUND3 subdirectory of the True DBGrid
installation directory.

Step 1. Start a new project.

Step 2. Place a True DBGrid control (TDBGrid1) on the form (Form1).

Step 3. Set the DataMode property of TDBGrid1 to 3 - Application (the default value of this property is 0 -
Bound).

Configuring the grid at design time

We shall configure the grid as in Tutorial 15.

Step 4. Right-click TDBGrid1 to display its context menu.

Step 5. Choose Properties... to display the Property Pages dialog.    On the General property page, clear the
AllowUpdate check box so that data displayed in the grid will be read-only.

Step 6. Select the Columns properties page by clicking the Columns tab.    The Column combo box will
display Column0.    Set the Caption property to Column 0.    Select Column1 from the Column combo
box and set the Caption property to Column 1.    The grid should look like this.

Initializing the array data

We first create and initialize a two-dimensional array to hold the data to be displayed in the grid.

Step 7. In the General section of Form1, insert the following declarations:

' General declarations
Option Explicit

' Use a 2 columns by 100 rows array as data source,
Const MaxCol = 2

Const MaxRow = 100
Dim GridArray(MaxCol, MaxRow) As Variant

Step 8. In the Form_Load event, initialize the elements of GridArray and set the ApproxCount property of
the grid accordingly.    The ApproxCount property is optional, but setting this value will enable the
grid to position the vertical scroll bar accurately.    If you want to initialize the current cell to a specific
location, the Form_Activate event is a good place to do it.

Private Sub Form_Load()
 ' Initialize the data array. Data must be ready
 ' before the grid is loaded. Form_Load or Main is a
 ' good place to initialize the data.
 Dim I As Integer, J As Long
 For I = 0 To MaxCol - 1
 For J = 0 To MaxRow - 1
 GridArray(I, J) = "Row" + Str$(J) + ", Col" _
 + Str$(I)
 Next J
 Next I

 ' Inform the grid of how many rows are in the data set.
 ' This helps with scroll bar positioning.
 TDBGrid1.ApproxCount = MaxRow
End Sub

Private Sub Form_Activate()
 ' Initialize current cell position to upper left corner
 TDBGrid1.Row = 0
 TDBGrid1.Col = 0
End Sub

Displaying data in the unbound grid

As explained in Tutorial 15, True DBGrid does not store your data in any of its unbound modes.    Whenever the
grid needs to display data in a cell, it will fire the ClassicRead event to ask for data from your data source.   
Unlike unbound modes 1 and 2, the ClassicRead event does not use the RowBuffer object to transfer data
several rows at a time.    Instead, the ClassicRead event fetches data one cell at a time.    When using
application mode, you must also program the UnboundGetRelativeBookmark event in order for the grid to
obtain the bookmark of a row.

Step 9. Place the following code in the UnboundGetRelativeBookmark and the ClassicRead events of
TDBGrid1.    These events show how to provide bookmarks and data to the grid, respectively:

Private Sub TDBGrid1_UnboundGetRelativeBookmark(_
 StartLocation As Variant, ByVal Offset As Long, _
 NewLocation As Variant, ApproximatePosition As Long)

 ' TDBGrid1 calls this routine each time it needs to
 ' reposition itself. StartLocation is a bookmark
 ' supplied by the grid to indicate the "current"
 ' position -- the row we are moving from. Offset is
 ' the number of rows we must move from StartLocation
 ' in order to arrive at the desired destination row.
 ' A positive offset means the desired record is after
 ' the StartLocation, and a negative offset means the
 ' desired record is before StartLocation.

 ' If StartLocation is NULL, then we are positioning

 ' from either BOF or EOF. Once we determine the
 ' correct index for StartLocation, we will simply add
 ' the offset to get the correct destination row.
 ' GetRelativeBookmark already does all of this, so we
 ' just call it here.
 NewLocation = GetRelativeBookmark(StartLocation, Offset)

 ' If we are on a valid data row (i.e., not at BOF or
 ' EOF), then set the ApproximatePosition (the ordinal
 ' row number) to improve scroll bar accuracy. We can
 ' call IndexFromBookmark to do this.
 If Not IsNull(NewLocation) Then
 ApproximatePosition = IndexFromBookmark(NewLocation, 0)
 End If
End Sub

Private Sub TDBGrid1_ClassicRead(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 ' ClassicRead is analogous to the Fetch event of the
 ' TrueGrid Pro VBX control. When the grid needs data
 ' in DataMode 3, it fires a ClassicRead event for
 ' each visible cell on the grid to retrieve the data
 ' that will be shown there, so it fires on a
 ' cell-by-cell basis. The cell that this event is
 ' firing for is specified by the Bookmark (which
 ' tells which row to fetch the data from) and the
 ' Col parameter (which gives the column index). The
 ' only difference from the Fetch event of the VBX is
 ' that the row to fetch is specified by a Bookmark
 ' and not an integral row index. Thus, you must
 ' determine which row in your data source the bookmark.
 ' GetUserData uses the IndexFromBookmark function to
 ' do that.

 ' Assume that a function GetUserData(Bookmark, Col,
 ' Value) takes a row bookmark, a column index, and
 ' a variant which will hold the appropriate data to
 ' be fetched from the array or database. The function
 ' returns the fetched data in the Value parameter if
 ' the fetch is successful, otherwise, it returns Null.

 Value = GetUserData(Bookmark, Col)
End Sub

Step 10. The UnboundGetRelativeBookmark and the ClassicRead event handlers used in the previous
step call the following support functions to manage the array data and bookmarks: MakeBookmark,
IndexFromBookmark, GetRelativeBookmark, and GetUserData.

Private Function MakeBookmark(Index As Long) As Variant
 ' This support function is used only by the remaining
 ' support functions. It is not used directly by the
 ' unbound events. It is a good idea to create a
 ' MakeBookmark function such that all bookmarks can
 ' be created in the same way. Thus the method by
 ' which bookmarks are created is consistent and easy

 ' to modify. This function creates a bookmark when
 ' given an array row index.

 ' Since we have data stored in an array, we will just
 ' use the array index as our bookmark. We will convert
 ' it to a string first, using the Str$ function. Thus,
 ' if Index = 27, the Bookmark that is created is the
 ' string " 27". (Str$ always leaves a leading space
 ' for the sign of the number.)

 MakeBookmark = Str$(Index)
End Function

Private Function IndexFromBookmark(Bookmark As Variant, _
 Offset As Long) As Long
 ' This support function is used only by the remaining
 ' support functions. It is not used directly by the
 ' unbound events.

 ' IndexFromBookmark computes the row index that
 ' corresponds to a row that is (Offset) rows from the
 ' row specified by the Bookmark parameter. For
 ' example, if Bookmark refers to the index 50 of the
 ' dataset array and Offset = -10, then
 ' IndexFromBookmark will return 50 + (-10), or 40.
 ' Thus to get the index of the row specified by the
 ' bookmark itself, call IndexFromBookmark with an
 ' Offset of 0. If the given Bookmark is Null, it
 ' refers to BOF or EOF. If Offset < 0, the grid is
 ' requesting rows before the row specified by
 ' Bookmark, and so we must be at EOF because prior
 ' rows do not exist for BOF. Conversely, if
 ' Offset > 0, we are at BOF.

 Dim Index As Long

 If IsNull(Bookmark) Then
 If Offset < 0 Then
 ' Bookmark refers to EOF. Since (MaxRow - 1)
 ' is the index of the last record, we can use
 ' an index of (MaxRow) to represent EOF.
 Index = MaxRow + Offset
 Else
 ' Bookmark refers to BOF. Since 0 is the index
 ' of the first record, we can use an index of
 ' -1 to represent BOF.
 Index = -1 + Offset
 End If
 Else
 ' Convert string to long integer
 Index = Val(Bookmark) + Offset
 End If

 ' Check to see if the row index is valid:
 ' (0 <= Index < MaxRow).

 ' If not, set it to a large negative number to
 ' indicate that it is invalid.
 If Index >= 0 And Index < MaxRow Then
 IndexFromBookmark = Index
 Else
 IndexFromBookmark = -9999
 End If
End Function

Private Function GetRelativeBookmark(Bookmark As Variant, _
 Offset As Long) As Variant
 ' GetRelativeBookmark is used to get a bookmark for
 ' a row that is a specified number of rows away from
 ' the given row. Offset specifies the number of rows
 ' to move. A positive Offset indicates that the
 ' desired row is after the one referred to by Bookmark,
 ' and a negative Offset means it is before the one
 ' referred to by Bookmark.

 Dim Index As Long

 ' Compute the row index for the desired row
 Index = IndexFromBookmark(Bookmark, Offset)
 If Index < 0 Or Index >= MaxRow Then
 ' Index refers to a row before the first or
 ' after the last, so just return Null.
 GetRelativeBookmark = Null
 Else
 GetRelativeBookmark = MakeBookmark(Index)
 End If
End Function

Private Function GetUserData(Bookmark As Variant, _
 Col As Integer) As Variant
 ' In this example, GetUserData is called by
 ' UnboundReadData to ask the user what data should
 ' be displayed in a specific cell in the grid. The
 ' grid row the cell is in is the one referred to by
 ' the Bookmark parameter, and the column it is in it
 ' given by the Col parameter. GetUserData is called
 ' on a cell-by-cell basis.

 Dim Index As Long

 ' Figure out which row the bookmark refers to
 Index = IndexFromBookmark(Bookmark, 0)

 If Index < 0 Or Index >= MaxRow Or Col < 0 Or _
 Col >= MaxCol Then
 ' Cell position is invalid, so just return null
 ' to indicate failure
 GetUserData = Null
 Else
 GetUserData = GridArray(Col, Index)
 End If
End Function

Run the program and observe the following:

Þ The grid displays the elements of GridArray and otherwise behaves as if it were bound to a Data
control.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 17.

Tutorial 18 - Displaying Array Data in Unbound Storage Mode
In this tutorial, you will learn how to use the unbound storage mode (DataMode property set to 4 - Storage)
of True DBGrid to display an array of strings. Unlike unbound (extended) and application modes, storage mode
does not fire data-gathering events.    Instead, it uses an XArray ActiveX object to store, access, and maintain
data.

In code, you create, re-dimension, and populate an XArray object with your data just as you would a Visual
Basic array, then assign the XArray object to the Array property of the grid.    The data will then be
maintained and exchanged between the grid and the XArray object automatically.    There are no unbound
events to write, making this mode the easiest to use.

NOTE: Storage mode is not available in the 16-bit version of True DBGrid, since there is currently no 16-bit
version of XArray.

Step 1. Start a new project.

Step 2. Place a True DBGrid control (TDBGrid1) on the form (Form1).

Step 3. Set the DataMode property of TDBGrid1 to 4 - Storage (the default value of this property is 0 -
Bound).

Configuring the grid at design time

We shall configure the grid to display four columns.

Step 4. Right-click TDBGrid1 to display its context menu.

Step 5. Choose Properties... to display the Property Pages dialog.    On the General property page, check
AllowUpdate, AllowAddNew, and AllowDelete.

Step 6. Select the Columns property page by clicking the Columns tab.    The Column combo box will display
Column0.    Set the Caption property to Column 0.    Select Column1 from the Column combo box
and set the Caption property to Column 1. Select Column2 from the Column combo box and set the
Caption property to Column 2.    Select Column3 from the Column combo box and set the Caption
property to Column 3.    The grid should look like this.

Adding XArray to the project

Before writing the code, we need to add the APEX XArray Object to the project.    The exact steps depend on
whether you are using Visual Basic 4.0 or 5.0.

Step 7. If you are using Visual Basic 4.0, select References... from the Tools menu to display a list of
available type library references.    If you are using Visual Basic 5.0, select References... from the
Project menu to display a list of available type library references.    Select the check box labeled
APEX XArray Object (XARRAY32.OCX), then press the OK button.

Initializing the array data

Next, we create the XArray object in code.

Step 8. In the General section of Form1, insert the following declarations:

' General declarations
Option Explicit

Dim x As New XArray

Step 9. In the Form_Load event, we ReDim the XArray to contain 100 rows and 4 columns.    After
populating the XArray, we assign it to the grid's Array property.

Private Sub Form_Load()

 ' Allocate space for 100 rows, 4 columns
 x.ReDim 0, 99, 0, 3

 Dim row, col As Long

 ' The LowerBound and UpperBound properties correspond
 ' to the LBound and UBound functions in Visual Basic.
 ' Hard-coded dimensions can be used instead, if known.
 For row = x.LowerBound(1) To x.UpperBound(1)
 For col = x.LowerBound(2) To x.UpperBound(2)
 x(row, col) = "Row " & row & ", Col " & col
 Next col
 Next row

 ' Bind True DBGrid Control to this XArray instance
 Set TDBGrid1.Array = x

End Sub

Run the program and observe the following:

Þ The grid displays the data assigned to the XArray and appears as follows.

Þ Type a different value into any cell.    When you click another cell, the new data is saved to the array.

Þ Select an entire row by clicking its record selector.    Press the DEL key.    The grid will remove the
record from the display (and from the array).

Þ Scroll down until the AddNew row appears.    Enter any data into the cells.    When you click a cell in
another row, the newly added row is saved.

To end the program, press the End button on the Visual Basic toolbar.    You have successfully completed
Tutorial 18.

Congratulations, you have successfully completed all 18 tutorials!

Object Model
True DBGrid was developed using the latest ActiveX and data binding technologies.    The True DBGrid control
and its programmable components are all ActiveX objects designed according to Microsoft specifications.    If
you are already familiar with the Visual Basic 5.0 object and collection models, you will have no problem using
True DBGrid.

If you are new to Visual Basic 5.0, please read Working with Objects and Collections, which illustrates how to
manipulate True DBGrid objects in code.    Although individual objects are designed to perform different tasks,
the techniques used to manipulate them are the same.    Once you have mastered these common
programming constructs, using Visual Basic 5.0 and ActiveX controls will be quite easy and intuitive.

Regardless of your experience level, please read the following section, as it provides a thumbnail sketch of all
True DBGrid objects and collections.

{button ,JI(`',`True_DBGrid_Objects_and_Collections')}    True DBGrid Objects and Collections
{button ,JI(`',`TDBGrid_Control')}    TDBGrid Control
{button ,JI(`',`TDBDropDown_Control')}    TDBDropDown Control
{button ,JI(`',`Column_Object')}    Column Object, Columns Collection
{button ,JI(`',`Layouts_Collection')}    Layouts Collection
{button ,JI(`',`RowBuffer_Object')}    RowBuffer Object
{button ,JI(`',`SelBookmarks_Collection')}    SelBookmarks Collection
{button ,JI(`',`Split_Object')}    Split Object, Splits Collection
{button ,JI(`',`Style_Object')}    Style Object, Styles Collection
{button ,JI(`',`ValueItem_Object')}    ValueItem Object, ValueItems Collection
{button ,JI(`',`XArray_Object')}    XArray Object
{button ,JI(`',`Working_with_Objects_and_Collections')}    Working with Objects and Collections

True DBGrid Objects and Collections
True DBGrid provides a rich set of properties, methods, and events that enable you to develop sophisticated
database applications.    The organization imposed by True DBGrid's object model makes it easier to work with
such a large feature set.

Objects and collections that refer to visual entities, such as columns, can be customized at design time or run
time.    Objects and collections that refer to abstract entities, such as arrays and bookmarks, are only available
in code at run time.

When you add True DBGrid file to a Visual Basic project, the following controls are added to the Toolbox:

TDBGrid True DBGrid ActiveX control.
TDBDropDown True DBDropDown ActiveX control.

The type library for True DBGrid also contains definitions for the following objects:

Column Represents a column of data within a grid or split.
Split Represents a group of adjacent columns that scroll as a unit.
Style Encapsulates font, color, and formatting information.
ValueItem Allowable input value for a column, with optional translation.
RowBuffer Transfers data to and from row-based unbound mode events.

A collection is an object used to group similar data items, such as bookmarks, or visual objects, such as grid
columns.    In general, a group of similar items in True DBGrid is implemented as a collection.    Since a
collection is an object, you can manipulate it in code just as you would any other object.    The type library for
True DBGrid contains definitions for the following collections:

Columns Contains zero or more Column objects in a grid or split.
Layouts Contains zero or more named grid layouts.
SelBookmarks Contains zero or more selected row bookmarks.
Splits Contains one or more Split objects in a grid.
Styles Contains built-in and user-defined Style objects for a grid.
ValueItems Contains zero or more ValueItem objects for a column.

When using True DBGrid's storage mode (DataMode 4, available in 32-bit versions only), you also need to
add a reference to the APEX XArray Object to your project.    This is not a control, but a reference that defines
a single nongraphical object:

XArray Variant array used as a data source in storage mode.

The following sections provide a brief overview of True DBGrid's objects and collections.

TDBGrid Control
The TDBGrid control is the primary object of True DBGrid.    When you place a True DBGrid control on a Visual
Basic form at design time, an instance of the TDBGrid control object is created.    TDBGrid objects created in
Visual Basic will be given default names of TDBGrid1, TDBGrid2, and so forth.    You can change the TDBGrid
object name in the Visual Basic Properties window at design time.

TDBDropDown Control
The TDBDropDown control, which is a subset of the TDBGrid control, is used as a multicolumn drop-down
list box for a grid column.    You cannot use it as a standalone control.

At design time, you can place a TDBDropDown control on a Visual Basic form just as you would a TDBGrid
control.    However, the drop-down control will be invisible at run time unless it is attached to a Column object
of a TDBGrid control.

To use the drop-down control, set the DropDown property of a grid column to the name of a TDBDropDown
control at either design time or run time.    At run time, when the user clicks the in-cell button for that column,
the TDBDropDown control will appear below the grid's current cell.    If the user selects an item from the
drop-down control, the grid's current cell is updated.

The TDBDropDown control supports incremental search as well as all of the DataMode settings of the
TDBGrid control.    For more information, see TDBDropDown at Design Time and Using the TDBDropDown
Control.

Column Object, Columns Collection
Each column within a TDBGrid control, TDBDropDown control, or Split object is represented by a Column
object.    When a grid or drop-down control is bound to a database, each Column object is usually associated
with a database field, although True DBGrid also supports unbound columns in bound mode.    When a control
is first created, it contains two Column objects by default.

The TDBGrid control, the TDBDropDown control, and the Split object all maintain a Columns collection to
hold and manipulate Column objects.    This collection is accessed using the Columns property.

For more information, see Configuring Columns at Run Time.

Layouts Collection
In True DBGrid, the term layout refers to the complete set of persistent properties for a    TDBGrid or
TDBDropDown control.    In earlier versions of True DBGrid, each control had only one layout, which was
stored by Visual Basic in an .FRX file when the containing form was saved to disk.

With version 5.0 of True DBGrid, you can store multiple grid layouts in arbitrary files, then recall them later.   
You can even take advantage of this feature in code to enable your end-users to save their layout
preferences.

The Layouts collection facilitates switching between multiple named layouts at either design time or run
time.    Both the TDBGrid and TDBDropDown controls support this collection.

For more information, see Reusable Layouts.

RowBuffer Object
The RowBuffer object is only used when the DataMode property is set to 1 - Unbound or 2 - Unbound
Extended.    It exists only to transfer data to and from the grid in the row-based unbound mode events.    You
cannot create a standalone RowBuffer object.

For more information, see Unbound Mode.

SelBookmarks Collection
When multiple rows are selected and highlighted, the grid uses the SelBookmarks collection to store and
manipulate the bookmarks of the selected rows.    This collection is accessed using the SelBookmarks
property.

For more information, see Selecting and Highlighting Records.

Split Object, Splits Collection
True DBGrid supports Excel-like splits that divide the grid into vertical panes to provide users with different
views of the data source.    Each split is represented by a Split object and contains a group of adjacent
columns that scroll as a unit.

When a TDBGrid control is created, it contains one Split object by default.    Many of the properties of the
Split object also apply to the TDBGrid control as a whole, so you do not need to concern yourself with splits
until you actually need to use them, such as when creating fixed, nonscrolling columns.

The TDBGrid control maintains a Splits collection to hold and manipulate Split objects.    A grid has one split
by default, but may contain multiple splits.    This collection is accessed using the Splits property.

For more information, see How to Use Splits.

Style Object, Styles Collection
Style objects encapsulate font, color, and formatting information for a TDBGrid, TDBDropDown, Split, or
Column object.    The Style object is a very flexible and powerful tool that provides Excel- and Word-like
formatting capabilities for controlling the appearance of the grid's display.

When a TDBGrid or TDBDropDown control is created, it contains seven built-in styles.    You can modify the
built-in styles or add your own styles at either design time or run time.    Both controls also support several
optional events that use Style objects to convey formatting information on a per-cell or per-row basis.

The TDBGrid and TDBDropDown controls store all built-in and user-defined Style objects in the Styles
collection.    You can access the members of this collection by name at run time, then apply them to a grid,
column, or split in order to control the appearance of the object in question.    This collection is accessed using
the Styles property.

For more information, see How to Use Styles.

ValueItem Object, ValueItems Collection
A ValueItem object is used to simplify data access for the user.    It specifies an allowable input value for a
given Column object, and can also be used to translate raw data values into alternate text or graphics for
display.    For example, you may want to display Balance Due and Paid in Full instead of the numeric data
values 0 and 1.

Each Column object within a TDBGrid or TDBDropDown control stores these items, if specified, in a
ValueItems collection, which is accessed using the ValueItems property.

For more information, see Automatic Data Translation with ValueItems.

XArray Object
The XArray object implements an array of arbitrary variants.    It supports up to 10 dimensions, and
automatically shifts its contents when elements (or dimensions) are inserted and deleted.    Unlike the
RowBuffer object, you can create a standalone XArray object, and even use it outside the context of True
DBGrid.

XArray is implemented as a separate .OCX file; it is not contained in any of the grid .OCX files.

The XArray object is used as a data source for a TDBGrid or TDBDropDown control in storage mode, which
corresponds to a DataMode property setting of 4 - Storage.    For more information, see Storage Mode.

Working with Objects and Collections
This section describes how to work with objects and collections in Visual Basic code, with an emphasis on
efficiency.    Although the concepts are illustrated with True DBGrid objects and collections, you can apply the
same fundamentals to all Visual Basic objects and collections.

A TDBGrid object is created when you place a True DBGrid control on a Visual Basic form.    TDBGrid objects
created in Visual Basic will have default names of TDBGrid1, TDBGrid2, and so forth.    You can change the
control name in the Visual Basic Properties window at design time.    You can also change the control's
properties using the property pages at design time and Visual Basic code at run time.

A TDBGrid object has the following collections: Splits, Columns, SelBookmarks, Styles, and Layouts.    By
default, the Splits collection contains one Split object, and the Columns collection contains two Column
objects.    The Styles collection contains seven default Style objects: Normal, Heading, Selected, Caption,
HighlightRow, EvenRow, and OddRow.    The SelBookmarks and Layouts collections are initially empty.

You can reference an object in a collection using its zero-based index.    For example, the default Split object
in a grid has an index value of 0.    You can read or set the Split object's properties as follows:

' Read a Split object property
variable = TDBGrid1.Splits(0).Property

' Set a Split object property
TDBGrid1.Splits(0).Property = variable

You can create a reference to an object in a collection using the collection's Item method.    The following
code creates a reference to a grid's default Split object:

' Declare Split0 as a Split object
Dim Split0 As TrueDBGrid50.Split

' Set Split0 to reference the first Split in the collection
Set Split0 = TDBGrid1.Splits.Item(0)

Note the use of the type library qualifier TrueDBGrid50 in the preceding example.    Using the type library
qualifier is recommended in order to resolve potential naming conflicts with other controls.    For example, if
you use another control in the same project that also defines an object named Split, the TrueDBGrid50 type
library qualifier is required, as is the type library qualifier for the other control.

Since the Item method is implicit for collections, you can omit it:

' Declare Split0 as a Split object
Dim Split0 As TrueDBGrid50.Split

' Set Split0 to reference the first Split in the collection
Set Split0 = TDBGrid1.Splits(0)

You can now use Split0 to read or set the Split object's properties or to execute its methods:

variable = Split0.Property ' Read a Split object property
Split0.Property = variable ' Set a Split object property
Split0.Method arg1, arg2, ... ' Execute a Split object method

Very often, you need to read and set more than one of an object's properties.    For example:

' Read a Split object's properties
variable1 = TDBGrid1.Splits(0).Property1
variable2 = TDBGrid1.Splits(0).Property2

' Set a Split object's properties

TDBGrid1.Splits(0).Property1 = variable1
TDBGrid1.Splits(0).Property2 = variable2

This code is very inefficient because each time the object TDBGrid1.Splits(0) is accessed, Visual Basic
creates a reference to the object and then discards it after the statement is completed.    It is more efficient to
create a single reference to the object up front and use it repeatedly:

' Declare Split0 as a Split
Dim Split0 As TrueDBGrid50.Split

' Set Split0 to reference the first Split in the collection
Set Split0 = TDBGrid1.Splits(0)

' Read a Split object's properties
variable1 = Split0.Property1
variable2 = Split0.Property2

' Set a Split object's properties
Split0.Property1 = variable1
Split0.Property2 = variable2

This code is much more efficient and also easier to read.    If your Visual Basic application accesses collection
objects frequently, you can improve the performance of your code significantly by adhering to these
guidelines.

Similarly, you can apply this technique to other objects and collections of True DBGrid, and of Visual Basic in
general.    Of particular importance to the grid are the Column object and Columns collection:

' Declare Cols as a Columns collection object, then set it to
' reference TDBGrid1's Columns collection object.
Dim Cols As TrueDBGrid50.Columns
Set Cols = TDBGrid1.Columns

' Declare Col0 as a Column object, then set it to reference the
' first Column object in the collection.
Dim Col0 As Column
Set Col0 = Cols(0)

' Read and set the Column object's Property1
variable1 = Col0.Property1
Col0.Property1 = variable1

' Execute the Column object's Method1 (declared as a Sub)
Col0.Method1 arg1, arg2, ...

' Execute the Column object's Method2 (declared as a Function)
variable2 = Col0.Method2(arg1)

Visual Basic also provides an efficient With...End With statement for setting multiple properties of an object
without explicitly assigning it to a variable.    For example, the following code sets multiple properties of the
first column of a grid (recall that collections are zero-based):

With TDBGrid1.Columns(0)
 .Property1 = variable1
 .Property2 = variable2
End With

Some collections allow you to reference their members by name.    For example, you can reference a Column
object using either its index, the name of the database field the column is associated with, or the column's

heading caption.    Thus, the following statements are equivalent:

' Declare Col0 as a Column object
Dim Col0 As TrueDBGrid50.Column

' Reference by numeric index
Set Col0 = TDBGrid1.Columns.Item(0)

' Reference by numeric index (Item method is implicit)
Set Col0 = TDBGrid1.Columns(0)

' Reference by database field name
Set Col0 = TDBGrid1.Columns("LAST")

' Reference by column header text (Caption property)
Set Col0 = TDBGrid1.Columns("Last Name")

A True DBGrid Style object can also be referenced by name:

' Declare S as a Style object
Dim S As TrueDBGrid50.Style

' Set S to the grid's built-in Normal style
Set S = TDBGrid1.Styles("Normal")

' Set S to the programmer-defined style MyStyle
Set S = TDBGrid1.Styles("MyStyle")

To create and add an object to a collection, use the collection's Add method.    For example, you can create
more splits in the grid by adding new Split objects to the Splits collection:

' Create a Split object with index 0
Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(0)

This code adds a Split object with index 0 to the Splits collection of TDBGrid1.    The original Split object now
has an index of 1.    Alternatively, you can create a Split object with index 1:

' Create a Split object with index 1
Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(1)

Note that the Add method of the Splits collection is used like a function, with its arguments (here, the split
index) enclosed in parentheses.    Also, since the Add method always returns a reference to the Split object
that was just created, you must precede the assignment statement with the Visual Basic Set keyword.

However, not all collections define their Add method to return a value.    If a collection does nothing more
than maintain a list of the arguments passed to its Add method, then there is no need for it to return the
same item that was just added.    In True DBGrid, the Layouts, SelBookmarks, and ValueItems collections
are designed this way.    For example, you can use the following code to select the current record in a
TDBGrid control:

TDBGrid1.SelBookmarks.Add TDBGrid1.Bookmark

Since the SelBookmarks collection manages a list of variants corresponding to selected grid rows, its Add
method does not return a value, and no assignment statement is needed.    This example could also be coded
as:

With TDBGrid1
 .SelBookmarks.Add .Bookmark
End With

Regardless of how a collection implements the Add method, the syntax for removing items is the same.    To
remove an existing item from a collection, use the Remove method:

' Remove the Split object with index 1
TDBGrid1.Splits.Remove 1

After this statement is executed, all splits with collection indexes greater than 1 will be shifted down by 1 to
fill the place of the removed split.    Note that the Remove method is called like a subroutine---its argument is
not enclosed in parentheses.

You can determine the number of objects in a collection using the collection's Count property:

' Set a variable equal to the number of Splits in TDBGrid1
variable = TDBGrid1.Splits.Count

You can also iterate through all objects in a collection using the Count property as in the following example,
which prints the Caption string of each Column object in a grid:

For n = 0 To TDBGrid1.Columns.Count - 1
 Debug.Print TDBGrid1.Columns(n).Caption
Next n

The Count property is also useful for appending and removing columns:

' Determine how many columns there are
Dim NumCols As Integer
NumCols = TDBGrid1.Columns.Count

' Append a column to the end of the Columns collection
Dim C As TrueDBGrid50.Column
Set C = TDBGrid1.Columns.Add(NumCols)

' Make the new column visible, since columns created
' at run time are invisible by default
TDBGrid1.Columns(NumCols).Visible = True

' The following loop removes all columns from the grid
While TDBGrid1.Columns.Count
 TDBGrid1.Columns.Remove 0
Wend

Visual Basic also provides an efficient For Each...Next statement that you can use to iterate through the
objects in a collection without using the Count property:

Dim C As TrueDBGrid50.Column
For Each C In TDBGrid1.Columns
 Debug.Print C.Caption
Next S

In fact, using the For Each...Next statement is the preferred way to iterate through the objects in a
collection.

Design Time Interaction
You can easily configure True DBGrid at design time using its context menu, visual editing mode, property
pages, reusable layout facility, and add-in Design Assistant.    These features enable you to see the grid's run-
time appearance at design time and eliminate the need to write customization code for most applications.

The following sections describe how to use True DBGrid's design-time environment to configure the TDBGrid
control.    Most of the following material also applies to the TDBDropDown control since it is a subset of
TDBGrid.    Specific differences between the two controls are discussed at the end of this chapter.

{button ,JI(`',`Context_Menu')}    Context Menu
{button ,JI(`',`Visual_Editing_Mode')}    Visual Editing Mode
{button ,JI(`',`Property_Pages')}    Property Pages
{button ,JI(`',`Reusable_Layouts')}    Reusable Layouts
{button ,JI(`',`Add-in_Design_Assistant')}    Add-in Design Assistant
{button ,JI(`',`TDBDropDown_at_Design_Time')}    TDBDropDown at Design Time

Context Menu
Right-click anywhere on the grid to display the True DBGrid context menu, which is a superset of the context
menu that Visual Basic provides for all ActiveX controls.

The first eight commands are controlled by Visual Basic; the last four commands are controlled by True
DBGrid.    The context menu commands operate as follows.

Cut, Copy, Paste, Delete

These commands are identical to those on the Visual Basic Edit menu.    Cut (CTRL+X) moves the grid from
the Visual Basic form to the Clipboard.    Copy (CTRL+C) moves a copy of the grid to the Clipboard while
leaving the grid on the form intact.    Paste (CTRL+V) copies the grid from the Clipboard to the form.    Delete
(the DEL key) removes the grid but does not move it to the Clipboard.    You can undo the Delete command by
selecting Undo (CTRL+Z) from the Visual Basic Edit menu.

Bring To Front, Send To Back

These commands control the z-order of the grid relative to the other objects on the Visual Basic form.    Bring
To Front (CTRL+J) places the grid in front of other objects; Send To Back (CTRL+K) places it behind other
objects.    These commands are also available from the Visual Basic Edit menu.    The ZOrder method can be
used to change the z-order of controls at run time.

View Code

This command displays the grid's code window, which enables you to view and edit the grid's event handling
code.

Align to Grid

This command automatically aligns the outer edges of the grid control to the design-time grid lines on the
form.

Edit

This command switches to True DBGrid's visual editing mode, in which you can interactively change the grid's
column layout and row height.    Within visual editing mode, you can right-click anywhere on the grid to
display a different context menu called the visual editing menu.    Using the visual edit menu, you can

manipulate individual columns and splits directly on the surface of the grid.    For convenience, the visual
editing menu also contains some of the context menu commands.    For details, see Visual Editing Mode.

Properties...

This command displays the grid's property pages, which enable you to customize the layout and appearance
of the grid at design time.    You can also display the property pages by selecting (Custom) from the Visual
Basic Properties window.    For details, see Property Pages.

Retrieve Fields

This command automatically configures the grid's columns according to the schema information obtained
from the Data control's Recordset.    If you have already changed the grid's default layout, True DBGrid will
ask for confirmation before discarding your changes.    By default, the grid will use the database field names,
or SQL aliases, as the column headings.    If all of the columns do not fit in the visible portion of the grid, a
horizontal scroll bar will appear.    The scroll bar is usable only when the grid is in visual editing mode as
described in the next section.

Clear Fields

This command clears all column layouts and field names.    Use this command to force a bound grid to use
automatic layouts at run time.

Visual Editing Mode
To enter True DBGrid's visual editing mode, right-click anywhere on the grid to display the context menu, then
click Edit.    The appearance of the grid does not change; however, when you move the mouse over the
column headers, column dividers, or row dividers, the mouse pointer changes to indicate that the object can
be selected or resized.

To exit visual editing mode, select another control or click anywhere on the form outside the grid.    The next
time you right-click the grid, the context menu will appear, not the visual editing menu.

You can use visual editing mode to interactively perform any of the following tasks:

· Create and delete columns and splits.

· Move and resize columns within the grid.

· Move columns to and from the Clipboard.

· Adjust the grid's row height.

· Save the current grid layout to a file.

· Load and remove grid layouts stored in a file.

The following sections provide step-by-step instructions for using visual editing mode.

{button ,JI(`',`Sizing_columns_and_rows')}    Sizing columns and rows
{button ,JI(`',`Creating_and_sizing_splits')}    Creating and sizing splits
{button ,JI(`',`Selecting_and_highlighting_columns')}    Selecting and highlighting columns
{button ,JI(`',`Moving_selected_columns')}    Moving selected columns
{button ,JI(`',`Using_the_visual_editing_menu')}    Using the visual editing menu

Sizing columns and rows

If necessary, use the horizontal scroll bar to bring the desired column into view.    Move the pointer over a
column divider in the column header area.    The pointer will become a horizontal double arrow.

Simply drag the divider left or right to adjust the width of the corresponding column.    Dragging the divider all the
way to the left has the same effect as setting the column's Visible property to False.    To redisplay an invisible
column, move the pointer over the preceding column divider until it changes to a horizontal right arrow.

Drag the divider to the right to make the column visible and adjust its width.

To adjust the height of all grid rows, move the pointer over a row divider in the record selector column.    The
pointer will become a vertical double arrow.

Drag the divider up or down to adjust the row height.    All rows will be adjusted to the same height; you cannot
have different heights for individual rows.

Creating and sizing splits

If the horizontal scroll bar is visible, and the AllowSizing property of the leftmost split is True, the grid
displays a split box immediately to the left of the horizontal scroll bar.

To clone the current split, point to the split box.    The pointer will change to a double vertical bar with a down
arrow.

Drag the pointer to the right to display and move a pair of dividing lines that will mark the right edge of the new
split.

The leftmost split box is always used to create a new split.    If other split boxes are present, you can use them
to reposition the split dividers.    Point to the split box you want to move.    The pointer will change to a double
vertical bar with horizontal arrows.

Drag the dividers left or right to adjust the widths of the adjacent splits.    As with columns, you can drag the
dividers all the way to the left to hide a split.    However, since splits do not have a Visible property, hiding a split in
this manner actually deletes it.

If the horizontal scroll bar is not visible, or the AllowSizing property of the leftmost split is False, you can still
create a new split with the Split command on the visual editing menu.

Selecting and highlighting columns

In order to move or delete columns in visual editing mode, you need to select them first.

To select and highlight an individual column, simply click the column header.    If one or more columns are
already selected, they will be deselected.    To select multiple columns, use one of the following methods:

· Select a column by clicking its header.    Then hold the SHIFT key and click another column's header.   
All of the columns between the first selected column and the current one (inclusive) will be selected.

· Press the mouse button and drag within the column header area to extend the selection until all
desired columns are highlighted.

Note that you can only select multiple columns if they are adjacent.

To deselect all selected columns, click a cell in the grid's display area.

Moving selected columns

To move the selected columns as a unit to a different location, press the mouse button within the header area
of any selected column.    The pointer will change to an arrow with a small box at its lower right corner.

The divider at the left edge of the column being pointed to will be enlarged and highlighted.    Drag the divider to
the desired location and release the mouse button to move the selected columns immediately to the left of the
divider.    The moved columns remain selected.

If you drag the divider to a position within the currently selected range, no movement occurs.    If a column is
not selected, you cannot move it.

Using the visual editing menu

While the grid is in visual editing mode, right-click anywhere on the grid to display the visual editing menu.   
The visual editing menu contains several commands that are also present in the grid's context menu.   
However, while the context menu operates on the grid as a whole, the visual editing menu is used to
manipulate the grid's columns and splits.

When you right-click a column to display the visual editing menu, the column you are pointing to becomes the
current column.    This enables you to quickly execute commands that depend on the current column, such as
Cut and Insert.

Some commands, such as Copy and Delete, can operate on multiple selected columns.    Follow the
procedures described earlier for selecting columns, then choose the desired command from the visual editing
menu.

For convenience, the visual editing menu also contains some of the commands from the grid's context menu. 
The visual editing menu commands operate as follows.

Cut, Copy, Paste, Delete

These commands are similar to their context menu counterparts except that they apply to a column, or
selected columns, not to the entire grid.    Using the Cut, Copy, and Paste commands, you can move
columns to the Clipboard and paste them to another grid, or within the same grid.    The ability to copy
columns to the Clipboard provides an easy way to set up grid columns, since all of the properties that define a
column are copied as a unit.    You can set the properties for multiple columns, copy them to the Clipboard,
then paste them to a grid on another form.

Cut moves the selected columns from the grid to the Clipboard.    Copy moves a copy of the selected columns
to the Clipboard while leaving the grid intact.    If there are selected columns, then Cut and Copy operate on
the entire selection.    If there are no selected columns, then these commands operate on the current column
only.

The Paste command is available only after a Cut or Copy command has been performed.    If there are
selected columns, then Paste replaces the selection with the Clipboard contents.    If there are no selected
columns, then Paste inserts the Clipboard contents to the left of the current column.    In either case, the
newly pasted columns are selected.

Delete removes columns without saving them to the Clipboard.    To prevent accidental deletions, the Delete
command is available only when one or more columns are selected.   

Insert

This command creates and inserts a new column to the left of the current column.

Append

This command creates and adds a new column to the right of the rightmost column in the grid.

Split

This command creates and inserts a new split to the left of the current split.    You can then use the Splits and
Layout property pages to configure the splits and the columns they contain.

Remove

This command removes the current split, that is, the split where you clicked to display the visual editing
menu.

Properties...

This command is identical to the context menu command with the same name.    It displays the grid's property
pages, which enable you to customize the grid's layout and appearance.

Retrieve Fields

This command is identical to the context menu command with the same name.    It automatically configures
the grid columns according to the schema information from the Data control's Recordset.

Clear Fields

This command is identical to the context menu command with the same name.    All field and column layout
properties set in the grid are cleared.

Load Layout

This command loads the grid layout whose name is given by the LayoutName property from the binary
layout storage file specified in the LayoutFileName property.    A layout comprises all persistent property
settings for the entire grid, not just its columns and splits.    This command is unavailable if either of the
aforementioned properties have not been set.

Save Layout

This command saves the current grid layout using the name specified in the LayoutName property to the
binary layout storage file specified in the LayoutFileName property.    This command is unavailable if either
of these properties have not been set.

Remove Layout

This command removes the grid layout whose name is given by the LayoutName property from the binary
layout storage file specified by the LayoutFileName property.    This command is unavailable if either of
these properties have not been set.

Property Pages
Select Properties... from the grid's context menu to display the property page dialog.    You can also display
the property pages by selecting (Custom) from the Visual Basic Properties window.    To accept the changes
made on any page, click the OK button at the bottom of the property page dialog.    Click Cancel to discard
any changes.    The property page dialog will be closed after you click OK or Cancel.

You can also click the Apply button to commit your changes without closing the dialog.    Any changes you
have made will be reflected in the grid immediately.    You can continue to make additional changes after
clicking Apply.    Note that selecting a different tab implicitly applies any changes made to the current tab.

{button ,JI(`',`General_property_page')}    General property page
{button ,JI(`',`Display_property_page')}    Display property page
{button ,JI(`',`Keyboard_property_page')}    Keyboard property page
{button ,JI(`',`Columns_property_page')}    Columns property page
{button ,JI(`',`Layout_property_page')}    Layout property page
{button ,JI(`',`Color_property_page')}    Color property page
{button ,JI(`',`Font_property_page')}    Font property page
{button ,JI(`',`Splits_property_page')}    Splits property page
{button ,JI(`',`Styles_property_page')}    Styles property page
{button ,JI(`',`Values_property_page')}    Values property page

General property page

The General property page defines database related permissions, cell tip behavior, and the grid's data access
mode.    These are global properties that apply to the grid as a whole (that is, the TDBGrid object).    Using the
General property page, you can also specify a grid layout file containing one or more named layouts.

The General property page is used to set the following properties:

Caption Text entered in the Caption text box will appear in the grid heading, above
the column headers.    If the Caption is empty (the default), the grid's title
bar will not be displayed.    A space will show a blank header.   

AllowAddNew Determines if an empty row appears after the last row.    The user can
type in this row to initiate an AddNew operation at run time.    The default
value is False.

AllowDelete Determines if users can delete a selected record by pressing the DEL key.   
The default value is False.

AllowUpdate Determines if users can update records in the grid at run time.    The
default value is True.

Enabled Determines if the grid responds to user interactions.    The default value is
True.    If False, data can be changed using code or another bound control.

EditDropDown Determines whether editing takes place in a pop-up window or within cell
boundaries.    If True (the default), a pop-up editing window is displayed
when the current cell's contents will not fit within its boundaries.

DefColWidth Sets the default column width for newly created columns, in terms of the
coordinate system of the grid's container.    The default value is 0,

meaning that the column width will be determined by the field's schema
information (that is, the field width in the database).    The user can
override this setting for individual columns by changing the column's
width at design time when the grid is in visual editing mode, or by setting
the column's Width property at run time.

DataMode This property defines the grid's data access mode.    The allowable values
for this property are 0 - Bound, 1 - Unbound, 2 - Unbound Extended, 3 -
Application, and 4 - Storage.    The default value is 0 - Bound.

CellTips Determines whether the grid displays a pop-up text window when the
cursor is idle.    The allowable values for this property are 0 - None, 1 -
Anchored, and 2 - Floating.    The default value is 0 - None.

CellTipsWidth Sets the width of the cell tip window in terms of the coordinate system of
the grid's container.    The default value is zero, which causes the cell tip
window to grow or shrink to accommodate the cell tip text.

CellTipsDelay Controls the amount of time, in milliseconds, that must elapse before the
cell tip window is displayed.    The default is 1000 (one second).

LayoutFileName Sets the filename used to save and retrieve grid layouts.    The Browse
button displays an open file dialog for this property.

LayoutName Sets the name of the current layout.    This value is used by the layout
commands on the visual editing menu.

Display property page

The Display property page defines general visual characteristics of the grid.    These are global properties that
apply to the grid as a whole (that is, the TDBGrid object).

The Display property page is used to set the following properties:

ColumnHeaders Determines if column headers are displayed.    The default value is True.

MarqueeUnique This property controls the display of the current cell marquee when there
is more than one split.    If the property is set to True, the marquee will be
displayed in only one split.    Default is True.

EmptyRows Determines whether the grid displays empty rows below the last data row.
The default value is False.

MultipleLines Determines whether a single row can span multiple lines.    The default
value is False.

HeadLines Sets the number of lines for column header text.    This can be set to a
non-integral value such as 1.5.    The default value is 1.

RowHeight Sets the height of all grid rows, in terms of the container's coordinates.

Appearance This property determines the appearance of the grid's caption bar,
column headings, and record selector columns.    Values are 0 - Flat and 1
- 3D.    Default is 1.

BorderStyle Determines the style of the grid's border.    The default value is    1 - Fixed
Single.

RowDividerStyle Determines the style of the lines between rows.    The default value is 2 -

Dark gray line.

Keyboard property page

The Keyboard property page is used to customize the run-time behavior of the navigation keys.

The Keyboard property page is used to set the following properties:

AllowArrows By setting this property to True, you can use the arrow keys to navigate
through grid cells.    If this property is set to False, the arrow keys will
move focus from control to control, rather than from cell to cell.    Default
is True.

TabAcrossSplits When this property is False, keyboard navigation is limited to movement
within a split.    To use the arrow keys or the tab key to move to an
adjacent split, this property must be set to True.    Default is False.

WrapCellPointer If the AllowArrows property is True, this property determines the
behavior of the tab and arrow keys at row boundaries (i.e., the first and
last columns).    If this property is False, you cannot move to the next (or
previous) row using the tab or arrow keys.    Default is True.

ExposeCellMode If the rightmost column of the grid is only partially visible, this property
determines whether the grid will scroll so that the rightmost column will
be displayed in its entirety when it is clicked.    The default is 0 - Scroll on
Select, which causes the grid to automatically scroll to make the
rightmost column visible when it is clicked.    If set to 1 - Scroll On Edit, the
grid scrolls only when the user starts to edit.    If set to 2 - Never Scroll, the
grid will never make the rightmost column visible, even if editing is
attempted.

TabAction This property defines the behavior of the tab key.    The default is 0 -

Control Navigation, which allows the tab key to move focus from control
to control.    If set to 1 - Column Navigation, the tab key will move the
current cell to the next column until it reaches the end of the row, then
focus will be moved to the next control on the form.    If set to 2 - Grid
Navigation, the tab key will never move focus to another control; when
the current cell reaches the end of the row, the action will be determined
by the WrapCellPointer property.

Columns property page

The splits of a grid provide users with different views of the same data source.    Therefore, corresponding
columns in different splits must be bound to the same data fields.    A few other column properties are global
to all splits as well. The Columns property page is used to set Column object properties that cannot vary from
one split to another.

The Columns property page is used to set the following properties:

Column Selects the current column to be modified.    At run time, columns can be
identified by a zero-based column index, their Caption string, or their
DataField name.

Caption Sets the text that appears in the column header.    If you do not set this
property, the DataField name will be used as the column caption
immediately after it is defined.

DataField Sets the database field, or SQL alias, to which a column is bound.    The
grid will automatically display all fields from the bound Recordset, if
available, in this drop-down combo.

DefaultValue This property applies only to unbound columns.    It sets the default value
of an unbound column within a new record.    For bound columns or
columns of an unbound grid, the grid does not use this property itself, but
provides it as a placeholder for you to associate default values with the
columns.    This property can also be used as a tag for a column (whether
it is bound or unbound).    Arbitrary values can be stored and retrieved.

NumberFormat Determines the display format of data in the column.    True DBGrid
supports the same functionality as the Format$ function in Visual Basic.   

In fact, True DBGrid does not do the formatting itself, it simply passes the
format string to Visual Basic to perform the appropriate formatting.   
Search the Visual Basic Help for user-defined formats for more
information.    The last item in the dropdown list contains an additional
option called FormatText Event.    If you choose this option, the grid will
fire the FormatText event, which enables you to format (or even replace)
column data before it is displayed.

DataWidth This property defines the maximum number characters allowed when
entering data into a column.    The grid will only allow the user to enter
this many characters.    This has no effect on data that already exceeds
this value.    To impose no limits on the amount of text the user can enter,
set this property to 0 (the default).

DropDown Associates the name of a TDBDropDown control with a column in a
TDBGrid control.

EditMaskUpdate Determines whether formatted text is updated to the underlying
database.    The default value is False, which means that the modified cell
text is stripped of literal characters before it is passed on to the
underlying database.

EditMask Specifies an input mask template for end-user data entry.

Layout property page

The properties on the Columns property page, together with the properties on the Layout property page,
define the column (field) layouts for the entire grid.   

The properties on the Layout page are said to be split-specific.    This means that they apply to columns, not to
splits, but their settings are not necessarily the same across all splits.

The Layout property page is used to set the following properties:

Column Selects the current column to be modified.    At run time, columns can be
identified by a zero-based column index, their Caption string, or their
DataField name.

Split Selects which split contains the column specified in the Column combo
box.    At run time, splits can only be identified by a zero-based split index.

Locked Determines if the user will be able to edit the column.    This property
affects user interaction with the grid only.    The column may still be
updatable from code or through another bound control, even if Locked is
set to True.    Default is False.

AllowSizing Determines if the user can interactively resize the column at run time.   
Default is True.

Visible Determines if the column will be visible.    The default value is True for
columns created at design time, False for columns created at run time.

WrapText If True, a line break occurs before words that would otherwise be partially
displayed.    If False, no line break occurs and text is clipped at the cell's
right edge.    Default is False.

FetchStyle If True, the FetchCellStyle event is fired before data is displayed in any
cell of the specified column.    This event allows the programmer to
override the normal font and color attributes used for display.    Default is
False.

AllowFocus If False, the column cannot receive focus at run time.    Default is True.

Button If True, a dropdown button will be displayed in the upper right corner of
the current cell when it resides in the specified column.    When clicked,
the ButtonClick event is fired.    You can use this feature to initiate any
action in a cell, such as displaying a popup control for editing.    Default is
False.

ButtonPicture Specifies an alternate bitmap for the in-cell button.    You can use the
command button labeled Picture to display an open file dialog for bitmap
files.    The Reset button restores the default button picture.

DividerStyle This property sets the style of the divider at the right edge of the column. 
The default value is 2 - Dark gray line.

Alignment Sets the horizontal alignment of data displayed in the column.    For bound
columns, the default value depends on the data type of the field
(assuming that the layout was not modified at design time).    For
example, the default for a text or memo field is 0 - Left.

HeadAlignment Sets the horizontal alignment of the column header text.

Width This property specifies the column width in terms of the coordinate
system of the grid's container.

Color property page

The Color property page defines color values that apply to the grid as a whole (that is, the TDBGrid object).

The Properties list box specifies which color property you are setting.    You can set the color either by
choosing a value from the Color Palette list box or clicking the Edit Custom Color button.    The Color Set
combo box toggles between windows system colors and standard RGB colors.    The color properties you can
set are:

BackColor The background color of the grid's display area.

ForeColor The foreground color of the grid's display area.

EditBackColor The background color of the grid's edit window.

EditForeColor The foreground color of the grid's edit window.

HeadBackColor The background color of the column headers.

HeadForeColor The foreground color of the column headers.

InactiveBackColor The background color of the column headers when the grid is not active (does
not have focus).

InactiveForeColor The foreground color of the column headers when the grid is not active (does
not have focus).

SelectedBackColor The background color of selected rows and columns.

SelectedForeColor The foreground color of selected rows and columns.

Font property page

The Font property page defines font values that apply to the grid as a whole (that is, the TDBGrid object).

The Properties list box specifies which font property you are setting.    You can set either of the following font
properties:

Font The font to be used for grid's display area.

HeadFont The font to be used for the column headers.

A Font object is associated with the font property specified in the Properties list box.    The following controls
correspond to Font object properties (with the exception of Sample Text):

Font Specifies the typeface name of the font---the Name property of the Font
object.

Size Specifies the point size of the font---the Size property of the Font object.

Bold Specifies whether the font has the bold attribute enabled---the Bold
property of the Font object.

Italic Specifies whether the font has the italic attribute enabled---the Italic
property of the Font object.

Underline Specifies whether the font has the underline attribute enabled---the
Underline property of the Font object.

Strikeout Specifies whether the font has the strikeout attribute enabled---the
Strikethrough property of the Font object.

Sample Text This static area displays sample text that shows how text will appear
when the selected font is applied.    Whenever you change a font setting,

the Sample area is updated so that you can see the results of the change
before committing it with either the OK or Apply button.

Splits property page

This Splits property page defines the appearance and behavior of the splits in the grid.    The grid has one split
by default, so even if you do not create a grid with multiple splits, you may still need to set properties on this
page in order to configure the grid's behavior.

The Splits property page is used to set the following properties:

Split Selects the current split to be modified.    At run time, splits can only be
identified by a zero-based split index.

Caption Sets the caption string displayed above the column headers in a split.

Locked Determines if the user will be able to edit cells in this split.    This property
affects user interaction with the split only.    Columns within the split may
still be updatable from code, through another bound control, or by the
user in another split, even if Locked is set to True.    Default is False.

AllowColSelect When this property is True, the user may select columns at run time.   
This property affects user interaction at run time only.    You can always
select columns in code using the SelStartCol and SelEndCol properties. 
Default is True.

AllowColMove When this property is True, the user may move selected columns at run
time.    This property affects user interaction at run time only.    You can
always move a column in code using its Order property.    Default is False.

AllowFocus Use this property to determine whether cells in the split can receive focus
for user interaction at run time.    If the property is False, the split cannot
not receive focus.    Default is True.

AllowSizing When this property is True, the user may resize the split or create a new
split at run time.    This property affects user interaction at run time only.   
You can always resize a split or create a split using code.    Default is False.

AllowRowSizing If True, the user can adjust the row height at run time by dragging a row
divider in the record selector column.    Default is True.

AllowRowSelect If True, the user can select rows at run time by clicking in the record
selector column.    This property affects user interaction at run time only.   
You can always select rows in code by adding their bookmarks to the
SelBookmarks collection.    Default is True.

RecordSelectors If this property is True, the record selectors will appear at the left edge of
the split.    Default is True.

ExtendRightColumn If this property is True, the width of the rightmost column of the split will
be extended to cover the split's entire display area, otherwise a blank
area may exist between the rightmost column and the right edge of the
split.    Default is False.

FetchRowStyle If this property is True, the FetchRowStyle event will be fired whenever
the grid is about to display a row of data.    Default is False.

AlternatingRowStyle This property determines whether a grid or split displays odd-numbered
rows in one style and even-numbered rows in another.    Default is False.

ScrollGroup You can assign any positive integer to the ScrollGroup property of a split.
Splits with the same ScrollGroup values will scroll vertically
simultaneously.    Splits with different ScrollGroup values scroll
independently of each other.    Default is 1.

ScrollBars This property determines whether scroll bars exist in the split.    Default is
4 - Automatic.

MarqueeStyle This property determines how the current row and cell are highlighted
within the split.    Default is 6 - Floating Editor.

Size This property sets the width of the split according to the SizeMode
property.    Default is 1.

SizeMode This property determines how the Size property is used to determine the
actual size of a split.    Default is 0 - Scalable.

Styles property page

Use the Styles property page to create, modify, and delete styles at design time.

The Styles property page contains the following controls:

Style Name Specifies which style is being edited.    You can either select an existing
style from the dropdown list or type in the name of a new or existing
style.    When a grid is first created, it contains the following built-in styles:
Caption, EvenRow, Heading, HighlightRow, Normal, OddRow, and
Selected.    This corresponds to the style's Name property.   

Parent Style Specifies the name of the style from which the selected style inherits.   
For styles with no parent, such as the built-in Normal style, this combo
box displays (no style).    This corresponds to the style's Parent property.   

Add Creates a new style with the name specified in the Style Name combo
box.    Style names must be unique, so this button will be disabled if the
text in the Style Name combo box matches the name of an existing style. 
This button corresponds to the Add method of the Styles collection.   

Remove This button deletes the selected style.    The built-in styles cannot be
deleted, so this button will be disabled when the text in the combo box
matches one of the built-in styles.    This button will also be disabled when
you have entered text into the Style Name combo box that does not
match the name of an existing style.    This button corresponds to the
Remove method of the Styles collection.   

Reset This button resets the selected style so that it inherits all of its font, color,
and formatting attributes from its parent, if any.    For styles with no

parent, the Reset button causes the selected style to revert to the default
settings held by the Normal style when the grid was first created.    This
button corresponds to the Reset method of the Style object.

Sample This static area displays sample text that shows how a grid cell will
appear when the selected style is applied.    Whenever you change a font,
color, or alignment setting, the Sample area is updated so that you can
see the results of the change before committing it with either the OK or
Apply button.   

Font, Colors, Text These radio buttons govern which properties appear in the Properties
frame.    Since not all controls will fit on the Styles property page at one
time, these radio buttons are provided so that you can easily switch
between control groups.   

When the Styles property page is first displayed, the font controls are shown as in the preceding figure.   

Font Specifies the typeface name of the selected style's font.    This
corresponds to the Name property of the Font object associated with the
style.   

Font Style Specifies the attributes of the selected style's font.    This corresponds to
the Bold and Italic properties of the Font object associated with the
style.   

Size Specifies the point size of the selected style's font.    This corresponds to
the Size property of the Font object associated with the style.   

Strikeout Specifies whether the selected style's font has the strikeout attribute
enabled.    This corresponds to the Strikethrough property of the Font
object associated with the style.   

Underline Specifies whether the selected style's font has the underline attribute
enabled.    This corresponds to the Underline property of the Font object
associated with the style.   

When the Colors radio button is selected, the following controls are displayed in the Properties frame.

Property Name This combo box specifies the name of the style property being modified.   
It always contains two items corresponding to the style's BackColor and
ForeColor properties.   

System Color This combo box allows you to specify a system color value (instead of a
physical color) for the property shown in the Property Name combo box.   
Whenever you select an item in this combo box, any color button
selection is removed.   

Color Buttons These 16 buttons allow you to specify a physical color value (instead of a
system color) for the property shown in the Property Name combo box.   
Whenever you click one of these buttons, its border is highlighted and any
system color selection is cleared.   

When the Text radio button is selected, the following controls are displayed in the Properties frame.

Alignment Specifies the horizontal text alignment (left, center, right, or general) for
the selected style.    This control corresponds to the style's Alignment
property.   

Locked Specifies whether the selected style inhibits in-cell editing.    If checked,
editing is disallowed; if unchecked, editing is permitted.    This control
corresponds to the style's Locked property.   

WrapText Specifies whether the selected style causes cell text to be word wrapped. 
If checked, a line break occurs before words that would otherwise be
partially displayed; if unchecked, no line break occurs and text is clipped
at the cell's right edge.    This control corresponds to the style's WrapText
property.   

Values property page

The Values property page defines alternate text or graphics for underlying data values, as well as special data
presentation and user interaction settings, such as built-in combo boxes and radio buttons.

The Values property page contains the following controls:

Column Selects the current column to be modified.    Like the properties in the
Columns property page, the ValueItems collections is global, which
means that it cannot vary from one split to another.

Translate Determines whether data will be translated before it is displayed in the
column.    This control corresponds to the    Translate property of the
ValueItems collection.    Default is False.

AnnotatePicture Determines whether both text and graphics can be displayed in the same
cell.    This control corresponds to the AnnotatePicture property of the
ValueItems collection.    Default is False.

Validate If this property is True, users can only enter data that is defined in the
translation table.    Data not defined in the translation table will not be
accepted by the column.    This corresponds to the Validate property of
the ValueItems collection.    Default is False.

CycleOnClick If True, users can click on the cell to cycle through the data items defined
in the translation table.    This control corresponds to the CycleOnClick
property of the ValueItems collection.    Default is False.

Presentation This property allows you to display value items as a set of radio buttons, a
dropdown combo box, or text.    This control corresponds to the
Presentation property of the ValueItems collection.    Default is 0 -

Normal (normal text display).

MaxComboItems If the built-in combo box is used for display (Presentation is set to 2 -
Combo Box or 3 - Sorted Combo Box), this property defines the maximum
number of items that can be displayed in the combo box.    This control
corresponds to the MaxComboItems property of the ValueItems
collection.    Default is 5.

Value (First column of translation table)    Matches the underlying data value
from the database.    This will be the value stored in the database.    When
translating, this value must match the string value of the data source.   
Visual Basic arrays and some databases store a space, for a possible
minus sign, ahead of an integer value.    If your data source does this, you
may need to pad entries in this column with a single space.    This column
corresponds to the Value property of the ValueItem object.

DisplayValue (Second column of translation table)    Contains the translated    display
value, if desired.    For example, to display 1 as Yes, enter 1 in the Value
column, and Yes in the DisplayValue column.    This column corresponds to
the DisplayValue property of the ValueItem object.

Append This button moves the current row of the translation table to a new blank
row for entering additional data values.

Insert This button creates a new row above the current row of the translation
table for entering additional data values.

Remove This button deletes the current row from the translation table.

Picture To display a bitmap in the DisplayValue column, press this button to pop
up a file selection dialog.    Locate the bitmap you want to display, then
press the OK button in the dialog to load the bitmap into the DisplayValue
column.

Record Selectors Select a row in the translation table to specify a default value to display
whenever a data value not present in the ValueItems collection is
encountered.    The selected row corresponds to the DefaultItem
property of the ValueItems collection.

Reusable Layouts
True DBGrid provides a reusable layout facility that enables you to store one or more grid layouts in a binary
file, then recall them as needed at design time or run time.    With this feature, you can:

· Create repositories of grid layouts that you can reuse in future projects.

· Reduce the number of grids on a form by associating multiple layouts with a single grid control.

· Change the layout at run time with very little coding.

· Save end-user layout preferences to a file, then reload them the next time the application is run.

At design time, use the LayoutFileName and LayoutName properties to specify the current layout.    Then,
use the appropriate visual editing menu commands to load, save, or remove the current layout.

At run time, use the LayoutName property and LoadLayout method to restore a layout from the file
specified by the LayoutFileName property.    To add a new layout to the current layout file, or replace an
existing layout in the file, use the Add method of the Layouts collection.    To remove a layout from the
current layout file, use the Remove method of the Layouts collection.

{button ,JI(`',`Saving_the_current_layout')}    Saving the current layout
{button ,JI(`',`Loading_a_saved_layout')}    Loading a saved layout
{button ,JI(`',`Removing_a_saved_layout')}    Removing a saved layout

Saving the current layout

To save a grid layout to a file at design time, do the following:

1. Configure the grid to your liking as you normally would.

2. In the General property page or Visual Basic Properties window, set the LayoutFileName property to
the name of a layout file.    If the file does not exist, you will be asked if you want to create it.

3. In the General property page or Visual Basic Properties window, set the LayoutName property to the
string that you will use to identify the layout.

4. From the visual editing menu, choose the Save Layout command.    This is analogous to calling the
Add method of the Layouts collection, which uses the current value of the LayoutFileName
property at run time.

Loading a saved layout

To load a grid layout from a file at design time, do the following:

1. In the General property page or Visual Basic Properties window, set the LayoutFileName property to
the name of an existing layout file.

2. In the General property page or Visual Basic Properties window, set the LayoutName property to the
string that identifies the layout to be loaded.

3. From the visual editing menu, choose the Load Layout command.    This is analogous to calling the
LoadLayout method, which uses the current values of the LayoutName and LayoutFileName
properties at run time.

Removing a saved layout

To remove a grid layout from a file at design time, do the following:

1. In the General property page or Visual Basic Properties window, set the LayoutFileName property to
the name of an existing layout file.

2. In the General property page or Visual Basic Properties window, set the LayoutName property to the
string that identifies the layout to be removed.

3. From the visual editing menu, choose the Remove Layout command.    This is analogous to calling
the Remove method of the Layouts collection, which uses the current value of the LayoutFileName
property at run time.

Add-in Design Assistant
If you are developing in Visual Basic 5.0, you can use the True DBGrid Pro 5.0 Design Assistant to automate
repetitive tasks and perform customizations that would otherwise require coding.    For example, you can use
the Design Assistant to:

· Customize color, font, and style properties for individual columns.

· Quickly create fixed, nonscrolling columns using splits.

· Apply a property value to all columns at once.

The Design Assistant toolbar contains the following commands:

Fix Toggles the current column's nonscrolling state.

Apply Applies the current cell value to all columns.

Refresh Refreshes property values from the selected control.

Help Displays this help topic.

The Design Assistant was written using the extensibility model of Visual Basic 5.0 and is therefore not
available in Visual Basic 4.0.

{button ,JI(`',`Using_the_Design_Assistant')}    Using the Design Assistant
{button ,JI(`',`Setting_column_properties_with_the_Design_Assistant')}    Setting column properties with the
Design Assistant
{button ,JI(`',`Creating_fixed_nonscrolling_columns_with_the_Design_Assistant')}    Creating fixed, nonscrolling
columns with the Design Assistant
{button ,JI(`',`Refreshing_properties_in_the_Design_Assistant')}    Refreshing properties in the Design Assistant

Using the Design Assistant

The True DBGrid Pro 5.0 Design Assistant is copied to your system during installation.    To make it available
within the design-time environment, run Visual Basic 5.0 and select Add-In Manager... from the Add-Ins
menu.    The Add-In Manager dialog will appear.    Check the box labeled True DBGrid Pro 5.0 Design
Assistant, then press the OK button.    The True DBGrid Pro 5.0 Design Assistant icon will be placed on the
toolbar.    Click the icon to open the Design Assistant window.

When you select a TDBGrid or TDBDropDown control in a form, the Design Assistant displays a grid similar
to the Visual Basic Properties window.    The first column contains a list of Column object properties; the
remaining columns correspond to the current settings of these properties in the control that you selected.

As you navigate through the columns in the Design Assistant, the corresponding column in the selected
control is scrolled into view.

When you select a control that is neither a TDBGrid nor a TDBDropDown, or if no controls are selected, the
Design Assistant displays the following image, and all commands except Help are unavailable.

Setting column properties with the Design Assistant

You can change the properties of an individual column with the Design Assistant just as you would with the
grid's property pages.    Unlike the property pages, however, the Design Assistant provides the following
benefits:

· You can view the settings for multiple columns at once.

· You can change column properties such as BackColor, Font, and Style, which are not available in the
property pages.

· You can easily replicate a value across all columns using the Apply button, which is ideal for
properties such as DividerStyle and HeadAlignment.

To change the value of a property, type the new value into the appropriate grid cell, then press ENTER or move
to a different cell.    Or, if a column button appears within a cell, you can click it to display a drop-down list or
dialog box from which you can select a new value.

To close the drop-down list or dialog box without making a selection, hit the ESC key.
For color properties, the drop-down control will display either a list of system colors or standard colors, depending
upon the current value.    For example, if the BackColor property is set to the system window background color
(&H80000005), the following choices are displayed.

If you click the heading of the System Colors column, the color list toggles between system and standard
colors.

For font properties, a standard font dialog appears when you click the in-cell button.    Although you will
generally want to use the same font for all grid columns, you can use the Design Assistant to render
individual columns in bold or italic.

To apply a property value to all columns, navigate to the desired cell, then click the Apply button on the
Design Assistant toolbar.

Creating fixed, nonscrolling columns with the Design Assistant

To create a fixed, nonscrolling column using the property pages and visual editing menu, you need to perform
the following steps:

· Create a new split with the Split command on the visual editing menu.

· Set the Visible property of the column to be fixed to True in split 0, False in split 1.

· Set the Visible property of all other columns to False in split 0, True in split 1.

This can be a time-consuming process if there are many columns.    Fortunately, the Design Assistant makes it
easier:

· Navigate to the column to be fixed in the Design Assistant.

· Click the Fix button on the toolbar.

The Design Assistant will automatically create a new split in the target grid and set the Visible property of all
columns as described earlier.    The target grid will then look something like this.

You can repeat this procedure to make other columns nonscrolling.    Similarly, to make a nonscrolling column
scroll again:

· Navigate to the column in the Design Assistant.    Note that the Fix push button is depressed, which
indicates that the column is nonscrolling.

· Click the Fix button, which returns to its normal state.

The Design Assistant will automatically change the Visible property of the current column so that it is no
longer visible in the leftmost split, but is visible in all other splits.    If the last fixed column is moved in this
manner, the Design Assistant will also remove the empty split from the target grid.

Note that the Fix command is unavailable in the following cases:

· The selected control is a TDBDropDown, which does not support splits.

· A column is visible in more than one split.    In this case, the Design Assistant assumes that you want
to manage splits and column visibility yourself.

When the target grid contains more than one split, the Design Assistant toolbar displays a combo box for
selecting the current split, as shown in the previous illustration.    This is analogous to the split combo box on
the Layout property page.

Refreshing properties in the Design Assistant

If you change the value of a column property using the property pages, or add or remove columns in visual
editing mode, the Design Assistant does not update its display accordingly.    However, you can use the
Refresh button to ensure that the property values displayed are accurate.

TDBDropDown at Design Time
Since the TDBDropDown control is a subset of TDBGrid, the two controls have many properties in common
and are similar to work with at design time.    There are some differences, however, due to the reduced
functionality and user interface of TDBDropDown.

First, TDBDropDown does not support multiple splits.    Therefore, it does not have a Splits collection, which
means that:

· There is no Splits property page.    Properties that still make sense for a single-split control, such as
ScrollBars, were moved to the General property page.

· The split combo box was removed from the Layout property page.

· The visual editing menu commands Split and Remove were removed.

· You cannot create a new split interactively in visual editing mode.

Second, TDBDropDown does not support cell editing.    Therefore, the following features are no longer
accessible from the property pages:

· In-cell buttons.

· Some ValueItems properties, such as CycleOnClick and Validate.

· User permission properties, such as AllowAddNew, AllowDelete, and AllowUpdate.

Third, TDBDropDown does not support reusable layouts.    Therefore, it does not have a Layouts collection,
which means that:

· The layout controls were removed from the General property page.

· The layout commands were removed from the visual editing menu.

Finally, the Display property page is not used since the General property page is large enough to
accommodate the remaining properties.

Run Time Interaction
This chapter describes how users of your application interact with True DBGrid at run time.    You can give your
users the ability to perform any or all of the following:

· Navigate within the grid using the mouse or keyboard.

· Select rows or columns.

· Add, update, and delete records.

· Configure the grid's layout.

In the following sections, the properties and events associated with a particular user action are noted where
applicable.

{button ,JI(`',`Navigation_and_Scrolling')}    Navigation and Scrolling
{button ,JI(`',`Selection_and_Movement')}    Selection and Movement
{button ,JI(`',`Sizing_and_Splitting')}    Sizing and Splitting
{button ,JI(`',`Database_Operations')}    Database Operations
{button ,JI(`',`Drag-and-Drop_Behavior')}    Drag-and-Drop Behavior

Navigation and Scrolling
The following sections describe the grid's default navigation and scrolling behavior.    You always have
complete control over the behavior of the TAB and arrow keys as well as the position of the current cell when a
row or split boundary is reached.

{button ,JI(`',`Mouse_navigation')}    Mouse navigation
{button ,JI(`',`Clicking_the_rightmost_column')}    Clicking the rightmost column
{button ,JI(`',`IntelliMouse_support')}    IntelliMouse support
{button ,JI(`',`Keyboard_navigation')}    Keyboard navigation
{button ,JI(`',`Navigation_at_row_boundaries')}    Navigation at row boundaries
{button ,JI(`',`Navigation_at_split_boundaries')}    Navigation at split boundaries
{button ,JI(`',`Restricting_cell_navigation')}    Restricting cell navigation

Mouse navigation

When the user clicks a cell, that cell becomes current, and the RowColChange event is fired.    The only
exceptions to this are:

· If the user clicks a cell in a column or split that has the AllowFocus property set to False, and the cell
belongs to the current row, then the current cell does not change.

· If the user clicks a cell in a column or split that has the AllowFocus property set to False, and the cell
does not belong to the current row, then the current row changes, but the column with the focus
retains it.

· If the current cell has been modified, and the BeforeColUpdate event is canceled, then the current
cell does not change.

· If the current row has been modified, and the user clicks a cell in a different row, and the
BeforeUpdate event is canceled, then the current cell does not change.

The user can also use the mouse to manipulate the grid's scroll bars, bringing cells that lie outside the grid's
display area into view.    The vertical scroll bar governs rows; the horizontal scroll bar governs columns.    The
ScrollBars property controls which scroll bars are displayed, if any.

Scrolling always occurs in discrete cell units; the user cannot scroll on a per-pixel basis in either direction.

Note that the scroll bars do not change the current cell.    Therefore, the current cell may not always be
visible.

To respond to vertical scrolling operations in code, use the FirstRowChange event.    To respond to horizontal
scrolling operations in code, use the LeftColChange event.

Clicking the rightmost column

The grid always displays the leftmost column (the first visible column) in its entirety.    The rightmost column,
however, is usually clipped.    The behavior of the last partially visible column when clicked by the user is
controlled by the grid's ExposeCellMode property.

The default value for the ExposeCellMode property is 0 - Scroll On Select.    If the user clicks the rightmost
column when it is partially visible, the grid will scroll to the left to display this column in its entirety.    This may
be less desirable for users who commonly click on the grid to begin editing, as the grid will always shift to the
left when the user clicks on a partially visible rightmost column.   

If ExposeCellMode is set to 1 - Scroll On Edit, the grid will not scroll when the rightmost visible column is
clicked.    However, if the user attempts to edit the cell, then the grid will scroll to the left to display the
column in its entirety.    This is how Microsoft Excel works and is probably the most familiar setting to users.   

If ExposeCellMode is set to 2 - Never Scroll, the grid will not scroll to make the rightmost column visible,
even if the user subsequently attempts to edit the cell.    Note that editing may be difficult if only a small
portion of the column is visible.    The chief reason to use this setting is if you know there will always be
enough space available for editing (or if you disallow editing) and you never want the grid to shift
accidentally.

Note that the ExposeCellMode property controls the behavior of the rightmost visible column only when the
user clicks it with the mouse.    If    the rightmost column becomes visible by code (setting the grid's Col
property) or by keyboard navigation, then the grid will always scroll to make it totally visible.

IntelliMouse support

True DBGrid responds to Microsoft IntelliMouse activity as follows:

· If the user turns the wheel, the grid scrolls vertically by one row for each click of the wheel.

· If the user holds down the SHIFT key while turning the wheel, the grid scrolls vertically by one page for
each click of the wheel.

· If a horizontal scroll bar is present, and the user holds down the CTRL key while turning the wheel, the
grid scrolls horizontally by one column for each click of the wheel.    If there is no vertical scroll bar, the
user need not hold down the CTRL key.

· If the user holds down the SHIFT key while performing a horizontal scrolling operation, the grid scrolls
horizontally by one page for each click of the wheel.

In summary:

· Vertical scrolling takes precedence over horizontal scrolling, unless overridden with the CTRL key.

· The default scrolling increment is one row (or column), unless overridden with the SHIFT key, in which
case the grid scrolls by one page.

Keyboard navigation

By default, the user can navigate the grid with the arrow keys, the TAB key, the PGUP and PGDN keys, and the
HOME and END keys.

UP/DOWN ARROWS These keys move the current cell to adjacent rows.

LEFT/RIGHT ARROWS If the AllowArrows property is True (the default), these keys move the
current cell to adjacent columns.

If the AllowArrows property is False, then these keys move focus from
control to control and cannot be used to move between cells.

TAB If the TabAction property is 0 - Control Navigation (the default), the TAB
key moves focus to the next control on the form, as determined by the
tab order.

If the TabAction property is 1 - Column Navigation or 2 - Grid Navigation,
the TAB key moves the current cell to the next column, while SHIFT + TAB
moves to the previous column.    The differences between column and grid
navigation are discussed in the next section.

PGUP, PGDN These keys scroll the grid up or down an entire page at a time.    Unlike
the vertical scroll bar, the PGUP and PGDN keys change the current row by
the number of visible rows in the grid's display.    When paging up, the
current row becomes the first row in the display area.    When paging
down, the current row becomes the last row in the display area, including
the AddNew row.    The current column does not change.

HOME, END These keys move the current cell to the first or last column.    If necessary,
the grid will scroll horizontally so that the current cell becomes visible.   
The current row does not change.    If the current cell is being edited, HOME
and END move the insertion point to the beginning or end of the cell's text.

Navigation at row boundaries

At row boundaries, namely the first and last column, grid navigation depends on the WrapCellPointer
property.    The following explanation assumes that the AllowArrows property is True, and that the TabAction
property is set to either 1 - Column Navigation or 2 - Grid Navigation.

LEFT/RIGHT ARROWS If the WrapCellPointer property is True, the current cell wraps across
row boundaries.    If the current cell is in the last column, the RIGHT ARROW
key moves it to the first column of the next row.    If the current cell is in
the first column, the LEFT ARROW key moves it to the last column of the
previous row.

If the WrapCellPointer property is False (the default), these keys cannot
move the current cell at row boundaries.

TAB If the TabAction property is 1 - Column Navigation, the cell pointer does
not wrap to an adjacent row, and the WrapCellPointer property is
ignored.    If the current cell is in the last column, TAB moves focus to the
next control in the tab order.    If the current cell is in the first column,
SHIFT+TAB moves focus to the previous control in the tab order.

If the TabAction property is 2 - Grid Navigation and WrapCellPointer is
True, TAB and SHIFT+TAB move the current cell to the next or previous row.   
The current cell will not cross row boundaries if WrapCellPointer is False.

Navigation at split boundaries

At split boundaries, grid navigation depends on the TabAcrossSplits property as follows:

LEFT/RIGHT ARROWS If the TabAcrossSplits property is True, these keys move the current cell
across split boundaries to the next or previous split.

If the TabAcrossSplits property is False (the default), the behavior of
these keys at split boundaries will be the same as their behavior at row
boundaries.    Note that a split's AllowFocus property must be True in
order for these keys to move the current cell to that split.

TAB The TAB and SHIFT+TAB keys honor TabAcrossSplits as previously
described for the arrow keys.

Restricting cell navigation

If the current cell has been modified, you can use the BeforeColUpdate event to examine its value before
moving to another grid cell.    If the value entered is invalid, you can set the Cancel argument to True to
prevent the current cell from changing, and optionally beep or display an error message for the user.    The
BeforeColUpdate event provides a flexible way to validate user input and restrict cell navigation.

Private Sub TDBGrid1_BeforeColUpdate(_
 ByVal ColIndex As Integer, _
 OldValue As Variant, _
 Cancel As Integer)

 Dim CharCode As Integer
 If ColIndex = 1 Then
 ' Data in Column 1 must start with upper case
 CharCode = Asc(TDBGrid1.Columns(1).Text)
 If CharCode > 64 And CharCode < 91 Then Exit Sub

 ' Display warning message for user
 MsgBox "Last name must start with upper case"

 ' Data validation fails, prohibit user from moving to
 ' another cell
 Cancel = True
 End If
End Sub

Selection and Movement
The following sections describe how users can select columns, move selected columns, and select rows.    You
can always restrict any or all of these operations at design time or in code.

{button ,JI(`',`Selecting_columns')}    Selecting columns
{button ,JI(`',`Moving_columns')}    Moving columns
{button ,JI(`',`Selecting_rows')}    Selecting rows

Selecting columns

If the AllowColSelect property is True, the user can select an individual column or a range of columns with
the mouse.    Nonadjacent column selections are not supported.

When the user clicks a column header, that column is selected and highlighted, and any columns or rows that
were previously selected are deselected.    There are two ways for the user to select a range of columns:

1. After selecting the first column in the range by clicking its header, the user can select the last column
in the range by holding down the SHIFT key and clicking another column header.    If necessary, the
horizontal scroll bar can be used to bring additional columns into view.

2. Alternatively, the user can hold and drag the mouse pointer within the column headers to select
multiple columns.

The SelStartCol and SelEndCol properties will be adjusted to reflect the columns selected by the user.

You can prevent a column selection from occurring at run time by setting the Cancel argument to True in the
grid's SelChange event.

Moving columns

If the AllowColMove property is True, the user can move previously selected columns as a unit to a different
location by pressing the mouse button within the header area of any selected column.    The pointer will
change to an arrow with a small box at its lower right corner, and the divider at the left edge of the column
being pointed to will be enlarged and highlighted. Dragging the divider to the desired location and releasing
the mouse button will move the selected columns immediately to the left of the divider.    The moved columns
remain selected.

If the user drags the divider to a position within the currently selected range, no movement occurs.    Columns
that are not selected cannot be moved interactively.   

When a move occurs, the Order property is adjusted for all affected columns.    You can always rearrange
columns in code by modifying the Order property yourself.

You can prevent interactive column movement from occurring at run time by setting the Cancel argument to
True in the ColMove event.

Selecting rows

If the AllowRowSelect and RecordSelectors properties are True, the user can select one or more records
with the mouse.    Unlike column selections, nonadjacent row selections are supported.

When the user clicks the record selector for a row, that row is selected and highlighted, and any rows or
columns that were previously selected are deselected.    The newly selected row also becomes the current
row.

However, if the user holds down the CTRL key while making the selection, the current row does not change,
and any previously selected rows remain selected.    This technique also enables the user to select multiple
rows, one at a time.    Since selected rows do not have to be adjacent, the user can also operate the vertical
scroll bar to bring other rows into view if desired.

The user can also select a range of contiguous rows by clicking the record selector of the first row in the
range, then holding down the SHIFT key and clicking the record selector of the last row in the range.    If
necessary, the vertical scroll bar can be used to bring additional rows into view.

The user can deselect all rows by clicking a data cell or selecting columns.    Clicking the record selector of a
selected row does not deselect it.

The SelBookmarks collection will always be updated to reflect which rows are currently selected by the user. 
You can always select rows in code by adding bookmarks to the SelBookmarks collection.    Similarly, you
can deselect rows by removing bookmarks from this collection.

You can prevent a row selection from occurring at run time by setting the Cancel argument to True in the
grid's SelChange event.

Sizing and Splitting
The following sections describe how users can resize rows, columns, and splits.    You can always restrict any
or all of these operations at design time or in code.

{button ,JI(`',`Sizing_rows')}    Sizing rows
{button ,JI(`',`Sizing_columns')}    Sizing columns
{button ,JI(`',`Sizing_splits')}    Sizing splits

Sizing rows

If the AllowRowSizing property is True, the user can change the row height at run time.    When the user
points to a row divider in the record selector column, the pointer changes to a vertical double arrow, which
the user can drag to adjust the height of all rows.

Dragging the pointer upward makes the rows smaller; dragging it downward makes the rows larger.    All rows
in the grid will be resized to the same height; it is not possible to resize individual rows.    If the grid does not
display the record selector column (that is, the RecordSelectors property is False), users cannot
interactively change the row height.

The RowHeight property of the grid will be adjusted when the user completes the resize operation.

You can prevent row resizing from occurring at run time by setting the Cancel argument to True in the
RowResize event.    You can always change the RowHeight of the grid in code, even if AllowRowSizing is
False or you cancel the RowResize event.

Sizing columns

If the AllowSizing property is True for a column, the user can adjust the width of the column individually at
run time.    When the user points to the divider at the right edge of a column's header, the pointer changes to
a horizontal double arrow, which the user can drag to resize the column in question.

Dragging the pointer to the left makes the column smaller; dragging it to the right makes the column larger.   
The column's Width property will be adjusted when the user completes the resize operation.

If the grid does not display column headers (that is, the ColumnHeaders property is False), the horizontal
double arrow will appear when the pointer is over the column divider within the grid's data area.

If the user drags the pointer all the way to the left, the column retains its original Width property setting, but
its Visible property is set to False.    To make the column visible again, the user can point to the right side of
the divider of the column that preceded it. The pointer turns into a vertical bar with a right arrow.

Dragging the pointer to the right establishes a new column width and sets the column's Visible property back
to True.

You can prevent column resizing from occurring at run time by setting the Cancel argument to True in the
ColResize event.    You can always change the width of a column in code, even if AllowSizing is False for that
column.

Sizing splits

If the AllowSizing property is True for a split, the user can reposition its split bar.    If the split is the leftmost
sizable split of the grid, the user can also create a new split.    For details, see Creating and sizing splits.

Database Operations
The editing, deleting, and adding permissions granted to the user at run time are controlled by the
AllowUpdate, AllowDelete, and AllowAddNew properties.    The default values of these properties are:

AllowUpdate = True
AllowDelete = False
AllowAddNew = False

Note that these properties only control user interaction with the grid at run time.    They do not control
whether database operations can be performed by the Data control or other bound controls, or by your
application code.

{button ,JI(`',`Editing_data')}    Editing data
{button ,JI(`',`Adding_a_new_record')}    Adding a new record
{button ,JI(`',`Deleting_a_record')}    Deleting a record

Editing data

True DBGrid's AllowUpdate property must be True in order for the user to edit data in the grid.    The default
value is True.   

If the user moves to a cell and starts typing, the cell's data will be replaced by what is typed.    Alternatively,
clicking within the current cell will put the grid into edit mode (its EditActive property becomes True),
enabling the user to modify the cell's data.

While editing, the LEFT ARROW and RIGHT ARROW keys move the insertion point within the cell.    If the insertion
point is at the beginning or end of the cell's text, the LEFT ARROW and RIGHT ARROW keys will terminate editing
by moving to the adjacent cell.    The UP ARROW and DOWN ARROW keys terminate editing by moving the current
cell to the row above or below the current one.    The user can also end editing without moving the current cell
by pressing the ENTER key.

When one or more cells in a row have been modified, a pencil icon will appear in the record selector column
to indicate that data in the row has been changed.    The pencil icon does not mean that the grid's EditActive
property is True; it means that the grid’s DataChanged property is True.    To cancel the changes made to the
current cell, the user can press the ESC key.    In fact, before moving to another row, the user can revisit any
column within the current row and press the ESC key to restore the cell to its original value.    If the user
repeats this procedure for all modified cells in the row, the pencil icon in the record selector will disappear.

Moving to another row by clicking it, using the UP ARROW or DOWN ARROW keys, or by clicking the navigation
buttons of the Data control will update the modified record to the database.    If the update is successful, the
pencil icon will disappear.    If no grid columns have been modified, no update will occur when changing rows.

Adding a new record

True DBGrid's AllowAddNew property must be True in order for the user to add new records to the grid
interactively.    The default value is False.   

If the AllowAddNew property is True, an empty AddNew row, marked by an asterisk in the record selector
column, will be displayed after the last record.    The user can initiate an add operation by navigating to the
AddNew row, either by clicking it or by using the DOWN ARROW key, then typing new data.    The first character
typed will cause the grid to insert a blank row before the AddNew row.    The newly inserted blank row
becomes the current row.

At this point, the new row exists only in the grid---it does not have a bookmark, and it does not yet represent
a physical database record.    The new row is added to the underlying data source when the user navigates to
another data row or the AddNew row.

Deleting a record

True DBGrid's AllowDelete property must be True in order for the user to delete records through the grid.   
The default value is False.

To delete a record, the user selects the row to be deleted by clicking its record selector, then pressing the DEL
key.    Only one record can be deleted at a time.    The user cannot select multiple records and press the DEL
key to delete them all.

NOTE:    In order for the record to be deleted, the grid must have focus so it can receive the DEL key.    Clicking
the grid's record selector column does not set focus to the grid.    However, if you always want the grid to
receive focus when the user clicks the record selector column, set focus to the grid in the grid's SelChange
event:

Private Sub TDBGrid1_SelChange(Cancel As Integer)
 TDBGrid1.SetFocus
End Sub

Drag-and-Drop Behavior
Typically, implementing a drag-and-drop interface using a grid is a painstaking task, since you normally want
to drag data from a particular cell or row to another.    Visual Basic's drag-and-drop facilities work with entire
controls, but do not provide features for detecting which element of a control is involved.

True DBGrid has a special event, DragCell, designed to simplify the initiation of a drag operation.    DragCell
is called whenever the user attempts to drag data from a cell to another location; your code can respond
accordingly.    DragCell informs you of the split index, row bookmark, and column index of the cell being
dragged.    Typically, you will save the information so that it is available when the drag-and-drop operation
terminates.    At design time, be sure to change the grid's DragIcon property to a meaningful icon, since the
default behavior is to drag an outline of the grid.

NOTE:    The DragCell event will not fire for the current cell when the grid's MarqueeStyle property is set to
the default value of 6 - Floating Editor.    This is because the floating editor processes mouse events itself, as it
must handle insertion point movement and text selection.      For more information, see Highlighting the
Current Row or Cell.

For example, assume that you want to be able to drag a row of data elsewhere.    The following code in the
DragCell event handler starts the drag-and-drop operation:

Private Sub TDBGrid1_DragCell(ByVal SplitIndex As Integer, _
 RowBookmark As Variant, ByVal ColIndex As Integer)

' Set the current cell to the one being dragged
TDBGrid1.Col = ColIndex
TDBGrid1.Bookmark = RowBookmark

' Set up drag operation, such as creating visual effects by
' highlighting the cell or row being dragged.

' Use VB manual drag support (put TDBGrid1 into drag mode)
TDBGrid1.Drag = vbBeginDrag
End Sub

Note that the Col and Bookmark properties of the grid are set to reflect the cell that was dragged.    Once
this event is completed, Visual Basic takes over the drag operation (see the Visual Basic documentation for
the Drag method).    Place code in the DragDrop event of the destination to perform the actions related to
the drop.

If the destination of a drag operation is another True DBGrid control, and you want to drop data into a row or
cell, you need to consider the following:

· You may want to provide feedback for the user about which row or cell will be the target of the drop.

· You may want to respond to the DragDrop event by actually entering the data into the target cell or
row.

· The limitations of your data source may preclude some operations.    For example, you cannot insert a
row into the middle of a recordset or resultset---you can only modify existing records or append new
ones.    However, if your grid is populated from an array in unbound mode, you can insert a new row
into the array.

Often, the difficulty with implementing such operations on grids is that, given the mouse location, it is difficult
to find out which cell, row, or column you are about to drop into.    True DBGrid solves this problem by
providing the SplitContaining, ColContaining, and RowContaining methods, which translate mouse
coordinates into a grid location.

Suppose that you want to provide feedback to the user about which cell they are over.    The easiest way to do

this is in the DragOver event, which fires as the mouse moves over the destination grid.    Here's how you
would set the current cell pointer so that it tracks the dragging object:

Private Sub TDBGrid2_DragOver(Source As Control, _
 X As Single, Y As Single, State As Integer)
' Set current cell to "track" the dragging object
Dim overCol As Integer
Dim overRow As Long
overCol = TDBGrid2.ColContaining(X)
overRow = TDBGrid2.RowContaining(Y)
If overCol >= 0 Then TDBGrid2.Col = overCol
If overRow >= 0 Then TDBGrid2.Row = overRow
End Sub

When the drop occurs (detected in the DragDrop event), you can move the appropriate data into the
destination grid, or perform whatever action you want the drop to trigger.    For example, you can copy the
contents of the dragged cell (which was made current in the DragCell example presented earlier) to the
current cell in the destination grid:

Private Sub TDBGrid2_DragDrop(Source As Control, _
 X As Single, Y As Single)
TDBGrid2.Columns(TDBGrid2.Col).Value = _
 TDBGrid1.Columns(TDBGrid1.Col).Value
End Sub

You should also perform some clean-up when the drag-and-drop operation fails or the user completes the drop
outside the boundaries of the destination control.    Tutorial 14 demonstrates how to implement a drag-and-
drop interface from one grid to another.

Bound Mode
The easiest way to use True DBGrid is in bound mode, in which it communicates directly with an intrinsic or
external data control to retrieve and update data.    Visual Basic provides two data controls that work with True
DBGrid in this fashion:

· The built-in Data control, which is included in the standard toolbox.

· The Remote Data Control (RDC), which you add to a project just as you would any other ActiveX
control.

You can also use any other data control that adheres to the Microsoft data binding specifications, such as
Microsoft's ActiveX Data Connector (ADC), or APEX's MyData Control.

To use bound mode, set the DataMode property of the grid to 0 - Bound at design time, then set the
DataSource property of the grid to reference an intrinsic or external data control on the same Visual Basic
form.    You do not need to fully configure the data control at design time since True DBGrid automatically
responds to changes in the data source at run time.    Therefore, you can defer specifying a database table or
query until the application is running.

{button ,JI(`',`Binding_True_DBGrid_to_a_Data_Control')}    Binding True DBGrid to a Data Control
{button ,JI(`',`Visual_Basic_Data_Control_Considerations')}    Visual Basic Data Control Considerations
{button ,JI(`',`Remote_Data_Control_RDC_Considerations')}    Remote Data Control (RDC) Considerations
{button ,JI(`',`Unbound_Columns')}    Unbound Columns

Binding True DBGrid to a Data Control
You can make an association between a True DBGrid data bound control and a Visual Basic Data control by
setting the DataSource property of the grid after the Data control has been created on the same form.    This
is all that is required to make True DBGrid fully aware of the database in your application.

Once such a link exists, True DBGrid and the Data control automatically notify and respond to all operations
performed by the other, simplifying your application development:

· Once the grid has been associated with a Data control, you can retrieve the field layout of the
database at design time and use the property pages to customize the appearance of the grid.    For
more information, see Design Time Interaction.

· When you run your application, True DBGrid will automatically respond by displaying the contents of
the Recordset defined by the Data control's RecordSource property.    Data will be fully available at
run time, and can be edited as well.

True DBGrid will automatically update its display to reflect any changes made to the Data control.    However,
True DBGrid waits until the system is idle before performing such display updates, since your program may
need to perform other actions before the display is synchronized.

Visual Basic Data Control Considerations
This section gives an overview of how True DBGrid interacts with the built-in Data control of Visual Basic.   
Generally speaking, True DBGrid responds to external data controls in a similar manner; however, the
terminology and programming interface used in this section is specific to Visual Basic's intrinsic Data control.

{button ,JI(`',`How_True_DBGrid_reacts_to_Recordset_changes')}    How True DBGrid reacts to Recordset
changes
{button ,JI(`',`Interactions_between_True_DBGrid_and_the_Data_control')}    Interactions between True DBGrid
and the Data control
{button ,JI(`',`Using_True_DBGrid_with_a_Data_control_on_a_different_form')}    Using True DBGrid with a Data
control on a different form
{button ,JI(`',`Using_True_DBGrid_to_display_SQL_query_results')}    Using True DBGrid to display SQL query
results

How True DBGrid reacts to Recordset changes

When you bind a grid to a Data control, you are actually linking the grid to the underlying Recordset object,
which is managed by the Data control.    The Recordset object can be accessed directly using the Recordset
property of the Data control:

Data1.Recordset.MoveFirst

This statement positions the record pointer to the first record in the Recordset.

NOTE:    As of Visual Basic 4.0, the Data control does not support the outdated Dynaset object.    You can
create either a Table, Snapshot, or Dynaset-type Recordset using the Data control's RecordsetType
property.    By default, the Data control creates a Dynaset-type Recordset that is completely compatible with
the Dynaset object, so you should not have to modify any existing code.    Consult the Visual Basic Help for
more information.

You need not worry about keeping the grid synchronized with changes made to the Recordset, as this
happens automatically.    Modifying the Recordset is the preferred way to effect changes to the grid's display.

Here is how the grid responds to various operations performed on the Recordset associated with the Data
control:

Positioning The grid's current row will change in response to a successful invocation
of any of the following Recordset methods: Seek, Move, MoveFirst,
MoveLast, MoveNext, MovePrevious, FindFirst, FindLast, FindNext,
and FindPrevious.    If necessary, the grid will scroll to make the current
row visible.    The grid optimizes its response to these messages.    For
example, if your code performs a MoveFirst followed by 20 consecutive
MoveNext calls, the grid will position only once, to the 21st row.    Consult
the Visual Basic Help for more information on the Recordset object's
methods.

Update The Recordset object's Update method causes the grid to write any
changed data to the database.    The update may be canceled in the Data
control's Validate event.    After the database is updated, the grid will
clear the pencil icon in the record selector column.

Delete True DBGrid reacts to the Recordset object's Delete method by
removing the current row from the grid display.    However, the Delete
method does not change the current record, therefore the Bookmark
property of both the grid and the Recordset still refers to the record that
was just deleted.    At this point, there is no current row in the grid, and its
Row property returns -1.

Requery This method causes the grid to refetch and redisplay all data.    Any
modifications made to the grid's current row that have not been updated
to the database will be lost.    After the Requery method is executed, the
current cell will be the leftmost visible column of the first record, which
will be displayed at the upper left corner of the grid.

Interactions between True DBGrid and the Data control

The Data control's First, Last, Next, and Previous buttons can be used to navigate through the grid or any
other bound control.    When a Data control button is clicked, the new current row is indicated in the record
selector column of the grid:

· The First and Last buttons have the same effect as the MoveFirst and MoveLast methods of the
Recordset.    The grid will position to the first or last row.

· The Next and Previous buttons have the same effect as the MoveNext and MovePrevious methods
of the Recordset.    The grid will move forward or backward by one row.

If grid data has been edited, moving the record pointer using the Data control will automatically trigger an
update to the database.

The grid responds to the Data control's Refresh, UpdateRecord, and UpdateControls methods as follows:

Refresh The grid refetches and redisplays all data.    Any modifications made to
the grid's current row that have not been updated to the database will be
lost.    After the refresh, the current cell will be the leftmost visible column
of the first record, which will be displayed at the upper left corner of the
grid.   

UpdateRecord If data in the current row has changed, the modified data in the grid will
be written to the database without firing the Data control's Validate
event.    The pencil icon in the record selector column will disappear.    The
current cell and the grid display are not changed.

UpdateControls Any modifications made to the grid's current row that have not been
updated to the database will be discarded and data will be refreshed from
the database.    The current cell and the grid display are not changed.   
This method can be used to cancel an AddNew or Edit operation.

Using True DBGrid with a Data control on a different form

Using the Data control's Recordset property, you can effectively bind True DBGrid or any other bound control
on one form to a Data control on another form.    Strictly speaking, you cannot directly bind a grid to a Data
control on another form.    For example, assume you have a grid on Form2 and you would like it to display data
from the Recordset of Data1, which is on Form1.    You need to first bind the grid to a Data control (Data2) on
Form2.    Form2.Data2 is not connected to a database.    Instead, the Recordset of Form2.Data2 is set to the
Recordset of Form1.Data1:

Form2.Data2.DatabaseName = Form1.Data1.DatabaseName
Set Form2.Data2.Recordset = Form1.Data1.Recordset

The grid on Form2 will work as if it were directly bound to Form1.Data1.    When you move or update records
through Form1.Data1, the grid on Form2 will respond accordingly.    Conversely, if you move or update records
in the grid, all controls on Form1 that are bound to Form1.Data1 will respond.

Using True DBGrid to display SQL query results

True DBGrid can automatically configure itself to changes in the data control's Recordset.    This feature is
very useful for displaying the results of ad-hoc SQL queries.    If the grid does not have a layout defined, it will
detect any change in the Data control's Recordset and display the new query result set automatically---no
code is necessary to tell the grid what to do.    You can create very powerful user interfaces using these
automatic features of the grid.    Tutorial 2 describes this feature in detail and also illustrates a few interesting
and useful SQL statements.

Remote Data Control (RDC) Considerations
The Remote Data Control (RDC), which is used to connect to ODBC-compliant data sources, can also be used
in True DBGrid's bound mode.    Alternatively, you can work with the Remote Data Objects (RDO), and use the
rdoResultset object to populate a True DBGrid control in one of the unbound modes.

APEX provides several sample programs that demonstrate how to use RDC and RDO with True DBGrid.    You
can download these programs from the APEX Web site at http://www.apexsc.com.

Unbound Columns
Normally, True DBGrid automatically displays data from bound database fields.    However, you may need to
augment the set of fields present in your layouts with columns derived from database fields, or columns
which are unrelated (or only loosely related) to database information.    For example, if your database contains
a Balance field, you may instead want to display two columns, Credit and Debit, to show positive and
negative numbers separately.    Or, you may want to look up data in another database, or convert field data to
some other form, such as mapping numeric codes to textual descriptions.

To accomplish such tasks you can use unbound columns.    The term unbound column refers to a column that
is part of a bound grid, but is not tied directly to a database field.    A bound grid has its DataMode property
set to 0 - Bound, and its DataSource property set to the name of a Visual Basic Data control (or a Remote
Data Control).    Unbound columns are not used in any of the unbound modes.

Columns that do not have the DataField property set (that is, the DataField property is equal to an empty
string), but do have the column Caption property set are considered unbound columns.    The grid will request
data for these columns through the UnboundColumnFetch event.

Columns with their DataField property set will be bound to the underlying Recordset if the DataField
property is the same as one of the fields of the Recordset.

Columns with their DataField property set to a value that is not in the Recordset are ignored for the
purposes of fetching data.    Similarly, columns that have no value for both the DataField and Caption
properties set are also ignored.    Values entered into the grid for these columns will not be cached by the grid,
and will therefore disappear when the row is scrolled out of view.

{button ,JI(`',`Creating_unbound_columns')}    Creating unbound columns
{button ,JI(`',`Implementing_unbound_columns_using_Recordset_clones')}    Implementing unbound columns
using Recordset clones
{button ,JI(`',`Implementing_unbound_columns_using_cell_access_methods')}    Implementing unbound
columns using cell access methods
{button ,JI(`',`Implementing_multiple_unbound_columns')}    Implementing multiple unbound columns
{button ,JI(`',`Updating_unbound_columns')}    Updating unbound columns
{button ,JI(`',`Editing_unbound_columns')}    Editing unbound columns

Creating unbound columns

The first step in using an unbound column is creating the column itself.    This may be done at design time by
choosing either the Append or Insert command from the grid's visual editing menu.    At run time, unbound
columns may be added using the Add method of the Columns collection.    The column must be given a
name by setting its Caption property.    At design time, this is done using the Columns property page.    At run
time, the Caption property of the appropriate Column object is set.    When these actions are performed at
run time, new columns are not considered as unbound columns until the grid's ReBind method is executed.

NOTE: If you attempt to insert an unbound column in code, you may need to use the HoldFields method to
ensure that the column appears at the desired position within the grid:

Dim Col As TrueDBGrid50.Column

With TDBGrid1
 Set Col = .Columns.Add(1)
 Col.Visible = True
 Col.Caption = "Unbound"
 .HoldFields
 .ReBind
End With

When the grid needs to display the value of an unbound column, it fires the UnboundColumnFetch event.   
This event supplies the user with a bookmark and a column index as the means of identifying the grid cell
being requested.    The third argument to the event is a Variant which by default is Null, but can be changed to
any desired value, and will be used to fill the contents of the cell specified by the given bookmark and column
index.

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

When Recordset data is retrieved through the data control, the data is cached by the grid to allow smooth
scrolling operations and rapid display.    As a result, many rows must be fetched at one time so that they are
readily available for display.    Internally, the grid uses a Recordset clone when it requests data, thus allowing
data to be retrieved without changing the current row of the bound Recordset managed by the Data control. 
Why is this important?    The reason is that UnboundColumnFetch may need to fetch data unrelated to the
current row position.

For example, suppose a row is being edited and the user scrolls the grid vertically or horizontally.    To update
the display, the grid will need to fetch the new data that is scrolled into view for all rows and columns on the
face of the grid.    However, changing the current row would cause an unwanted update to occur.    For this
reason, the grid will not allow the current row of the grid or Recordset to be changed during the
UnboundColumnFetch event, even through implicit means such as the FindFirst method of the
Recordset.    Similarly, other Recordset operations are prohibited as well during the course of this event.

Given these restrictions, how do you obtain Recordset data in order to set the values of the unbound
column?    There are several ways, all of which involve the use of a Recordset clone.

Implementing unbound columns using Recordset clones

The simplest way to gather the data from other columns is to clone the Recordset, move to the specified
bookmark, and get the data from the clone, as in the following example:

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 Dim myclone As Recordset
 Set myclone = Data1.Recordset.Clone()

 myclone.Bookmark = Bookmark
 Value = myclone.Fields(Col)
End Sub

Although this example is functional, it would be more efficient to make the clone a global object, as it would
no longer be necessary for Visual Basic to create it with each call to the event.    A good place to do this is in
the Form_Load event, which fires before the grid is displayed:

Dim ucfClone As Recordset ' Global UnboundColumnFetch clone

Private Sub Form_Load()
 Data1.Refresh ' Make sure the recordset is created first
 Set ucfClone = Data1.Recordset.Clone()
End Sub

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 ucfClone.Bookmark = Bookmark
 Value = ucfClone.Fields(Col)
End Sub

You can speed things up even more by using a Field object, creating it from the clone's Fields collection.   
This is faster because Visual Basic does not need to locate the correct field each time the event is called:

Dim ucfClone As Recordset ' Global UnboundColumnFetch clone
Dim ucfField As Field ' Global UnboundColumnFetch field

Private Sub Form_Load()
 Data1.Refresh
 Set ucfClone = Data1.Recordset.Clone()
 Set ucfField = ucfClone.Fields(1)
End Sub

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 ucfClone.Bookmark = Bookmark
 Value = ucfField
End Sub

After the ucfField object is initialized in Form_Load, it will always contain the data in Field 1 of the current
row of the clone.    If the underlying database field allows null values, you should test the Field object first
before assigning its data to the Value argument:

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _

 ByVal Col As Integer, Value As Variant)

 ucfClone.Bookmark = Bookmark
 If Not IsNull(ucfField) Then Value = ucfField
End Sub

Using Field objects is an elegant approach.    Not only is it more efficient, but it frees you from keeping track
of collection indexes throughout your code.    For example, given a Rectangle table containing Length and
Width fields, the following code implements an unbound column that uses Field objects to calculate the area:

Dim ucfClone As Recordset ' Global UnboundColumnFetch clone
Dim ucfLength As Field
Dim ucfWidth As Field

Private Sub Form_Load()
 Data1.Refresh
 Set ucfClone = Data1.Recordset.Clone()
 Set ucfLength = ucfClone.Fields("Length")
 Set ucfWidth = ucfClone.Fields("Width")
End Sub

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 ucfClone.Bookmark = Bookmark
 Value = ucfLength * ucfWidth ' Calculate "Area" column
End Sub

Implementing unbound columns using cell access methods

Using Recordset clones is the preferred way to handle the UnboundColumnFetch event.    However, if the
grid is bound to a data control that does not support clones, such as the Microsoft Remote Data Control (RDC),
you can derive cell values using the Column object methods CellText and CellValue.

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 Value = TDBGrid1.Columns(1).CellText(Bookmark)
End Sub

Note that these methods are not as efficient as using your own clone.    This is because they always create a
new clone (internal to the grid), get the value, then destroy the clone.    However, at times using CellText or
CellValue may be preferable for the sake of simplicity.

Using a global clone can become complicated when the data control is refreshed frequently.    Refreshing the
data control rebuilds the Recordset, meaning that the data control's bookmarks are no longer the same as
the bookmarks of the clone.    Thus, re-cloning and re-establishing the field variables is necessary, or else the
clone will continue to access the data of the old Recordset.    As this may be a cumbersome process, you
may find that the simplicity of CellText and CellValue is a workable alternative.

Finally, please note that CellText and CellValue cannot be used to retrieve the values of other unbound
columns within the context of the UnboundColumnFetch event.    Attempts to do so will always return an
empty string (CellText) or Null (CellValue).    The grid has been designed this way to avoid infinite recursions
of UnboundColumnFetch events when two unbound columns reference one another.

Implementing multiple unbound columns

So far, our examples have demonstrated the UnboundColumnFetch event using only a single unbound
column.    Suppose you want to have more than one?    Since the UnboundColumnFetch is fired for each
unbound column of each row, only one column value may be set at a time, and each column must be
identified for the value to be properly determined.    The second UnboundColumnFetch argument, Col, is
used to identify the column of the grid for which the value is required.

Returning to the Rectangle example, the following code also displays the perimeter of the rectangle in
addition to its area:

Dim ucfClone As Recordset ' Global UnboundColumnFetch clone
Dim ucfLength As Field
Dim ucfWidth As Field

Private Sub Form_Load()
 Data1.Refresh
 Set ucfClone = Data1.Recordset.Clone()
 Set ucfLength = ucfClone.Fields("Length")
 Set ucfWidth = ucfClone.Fields("Width")
End Sub

Private Sub TDBGrid1_UnboundColumnFetch(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

 ucfClone.Bookmark = Bookmark

 Select Case TDBGrid1.Columns(Col).Caption
 Case "Area"
 ' Calculate "Area" column of grid
 Value = ucfLength * ucfWidth
 Case "Perimeter"
 ' Calculate "Perimeter" column of grid
 Value = 2 * (ucfLength + ucfWidth)
 End Select
End Sub

Please note the use of the column captions to identify the actual column for which the value is to be set.    The
Caption property (instead of the index number) is sometimes necessary to identify the proper column.    If
columns are added or removed at run time, each column's index number could change, resulting in different
values of Col for the Area column.    Since the caption text is much less ambiguous than the column number,
code is easier to read, more reliable, and self-adjusting to column layout changes.

Updating unbound columns

In most cases, you will want unbound columns to be read-only, as the values are derived from other data in
the grid.    In these cases, you should set the Locked property of the column to True.

If Locked is False and updates are allowed, the user can edit the values of an unbound column, even if the
underlying Recordset is not updatable.    However, if the underlying Recordset is not updatable, the
unbound column's Locked property will automatically be set to True at runtime, regardless of the design time
setting in the property pages.    Therefore, for editing to be allowed, you must set the unbound column
object's Locked property to False at run time using code.

If editing of an unbound column occurs, the row will be marked as dirty (a pencil icon will be shown in the
record selector column) and the update sequence will be performed as usual.    However, the grid does not
know what to do with the modified data, since there is no database field in which to store it.    Therefore, you
must put code in the BeforeUpdate and AfterUpdate events (or BeforeInsert and AfterInsert for
AddNew operations) to properly store the edited values.    These values may be stored in any manner desired,
including another database table.

BeforeUpdate can be used to cancel the update operation.    Therefore, if the unbound column is to be used
in cooperation with another database, the update of the unbound column should be performed in
BeforeUpdate.    If the operation fails, then the event should be canceled.    However, if the operation
succeeds, then the bound update should be allowed to proceed.    The bound update may then fail, hence any
database actions associated with unbound columns would best be handled on a transactional basis.

If the bound update succeeds, the AfterUpdate event is fired, and the unbound column transaction should
be committed.    If the bound update fails, the unbound column transaction should be rolled back in either the
grid's or the Data control's Error event, or within a trappable error handler, depending on how the update
was initiated.    If transactions are not available, then you must store the original unbound column values prior
to the update, then perform another update to restore these values should the bound update fail.

Editing unbound columns

Another technique for updating an unbound column is to use the AfterColUpdate event to adjust the value
of other (bound) columns.    For example, imagine a pair of columns for Debit and Credit, as shown in this
portion of a grid display:

Assume that there is no database field for these, but that they are unbound columns which derive their value
from a single Balance column, which is either positive or negative.    From the user's perspective, it would be
desirable to edit these values directly; from your perspective, it would be desirable to have the grid update
the dependent Balance column automatically.

True DBGrid makes such tasks easy.    Here's the code you would put in the grid's AfterColUpdate event to
cause either column to change the Balance column when updated:

Private Sub TDBGrid1_AfterColUpdate(ByVal ColIndex As Integer)
 Dim Cols As Columns
 Set Cols = TDBGrid1.Columns

 Select Case Cols(ColIndex).Caption
 Case "Debit"
 Cols("Balance").Value = -Cols(ColIndex).Value
 Case "Credit"
 Cols("Balance").Value = Cols(ColIndex).Value
 End Select
End Sub

Notice that, when updating these columns, the code actually changes the value of the Balance column, which
is both bound and invisible.

Storage Mode
True DBGrid supports an array-based unbound mode, or storage mode, that does not rely upon the Visual
Basic Data control or any other data provider that follows the Microsoft data binding specifications.    Instead,
storage mode uses an APEX XArray object as a data source.    A 32-bit version of XArray is included with True
DBGrid (and also with APEX's MyData Control product).

To use storage mode, set the DataMode property of the grid to 4 - Storage at design time.    In code,
redimension and populate an XArray object with your data just as you would a Visual Basic array, then assign
the XArray object to the Array property of the grid.    The data will then be maintained and exchanged
between the grid and the XArray object automatically.    There are no unbound events to write, making this
mode the easiest to use.

Storage mode was created to deliver ease of use without sacrificing the power and flexibility that you expect
from True DBGrid.    When using this mode, the index of the first dimension of the XArray object serves as a
bookmark to uniquely identify rows.    This means that all of the grid's bookmark-related properties, methods,
and events (Bookmark, FirstRow, GetBookmark, FetchCellStyle, and others) work the same in storage
mode as in any other DataMode, either bound or unbound.

NOTE: DataMode 4 - Storage is not available in any of the 16-bit versions of True DBGrid (since there is no
16-bit version of the XArray object).

{button ,JI(`',`When_to_Use_Storage_Mode')}    When to Use Storage Mode
{button ,JI(`',`Using_the_XArray_Object')}    Using the XArray Object
{button ,JI(`',`Interactions_between_True_DBGrid_and_XArray')}    Interactions between True DBGrid and
XArray
{button ,JI(`',`Storage_Mode_Example')}    Storage Mode Example

When to Use Storage Mode
If you need to display and manipulate two-dimensional array data, either one of the following DataMode
settings is ideally suited to the task:

3 - Application, which fires events on a cell-by-cell basis,

4 - Storage, which communicates directly with an XArray object.

The choice of which one to use depends upon the target operating system.    If you need to deliver both 16-
and 32-bit versions of your programs, application mode is recommended, since storage mode is only available
in the 32-bit versions of True DBGrid.    If you do not need to support 16-bit platforms, storage mode is
recommended, since it is easier to use.

Using the XArray Object
XArray is an ActiveX object designed as a drop-in replacement for Visual Basic variant arrays.    The XArray
object, which can be used outside the scope of True DBGrid, is functionally similar to a standard array but
provides additional flexibility.    For example, data is automatically preserved when redimensioning, inserting
and removing indexes, and inserting and removing dimensions (up to 10).

Once created, an XArray object is assigned to a TDBGrid control via the grid's Array property (usually in the
Form_Load event).    You can create as many XArray objects as you want, then attach them to one or more
grids as needed.

Future versions of XArray will provide additional features, such as sorting, while retaining the same interface
with True DBGrid and other APEX bound controls.

{button ,JI(`',`Adding_XArray_to_a_Visual_Basic_project')}    Adding XArray to a Visual Basic project
{button ,JI(`',`Creating_an_XArray_object')}    Creating an XArray object
{button ,JI(`',`Redimensioning_an_XArray_object')}    Redimensioning an XArray object
{button ,JI(`',`Populating_an_XArray_object')}    Populating an XArray object
{button ,JI(`',`Attaching_an_XArray_object_to_a_True_DBGrid_control')}    Attaching an XArray object to a True
DBGrid control

Adding XArray to a Visual Basic project

From the Project menu in Visual Basic 5.0 (or the Tools menu in Visual Basic 4.0), select References... to
display a list of available type library references.    Select the check box labeled APEX XArray Object
(XARRAY32.OCX), then press the OK button.

Creating an XArray object

XArray has no design time interface or persistent properties.    All XArray operations are performed in code
at run time.

To create an XArray object at the start of an application, add the following line to the general declarations
section of a form:

Dim MyArray As New XArray

To declare an XArray object variable without creating it, omit the New keyword.    Use the Set statement to
create the XArray in code:

Dim MyArray As XArray
Set MyArray = New XArray

Redimensioning an XArray object

Before an XArray object can be used, you must define its dimensions in code with the ReDim method, which
is similar to its counterpart in Visual Basic.    For example, the following line of code sets up a two-dimensional
array with 20 rows (indexed from 1 to 20) and 4 columns (indexed from 0 to 3):

MyArray.ReDim 1, 20, 0, 3

You can use the Count property to determine the number of elements in a given dimension:

Debug.Print MyArray.Count(1) ' prints 20
Debug.Print MyArray.Count(2) ' prints 4

Note that the index passed to the Count property is one-based.    To determine the valid indexes for a given
dimension, you can use the LowerBound and UpperBound properties:

Debug.Print MyArray.LowerBound(1) ' prints 1
Debug.Print MyArray.UpperBound(1) ' prints 20
Debug.Print MyArray.LowerBound(2) ' prints 0
Debug.Print MyArray.UpperBound(2) ' prints 3

When an XArray object is connected to a TDBGrid control, its first dimension always specifies the row index
from the grid's perspective.    Or, to put it another way, the set of allowable bookmarks ranges from
LowerBound(1) to UpperBound(1).

Likewise, the second dimension of an XArray object always specifies the column index from the grid's
perspective.    Or, to put it another way, the grid addresses data columns in the XArray using indexes that
range from LowerBound(2) to UpperBound(2).    Therefore, if your application manipulates columns in code, it
is a good idea to make the second XArray dimension zero-based instead of one-based.    That way, you can
use the same indexes to refer to both grid columns and XArray columns.

Although XArray supports up to 10 dimensions, when used in conjunction with True DBGrid's storage mode
(DataMode 4), only two-dimensional and one-dimensional arrays make sense.

Populating an XArray object

To set or retrieve an element of an XArray object, use the Value property:

MyArray.Value(x, y) = "A string"
s$ = MyArray.Value(x, y)

Since the Value property is the default property for XArray, the preceding statements can be shortened to:

MyArray(x, y) = "A string"
s$ = MyArray(x, y)

Attaching an XArray object to a True DBGrid control

Since XArray objects can only exist at run time, you must write code to associate them with a TDBGrid or
TDBDropDown control.    This is done by setting the Array property:

TDBGrid1.Array = MyArray

Once this association is made, the grid will store a reference to the XArray object as query it as needed to
determine the contents of individual cells.    When the Array property is set, the grid also determines the
number of rows (the first dimension) in an XArray object and calibrates the vertical scroll bar accordingly.

However, the grid will never adjust its column layout to match the number of columns (the second dimension)
in an XArray object.    As with other unbound data modes, you must define the column layout yourself at
design time, run time, or a combination of both.    At run time, you can use the following code to clear the
existing columns from a grid, then create a new one for each XArray column:

Dim C As TrueDBGrid50.Column
With TDBGrid1.Columns
 While .Count > 0
 .Remove 0
 Wend
 While .Count < MyArray.Count(2)
 Set C = .Add(0)
 C.Visible = True
 Wend
End With

Note that newly created columns are invisible by default, so you must explicitly set their Visible property to
True.

Interactions between True DBGrid and XArray
Add, update, and delete operations performed through True DBGrid's user interface or its properties and
methods are automatically reflected in the attached XArray object.    For example, if the following code is
executed:

With TDBGrid1
 .Text = "New value"
 .Update
End With

then the current cell of the grid and the corresponding element of the associated XArray object are
automatically updated, and the following expression will be True (assuming that the second array dimension
is zero-based):

MyArray(TDBGrid1.Bookmark, TDBGrid1.Col) = "New value"

However, the reverse is not true.    If you insert or delete XArray rows or columns directly in code, or even
change the value of a single element, the grid does not receive any notifications from the XArray.   
Therefore, you must either Refresh, ReBind, or ReOpen the grid in order to update the display.

You can follow two rules of thumb to ensure that the display is updated properly:

1. If you insert or delete XArray columns in code, you are changing the structure of the underlying data
source.    Therefore, you should invoke the grid's ReBind or ReOpen method.

2. If you insert or delete XArray rows in code, or change the value of an array element, you are changing
the underlying data source without altering its structure.    Therefore, you should invoke the grid's
Refresh method.

{button ,JI(`',`Updating_XArray_elements')}    Updating XArray elements
{button ,JI(`',`Inserting_and_removing_XArray_rows')}    Inserting and removing XArray rows
{button ,JI(`',`Inserting_and_removing_XArray_columns')}    Inserting and removing XArray columns

Updating XArray elements

With the XArray object, you always have instant access to all "records" in your "database,"    so you can
update cells in different rows directly without having to move the current record pointer, initiate edit mode,
modify one or more cells, then update the changed record.    For this reason, it is usually more convenient to
make changes to XArray directly, then use the grid's Refresh method to update the display.

It is important to note that when you change one or more elements in an XArray, you must refresh the grid,
or else the display will not reflect the correct data.    Consider the following example, which implements a
command button that clears the contents of the current grid row, then sets focus to the grid:

Private Sub Command1_Click()
 Dim row As Long, col As Integer
 With TDBGrid1
 row = .Bookmark
 With MyArray
 For col = .LowerBound(2) To .UpperBound(2)
 .Value(row, col) = ""
 Next col
 End With
 .Refresh
 .EditActive = True
 .EditActive = False
 .SetFocus
 End With
End Sub

Note that the Bookmark property of the grid is used as a row index for the XArray object.    The loop that
clears the current row also uses the LowerBound and UpperBound properties to iterate over the columns
(second dimension) of the array.    This technique will work with any XArray, although you can substitute
integer constants if the array bounds are known in advance.

After the array elements are cleared, the grid's Refresh method is invoked, causing the non-current cells in
the current row to be repainted as empty.    Note that if the MarqueeStyle property is set to its default value
of 6 - Floating Editor, the Refresh method does not clear the text within the floating editor window.   
However, by setting the EditActive property to True, then False, you can clear the floating editor as well.

Inserting and removing XArray rows

When inserting rows, as when updating cells, you must Refresh the grid afterwards, since it does not receive
any notifications from the XArray object.    You do not need to perform a ReBind, since the underlying
database structure has not changed.

The following example implements a command button that inserts a new row before the current grid row,
then sets focus to the grid:

Private Sub Command1_Click()
 With TDBGrid1
 MyArray.Insert 1, .Bookmark
 .Refresh
 .EditActive = True
 .EditActive = False
 .SetFocus
 End With
End Sub

As with the previous example, which clears the contents of the current grid row, the EditActive property is
used to clear the text within the floating editor window when the MarqueeStyle property is set to its default
value of 6 - Floating Editor.

To delete the current row, you could use the Delete method of XArray, then refresh the grid.    However, the
Delete method of the grid provides a more direct way of accomplishing the same task.

Inserting and removing XArray columns

If you use the Insert or Delete methods of XArray to add or remove columns (that is, the second
dimension), the grid will not automatically insert or delete its own columns.    You must write code to do this,
as in the following example, which implements a command button that inserts a new column before the
current one:

Private Sub Command1_Click()
 Dim C As TrueDBGrid50.Column
 With TDBGrid1
 MyArray.Insert 2, .Col
 Set C = .Columns.Add(.Col)
 C.Visible = True
 .ReBind
 .SetFocus
 End With
End Sub

Note the use of the grid's ReBind method rather than the Refresh method.    This is necessary because the
addition or deletion of a column constitutes a change in the underlying database structure as opposed to a
change in data values.

Storage Mode Example
For an example of how to use True DBGrid in storage mode (DataMode 4) using an XArray object as the
data source, see Tutorial 18 or examine the UNBOUND4.VBP sample, which can be found in the TUTORIAL\
UNBOUND4 subdirectory of the True DBGrid installation directory.

Application Mode
True DBGrid supports a cell-based unbound mode, or application mode, that does not rely upon either the
Visual Basic Data control or the APEX XArray object.    Instead, application mode fires events whenever the
grid needs to retrieve or update the value of an individual cell.    Your application is in total control of the data;
no intermediate objects are involved.

To use application mode, set the DataMode property of the grid to 3 - Application at design time.    In code,
write handlers for the ClassicRead and UnboundGetRelativeBookmark events.    If users of your
application need the ability to add, update, and delete records, you will have to write handlers for the
ClassicAdd, ClassicWrite, and ClassicDelete events as well.

Application mode was modeled after the Fetch and Update events of APEX's TrueGrid Pro (VBX) product.   
However, unlike TrueGrid Pro, which identifies rows with absolute row numbers, True DBGrid identifies rows
with bookmarks.    This subtle change provides uniformity across data access modes, and ensures that all of
the grid's bookmark-related properties, methods, and events (Bookmark, FirstRow, GetBookmark,
FetchCellStyle, and others) work the same in application mode as in any other DataMode, either bound or
unbound.

{button ,JI(`',`When_to_Use_Application_Mode')}    When to Use Application Mode
{button ,JI(`',`How_Application_Mode_Works')}    How Application Mode Works
{button ,JI(`',`Application_Mode_Bookmarks')}    Application Mode Bookmarks
{button ,JI(`',`Application_Mode_Events')}    Application Mode Events
{button ,JI(`',`Application_Mode_Programming_Considerations')}    Application Mode Programming
Considerations
{button ,JI(`',`Application_Mode_Example')}    Application Mode Example

When to Use Application Mode
If you need to display and manipulate two-dimensional array data, either one of the following DataMode
settings is ideally suited to the task:

3 - Application, which fires events on a cell-by-cell basis,

4 - Storage, which communicates directly with an XArray object.

The choice of which one to use depends upon the target operating system.    If you need to deliver both 16-
and 32-bit versions of your programs, application mode is recommended, since storage mode is only available
in the 32-bit versions of True DBGrid.    If you do not need to support 16-bit platforms, storage mode is
recommended, since it is easier to use.

If you are working with a database instead of an array, the choice comes down to efficiency versus ease of
implementation.    If you are concerned about efficiency, and would like to minimize the number of events that
fire, you should consider using DataMode 2 - Unbound Extended.    Mode 2 is also recommended when using
database APIs that support multiple-row fetches, such as ODBC.

If you are migrating from DBGrid and find DataMode 1 - Unbound difficult to use, you should consider
switching to application mode, as it provides the same benefits, but is much easier to implement.

If you are familiar with the Fetch and Update callback events of TrueGrid Pro (TRUEGRID.VBX), then
application mode is recommended, as the style of coding is very similar.    In fact, the "classic" events are so
named because they were patterned after the callback mode events of TrueGrid Pro.

How Application Mode Works
When True DBGrid runs in application mode, it is not connected to a data control.    Instead, your application
must supply and maintain the data, while the grid handles all user interaction and data display.    For example,
when a user covers the grid with another window, then uncovers it later, the grid is completely responsible for
repainting the exposed area.    Your application does not need to deal with any low-level display operations.

With the grid in control of low-level display, you need to concentrate solely on maintaining your data.    The
grid fires the ClassicRead event as needed to determine the value of individual cells.    It is up to your
application to provide the requested value on demand.    Similarly, when the user repositions the scroll box,
the grid may need to determine the bookmark of a row that has yet to be displayed.    In this case, it fires the
UnboundGetRelativeBookmark event, and your application needs to respond accordingly.

In this respect, programming True DBGrid in application mode is very similar to writing the event-handling
code for a Visual Basic form.    You cannot predict when the user will click a button or select an item from a
combo box, so your application must be prepared to handle these events at all times.    Similarly, you cannot
predict when the grid will request the value of a particular cell, or provide a new value to be written to the
underlying data source.    Therefore, the code that handles application mode events such as ClassicRead and
UnboundGetRelativeBookmark should be written so that it performs as little work as possible.

The grid generally limits its data requests to visible cells, although it may also cache other rows in
anticipation of paging and scrolling operations.    You cannot predict when the grid will ask for data, nor can
you assume that data will be requested in any particular order.    Furthermore, since the grid does not
permanently store the data, data that has been requested once from your application may be requested
again.

Compare this event-driven approach with the storage mode used by the intrinsic ListBox control of Visual
Basic, which is populated by repeated calls to its AddItem method at run time.    Although this storage mode
is convenient for small datasets, it is neither adequate nor efficient when there is a large volume of data or
when the data source changes dynamically.

When running in application mode, True DBGrid translates user interactions into events that enable you to
keep your data source synchronized.    For example, when the user updates a cell, then attempts to move to
another row, the grid fires the ClassicWrite event.    If the cell was modified as part of a pending AddNew
operation, the grid fires the ClassicAdd event instead.    If the user deletes an entire row through the grid's
user interface, your application receives notification through the ClassicDelete event.

Conversely, if your application code manipulates the data source directly, you need to tell the grid to update
its display by using either the Refresh or ReBind method.

To summarize, True DBGrid's application mode is a useful tool for dealing with dynamic data.    Since it has no
inherent storage capability, the grid handles frequently changing data fluidly and easily.    A common use of
application mode is to provide an interface for viewing and updating the contents of a Visual Basic array.   
Application mode can also be used with proprietary database formats not supported by the Visual Basic Data
control.

Application Mode Bookmarks
In application mode, a bookmark is a variant supplied by your application and used by the grid as a means of
uniquely identifying a row of data to be displayed or modified.

Just as your application provides, stores, and maintains the data for the unbound grid, you must deal similarly
with the bookmarks.    The bookmarks themselves must be supplied by your code in the
UnboundGetRelativeBookmark, ClassicRead, and ClassicAdd events as variant data.    You are free to
use whatever you choose for the purpose of identifying a row, but keep in mind that the bookmarks must be
unique for each row.    In general, you will also want to be able to search for the associated record quickly
when given a bookmark.    Three common examples of what to use for bookmarks are:

1. If you use the unbound grid with a proprietary database, you can use the values of a unique key field
as bookmarks.    That way, when given a bookmark, you can search and retrieve the associated record
quickly.

2. If the database you use supports unique row IDs or record numbers, these can be conveniently used
as bookmarks.

3. If you use the grid to display an array, the array's row index is an obvious choice for bookmarks.

Bookmarks cannot exceed 255 characters in length.    Since Visual Basic 5.0 uses 2 bytes per character, this
means that string bookmarks cannot exceed 127 characters.

True DBGrid's application mode supports string, integral, and floating point bookmarks. All other data types
must be converted to strings before they are passed to the grid as variant bookmarks.

Since True DBGrid and Visual Basic differ in their treatment of bookmarks, some restrictions apply when
manipulating them in code, as discussed in the following sections.

{button ,JI(`',`Bookmarks_in_True_DBGrid')}    Bookmarks in True DBGrid
{button ,JI(`',`Bookmarks_in_Visual_Basic')}    Bookmarks in Visual Basic

Bookmarks in True DBGrid

True DBGrid treats bookmarks as packets of binary information that cannot be interpreted.    To the grid, a
bookmark is a piece of data containing a specific number of bytes (ASCII codes) in a specific order.    Thus,
pieces of different lengths, or pieces with different bytes, are considered different bookmarks.    For example,
if the grid were to compare the following string bookmarks:

bmk1 = "1"
bmk2 = " 1"
bmk3 = "01"

it would consider each bookmark to be different from the others, although they could be considered
equivalent numerically.    Similarly, a 2-byte integer and a 4-byte integer would also be considered different,
even if both contained the same numeric value.

Bookmarks in Visual Basic

Visual Basic, on the other hand, treats bookmarks as true variants.    That is, they are quantities that can be
converted from one form to another without loss of equality, unless they are both in the form of a string.    In
addition, bookmarks are often passed in Visual Basic as byte arrays, both by the grid and by the Data control. 

In Visual Basic, two bookmarks should not be compared for equality unless they are first converted to strings. 
This rule holds true regardless of whether the bookmark comes from a grid (bound or unbound) or from a
Data control.

Another important consideration regarding bookmarks is their length.    You should take care to ensure that all
bookmarks in your application are created in the same way.    For example, the Visual Basic functions
Format$ and Str$ do not generate the same string, even if they are passed the same numeric value.    The
Str$ function always generates a leading space character for the sign of the numeric value, while Format$
does not:

Str$(1) = " 1"
Format$(1) = "1"

Remember that since these strings are of different length, they constitute different bookmarks.

To avoid difficulties of this nature, we suggest writing a single Visual Basic function, like the MakeBookmark
function used in the unbound tutorial projects, and use it consistently whenever a bookmark must be
generated.   

Application Mode Events
In application mode, there are five events that may fire, depending upon end-user permission settings and
run-time interactions.    You must write handlers for these two events:
UnboundGetRelativeBookmark Fired when the control needs to retrieve a bookmark.
ClassicRead Fired when the control requires unbound data for display.

The following three events are optional:
ClassicWrite Fired when an unbound row needs to be modified.    Required if

AllowUpdate is True.
ClassicAdd Fired when a new row is added to the unbound dataset.    Required if

AllowAddNew is True.
ClassicDelete Fired when an unbound row needs to be deleted.    Required if

AllowDelete is True.

{button ,JI(`',`Handling_the_UnboundGetRelativeBookmark_event_in_mode_3')}    Handling the
UnboundGetRelativeBookmark event in mode 3
{button ,JI(`',`Handling_the_ClassicRead_event_in_mode_3')}    Handling the ClassicRead event in mode 3
{button ,JI(`',`Handling_the_ClassicWrite_event_in_mode_3')}    Handling the ClassicWrite event in mode 3
{button ,JI(`',`Handling_the_ClassicAdd_event_in_mode_3')}    Handling the ClassicAdd event in mode 3
{button ,JI(`',`Handling_the_ClassicDelete_event_in_mode_3')}    Handling the ClassicDelete event in mode 3

Handling the UnboundGetRelativeBookmark event in mode 3

You must always provide a handler for the UnboundGetRelativeBookmark event in application mode.   
True DBGrid fires this event whenever it needs to determine the bookmark that identifies a row given a
starting bookmark and a long integer offset.    The starting bookmark may be Null, which denotes BOF if the
offset is positive, EOF if the offset is negative.    The offset may be positive to denote forward movement, or
negative to denote backward movement.    The syntax for this event is as follows:

Private Sub TDBGrid1_UnboundGetRelativeBookmark(_
 StartLocation As Variant, ByVal Offset As Long, _
 NewLocation As Variant, ApproximatePosition As Long)

StartLocation is a bookmark which, together with Offset, specifies the row to be returned in NewLocation.

Offset specifies the relative position (from StartLocation) of the row to be returned in NewLocation.    A positive
number indicates a forward relative position while a negative number indicates a backward relative position.

NewLocation is a variable which receives the bookmark of the row which is specified by StartLocation plus
Offset.    If the row specified is beyond the first or the last row (or beyond BOF or EOF), then NewLocation
should be set to Null.

ApproximatePosition is a variable which receives the ordinal position of NewLocation.    Setting this variable
will enhance the ability of the grid to display its vertical scroll bar accurately.    If the exact ordinal position of
NewLocation is not known, you can set it to a reasonable, approximate value, or just ignore it altogether.

Before returning from the UnboundGetRelativeBookmark event, you must set NewLocation to a valid
bookmark.    For example, if Offset is 1 (or -1), then you must return in NewLocation the bookmark of the row
that follows (or precedes) StartLocation.    However, if the requested row is beyond the first or last row, then
you should return Null in NewLocation to inform the grid of BOF/EOF conditions.

Similarly, a StartLocation of Null indicates a request for a row from BOF or EOF.    For example, if StartLocation
is Null and Offset is 2 (or -2), then you must return in NewLocation the bookmark of the second (or second to
last) row.    The following code template provides the basis for a typical implementation of the
UnboundGetRelativeBookmark event:

If IsNull(StartLocation) Then
 If Offset < 0 Then
 ' StartLocation indicates EOF, because the grid is
 ' requesting data in rows prior to the StartLocation,
 ' and prior rows only exist for EOF.
 ' There are no rows prior to BOF.
 Else
 ' StartLocation indicates BOF, because the grid is
 ' requesting data in rows after the StartLocation,
 ' and rows after only exist for BOF.
 ' There are no rows after EOF.
 End If
Else
 ' StartLocation is an actual bookmark passed to the grid
 ' via one of the unbound events. It is up to the VB
 ' programmer to ensure the bookmark is valid, and to take
 ' the appropriate action if it is not.
End If

The UnboundGetRelativeBookmark event is also used to improve performance in DataMode 1 - Unbound.
For more information, see Unbound Mode.

Handling the ClassicRead event in mode 3

In application mode, the grid uses the UnboundGetRelativeBookmark event to determine the bookmark of
the row it is about to display.    To determine the contents of an individual cell, the grid passes a known
bookmark and a column index to the ClassicRead event, which has the following syntax:

Private Sub TDBGrid1_ClassicRead(Bookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

Bookmark is a bookmark which specifies the row of the desired data.

Col is a value which specifies the column index of data to be retrieved.

Value is a variable used to return the data corresponding to the cell location identified by Bookmark and Col.

Before returning from this event, you must set Value to the actual data, or else the grid will display an empty
cell.    Note that Value need not contain a string.    It can also hold numeric, boolean, or date data, and the grid
will convert it to a string automatically, just as it does with such data types in bound mode.

Handling the ClassicWrite event in mode 3

If the AllowUpdate property of the grid is True, and the user has edited data in one or more cells of the
current row, then moving to another row will trigger an update.    The grid will then fire the ClassicWrite
event once for each updated cell, which enables you to apply the changed value to the underlying data stored
and maintained by your application.    The syntax of this event is as follows:

Private Sub TDBGrid1_ClassicWrite(Bookmark as Variant, _
 ByVal Col as Integer, Value As Variant)

Bookmark is a bookmark which specifies the row that needs to be updated.

Col is a value which specifies the column index of data that has been modified.

Value is the data that corresponds to the cell location identified by Bookmark and Col.

Before returning from this event, you must update the underlying data source with Value.    If, for some
reason, the update cannot be completed, you can set the Bookmark argument to Null in order to force the
grid to maintain the previous value of the current cell.

Handling the ClassicAdd event in mode 3

If the AllowAddNew and AllowUpdate properties of the grid are True, then users can add new records to
the grid, and you must implement the ClassicAdd event.    The syntax of this event is as follows:

Private Sub TDBGrid1_ClassicAdd(NewRowBookmark As Variant, _
 ByVal Col As Integer, Value As Variant)

NewRowBookmark is a variable which receives the bookmark for the newly added row.    Initially, the
NewRowBookmark argument is Null.    However, before returning from this event, you must set it to a
bookmark that uniquely identifies the newly added row.    If you do not set the value of NewRowBookmark, the
add operation will fail and the grid will not allow its current row to change.

Col is a value which specifies the column index of data that has been added.

Value is the data that corresponds to the newly added cell.

Before returning from this event, you must update the underlying data source with Value and set the
NewRowBookmark argument to the bookmark of the newly added row.    If, for some reason, the add cannot
be completed, you can set NewRowBookmark to Null in order to force the grid to cancel the AddNew
operation initiated by the user.

Note that the ClassicAdd event will fire once for each modified cell in the new row.    This does not pose a
problem if the underlying data source permits you to add blank records.    However, if this is not the case, and
you are using unique key field values as bookmarks, you cannot assume that the event will fire for the key
field column first.    Since you must still supply a valid bookmark (even if you don't know what it is yet), you
can set NewRowBookmark to a special key that will never refer to a real record.    Then, when the ClassicAdd
event fires for the key field column (and subsequent columns), you can return the actual bookmark.    The grid
will use the last bookmark it receives and discard the special key that you supplied earlier.

Handling the ClassicDelete event in mode 3

If the AllowDelete property of the grid is True, then the user can delete rows from the grid, and you must
implement the ClassicDelete event:

Private Sub TDBGrid1_ClassicDelete(Bookmark As Variant)

When fired, the Bookmark argument specifies the row being deleted.    If the deletion fails, you should set the
Bookmark argument to Null before returning from the event.    Note that following execution of the
ClassicDelete event, the grid is automatically refreshed.

Application Mode Programming Considerations
When the user updates, adds, or deletes data through the grid's user interface, the grid fires the
ClassicWrite, ClassicAdd, or ClassicDelete event so that your application can take the appropriate action. 
Conversely, when you modify the underlying data source in code, you need to notify the grid so that it can
update its display to synchronize with your data.

{button ,JI(`',`Refreshing_the_display_in_mode_3')}    Refreshing the display in mode 3
{button ,JI(`',`Reinitializing_the_grid_in_mode_3')}    Reinitializing the grid in mode 3
{button ,JI(`',`Updating_and_deleting_rows_in_mode_3')}    Updating and deleting rows in mode 3

Refreshing the display in mode 3

You can refresh the display with the grid's Refresh and ReBind methods, which work in the same manner as
documented for bound mode.    When these methods are called, the grid will discard its current display and
call the ClassicRead event to retrieve new data.

Please note that during a ReBind operation, the grid attempts to maintain the current record position.   
Therefore, if the current record does not exist after the ReBind operation, it is up to you to position the grid
to a valid record afterwards.    Or, you can avoid potential problems by reinitializing the grid before performing
the ReBind.

Reinitializing the grid in mode 3

Setting the grid's Bookmark property equal to Null before issuing the grid's ReBind or Refresh method will
cause the UnboundGetRelativeBookmark event to fire with a Null StartLocation just as if the grid were first
being displayed:

TDBGrid1.Bookmark = Null
TDBGrid1.ReBind

Updating and deleting rows in mode 3

In application mode, or in any other mode, you can update a row in code and force the ClassicWrite (or
ClassicAdd) event to fire by applying the grid's Update method:

TDBGrid1.Update

Similarly, you can delete a row in code and force the ClassicDelete event to fire by applying the grid's
Delete method:

TDBGrid1.Delete

Application Mode Example
For an example of how to use True DBGrid in application mode (DataMode 3) using a Visual Basic array as
the data source, see Tutorial 17 or examine the UNBOUND3.VBP sample, which can be found in the TUTORIAL\
UNBOUND3 subdirectory of the True DBGrid installation directory.

Unbound Mode
True DBGrid supports a row-based unbound mode that does not rely upon either the Visual Basic Data control
or the APEX XArray object.    Instead, unbound mode events fire whenever the grid needs to retrieve a group
of adjacent rows or update, add, or delete an individual row.    Unlike application mode, an intermediate
RowBuffer object serves as the liaison between the grid and your data source.

There are actually two row-based unbound modes:    DataMode 1 - Unbound, is the original unbound mode of
DBGrid; DataMode 2 - Unbound Extended, uses a slightly different event syntax that simplifies coding and is
more efficient.    Therefore, if you are writing a new application, you should use mode 2.    Mode 1 is included
for backward compatibility with DBGrid.

To use the newer row-based unbound mode, set the DataMode property of the grid to 2 - Unbound Extended
at design time.    In code, write a handler for the UnboundReadDataEx event.    If users of your application
need the ability to add, update, and delete records, you will have to write handlers for the
UnboundAddData, UnboundWriteData, and UnboundDeleteRow events as well.

If you are converting an application that uses DataMode 1, you can improve its performance dramatically by
writing a handler for the UnboundGetRelativeBookmark event.

Regardless of whether you use mode 1 or 2, all of the grid's bookmark-related properties, methods, and
events (Bookmark, FirstRow, GetBookmark, FetchCellStyle, and others) work the same in the row-based
unbound modes as they do in any other DataMode, either bound or unbound.

{button ,JI(`',`When_to_Use_Unbound_Mode')}    When to Use Unbound Mode
{button ,JI(`',`How_Unbound_Mode_Works')}    How Unbound Mode Works
{button ,JI(`',`Unbound_Mode_Bookmarks')}    Unbound Mode Bookmarks
{button ,JI(`',`Using_the_RowBuffer_Object')}    Using the RowBuffer Object
{button ,JI(`',`Unbound_Mode_Events')}    Unbound Mode Events
{button ,JI(`',`Unbound_Mode_Programming_Considerations')}    Unbound Mode Programming Considerations
{button ,JI(`',`Unbound_Mode_Examples')}    Unbound Mode Examples

When to Use Unbound Mode
The row-based unbound modes were designed to provide a workable interface between database APIs and
the grid.    Therefore, if you simply need to display and manipulate two-dimensional array data, the row-based
unbound modes can be cumbersome to work with, and either one of the following DataMode settings would
be a better choice:

3 - Application, which fires events on a cell-by-cell basis,

4 - Storage, which communicates directly with an XArray object.

Modes 3 and 4 are specifically intended for an array-based data source, whereas the row-based modes 1 and
2 are more generalized and will work well with any data source.

If you are working with a database instead of an array, the choice comes down to efficiency versus ease of
implementation.    If you are concerned about efficiency, and would like to minimize the number of events that
fire, you should consider using DataMode 2 - Unbound Extended.    Mode 2 is also recommended when using
database APIs that support multiple-row fetches, such as ODBC.    You can also use mode 2 to bypass the
overhead    associated with an external bound control.    For example, instead of binding to a Remote Data
Control (RDC), you can use the Remote Data Objects (RDO) in unbound mode 2 to populate the grid with data
from an rdoResultSet object.

Mode 3 is easier to implement than mode 2, but it can be less efficient because events fire on a per-cell
rather than a per-row basis.    If speed and efficiency are your primary concerns, mode 2 is preferred over
mode 3.

If your application uses an unbound DBGrid, you should consider switching to mode 2, as it is more efficient.   
However, if you do not want to revise existing UnboundReadData handlers, you can achieve similar
performance improvements in mode 1 by implementing the optional UnboundGetRelativeBookmark
event, which the grid fires whenever it needs to determine the bookmark of a row given a starting position
and an integral offset.    Even if you do not implement this event, your existing application will continue to
function properly.

If you are familiar with the Fetch and Update callback events of TrueGrid Pro (TRUEGRID.VBX), then mode 3
is recommended, as the style of coding is very similar.    In fact, the "classic" events of application mode are
so named because they were patterned after the callback mode events of TrueGrid Pro.

How Unbound Mode Works
When True DBGrid runs in unbound mode, it is not connected to a data control.    Instead, your application
must supply and maintain the data, while the grid handles all user interaction and data display.    For example,
when a user covers the grid with another window, then uncovers it later, the grid is completely responsible for
repainting the exposed area.    Your application does not need to deal with any low-level display operations.

With the grid in control of low-level display, you need to concentrate solely on maintaining your data.    In
DataMode 1 - Unbound, the grid fires the UnboundReadData event whenever it needs to fetch a row of
data.    It is up to your application to fill the RowBuffer object, passed as an event parameter, with the
requested values on demand.    Similarly, when the user repositions the scroll box, the grid may need to
determine the bookmark of a row that has yet to be displayed.    In this case, it fires the
UnboundGetRelativeBookmark event, and your application needs to respond accordingly.

In DataMode 2 - Unbound Extended, the grid fires the UnboundReadDataEx event, which combines the
functionality of UnboundReadData and UnboundGetRelativeBookmark.    When the grid first loads, it
fires the UnboundReadDataEx event to retrieve the bookmark (but not the data) for the first row.    If your
event handler provides a bookmark, the grid fires UnboundReadDataEx again, this time to fetch the actual
data in a block of ten rows.    This process continues until the grid has enough data to fill its display or your
event handler informs the grid that the end of the dataset has been reached.    As the user scrolls through the
grid, the UnboundReadDataEx event is fired as needed to obtain bookmarks and data.

In this respect, programming True DBGrid in unbound mode is very similar to writing the event-handling code
for a Visual Basic form.    You cannot predict when the user will click a button or select an item from a combo
box, so your application must be prepared to handle these events at all times.    Similarly, you cannot predict
when the grid will request a particular data row, or provide a new value to be written to the underlying data
source.    Therefore, the code that handles unbound mode events such as UnboundReadData and
UnboundWriteData should be written so that it performs as little work as possible.

The grid generally limits its data requests to visible cells, although it may also cache other rows in
anticipation of paging and scrolling operations.    You cannot predict when the grid will ask for data, nor can
you assume that data will be requested in any particular order.    Furthermore, since the grid does not
permanently store the data, data that has been requested once from your application may be requested
again.    Thus, you must provide and maintain your own data storage, as the grid will not do this for you.

Compare this event-driven approach with the storage mode used by the intrinsic ListBox control of Visual
Basic, which is populated by repeated calls to its AddItem method at run time.    Although this storage mode
is convenient for small datasets, it is neither adequate nor efficient when there is a large volume of data or
when the data source changes dynamically.

When running in unbound mode, True DBGrid translates user interactions into events that enable you to keep
your data source synchronized.    For example, when the user updates a cell, then attempts to move to
another row, the grid fires the UnboundWriteData event.    If the cell was modified as part of a pending
AddNew operation, the grid fires the UnboundAddData event instead.    If the user deletes an entire row
through the grid's user interface, your application receives notification through the UnboundDeleteRow
event.

Conversely, if your application code manipulates the data source directly, the grid will not know that the
underlying data has changed, so you need to tell the grid to update its display by using either the Refresh or
ReBind method.

To summarize, True DBGrid's unbound mode is a useful tool for communicating with third-party database APIs
or avoiding the overhead associated with bound data controls.    Although it is not as easy to implement as
application mode, unbound mode can provide significant gains in performance, especially when there are
many columns.

Unbound Mode Bookmarks
In unbound mode, as in application mode, a bookmark is a variant supplied by your application and used by
the grid as a means of uniquely identifying a row of data to be displayed or modified.

Just as your application must provide, store, and maintain the data for the unbound grid, you must deal
similarly with the bookmarks.    The bookmarks themselves must be supplied by your code as variant data in
the following events:

· UnboundGetRelativeBookmark, UnboundReadData, and UnboundAddData (for DataMode 1 -
Unbound)

· UnboundReadDataEx and UnboundAddData (for DataMode 2 - Unbound Extended)

You are free to use whatever you choose for the purpose of identifying a row, but keep in mind that the
bookmarks must be unique for each row.    In general, you will also want to be able to search for the
associated record quickly when given a bookmark.    That is, when the grid gives you a bookmark, asking for
information about a particular row in your dataset, you should be able to locate the row the grid is asking for
quickly.    An important concept to remember is that whatever you supply to the grid as a bookmark for a
particular row, that is how the grid will refer to that row later on. Three common examples of what to use for
bookmarks are:

1. If you use the unbound grid with a proprietary database, you can use the values of a unique key field
as bookmarks.    That way, when given a bookmark, you can search and retrieve the associated record
quickly.

2. If the database you use supports unique row IDs or record numbers, these can be conveniently used
as bookmarks.

3. If you use the grid to display an array, the array's row index is an obvious choice for bookmarks.

Bookmarks cannot exceed 255 characters in length.    Since Visual Basic 5.0 uses 2 bytes per character, this
means that string bookmarks cannot exceed 127 characters.

True DBGrid's unbound modes support string, integral, and floating point bookmarks. All other data types
must be converted to strings before they are passed to the grid as variant bookmarks.

Since True DBGrid and Visual Basic differ in their treatment of bookmarks, some restrictions apply when
manipulating them in code.    For more information, see Application Mode Bookmarks.

Using the RowBuffer Object
The RowBuffer is a programmable object used to exchange data between the grid and your data source via
the unbound grid events.    The RowBuffer object is passed into the unbound grid event handlers as an
argument.    In fact, the RowBuffer object can only exist within the scope of the unbound events; you cannot
create a new one in code as you would a Column or Split object.    Here is a thumbnail sketch of the
properties of the RowBuffer object:

RowCount property

RowCount is a long integer that specifies the maximum number of rows that can be processed in an
unbound event (read, write, or add).    If the value of this property exceeds the number of rows that can be
processed, such as when an end-of-file condition is detected, then your event handling code should change
this property to reflect the actual number of rows processed.

RowBuffer.RowCount = Long

ColumnCount property

ColumnCount is an integer that specifies the number of columns that the unbound event should process.   
This property is read-only, and no attempt should be made to change it.    The unbound event should process
all columns requested.

Integer = RowBuffer.ColumnCount

ColumnName property

ColumnName is a string array that specifies the name of the grid column corresponding to a row buffer
index.    This property is read-only.

String = RowBuffer.ColumnName(ColIndex)
' where ColIndex = 0 to ColumnCount - 1

Bookmark property

Bookmark is a variant array used to specify unique row bookmarks when the RowBuffer is used to fetch
data during an unbound read event.

RowBuffer.Bookmark(RowIndex) = Variant
' where RowIndex = 0 to RowCount - 1

Value property

Value is a variant array used to specify the data value associated with a RowBuffer row and column.

RowBuffer.Value(RowIndex, ColIndex) = Variant
' where RowIndex = 0 to RowCount - 1
' and ColIndex = 0 to ColumnCount - 1

ColumnIndex property

ColumnIndex is a variant array used to specify a grid column index associated with a RowBuffer row and
column.    This property is read-only.    You can use it in the UnboundReadDataEx event to identify which
data columns are being requested.

Col = RowBuffer.ColumnIndex(RowIndex, ColIndex)
' where RowIndex = 0 to RowCount - 1
' and ColIndex = 0 to ColumnCount - 1

Unbound Mode Events
In DataMode 1 - Unbound, the grid fires one event when it needs to determine a relative bookmark, another
when it needs to fetch data rows.    The first event is optional and can be implemented to improve
performance; the second event is mandatory:
UnboundGetRelativeBookmark Fired when the control needs to retrieve a bookmark.
UnboundReadData Fired when the control requires unbound data for display.

In DataMode 2 - Unbound Extended, the grid fires a single event to acquire both data and relative
bookmarks.    This event is mandatory:
UnboundReadDataEx Fired when the control needs to retrieve a bookmark or requires unbound

data for display.

In modes 1 and 2, the following three events are optional, depending upon end-user permission settings:
UnboundWriteData Fired when the current row of the grid has been modified and the user

commits the changes by leaving the row.    This event is your notification
that the user wants to modify a row in the unbound dataset.    It is also
fired when the grid's Update method is executed in code.    Required if
AllowUpdate is True.

UnboundAddData Fired when the user types data into the grid's AddNew row and commits
the changes by leaving the row.    This event is your notification that the
user wants to add a new row to the unbound dataset.    Required if
AllowAddNew is True.

UnboundDeleteRow Fired when the user deletes the current grid row by clicking    its record
selector and pressing the DEL key.    This event is your notification that
the user wants to delete a row from the unbound dataset.    It is also fired
when the grid's Delete method is executed in code.    Required if
AllowDelete is True.

{button ,JI(`',`Handling_the_UnboundReadData_event_in_mode_1')}    Handling the UnboundReadData event
in mode 1
{button ,JI(`',`Handling_the_UnboundGetRelativeBookmark_event_in_mode_1')}    Handling the
UnboundGetRelativeBookmark event in mode 1
{button ,JI(`',`Handling_the_UnboundReadDataEx_event_in_mode_2')}    Handling the UnboundReadDataEx
event in mode 2
{button ,JI(`',`UnboundReadDataEx_event_examples')}    UnboundReadDataEx event examples
{button ,JI(`',`Handling_the_UnboundWriteData_event_in_modes_1_and_2')}    Handling the
UnboundWriteData event in modes 1 and 2
{button ,JI(`',`Handling_the_UnboundAddData_event_in_modes_1_and_2')}    Handling the UnboundAddData
event in modes 1 and 2
{button ,JI(`',`Handling_the_UnboundDeleteRow_event_in_modes_1_and_2')}    Handling the
UnboundDeleteRow event in modes 1 and 2

Handling the UnboundReadData event in mode 1

The UnboundReadData event is fired only if the DataMode property is set to 1 - Unbound.    This event is
retained only for backward compatibility with DBGrid and earlier versions of True DBGrid.    If you are writing a
new unbound mode application, DataMode 2 - Unbound Extended is recommended, since it is more efficient
and easier to use.

The UnboundReadData event is fired whenever the grid requires data for display.    Its syntax is as follows:

Private Sub TDBGrid1_UnboundReadData(_
 ByVal RowBuf As RowBuffer, _
 StartLocation As Variant, _
 ReadPriorRows As Boolean)

When this event is fired, the properties of the RowBuf argument are set as follows:   

· RowCount specifies the number of rows of data requested from your data source.

· ColumnCount specifies the number of columns of data requested from your data source.

· The ColumnName array contains the names of the grid columns corresponding to the columns in
RowBuf.

· The Bookmark and Value arrays contain all Null values.

StartLocation is a bookmark that specifies the row before or after the desired data, depending on the value of
the ReadPriorRows argument.

ReadPriorRows indicates the direction in which the grid is requesting the data.    If False, you should provide
data in the forward direction, starting with the row immediately after the row specified by StartLocation.    If
True, you should provide data in the backward direction, starting with the row immediately before the row
specified by StartLocation.   

Before returning from the UnboundReadData event, you are expected to fill the Bookmark property array
with unique row identifiers, and the Value property array with the actual data:

Dim RowIndex As Long
Dim ColIndex As Integer

With RowBuf
 For RowIndex = 0 To .RowCount - 1
 .Bookmark(RowIndex) = Variant Bookmark
 For ColIndex = 0 To .ColumnCount - 1
 .Value(RowIndex, ColIndex) = Variant Data
 Next ColIndex
 Next RowIndex
End With

For example, if the grid specifies a StartLocation bookmark indicating the 46th row, the ReadPriorRows
argument is False, and the row buffer's RowCount property is 10, then the grid is asking for the records
following the 46th row, and your UnboundReadData event handler should populate the row buffer's Value
array as follows:

RowBuf.Value(0, ColIndex) = Data for row 47
RowBuf.Value(1, ColIndex) = Data for row 48
RowBuf.Value(2, ColIndex) = Data for row 49
...
RowBuf.Value(9, ColIndex) = Data for row 56

However, if ReadPriorRows is False, then the grid is asking for the records preceding the 46th row, and a
different set of values must be returned:

RowBuf.Value(0, ColIndex) = Data for row 45
RowBuf.Value(1, ColIndex) = Data for row 44
RowBuf.Value(2, ColIndex) = Data for row 43
...
RowBuf.Value(9, ColIndex) = Data for row 36

If you reach the beginning or end of the data, and have fewer than RowCount rows to provide, then you
should fill the row buffer with the data you can provide, and change the RowCount property to the actual
number of rows provided, which may be zero.

For example, if your dataset contains 50 records, the grid specifies a StartLocation bookmark indicating the
46th row, the ReadPriorRows argument is False, and the row buffer's RowCount property is 10, then your
UnboundReadData event handler should populate the row buffer's Value array as follows:

RowBuf.Value(0, ColIndex) = Data for row 47
RowBuf.Value(1, ColIndex) = Data for row 48
RowBuf.Value(2, ColIndex) = Data for row 49
RowBuf.Value(3, ColIndex) = Data for row 50

RowBuf.RowCount = 4 ' Since only 4 rows were processed

At first glance, StartLocation and ReadPriorRows may seem unnecessarily cumbersome.    However, they
communicate the row boundaries to the grid simply and directly.    The grid only caches a portion of the data,
and it is with these two arguments that it can navigate from one bookmark to the next.

For example, suppose there are 100 rows of data, the current row is 75, and the grid is asked to move to row
3 using a previously obtained bookmark.    The following sequence demonstrates what might happen in this
situation:

1. The grid receives a bookmark for row 3.    Since the data for this row is not in the grid's cache, the grid
requests the data using the UnboundReadData event, which is called with the following parameters:

RowBuf.RowCount = 10
RowBuf.ColumnCount = Number of columns
StartLocation = Bookmark for row 3
ReadPriorRows = False

2. The event code responds as follows:

RowBuf.Value(0, ColIndex) = Data for row 4
RowBuf.Value(1, ColIndex) = Data for row 5
...
RowBuf.Value(9, ColIndex) = Data for row 13

RowBuf.RowCount = 10 ' Since all 10 rows were processed

3. The UnboundReadData event is called again, this time with:

RowBuf.RowCount = 10
RowBuf.ColumnCount = Number of columns
StartLocation = Bookmark for row 4
ReadPriorRows = True

4. The event code responds as follows:

RowBuf.Value(0, ColIndex) = Data for row 3
RowBuf.Value(1, ColIndex) = Data for row 2
RowBuf.Value(2, ColIndex) = Data for row 1

RowBuf.RowCount = 3 ' Since only 3 rows were processed

Note that after fetching row 1, the event code stops setting values since there is no more data available in the
indicated direction from the starting bookmark.    Also, RowBuf.RowCount is set to 3, since only 3 rows could
be read before the beginning of the dataset was encountered.    At this point, additional UnboundReadData
events may be fired to obtain the data necessary to complete the display.

The preceding example demonstrates how the same event interface is called upon to handle both BOF and
EOF conditions.    When one of these special cases is encountered, the event handler simply exits the loop
used to fill the row buffer and reports the number of rows actually processed in the RowCount property.

A StartLocation of Null indicates a request for BOF or EOF.    Whether it indicates BOF or EOF depends upon the
value of ReadPriorRows:

If IsNull(StartLocation) Then
 If ReadPriorRows Then
 ' StartLocation indicates EOF, because the grid is
 ' requesting data in rows prior to the StartLocation,
 ' and prior rows only exist for EOF.
 ' There are no rows prior to BOF.
 Else
 ' StartLocation indicates BOF, because the grid is
 ' requesting data in rows after the StartLocation,
 ' and rows after only exist for BOF.
 ' There are no rows after EOF.
 End If
Else
 ' StartLocation is an actual bookmark passed to the grid
 ' in the RowBuffer, an event argument (UnboundAddData), or
 ' the setting of a grid bookmark. You must ensure that
 ' the bookmark is valid, and take the appropriate action
 ' if it is not.
End If

NOTE:    You cannot make any assumptions about when the grid will request data, or how many times it will
request the same data.    In short, it is the grid's responsibility to display the data properly, while the task of
storing and maintaining the data falls to you.    This division of labor frees you from worrying about when or
how to display data in the grid.

Handling the UnboundGetRelativeBookmark event in mode 1

This event is mandatory when the DataMode property is set to 3 - Application, but optional when it is set to 1
- Unbound.    It is not used at all when the DataMode property is set to 2 - Unbound Extended.

In DataMode 1, this event is used in conjunction with the UnboundReadData event when the grid needs to
obtain positional information about your underlying data.    If you are converting an existing project that uses
DBGrid or an earlier version of True DBGrid, you can add a handler for this event to dramatically improve the
grid's performance.    However, if you choose to ignore this event, your project will continue to function
properly.    The syntax for this event is as follows:

Private Sub TDBGrid1_UnboundGetRelativeBookmark(_
 StartLocation As Variant, _
 ByVal Offset As Long, _
 NewLocation As Variant, _
 ApproximatePosition As Long)

For more information on the UnboundGetRelativeBookmark event, see Application Mode.

Handling the UnboundReadDataEx event in mode 2

The UnboundReadDataEx event is used when the DataMode property is set to 2 - Unbound Extended, and
is fired by the grid whenever it requires one of the following:

· A bookmark for a specific row.

· Data for display.

The syntax of the UnboundReadDataEx event is as follows:

Private Sub TDBGrid1_UnboundReadDataEx(_
 ByVal RowBuf As RowBuffer, _
 StartLocation As Variant, _
 ByVal Offset As Long, _
 ApproximatePosition As Long)

When this event is fired, the properties of the RowBuf argument are set as follows:   

· RowCount specifies the number of rows of data requested from your data source.

· ColumnCount specifies the number of columns of data requested from your data source.

· The ColumnName array contains the names of the grid columns corresponding to the columns in
RowBuf.

· The ColumnIndex array contains the indexes of the grid columns corresponding to the columns in
RowBuf.

· The Bookmark and Value arrays contain all Null values.

You can examine the RowCount and ColumnCount properties to determine whether the grid is requesting a
bookmark or data.    If RowCount is 1 and ColumnCount is 0, the grid is asking for a bookmark only; if
ColumnCount is nonzero, the grid is asking for RowCount rows of data (and the corresponding bookmarks).

StartLocation is a bookmark which, together with Offset, specifies the first row of data to be transferred to
RowBuf.

Offset specifies the relative position (from StartLocation) of the first row of data to be transferred.    A positive
number indicates a forward relative position; a negative number indicates a backward relative position.   
Regardless of whether Offset is positive or negative, you should always return rows to the grid in the forward
direction.

ApproximatePosition is a variable which optionally receives the ordinal position of the first row of data to be
transferred.    Setting this variable will enhance the ability of the grid to display its vertical scroll bar
accurately.    If the exact ordinal position of the row is not known, you can set it to a reasonable, approximate
value, or just ignore this parameter.

Before returning from the UnboundReadDataEx event, you are expected to fill the Bookmark array of
RowBuf with unique row identifiers, and the Value array with the actual data, if requested.    For example, if
Offset is 1 (or -1), then you must fill in RowBuf starting from the row that follows (or precedes) StartLocation:

Dim RowIndex As Long
Dim ColIndex As Integer, Col As Integer

With RowBuf
 For RowIndex = 0 To .RowCount - 1
 .Bookmark(RowIndex) = Variant Bookmark
 For ColIndex = 0 To .ColumnCount - 1
 Col = .ColumnIndex(RowIndex, ColIndex)
 .Value(RowIndex, ColIndex) = Variant Data for Col

 Next ColIndex
 Next RowIndex
End With

Note that there is a subtle difference between this example and the one presented in the earlier discussion of
the UnboundReadData event of mode 1.    When programming the UnboundReadDataEx event, you must
fill in the Value array with column data according to the ColumnIndex array of the RowBuffer object, since
it is possible that the column indexes of the grid and the row buffer no longer match.

The grid generally asks for data according to the number of columns and the order of the columns as
displayed on the grid.    For example, if your data source has 20 columns, and the grid needs to display the
first 5 columns on the screen, then the UnboundReadDataEx event will be called with ColumnCount equal
to 5 and the ColumnIndex array equal to (0, 1, 2, 3, 4).    However, if the user moves column 4 between
column 0 and column 1, then the next UnboundReadDataEx event will be called with ColumnCount equal
to 5 and the ColumnIndex property array equal to (0, 4, 1, 2, 3).    Therefore, you must account for the new
column order, as given by the ColumnIndex property, when filling the Value array.

Another important distinction between the two row-based unbound modes is that in mode 2,
UnboundReadDataEx will not fetch data for columns whose Visible property is False, and may not fetch
data for columns that are not physically displayed or have been scrolled out of view, even if their Visible
property is True.    In mode 1, however, UnboundReadData will always fetch data for all columns, even if
they are not shown on the screen or have their Visible property set to False.    This is one of the reasons why
mode 2 generally outperforms mode 1.

When the grid first loads, it needs to determine if there is any data to display.    It does this by firing the
UnboundReadDataEx event to retrieve the bookmark (but not the data) for the first row.    If your event
handler provides a bookmark, the grid fires UnboundReadDataEx again, this time to fetch the actual data in
a block of ten rows.    This process continues until the grid has enough data to fill its display or your event
handler informs the grid that the end of the dataset has been reached.

For example, if the grid specifies a StartLocation bookmark indicating the 46th row, the Offset argument is 3,
and the row buffer's RowCount property is 10, then your UnboundReadDataEx event handler should
populate the row buffer's Value array as follows:

RowBuf.Value(0, ColIndex) = Data for row 49
RowBuf.Value(1, ColIndex) = Data for row 50
RowBuf.Value(2, ColIndex) = Data for row 51
...
RowBuf.Value(9, ColIndex) = Data for row 58

However, if Offset is -3, a different set of values must be returned:

RowBuf.Value(0, ColIndex) = Data for row 43
RowBuf.Value(1, ColIndex) = Data for row 44
RowBuf.Value(2, ColIndex) = Data for row 45
...
RowBuf.Value(9, ColIndex) = Data for row 52

Note that you should always populate the Value array in the forward direction, regardless of whether Offset is
positive or negative.    This differs from the UnboundReadData event of mode 1, in which rows must be
returned in reverse order if ReadPriorRows is True.

If you reach the beginning or end of the data, and have fewer than RowCount rows to provide, then you
should fill the row buffer with the data you can provide, and change the RowCount property to the actual
number of rows provided, which may be zero.

For example, if your dataset contains 50 records, the grid specifies a StartLocation bookmark indicating the
46th row, the Offset argument is 1, and the row buffer's RowCount property is 10, then your
UnboundReadDataEx event handler should populate the row buffer's Value array as follows:

RowBuf.Value(0, ColIndex) = Data for row 47

RowBuf.Value(1, ColIndex) = Data for row 48
RowBuf.Value(2, ColIndex) = Data for row 49
RowBuf.Value(3, ColIndex) = Data for row 50

RowBuf.RowCount = 4 ' Since only 4 rows were processed

Since the value of RowCount was changed from 10 to 4, and Offset is positive, the grid determines that it
has reached the end of your data and stops firing UnboundReadDataEx with a positive Offset.

When the user scrolls vertically, the grid computes the position of the new topmost visible row and fires
UnboundReadDataEx to obtain a bookmark for that row.    For example, if the user hits the PGUP key, the grid
might fire UnboundReadDataEx with a StartLocation representing row 90 and Offset equal to -20.    In this
case, the grid is effectively asking for a bookmark for row 70.    Once the grid has the bookmark it needs, it
will fire UnboundReadDataEx again to fetch the data to be displayed.

At times, the arguments passed to UnboundReadDataEx may seem peculiar.    For example, if StartLocation
specifies row 2 and Offset equals -10, the grid is effectively asking for a bookmark for row -8, and you should
set RowCount to 0 and exit the event.    Although it may seem unnecessary for the grid to request the
bookmark of a row that does not exist, such behavior is normal, for this is how the grid determines the
boundaries of your data source.    Also, since the grid is designed to work with multiuser data sources, it is
very conservative about boundary conditions.    As long as you respond to UnboundReadDataEx consistently
and correctly, the grid will detect BOF and EOF conditions as fluidly as it does in bound mode.

A StartLocation of Null indicates a request for data from BOF or EOF.    For example, if StartLocation is Null and
Offset is 2 (or -2), then you should retrieve data starting from the second (or second to last) row:

If IsNull(StartLocation) Then
 If Offset < 0 Then
 ' StartLocation indicates EOF, because the grid is
 ' requesting data in rows prior to the StartLocation,
 ' and prior rows only exist for EOF.
 ' There are no rows prior to BOF.
 Else
 ' StartLocation indicates BOF, because the grid is
 ' requesting data in rows after the StartLocation,
 ' and rows after only exist for BOF.
 ' There are no rows after EOF.
 End If
Else
 ' StartLocation is an actual bookmark passed to the grid
 ' in the RowBuffer, an event argument (UnboundAddData), or
 ' the setting of a grid bookmark. You must ensure that
 ' the bookmark is valid, and take the appropriate action
 ' if it is not.
End If

NOTE:    You cannot make any assumptions about when the grid will request data, or how many times it will
request the same data.    In short, it is the grid's responsibility to display the data properly, while the task of
storing and maintaining the data falls to you.    This division of labor frees you from worrying about when or
how to display data in the grid.

UnboundReadDataEx event examples

The following examples assume a dataset containing 100 rows, numbered 0 to 99.    Thus, when calculating
bookmark positions, a negative row number denotes BOF, and a row number greater than or equal to 100
denotes EOF.

Example 1:

RowBuf.RowCount = 1
RowBuf.ColumnCount = 0
StartLocation = Bookmark for row 8
Offset = -1

In this example, 1 row and 0 columns are being requested, so the event handler must supply a bookmark
only.    Since Offset is -1, the grid is asking for the row before row 8, and the event handler should respond as
follows:

RowBuf.Bookmark(0) = Bookmark for row 7
RowBuf.RowCount = 1
ApproximatePosition = 7

Example 2:

RowBuf.RowCount = 10
RowBuf.ColumnCount = 5
StartLocation = Bookmark for row 80
Offset = 15

In this example, the grid is asking for 10 rows of data starting with row 95 (80 + 15).    Thus, the grid wants
data from rows 95 to 104, in ascending order.    However, rows 100 to 104 do not exist in the dataset, so the
event handler returns as many rows as it can:

RowBuf.Bookmark(0) = Bookmark for row 95
RowBuf.Value(0, ColIndex) = Data for row 95
...
RowBuf.Bookmark(4) = Bookmark for row 99
RowBuf.Value(4, ColIndex) = Data for row 99
RowBuf.RowCount = 5
ApproximatePosition = 95

Example 3:

RowBuf.RowCount = 10
RowBuf.ColumnCount = 2
StartLocation = Null
Offset = -13

In this example, the grid is asking for 10 rows of data.    Since StartLocation is Null, and since Offset is
negative, the grid wants data starting at 13 rows before EOF.    Since the last valid row is 99, row 100 denotes
EOF, and the first requested row is 87 (100 - 13).    Thus, the grid wants data from rows 87 to 96, in ascending
order, and the event handler should respond as follows:

RowBuf.Bookmark(0) = Bookmark for row 87
RowBuf.Value(0, ColIndex) = Data for row 87
...
RowBuf.Bookmark(9) = Bookmark for row 96
RowBuf.Value(9, ColIndex) = Data for row 96
RowBuf.RowCount = 10
ApproximatePosition = 87

Example 4:

RowBuf.RowCount = 1
RowBuf.ColumnCount = 0
StartLocation = Null
Offset = 1

In this example, the grid is asking for a bookmark, since 1 row and 0 columns are being requested.    Since
StartLocation is Null and Offset is positive, the request is relative to BOF.    Since Offset is 1, the bookmark
requested is that of the first row of the dataset.    This example corresponds to the initial firing of
UnboundReadDataEx when the grid is first loaded, and the event handler should respond as follows:

RowBuf.Bookmark(0) = Bookmark for row 0
RowBuf.RowCount = 1
ApproximatePosition = 0

Example 5:

RowBuf.RowCount = 1
RowBuf.ColumnCount = 0
StartLocation = Bookmark for row 6
Offset = -15

In this example, the grid is asking for a bookmark, but the row requested (6 - 15 = -9) does not exist, since
the first valid data row is 0.    In this case, the event handler should respond as follows:

RowBuf.RowCount = 0
Exit Sub

This is also the correct response when there are no records in the dataset.

Handling the UnboundWriteData event in modes 1 and 2

This event applies to both DataMode 1 - Unbound and 2 - Unbound Extended.

If the AllowUpdate property of the grid is True, and the user has edited data in one or more cells of the
current row, then moving to another row will trigger an update.    The grid will then fire the
UnboundWriteData event, which allows you to use the changed values, passed via a RowBuffer object, to
update the data you are responsible for storing and maintaining.    The syntax of this event is as follows:

Private Sub TDBGrid1_UnboundWriteData(_
 ByVal RowBuf As RowBuffer, WriteLocation As Variant)

When this event is fired, the properties of the RowBuf argument are set as follows:

· RowCount is 1, since only one row can be updated at a time.

· ColumnCount specifies the number of columns of data in the Value array.    This will always reflect
the total number of columns in the grid's Columns collection and not just those that are visible on the
screen.    This ensures that data in invisible columns, which may have been modified by other event
handlers such as AfterColUpdate, are also updated to the underlying data source.

· The ColumnName array contains the names of the grid columns corresponding to the columns in
RowBuf.

· The Bookmark array is not used, since WriteLocation specifies the row being updated.

· The Value array contains a single row of data.    Entries which are Null have not been changed.   
Entries which are not Null reflect the user's changes.

WriteLocation is a bookmark that specifies the exact row that needs to be updated.    This differs from the
StartLocation argument in the UnboundReadData event, which specifies the row before or after the desired
data, depending on the value of the ReadPriorRows argument.

The following code sample demonstrates how to determine which cells were modified by the user:

For ColIndex = 0 To RowBuf.ColumnCount - 1
 If IsNull(RowBuf.Value(0, ColIndex)) Then
 ' Cell not modified by the user
 Else
 ' RowBuf.Value(0, ColIndex) contains updated value
 End If
Next ColIndex

The RowCount property is always set to 1 for this event, but you should change it to 0 if the update cannot
be completed, such as when the underlying database reports an error.    The contents of the current cell will
be maintained if RowCount is set to zero.

NOTE:    You can force the UnboundWriteData event to occur in code with the grid's Update method.    This
technique is particularly valuable when the unbound dataset contains a single row and AllowAddNew is
False, since there is no way for the user to trigger the update by moving to another row in this case.

Handling the UnboundAddData event in modes 1 and 2

This event applies to both DataMode 1 - Unbound and 2 - Unbound Extended.

If the AllowAddNew and AllowUpdate properties of the grid are True, then users can add new records to
the grid, and you must implement the UnboundAddData event.    The syntax of this event is as follows:

Private Sub TDBGrid1_UnboundAddData(_
 ByVal RowBuf As RowBuffer, NewRowBookmark As Variant)

As with the UnboundWriteData event, data from the new row is passed via a RowBuffer object.    When this
event is fired, the properties of the RowBuf argument are set as follows:

· RowCount is 1, since only one row can be added at a time.

· ColumnCount specifies the number of columns of data in the Value array.

· The ColumnName array contains the names of the grid columns corresponding to the columns in
RowBuf.

· The Bookmark array is not used, since the new row does not yet have a valid bookmark.

· The Value array contains a single row of data.    Entries which are Null have not been specified by the
user.    Entries which are not Null reflect the user's additions.

The NewRowBookmark argument is initially Null.    However, before returning from this event, you must set it
to a bookmark that uniquely identifies the newly added row.    If you do not set the value of
NewRowBookmark, the add operation will fail and the grid will not allow its current row to change.

Handling the UnboundDeleteRow event in modes 1 and 2

This event applies to both DataMode 1 - Unbound and 2 - Unbound Extended.

If the AllowDelete property of the grid is True, then users can delete rows from the grid, and you must
implement the UnboundDeleteRow event.    The syntax of this event is as follows:

Private Sub TDBGrid1_UnboundDeleteRow(Bookmark As Variant)

This is the simplest of all the unbound grid events.    When fired, the Bookmark argument specifies the row
being deleted.    If the deletion fails, you should set the Bookmark argument to Null before returning from the
event.    Note that following execution of the UnboundDeleteRow event, the grid is automatically refreshed.

Unbound Mode Programming Considerations
When the user updates, adds, or deletes data through the grid's user interface, the grid fires the
UnboundWriteData, UnboundAddData, or UnboundDeleteRow event so that your application can take
the appropriate action.    Conversely, when you modify the underlying data source in code, you need to notify
the grid so that it can update its display to synchronize with your data.

{button ,JI(`',`Refreshing_the_display_in_mode_1')}    Refreshing the display in mode 1
{button ,JI(`',`Refreshing_the_display_in_mode_2')}    Refreshing the display in mode 2
{button ,JI(`',`Reinitializing_the_grid_in_modes_1_and_2')}    Reinitializing the grid in modes 1 and 2
{button ,JI(`',`Updating_and_deleting_rows_in_modes_1_and_2')}    Updating and deleting rows in modes 1
and 2
{button ,JI(`',`Adding_rows_in_modes_1_and_2')}    Adding rows in modes 1 and 2
{button ,JI(`',`Calibrating_the_vertical_scroll_bar_in_modes_1_and_2')}    Calibrating the vertical scroll bar in
modes 1 and 2

Refreshing the display in mode 1

In the original DBGrid, the Refresh and ReBind methods behaved differently in bound and unbound modes.   
For backward compatibility, these differences were preserved in True DBGrid when the DataMode property is
set to 1 - Unbound.

When a grid Refresh occurs, the grid refetches and redisplays all data by firing the UnboundReadData
event.    After the refresh, the current cell is the first column of the first record, which is displayed at the upper
left corner of the grid.    Any changed data will be lost.

When a grid ReBind occurs, the grid refetches data by firing the UnboundReadData event, but it maintains
any changed data within the current row.    When redisplaying data, the grid attempts to preserve the same
current cell and top row, if possible.

Refreshing the display in mode 2

In DataMode 2 - Unbound Extended, the grid's Refresh and ReBind methods work in the same manner as
documented for bound mode.    When these methods are called, the grid will discard its current display and
call the UnboundReadDataEx event to retrieve new data.

Please note that during a ReBind operation, the grid attempts to maintain the current record position.   
Therefore, if the current record does not exist after the ReBind operation, it is up to you to position the grid
to a valid record afterwards.    Or, you can avoid potential problems by reinitializing the grid before performing
the ReBind.

Reinitializing the grid in modes 1 and 2

In DataMode 1 - Unbound, setting the grid's Bookmark property to Null before calling the grid's Refresh or
ReBind method will cause the UnboundGetRelativeBookmark and UnboundReadData events to fire with
a StartLocation of Null just as if the grid were first being displayed:

TDBGrid1.Bookmark = Null
TDBGrid1.ReBind

Similarly, in DataMode 2 - Unbound Extended, setting the grid's Bookmark property to Null before calling
the grid's Refresh or ReBind method will cause the UnboundReadDataEx event to fire with a StartLocation
of Null just as if the grid were first being displayed:

Updating and deleting rows in modes 1 and 2

In unbound mode, you can update a row in code and force the UnboundWriteData event to fire by calling
the grid's Update method:

TDBGrid1.Update

Similarly, you can delete a row in code and force the UnboundDeleteRow event to fire by calling the grid's
Delete method:

TDBGrid1.Delete

Adding rows in modes 1 and 2

True DBGrid does not provide an AddNew method to complement Update and Delete since it cannot
anticipate the requirements of the underlying data source.    However, you can use the ApproxCount
property and ReOpen method to resynchronize the grid after adding one or more rows in code.

The following example assumes that the data source is a two-dimensional array.    It allocates storage space
for a new row, informs the grid that the total number of rows has changed, then calls the grid's ReOpen
method to force the grid to refetch data and position to the newly added row:

' General declarations
Dim MaxRow As Long
Dim MaxCol As Integer
Dim MyArray() As String

' Assume that MyArray is one-based
MaxRow = MaxRow + 1
ReDim Preserve MyArray(1 To MaxRow, 1 To MaxCol)

' Update the number of rows
TDBGrid1.ApproxCount = MaxRow

' ReOpen the data source and make MaxRow the current row
TDBGrid1.ReOpen MaxRow

Calibrating the vertical scroll bar in modes 1 and 2

When the grid displays a vertical scroll bar, the scroll box indicates the ordinal positions of the records being
displayed, and users expect to be able to drag the scroll box to quickly locate the desired records.

In order for the scroll box to function properly, both the total number of rows and the ordinal position of the
first displayed row must be known, or at least approximated.    Unfortunately, one or both of these quantities
are often unavailable to the grid, especially in unbound modes.

Since data is supplied and maintained by the application code, the grid does not generally know the total
number of rows in the data source.    Also, when the grid is instructed to position to a particular record, as in
an assignment to its Bookmark property, the grid does not generally know the ordinal position of the
assigned bookmark, which may have been obtained through a find or seek operation.

Unless you compensate for these unknowns, the vertical scroll bar may behave unpredictably.    To avoid this,
you need to supply the grid with the total number of rows in the data source (or an approximate total), and
the ordinal position of the first displayed row (or an approximate position).

To provide the total row count, you can set the grid's ApproxCount property:

TDBGrid1.ApproxCount = TotalRows ' Set approximate row count

To provide the ordinal position of the first displayed row in DataMode 1 - Unbound, write a handler for the
UnboundGetRelativeBookmark event.

To provide the ordinal position of the first displayed row in DataMode 2 - Unbound Extended, set the
ApproximatePosition argument within the handler for the UnboundReadDataEx event.

Unbound Mode Examples
For an example of how to use True DBGrid in unbound mode (DataMode 1) using a Visual Basic array as the
data source, see Tutorial 15 or examine the UNBOUND1.VBP sample, which can be found in the TUTORIAL\
UNBOUND1 subdirectory of the True DBGrid installation directory.

For an example of how to use True DBGrid in unbound extended mode (DataMode 2) using a Visual Basic
array as the data source, see Tutorial 16 or examine the UNBOUND2.VBP sample, which can be found in the
TUTORIAL\UNBOUND2 subdirectory of the True DBGrid installation directory.

APEX provides additional sample programs that demonstrate how to use the unbound modes of True DBGrid.   
You can download these programs from the APEX Web site at http://www.apexsc.com.

Database Programming Techniques
As Tutorial 1 demonstrates, no code is necessary to create a fully functional database browser and editor
using True DBGrid.    However, in order to build more sophisticated applications, you can use the techniques
outlined in this chapter.    Except where noted, these techniques apply to all DataMode property settings.

If you haven't already, please read Understanding Bookmarks, as the remainder of this chapter presupposes
knowledge of bookmarks.

{button ,JI(`',`Changing_the_Current_Record_Position')}    Changing the Current Record Position
{button ,JI(`',`Accessing_and_Manipulating_Cell_Data')}    Accessing and Manipulating Cell Data
{button ,JI(`',`Validating_Cell_Data')}    Validating Cell Data
{button ,JI(`',`Selecting_and_Highlighting_Records')}    Selecting and Highlighting Records
{button ,JI(`',`Updating_and_Deleting_the_Current_Record')}    Updating and Deleting the Current Record
{button ,JI(`',`Refreshing_the_Display')}    Refreshing the Display
{button ,JI(`',`Coordinating_with_Other_Controls')}    Coordinating with Other Controls
{button ,JI(`',`Handling_Database_Errors')}    Handling Database Errors
{button ,JI(`',`Postponing_Illegal_Operations_in_Grid_Events')}    Postponing Illegal Operations in Grid Events

Changing the Current Record Position
True DBGrid enables you to manipulate the current record position directly in either bound or unbound modes.
To do so, you can use the Bookmark property or one of the navigation methods.

{button ,JI(`',`Using_the_Bookmark_property')}    Using the Bookmark property
{button ,JI(`',`Using_the_navigation_methods')}    Using the navigation methods
{button ,JI(`',`Detecting_BOF_and_EOF_conditions')}    Detecting BOF and EOF conditions

Using the Bookmark property

When you set the Bookmark property to a valid value in code, the row associated with that value becomes
the current row, and the grid adjusts its display to bring the new current row into view if necessary.

Using the navigation methods

When the grid is bound to a Data control, you can manipulate the underlying Recordset using Data control
properties and methods such as EOF, MoveFirst, and MoveNext.    However, if you decide later on to switch
to an unbound data source, these properties and methods will be unavailable.

True DBGrid solves this problem by providing properties and methods that mimic those supported by
Recordset objects.    These properties and methods work the same for all DataMode settings, thus
eliminating the need to write separate implementations for bound and unbound modes.

MoveFirst Moves the current record to the first record available.

MoveLast Moves the current record to the last record available.

MoveNext Moves the current record to the next record available.

MovePrevious Moves the current record to the previous record available.

MoveRelative Moves the current record according to a specified offset and optional
bookmark.

Only the MoveRelative method accepts arguments (a long integer offset and an optional variant bookmark). 
A positive offset indicates forward movement; a negative offset indicates backward movement.    If the
bookmark argument is omitted, the current row's bookmark is used.    Thus, the following statements are all
equivalent:

TDBGrid1.MoveRelative -1, TDBGrid1.Bookmark
TDBGrid1.MoveRelative -1
TDBGrid1.MovePrevious

Detecting BOF and EOF conditions

In addition to the record navigation methods, True DBGrid provides BOF and EOF properties for determining
beginning and end of file conditions.    For example, the following loop iterates through all available records in
any data mode:

With TDBGrid1
 .MoveFirst
 While Not .EOF
 ' Process current record
 .MoveNext
 Wend
End With

NOTE: This example is provided for illustration purposes only.    In a real application, iterating through the
entire grid would produce a flurry of screen activity, and is therefore not recommended.    Such operations are
best performed on the underlying data source, or better yet, a Recordset clone if one is available.

Accessing and Manipulating Cell Data
In order to access and manipulate cell data, you need to use the Columns collection, which contains zero or
more Column objects.    For more information, see Configuring Columns at Run Time.

{button ,JI(`',`Reading_and_writing_cell_data_within_the_current_record')}    Reading and writing cell data
within the current record
{button ,JI(`',`Reading_cell_data_from_non-current_records')}    Reading cell data from non-current records
{button ,JI(`',`Retrieving_a_bookmark_relative_to_the_current_record')}    Retrieving a bookmark relative to
the current record
{button ,JI(`',`Retrieving_a_bookmark_relative_to_a_displayed_row')}    Retrieving a bookmark relative to a
displayed row

Reading and writing cell data within the current record

You can read and write cell data within the current row by using the Column object's Text and Value
properties.    (The CellText and CellValue methods are used to read values from other, non-current rows.)

To examine cell data in the current row:

CurrentText$ = TDBGrid1.Columns(ColIndex).Text
CurrentValue = TDBGrid1.Columns(ColIndex).Value

The Text and Value properties return the current contents of the specified column in the current row.    Note
that the contents may have been edited by the user.    The Text property returns a formatted string (according
to the column's NumberFormat property) exactly as it appears in the cell.    The Value property returns the
unformatted cell data as a string variant.

To change cell contents in the current row:

TDBGrid1.Columns(ColIndex).Text = NewText$
TDBGrid1.Columns(ColIndex).Value = NewValue

Since the Value property accepts a variant, you can supply the new data using any appropriate data type.   
For example, you can write a null value to the database by setting Value to Null in the BeforeUpdate event. 
You do not need to format NewText$ or NewValue, since the grid will perform the appropriate formatting
before displaying the data.

Reading cell data from non-current records

You can read cell data from non-current rows by using the Column object's CellText and CellValue methods. 
Note that you can only read data from non-current rows; you cannot update them.    (The Text and Value
properties are used to read and write values within the current row.)

To examine cell data in any row, where bkm is the bookmark of the desired row:

RowText$ = TDBGrid1.Columns(ColIndex).CellText(bkm)
RowValue = TDBGrid1.Columns(ColIndex).CellValue(bkm)

The CellText method returns a formatted string (according to the column's NumberFormat property) exactly
as it appears in the cell.    The CellValue method returns the unformatted cell data as a string variant.

Retrieving a bookmark relative to the current record

To retrieve a bookmark relative to the current record, use the grid's GetBookmark method, which accepts an
integer offset that specifies the number of records after the current record if positive, or before the current
record if negative:

Dim Bmk As Variant
Bmk = TDBGrid1.GetBookmark(0) ' Current row
Bmk = TDBGrid1.GetBookmark(1) ' Next row
Bmk = TDBGrid1.GetBookmark(-1) ' Previous row
Bmk = TDBGrid1.GetBookmark(4) ' Fourth row after current row

Note that the record referred to by the GetBookmark method need not be visible on the screen.

Retrieving a bookmark relative to a displayed row

To retrieve a bookmark relative to a row that is currently displayed, use the RowBookmark method, which
accepts an integer offset that specifies a zero-based row number ranging from 0 to VisibleRows - 1:

Dim Bmk As Variant
With TDBGrid1
 Bmk = .RowBookmark(0) ' First displayed row
 Bmk = .RowBookmark(1) ' Second displayed row
 Bmk = .RowBookmark(.VisibleRows - 1) ' Last displayed row
End With

Note that unlike the GetBookmark method, the RowBookmark method only returns bookmarks for visible
rows.

Validating Cell Data
If the grid's AllowUpdate property is True, your users will be able to modify the underlying data interactively
through the grid's user interface.    To prevent users from updating the database with invalid entries, you can
write data validation code that works on a per-cell or per-row basis.    To validate individual cells, use the
BeforeColUpdate event.    To validate entire rows, use the BeforeUpdate event.

For certain kinds of data, such as dates and phone numbers, you can use the EditMask property to specify
an input template that filters out illegal characters as they are typed.    Even if you use True DBGrid's built-in
input masking features, you may still want to write data validation code.    For example, the user may enter a
phone number that is syntactically legal, but contains a bogus area code.    Since the grid knows nothing
about area codes, you would have to write a handler for either BeforeColUpdate or BeforeUpdate in order
to prevent the invalid number from being written to the underlying data source.

{button ,JI(`',`Validating_end-user_data_entries')}    Validating end-user data entries
{button ,JI(`',`Validating_data_before_updating_to_the_database')}    Validating data before updating to the
database

Validating end-user data entries

When finished making changes to a cell, the user can terminate editing by pressing the ENTER key, moving to
another cell using the arrow keys, or clicking another cell with the mouse.    If the user stays in the same row,
data is not updated to the database.    At the end of each cell editing session, you have the opportunity to
reject or change the user's modifications in the BeforeColUpdate event:

Private Sub TDBGrid1_BeforeColUpdate(_
 ByVal ColIndex As Integer, _
 OldValue As Variant, Cancel As Integer)

ColIndex is the index of the column just edited.    OldValue is the value of the cell before any changes were
made to it.    It is possible to edit a cell many times before updating to the database, but OldValue will be the
same for all the updating sessions.   

You generally use BeforeColUpdate to validate data entered by the user before leaving the cell.    You can
examine or change the edited data using the Column object's Text and Value properties.    In any data
mode, you can compare the changes to the original cell data using the OldValue argument.    In bound mode
only, you can also examine the field value of the data control:

Data1.Recordset.Fields(ColIndex).Value

Note that this expression assumes that the grid's columns match the members of the Fields collection of the
Data control's Recordset.    This assumption holds true if you are using the grid's automatic layout feature.   
However, if you have defined your own layout, then you should reference the Fields collection by name:

Data1.Recordset.Fields("FieldName").Value

Note the similarity between the Column object and Columns collection and the Field object and the Fields
collection.    You can access the members of either collection by numeric index or name, whichever is more
convenient.

You can cancel the update by setting Cancel to True in the BeforeColUpdate event.    If canceled, the grid will
restore the cell to its value before the current editing session.    The restored value may not be the same as
OldValue if the user has edited the cell multiple times.    The cell movement will be canceled and the current
cell remains in place.   

If the update is not canceled, the AfterColUpdate event will fire:

Private Sub TDBGrid1_AfterColUpdate(ByVal ColIndex As Integer)

and the current cell moves to a new location if appropriate.    The current cell does not change if the user has
left editing by pressing the ENTER key.    Note that unless the cell is moved to another row, the user has only
changed the visible data in the grid; no change will be made to the database.    Before the change has been
updated to the database, the user can always restore the cell to OldValue by pressing the ESC key.    For more
information, see Database Operations.

The following example prevents the user from leaving the current cell if the value entered is an empty string. 
Although your first inclination may be to display a message box for the user in BeforeColUpdate, this will
not work as expected because the message box will cause the BeforeColUpdate event to fire again before it
is finished, resulting in an endless series of message boxes.    The solution is to post a message to the grid
using the PostMsg method, then show the message box in the handler for the PostEvent event, which will
not fire until the BeforeColUpdate event has finished.

Private Sub TDBGrid1_BeforeColUpdate(_
 ByVal ColIndex As Integer, _
 OldValue As Variant, Cancel As Integer)

 If TDBGrid1.Text = "" Then
 ' Schedule the PostEvent event

 TDBGrid1.PostMsg 1

 ' The following line is used to keep the cell blank
 ' (remove it to restore the old cell value)
 OldValue = ""

 ' Cancel the update and keep focus on this cell
 Cancel = True
 End If
End Sub

Private Sub TDBGrid1_PostEvent(ByVal MsgId As Integer)

 ' 1 is the argument to PostMsg in BeforeColUpdate
 If MsgId = 1 Then MsgBox "Cells may not be empty"

End Sub

Validating data before updating to the database

Any changes made to the current row are updated to the database when the user moves to another row or
when your code executes the Edit and Update methods on the Data control's Recordset:

Data1.Recordset.Edit
Data1.Recordset.Update

Before any changes are made to the database, the Data control's Validate event will fire, followed by True
DBGrid's BeforeUpdate event.    Either of these events can be used to cancel the update to the database by
setting the Cancel argument to True.   

Private Sub TDBGrid1_BeforeUpdate(Cancel As Integer)

If the update succeeds, the grid's AfterUpdate event will fire:

Private Sub TDBGrid1_AfterUpdate()

and the current cell moves to a new location when appropriate.

You can use similar True DBGrid events to validate the data before adding or deleting a row from the
database:

Private Sub TDBGrid1_BeforeInsert(Cancel As Integer)
Private Sub TDBGrid1_AfterInsert()
Private Sub TDBGrid1_BeforeDelete(Cancel As Integer)
Private Sub TDBGrid1_AfterDelete()

Alternatively, you can use the Data control's Validate event to accept or reject the changes to the database. 
Internally, True DBGrid uses bookmarks to navigate through the database.    Thus, when a Data control's
Validate event is fired in response to a row change in the grid, the Action argument will be
vbDataActionBookmark, which indicates that the Bookmark property of the underlying Recordset has
changed.    You can cancel the movement by setting the Action argument to zero.    In this case, the grid will
keep the original row current, rather than changing to the newly selected row.    The Save argument will be
True if data in a bound control has changed and is about to be written to the database.    If you set the Save
argument to False, any user edits will remain, and the user will need to correct the data before continuing.   
This is how invalid data is typically handled.    See the Visual Basic Help for more details on using the Data
control's Validate event.

The following example demonstrates how to use the BeforeUpdate event to validate an entire row of data.   
Whenever the user attempts to update the current row, a message box is displayed, asking the user if the
record should be saved.    If the user chooses Yes, the update proceeds. If the user chooses No, the update is
canceled, and the grid's current row does not change.

Dim UpdateFlag As Boolean

Private Sub TDBGrid1_BeforeUpdate(Cancel As Integer)
 Dim MsgText As String, MsgCaption As String
 Dim Response As Integer, MsgBoxType As Integer

 MsgText = "Do you want to save this record?"
 MsgBoxType = vbYesNo + vbQuestion
 MsgCaption = "Confirm Update"

 Response = MsgBox(MsgText, MsgBoxType, MsgCaption)

 If Response = vbNo Then
 Cancel = True
 UpdateFlag = True

 End If
End Sub

Private Sub TDBGrid1_Error(ByVal DataError As Integer, _
 Response As Integer)

 If UpdateFlag Then ' Error triggered in BeforeUpdate
 Response = 0 ' Don't display default message
 UpdateFlag = False ' Clear flag for next update
 End If
End Sub

Unlike the BeforeColUpdate event, displaying a message box in the BeforeUpdate event does not cause
recursion problems.

The Error event is included in this example because it will fire as a result of the update being canceled.    The
boolean variable UpdateFlag is used to suppress the default error message for the BeforeUpdate case but
not for other kinds of errors.    For more information, see Handling Database Errors.

Selecting and Highlighting Records
At run time, the user can select and highlight one or more records by clicking the record selector of the
desired row.    You can achieve the same effect in code by manipulating the grid's SelBookmarks collection,
which maintains a list of bookmarks corresponding to the selected rows.

Like all other collections in True DBGrid, the SelBookmarks collection supports Add, Item, and Remove
methods and a Count property.    For example, to select the grid's current row, use the Add method:

TDBGrid1.SelBookmarks.Add TDBGrid1.Bookmark

After the Add method executes, the collection's Count property is incremented.    You can use the Add
method repeatedly to select and highlight additional rows.    This is analogous to the user holding down the
CTRL key while clicking a record selector.

To deselect a single record, use the Remove method, which takes a collection index, not a bookmark:

TDBGrid1.SelBookmarks.Remove 0

After the Remove method executes, the collection's Count property is decremented.    If more than one
record is selected, the previous example will only remove the first selected record; that is, the one that was
added to the collection first, regardless of its position on the screen.    To deselect all records, you need to
write a loop like the following:

With TDBGrid1.SelBookmarks
 While .Count > 0
 .Remove 0
 Wend
End With

Tutorial 5 demonstrates how to use the SelBookmarks collection to select records that satisfy specific
criteria.

Updating and Deleting the Current Record
If the user finishes making changes to a cell, but stays in the same row, data is not updated to the database.   
You can force the row to be updated by applying the Update method of the grid.    This method works for any
DataMode setting:

TDBGrid1.Update

For a bound grid (DataMode property set to 0 - Bound), you can also force an update using the Update
method of the Data control's Recordset:

Data1.Recordset.Edit
Data1.Recordset.Update

You can delete the current row in any data mode using the grid's Delete method:

TDBGrid1.Delete

Refreshing the Display
True DBGrid defers screen updates until they are needed by waiting until Windows enters an idle loop.    This
generally occurs when your code stops executing and the system is waiting for user input.    You can simulate
an idle loop in code by calling the Visual Basic function DoEvents, which causes all pending events to be
processed.

In most cases, you need not be concerned with the grid's display operations and can concentrate on writing
code that works directly with the database.    However, if the structure of your data source changes, or you
need to temporarily keep the grid from responding to database events, you can use the Refresh, ReBind, or
ReOpen methods.    If you are not using DataMode 1 - Unbound, these methods behave as follows:

Refresh This method simply forces the grid to repaint, and no database access
occurs.    The grid maintains all modified data in the current row, and the
current cell position is unchanged.

ReBind This method causes the grid to disconnect from and then reconnect to its
data source.    The grid rebinds all columns and refetches all data.    Any
data changed by the user (but not yet updated to the database) will be
lost.    The grid maintains the current row but not the current column.   
When data is redisplayed, the leftmost visible column becomes current,
and the current row becomes the first row in the grid (unless all records
are visible).

ReOpen This method is typically used following a Close method to reconnect the
grid to its data source.    The grid is repopulated and the current row is
positioned to the row identified by an optional bookmark argument.    If no
bookmark is specified, then the current row reflects the current row of the
data source.

To maintain backward compatibility with the original unbound mode of DBGrid, the Refresh and ReBind
methods behave as follows when the DataMode property is set to 1 - Unbound:

Refresh The grid refetches and redisplays all data by firing the
UnboundReadData event.    Any data changed by the user (but not yet
updated to the database) will be lost.    The grid maintains the current row
but not the current column.    When data is redisplayed, the leftmost
visible column becomes current, and the current row becomes the first
row in the grid (unless all records are visible).

ReBind The grid refetches data by firing the UnboundReadData event, but it
maintains any data changed by the user within the current row.    When
data is redisplayed, the current cell position and the grid display are
unchanged.

Coordinating with Other Controls
You can link multiple True DBGrid controls using the RowColChange event to trigger related actions.   
Whenever the grid's current cell changes, the RowColChange event is fired, indicating that a new row and/or
column has become current.    RowColChange is triggered in the following cases:

· The user clicks on a new row and/or column in the grid.

· The current cell is changed by code.    This includes changing the grid's Bookmark, Col, or Row
properties and changing the current record through the Recordset.

· Data in the grid is refreshed.

· The user moves the record pointer using the navigation buttons on the Data control associated with
the grid.

For example, you can use the RowColChange event to update the display of a status bar that provides
additional information or instructions as the user navigates from column to column.    By providing the user
with clues during the data entry process, you can make your program more intuitive.

Private Sub TDBGrid1_RowColChange(LastRow As Variant, _
 ByVal LastCol As Integer)

 ' TDBGrid1.Col has the new current column index
 ' Display help string in Label1
 Select Case TDBGrid1.Col
 Case 0
 Label1.Caption = "Customer's credit card number"
 Case 1
 Label1.Caption = "Five-digit order number"
 Case 2
 Label1.Caption = "Total cost in US dollars"
 End Select
End Sub

The RowColChange event is also a convenient place to coordinate activities with other controls or
databases.    Tutorial 3 provides an example of how you can use the RowColChange event to implement
master-detail relationships using two True DBGrid controls.

Handling Database Errors
True DBGrid processes errors in a manner consistent with other custom controls, generating both trappable
errors and error events.    Trappable errors are reported whenever an error is generated by a Visual Basic
command or statement.    Error events are fired whenever an error is generated by a user action and there is
no identifiable line of Visual Basic code causing the error.

When you develop error handling procedures, there are two key points to always keep in mind:

1. The source of the operation which ultimately results in an error.

2. The source of the actual error.

{button ,JI(`',`Trapping_errors')}    Trapping errors
{button ,JI(`',`Processing_trapped_errors')}    Processing trapped errors
{button ,JI(`',`Errors_caused_by_cancellation')}    Errors caused by cancellation

Trapping errors

Trapping an error is the first step in handling an error.    As an example, suppose there is a grid bound to a
Data control, displaying a Recordset with a numeric field.    Suppose also that a user enters non-numeric
data in the grid column associated with the numeric field.    When an attempt is made to change rows, the
Data control automatically initiates the update process and tries to store the non-numeric data,    resulting in
an error.

How is this error to be handled?    Will the error appear as a trappable error, or in an error event?    The answer
lies with the first key point given.    The error will be reported by the control or code which initiates the row
change (the source of the operation which ultimately leads to the error), since it is the row change operation
which cannot be completed.

How many ways can you initiate the row change operation, and how is each trapped?    Here are some
examples:

1. Click a command button which performs a Recordset move operation.    In this case, the row change
operation is initiated by a line of Visual Basic code, and the error will be reported as a trappable error,
which is handled with the On Error statement.

2. Click a button of the data control.    In this case, there is no identifiable line of Visual Basic code which
can be trapped, so the error will be reported in an error event.    Because the row change is initiated by
the data control, the data control's Error event will be fired.

3. Click any non-current row of True DBGrid.    As in example 2, there is no identifiable line of Visual Basic
code which can be trapped, so once again the error is reported in an error event.    However, in this
case, the row change is initiated by True DBGrid, so the error is reported in the grid's Error event.

4. Press the down arrow key.    As in example 3, the error is reported in the grid's Error event for the
same reasons.

5. Press the down arrow key, but perform a row change operation in the KeyDown event of the grid
using a bookmark or Recordset move operation.    In this case, the row change event is initiated by
the code in the KeyDown event, and the error is trapped through the On Error statement.

Processing trapped errors

After trapping a reported error, the task remains to process the error appropriately within the context of your
program.    This requires analyzing the error code and error text to determine the problem and, of course,
deciding what to do about it.

In many cases, you will find that simply reporting the error to the user is the most appropriate.    When an
error is trapped through an error event, reporting the error can be handled automatically by not coding the
error event at all.    By default, a message box is displayed indicating the error.    Additional details of
generalized Error events can be obtained from the Visual Basic help file.

Trappable errors, which originate from Visual Basic code, will result in program termination unless the On
Error statement is used to set up an error handler.    Appropriate messages for the errors can usually be
obtained from the Visual Basic Error function, but sometimes require inspection of the object in which the
original error occurred.    This will be discussed later.

When it becomes necessary to do more than display an error message, the second key point (the source of
the actual error) must be considered.    In the example presented earlier, where non-numeric data is placed in
a numeric field, the error "Data type conversion error" is usually issued.    This error does not originate from
the grid, or even the Data control.    It comes from the database engine---DAO in the case of an Access
database.

Database errors usually result in a cascade of errors, each a direct result of the other.    In our example, the
first error encountered is the "Data conversion error" generated by the database engine when attempting to
update the numeric field.    As a result, a general failure error occurs from the row update.    The row update
error causes the row change operation to fail, also with a general error code.    This cascade of errors makes
the problem difficult to analyze, since only the general error of the row change failure is reported to the grid
from the data control, and finally passed on to your Visual Basic program as the trappable error code or the
DataError argument of the grid's Error event.    In order to discern the true nature of the problem, it is
necessary to inspect the source of the original error---the Errors collection of the database engine.    This
collection object is discussed fully in the Visual Basic help file.

To simplify handling of errors in the grid's Error event, True DBGrid supports an ErrorText property.    This
property is read-only, and is available only during the execution of the Error event.    It returns the error
message string associated with the underlying data source error that ultimately caused the grid's Error event
to fire.

Errors caused by cancellation

There are times when the source of an error is difficult to determine.    The most common case of this is an
error which reports "Action canceled by an associated object."    In most cases, this will be the result of a
database operation which has not been completed because a bound control has denied permission for the
operation to complete.    Commonly, this will be the result of a canceled event.    For example, suppose the
grid's BeforeUpdate event is canceled.    The cancellation is reported to the Data control, which simply
reports the cancellation back to the grid.    The Data control does not have knowledge of the reason for
cancellation; it only knows that it has occurred.    Therefore, it issues the generic "Action canceled by an
associated object" message.    In this case,    since the cancellation is performed by your code.    It is your
responsibility to display an informative error message and cancel the default error message generated by the
Data control.

Postponing Illegal Operations in Grid Events
During most of the grid events, database and other system operations are still pending, and certain
operations are not allowed within these grid events.    To circumvent such limitations, you can use the
PostMsg method in conjunction with the PostEvent event to postpone operations which are illegal within
the grid events.    If the PostMsg method is called, the grid will fire the PostEvent event with the MsgId of
the corresponding PostMsg invocation after all pending operations are completed.    You can then safely
perform all desired operations in the PostEvent event.

For example, suppose it is necessary to keep the rows of a Recordset in sorted order based upon a particular
column, say Column 2.    Whenever a cell in Column 2 is edited, or a new row is added, it is then necessary to
Refresh the Data control so the new data will be placed in the correct order in the Recordset.    A reasonable
approach to this problem is to include a flag variable to determine that a Refresh is needed in the grid's
BeforeUpdate event:

Dim refreshNeeded As Boolean ' Global flag variable

Private Sub Form_Load()
 refreshNeeded = False ' Initialize flag variable
End Sub

Private Sub TDBGrid1_BeforeUpdate(Cancel As Integer)
 refreshNeeded = TDBGrid1.Columns(2).DataChanged Or _
 (TDBGrid1.AddNewMode = dbgAddNewPending)
End Sub

A convenient place to perform the Data control Refresh is within the grid's AfterUpdate event.    However, it
is not possible to perform the Refresh method within the AfterUpdate event because database operations
are still pending, and the Refresh method will fail.    Instead of performing the Refresh, you can call the
PostMsg method with an arbitrary numeric argument (1, in the following example) in the AfterUpdate
event.    After all pending database operations are completed, the grid will fire the PostEvent event.    You can
then check for the numeric argument and perform the Refresh operation safely:

Private Sub TDBGrid1_AfterUpdate()
 If refreshNeeded Then
 refreshNeeded = False ' Reset flag variable
 TDBGrid1.PostMsg 1 ' Post a message with MsgId = 1
 End If
End Sub

Private Sub TDBGrid1_PostEvent(ByVal MsgId As Integer)
 Select Case MsgId
 Case 0
 Exit Sub
 Case 1
 Data1.Refresh
 Case 2
 ' Process other postponed operations
 End Select
End Sub

The PostMsg and PostEvent combination in the preceding example postpones the Refresh until the
PostEvent event---after all pending database operations have completed.

If the PostMsg argument is zero, the grid will fire the PostEvent event with an argument of zero, but all
other pending posted events will be discarded.    Since refreshing the Data control makes all other posted
events irrelevant anyway, the preceding example can be simplified as follows:

Private Sub TDBGrid1_AfterUpdate()
 If refreshNeeded Then
 refreshNeeded = False ' Reset flag variable
 TDBGrid1.PostMsg 0 ' Post a message with Id = 0
 End If
End Sub

Private Sub TDBGrid1_PostEvent(ByVal MsgId As Integer)
 Select Case MsgId
 Case 0
 Data1.Refresh
 Case 1
 ' Process other postponed operations
 End Select
End Sub

When the PostMsg method is called with a numeric argument, the grid uses the Windows API function
PostMessage to place a message in the Windows message queue.    The numeric argument is passed along
with it.    When the grid retrieves the posted Windows message, it fires the PostEvent event with the numeric
argument of the corresponding PostMsg method.

Please note that execution of the Visual Basic DoEvents function will cause the Windows message queue to
be processed, thus causing execution of the PostEvent events before the DoEvents returns.

Customizing the Grid's Appearance
This chapter explains how to configure the non-interactive elements of True DBGrid's display, such as
captions, headings, and dividing lines.

{button ,JI(`',`Captions_and_Headings')}    Captions and Headings
{button ,JI(`',`Three-dimensional_versus_Flat_Display')}    Three-dimensional versus Flat Display
{button ,JI(`',`Borders_and_Dividing_Lines')}    Borders and Dividing Lines
{button ,JI(`',`Unpopulated_Regions')}    Unpopulated Regions
{button ,JI(`',`Highlighting_the_Current_Row_or_Cell')}    Highlighting the Current Row or Cell
{button ,JI(`',`Row_Height_and_Multiple-line_Displays')}    Row Height and Multiple-line Displays
{button ,JI(`',`Alternating_Row_Colors')}    Alternating Row Colors
{button ,JI(`',`Alignment_and_Wordwrap')}    Alignment and Wordwrap

Captions and Headings
You can affix a title to a grid, column, or split by setting the Caption property of the appropriate object.

TDBGrid1.Caption = "Grid Caption"
TDBGrid1.Columns(0).Caption = "Column 0 Caption"
TDBGrid1.Splits(0).Caption = "Split 0 Caption"

{button ,JI(`',`Column_and_grid_captions')}    Column and grid captions
{button ,JI(`',`Multiple-line_captions')}    Multiple-line captions
{button ,JI(`',`Split_captions')}    Split captions

Column and grid captions

For Column objects, the Caption property specifies the text that appears in each column's header area.

If you are using True DBGrid in bound mode with an automatic layout, the column captions are set
automatically at run time.    At design time, you can use the Retrieve Fields context menu item to initialize
the grid layout according to the current RecordSource setting for the Data control to which the grid is
bound.

You can also set column captions at design time using the Columns property page, or at run time by
manipulating the Columns collection in code.    For more information, see Configuring Columns at Run Time.

The Caption property also applies to the TDBGrid control itself, which lets you provide a descriptive header
for the entire grid.

By default, True DBGrid displays headings for each column, even if you never set the Caption property of an
individual column explicitly.    However, you can hide all column headings by setting the ColumnHeaders
property to False.

Multiple-line captions

The HeadLines property controls the height of the column headers.    By default, it is set to 1, which means
that the column headers occupy a single row.    If you need to display more than one line of text in a column
header, you can increase the HeadLines property to accommodate additional lines, as in the following
example:

With TDBGrid1
 .HeadLines = 2
 .Columns(0).Caption = "First line" + vbCr + "Second line"
End With

Note the use of the Visual Basic constant vbCr to specify a line break within the caption text.    After this code
executes, the first column's caption will contain two lines of text, and the second column's caption will be
centered vertically.

NOTE: The HeadLines property only affects column headers; it has no effect on grid or split captions, which
can only occupy a single row.

Split captions

Split objects can also have their own captions.    For a grid with one split, a split caption can serve as a
second grid caption.

Split captions are best used in grids with at least two splits, as they are ideal for categorizing groups of
columns for end-users.

Three-dimensional versus Flat Display
True DBGrid supports a standard, "flat" control appearance, as well as the more attractive three-dimensional
appearance used by many controls.    By default, the grid's Appearance property is set so that the 3-D look is
used.    However, this property only controls whether 3-D effects are used within the grid's caption bar, column
headings, and record selector column.    It does not affect the grid's border, data cells, or row and column
dividers.

When Appearance is set to 1 - 3D, the grid looks like this.

When Appearance is set to 0 - Flat, the grid looks like this.

To achieve a 3-D appearance for the entire grid, including its interior, set the following properties at either
design time or run time:

· On the Display property page, set the RowDividerStyle property to 4 - Inset.    Or, in code:

TDBGrid1.RowDividerStyle = dbgInset

· On the Layout property page, set the DividerStyle property to 4 - Inset for all columns.    Or, in code:

Dim C As TrueDBGrid50.Column
For Each C In TDBGrid1.Columns
 C.DividerStyle = dbgInset
Next

· On the Color property page, set the BackColor property to gray.    Or, in code:

TDBGrid1.BackColor = &HC0C0C0

The resulting grid will look something like this.

Note that changing the RowDividerStyle property from 2 - Dark gray line to 4 - Inset consumes an extra
vertical pixel in each data row, resulting in fewer visible rows.

You can experiment to achieve different 3-D effects using other color combinations and divider styles, as
explained in the next section.

Borders and Dividing Lines
The RowDividerStyle and DividerStyle properties enable you to choose different horizontal and vertical
lines and their colors.    Note that RowDividerStyle is a TDBGrid object property and DividerStyle is a
Column object property.    The allowable values for both properties are as follows:

0 - No dividers
1 - Black line
2 - Dark gray line
3 - Raised
4 - Inset
5 - ForeColor
6 - Light gray line

For example, setting the RowDividerStyle property to 0 - No dividers eliminates the dividing lines between
rows and enables you to cram a bit more data into the available area.

Similarly, by setting the DividerStyle property to 0 - No dividers, you can visually group related columns.   
The column headers are not affected, however.

Unpopulated Regions
Depending upon the number of rows and columns in the data source, a portion of the grid's interior may not
contain data cells.    However, you can eliminate these "dead zones" using the ExtendRightColumn and
EmptyRows properties.

{button ,JI(`',`The_rightmost_column')}    The rightmost column
{button ,JI(`',`Unused_data_rows')}    Unused data rows

The rightmost column

As the grid scrolls horizontally until the last column is totally visible, there is usually a blank area between the
last column and the right border of the grid.

The color of this blank area depends on the setting of your system's 3D Objects color (or Button Face color),
which is usually gray.    You can eliminate this blank area with the ExtendRightColumn property.    The default
value of this property is False, but if you set it to True, then the last column will extend its width to the right
edge of the grid.

Unused data rows

If the data source contains fewer rows than the grid can display, the area below the AddNew row (or the last
data row, if AllowAddNew is False) is left blank.

The color of this blank area depends on the setting of your system's 3D Objects color (or Button Face color),
which is usually gray.    You can eliminate this blank area with the EmptyRows property.    The default value of
this property is False, but if you set it to True, then the grid will display empty rows below the last usable data
row.

Note that the empty rows cannot receive focus.

You can set both the EmptyRows and ExtendRightColumn properties to True to ensure that no blank areas
appear within the interior of the grid.

Highlighting the Current Row or Cell
The term marquee refers to the highlighted area which represents the current grid cell or row.    The
MarqueeStyle property can be set to seven possible presentations, illustrated as follows.

{button ,JI(`',`MarqueeStyle_0')}    MarqueeStyle 0 - Dotted Cell Border
{button ,JI(`',`MarqueeStyle_1')}    MarqueeStyle 1 - Solid Cell Border
{button ,JI(`',`MarqueeStyle_2')}    MarqueeStyle 2 - Highlight Cell
{button ,JI(`',`MarqueeStyle_3')}    MarqueeStyle 3 - Highlight Row
{button ,JI(`',`MarqueeStyle_4')}    MarqueeStyle 4 - Highlight Row, Raise Cell
{button ,JI(`',`MarqueeStyle_5')}    MarqueeStyle 5 - No Marquee
{button ,JI(`',`MarqueeStyle_6')}    MarqueeStyle 6 - Floating Editor

MarqueeStyle 0 - Dotted Cell Border

The current cell is highlighted by a dotted border.

MarqueeStyle 1 - Solid Cell Border

This is a more distinctive form of cell highlighting, often useful when a different background color is used
(since the dotted rectangle is often difficult to spot).

MarqueeStyle 2 - Highlight Cell

This style inverts the current cell completely, making it very visible.    Values of the EditBackColor and
EditForeColor properties should be chosen carefully to make a pleasing effect if your grid is editable.

MarqueeStyle 3 - Highlight Row

The entire row will be highlighted, but it won't be possible to tell which cell is the current cell in the row.    To
change highlight colors, you can edit the built-in HighlightRow style on the Styles property page.    This style is
most useful when the grid is not editable and your users would view the data one record at a time.

MarqueeStyle 4 - Highlight Row, Raise Cell

This value should only be used if 3-D lines are used in the grid, since cell highlighting is accomplished using a
"raised" appearance for the current cell.

MarqueeStyle 5 - No Marquee

This setting will make the marquee disappear completely.    Often this setting is useful for cases where the
current row is irrelevant, or where you don't want to draw the user's attention to the grid until necessary.

MarqueeStyle 6 - Floating Editor

This is the default marquee style of the grid.    The cell text (the actual text only, not the entire cell) is
highlighted and there is a blinking text cursor (caret) at the end of the text.

The color of the highlight is your system's highlight color.    The floating editor style simulates the look and
feel of the Microsoft Access datasheet.    The blinking text cursor indicates that the cell is edit-ready, hence
the name floating editor for this marquee style.    Since no other marquee style places the cell in a similar
edit-ready mode, the behavior of the grid with the floating editor is sometimes different from the other
marquee styles.    The following list summarizes the differences when the MarqueeStyle property is set to 6 -
Floating Editor:

1. The following properties are ignored by the floating editor: EditBackColor, EditDropDown,
EditForeColor, EditorStyle, and MarqueeUnique.

2. When using the AddCellStyle and AddRegexCellStyle methods with the floating editor, the grid
ignores the current cell bit (dbgCurrentCell) and highlighted row bit (dbgMarqueeRow) of the
Condition argument.    For more details, see Introduction to Cell Styles.

3. The floating editor will not be displayed in a cell with radio buttons or a picture, as described in
Automatic Data Translation with ValueItems.    A dotted cell marquee will be used instead.    The
floating editor highlight will return when the current cell is changed to one with normal text display.

4. The CycleOnClick property (applies to ValueItems collection) has no effect when the MarqueeStyle
property is set to 6 - Floating Editor.

5. The drag-and-drop features described in Drag-and-Drop Behavior will not work as well as they do with
other marquee styles.    Users will not be able to begin dragging a cell to trigger the DragCell event
unless they manage to grab the narrow region between the floating editor and either column divider.   
This is because the floating editor is itself a control and is preventing the grid cell from detecting the
drag.

6. The DblClick event of the TDBGrid control does not fire when the user double-clicks a noncurrent cell
within the grid.    This is because the first click is used by the floating editor to begin editing, placing
the cell into edit mode at the character on which the click occurred.    Double-clicking the current cell
of the grid fires the DblClick event normally, however.

Row Height and Multiple-line Displays
The RowHeight property controls the height of all grid rows.    The MultipleLines property controls whether
a single row can span multiple lines.

{button ,JI(`',`Adjusting_the_height_of_all_grid_rows')}    Adjusting the height of all grid rows
{button ,JI(`',`Displaying_a_single_record_on_multiple_lines')}    Displaying a single record on multiple lines
{button ,JI(`',`Implications_of_multiple-line_mode')}    Implications of multiple-line mode

Adjusting the height of all grid rows

You can configure the row height interactively at design time by placing the grid in its visual editing mode or
by changing the grid's RowHeight property on the General property page.    At run time, the user can adjust
the row height interactively if AllowRowSizing is True.    For more information, see Run Time Interaction.

The RowHeight property is expressed in units of the container's coordinate system.    However, a setting of 0
causes the grid to readjust its display so that each row occupies a single line of text in the current font.   
Therefore, you can use the following code to adjust the row height to display exactly three lines of text:

TDBGrid1.RowHeight = 0
TDBGrid1.RowHeight = 3 * TDBGrid1.RowHeight

This technique is particularly effective when displaying multiple-line memo fields, as in this example:

Note that the Description column must have its WrapText property set to True; otherwise, the memo field
display will be truncated after the first line.

Displaying a single record on multiple lines

Normally, a record is displayed in a single row in the grid.    If the grid is not wide enough to display all of the
columns in the record, a horizontal scroll bar automatically appears to enable users to scroll columns in and
out of view.    For discussion purposes, we shall distinguish between the following:

· A line in a grid is a single physical row of cells displayed in the grid.    Do not confuse this with a line of
text inside a grid cell; depending upon the settings of the RowHeight and WrapText properties, data
in a grid cell may be displayed in multiple lines of text.

· A row in a grid is used to display a single record.    A row may contain multiple lines or multiple
physical rows.

The MultipleLines property of the grid controls how records are displayed.    The default value is False, which
means that a single record or row cannot span multiple lines.    If necessary, the end-user can operate the
horizontal scroll bar to view all of the columns within a row.    This is how the grid normally displays data.   

However, if the MultipleLines property is set to True, then a single record may span multiple lines.    This
feature enables the end-user to view simultaneously all of the columns (fields) of a record within the width of
the grid without scrolling horizontally, as in the following figure:

This powerful feature requires very little work from the programmer's perspective.    Just set the
MultipleLines property to True, and the grid will do the rest.    The horizontal scroll bar will be hidden (if one
is present), and the grid will automatically span or wrap the columns to multiple lines so that all columns will
be visible within the width of the grid.    You can adjust the column layout at either design time or run time by
changing the widths and orders of the columns.    You can even turn the MultipleLines feature on and off with
code at run time.

NOTE:    If MultipleLines is True and the ScrollBars property is set to 4 - Automatic, the design time and run
time layouts may not match because of the extra space taken up by the vertical scroll bar at run time.    You
can compensate for this by using a different ScrollBars setting when adjusting column widths at design time.

Implications of multiple-line mode

Existing row-related properties, methods, and events fit well with the earlier definitions of records, rows, and
lines (with two exceptions to be described later).    For example:

· The VisibleRows property returns the number of visible rows or records displayed on the grid—not
the number of visible lines.    If a row spans 2 lines, and the VisibleRows property is 5, then there are
10 visible lines displayed on the grid.

· The RowTop method accepts a row number argument ranging from 0 to VisibleRows - 1.    If a row
spans 2 lines, then RowTop(2) returns the position of the top of the third displayed row (that is, the
fifth displayed line).

· The RowResize event will be fired whenever a row is resized by the user at run time.    In fact, at the
record selector column, only row divider boundaries are displayed; thus, the user can only resize rows,
not lines.

Other row-related properties, methods, and events can be interpreted similarly.    There are two exceptions:

1. The first is the RowHeight property.    The RowHeight property returns the height of a cell or a line,
not the height of a row.    Changing this property would break users' existing code, so we decided to
keep this property the same.

2. The second is more of a limitation than an exception.    Currently the dividers between rows and lines
are the same.    When you change the RowDividerStyle property, all dividers between rows and lines
change to the same style.    That is, you cannot have different dividers for rows and for lines.

Alternating Row Colors
You can often improve the readability of the display by alternating the background colors of adjacent rows.   
When you set the AlternatingRowStyle property to True, the grid displays odd-numbered rows (the first
displayed row is 1) using the built-in style OddRowStyle, and even-numbered rows using the built-in style
EvenRowStyle.

Tutorial 12 demonstrates how to change the default alternating colors at design time.

Alignment and Wordwrap
By default, a grid cell displays a single line of text, truncated at the cell's right boundary.    You can display
multiple lines of text in a cell by increasing the grid's row height and by setting the WrapText property of the
desired columns to True.    If WrapText is True (the default is False), a line break occurs before words that
would otherwise be partially displayed in a cell.    The cell contents will continue to display on the next line,
assuming that the grid's row height accommodates multiple lines.

You can use the following loop to enable wordwrap for all grid columns:

Dim C As TrueDBGrid50.Column
For Each C In TDBGrid1.Columns
 C.WrapText = True
Next

Data Presentation Techniques
This chapter explains how to display cell data in a variety of textual and graphical formats.    To learn how to
customize the behavior of cell editing in True DBGrid, see Cell Editing Techniques.

{button ,JI(`',`Text_Formatting')}    Text Formatting
{button ,JI(`',`Automatic_Data_Translation_with_ValueItems')}    Automatic Data Translation with ValueItems
{button ,JI(`',`Context-sensitive_Help_with_CellTips')}    Context-sensitive Help with CellTips

Text Formatting
In many cases, the raw numeric data that True DBGrid receives from its data source is not suitable for end-
user display.    For example, date fields may need to be converted to a specific international format; currency
fields may contain too many insignificant digits after the decimal point.    Therefore, True DBGrid provides
access to the intrinsic formatting of Visual Basic on a per-column basis by means of the NumberFormat
property.

For cases where Visual Basic's formatting is inadequate, or for other development environments such as
Visual C++, True DBGrid provides an event, FormatText, that enables your application to override the default
formatting on a per-column basis.

{button ,JI(`',`Using_Visual_Basic_built-in_formatting')}    Using Visual Basic’s built-in formatting
{button ,JI(`',`Input_validation_with_built-in_formatting')}    Input validation with built-in formatting
{button ,JI(`',`Formatting_with_an_input_mask')}    Formatting with an input mask
{button ,JI(`',`Formatting_with_a_custom_event_handler')}    Formatting with a custom event handler

Using Visual Basic's built-in formatting

True DBGrid supports a variety of data formatting options through the Column object's NumberFormat
property, which provides the same functionality as Visual Basic's Format$ function.    For example, to display
all date values within a column according to the form 26-Apr-97, you would use the Medium Date setting:

TDBGrid1.Columns("HireDate").NumberFormat = "Medium Date"

Note that if you change the NumberFormat property of a column at run time, you do not need to refresh the
display, as True DBGrid handles this automatically.

At design time, you can set the NumberFormat property using the Columns property page.    For numeric
data, the following predefined options are available:

Standard Display number with thousands separator, at least one digit to the left
and two digits to the right of the decimal separator.

General Number Display number as is, with no thousand separators.
Currency Display number with thousand separator, if appropriate; display two

digits to the right of the decimal separator.    Note that output is based
on system locale settings.

Percent Display number multiplied by 100 with a percent sign (%) appended to
the right; always display two digits to the right of the decimal
separator.

Fixed Display at least one digit to the left and two digits to the right of the
decimal separator.

Scientific Use standard scientific notation.
Yes/No Display No if number is 0; otherwise, display Yes.
True/False Display False if number is 0; otherwise, display True.
On/Off Display Off if number is 0; otherwise, display On.
0% Display number multiplied by 100, then rounded to the nearest integer,

with a percent sign (%) appended to the right.
0.00% Same as Percent.

For date and time data, the following predefined options are available:
General Date Display a date and/or time.    For real numbers, display a date and time

(for example, 4/3/93 05:34 PM); if there is no fractional part, display
only a date (for example, 4/3/93); if there is no integer part, display
only a time (for example, 05:34 PM).    Date display is determined by
your system settings.   

Long Date Display a date using your system's long date format.
Medium Date Display a date using the medium date format appropriate for the

language version of Visual Basic.
Short Date Display a date using your system's short date format.
Long Time Display a time using your system's long time format: includes hours,

minutes, seconds.
Medium Time Display a time in 12-hour format using hours and minutes and the

AM/PM designator.
Short Time Display a time using the 24-hour format (for example, 17:45).

Input validation with built-in formatting

It is important to note that the NumberFormat property affects only the display of data in the grid.    Unless
you also specify a value for the EditMask property, True DBGrid does not enforce an input template, and the
user is free to type anything into the formatted cell.    When moving to another cell, the grid will reasonably
interpret the user's input value, update to the database (if necessary), and redisplay the data according to the
NumberFormat setting.

For example, if Medium Date formatting is in effect for a column, a date of Saturday, April 26, 1997, 12:00:00
AM will be displayed as 26-Apr-97 with the day of the week and time ignored.    If a user enters July and moves
to another row, the grid cannot reasonably interpret the input date value and a trappable error will occur.    If
the user enters oct 5 or 10/5, the grid will interpret the entered date as October 5, 1997 (that is, the current
year is assumed).    If the database update is successful, the entered date will be redisplayed as 05-Oct-97,
since Medium Date formatting is in effect.

Formatting with an input mask

Since it is common for the input and display formats to be the same, the NumberFormat property has an
Edit Mask option (note the space between words).    If you select this option, then the EditMask property
setting will be used for both data input and display.    However, the input and display formats need not be the
same, so you are free to select a NumberFormat option that differs from the EditMask property.

For example, the following code applies a phone number template to a column for both display and editing:

With TDBGrid1.Columns("Phone")
 .EditMask = "(###) ###-####"
 .NumberFormat = "Edit Mask"
End With

For more information on how to specify a data input mask, see Input Masking.

Formatting with a custom event handler

On occasion, you may find that the Visual Basic formatting options do not suit your particular needs.    Or, you
may be using True DBGrid in a development environment that does not support Visual Basic formatting, such
as Visual C++.    In these cases, the FormatText Event option can be specified for the NumberFormat
property.    Choosing this option for a column will cause the FormatText event to fire each time data is about
to be displayed in that column.    The event allows you to reformat, translate, indent, or do anything you want
to the data just prior to display:

Private Sub TDBGrid1_FormatText(ByVal ColIndex As Integer, _
 Value As Variant)

ColIndex contains the column number of the grid to be reformatted.    Value contains the current value of the
data and also serves as a placeholder for the formatted display value.    For example, suppose the first column
contains numeric values from 1 to 30, and you wish to display the data as Roman numerals:

Private Sub TDBGrid1_FormatText(ByVal ColIndex As Integer, _
 Value As Variant)

 Dim result As String

 If ColIndex = 0 Then
 ' Determine how many X's
 While Value >= 10
 result = result & "X"
 Value = Value - 10
 Wend

 ' Append "digits" 1-9
 Select Case Value
 Case 1
 result = result & "I"
 Case 2
 result = result & "II"
 Case 3
 result = result & "III"
 Case 4
 result = result & "IV"
 Case 5
 result = result & "V"
 Case 6
 result = result & "VI"
 Case 7
 result = result & "VII"
 Case 8
 result = result & "VIII"
 Case 9
 result = result & "IX"
 End Select

 ' Change the actual format
 Value = result
 End If
End Sub

Since the FormatText event is not restricted to a particular development environment, you can always use it

to gain full control over the textual content of any value displayed in the grid.

Automatic Data Translation with ValueItems
Although you can use the FormatText event to map data values into more descriptive display values, True
DBGrid also provides a mechanism for performing such data translations automatically without code.   
Through the use of the ValueItems collection, you can specify alternate text or even pictures to be displayed
in place of the underlying data values.

This feature is ideally suited for displaying numeric codes or cryptic abbreviations in a form that makes sense
to end-users.    For example, country codes can be rendered as proper names or even as pictures of their
respective flags.    Or, the numbers 0, 1, and 2 may be displayed as Yes, No, and Maybe.    Either the actual
values (0, 1, 2) or the translated values (Yes, No, Maybe) may be displayed as radio buttons in a cell or in a
drop-down combo box.   

{button ,JI(`',`What_are_ValueItems?')}    What are ValueItems?
{button ,JI(`',`Specifying_text-to-text_translations')}    Specifying text-to-text translations
{button ,JI(`',`Specifying_text-to-picture_translations')}    Specifying text-to-picture translations
{button ,JI(`',`Displaying_both_text_and_pictures_in_a_cell')}    Displaying both text and pictures in a cell
{button ,JI(`',`Simulating_check_boxes_with_in-cell_bitmaps')}    Simulating check boxes with in-cell bitmaps
{button ,JI(`',`Displaying_allowable_values_as_radio_buttons')}    Displaying allowable values as radio buttons

What are ValueItems?

A ValueItem object describes the association between an underlying data value and its visual representation.
It supports only two properties: Value, the underlying data value, and DisplayValue, its visual
representation.    Both properties are of type Variant.

A ValueItems collection contains zero or more ValueItem objects.    Each Column object owns one
ValueItems collection, which is initially empty.

At design time, the Values property page can be used to build the ValueItems collection for a column.   
Tutorial 7 and Tutorial 10 provide step-by-step instructions for using the Values property page.

At run time, you can manipulate the ValueItems collection as you would any other True DBGrid or Visual
Basic collection.

Specifying text-to-text translations

Consider the following example, in which the Country field is represented by a short character code.

To display the character codes as proper names, you can use the column's ValueItems collection to specify
automatic data translations.    At design time, this is done with the Values property page.

The Values property page enables you to specify data translations on a per-column basis.    To construct a list
of data translations for an individual column, do the following:

1. Use the Column combo box to select the column for which automatic data translation is to be
performed.

2. Select the Translate check box.    This enables automatic data translation and causes the
DisplayValue column to appear in the property page grid.    If the Translate check box is not
selected, you will only be able to enter items in the Value column of the property page grid.

3. Enter as many Value/DisplayValue pairs as necessary.    Use the Append or Insert buttons to cause a
new data entry row to appear.

4. Select OK or Apply to commit the changes.

When the program is run, Country field values that match an item in the Value column appear as the
corresponding DisplayValue entry.    For example, CAN becomes Canada, UK becomes United Kingdom, and

so forth.

Note that the underlying database is not affected; only the presentation of the data value is different.    The
same effect can be achieved in code as follows:

Dim Item As New ValueItem

With TDBGrid1.Columns("Country").ValueItems
 Item.Value = "CAN"
 Item.DisplayValue = "Canada"
 .Add Item
 Item.Value = "UK"
 Item.DisplayValue = "United Kingdom"
 .Add Item
 Item.Value = "USA"
 Item.DisplayValue = "United States"
 .Add Item
 Item.Value = "JPN"
 Item.DisplayValue = "Japan"
 .Add Item
 Item.Value = "AUS"
 Item.DisplayValue = "Australia"
 .Add Item
 .Translate = True
End With

Specifying text-to-picture translations

The same techniques used to specify text-to-text translations can also be used for text-to-picture translations. 
Within the Values property page, instead of typing a string into the DisplayValue column, you can use the
Picture button to select a bitmap to be used for data translations.

To make the Picture button available, move the current cell marquee to the DisplayValue column.    Note that
the Translate check box must also be selected.    Depending upon the height of the bitmaps, you may need
to adjust the value of the RowHeight property on the Display property page.

When the program is run, Country field values that match an item in the Value column appear as the
corresponding DisplayValue picture.

As with textual translations, the underlying database is not affected; only the presentation of the data value is
different.    The same effect can be achieved in code as follows:

Dim Item As New ValueItem

With TDBGrid1.Columns("Country").ValueItems

 Item.Value = "CAN"
 Item.DisplayValue = LoadPicture("canada.bmp")
 .Add Item
 Item.Value = "UK"
 Item.DisplayValue = LoadPicture("uk.bmp")
 .Add Item
 Item.Value = "USA"
 Item.DisplayValue = LoadPicture("usa.bmp")
 .Add Item
 Item.Value = "JPN"
 Item.DisplayValue = LoadPicture("japan.bmp")
 .Add Item
 Item.Value = "AUS"
 Item.DisplayValue = LoadPicture("australia.bmp")
 .Add Item

 .Translate = True
End With

Displaying both text and pictures in a cell

Once you have configured the ValueItems collection to perform text-to-picture translations for a column, you
can cause both the Value string and the DisplayValue bitmap to appear within the same cell by selecting
the AnnotatePicture check box on the Values property page.    Or, in code:

With TDBGrid1.Columns("Country").ValueItems
 .AnnotatePicture = True
End With

The placement of the bitmap within the cell is determined by the column's Alignment property.    Left
alignment places the bitmap on the left, and the text is formatted in the remaining space to the right of the
bitmap.

Right alignment places the bitmap on the right, and the text is formatted in the remaining space to the left of
the bitmap.

Center alignment places the bitmap in the center at the top of the cell, and the text is formatted in the
remaining space below the bitmap.

In all cases, the text is centered in the space allotted for it.    When editing, the editor uses all space available
in the text portion of the cell.    When the Presentation property of the ValueItems collection is set to one of
the combo box options, the bitmap will not change until editing is completed.

Note that in the preceding examples, the text is displayed as it is stored in the database without formatting.   
But what if you want to display both a picture and formatted text?    Since the ValueItem object can only
accommodate one translation, you cannot accomplish this with ValueItems alone.    However, you can use
the FormatText event to translate the text, then use the ValueItems collection to associate the translated
text with a picture:

TDBGrid1.Columns("Country").NumberFormat = "FormatText Event"

In this example, the NumberFormat property is set to a special value that causes the FormatText event to
fire:

Private Sub TDBGrid1_FormatText(ByVal ColIndex As Integer, _
 Value As Variant)

 Select Case Value
 Case "CAN"
 Value = "Canada"
 Case "UK"
 Value = "United Kingdom"
 Case "USA"
 Value = "United States"
 Case "JPN"
 Value = "Japan"
 Case "AUS"
 Value = "Australia"
 End Select
End Sub

The end result is that the underlying data is displayed as both descriptive text and a picture.

Simulating check boxes with in-cell bitmaps

Another useful technique is to employ text-to-picture translations for boolean columns.    In this scenario,
there are only two allowable values, 0 and -1, and the pictures entered into the DisplayValue column
represent the unchecked and checked states.

Note that both the Translate and CycleOnClick check boxes are selected.    The former enables automatic
data translation; the latter permits the end-user to toggle the value of a cell by clicking it.

Displaying allowable values as radio buttons

If the number of allowable values for a column is relatively small, you may want to consider a radio button
presentation.    At design time, go to the Values property page and set the Presentation property to 1 - Radio
Button.    Or, in code:

With TDBGrid1.Columns("Country").ValueItems
 .Presentation = dbgRadioButton
End With

If necessary, adjust the Width property of the column and the RowHeight property of the grid to
accommodate all of the items.

For a given cell, if the underlying data does not match any of the available values, none of the radio buttons
will be selected for that cell.    However, you can provide a default ValueItem that will be displayed instead.

In this example, the last ValueItem has an empty Value property so that any cells where Country = "" will

be displayed as Other.    Also note that the entire last row in the property page grid is selected.    This was
done to mark the last ValueItem as the default, which means that Country fields that do not match any of
the items will also be displayed as Other.

Selecting a row in the Values property page is equivalent to setting the DefaultItem property of the
ValueItems collection at run time:

With TDBGrid1.Columns("Country").ValueItems
 .DefaultItem = 5
End With

Context-sensitive Help with CellTips
In many Windows applications, when the user points to a toolbar button and leaves the mouse at rest for a
short time, a ToolTip window appears with the name of the associated command.    You can provide similar
context-sensitive help for your users with the CellTips property of True DBGrid.

The CellTips property determines whether the grid displays a pop-up text window when the cursor is idle.   
By default, this property is set to 0 - None, and cell tips are not displayed.

If the CellTips property is set to either 1 - Anchored or 2 - Floating, the FetchCellTips event will be fired
whenever the grid has focus and the cursor is idle over a grid cell, record selector, column header, split
header, or grid caption.    The event will not fire if the cursor is over the scroll bars.

The setting 1 - Anchored aligns the cell tip window with either the left or right edge of the cell.    The left edge
is favored, but the right edge will be used if necessary in order to display as much text as possible.

The setting 2 - Floating displays the cell tip window below the cursor, if possible.

If you do not provide a handler for the FetchCellTips event, and the cursor is over a grid cell, the default
behavior is to display a text box containing the cell's contents (up to 256 characters).    This enables the user
to peruse the contents of a cell even if it is not big enough to be displayed in its entirety.    You can also
program the FetchCellTips event to override the default cell text display in order to provide users with
context-sensitive help.

A common application of the FetchCellTips event is to display the contents of an invisible column that
provides additional information about the row being pointed to, as in the following example:

' General Declarations
Dim DescCol As TrueDBGrid50.Column

Private Sub Form_Load()
 Set DescCol = TDBGrid1.Columns("Description")
End Sub

Private Sub TDBGrid1_FetchCellTips(_
 ByVal SplitIndex As Integer, _
 ByVal ColIndex As Integer, _

 ByVal RowIndex As Long, _
 CellTip As String, _
 ByVal FullyDisplayed As Boolean, _
 ByVal TipStyle As TrueDBGrid50.StyleDisp)

 CellTip = DescCol.CellText(TDBGrid1.RowBookmark(RowIndex))
End Sub

You can use the CellTipsDelay property to control the amount of time that must elapse before the cell tip
window is displayed.    You can use the CellTipsWidth property to control the width of the cell tip window.

How to Use Splits
In True DBGrid, a split is similar to the split window features of products such as Microsoft Excel and Word.   
You can use splits to present your data in multiple vertical panes.    These vertical panes, or splits, can display
data in different colors and fonts.    They can scroll as a unit or individually, and they can display different sets
of columns or the same set.    You can also use splits to prevent one or more columns from scrolling.    Unlike
other grid products, fixed (nonscrolling) columns in True DBGrid do not have to be at the left edge of the grid,
but can be at the right edge or anywhere in the middle.    You can even have multiple groups of fixed columns
within a grid.    Splits open up an endless variety of possibilities for presenting data to users of your
applications.

Whenever you use True DBGrid, you are always using a split.    A grid always contains at least one split, and
the default values for the split properties are set so that you can ignore splits until you want to use them.   
Therefore, you can skip this chapter if you do not need to create and manipulate more than one split within a
grid.

You create and manipulate splits by working with Split objects and the Splits collection.    Since an individual
column can be visible in one split but hidden in another, each Split object maintains its own Columns
collection.    This gives you complete control over the appearance of each split and the columns they contain.

{button ,JI(`',`Referencing_Splits_and_Their_Properties')}    Referencing Splits and Their Properties
{button ,JI(`',`Creating_and_Removing_Splits')}    Creating and Removing Splits
{button ,JI(`',`Working_with_Columns_in_Splits')}    Working with Columns in Splits
{button ,JI(`',`Sizing_and_Scaling_Splits')}    Sizing and Scaling Splits
{button ,JI(`',`Creating_and_Resizing_Splits_through_User_Interaction')}    Creating and Resizing Splits through
User Interaction
{button ,JI(`',`Vertical_Scrolling_and_Split_Groups')}    Vertical Scrolling and Split Groups
{button ,JI(`',`Horizontal_Scrolling_and_Fixed_Columns')}    Horizontal Scrolling and Fixed Columns
{button ,JI(`',`Navigation_across_Splits')}    Navigation across Splits

Referencing Splits and their Properties
A TDBGrid object initially contains a single split.    If additional splits are created, you can determine or set
the current split (that is, the split that has received focus) using the grid's Split property:

' Read the zero-based index of the current split
Variable% = TDBGrid1.Split

' Set focus to the split with an index equal to Variable%
TDBGrid1.Split = Variable%

Each split in a grid is a different view of the same data source, and behaves just like an independent grid.    If
you create additional splits without customizing any of the split properties, all splits will be identical and each
will behave very much like the original grid with one split.

Note that some properties, such as RecordSelectors and MarqueeStyle, are supported by both the
TDBGrid and Split objects.    Three rules of thumb apply to properties that are common to a grid and its
splits:

1. When you set or get the property of a Split object, you are accessing a specific split, and other splits
in the same grid are not affected.

2. When you get the property of a TDBGrid object, you are accessing the same property within the
current split.

3. When you set the property of a TDBGrid object, you are setting the same property within all splits.

To understand how these rules work in code, consider a grid with two splits, and assume that the current split
index is 1 (that is, the grid's Split property returns 1).    If you want to determine which marquee style is in
use, the following statements are equivalent:

marquee% = TDBGrid1.MarqueeStyle
marquee% = TDBGrid1.Splits(1).MarqueeStyle
marquee% = TDBGrid1.Splits(TDBGrid1.Split).MarqueeStyle

To change the marquee style to a solid cell border for all of the splits in the grid, you would use:

TDBGrid1.MarqueeStyle = dbgSolidCellBorder

Note that this statement is equivalent to:

TDBGrid1.Splits(0).MarqueeStyle = dbgSolidCellBorder
TDBGrid1.Splits(1).MarqueeStyle = dbgSolidCellBorder

Likewise, to set the marquee style of each split to a different value:

TDBGrid1.Splits(0).MarqueeStyle = dbgNoMarquee
TDBGrid1.Splits(1).MarqueeStyle = dbgFloatingEditor

These rules apply only to a TDBGrid object and its associated Split objects.    No other object pairs possess
similar relationships.

{button ,JI(`',`Split_properties_common_to_TDBGrid')}    Split properties common to TDBGrid
{button ,JI(`',`Split-only_properties_not_supported_by_TDBGrid')}    Split-only properties not supported by
TDBGrid

Split properties common to TDBGrid

The following properties, which are supported by both Split and TDBGrid objects, adhere to the rules
described in the preceding section:

AllowColMove Enables interactive column movement
AllowColSelect Enables interactive column selection
AllowRowSelect Enables interactive row selection
AllowRowSizing Enables interactive row resizing
AlternatingRowStyle Controls whether even/odd row styles are applied to a split
BackColor Sets/returns the background color
CaptionStyle Controls the caption style for a split
Columns Returns a collection of column objects for a split
CurrentCellVisible Sets/returns modification status of the current cell
EditBackColor Sets/returns the editor background color
EditForeColor Sets/returns the editor foreground color
EditorStyle Controls the editor style for a split
EvenRowStyle Controls the row style for even numbered rows
ExtendRightColumn Sets/returns extended right column for a split
FetchRowStyle Controls whether the FetchRowStyle event will be fired
FirstRow Bookmark of row occupying first display line
Font Specifies the overall font for a split
ForeColor Sets/returns the foreground color
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading font for a split
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for a split
HighlightRowStyle Controls the marquee style when set to Highlight Row
HScrollHeight Returns the horizontal scroll bar height, if present
InactiveBackColor Sets/returns the inactive heading background color
InactiveForeColor Sets/returns the inactive heading foreground color
InactiveStyle Controls the inactive heading style for a split
LeftCol Returns the leftmost visible column
MarqueeStyle Sets/returns marquee style for a split
OddRowStyle Controls the row style for odd numbered rows
RecordSelectors Shows/hides selection panel at left border
ScrollBars Sets/returns scroll bar style for a split
SelectedBackColor Sets/returns the selected row background color
SelectedForeColor Sets/returns the selected row foreground color
SelectedStyle Controls the selected row and column style for an object
SelEndCol Sets/returns rightmost selected column
SelStartCol Sets/returns leftmost selected column
Style Controls the normal style for an object
VScrollWidth Returns the vertical scroll bar width, if present

NOTE: The Caption property is not included in this list, even though it is supported by both objects.    Since
grids and splits maintain separate caption bars, setting the Caption property of the grid does not apply the
same string to each split caption.

Split-only properties not supported by TDBGrid

The following properties are supported only by Split objects.    Therefore, to apply a value to the entire grid,
you need to explicitly set the value for each split individually.

AllowFocus Allows cells within a split to receive focus
AllowSizing Enables interactive resizing for a split
Index Returns the ordinal index of a split
Locked If true, data entry prohibited for a split
ScrollGroup Used to synchronize vertical scrolling between splits
Size Sets/returns split width according to SizeMode
SizeMode Controls whether a split is scalable or fixed size

Creating and Removing Splits
At design time, you can create and remove splits using the grid's visual editing menu.    Please refer to Visual
Editing Mode for details.

At run time, you can create and remove splits using the Splits collection's Add and Remove methods.    Each
method takes a zero-based split index:

Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(0) ' Create a split with index 0
TDBGrid1.Splits.Remove 1 ' Remove the split with index 1

The new Splits(0) object is "cloned" from the old Splits(0) object.    Both splits will have the same property
values after the Add method executes.    The old Splits(0) becomes Splits(1), the old Splits(1) becomes
Splits(2), and so on.

You can determine the number of splits in a grid using the Splits collection's Count property:

' Set variable equal to the number of splits in TDBGrid1
variable = TDBGrid1.Splits.Count

You can iterate through all splits using the Count property, for example:

For n = 0 To TDBGrid1.Splits.Count - 1
 Debug.Print TDBGrid1.Splits(n).Caption
Next n

Of course, a more efficient way to code this would be to use a For Each...Next loop:

Dim S As TrueDBGrid50.Split
For Each S In TDBGrid1.Splits
 Debug.Print S.Caption
Next

The Count property is primarily used to append a new split to the end of the Splits collection, as follows:

Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(TDBGrid1.Splits.Count)

The new Split object will inherit all of its properties from the last object in the collection.

Working with Columns in Splits
Each split in a True DBGrid control maintains its own Columns collection.    This provides tremendous
flexibility for controlling the look and behavior of individual splits.    The grid is connected to a single data
source, so the splits just present different views of the same data.    Therefore, the Columns collection in each
split contains the same number of columns and the columns are bound to the same data fields.

Note that some Column object properties, such as Caption and DataField, have the same value in each
split.    These properties are said to be global.    For example, given a grid with two splits, the following code
will always print the same values for a given column index n:

Debug.Print TDBGrid1.Splits(0).Columns(n).Caption
Debug.Print TDBGrid1.Splits(1).Columns(n).Caption
Debug.Print TDBGrid1.Columns(n).Caption

More importantly, if you set any of the global properties of a column within a particular split, that property will
be set to the same value for all splits.    For example, the following code will append a column to all splits (not
just the first one) and bind the columns to the same database field (LastName).

Dim Cols As TrueDBGrid50.Columns
Set Cols = TDBGrid1.Splits(0).Columns

' Append a column to the end of the Columns collection
Dim C As TrueDBGrid50.Column
Set C = Cols.Add(Cols.Count)

' Set the DataField property of the newly created column
C.DataField = "LastName"

However, the values of other Column object properties, such as Visible and BackColor, may vary from split
to split.    These properties are said to be split-specific.    For example, a column created at run time is not
visible by default.    Thus, the LastName column created in the preceding example is invisible in all splits.    The
following code makes it visible in the second split:

TDBGrid1.Splits(1).Columns("LastName").Visible = True

Since Visible is a split-specific property, the LastName column remains invisible in other splits.

{button ,JI(`',`Global_properties_and_methods_of_Column_object')}    Global properties and methods of
Column object
{button ,JI(`',`Split-specific_properties_of_Column_object')}    Split-specific properties of Column object

Global properties and methods of Column object

The following Column object properties are global; that is, they always have the same value in each split:

Caption Sets/returns column heading text
ColIndex Returns the ordinal position of a column
DataChanged Sets/returns modification status of a column in the current row
DataField Data table field name for a column
DataWidth Maximum number of characters available for column input
DefaultValue Default value for new column data
DropDown Sets the name of a TDBDropDown control for a column
EditMask Input mask string for a column
EditMaskUpdate Controls whether masked data is used for updates
NumberFormat Data formatting string for a column
Text Sets/returns displayed column text for the current cell
Top Returns top column border in container coordinates
Value Sets/returns underlying data value for the current row
ValueItems Contains a collection of ValueItems for a column

The following Column object methods are also global:

CellText Returns displayed text for any visible row
CellValue Returns underlying value for any visible row

Split-specific properties of Column object

The following Column object properties are split-specific; that is, they may have different values across splits:

Alignment Specifies horizontal text alignment
AllowFocus Controls whether a column can receive focus
AllowSizing Enables interactive resizing for a column
BackColor Sets/returns the background color
Button Controls whether a button appears within the current cell
ButtonPicture Sets/returns the bitmap used for the in-cell button
CellTop Returns top column border, adjusted for multiple lines
ColIndex Returns the ordinal position of a column
DividerStyle Divider style for right column border
EditBackColor Sets/returns the editor background color
EditForeColor Sets/returns the editor foreground color
EditorStyle Controls the editor style for a column
FetchStyle Controls whether the FetchCellStyle event fires for a column
Font Specifies the overall font for a column
ForeColor Sets/returns the foreground color
HeadAlignment Specifies column heading alignment
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading font for a column
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for a column
Left Returns column left border in container coordinates
Locked If true, data entry prohibited for a column
Order Sets/returns the display position of a column
Style Controls the normal style for a column
Visible Shows/hides a column
Width Sets/returns column width in container coordinates
WrapText True if cell text is word wrapped

Sizing and Scaling Splits
True DBGrid gives you full control over the size and scaling of individual splits.    You can configure a split to
occupy an exact width, hold a fixed number of columns, or adjust its size proportionally in relation to other
splits.    If you are just starting out with True DBGrid, you can use splits in a variety of ways without having to
master all of the details.

At run time, the actual size of a Split object depends upon its Size and SizeMode properties.    The
SizeMode property specifies the unit of measurement; the Size property specifies the number of units.    True
DBGrid supports three different sizing modes for splits, as determined by the setting of the SizeMode
property:

0 - Scalable Size denotes relative width in relation to other splits
1 - Exact Size specifies a fixed width in container coordinates
2 - Number of Columns Size specifies a fixed number of columns

In code, you can use the constants dbgScalable, dbgExact, and dbgNumberOfColumns to refer to these
settings.

A scalable split uses the value of its Size property to determine the percentage of space the split will occupy. 
For any scalable split, the percentage is determined by dividing its Size value by the sum of the Size values
of all other scalable splits.    Thus, you can consider the Size property of a scalable split to be the numerator
of a fraction, the denominator of which is the sum of the scalable split sizes.    Scalable splits compete for the
space remaining after nonscalable splits have been allocated.    By default, all splits are scalable, so they
compete for the entire grid display region.    SizeMode is always 0 - Scalable when a grid contains only one
split.

An exact split uses the value of its Size property as its fixed width in container coordinates.    Exact splits will
be truncated if they will not fit within the horizontal grid boundaries.    This mode is not applicable when a grid
contains only one split.

A fixed-column split uses the Size property to indicate the exact number of columns that should always be
displayed within the split.    These splits automatically reconfigure the entire grid if the size of the displayed
columns changes (either by code or user interaction), or if columns in the split are scrolled horizontally so that
the widths of the displayed columns are different. This mode is primarily used to create fixed columns that do
not scroll horizontally.    However, it can be used for a variety of other purposes as well.    This mode is not
applicable when a grid contains only one split.

Note that when there is only one split (the grid's default behavior), the split spans the entire width of the grid,
the SizeMode property is always 0 - Scalable, and the Size property is always 1.    Setting either of these
properties has no effect when there is only one split.    If there are multiple splits, and you then remove all but
one, the SizeMode and Size properties of the remaining split automatically revert to 0 and 1, respectively.

By default, the SizeMode property for a newly created split is 0 - Scalable, and the Size property is set to 1.   
For example, if you create two additional splits with the following code:   

Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(0) ' Create a Split at the left
Set S = TDBGrid1.Splits.Add(0) ' Create another

the resulting grid display will look like this.

Notice that each split occupies 1/3 of the total grid space.    This is because there are three scalable splits, and
each split has a Size of 1.    If you change the sizes of the splits to 2, 2, and 3, respectively:

TDBGrid1.Splits(0).Size = 2 ' Change relative size to 2
TDBGrid1.Splits(1).Size = 2 ' Change relative size to 2
TDBGrid1.Splits(2).Size = 3 ' Change relative size to 3

the resulting grid display will look like this.

Notice the sum of the split sizes (2+2+3) is 7, so the size of each split is a fraction with the numerator being
the value of its Size property and a denominator of 7.

When a split's SizeMode is set to 1 - Exact, that split receives space before the other splits.    This behavior is
somewhat more complex, but understanding how scalable splits work is helpful.    For example, assume that
splits are set in the following way:

Split0.SizeMode = dbgScalable
Split0.Size = 1

Split1.SizeMode = dbgExact
Split1.Size = 2500

Split2.SizeMode = dbgScalable
Split2.Size = 2

After configuring the splits in this way, the resulting grid display will look like this.

The fixed-size split in the middle (Split1) is configured to exactly 2500 twips, and the remaining splits
compete for the space remaining in the grid.    Since the remaining splits are both scalable splits, they divide
the remaining space among themselves according to the percentages calculated using their Size property
values.    So, the leftmost split occupies 1/3 of the remaining space, and the rightmost split occupies 2/3.

Splits with SizeMode set to 2 - Number of Columns behave almost identically to exact splits, except their size
is determined by the width of an integral number of columns.    The width, however, is dynamic, so resizing
the columns or scrolling so that different columns are in view will cause the entire grid to reconfigure itself.

Avoid creating a grid with no scalable splits.    Although True DBGrid handles this situation, it is difficult to work
with a grid configured in this way.    For example, if no splits are scalable, all splits will have an exact size,
which may not fill the entire horizontal width of the grid.    If the total width of the splits is too short, True
DBGrid displays a "null-zone" where there are no splits.    If the total width of the splits is wider than the grid,
then True DBGrid will show only the separator lines for the splits that cannot be shown.   

Creating and Resizing Splits through User Interaction
You can always create and resize splits in code.    However, you can also let your users create and resize splits
interactively by setting the AllowSizing property of a split to True.    By default, the AllowSizing property is
False, and users are prevented from creating and resizing splits.

A typical grid with AllowSizing set to False is shown in the following figure.    Notice that there is no split box
at the left edge of the horizontal scroll bar.

If you set the split's AllowSizing property to True:

TDBGrid1.Splits(0).AllowSizing = True

a split box will appear at the left edge of the horizontal scroll bar, and the user will be able to create new
splits at run time.

When the user points to the split box, the pointer will turn into a double vertical bar with a down arrow, which
the user can drag to the right to create a new split, as shown in the next figure.

The new split will inherit its properties from the original split.    The SizeMode properties of both splits will be
automatically set to 0 - Scalable, regardless of the SizeMode of the original split.    The Size properties of
both splits will be set to the correct ratio of the splits' sizes.    The values of the Size properties may end up

being rather large.    This is because True DBGrid needs to choose the least common denominator for the total
split size, and the user may drag the pointer to an arbitrary position.

Note that both splits' AllowSizing properties are now True, and the divider between them is a double line,
which indicates that the splits' sizes are now adjustable.    If the user points to the split box between the two
splits, the pointer will turn into a double vertical bar with horizontal arrows.    The user can drag this pointer to
the left or right to adjust the relative sizes of the splits.

If you set AllowSizing to False for either split, the user will no longer be able to adjust the split sizes.   
Suppose that you disable sizing for the first split:

TDBGrid1.Splits(0).AllowSizing = False

The split box at the left edge of the horizontal scroll bar in the first split will disappear and the divider
between the two splits will turn into a solid line.    This means that the user will no longer be able to create a
new split from the first split, or adjust the sizes of either split.    However, since the split box at the left edge of
the second split still exists, the user can now create new splits by pointing to this split box and dragging the
pointer to the right.

To summarize:

· You can always create or resize splits in code, but the AllowSizing property controls whether users
can create or resize splits interactively at run time.

· The user can resize the relative sizes of two splits only if both splits' AllowSizing properties are True.   
When the user completes a resize operation, the total size of the two splits remains unchanged, but
the SizeMode properties of both splits will automatically be set to 0 - Scalable regardless of their
previous settings.    The Size properties of the two splits will be set to reflect the ratio of their new
sizes.

· The user can create a new split by dragging the split box to the right, as long as both of the following
conditions are met.    First, the AllowSizing property of the split to the right of the split box must be
True.    Second, the AllowSizing property of the split to the left of the split box must be False, or the
split box must belong to the leftmost split.    The total size of the new split and the parent split will be
equal to the original size of the parent split.    The SizeMode properties of the two splits will be
automatically set to 0 - Scalable, and the Size properties of the two splits will be set to reflect the
correct ratio of their new sizes.

Vertical Scrolling and Split Groups
By default, the grid has only one split, with split index 0, and its ScrollBars property is set to 4 - Automatic.   
That is, the horizontal or vertical scroll bar will appear as necessary depending upon the column widths and
the number of data rows available.    The default split's ScrollGroup property is 1.    Splits having the same
ScrollGroup property setting will scroll vertically together.    When a new split is created, it will inherit both
the ScrollBars and ScrollGroup properties from the parent split.    If all of the splits belonging to the same
ScrollGroup have their ScrollBars properties set to 4 - Automatic, then True DBGrid will display the vertical
scroll bar only at the rightmost split of the scroll group.    Manipulating this scroll bar will cause all splits in the
same scroll group to scroll simultaneously.

For example, if you create two additional splits with the following code:   

Dim S As TrueDBGrid50.Split
Set S = TDBGrid1.Splits.Add(0) ' Create a Split at the left
Set S = TDBGrid1.Splits.Add(0) ' Create another

the resulting grid display will look like this.

All three splits will have the same ScrollBars and ScrollGroup properties of 4 and 1, respectively.    However,
only one vertical scroll bar will be displayed, within the rightmost split.    When the user operates this scroll
bar, all three splits will scroll simultaneously.

You can change the ScrollGroup property of splits to create split groups that scroll independently.    In the
preceding example, setting the ScrollGroup property of the middle split to 2 creates a new scroll group:

TDBGrid1.Splits(1).ScrollGroup = 2 ' Create a new scroll group

After this statement executes, scrolling the middle split will not disturb the others.

Note that the middle split now contains a vertical scroll bar.    This scroll bar operates only on the middle split,
since it is the only one with its ScrollGroup property equal to 2.    The vertical scroll bar in the rightmost split
now controls the leftmost and rightmost splits only.    It no longer affects the middle split.

You can create as many split groups as necessary by setting the ScrollGroup properties of the splits to
different values.    You can also explicitly control whether scroll bars will be displayed in a split by setting its
ScrollBars property.

A common application of this feature is to create two independent split groups so that users can compare
field values from different records by scrolling each split to view a different set of rows.

Horizontal Scrolling and Fixed Columns
Horizontal scrolling is independent for each split.    Often, you need to prevent one or more columns from
scrolling horizontally so that they will always be in view.    True DBGrid provides you with an easy way to keep
any number of columns from scrolling at any location within the grid (even in the middle!) by setting a few
split properties.

As an example, assume that you have a grid with three splits.    The following code will "fix" columns 0 and 1
in the middle split:

' Hide all columns in Splits(1) except for columns 0 and 1
Dim Cols As TrueDBGrid50.Columns
Dim C As TrueDBGrid50.Column
Set Cols = TDBGrid1.Splits(1).Columns
For Each C In Cols
 C.Visible = False
Next C
Cols(0).Visible = True
Cols(1).Visible = True

' Configure Splits(1) to display exactly two columns, and
' disable resizing
With TDBGrid1.Splits(1)
 .SizeMode = dbgNumberOfColumns
 .Size = 2
 .AllowSizing = False
End With

Usually, if you keep columns 0 and 1 from scrolling in one split, you will want to make them invisible in the
other splits:

' Make columns 0 and 1 invisible in splits 0 and 2
Dim Cols As Columns
Set Cols = TDBGrid1.Splits(0).Columns
Cols(0).Visible = False
Cols(1).Visible = False
Set Cols = TDBGrid1.Splits(2).Columns
Cols(0).Visible = False
Cols(1).Visible = False

Navigation across Splits
Navigation across splits is controlled by the grid's TabAcrossSplits property and each split's AllowFocus
property.    Navigation across splits is best discussed with grid navigation as a whole.    For more information,
please refer to Run Time Interaction.

How to Use Styles
True DBGrid uses a style model similar to that of Microsoft Excel to simplify the task of customizing a grid's
appearance.    A Style object is a named combination of font, color, and formatting information comprising
the following properties:

Alignment Specifies the horizontal text alignment

BackColor Controls the background color

Font Specifies the typeface, size, and other text characteristics

ForeColor Controls the foreground color

Locked Disallows in-cell editing when true

Name Returns the programmer-specified style name

Parent Returns the object from which a style inherits

WrapText Enables wordwrapping for cell text

Once you have defined a style, you can apply it to a TDBGrid, Column, or Split object to control the
appearance of all cells within that object.    If you subsequently change a particular characteristic of a style,
such as its background color, then any object to which that style has been applied will automatically change
to reflect the new characteristic.   

At design time, the Styles property page is used to create, modify, and delete style objects.    You can then
refer to these objects in code at run time and apply them to individual grid elements or the entire grid.    You
can also create new styles in code and use them just as if you had created them at design time.   

Initially, all grids contain seven built-in styles as follows:

Normal The root style

Heading Normal + BackColor: System Button Face + ForeColor: System Button
Text   

Selected Normal + BackColor: System Highlight + ForeColor: System Highlight
Text

Caption Heading + Alignment: Center

HighlightRow Normal + BackColor: System Window Text + ForeColor: System Window
Background

EvenRow Normal + BackColor: Light Cyan

OddRow Normal

You can redefine any style, whether it is a built-in style or one that you created.    In this version of True
DBGrid, styles are local to a grid and cannot be copied from one grid to another.   

{button ,JI(`',`Defining_Styles_at_Design_Time')}    Defining Styles at Design Time
{button ,JI(`',`Defining_Styles_at_Run_Time')}    Defining Styles at Run Time
{button ,JI(`',`Applying_Styles_at_Run_Time')}    Applying Styles at Run Time
{button ,JI(`',`Additional_Style_Properties')}    Additional Style Properties
{button ,JI(`',`Introduction_to_Cell_Styles')}    Introduction to Cell Styles
{button ,JI(`',`Specifying_Cell_Status_Values')}    Specifying Cell Status Values
{button ,JI(`',`Applying_Cell_Styles_by_Status')}    Applying Cell Styles by Status
{button ,JI(`',`Applying_Cell_Styles_by_Contents')}    Applying Cell Styles by Contents
{button ,JI(`',`Applying_Cell_Styles_by_Custom_Criteria')}    Applying Cell Styles by Custom Criteria

Defining Styles at Design Time
Use the Styles property page to create, modify, and delete styles at design time.    The Styles property page
can be accessed by choosing the Properties... menu item from the grid control's context menu, which can
be activated with the right mouse button.    The following illustration shows the built-in Normal style.

Initially, the Styles property page contains the following controls:

Style Name This combo box specifies which style is being edited.    You can either
select an existing style from the drop-down list or type in the name of a
new or existing style.    This control corresponds to the style's Name
property.   

Parent Style This combo box specifies the name of the style from which the selected
style inherits.    For styles with no parent, such as the built-in Normal style,
this combo box displays (no style) as shown in the preceding illustration.   
This control corresponds to the style's Parent property.   

Add This button creates a new style with the name specified in the Style Name
combo box.    Style names must be unique, so this button will be disabled
if the text in the Style Name combo box matches the name of an existing
style.    This button corresponds to the Add method of the Styles
collection.   

Remove This button deletes the chosen style.    The built-in styles cannot be
deleted, so this button will be disabled when one of the built-in styles is
chosen.    This button will also be disabled when you have entered text
into the Style Name combo box that does not match the name of an
existing style.    This button corresponds to the Remove method of the
Styles collection.   

Reset This button resets the chosen style so that it inherits all of its font, color,
and formatting attributes from its parent, if any.    For styles with no
parent, the Reset button causes the selected style to revert to the default
settings held by the Normal style when the grid was first created.    This
button corresponds to the Reset method.   

Font, Colors, Text These radio buttons govern which controls appear in the Properties frame.
Since not all controls will fit on the Styles property page at one time,
these radio buttons are provided so that you can easily switch between
control groups.    Whenever the Styles property page is first displayed, the
font controls are shown.   

Font This combo box specifies the typeface name of the chosen style's font.   
This control corresponds to the Name property of the Font object
associated with the style.   

Font Style This combo box specifies the attributes of the chosen style's font.    This
control corresponds to the Bold and Italic properties of the Font object
associated with the style.   

Size This combo box specifies the point size of the chosen style's font.    This
control corresponds to the Size property of the Font object associated
with the style.   

Strikeout This check box specifies whether the chosen style's font has the strikeout
attribute enabled.    This control corresponds to the Strikethrough
property of the Font object associated with the style.   

Underline This check box specifies whether the chosen style's font has the underline
attribute enabled.    This control corresponds to the Underline property of
the Font object associated with the style.   

Sample This static area displays sample text that shows how a grid cell will
appear when the chosen style is applied.    Whenever you change a font,
color, or alignment setting, the Sample area is updated so that you can
see the results of the change before committing it with either the OK or
Apply button.   

When the Colors radio button is selected, the following controls are displayed in the Properties frame.

Property Name This combo box specifies the name of the style property being modified.   
It always contains two items corresponding to the style's BackColor and
ForeColor properties.   

System Color This combo box allows you to specify a system color value (instead of a
physical color) for the property shown in the Property Name combo box.   
Whenever you select an item in this combo box, any color button
selection is removed.   

Color Buttons These 16 buttons allow you to specify a physical color value (instead of a
system color) for the property shown in the Property Name combo box.   

Whenever you click one of these buttons, its border is highlighted and any
system color selection is cleared.   

When the Text radio button is selected, the following controls are displayed in the Properties frame.

Alignment This combo box specifies the horizontal text alignment (left, center, right,
or general) for the chosen style.    This control corresponds to the style's
Alignment property.   

Locked This check box specifies whether the chosen style inhibits in-cell editing.   
If checked, editing is disallowed; if unchecked, editing is permitted.    This
control corresponds to the style's Locked property.   

WrapText This check box specifies whether the chosen style causes cell text to be
word wrapped.    If checked, a line break occurs before words that would
otherwise be partially displayed; if unchecked, no line break occurs and
text is clipped at the cell's right edge.    This control corresponds to the
style's WrapText property.   

As an example, suppose that you want to create a style named MyStyle with the following attributes:

Font MS Sans Serif, Bold, 8.25 points

BackColor Dark Gray

ForeColor White

First, select the Normal style from the StyleName combo box, then type MyStyle into the text portion of the
same combo box.    Note that the Add button is now enabled.    Click the Add button to create the style.    Now,
the Add button is disabled again, but the Remove and Reset buttons are enabled since the newly created
style is now current.   

Next, select the Bold item from the Font Style combo box.    Note that the Sample area now displays its text in
boldface.

Now, select the Colors radio button to bring the color selection controls into view.    The BackColor property is
initially set to the system Window Background color as determined by your Control Panel settings.    Click the
dark gray button to change the BackColor property of MyStyle.    Note that this clears the System Color
combo box, highlights the border of the dark gray button, and updates the Sample area.    To change the
ForeColor property, select the ForeColor item from the Property Name combo box and click the white button. 

Finally, to save your changes to MyStyle, click the Apply button.    The Styles property page should now look
like this.

You can also click the OK button to save your changes and close the property page dialog.    Note that the
Cancel button will not undo the actions taken by the Parent Style combo box or the Add, Remove, and Reset
buttons.    Once a style has been created, it can only be deleted with the Remove button.    Similarly, once a
style has been deleted, the Cancel button will not bring it back.   

Defining Styles at Run Time
The previous section demonstrated how to create a style at design time using the Styles property page.    This
section describes how to achieve the same result in code at run time.    Let's begin with a discussion of how to
work with collections in general and styles in particular.   

Each TDBGrid control maintains a collection of styles that can be applied to its own elements.    The Styles
property allows you to access this collection at run time.    For example, the following loop prints the names of
all built-in and user-defined styles to the Visual Basic debug window:

Dim S As TrueDBGrid50.Style
For Each S In TDBGrid1.Styles
 Debug.Print S.Name
Next S

If you have not defined any styles of your own, then this loop prints the names of the seven built-in styles:

Normal
Heading
Selected
Caption
HighlightRow
EvenRow
OddRow

Using the For Each...Next statement is the preferred way to iterate over a collection.    However, you can
also reference an individual element of the Styles collection by using its zero-based index.    The following
example is equivalent to the previous one, although it is less economical:

For n = 0 To TDBGrid1.Styles.Count - 1
 Debug.Print TDBGrid1.Styles(n).Name
Next n

Typically, you will refer to a style by name.    The following example changes the alignment and bold attribute
of the built-in Normal style:

Dim S As TrueDBGrid50.Style
Set S = TDBGrid1.Styles("Normal")
S.Alignment = dbgCenter
S.Font.Bold = True

Note the use of the Dim and Set statements in assigning the Normal style object to the variable S.    This
example could have been written as follows:

TDBGrid1.Styles("Normal").Alignment = dbgCenter
TDBGrid1.Styles("Normal").Font.Bold = True

However, this style of coding is less efficient since the Normal style must be retrieved twice.   

You can also use the With...End With statement to set multiple properties of a style object without explicitly
assigning it to a variable:

With TDBGrid1.Styles("Normal")
 .Alignment = dbgCenter
 .Font.Bold = True
End With

To create a new style called MyStyle, use the Add method of the Styles collection, then use the With...End
With statement to initialize its properties:

Dim MyStyle As TrueDBGrid50.Style
Set MyStyle = TDBGrid1.Styles.Add("MyStyle")

With MyStyle
 .BackColor = &H808080
 .ForeColor = &HFFFFFF
 .Font.Bold = True
End With

The resulting style is identical to the one created in the previous section using the Styles property page.

Applying Styles at Run Time
To apply a style to the cells in a TDBGrid, Column, or Split object, you simply set its Style property.    The
following example assumes that a style named MyStyle was created at design time using the Styles property
page:

Dim MyStyle As TrueDBGrid50.Style
Set MyStyle = TDBGrid1.Styles("MyStyle")
TDBGrid1.Style = MyStyle

Unless you are going to modify MyStyle, there is really no need to assign it to a variable.    Therefore, the
preceding example can be shortened to:

TDBGrid1.Style = TDBGrid1.Styles("MyStyle")

However, even this notation can be simplified.    The Style property is declared as a variant and accepts
either a Style object (as in the previous examples) or a string.    When set to a string, True DBGrid
automatically finds the matching entry in its Styles collection, which allows you to apply a style with a simple
assignment statement:

TDBGrid1.Style = "MyStyle"

The Style property always returns the name of the underlying style object.    The following statement prints
the name of the style associated with the first column of the grid:

Debug.Print TDBGrid1.Columns(0).Style

Now, let's consider some examples.   

For a newly created grid, the built-in Normal style controls the font and color characteristics of all cells in all
splits and columns.    Similarly, the built-in Heading style controls the display of the column headings, if
enabled.    The default values of the Normal style (or any style created in code) are as follows, with the
possible exception of the Font property, which is derived from the ambient font of the grid's container, such
as a Visual Basic form:

Alignment 0 - Left

BackColor System Window Background

Font MS Sans Serif, Regular, 8.25 points

ForeColor System Window Text

Locked False

WrapText False

At run time, with both caption and column headings enabled, the grid will look something like this.

Now, let's create a new style named MyStyle in code, and apply it to the grid:

Dim MyStyle As TrueDBGrid50.Style
Set MyStyle = TDBGrid1.Styles.Add("MyStyle")

With MyStyle
 .BackColor = &H808080
 .ForeColor = &HFFFFFF
 .Font.Bold = True
End With

TDBGrid1.Style = MyStyle

Alternatively, you can create MyStyle at design time using the Styles property page.    See Defining Styles at
Design Time for details.

MyStyle now has the following characteristics:

Alignment 0 - Left

BackColor Dark Gray

Font MS Sans Serif, Bold, 8.25 points

ForeColor White

Locked False

WrapText False

After the last line of code in the preceding example is executed, the grid automatically updates its display as
follows.

Note that the column headings and grid caption do not have the bold attribute set, since they are governed
by the built-in Heading and Caption styles.

If the last line of code in the preceding example is changed to read:

TDBGrid1.Columns(0).Style = MyStyle

then MyStyle is only applied to the first column of the grid.

Similarly, you can apply a style to an individual split.

Additional Style Properties
In addition to the Style property, which determines how cell text is displayed, True DBGrid also provides the
following properties for customizing other aspects of the grid's display:

HeadingStyle Controls the format of column headings, if present.    Applies to TDBGrid,
Split, and Column objects.    Default value: Heading.   

SelectedStyle Controls the format of selected rows and columns, if any.    Applies to
TDBGrid and Split objects.    Default value: Selected.   

CaptionStyle Controls the format of the grid's caption, if set.    Applies to TDBGrid
object.    Default value: Caption.   

EditorStyle Controls the format of the in-cell editor when the MarqueeStyle property
is not set to 6 - Floating Editor.    Applies to TDBGrid, Split, and Column
objects.    Default value: Normal.   

InactiveStyle Controls the format of column headers when the Appearance property is
set to 0 - Flat and the grid or split does not have focus.    Applies to
TDBGrid and Split objects.    Default value: Heading.   

HighlightRowStyle Controls the format of a highlighted row or cell marquee (for
MarqueeStyle settings 2, 3, and 4).    Applies to TDBGrid and Split
objects.    Default value: HighlightRow.

EvenRowStyle Controls the format of even-numbered rows when the
AlternatingRowStyle property is True.    Applies to TDBGrid and Split
objects.    Default value: EvenRow.

OddRowStyle Controls the format of odd-numbered rows when the
AlternatingRowStyle property is True.    Applies to TDBGrid and Split
objects.    Default value: OddRow.

These properties work like the Style property---you simply set them to a different style object (or style name)
to change the formatting of the associated grid component.    For example, using the definition of MyStyle
from the preceding section, the line:

TDBGrid1.HeadingStyle = "MyStyle"

changes the appearance of the column headings as follows.

These properties also allow you to manipulate the underlying styles directly.    This is often the most direct
way to customize a particular grid component.    For example, to center all column headings without changing
the justification of column data, you would code:

TDBGrid1.HeadingStyle.Alignment = dbgCenter

Note that this statement actually changes the Alignment property of the built-in Heading style.    You can

achieve the same result without writing any code by using the Styles property page at design time.

When you manipulate a style, keep in mind that other styles may inherit from it.    For example, the built-in
Caption style inherits everything except its Alignment value from the built-in Heading style.    Therefore, if
you set the bold attribute of the Heading style's font:

TDBGrid1.HeadingStyle.Font.Bold = True

then the grid's caption will appear bold as well.

Note that this is not the same as setting the bold attribute of the grid's HeadFont property:

TDBGrid1.HeadFont.Bold = True

Setting the HeadFont property overrides the HeadingStyle for the column headings but does not change the
grid's caption.    The same is true of the HeadForeColor and HeadBackColor properties.

Introduction to Cell Styles
True DBGrid gives you three ways to control the color and font characteristics of individual cells:

By Status Each grid cell has a cell status which identifies its disposition (any combination
of current, modified, part of a selected row, or part of a highlighted row).   
Using the AddCellStyle method, you can set style attributes which apply to
any possible combination of cell status values.   

By Contents You can specify a pattern (called a regular expression) which is used to
perform pattern matching on cell contents.    When the contents match the
pattern supplied in the AddRegexCellStyle method, True DBGrid will
automatically apply pre-selected style attributes to the cell.   

By Custom Criteria Using the FetchCellStyle (or FetchRowStyle) event, you can make
decisions about cell colors and fonts each time a cell (or row) is displayed.   

You can use Style objects defined at design time as arguments to the AddCellStyle and
AddRegexCellStyle methods.    Or, you can create a temporary style in code and use it to specialize one or
more attributes.   

The FetchCellStyle and FetchRowStyle events pass a temporary Style object as the final parameter.    By
setting its properties, you can control the appearance of the cell specified by the other event parameters.   

In this version of True DBGrid, per-cell font and color control can only be achieved by writing code.    However,
by creating styles at design time, you can keep this code to a minimum.   

Specifying Cell Status Values
True DBGrid recognizes 16 distinct cell status values which are used in code to indicate the disposition of a
cell.    A cell status value is a combination of four separate conditions:

Current Cell The cell is the current cell as specified by the Bookmark, Col, and Split
properties.    At any given time, only one cell can have this status.    When
the floating editor MarqueeStyle property setting is in effect, this
condition is ignored.

Marquee Row The cell is part of a highlighted row marquee.    When the MarqueeStyle
property indicates that the entire current row is to be highlighted, all
visible cells in the current row have this additional condition set.   

Updated Cell The cell contents have been modified by the user but not yet written to
the database.    This condition is also set when cell contents have been
modified in code with the Text or Value properties.   

Selected Row The cell is part of a row selected by the user or in code.    The
SelBookmarks collection contains a bookmark for each selected row.   

True DBGrid defines the following constants corresponding to these cell conditions:

dbgCurrentCell 1 - Applies to the current cell

dbgMarqueeRow 2 - Applies to cells in a highlighted row marquee

dbgUpdatedCell 4 - Applies to cells that have been modified

dbgSelectedRow 8 - Applies to cells in a selected row

You can add these constants together to specify multiple cell conditions.    For example, a cell status value of 9
(dbgCurrentCell + dbgSelectedRow) denotes a current cell within a selected row.   

True DBGrid also defines the following constants, which are not meant to be combined with those listed
earlier:

dbgAllCells -1 - Applies to all cells

dbgNormalCell 0 - Applies to cells without status conditions

Use dbgAllCells to refer to all cells regardless of status.    Use dbgNormalCell to refer to only those cells
without any of the four basic cell conditions described earlier.   

Applying Cell Styles by Status
Each cell in the True DBGrid display has a status value which identifies its disposition (any combination of
current, modified, part of a selected row, or part of a highlighted row).    Using the AddCellStyle method, you
can set style attributes which apply to any possible combination of cell status values.    The AddCellStyle
method is supported by the TDBGrid, Split, and Column objects, enabling you to control the range of cells
for which certain conditions apply.   

For each unique status combination, you can set the foreground color, background color, and font attributes
to be used for cells of that status.    When a cell's status changes, True DBGrid checks to see if any color or
font overrides are defined for that cell, and applies those attributes to the cell when it is displayed.    Style
objects are used to specify the color and font for a cell, as in the following example:

Dim S As New TrueDBGrid50.Style
S.ForeColor = vbRed
S.Font.Bold = True
TDBGrid1.AddCellStyle dbgCurrentCell, S

Here, a new temporary style object is created to specify the color and font overrides (red text, bold) to be
applied to the current cell throughout the entire grid.    Since the style object's BackColor property is not set
explicitly, the background color of the current cell is not changed.   

You can also use styles defined at design time as arguments to the AddCellStyle method:

Dim S As TrueDBGrid50.Style
Set S = TDBGrid1.Styles("RedBold")
TDBGrid1.AddCellStyle dbgCurrentCell, S

The preceding example can be simplified since the AddCellStyle method accepts a style name as well as an
actual style object:

TDBGrid1.AddCellStyle dbgCurrentCell, "RedBold"

All of the preceding examples cause the text of the current cell to appear in red and bold.    However, it is
important to note that the status dbgCurrentCell applies only to cells which have only this status.    Thus,
cells which are current but also updated (dbgCurrentCell + dbgUpdatedCell) will not be displayed in red
and bold unless you also execute the following statement:

TDBGrid1.AddCellStyle dbgCurrentCell + dbgUpdatedCell, "RedBold"

NOTE:    The current cell status is only honored when the MarqueeStyle property is not set to 6 - Floating
Editor.    The floating editor marquee always uses the system highlight colors as determined by your Control
Panel settings.

Although this method of specifying cell conditions offers more control and flexibility, it also requires that
additional code be written for some common cases.   

Calls to AddCellStyle take effect immediately, and can be used for interactive effects as well as overall grid
characteristics.   

Applying Cell Styles by Contents
You can tell True DBGrid to automatically apply colors and fonts to particular cells, based upon their displayed
contents.    To do so, you provide a pattern, called a regular expression, which the grid tests against the
displayed value of each cell.    Using the AddRegexCellStyle method, you can associate a regular expression
with a set of style attributes, then apply them to any possible combination of cell status values.    The
AddRegexCellStyle method is supported by the TDBGrid, Split, and Column objects, allowing you to
control the range of cells for which certain conditions apply.   

The AddRegexCellStyle method is similar to the AddCellStyle method, but it requires an additional
argument for the regular expression string.    As with AddCellStyle, you can use either temporary or named
styles.    The following example uses a temporary style to display all cells in the first column that contain the
string "SQL" in bold:

Dim S As New TrueDBGrid50.Style
S.Font.Bold = True
TDBGrid1.Columns(0).AddRegexCellStyle dbgAllCells, S, "SQL"

This feature allows you to implement "visual queries" that attach distinctive font or color attributes to cells
that match a certain pattern.

Applying Cell Styles by Custom Criteria
For cases where regular expressions are insufficient to express your formatting requirements, you can use the
FetchCellStyle event to customize fonts and colors on a per-cell basis.    This event will only be fired for
columns that have the FetchStyle property set to True.

For example, you may want to provide color coding for values that fall within a certain range.    The following
code assumes that the FetchStyle property is True for a single column of numeric data, and handles the
FetchCellStyle event to display values greater than 1000 in blue:

Private Sub TDBGrid1_FetchCellStyle(_
 ByVal Condition As Integer, _
 ByVal Split As Integer, _
 Bookmark As Variant, _
 ByVal Col As Integer, _
 ByVal CellStyle As TrueDBGrid50.StyleDisp)

Dim N As Long
N = Val(TDBGrid1.Columns(Col).CellText(Bookmark))

If N > 1000 Then CellStyle.ForeColor = vbBlue
End Sub

The Split, Bookmark, and Col arguments identify which cell the grid is displaying.    The CellStyle argument
conveys formatting information from your application to the grid.    Since the CellStyle argument is a Style
object, you can also change a cell's font characteristics in the FetchCellStyle event:

If N > 1000 Then CellStyle.Font.Italic = True

The FetchCellStyle event can also be used to apply formatting to one cell based upon the values of other
cells, or even other controls.    For example, suppose that you want to:

· Make the cell text red in column 4 if column 1 minus column 2 is negative.

· Make the cell text bold in column 7 if it matches the contents of a text box.

In this case, you need to set the FetchStyle property to True for columns 4 and 7, and handle the
FetchCellStyle event as follows:

Private Sub TDBGrid1_FetchCellStyle(_
 ByVal Condition As Integer, _
 ByVal Split As Integer, _
 Bookmark As Variant, _
 ByVal Col As Integer, _
 ByVal CellStyle As TrueDBGrid50.StyleDisp)

Select Case Col
 Case 4
 Dim Col1 As Long, Col2 As Long
 Col1 = CLng(TDBGrid1.Columns(1).CellText(Bookmark))
 Col2 = CLng(TDBGrid1.Columns(2).CellText(Bookmark))
 If Col1 - Col2 < 0 Then CellStyle.ForeColor = vbRed
 Case 7
 Dim S As String
 S = TDBGrid1.Columns(7).CellText(Bookmark)
 If S = Text1.Text Then CellStyle.Font.Bold = True
 Case Else
 Debug.Print "FetchCellStyle not handled: " & Col

End Select
End Sub

For efficiency reasons, you should only set FetchStyle to True for columns that you plan to handle in the
FetchCellStyle event.

NOTE: The preceding examples use the CellText method for simplicity.    However, the CellText and
CellValue methods always create and destroy an internal clone of the dataset each time they are called,
which may make them too inefficient to use in the FetchCellStyle event.    To improve the performance of the
grid's display cycle, use a Recordset clone to derive the cell text, if available.    Unbound applications can
access the underlying data source directly, which is generally faster than calling CellText or CellValue.

If you need to customize fonts and colors on a per-row instead of a per-cell basis, use the FetchRowStyle
event, which will only be fired once per row for grids that have the FetchRowStyle property set to True.    The
syntax for this event is as follows:

Private Sub TDBGrid1_FetchRowStyle(_
 ByVal Split As Integer, _
 Bookmark As Variant, _
 ByVal RowStyle As TrueDBGrid50.StyleDisp)

Although you can use the FetchRowStyle event to implement an alternating row color scheme, an easier
and more efficient way to accomplish the same task would be to use the AlternatingRowStyle property,
together with the built-in EvenRow and OddRow styles.

The FetchRowStyle event is ideally suited for coloring the entire row of a grid based on the value of one or
more columns.    The following example demonstrates how to do this using a Recordset clone:

Dim RS As Recordset

Private Sub Form_Load()
 Data1.Refresh
 Set RS = Data1.Recordset.Clone
 TDBGrid1.FetchRowStyle = True
End Sub

Private Sub TDBGrid1_FetchRowStyle(_
 ByVal Split As Integer, _
 Bookmark As Variant, _
 ByVal RowStyle As TrueDBGrid50.StyleDisp)

 RS.Bookmark = Bookmark

 If RS.Fields("Country") = "Germany" Then
 RowStyle.BackColor = vbCyan
 End If
End Sub

Cell Editing Techniques
This chapter explains how to customize the behavior of cell editing in True DBGrid.    For text entry fields, you
can write handlers for the grid's editing events, specify an input mask template, or display a drop-down text
editor for long strings.    To provide a list of choices for the user, you can use the ValueItems collection, the
data-aware TDBDropDown control, or even an arbitrary intrinsic or third-party control.

{button ,JI(`',`How_Cell_Editing_Works')}    How Cell Editing Works
{button ,JI(`',`Handling_Editing_Events')}    Handling Editing Events
{button ,JI(`',`Working_with_Text')}    Working with Text
{button ,JI(`',`Input_Masking')}    Input Masking
{button ,JI(`',`In-cell_Button')}    In-cell Button
{button ,JI(`',`Drop-down_Controls')}    Drop-down Controls

How Cell Editing Works
True DBGrid provides many features for customizing and controlling in-cell editing.    The grid's default editing
behavior depends on the setting of the MarqueeStyle property.    If the floating editor marquee style is used,
the editing behavior differs from that of other marquee styles.    The following sections summarize True
DBGrid's editing behavior and state any exceptions that arise when using the floating editor.

For more information on the MarqueeStyle property, see Highlighting the Current Row or Cell.

{button ,JI(`',`Initiating_cell_editing')}    Initiating cell editing
{button ,JI(`',`Color_and_wordwrap')}    Color and wordwrap
{button ,JI(`',`Determining_modification_status')}    Determining modification status
{button ,JI(`',`Determining_cell_contents')}    Determining cell contents
{button ,JI(`',`Terminating_cell_editing')}    Terminating cell editing

Initiating cell editing

A cell is either in display or edit mode.    The EditActive property sets and returns the desired mode.    You can
place the current cell in edit mode by setting EditActive to True, or end editing by setting it to False.    The
user may enter edit mode by clicking once on the current cell or by pressing the F2 key.    A blinking text
cursor (caret) will appear in the cell---at the beginning of the text when the cell is clicked and at the end when
the F2 key is used.    The BeforeColEdit event will be triggered when the cell enters edit mode.    The
EditActive property is True when the cell is in edit mode.

Floating Editor Differences:    A blinking caret already exists at the beginning of the cell highlight even when in
display mode.    To enter edit mode, the user can click on any character location within the cell text to specify
the text insertion point.    The BeforeColEdit event is not triggered and the EditActive property is False until
the user has made changes to the cell text.

Color and wordwrap

In edit mode, the cell color is determined by the EditForeColor and EditBackColor properties.    The text
being edited will word wrap, regardless of the setting of the column's WrapText property.    If the text is too
big to fit into the cell, a built-in drop-down edit control will automatically appear.    For more information, see
Working with Text.

Floating Editor Differences:    In edit mode, the text highlight disappears, and the cell color is the same as the
normal cell color.    The text being edited is word wrapped only if the column's WrapText property is True.   
The built-in drop-down edit control is not available.

Determining modification status

While editing is in progress, you can inspect the DataChanged property of the grid to determine whether the
user has made any changes to the current row.    Similarly, you can inspect the DataChanged property of an
individual column to determine whether the user has made any changes to a specific cell within the current
row.

You can set the grid's DataChanged property to False to exit editing, discard all changes to the current row,
and refresh the current row display from the data source.

The DataChanged property of a Column object is read-only.

The icon in the record selector column of the current row reflects the status of the grid's DataChanged
property.    If DataChanged is False, a triangle-shaped arrow will be shown in the record selector column.    If
DataChanged is True, a pencil icon will appear instead.

Determining cell contents

While editing is in progress, the column's Text and Value properties contain the text the user currently sees
in the modified row.    Whenever the user presses a key, the Change event fires to notify your application that
the user has just modified the current cell.    However, the Change event doesn't mean the user is finished
with the process, only that a single change has been made and the grid is still in edit mode.

The Change event does not fire when the grid is not in edit mode, such as when the contents of a cell are
changed through code or when the user clicks a cell to cycle through a ValueItems collection.

Terminating cell editing

The user completes the editing process by performing any of the following:

· Pressing the ENTER key.

· Pressing the F2 key.

· Pressing the ESC key.

· Moving to another cell with the arrow keys, the TAB key, or the mouse.

· Setting focus to another control on the form.

Handling Editing Events
The following sections describe how you can alter the default editing behavior of True DBGrid by responding
to its events.

{button ,JI(`',`Standard_keystroke_events')}    Standard keystroke events
{button ,JI(`',`Column_editing_events')}    Column editing events
{button ,JI(`',`Changing_cell_contents_with_a_single_keystroke')}    Changing cell contents with a single
keystroke

Standard keystroke events

True DBGrid supports the standard keystroke events common to many ActiveX controls:

KeyDown Fired when the user presses a key.

KeyPress Fired when the user presses an ANSI key.

KeyUp Fired when the user releases a key.

The KeyDown and KeyUp events trap all keys, including function keys, ALT and SHIFT keys, and numeric
keypad keys.    The KeyPress event only traps letters and numbers, punctuation marks and symbols, and
editing keys such as TAB, ENTER, and BACKSPACE.

You can use these events to restrict and modify user input as you would for any other intrinsic or ActiveX
control.    For example, the following KeyPress event handler converts the user's keystrokes to upper case
letters, and prevents the user from entering non-alphanumeric characters:

Private Sub TDBGrid1_KeyPress(KeyAscii As Integer)
 ' Convert key to upper case
 KeyAscii = Asc(UCase(Chr$(KeyAscii)))

 ' Don't disable the Esc or Backspace keys
 If (KeyAscii = 27) Or (KeyAscii = 8) Then Exit Sub

 ' Cancel user key input if it is not a letter or a digit
 If (KeyAscii < 65 Or KeyAscii > 90) _
 And (KeyAscii < 48 Or KeyAscii > 57) Then
 KeyAscii = 0
 End If
End Sub

Column editing events

True DBGrid gives you full control over the cell editing process with the following events, listed in the order in
which they occur during a successful editing attempt:

BeforeColEdit Fired upon an attempt to edit column data.

ColEdit Fired when the current cell enters edit mode.

AfterColEdit Fired after column data is edited.

You can use the BeforeColEdit event to control the editability of cells on a per-cell basis, or to translate the
initial keystroke into a default value.

The ColEdit event signals that the current cell has entered edit mode; the AfterColEdit event signals that
edit mode was terminated.    You can use these two events to provide additional feedback while editing is in
progress:

Private Sub TDBGrid1_ColEdit(ByVal ColIndex As Integer)
 Select Case TDBGrid1.Columns(ColIndex).Caption
 Case "Code"
 Label1.Caption = "Enter 4-digit company code"
 Case "Description"
 Label1.Caption = "Enter full company name"
 End Select
End Sub

Private Sub TDBGrid1_AfterColEdit(ByVal ColIndex As Integer)
 Label1.Caption = "" ' Clear editing instructions
End Sub

Changing cell contents with a single keystroke

The BeforeColEdit event is an extremely versatile way to customize the behavior of True DBGrid editing.   
BeforeColEdit is fired before any other editing events occur, which gives you the opportunity to do virtually
anything you want to before editing begins.    For example, you can cancel the edit request and override the
built-in text editor with your own drop-down list box.

A True DBGrid control can enter edit mode in one of four ways:

1. If the user clicks on the current cell with the mouse, editing begins with the current cell contents.

2. If the user presses the F2 key, editing also begins using the current cell contents.

3. If the user begins typing, the typed character replaces the contents of the cell and editing begins.

4. You can set the EditActive property in your code to force editing to begin.

The BeforeColEdit event fires in cases 1, 2, and 3, but not in case 4, since True DBGrid assumes you will
never want to cancel a request made from code.

You may want to differentiate a user's edit request based upon whether they used the mouse or the keyboard
to start editing.    To facilitate this, one of the parameters to BeforeColEdit is KeyAscii, which will be zero if
the user clicked on the cell with the mouse, and will be an ASCII character if the user typed a character to
begin editing.

When BeforeColEdit is fired, the ASCII character hasn't yet been placed into the current cell, so if you cancel
editing in BeforeColEdit, the ASCII key is discarded.    This leads to an interesting technique.

Assume you have a boolean field called Done, and you have set its NumberFormat property to specify
Yes/No as the display format.    Further assume that, when the user presses Y or N, you want to change the cell
contents immediately instead of entering edit mode.    Here's how you could accomplish this in
BeforeColEdit:

Private Sub TDBGrid1_BeforeColEdit(ByVal ColIndex As Integer, _
 ByVal KeyAscii As Integer, Cancel As Integer)

 With TDBGrid1.Columns(ColIndex)
 ' If this isn't the "Done" column, or if the user
 ' clicked with the mouse, then simply continue.

 If .DataField <> "Done" Or KeyAscii = 0 Then Exit Sub

 ' Cancel normal editing and set the field to the
 ' proper result based upon KeyAscii. Beep if an
 ' invalid character was typed.

 Cancel = True
 Select Case UCase$(Chr$(KeyAscii))
 Case "Y"
 .Value = -1
 Case "N"
 .Value = 0
 Case Else
 Beep
 End Select
 End With
End Sub

Note that the event handler terminates when KeyAscii is zero, so mouse editing is still permitted.

Working with Text
This section briefly describes the properties related to text editing.

{button ,JI(`',`Limiting_the_size_of_data_entry_fields')}    Limiting the size of data entry fields
{button ,JI(`',`Providing_a_drop-down_edit_control_for_long_fields')}    Providing a drop-down edit control for
long fields
{button ,JI(`',`Selecting_and_replacing_text')}    Selecting and replacing text

Limiting the size of data entry fields

You can use the DataWidth property of a Column object to restrict the number of characters the user can
enter.    Setting this property to zero imposes no limits.

Providing a drop-down edit control for long fields

Whenever the user attempts to edit cell text that is too big to fit within the cell, the grid will automatically
activate a multiple-line drop-down text editor.    While editing, text in the drop-down edit control will be
wordwrapped regardless of the setting of the column's WrapText property.    You can turn off the drop-down
text editor and force editing to occur within cell boundaries by setting the grid's EditDropDown property to
False (the default is True).    The drop-down text editor is not available if the grid's MarqueeStyle property is
set to 6 - Floating Editor.    The following code uses the grid's built-in column button feature to activate the
drop-down edit control to modify the cell data in the Comments column:

Private Sub Form_Load()
 With TDBGrid1
 .MarqueeStyle = dbgSolidCellBorder
 .Columns("Comments").Button = True
 .EditDropDown = True ' Redundant since default = True
 End With
End Sub

Private Sub TDBGrid1_ButtonClick(ByVal ColIndex As Integer)
 TDBGrid1.EditActive = True ' Place the cell into edit mode
End Sub

If the current cell is in the Comments column, you can initiate editing either by clicking on the current cell or
by clicking the built-in button.

Selecting and replacing text

True DBGrid supports the standard text selection properties found in many ActiveX controls:

SelLength Sets/returns the length of the selected text.

SelStart Sets/returns the start position of the selected text.

SelText Sets/returns the selected text.

NOTE: These properties are only effective when the grid is in edit mode, that is, when its EditActive property
is True.

Input Masking
You can use the NumberFormat property to control the display format of column data.    If your users need to
edit a formatted column, it is desirable to maintain a consistent format during the editing process.    True
DBGrid provides an EditMask property that optionally works in concert with the NumberFormat property to
ensure consistent data entry.

{button ,JI(`',`Specifying_an_input_mask_for_a_column')}    Specifying an input mask for a column
{button ,JI(`',`Specifying_a_date_mask_for_a_column')}    Specifying a date mask for a column
{button ,JI(`',`Using_an_input_mask_for_formatting')}    Using an input mask for formatting
{button ,JI(`',`Controlling_how_masked_input_is_updated')}    Controlling how masked input is updated

Specifying an input mask for a column

The EditMask property of the Column object is used to specify an input mask template for end-user data
entry.    You can construct your own input mask string using template characters similar to those recognized
by the Visual Basic Format$ function.    The input mask string is composed of special characters that
represent either an input character that the user must enter, or a literal character that will be skipped over on
input.    Valid template characters are as follows:

Digit placeholder
@ Character placeholder
> All characters following will be in uppercase
< All characters following will be in lowercase
~ Turns off the previous "<" or ">"
? Digit or character
\ Next character is treated as a literal
& Any character

Any other character will be treated as a literal.    For example, to specify a phone number template, you could
use:

TDBGrid1.Columns("Phone").EditMask = "(###) ###-####"

In this example, the parentheses, space, and hyphen are all literals, while the pound signs signify digit
placeholders.

After the user finishes editing a cell with this input mask, True DBGrid caches the modified cell text, but any
literal characters in the input mask template will be stripped from the modified cell text beforehand.    In the
preceding example, only the 10 digits denoted by the # placeholders will be cached; the punctuation marks
and the space will be omitted.

Specifying a date mask for a column

The EditMask property also supports a built-in DateMask option for formatting date fields.    When the
DateMask option is selected, the following input mask template will be used for editing:

mm/dd/yyyy

where
mm Month placeholder (01-12)
dd Date placeholder (01-31)
yyyy Year placeholder

The user can enter either 1, 2, 3, or 4 digits in the year portion of the date, and the grid will save the year as
entered by the user.    If the user enters 1 or 2 digits for the year portion, the grid will make no interpretation
for the year; that is, the grid will not assume whether it is the century 1900 or 2000, but will store the 1-digit
or 2-digit year as entered.    Before the date is updated to the database, you can interpret the year yourself in
code, or let the underlying database system handle the interpretation and storage.

Note that if you select the DateMask option for the EditMask property, the date separators are part of the
date format; they are not considered as literal characters and will always be cached by the grid.    This is
because most databases and formatters require the separator characters to be present in order to interpret
the date correctly.

Using an input mask for formatting

Whereas the EditMask property is used to specify an input mask for data entry, the NumberFormat
property is used to specify the display format of data in a grid cell.    If the NumberFormat property of the
column is not specified, the grid simply displays the cached text (stripped of literals) as is; if the
NumberFormat property is specified, the grid sends the cached text to the display formatter.

Since it is common for the input and display formats to be the same, the NumberFormat property has an
Edit Mask option.    If you select this option, then the EditMask property setting will be used for both data
input and display.    However, the input and display formats need not be the same, so you are free to select a
NumberFormat option that differs from the EditMask property.

Controlling how masked input is updated

Normally, after the user finishes editing a cell in a column which has its EditMask property set, True DBGrid
caches the modified cell text, but any literal characters in the input mask template will be stripped from the
modified cell text beforehand.    However, you can override this behavior with the EditMaskUpdate property.

By default, the EditMaskUpdate property is False.    This means that when the modified cell text is updated
to the database, the grid sends the cached text (stripped of literals), not the formatted text displayed in the
cell.    You can override this default behavior by setting the EditMaskUpdate property to True, which causes
the cached text to be formatted according to the EditMask property before being updated to the database.

Therefore, it is important to set EditMaskUpdate properly to ensure that the correct data is sent to the
database for update.

In-cell Button
True DBGrid optionally displays a button at the right edge of the current cell, which you can use to indicate
that a list of choices is available, perform a command associated with the contents of the cell, or display an
arbitrary control or form for editing.

{button ,JI(`',`Enabling_the_in-cell_button')}    Enabling the in-cell button
{button ,JI(`',`Detecting_in-cell_button_clicks')}    Detecting in-cell button clicks
{button ,JI(`',`Customizing_the_in-cell_button_bitmap')}    Customizing the in-cell button bitmap

Enabling the in-cell button

To enable the in-cell button for a Column object, select the Button check box on the Layout property page or
set the column's Button property to True in code:

TDBGrid1.Columns(1).Button = True

The Button property is also enabled when the column's DropDown property is set to the name of a
TDBDropDown control, or when the Presentation property of the associated ValueItems collection is set
to one of the combo box options.

Detecting in-cell button clicks

The ButtonClick event is provided so that your code can respond when the user clicks the in-cell button.    Its
syntax is as follows:

Private Sub TDBGrid1_ButtonClick(ByVal ColIndex As Integer)

An example of the ButtonClick event was presented earlier in the section Working with Text.

Customizing the in-cell button bitmap

By default, True DBGrid uses a down arrow for the in-cell button.    However, you can change the button
bitmap at design time by clicking the Picture button on the Layout property page.    Or, you can assign a
bitmap to the ButtonPicture property in code at run time:

TDBGrid1.Columns(1).ButtonPicture = LoadPicture("arrow.bmp")

Note that the grid automatically draws the edges corresponding to the button's up/down states as
appropriate, so you need only provide the interior image of the button.    A light gray background is
recommended.

Drop-down Controls
True DBGrid offers a wide variety of built-in controls and programming constructs that enable you to
implement virtually any kind of drop-down cell editing interface.    You can use the ValueItems collection to
provide a simple pick list, or the TDBDropDown control to implement a data-aware multicolumn combo box. 
You can even use arbitrary Visual Basic or third-party controls to perform specialized editing functions.

{button ,JI(`',`Using_the_built-in_combo_box')}    Using the built-in combo box
{button ,JI(`',`Detecting_built-in_combo_box_selections')}    Detecting built-in combo box selections
{button ,JI(`',`Using_the_TDBDropDown_control')}    Using the TDBDropDown control
{button ,JI(`',`Using_an_arbitrary_drop-down_control')}    Using an arbitrary drop-down control
{button ,JI(`',`Using_the_built-in_column_button')}    Using the built-in column button

Using the built-in combo box

The Column object's ValueItems collection optionally provides a built-in combo box interface that works in
concert with its automatic data translation features.    By default, the Presentation property is set to 0 -
Normal, and the usual cell editing behavior is in effect for textual data.    However, if you set the
Presentation property to either 2 - Combo Box or 3 - Sorted Combo Box, then cells in the affected column
display the in-cell button upon receiving focus.    When the user clicks the in-cell button, a drop-down combo
box appears.

The drop-down combo box contains one item for each member of the ValueItems collection.    If the
collection's Translate property is True, then the DisplayValue text is used for the combo box items; if it is
False, then the Value text is used.

True DBGrid automatically sizes the drop-down combo box to fit the width of the column in which it is
displayed.    The height of the combo box is determined by both the number of items in the collection and the
MaxComboItems property.    If the number of items is less than or equal to MaxComboItems, which has a
default value of 5, then all value items will be shown.    If the number of    items exceeds MaxComboItems,
only MaxComboItems will be shown, but a scroll bar will appear at the right edge of the combo box to allow
users to bring the other items into view.

Detecting built-in combo box selections

The ComboSelect event is fired when the user selects an item from the built-in combo box.    This event is
useful for determining the contents of the cell before the user exits edit mode.

Since the items displayed in the built-in combo box are often the only allowable values for the underlying data
source, you may need to prevent your users from typing in the cell after making a selection.    By setting the
EditActive property to False within the ComboSelect event handler, you can force the grid to exit editing
mode without allowing the user a chance to alter the selection (provided that the MarqueeStyle property is
not set to 6 - Floating Editor).

Private Sub TDBGrid1_ComboSelect(ByVal ColIndex As Integer)
 TDBGrid1.EditActive = False
End Sub

In this case, it is also a good idea to explicitly disallow keyboard input with the BeforeColEdit event:

Private Sub TDBGrid1_BeforeColEdit(ByVal ColIndex As Integer, _
 ByVal KeyAscii As Integer, Cancel As Integer)

 If KeyAscii <> 0 Then ' Editing initiated via the keyboard
 If TDBGrid1.Columns(ColIndex).Caption = "Columns" Then
 Cancel = True
 End If
 End If
End Sub

Using the TDBDropDown control

The built-in drop-down combo box described in the preceding example is most useful when the allowable
values are both known in advance and relatively few in number.    A large ValueItems collection can be
unwieldy to maintain at design time, and requires substantial coding to set up at run time.    Moreover, you
cannot bind the built-in combo box to a data control and have it populated automatically.

Using the techniques outlined later in this chapter, you could set up a secondary TDBGrid control to be used
as a drop-down.    However, if you need to display a list of values from another data source, the
TDBDropDown control offers a more elegant solution, as it was designed explicitly for that purpose and can
be set up entirely at design time.

To use the drop-down control, set the DropDown property of a grid column to the name of a TDBDropDown
control at either design time or run time.    At run time, when the user clicks the in-cell button for that column,
the TDBDropDown control will appear below the grid's current cell.    If the user selects an item from the
drop-down control, the grid's current cell is updated.

Since the TDBDropDown control is a subset of TDBGrid, it shares many of the same properties, methods,
and events.    However, the following two properties are specific to the TDBDropDown control:

DataField Not to be confused with the DataField property of a Column object, this
property specifies the grid column to be updated when a drop-down
selection is made.

ListField This property specifies the name of the drop-down column to be used for
incremental search.

When a TDBDropDown control becomes visible, its DropDownOpen event fires.    Similarly, when the user
makes a selection or the control loses focus, its DropDownClose event fires.

The TDBDropDown control supports all of the DataMode settings of the TDBGrid control.    However, in
order to enable incremental search for unbound, application, and storage modes, you need to implement the
UnboundFindData event.

For more information on the differences between TDBDropDown and TDBGrid, see TDBDropDown at Design
Time.

Using an arbitrary drop-down control

Normally, True DBGrid's default editing behavior is sufficient for most applications.    In some cases, however,
you may want to customize this behavior.    One valuable technique is to use a drop-down list or combo box,
or even another True DBGrid control, to allow selection from a list of possible values.    This is easy to do with
True DBGrid using virtually any Visual Basic or third-party control.    The general approach follows, and a
working example is given in Tutorial 9.

In general, displaying a drop-down list or combo instead of the standard True DBGrid editor involves the
following steps:

1. True DBGrid fires the BeforeColEdit event each time the user wants to edit a cell.    To override the
default editing process, cancel True DBGrid's default editor by setting the Cancel argument to True.   
Put code in BeforeColEdit to display the editing control you wish to show instead.    Typically, you
place the substitute editing control or drop-down on the same form as the grid, but make it invisible
until you need it.

2. When BeforeColEdit is triggered, there are five properties and one method you can use to determine
the exact coordinates of the cell which is to be edited.    The properties are Left (applies to grid and
column), Top (grid and column), CellTop (column only, used with multiple line displays), Width
(column only), and RowHeight (grid only).    The method is RowTop (grid only).    You can use these
properties and method to position the custom editing control or drop-down relative to a grid cell.    For
example, you can place a ListBox control at the right edge of a cell and align its top border with that of
the cell using the following code:

Dim Col As TrueDBGrid50.Column
Set Col = TDBGrid1.Columns(ColIndex)

With TDBGrid1
 List1.Left = .Left + Col.Left + Col.Width
 List1.Top = .Top + .RowTop(.Row)
End With

3. You need to put code in the drop-down or combo which completes the editing process by assigning the
selected value to the Text or Value property of the column being edited.

This method does not work, however, when the grid's MarqueeStyle property is set to the default value of 6
- Floating Editor.    When the floating editor marquee is used, the BeforeColEdit event does not fire until the
cell has been changed by the user.    However, you can use the built-in column button feature to activate the
drop-down as described in the next section.

For more information, see Highlighting the Current Row or Cell.    An example of dropping down a Visual Basic
ListBox control from a grid cell is given in Tutorial 9.

Using the built-in column button

An alternative way to drop down a control from a cell is to use True DBGrid's built-in column button feature.   
If you set a column's Button property to True, a button will be displayed at the right edge of the current cell
when it is in that column.    Clicking the button fires the grid's ButtonClick event.    You can then drop down a
control from the cell using code inside the ButtonClick event.    You can also use this event to trigger any
action or calculation inside the cell.   

For more information, see In-Cell Button.

Property Reference
{button ,JI(`',`Quick_Reference_for_All_Properties')}    Quick Reference for All Properties
{button ,JI(`',`TDBGrid_Control_Properties')}    TDBGrid Control Properties
{button ,JI(`',`TDBDropDown_Control_Properties')}    TDBDropDown Control Properties
{button ,JI(`',`Column_Object_Properties')}    Column Object Properties
{button ,JI(`',`Columns_Collection_Properties')}    Columns Collection Properties
{button ,JI(`',`RowBuffer_Object_Properties')}    RowBuffer Object Properties
{button ,JI(`',`Layouts_Collection_Properties')}    Layouts Collection Properties
{button ,JI(`',`SelBookmarks_Collection_Properties')}    SelBookmarks Collection Properties
{button ,JI(`',`Split_Object_Properties')}    Split Object Properties
{button ,JI(`',`Splits_Collection_Properties')}    Splits Collection Properties
{button ,JI(`',`Style_Object_Properties')}    Style Object Properties
{button ,JI(`',`Styles_Collection_Properties')}    Styles Collection Properties
{button ,JI(`',`ValueItem_Object_Properties')}    ValueItem Object Properties
{button ,JI(`',`ValueItems_Collection_Properties')}    ValueItems Collection Properties

Quick Reference for All Properties
AddNewMode Returns the disposition of the grid's AddNew row
Alignment Specifies horizontal text alignment
AllowAddNew Enables interactive record addition
AllowArrows Enables use of arrow keys for grid navigation
AllowColMove Enables interactive column movement
AllowColSelect Enables interactive column selection
AllowDelete Enables interactive record deletion
AllowFocus Allows cells within a split to receive focus
AllowRowSelect Enables interactive row selection
AllowRowSizing Enables interactive row resizing
AllowSizing Enables interactive resizing for a column or split
AllowUpdate Enables interactive record updating
AlternatingRowStyle Controls whether even/odd row styles are applied to an object
AnnotatePicture True to show both underlying data and display value graphics
Appearance Controls 3-D display of headings, caption, record selectors
ApproxCount Sets/returns the approximate number of rows
Array Specifies an XArray object as the data source
BackColor Sets/returns the background color
BOF Returns beginning-of-file status
Bookmark (RowBuffer) Sets/returns bookmark of specified row in unbound events
Bookmark (TDBGrid) Sets/returns bookmark of current grid row
BorderStyle Sets/returns style for grid border
Button Controls whether a button appears within the current cell
ButtonPicture Sets/returns the bitmap used for the in-cell button
Caption Sets/returns grid caption or column heading text
CaptionStyle Controls the caption style for an object
CellTips Enables pop-up cell tip window when the cursor is idle
CellTipsDelay Sets/returns idle time for cell tip window
CellTipsWidth Sets/returns width of cell tip window
CellTop Returns top column border, adjusted for multiple lines
Col Sets/returns current column number
ColIndex Returns the ordinal position of a column
ColumnCount Returns the number of columns in a RowBuffer
ColumnHeaders Turns column headings on or off
ColumnIndex Returns the column index of a column in the RowBuffer
ColumnName Returns the field name of a column
Columns Contains a collection of True DBGrid columns
Count Returns the number of items in a collection
CurrentCellModified Sets/returns modification status of the current cell
CurrentCellVisible Sets/returns the visibility of the current cell
CycleOnClick True to cycle through value items on click
DataChanged Sets/returns modification status of the current row or cell
DataField (Column) Data table field name for a column
DataField (DropDown) Grid column to be updated with drop-down selection

DataMode Specifies bound or unbound mode
DataSource Specifies source of grid data
DataWidth Maximum number of characters available for column input
DefaultItem Index of default value item, or -1 if no default
DefaultValue Default value for new column data
DefColWidth Specifies column width for auto-created columns
DisplayValue Sets/returns displayed text or graphics for a value item
DividerStyle Divider style for right column border
EditActive Returns status or enters/exits the cell editor
EditBackColor Sets/returns the editor background color
EditDropDown Controls whether a drop-down window is used for editing
EditForeColor Sets/returns the editor foreground color
EditorStyle Controls the editor style for an object
EmptyRows Enables empty rows in an underpopulated grid
Enabled Enables or disables user interaction
EOF Returns end-of-file status
ErrorText Returns the error message associated with the Error event
EvenRowStyle Controls the row style for even-numbered rows
ExposeCellMode Controls behavior of clicked rightmost visible cell
ExtendRightColumn True if rightmost column extends to edge of split
FetchRowStyle Controls whether the FetchRowStyle event will be fired
FetchStyle Controls whether the FetchCellStyle event fires for a column
FirstRow Bookmark of row occupying first display line
Font Specifies the typeface, size, and other text characteristics
ForeColor Sets/returns the foreground color
HeadAlignment Specifies column heading alignment
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading and caption font for an object
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for an object
HeadLines Number of lines allocated for heading text
HighlightRowStyle Controls the marquee style when set to Highlight Row
HScrollHeight Returns the horizontal scroll bar height, if present
hWnd Returns the window handle of the grid
hWndEditor Returns the window handle of the grid's editor
InactiveBackColor Sets/returns the inactive heading background color
InactiveForeColor Sets/returns the inactive heading foreground color
InactiveStyle Controls the inactive heading style for an object
Index Returns the ordinal index of a split
IntegralHeight Controls whether partial rows are displayed
LayoutFileName Sets/returns the name of a file containing grid layouts
LayoutName Sets/returns the name of the current grid layout
Layouts Returns a collection of layout names
Left Returns column left border in container coordinates
LeftCol Sets/returns the leftmost visible column
ListField Sets/returns the name of the incremental search column

Locked If true, data entry prohibited for an object
MarqueeStyle Sets/returns marquee style for a split
MarqueeUnique Restricts display of marquee to current split
MaxComboItems Maximum number of items shown in a drop-down combo
MultipleLines Controls whether individual records span multiple lines
Name Returns the programmer-specified style name
NumberFormat Data formatting string for a column
OddRowStyle Controls the row style for odd-numbered rows
Order Sets/returns the display position of a column
Parent Sets/returns the object from which a style inherits
Presentation Specifies how value items are displayed
RecordSelectors Shows/hides selection panel at left border
Row Specifies display line of current data row
RowCount Returns the number of rows in a RowBuffer
RowDividerStyle Selects style of row divider lines
RowHeight Specifies height of all grid rows
ScrollBars Sets/returns scroll bar style for an object
ScrollGroup Used to synchronize vertical scrolling between splits
SelBookmarks Contains a collection of selected row bookmarks
SelectedBackColor Sets/returns the selected row and column background color
SelectedForeColor Sets/returns the selected row and column foreground color
SelectedItem Sets/returns bookmark of currently selected item
SelectedStyle Controls the selected row and column style for an object
SelEndCol Sets/returns rightmost selected column
SelLength Sets/returns length of selected text
SelStart Sets/returns start of selected text
SelStartCol Sets/returns leftmost selected column
SelText Sets/returns the selected text
Size Sets/returns split width according to SizeMode
SizeMode Controls whether a split is scalable or fixed size
Split Sets/returns current split number
Splits Contains a collection of True DBGrid splits
Style Controls the normal style for an object
Styles Contains a collection of True DBGrid styles
TabAcrossSplits Allows tab and arrow keys to cross split boundaries
TabAction Defines the behavior of the tab key
Text Sets/returns displayed cell text for the current row
Top Returns top column border in container coordinates
Translate True to translate data values to display values
Validate True to auto-validate input values
Value (Column) Sets/returns underlying data value for the current row
Value (RowBuffer) Sets/returns data value in unbound events
Value (Style) Returns the programmer-specified style name
Value (ValueItem) Sets/returns untranslated data value
ValueItems Contains a collection of ValueItems for a column
Visible Shows/hides a column

VisibleCols Returns number of visible columns
VisibleRows Returns number of visible display rows
VScrollWidth Returns the vertical scroll bar width, if present
Width Sets/returns column width in container coordinates
WrapCellPointer Defines behavior of tab and arrow keys at row boundaries
WrapText True if cell text is word wrapped

TDBGrid Control Properties
AddNewMode Returns the disposition of the grid's AddNew row
AllowAddNew Enables interactive record addition
AllowArrows Enables use of arrow keys for grid navigation
AllowColMove Enables interactive column movement
AllowColSelect Enables interactive column selection
AllowDelete Enables interactive record deletion
AllowRowSelect Enables interactive row selection
AllowRowSizing Enables interactive row resizing
AllowUpdate Enables interactive record updating
AlternatingRowStyle Controls whether even/odd row styles are applied to a grid
Appearance Controls 3-D display of headings, caption, record selectors
ApproxCount Sets/returns the approximate number of rows
Array Specifies an XArray object as the data source
BackColor Sets/returns the background color
BOF Returns beginning-of-file status
Bookmark Sets/returns bookmark of current row
BorderStyle Sets/returns style for grid border
Caption Sets/returns grid caption text
CaptionStyle Controls the caption style for a grid
CellTips Enables pop-up cell tip window when the cursor is idle
CellTipsDelay Sets/returns idle time for cell tip window
CellTipsWidth Sets/returns width of cell tip window
Col Sets/returns current column number
ColumnHeaders Turns column headings on or off
Columns Contains a collection of True DBGrid columns
CurrentCellModified Sets/returns modification status of the current cell
CurrentCellVisible Sets/returns the visibility of the current cell
DataChanged Sets/returns modification status of the current row
DataMode Specifies bound or unbound mode
DataSource Specifies source of grid data
DefColWidth Specifies column width for auto-created columns
EditActive Returns status or enters/exits the cell editor
EditBackColor Sets/returns the editor background color
EditDropDown Controls whether a drop-down window is used for editing
EditForeColor Sets/returns the editor foreground color
EditorStyle Controls the editor style for a grid
EmptyRows Enables empty rows in an underpopulated grid
Enabled Enables or disables user interaction
EOF Returns end-of-file status
ErrorText Returns the error message associated with the Error event
EvenRowStyle Controls the row style for even-numbered rows
ExposeCellMode Controls behavior of clicked rightmost visible cell
ExtendRightColumn Returns current split extend column setting, sets all splits
FetchRowStyle Controls whether the FetchRowStyle event will be fired

FirstRow Bookmark of row occupying first display line
Font Specifies the overall font for a grid
ForeColor Sets/returns the foreground color
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading and caption font for a grid
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for a grid
HeadLines Number of lines allocated for heading text
HighlightRowStyle Controls the marquee style when set to Highlight Row
HScrollHeight Returns the horizontal scroll bar height, if present
hWnd Returns the window handle of the grid
hWndEditor Returns the window handle of the grid's editor
InactiveBackColor Sets/returns the inactive heading background color
InactiveForeColor Sets/returns the inactive heading foreground color
InactiveStyle Controls the inactive heading style for a grid
LayoutFileName Sets/returns the name of a file containing grid layouts
LayoutName Sets/returns the name of the current grid layout
Layouts Returns a collection of layout names
LeftCol Sets/returns the leftmost visible column
MarqueeStyle Returns current split marquee style, sets all splits
MarqueeUnique Restricts display of marquee to current split
MultipleLines Controls whether individual records span multiple lines
OddRowStyle Controls the row style for odd-numbered rows
RecordSelectors Shows/hides selection panel at left border
Row Specifies display line of current data row
RowDividerStyle Selects style of row divider lines
RowHeight Specifies height of all grid rows
ScrollBars Sets/returns scroll bar style for the grid
SelBookmarks Contains a collection of selected row bookmarks
SelectedBackColor Sets/returns the selected row background color
SelectedForeColor Sets/returns the selected row foreground color
SelectedStyle Controls the selected row and column style for a grid
SelEndCol Sets/returns rightmost selected column
SelLength Sets/returns length of selected text
SelStart Sets/returns start of selected text
SelStartCol Sets/returns leftmost selected column
SelText Sets/returns the selected text
Split Sets/returns current split number
Splits Contains a collection of True DBGrid splits
Style Controls the normal style for a grid
Styles Contains a collection of True DBGrid styles
TabAcrossSplits Allows tab and arrow keys to cross split boundaries
TabAction Defines the behavior of the tab key
Text Sets/returns displayed cell text for the current row
VisibleCols Returns number of visible columns
VisibleRows Returns number of visible display rows

VScrollWidth Returns the vertical scroll bar width, if present
WrapCellPointer Defines behavior of tab and arrow keys at row boundaries

TDBDropDown Control Properties
AllowColMove Enables interactive column movement
AllowColSelect Enables interactive column selection
AllowRowSizing Enables interactive row resizing
AlternatingRowStyle Controls whether even/odd row styles are applied
Appearance Controls 3-D display of column headings
ApproxCount Sets/returns the approximate number of rows
Array Specifies an XArray object as the data source
BackColor Sets/returns the background color
Bookmark Sets/returns bookmark of current row
BorderStyle Sets/returns style for drop-down border
Col Sets/returns current column number
ColumnHeaders Turns column headings on or off
Columns Contains a collection of drop-down columns
CurrentCellVisible Sets/returns the visibility of the current cell
DataField Grid column to be updated with drop-down selection
DataMode Specifies bound or unbound mode
DataSource Specifies source of drop-down data
DefColWidth Specifies column width for auto-created columns
EmptyRows Enables empty rows in an underpopulated drop-down
Enabled Enables or disables user interaction
ErrorText Returns the error message associated with the Error event
EvenRowStyle Controls the row style for even-numbered rows
ExtendRightColumn Sets/returns extended right column for a drop-down
FetchRowStyle Controls whether the FetchRowStyle event will be fired
FirstRow Bookmark of row occupying first display line
Font Specifies the overall font for a drop-down
ForeColor Sets/returns the foreground color
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading font for a drop-down
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for a drop-down
HeadLines Number of lines allocated for heading text
HighlightRowStyle Controls the marquee style when set to Highlight Row
hWnd Returns the window handle of the drop-down
IntegralHeight Controls whether partial rows are displayed
LeftCol Sets/returns the leftmost visible column
ListField Sets/returns the name of the incremental search column
OddRowStyle Controls the row style for odd-numbered rows
Row Specifies display line of current data row
RowDividerStyle Selects style of row divider lines
RowHeight Specifies height of all drop-down rows
ScrollBars Sets/returns scroll bar style for the drop-down
SelectedItem Sets/returns bookmark of currently selected item
SelEndCol Sets/returns rightmost selected column

SelStartCol Sets/returns leftmost selected column
Style Controls the normal style for a drop-down
Styles Contains a collection of drop-down styles
Text Sets/returns displayed cell text for the current row
VisibleCols Returns number of visible columns
VisibleRows Returns number of visible display rows

Column Object Properties
Alignment Specifies horizontal text alignment
AllowFocus Controls whether a column can receive focus
AllowSizing Enables interactive resizing for a column
BackColor Sets/returns the background color
Button Controls whether a button appears within the current cell
ButtonPicture Sets/returns the bitmap used for the in-cell button
Caption Sets/returns column heading text
CellTop Returns top column border, adjusted for multiple lines
ColIndex Returns the ordinal position of a column
DataChanged Sets/returns modification status of a column in current row
DataField Data table field name for a column
DataWidth Maximum number of characters available for column input
DefaultValue Default value for new column data
DividerStyle Divider style for right column border
DropDown Sets the TDBDropDown control for a column
EditBackColor Sets/returns the editor background color
EditForeColor Sets/returns the editor foreground color
EditMask Input mask string for a column
EditMaskUpdate Controls whether masked data is used for updates
EditorStyle Controls the editor style for a column
FetchStyle Controls whether the FetchCellStyle event fires for a column
Font Specifies the overall font for a column
ForeColor Sets/returns the foreground color
HeadAlignment Specifies column heading alignment
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading font for a column
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for a column
Left Returns column left border in container coordinates
Locked If true, data entry prohibited for a column
NumberFormat Data formatting string for a column
Order Sets/returns the display position of a column
Style Controls the normal style for a column
Text Sets/returns displayed cell text for the current row
Top Returns top column border in container coordinates
Value Sets/returns underlying data value for the current row
ValueItems Contains a collection of ValueItems for a column
Visible Shows/hides a column
Width Sets/returns column width in container coordinates
WrapText True if cell text is word wrapped

Columns Collection Properties
Count Returns the number of columns in the collection

Layouts Collection Properties
Count Returns the number of layouts in the collection

RowBuffer Object Properties
Bookmark Sets/returns bookmark of specified row
ColumnCount Returns the number of columns
ColumnIndex Returns the column index of a column
ColumnName Returns the field name of a column
RowCount Returns the number of rows
Value Sets/returns data value of specified row/column

SelBookmarks Collection Properties
Count Returns the number of selected rows

Split Object Properties
AllowColMove Enables interactive column movement
AllowColSelect Enables interactive column selection
AllowFocus Allows cells within a split to receive focus
AllowRowSelect Enables interactive row selection
AllowRowSizing Enables interactive row resizing
AllowSizing Enables interactive resizing for a split
AlternatingRowStyle Controls whether even/odd row styles are applied to a split
BackColor Sets/returns the background color
Caption Sets/returns split caption text
CaptionStyle Controls the caption style for a split
Columns Returns a collection of column objects for a split
CurrentCellVisible Sets/returns modification status of the current cell
EditBackColor Sets/returns the editor background color
EditForeColor Sets/returns the editor foreground color
EditorStyle Controls the editor style for a split
EvenRowStyle Controls the row style for even-numbered rows
ExtendRightColumn Sets/returns extended right column for a split
FetchRowStyle Controls whether the FetchRowStyle event will be fired
FirstRow Bookmark of row occupying first display line
Font Specifies the overall font for a split
ForeColor Sets/returns the foreground color
HeadBackColor Sets/returns the heading background color
HeadFont Specifies the heading font for a split
HeadForeColor Sets/returns the heading foreground color
HeadingStyle Controls the heading style for a split
HighlightRowStyle Controls the marquee style when set to Highlight Row
HScrollHeight Returns the horizontal scroll bar height, if present
InactiveBackColor Sets/returns the inactive heading background color
InactiveForeColor Sets/returns the inactive heading foreground color
InactiveStyle Controls the inactive heading style for a split
Index Returns the ordinal index of a split
LeftCol Returns the leftmost visible column
Locked If true, data entry prohibited for a split
MarqueeStyle Sets/returns marquee style for a split
OddRowStyle Controls the row style for odd-numbered rows
RecordSelectors Shows/hides selection panel at left border
ScrollBars Sets/returns scroll bar style for a split
ScrollGroup Used to synchronize vertical scrolling between splits
SelectedBackColor Sets/returns the selected row background color
SelectedForeColor Sets/returns the selected row foreground color
SelectedStyle Controls the selected row and column style for an object
SelEndCol Sets/returns rightmost selected column
SelStartCol Sets/returns leftmost selected column
Size Sets/returns split width according to SizeMode

SizeMode Controls whether a split is scalable or fixed size
Style Controls the normal style for an object
VScrollWidth Returns the vertical scroll bar width, if present

Splits Collection Properties
Count Returns the total number of splits

Style Object Properties
Alignment Specifies the horizontal text alignment
BackColor Controls the background color
Font Specifies the typeface, size, and other text characteristics
ForeColor Controls the foreground color
Locked Disallows in-cell editing when true
Name Returns the programmer-specified style name
Parent Sets/returns the object from which a style inherits
Value Returns the programmer-specified style name
WrapText Word wraps cell text when true

Styles Collection Properties
Count Returns the number of styles in the collection

ValueItem Object Properties
DisplayValue Sets/returns displayed text or graphics
Value Sets/returns untranslated data value

ValueItems Collection Properties
AnnotatePicture True to show both underlying data and display value graphics
Count Returns the number of value items in the collection
CycleOnClick True to cycle through value items on click
DefaultItem Index of default value item, or -1 if no default
MaxComboItems Maximum number of items shown in a drop-down combo
Presentation Specifies how value items are displayed
Translate True to translate data values to display values
Validate True to auto-validate input values

AddNewMode Property

Syntax TDBGrid.AddNewMode

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Values Description Run Time
0 - No AddNew pending dbgNoAddNew
1 - Current cell in AddNew row dbgAddNewCurrent
2 - AddNew pending dbgAddNewPending

Description The AddNewMode property returns a value that describes the location of the current cell with
respect to the grid's AddNew row.   
If the AllowAddNew property is True, the last row displayed in the grid is left blank to permit
users to enter new records.    If the AllowAddNew property is False, the blank row is not
displayed, and AddNewMode always returns 0.   
When AllowAddNew is True, the AddNewMode property returns one of the following values:

dbgNoAddNew The current cell is not in the last row, and no AddNew operation is
pending.

dbgAddNewCurrent The current cell is in the last row, but no AddNew operation is
pending.

dbgAddNewPending The current cell is in the next to last row as a result of a pending
AddNew operation initiated by the user through the grid's user
interface, or by code as a result of setting the Value or Text
properties of a column.

Note This property is valid in both bound and unbound modes.

Alignment Property

Syntax object.Alignment = value
Read/Write at run time and design time.
Property applies to Column and Style objects.

Values Design Time Run Time
0 - Left (default) dbgLeft
1 - Right dbgRight
2 - Center dbgCenter
3 - General dbgGeneral

Description The Alignment property returns or sets a value that determines the horizontal alignment of the
values in a grid column or style object.   
The General setting means that text will be left-aligned and numbers will be right-aligned.    This
setting is only useful in bound mode, where the grid can query the data source to determine the
data types of individual columns.   

AllowAddNew Property

Syntax TDBGrid.AllowAddNew = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description If True, the user can add records to the data source underlying the TDBGrid control.   
If False (the default), the user cannot add records to the data source underlying the TDBGrid
control.   
If the AllowAddNew property is True, the last row displayed in the grid is left blank to permit
users to enter new records.    If the AllowAddNew property is False, the blank row (usually
referred to as the AddNew row) is not displayed.
The underlying data source may not permit insertions even if the AllowAddNew property is
True for the TDBGrid control.    In this case, a trappable error occurs when the user tries to add a
record.   

Note If AllowAddNew is True, you should also set AllowUpdate to True so that users will be able to
type in the cells of the AddNew row.

AllowArrows Property

Syntax TDBGrid.AllowArrows = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description If True (the default), the user can use the arrow keys to move from cell to cell within the same
row.   
If False, the left and right arrow keys will move focus from control to control and cannot be used
to move between cells.   
The user cannot use the arrow keys to move out of the TDBGrid control when this property is
set to True.    If the WrapCellPointer property is also set to True, then the arrow keys will wrap
around rows and the user can navigate the entire grid using the arrow keys.   

AllowColMove Property

Syntax object.AllowColMove = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description If True, the user can move selected columns.   
If False (the default), the user cannot move selected columns.   
Use the AllowColMove property to control whether the user can move selected columns by
dragging the column divider highlight bar to the desired location.    Any change in column order
causes a ColMove event.   

Note The AllowColSelect property must also be True in order for the user to move selected columns. 

AllowColSelect Property

Syntax object.AllowColSelect = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description If True (the default), the user can select columns.   
If False, the user cannot select columns.   
Use the AllowColSelect property to control whether the user can select columns by clicking or
dragging within the column header area.    Setting this property to False suppresses highlighting
when the user clicks a column header, which is useful for applications that respond to the
HeadClick event.

Note Both the AllowColSelect and AllowColMove properties must be True in order for the user to
move selected columns.   

AllowDelete Property

Syntax TDBGrid.AllowDelete = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description If True, the user can delete records from the data source underlying the TDBGrid control.   
If False (the default), the user cannot delete records from the data source underlying the
TDBGrid control.   
Use the AllowDelete property to prevent the user from deleting records from the data source
through interaction with the TDBGrid control.   
The underlying data source may not permit deletions even if the AllowDelete property is True
for the TDBGrid control.    In this case, a trappable error occurs when the user tries to delete a
record.   

AllowFocus Property

Syntax object.AllowFocus = boolean
Read/Write at run time and design time.
Property applies to Split and Column objects.

Description If True (the default), the user will be able to interactively select the object, giving it focus.   
If False, the user will not be able to interactively select the object.    When clicked, the object will
not receive focus and the control (or grid column) that previously had focus will retain it.   
For both split and column objects, setting AllowFocus to True enables cells within the object to
receive focus.    If set to False, there is no way to change the focus to a cell within the object.   
However, if an object already has the focus, setting AllowFocus to False will not give focus to
another split, column, or control.
If a cell in a column which does not allow focus is clicked, and the cell is in a row other than the
current row, then the row is changed, but the column with the focus retains it.
For splits, you can use this property in combination with the AllowSizing property to completely
prohibit the user from making any changes to a split (by setting both properties to False).   
Unselectable splits are passed over when TabAcrossSplits is set to True.   
For columns, AllowFocus is a split-specific property, which means that the following statements
are equivalent:

TDBGrid1.Columns(1).AllowFocus = True
TDBGrid1.Splits(TDBGrid1.Split).Columns(1).AllowFocus = True
In other words, both of these statements affect column 1 in the current split only.

Note At design time, the AllowFocus property appears in both the Splits property page (for Split
objects) and the Layout property page (for Column objects).

AllowRowSelect Property

Syntax object.AllowRowSelect = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Description If True (the default), the user can select rows.   
If False, the user cannot select rows.   
Use the AllowRowSelect property to control whether the user can select rows by clicking the
record selector buttons.    By setting this property to False, you can disable record selection
without hiding the record selectors altogether, since you may want to use the record selectors to
provide visual feedback when the current row is modified.   

Note The user cannot select rows if the RecordSelectors property is set to False for all splits, even if
AllowRowSelect is True.   

AllowRowSizing Property

Syntax object.AllowRowSizing = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description If True (the default), the user can resize rows.   
If False, the user cannot resize rows.   
If the AllowRowSizing property is True, the mouse pointer turns into a double-headed arrow
when positioned over the row divider between any pair of record selectors, and the user can
resize the rows by dragging.    Any change in row size causes a RowResize event.   
All rows of the TDBGrid control are always the same height, which is determined by the
RowHeight property.   

Note The user cannot resize rows if the RecordSelectors property is set to False for all splits.   

AllowSizing Property

Syntax object.AllowSizing = boolean
Read/Write at run time and design time.
Property applies to Column and Split objects.

Description If True, the user can resize the column or split.   
If False, the user cannot resize the column or split.   
For columns, AllowSizing defaults to True.    For splits, AllowSizing defaults to False.   
If AllowSizing is True for a column, the mouse pointer turns into a double-headed arrow when
positioned over that column's divider within the column heading area, and the user can resize
the column by dragging.    Any change in column size causes a ColResize event.   
For the leftmost split with AllowSizing set to True, the mouse pointer turns into a pair of vertical
lines with a downward arrow when positioned over that split's size box (at the lower left corner),
and the user can create a new split by dragging.    The creation of a new split causes a
SplitChange event.   
If AllowSizing is True for any other split, the mouse pointer turns into a pair of vertical lines
with a double-headed arrow when positioned over that split's size box, and the user can resize
the split by dragging.    No event is fired in this case (except for the standard mouse events).   

AllowUpdate Property

Syntax TDBGrid.AllowUpdate = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description If True (the default), the user can modify data in the TDBGrid control.   
If False, the user cannot modify data in the TDBGrid control.   
When the AllowUpdate property is False, the user can still scroll through the TDBGrid control
and select data, but cannot change any of the values; any attempt to change the data in the
grid is ignored.   
The underlying data source may not permit updates even if the AllowUpdate property is True
for the TDBGrid control.    In this case, a trappable error occurs when the user tries to change
the record.   
You can also use the Column object's Locked property to make individual columns of the
TDBGrid control read-only, even if the AllowUpdate property is True.    However, if
AllowUpdate is False, then this setting takes precedence over the column settings (without
changing the column settings).   

AlternatingRowStyle Property

Syntax object.AlternatingRowStyle = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property determines whether a grid or split displays odd-numbered rows in one style and
even-numbered rows in another.
If True, the OddRowStyle and EvenRowStyle properties control the appearance of rows within
the specified object.
If False (the default), the Style property controls the display of rows within the specified object.
At design time, you can change the colors and fonts used to render odd (even) rows by
modifying the built-in OddRow (EvenRow) style using the Styles property page.
At run time, you can change the colors and fonts used to render odd (even) rows by modifying
the Style object returned by the OddRowStyle (EvenRowStyle) property.

AnnotatePicture Property

Syntax valueitems.AnnotatePicture = boolean
Read/Write at run time and design time.
Property applies to ValueItems collection.

Description This property determines whether the column associated with a ValueItems collection can
display both text and graphics in a single cell.
If True, both text and graphics are displayed in a cell when all of the following conditions are
met:

· The Presentation property of the ValueItems collection is set to any value except 1 -
Radio Button.

· The Translate property of the ValueItems collection is set to True.
· The underlying data value for a cell matches the Value property of a ValueItem

member.
· The corresponding DisplayValue contains a bitmap, not text.   

If False (the default), matching cells are rendered as the Value or DisplayValue setting,
depending upon the value of the Translate property.
When both text and graphics are displayed, the placement of the bitmap within the cell is
determined by the column's Alignment property.    Left alignment places the bitmap on the left,
and the text is formatted in the remaining space to the right of the bitmap.    Right alignment
places the bitmap on the right, and the text is formatted in the remaining space to the left of the
bitmap.    Center alignment places the bitmap in the center at the top of the cell, and the text is
formatted in the remaining space below the bitmap.    In all cases, the text is centered in the
space allotted for it.
When editing, the editor uses all space available in the text portion of the cell.    If the
Presentation property is set to one of the combo box options, the bitmap will not change until
editing is completed.
Use the ValueItems property to access the ValueItems collection for a Column object.   

Appearance Property

Syntax object.Appearance = value
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Values Design Time Run Time
0 - Flat dbgFlat
1 - 3D (default) dbg3D

Description When this property is set to 1 - 3D, the control paints its caption, headings, and record selectors
with three-dimensional effects.   
When this property is set to 0 - Flat, no visual effects are used.   
The Appearance property is independent of the BorderStyle and BackColor properties and
only affects the control's caption, headings, and record selectors.    This behavior differs from
that of many common ActiveX controls.   
This property only affects the way in which the caption, headings, and record selectors are
drawn; it does not affect their visibility.    Use the Caption, ColumnHeaders, and
RecordSelectors properties to control the visibility of these components.   

Note This property is supported in both 16- and 32-bit versions of True DBGrid.    Many 16-bit versions
of common controls do not provide an Appearance property.

ApproxCount Property   

Syntax object.ApproxCount = long
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property sets or returns the approximate row count used by the grid to calibrate the vertical
scroll bar.   
Typically, the ApproxCount property is used in unbound mode to improve the accuracy of the
vertical scroll bar.    This is particularly useful for situations where the number of rows is known in
advance, such as when an unbound grid is used in conjunction with an array.

Note For a bound grid, setting the ApproxCount property has no effect.    However, getting the
ApproxCount property will query the underlying data source.

Array Property

Syntax object.Array = XArray
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description For a grid with its DataMode property set to 4 - Storage, the Array property specifies an APEX
XArray object that acts as a data source.    This property has no effect in other data modes.

Note At the time of this writing, APEX does not provide a 16-bit version of XArray, hence the Array
property is not supported in 16-bit versions of True DBGrid.

BackColor Property

Syntax object.BackColor = color
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls; Column, Split, and Style objects.

Description This property controls the background color of an object.    Colors may be specified as RGB
values or system default colors.   
By default, the background color of a grid, column, or split is determined by its Style property
setting.    Setting the BackColor property overrides the style setting without changing the
definition of the style itself.   
If the BackColor property of a grid, column, or split is changed to the same value as the
BackColor property of its corresponding style, then the object will inherit its background color
from the style, and subsequent changes to the style's BackColor property will affect the object
as well.   
For Style objects, the value of the BackColor property is inherited from the parent style (if any)
unless explicitly overridden, in which case the aforementioned inheritance rules also apply.   

BOF Property

Syntax TDBGrid.BOF

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Description The BOF property operates like its Recordset counterpart.    It returns True if the current record
position is before the first record, False if the current record position is on or after the first
record.
If the data source contains no records, then BOF will always return True.

Bookmark Property (RowBuffer)

Syntax rowbuffer.Bookmark (Row) = variant
Read/Write at run time.    Not available at design time.
Property applies to RowBuffer object.

Description This property returns or sets a bookmark for the specified row within a RowBuffer object
passed to an unbound event procedure for a TDBGrid control.   
The Row argument is a long integer specifying the row where the bookmark is placed.    The
range of this argument can be from 0 to RowCount - 1.   
In unbound mode, a bookmark contains a user-defined value that uniquely identifies each row of
data.   
In the UnboundReadData and UnboundAddData events, your code must provide bookmarks
for the rows being fetched or added.    In the UnboundWriteData and UnboundDeleteRow
events, the grid passes one of these bookmarks as a parameter so your code can take the
appropriate action.   

Bookmark Property (TDBGrid)

Syntax object.Bookmark = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns or sets the bookmark identifying the current row in a TDBGrid or
TDBDropDown control.   
Use the value returned by the Bookmark property to save a reference to the current row that
remains valid even after another row becomes current.   
When you set the Bookmark property to a valid value in code, the row associated with that
value becomes the current row, and the grid adjusts its display to bring the new current row into
view if necessary.   
The Bookmark property is defined as a Variant to accommodate user-defined bookmarks in
unbound mode.   

Note In unbound mode, setting the Bookmark property to itself will force the current row to be
updated via the UnboundWriteData event.

BorderStyle Property

Syntax object.BorderStyle = value
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Values Design Time Run Time
0 - None dbgNoBorder
1 - Fixed Single (default) dbgFixedSingle

Description This property determines whether a TDBGrid or TDBDropDown control has a border.   

Button Property

Syntax column.Button = boolean
Read/Write at run time and design time.
Property applies to Column object.

Description If True, a button will be displayed in the upper right corner of the current cell at run time.   
If False (the default), no button will be displayed.   
Typically, you enable the column button when you want to drop down a Visual Basic control
(such as the built-in combo box, a bound list box, or even another True DBGrid control) for
editing or data entry.    When the button in the current cell is clicked, the ButtonClick event will
be fired.    You can then write code to drop down the desired control from the cell.

Note When you set the Presentation property of a column's ValueItems collection to either of the
combo box options (sorted or unsorted), then the Button property for that column will be set to
True.    Similarly, if you set the Presentation property to the normal (text) or radio button
option, then the Button property for that column will be set to False.   
When you set the DropDown property of a column to the name of a TDBDropDown control,
then the Button property for that column will be set to True.    Similarly, if you set the
DropDown property of a column to an empty string, then the Button property for that column
will be set to False.

ButtonPicture Property

Syntax column.ButtonPicture = variant
Read/Write at run time and design time.
Property applies to Column object.

Description This property sets or returns the bitmap used to draw the in-cell button for the current cell in the
specified column.    The in-cell button is enabled when any of the following are true:

· The column's Button property is set to True.
· The column's DropDown property is set to True.
· The Presentation property of the column's ValueItems collection is set to 2 - Combo

Box or 3 - Sorted Combo Box.
By default, True DBGrid uses a down arrow for the in-cell button.    However, you can change
the button bitmap at design time by clicking the Picture button on the Layout property page.   
Or, you can assign a bitmap to the ButtonPicture property in code at run time:

TDBGrid1.Columns(1).ButtonPicture = LoadPicture("arrow.bmp")
Note The grid automatically draws the edges corresponding to the button's up/down states as

appropriate, so you need only provide the interior image (a light gray background is
recommended).

Caption Property

Syntax object.Caption = string
Read/Write at run time and design time.
Property applies to TDBGrid control, Column and Split objects.

Description For a TDBGrid control, this property determines the text displayed in the caption bar at the top
of the grid.   
For a Column or Split object, this property determines the text displayed in the object's
heading area.   
Setting the Caption property to an empty string for a TDBGrid control hides its caption bar.   
Setting the Caption property to an empty string for a Split object hides the heading area, even
if other splits have non-empty captions.
Setting the Caption property to an empty string for a Column object clears the text in the
column's heading area but does not hide the heading.    Column captions are only displayed if
the TDBGrid control's ColumnHeaders property is set to True and the HeadLines property is
not set to 0.
The Caption property is limited to 255 characters.    Attempting to set the caption to more than
255 characters results in a trappable error.

CaptionStyle Property

Syntax object.CaptionStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control and Split object.

Description This property sets or returns the Style object that controls the appearance of a TDBGrid
control's caption bar or a Split object's heading area.    By default, this is the built-in Caption
style.
The value of the Caption property is not affected by changes to the CaptionStyle property.   

CellTips Property

Syntax TDBGrid.CellTips = value
Read/Write at run time and design time.
Property applies to TDBGrid control.

Values Design Time Run Time
0 - None (default) dbgNoCellTips
1 - Anchored dbgAnchored
2 - Floating dbgFloating

Description The CellTips property determines whether the grid displays a pop-up text window when the
cursor is idle.    By default, this property is set to 0 - None, and cell tips are not displayed.
If the CellTips property is set to either 1 - Anchored or 2 - Floating, the FetchCellTips event
will be fired whenever the grid has focus and the cursor is idle over a grid cell, record selector,
column header, split header, or grid caption.    The event will not fire if the cursor is over the
scroll bars.
The setting 1 - Anchored aligns the cell tip window with either the left or right edge of the cell.   
The left edge is favored, but the right edge will be used if necessary in order to display as much
text as possible.    The setting 2 - Floating displays the cell tip window below the cursor, if
possible.
If you do not provide a handler for the FetchCellTips event, and the cursor is over a grid cell,
the default behavior is to display a text box containing the cell's contents (up to 256 characters).
This enables the user to peruse the contents of a cell even if it is not big enough to be displayed
in its entirety.    You can also program the FetchCellTips event to override the default cell text
display in order to provide users with context-sensitive help.

Note Use the CellTipsDelay property to control the amount of idle time that must elapse before the
cell tip window is displayed.
Use the CellTipsWidth property to control the width of the cell tip window.

CellTipsDelay Property

Syntax TDBGrid.CellTipsDelay = long
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description The CellTipsDelay property controls the amount of idle time, in milliseconds, that must elapse
before the cell tip window is displayed.    By default, this property is set to 1000 (one second).
Setting this property to zero does not disable cell tips, but restores the default value of 1000.   
To disable cell tips, set the CellTips property to 0 - None.

CellTipsWidth Property

Syntax TDBGrid.CellTipsWidth = single
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description The CellTipsWidth property returns or sets the width of the cell tip window in terms of the
coordinate system of the grid's container.
By default, this property is set to zero, which causes the cell tip window to grow or shrink to
accommodate the cell tip text.    You can override this behavior and give the cell tip window a
fixed width by specifying a non-zero value for this property.

CellTop Property

Syntax column.CellTop

Read-only at run time.    Not available at design time.
Property applies to Column object.

Description The CellTop property returns the vertical offset of the top of any cell in the specified column
relative to the top of the containing row in terms of the coordinate system of the grid's
container.
If the grid's MultipleLines property is False (the default value), a single record cannot span
multiple lines in the grid, and the CellTop property returns zero for all columns.
If the grid's MultipleLines property is True, a single record may span multiple lines in the grid.   
For columns on the first line, the CellTop property returns zero.    For columns on the second
line, the CellTop property returns the cell height (the grid's RowHeight property).    For columns
on the third line, the CellTop property returns twice the cell height, and so on.
For example, the following code places a text box on top of the grid cell in the first column of the
fourth displayed row:

With TDBGrid1
 Text1.Top = .Top + .RowTop(3) + .Columns(0).CellTop
End With

Note To overlay the text box exactly on a grid cell, you may need to account for an extra pixel in the
width and height, depending upon the settings of the DividerStyle and RowDividerStyle
properties.    In Visual Basic, if the ScaleMode property of the parent form is set to pixels, then
you can simply add 1.    If the ScaleMode is set to twips, then you can add the TwipsPerPixelX
and TwipsPerPixelY properties of the Screen object.

Col Property

Syntax object.Col = integer
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property specifies the zero-based index of the current cell's column position.    It may be set
at run time to highlight a different cell within the current row.    If the column is visible, the caret
or marquee will be moved to the selected column.    If the column is not visible, the grid will
scroll to make it visible as a result of setting this property.   
Setting the Col property at run time does not affect selected columns.    Use the SelEndCol and
SelStartCol properties to specify a selected region.   

ColIndex Property

Syntax column.ColIndex

Read-only at run time.    Not available at design time.
Property applies to Column object.

Description This property returns the zero-based index of a column within the Columns collection.   

ColumnCount Property

Syntax rowbuffer.ColumnCount

Read-only at run time.    Not available at design time.
Property applies to RowBuffer object.

Description This property returns the number of columns in a RowBuffer object passed to an unbound
event procedure for a TDBGrid control.   

ColumnHeaders Property

Syntax object.ColumnHeaders = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Description If True (the default), the control's column headers are displayed.   
If False, the control's column headers are not displayed.   
Use the Caption property to set the heading text of an individual Column object.   

ColumnIndex Property

Syntax rowbuffer.ColumnIndex (Row, Col)
Read-only at run time.    Not available at design time.
Property applies to RowBuffer object.

Description This property returns the index of a column in a RowBuffer object passed to an unbound event
procedure for a TDBGrid control.    The index corresponds to the ColIndex property of the grid
column.   
The Col argument is an integer specifying the desired column.    The range of this argument can
be from 0 to ColumnCount - 1.   
The Row argument is an integer specifying the desired row.    The range of this argument can be
from 0 to RowCount - 1.
The ColumnIndex property allows you to determine the column index associated with a
RowBuffer column.    It is provided for identification of the column in order for the user to fill in
the Value property array with appropriate column data.

ColumnName Property

Syntax rowbuffer.ColumnName (Col)
Read-only at run time.    Not available at design time.
Property applies to RowBuffer object.

Description This property returns the name of a column in a RowBuffer object passed to an unbound event
procedure for a TDBGrid control.    The name corresponds to the DataField property of the grid
column.   
The Col argument is an integer specifying the desired column.    The range of this argument can
be from 0 to ColumnCount - 1.   
The ColumnName property allows you to determine the field name associated with a
RowBuffer column.    It is provided for situations where the field names and/or column order are
not known in advance.   

Columns Property

Syntax object.Columns

Read-only at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property returns a collection of Column objects for a grid, drop-down control, or split.   

Count Property

Syntax collection.Count

Read-only at run time.    Not available at design time.
Property applies to Columns, Layouts, SelBookmarks, Splits, Styles, and ValueItems
collections.

Description This property returns the number of items in a collection.   
Collections are zero-based, which means that the items in a collection are indexed from 0 to
Count - 1.   

CurrentCellModified Property   

Syntax TDBGrid.CurrentCellModified = boolean
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns True if editing is in progress and the current cell (indicated by the
Bookmark and Col properties) has been modified by the user.    It returns False if the cell has
not been modified or if editing is not in progress.   
You can use this property to cancel any changes the user has made to the current text.    For
example, to program a function key to discard the user's changes (like the ESC key), trap the key
code in the grid's KeyDown event and set CurrentCellModified to False.    This will revert the
current cell to its original contents.   

CurrentCellVisible Property

Syntax object.CurrentCellVisible = boolean
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property returns True if the current cell (indicated by the Bookmark and Col properties) is
visible within the displayed area of a grid or split.    It returns False if the cell is not visible.   
For a TDBGrid or TDBDropDown control, setting the CurrentCellVisible property to True
causes the grid to scroll so that the current cell is brought into view.    If a grid contains multiple
splits, then the current cell becomes visible in each split.   
For a Split object, setting the CurrentCellVisible property to True makes the current cell visible
in that split only.   
In all cases, setting this property to False is meaningless and is ignored.   

CycleOnClick Property

Syntax valueitems.CycleOnClick = boolean
Read/Write at run time and design time.
Property applies to ValueItems collection.

Description This property determines whether the user can cycle through the ValueItem objects contained
in a column's ValueItems collection by clicking on the current cell.   
If True, the user can click on the current cell to display the next available item.    If the last value
item is displayed, then clicking displays the first item in the list.   
If False (the default), then the mouse operates as usual within the associated column.   
Use the ValueItems property to access the ValueItems collection for a Column object.   

Note The CycleOnClick property has no effect when the MarqueeStyle property is set to 6 -
Floating Editor.

DataChanged Property

Syntax object.DataChanged = boolean
Read/Write at run time (TDBGrid).    Read-only at run time (Column).
Not available at design time.
Property applies to TDBGrid control and Column object.

Description For a TDBGrid control, the DataChanged property indicates the modification status of the
current row.    If True, then one or more columns in the current row have been modified.    If False,
then no changes have been made.   
When the DataChanged property of a TDBGrid control is True, you can use the DataChanged
property of individual Column objects to determine the exact nature of the changes.   
For a TDBGrid control, setting this property to True has no effect.    Setting this property to False
exits editing, discards all changes to the current row, and refreshes the current row from the
data source.    Setting this property within the BeforeColUpdate event is disallowed, however.
For a Column object, this property is read-only and cannot be set.   

Note The pencil in the RecordSelector column reflects the state of the grid's DataChanged property.

DataField Property (Column)

Syntax column.DataField = string
Read/Write at run time and design time.
Property applies to Column object.

Description The DataField property returns or sets the name of the field in the database table to which a
grid column is bound.   
When the DataMode property of the grid is set to 0 - Bound, the DataField property is used to
bind a column to a particular field in the database table.    If the specified field does not exist in
the database table, binding does not occur, and the column will be blank at run time.   
To specify an unbound column in a bound grid, the DataField property must be empty in order
for the column data to be requested in the UnboundColumnFetch event.   

DataField Property (TDBDropDown)

Syntax TDBDropDown.DataField = string
Read/Write at run time and design time.
Property applies to TDBDropDown control.

Description The DataField property returns or sets the name of the grid column that will be updated when
the user selects an item from a TDBDropDown control.    The DataField property need not be
the same as the ListField property used for incremental search.
If the DataField property is not specified, the ListField property specifies the column to be
used for both incremental search and the selection value.    If neither property is specified, then
the first column in the TDBDropDown control will be used.

Note Do not confuse the DataField property of the TDBDropDown control with the DataField
property of the Column object or intrinsic Visual Basic controls.
To associate a TDBDropDown control with a Column object that belongs to a TDBGrid control,
set the column's DropDown property to the name of the drop-down control at either design
time or run time.

DataMode Property

Syntax object.DataMode = value
Read-only at run time.    Read/Write at design time.
Property applies to TDBGrid and TDBDropDown controls.

Values Design Time Run Time
0 - Bound dbgBound
1 - Unbound dbgUnbound
2 - Unbound Extended dbgUnboundEx
3 - Application dbgUnboundAp
4 - Storage dbgUnboundSt

Description When set to 0 - Bound, the control displays data available from its bound DataSource.
When set to 1 - Unbound, the control uses the original DBGrid unbound events to retrieve and
update displayed data.    When this mode is used, the grid fires the UnboundReadData event
to fetch data.    This setting was retained for backward compatibility with DBGrid and earlier
versions of True DBGrid.    If you are writing a new application, please use mode 2, 3, or 4
instead.
When set to 2 - Unbound Extended, the control uses the UnboundReadDataEx event to fetch
data.    The UnboundReadDataEx event is more efficient and easier to use than the
UnboundReadData event of mode 1.    This is the recommended setting for using the grid
unbound with a database API that supports multiple-row fetches.
When set to 3 - Application, the control uses the ClassicRead event to fetch data one cell at a
time.    This mode is much easier to use than mode 2, particularly if data is being retrieved from
a Visual Basic array.    However, it can be less efficient than mode 2 if there are many columns
because the grid needs to fire more events in order to retrieve data.
When set to 4 - Storage, the control uses an XArray object as a data source, and no unbound
data retrieval or update events are fired.    At run time, you create and populate an XArray
object just as you would a standard Visual Basic array, then bind it to a TDBGrid or
TDBDropDown control using the Array property.    This is by far the simplest way to use True
DBGrid in unbound mode.

Note At the time of this writing, APEX does not provide a 16-bit version of XArray, hence mode 4 is
not supported in 16-bit versions of True DBGrid.

DataSource Property

Syntax object.DataSource

Read/Write at design time.    Not available at run time.
Property applies to TDBGrid and TDBDropDown controls.

Description The DataSource property specifies the data control used to bind a TDBGrid or TDBDropDown
control to a database.   

Note To bind a TDBGrid or TDBDropDown control to an APEX XArray object, use the Array
property.

DataWidth Property

Syntax column.DataWidth = long
Read/Write at run time and design time.
Property applies to Column object.

Description This property holds the database width, in bytes, for a grid column.    It is set to the appropriate
field width (not display width) automatically when the layout of a bound grid is initialized at run
time.   
This property does not affect the physical size of a column, but imposes a limit on the number of
characters that may be entered when editing a cell.    If set to 0, no such limits are imposed.   
Setting this property does not cause truncation of existing data.   
For bound grids, if the data source does not supply a width value, then no limits are imposed.   
For both bound and unbound grids, you can set the value of this property in code to restrict the
amount of data the user can enter.   

DefaultItem Property

Syntax valueitems.DefaultItem = integer
Read/Write at run time and design time.
Property applies to ValueItems collection.

Description This property returns or sets the zero-based index of the default item for a ValueItems
collection associated with a column.    The default value for this property is -1, which is used to
indicate that there is no default item.
Use the DefaultItem property to provide an alternate display for data values not present in the
ValueItems collection.
When the DefaultItem property is set to a valid collection index (an integer between 0 and
Count - 1, inclusive), then the corresponding ValueItem is displayed when the grid encounters
a value which is not present in the ValueItems collection.
When the DefaultItem property is set to -1, then the grid will not substitute a ValueItem when
it encounters a value which is not present in the ValueItems collection.
A trappable error will occur if you attempt to set this property to an invalid value.
Use the ValueItems property to access the ValueItems collection for a Column object.   

Note At design time, the DefaultItem property is specified in the Values property page by clicking
the record selector of the desired grid row.    If no row is selected, then the DefaultItem
property will be set to its default value of -1.    To deselect a selected row, click its record selector
again.

DefaultValue Property

Syntax column.DefaultValue = variant
Read/Write at run time and design time.
Property applies to Column object.

Description This property returns or sets the default value of an unbound grid column in a bound grid.   
Unbound columns are typically used to display calculated fields or local data not maintained by
the primary data source.   
This property applies only to unbound columns.    The value specified will be preloaded into the
last argument passed to the UnboundColumnFetch event.   
The DefaultValue property can also be used to identify specific columns in the
UnboundColumnFetch event when columns are added, moved, or removed at run time.
For bound columns or columns of an unbound grid, the grid does not use this property itself, but
provides it as a placeholder for you to associate default values with the columns.    In the
UnboundAddData event, you can use this property to retrieve default values for columns that
were not supplied by the end-user.    Such columns will contain a Null variant in the
corresponding RowBuffer.Value property array.
This property can also be used as a tag for a column (whether it is bound or unbound).   
Arbitrary values can be stored and retrieved later

Note Do not confuse unbound columns with unbound mode.    The DefaultValue property has no
effect on data displayed in an unbound grid.   

DefColWidth Property

Syntax object.DefColWidth = single
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns or sets the default width for all grid columns in terms of the coordinate
system of the grid's container.   
For bound grids, the DefColWidth property is respected under the following circumstances:

· When you execute the Retrieve Fields command at design time.   
· When the grid's layout is initialized at run time.   
· When a new column is created at run time.   

For unbound grids, the DefColWidth property is only respected when a new column is created
at run time.   
If you set the DefColWidth property to 0, the grid automatically sizes all columns based on
either the width of the column heading or the display width of the underlying field, whichever is
larger.    For example, to set the default column width to the width of the first column:

TDBGrid1.DefColWidth = TDBGrid1.Columns(0).Width
Note Setting the DefColWidth property at run time does not affect existing columns, only those that

are subsequently created in code.   
In bound mode, some data sources do not provide text field widths when requested by the grid.   
Therefore, if DefColWidth is 0, the actual column widths may not be what you expect since the
grid must supply a default width.

DisplayValue Property

Syntax valueitem.DisplayValue = variant
Read/Write at run time and design time.
Property applies to ValueItem object.

Description This property returns or sets the translated data value for a member of a ValueItems collection.
The DisplayValue property may be set to a string that specifies the mapping between the
underlying data value and its displayed representation.    It may also be set to a picture, such as
that returned by the LoadPicture function in Visual Basic.   
If the DisplayValue property is not explicitly set, it returns the same result as the Value
property.   
Use the ValueItems property to access the ValueItems collection for a Column object.   

DividerStyle Property

Syntax column.DividerStyle = value
Read/Write at run time and design time.
Property applies to Column object.

Values Design Time Run Time

0 - No dividers dbgNoDividers
1 - Black line dbgBlackLine
2 - Dark gray line (default) dbgDarkGrayLine
3 - Raised dbgRaised
4 - Inset dbgInset
5 - ForeColor dbgUseForeColor
6 - Light gray line dbgLightGrayLine

Description This property determines the style of the border drawn on the right edge of a grid column.   
The DividerStyle property does not control whether a column can be resized by dragging its
border.    Use the AllowSizing property to control this behavior.   

DropDown Property

Syntax column.DropDown = string
Read/Write at run time and design time.
Property applies to Column object.

Description This property associates the name of a TDBDropDown control with a column in a TDBGrid
control.    When the user clicks the column's in-cell button, the associated TDBDropDown
control is displayed below the current cell.
Use the DropDown property and a TDBDropDown control to implement a multicolumn drop-
down list box that works seamlessly with a TDBGrid control.    The ListField property of the
drop-down control determines which column is used for incremental search.    The DataField
property of the drop-down control determines which grid column is updated when the user
selects an item.

Note When you set the DropDown property of a column to the name of a TDBDropDown control,
then the Button property for that column will be set to True.    Similarly, if you set the
DropDown property of a column to an empty string, then the Button property for that column
will be set to False.

EditActive Property

Syntax TDBGrid.EditActive = boolean
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control.

Description If this property returns True, then the current cell is currently being edited by the user.    If False,
then no editing is in progress.   
If the grid is not already in edit mode, setting EditActive to True will initiate editing on the
current cell.    The caret will be positioned at the end of the cell and the ColEdit event will be
triggered.   
If the grid is already in edit mode, setting EditActive to False will exit edit mode.    If the cell has
been modified, this will trigger the following events: BeforeColUpdate, AfterColUpdate, and
AfterColEdit.   

Note To cancel editing completely, set the CurrentCellModified property to False, then set
EditActive to False.   
The EditActive property does not correspond to the pencil in the RecordSelector column.    The
pencil reflects the state of the grid's DataChanged property.

EditBackColor Property

Syntax object.EditBackColor = color
Read/Write at run time and design time.
Property applies to TDBGrid control, Column and Split objects.

Description This property controls the background color of an object's editing window when editing is in
progress.    Colors may be specified as RGB values or system default colors.   
By default, the editor background color of a grid, column, or split is determined by its
EditorStyle property setting.    Setting the EditBackColor property overrides the style setting
without changing the definition of the style itself.   
If the EditBackColor property of a grid, column, or split is changed to the same value as the
BackColor property of its corresponding editor style, then the object will inherit its editor
background color from the style, and subsequent changes to the style's BackColor property will
affect the object as well.   

Note The EditBackColor property only applies when the floating editor marquee (MarqueeStyle =
6) is not in effect.

EditDropDown Property

Syntax TDBGrid.EditDropDown = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property controls whether editing will take place in a popup window or within cell
boundaries.
If True (the default), an edit window will pop up when the user attempts to edit a cell whose
contents cannot be displayed completely within the confines of the current cell's boundaries.   
Unlike the built-in combo box, the drop-down edit window will only extend to the bottom of the
grid.
If False, editing will be confined to the current cell's boundaries.
The drop-down edit window behaves just like a standard multiple-line TextBox control in Visual
Basic.    The SelLength, SelStart, and SelText properties are still available, and the arrow keys
can be used to navigate within the edit window.

Note If the user tries to edit the last row in the grid, the drop-down edit window will not be displayed
and the user will have to edit within the current cell's boundaries.
The EditDropDown property only applies when the floating editor marquee (MarqueeStyle =
6) is not in effect.

EditForeColor Property

Syntax object.EditForeColor = color
Read/Write at run time and design time.
Property applies to TDBGrid control, Column and Split objects.

Description This property controls the foreground color of an object's editing window when editing is in
progress.    Colors may be specified as RGB values or system default colors.   
By default, the editor foreground color of a grid, column, or split is determined by its
EditorStyle property setting.    Setting the EditForeColor property overrides the style setting
without changing the definition of the style itself.   
If the EditForeColor property of a grid, column, or split is changed to the same value as the
ForeColor property of its corresponding editor style, then the object will inherit its editor
foreground color from the style, and subsequent changes to the style's ForeColor property will
affect the object as well.   

Note The EditForeColor property only applies when the floating editor marquee (MarqueeStyle =
6) is not in effect.

EditMask Property

Syntax column.EditMask    = string
Read/Write at run time and design time.
Property applies to Column object.

Description The EditMask property is used to specify an input mask template for end-user data entry. You
can construct your own input mask string using template characters similar to those recognized
by the Visual Basic Format$ function.    The input mask string is composed of special characters
that represent either an input character that the user must enter, or a literal character that will
be skipped over on input.    Valid template characters are as follows:

Digit placeholder

@ Character placeholder

> All characters following will be in uppercase

< All characters following will be in lowercase

~ Turns off the previous "<" or ">"

? Digit or character

\ Next character is treated as a literal

& Any character
Any other character will be treated as a literal.
After the user finishes editing a cell with this input mask, True DBGrid caches the modified cell
text, but any literal characters in the input mask template will be stripped from the modified cell
text beforehand.
The EditMask property also supports a built-in DateMask option for formatting date fields.   
When the DateMask option is selected, the following input mask template will be used for
editing:

mm/dd/yyyy

mm Month placeholder (01-12)

dd Date placeholder (01-31)

yyyy Year placeholder
The user can enter either 1, 2, 3, or 4 digits in the year portion of the date, and the grid will save
the year as entered by the user.    If the user enters 1 or 2 digits for the year portion, the grid will
make no interpretation for the year; that is, the grid will not assume whether it is the century
1900 or 2000, but will store the 1-digit or 2-digit year as entered.    Before the date is updated to
the database, you can interpret the year yourself in code, or let the underlying database system
handle the interpretation and storage.
Note that if you select the DateMask option for the EditMask property, the date separators are
part of the date format; they are not considered as literal characters and will always be cached
by the grid.    This is because most databases and formatters require the separator characters to
be present in order to interpret the date correctly.

EditMaskUpdate Property

Syntax column.EditMaskUpdate    = boolean
Read/Write at run time and design time.
Property applies to Column object.

Description Normally, after the user finishes editing a cell in a column which has its EditMask property set,
True DBGrid caches the modified cell text, but any literal characters in the input mask template
will be stripped from the modified cell text beforehand.    However, you can override this
behavior with the EditMaskUpdate property.
By default, the EditMaskUpdate property is False.    This means that when the modified cell
text is updated to the database, the grid sends the cached text (stripped of literals), not the
formatted text displayed in the cell.    You can override this default behavior by setting the
EditMaskUpdate property to True, which causes the cached text to be formatted according to
the EditMask property before being updated to the database.

EditorStyle Property

Syntax object.EditorStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control, Column and Split objects.

Description This property returns the Style object that controls the appearance of the cell editor within a
grid, column, or split.   

Note The EditorStyle property only applies when the floating editor marquee (MarqueeStyle = 6) is
not in effect.

EmptyRows Property

Syntax object.EmptyRows = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Description The EmptyRows property returns or sets a value that determines how the grid displays rows
below the last data row.
If all of the records in the data source do not fill up the entire grid, setting EmptyRows to True
will fill the unpopulated grid area with empty data rows.    If EmptyRows is False (the default),
then the unpopulated grid area will be blank and will be filled with the system 3D Objects color
(or the system Button Face color) as determined by your Control Panel settings.   

Note The RowDividerStyle property applies to data rows and empty rows alike.    You cannot
suppress row dividers for just the empty rows when EmptyRows is True.

Enabled Property

Syntax object.Enabled = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns or sets a value that determines whether a control can respond to user-
generated events.   
If True (the default), the user can give focus to the control and manipulate it with the keyboard
or mouse.   
If False, the user cannot manipulate the control directly.   

EOF Property

Syntax TDBGrid.EOF

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Description The EOF property operates like its Recordset counterpart.    It returns True if the current record
position is after the last record, False if the current record position is on or before the last record.
If the data source contains no records, then EOF will always return True.

ErrorText Property

Syntax object.ErrorText

Read-only at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns the error message string from the underlying data source.   
When a database error occurs as a result of user interaction with the grid, such as when the user
enters text into a numeric field and then attempts to update the current record by moving to
another row, the grid's Error event will fire.    However, the error code passed to the event
handler in the DataError parameter may not identify the specific error that occurred, or may
even differ across 16- and 32-bit operating environments.    For these reasons, the ErrorText
property is provided so that your application can parse the actual error message to determine
the nature of the error.

Note The ErrorText property is only valid within a TDBGrid or TDBDropDown control's Error event
handler.    A trappable error will occur if you attempt to access it in any other context.

EvenRowStyle Property

Syntax object.EvenRowStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property sets or returns the Style object that controls the appearance of an even-
numbered row in a grid or split where the AlternatingRowStyle property is set to True.    By
default, this is the built-in EvenRow style.
To change the appearance of odd-numbered rows, set the OddRowStyle property.

ExposeCellMode Property

Syntax TDBGrid.ExposeCellMode = value
Read/Write at run time and design time.
Property applies to TDBGrid control.

Values Design Time Run Time

0 - Scroll on Select (default) dbgScrollOnSelect
1 - Scroll on Edit dbgScrollOnEdit
2 - Never Scroll dbgNeverScroll

Description This property controls how the rightmost column reacts when clicked by the user.   
If set to 0 - Scroll on Select (the default), the grid will scroll to the left to display the rightmost
column in its entirety.    This can be somewhat disconcerting to users who commonly click on the
grid to begin editing, as the grid will always shift to the left when the user clicks on the
rightmost column.   
If set to 1 - Scroll on Edit, the grid will not move when the rightmost column is clicked initially.   
However, if the user attempts to edit the cell, then the grid will scroll to the left to display the
rightmost column in its entirety.    This is exactly how Microsoft Excel works and is probably the
most intuitive setting.   
If set to 2 - Never Scroll, the grid will always leave the rightmost column clipped when clicked,
even if the user subsequently attempts to edit the cell.    Note that editing may be difficult if only
a small portion of the column is visible.    The chief reason to use this setting is if you know there
will always be enough space available for editing (or if you disallow editing) and you never want
the grid to shift accidentally.   

Note The ExposeCellMode property only governs mouse clicks, not keyboard navigation.

ExtendRightColumn Property

Syntax object.ExtendRightColumn = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property allows the rightmost column of a grid or split to extend to the object's right edge,
provided that the object can accommodate all of the visible columns.   
If True, the last column will extend to the end of the grid or split.   
If False (the default), the area between the last column and the end of the grid or split will be
filled using the system 3D Objects color (or the system Button Face color) as determined by your
Control Panel settings.   
If a grid contains multiple splits, then setting its ExtendRightColumn property has the same
effect as setting the ExtendRightColumn property of each split individually.   

Note This property now works even when the horizontal scroll bar is present.    Prior to version 5.0, if a
grid or split could not accommodate all of the visible columns, then setting this property to True
had no effect.

FetchRowStyle Property

Syntax object.FetchRowStyle = boolean
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description If True, the FetchRowStyle event will be fired whenever the grid is about to display a row of
data.
If False (the default), the FetchRowStyle event is not fired.
Set this value to True when you need to perform complex per-row formatting operations that can
only be done using the FetchRowStyle event.    For example, if you want to apply fonts and/or
colors to all rows that satisfy certain criteria, then you need to set the FetchRowStyle property
to True and write code for the FetchRowStyle event.

Note To display every other row in a different color or font, you can simply set the
AlternatingRowStyle property to True.

FetchStyle Property

Syntax column.FetchStyle = boolean
Read/Write at run time and design time.
Property applies to Column object.

Description If True, the FetchCellStyle event will be fired as needed to determine the font and color
characteristics of each cell in the associated column.   
If False (the default), the FetchCellStyle event will not be fired.   
Set this value to True when you need to perform complex per-cell formatting operations that can
only be done using the FetchCellStyle event.    For example, if you want to apply fonts and/or
colors to cells within a certain range, or cells that satisfy a complex expression, then you need to
set FetchStyle to True for the desired column(s) and write code for the FetchCellStyle event.

Note If you want to apply the same formatting to all cells within a row, then you should set the
FetchRowStyle property instead of FetchStyle, and write code for the FetchRowStyle event
instead of FetchCellStyle.    This is much more efficient because events are fired on a per-row
rather than on a per-cell basis.

FirstRow Property

Syntax object.FirstRow = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property returns or sets a value containing the bookmark for the first visible row in a grid or
split.   
For a TDBGrid or TDBDropDown control, setting the FirstRow property causes the grid to
scroll so that the specified row becomes the topmost row.    If a grid contains multiple splits, then
the topmost row changes in each split, even if the splits have different ScrollGroup property
settings.   
For a Split object, setting the FirstRow property causes the specified row to become the
topmost row for that split only.   

Font Property

Syntax object.Font = font
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls; Column, Split, and Style objects.

Description This property returns or sets the font object associated with a grid, column, split, or style.   
By default, the font of a grid, column, or split is determined by its Style property setting.   
Setting the Font property directly overrides the style setting without changing the definition of
the style itself.   
If the Font property of an object is changed to the same value as the Font property of its
corresponding style, then the object will inherit its font from the style, and subsequent changes
to the style's Font property will affect the object as well.   
For Style objects, the value of the Font property is inherited from the parent style (if any)
unless explicitly overridden, in which case the aforementioned inheritance rules also apply.   

Note For a TDBGrid control, TDBDropDown control, or Split object, if a change to the Font property
results in a change to the average character width, then all affected columns are resized
proportionally to reflect the new character width.   
However, for a Column object, changing the Font property does not resize the column, even if
the average character width has changed.   

ForeColor Property

Syntax object.ForeColor = color
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls; Column, Split, and Style objects.

Description This property controls the foreground color of an object.    Colors may be specified as RGB values
or system default colors.   
By default, the foreground color of a grid, column, or split is determined by its Style property
setting.    Setting the ForeColor property overrides the style setting without changing the
definition of the style itself.   
If the ForeColor property of an object is changed to the same value as the ForeColor property
of its corresponding style, then the object will inherit its foreground color from the style, and
subsequent changes to the style's ForeColor property will affect the object as well.   
For Style objects, the value of the ForeColor property is inherited from the parent style (if any)
unless explicitly overridden, in which case the aforementioned inheritance rules also apply.   

HeadAlignment Property

Syntax column.HeadAlignment = value
Read/Write at run time and design time.
Property applies to Column object.

Values Design Time Run Time
0 - Left (default) dbgLeft
1 - Right dbgRight
2 - Center dbgCenter
3 - General dbgGeneral

Description The HeadAlignment property returns or sets a value that determines the alignment of the
headings for an individual column.   
The General setting means that the column's Alignment property will be used to format both
the column headings and the cell text.

HeadBackColor Property

Syntax object.HeadBackColor = color
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Description This property controls the background color of an object's column headings.    Colors may be
specified as RGB values or system default colors.   
By default, the heading background color of a grid, column, or split is determined by its
HeadingStyle property setting.    Setting the HeadBackColor property overrides the style
setting without changing the definition of the style itself.   
If the HeadBackColor property of a grid, column, or split is changed to the same value as the
BackColor property of its corresponding heading style, then the object will inherit its heading
background color from the style, and subsequent changes to the style's BackColor property will
affect the object as well.   

HeadFont Property

Syntax object.HeadFont = font
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Description This property returns or sets the font object associated with the column headings of a grid,
column, or split.   
By default, the heading font of a grid, column, or split is determined by its HeadingStyle
property setting.    Setting the HeadFont property directly overrides the heading style setting
without changing the definition of the style itself.   
If the HeadFont property of an object is changed to the same value as the Font property of its
corresponding heading style, then the object will inherit its heading font from the style, and
subsequent changes to the style's Font property will affect the object as well.   

HeadForeColor Property

Syntax object.HeadForeColor = color
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Description This property controls the foreground color of an object's column headings.    Colors may be
specified as RGB values or system default colors.   
By default, the heading foreground color of a grid, column, or split is determined by its
HeadingStyle property setting.    Setting the HeadForeColor property overrides the style
setting without changing the definition of the style itself.   
If the HeadForeColor property of a grid, column, or split is changed to the same value as the   
property of its corresponding heading style, then the object will inherit its heading foreground
color from the style, and subsequent changes to the style's ForeColor property will affect the
object as well.   

HeadingStyle Property

Syntax object.HeadingStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Description This property returns the Style object that controls the appearance of column headings within a
grid, column, or split.   

HeadLines Property

Syntax object.HeadLines = single
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns or sets a value indicating the number of lines of text displayed in a
TDBGrid or TDBDropDown control's column headers.   
The HeadLines property accepts a floating point number from 0 to 10.    The default value is 1,
which causes the grid to display the caption for each Column object within its header area.   
A setting of 0 removes the headings and has the same effect as setting the ColumnHeaders
property to False.   

Note By default, a Column object's caption contains the name of its underlying field as specified by
the DataField property.    You can use the Caption property to override the text displayed
within column headers.   

HighlightRowStyle Property

Syntax object.HighlightRowStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property sets or returns the Style object that controls the appearance of a highlighted row
or cell marquee.    By default, this is the built-in HighlightRow style.
The HighlightRowStyle value is only used when one of the following MarqueeStyle settings
is in effect: 2 - Highlight Cell, 3 - Highlight Row, or 4 - HighlightRow, RaiseCell.
The value of the MarqueeStyle property is not affected by changes to the HighlightRowStyle
property.   

Note Prior to version 5.0, MarqueeStyle settings 2, 3, and 4 were rendered by inverting the normal
cell colors, and could only be customized by repeated application of the AddCellStyle method.   
The HighlightRowStyle property was introduced to enable design-time customization of
marquee colors.

HScrollHeight Property

Syntax object.HScrollHeight

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control and Split object.

Description The HScrollHeight property returns the height of a split's horizontal scroll bar in container
units, which depend on the ScaleMode of the container.    If no horizontal scroll bar exists, then
the returned value is zero.    If object is a TDBGrid control, then its current split is used.
You can use the HScrollHeight and VScrollWidth properties to check if the scroll bars are
present and to obtain the scroll bar size when designing the grid layout and sizing the grid and
its columns.

hWnd Property

Syntax object.hWnd

Read-only at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description The hWnd property returns the unique window handle assigned to a TDBGrid or
TDBDropDown control by the Microsoft Windows operating environment.    Experienced users
can pass the value of this property to Windows API calls that require a valid window handle.   

Note Since the value of this property can change while a program is running, never store the hWnd
value in a variable.   

hWndEditor Property

Syntax TDBGrid.hWndEditor

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Description The hWndEditor property returns the unique window handle assigned to a TDBGrid control's
editing window by the Microsoft Windows operating environment.    Experienced users can pass
the value of this property to Windows API calls that require a valid window handle.   
When editing is not is progress, this property returns 0.   

Note Since the value of this property can change while a program is running, never store the
hWndEditor value in a variable.   
Do not use the hWndEditor property to test whether editing is in progress.    The EditActive
property is provided for this purpose.   

InactiveBackColor Property

Syntax object.InactiveBackColor = color
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Description This property controls the background color of an object's column headings when another object
has focus.    Colors may be specified as RGB values or system default colors.   
By default, the inactive background color of a grid or split is determined by its InactiveStyle
property setting.    Setting the InactiveBackColor property overrides the style setting without
changing the definition of the style itself.   
If the InactiveBackColor property of a grid or split is changed to the same value as the
BackColor property of its corresponding inactive style, then the object will inherit its inactive
background color from the style, and subsequent changes to the style's BackColor property will
affect the object as well.   

Note The inactive colors are only used when the grid's Appearance property is set to 0 - Flat.    If the
Appearance property is set to the default value of 1 - 3D, then the headings do not change
when a grid or split receives or loses focus.   

InactiveForeColor Property

Syntax object.InactiveForeColor = color
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Description This property controls the foreground color of an object's column headings when another object
has focus.    Colors may be specified as RGB values or system default colors.   
By default, the inactive foreground color of a grid or split is determined by its InactiveStyle
property setting.    Setting the InactiveForeColor property overrides the style setting without
changing the definition of the style itself.   
If the InactiveForeColor property of a grid or split is changed to the same value as the
ForeColor property of its corresponding inactive style, then the object will inherit its inactive
foreground color from the style, and subsequent changes to the style's ForeColor property will
affect the object as well.   

Note The inactive colors are only used when the grid's Appearance property is set to 0 - Flat.    If the
Appearance property is set to the default value of 1-    3D, then the headings do not change
when a grid or split receives or loses focus.   

InactiveStyle Property

Syntax object.InactiveStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control and Split object.

Description This property returns the Style object that controls the appearance of column headings within a
grid or split when another object has focus.   

Note The inactive style is only used when the grid's Appearance property is set to 0 - Flat.    If the
Appearance property is set to the default value of 1 - 3D, then the headings do not change
when a grid or split receives or loses focus.   

Index Property

Syntax split.Index

Read-only at run time.    Not available at design time.
Property applies to Split object.

Description This property returns the zero-based index of a split within the Splits collection.   

IntegralHeight Property

Syntax TDBDropDown.IntegralHeight = boolean
Read/Write at run time and design time.
Property applies to TDBDropDown control.

Description This property determines whether partial rows are displayed in a TDBDropDown control.
If True, partial rows are not displayed, and the height of the control will be reduced to eliminate
the last partial row if necessary.
If False, partial rows are displayed, and the control retains its design-time height.

LayoutFileName Property

Syntax TDBGrid.LayoutFileName = string
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property sets or returns the string containing the filename used to save and retrieve grid
layouts.    Setting this property alone has no effect on the grid layout; the property value is used
by the LoadLayout method of the grid and the Add and Remove methods of the Layouts
collection.
At design time, if you first set the LayoutFileName property to a valid filename in which grid
layouts are stored, you can then choose the LayoutName property from a drop-down list of
layout names stored in the specified layout file.

LayoutName Property

Syntax TDBGrid.LayoutName = string
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property sets or returns the string (maximum length of 30 characters) containing the
current layout name.    Setting this property alone has no effect on the grid layout; the property
value is used by the LoadLayout method of the grid.
At design time, if you first set the LayoutFileName property to a valid filename in which grid
layouts are stored, you can then choose the LayoutName property from a drop-down list of
layout names stored in the specified layout file.

Layouts Property

Syntax TDBGrid.Layouts

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns a collection of layout names corresponding to the current setting of the
LayoutFileName property.

Left Property

Syntax column.Left

Read-only at run time.    Not available at design time.
Property applies to Column object.

Description This property returns the position of a column's left edge in terms of the coordinate system of
the grid's container.   
Use the Left property in conjunction with Width, RowHeight, and RowTop to determine the
size and placement of controls displayed on top of a grid cell.   

LeftCol Property

Syntax object.LeftCol = integer
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property returns or sets the zero-based index of the leftmost column in a grid or split.   
For a TDBGrid or TDBDropDown control, setting the LeftCol property causes the grid to scroll
so that the specified column becomes the leftmost column.    If a grid contains multiple splits,
then the leftmost column changes in each split.   
For a Split object, setting the LeftCol property causes the specified column to become the
leftmost column for that split only.   
Use the LeftCol property in code to scroll a grid or split horizontally.    Use the FirstRow
property to determine the bookmark of the first visible row in a grid or split.   

ListField Property

Syntax TDBDropDown.ListField = string
Read/Write at run time and design time.
Property applies to TDBDropDown control.

Description The ListField property returns or sets the name of the column used for incremental search
within a TDBDropDown control.    The ListField property need not be the same as the
DataField property used to specify the name of the grid column that will be updated when the
user selects an item from a TDBDropDown control.
If the ListField property is not specified, the DataField property specifies the column to be
used for both incremental search and the selection value.    If neither property is specified, then
the first column in the TDBDropDown control will be used.

Note To associate a TDBDropDown control with a Column object that belongs to a TDBGrid control,
set the column's DropDown property to the name of the drop-down control at either design
time or run time.

Locked Property

Syntax object.Locked = boolean
Read/Write at run time and design time.
Property applies to Column, Split, and Style objects.

Description This property returns or sets a value indicating whether an object can be edited.   
If True, the user cannot modify data in the column or split.   
If False (the default), the user can modify data in the column or split.   
If the TDBGrid control's AllowUpdate property is set to False, then editing is disabled for the
entire grid regardless of the Locked property setting for individual columns and splits.    If
AllowUpdate is True, then the Locked property can be used to control the editability of
individual columns and splits.   
For Split objects, setting the Locked property to True disables editing for all columns within that
split regardless of their Locked property setting.    If Locked is False for a split, then the Locked
settings of individual columns within that split are respected.   
For Style objects, the Locked property controls the editability of the object to which the style is
applied.    It does not control the editability of the style object itself.   
By default, the locked state of a column or split is determined by its Style property setting.   
Setting the Locked property overrides the style setting without changing the definition of the
style itself.   
If the Locked property of a column or split is changed to the same value as its corresponding
style, then the object will inherit its locked state from the style, and subsequent changes to the
style's Locked property will affect the object as well.   
For Style objects, the value of the Locked property is inherited from the parent style (if any)
unless explicitly overridden, in which case the aforementioned inheritance rules also apply.   

Note The default value of the Locked property for a column is not derived from the DataUpdatable
property for the underlying field.    If both properties are False for a column, then an error will
occur when the grid attempts to write changed data to the database.   

MarqueeStyle Property

Syntax object.MarqueeStyle = value
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Values Design Time Run Time

0 - Dotted Cell Border dbgDottedCellBorder
1 - Solid Cell Border dbgSolidCellBorder
2 - Highlight Cell dbgHighlightCell
3 - Highlight Row dbgHighlightRow
4 - Highlight Row, Raise Cell dbgHighlightRowRaiseCell
5 - No Marquee dbgNoMarquee
6 - Floating Editor (default) dbgFloatingEditor

Description This property determines how the current row and cell are highlighted within a grid or split.   
There are seven possible values for this property:

0 - Dotted Cell Border The current cell within the current row will be highlighted by drawing
a dotted border around the cell.    In Microsoft Windows terminology,
this is usually called a focus rectangle.   

1 - Solid Cell Border The current cell within the current row will be highlighted by drawing
a solid box around the current cell.    This is more visible than the
dotted cell border, especially when 3-D divider properties are used for
the grid.   

2 - Highlight Cell The entire current cell will be drawn using the attributes of the
HighlightRowStyle property.    This provides a very distinctive block-
style highlight for the current cell.   

3 - Highlight Row The entire row containing the current cell will be drawn using the
attributes of the HighlightRowStyle property.    In this mode, it is
not possible to visually determine which cell is the current cell, only
the current row.    When the grid or split is not editable, this setting is
often preferred, since cell position is then irrelevant.   

4 - Highlight Row, Raise Cell
The entire row will be highlighted as in setting 3, but the current cell
within the row will be "raised" so that it appears distinctive.    This
setting doesn't appear clearly with all background color and divider
settings.    The best effect is achieved by using 3-D dividers and a
light gray background.   

5 - No Marquee The marquee will not be shown.    This setting is useful for cases
where the current row is irrelevant, or where you don't want to draw
the user's attention to the grid until necessary.

6 - Floating Editor The current cell will be highlighted by a floating text editor window
with a blinking caret (as in Microsoft Access).    This is the default
setting.   

If a grid contains multiple splits, then setting its MarqueeStyle property has the same effect as
setting the MarqueeStyle property of each split individually.   

Note If the floating editor marquee setting is in effect and the current cell contains radio buttons or
graphics, then a dotted focus rectangle will be displayed.
Prior to version 5.0, MarqueeStyle settings 2, 3, and 4 were rendered by inverting the normal
cell color(s), and could only be customized by repeated application of the AddCellStyle

method.    The HighlightRowStyle property was introduced to enable design-time
customization of marquee colors.

MarqueeUnique Property

Syntax TDBGrid.MarqueeUnique = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property controls the display of the current cell marquee when there is more than one split. 
The current cell marquee is only displayed when the MarqueeStyle property for a grid or split
has a value of 0, 1, 2, or 4.   
If True (the default), then the current cell marquee is only displayed within the current split.   
If False, then all splits with a MarqueeStyle setting of 0, 1, 2, or 4 will display a marquee at the
current cell, provided that the current cell is visible.   
In most cases, a single current cell marquee is preferable, and you will not need to change this
property.   
If this property is set to False, you may then see several different current cell marquees.    The
actual current cell is determined by the setting of the Split property.   

Note Although the floating editor MarqueeStyle (6) is technically a current cell marquee, only one
floating editor will be displayed, even if MarqueeUnique is set to False.

MaxComboItems Property

Syntax valueitems.MaxComboItems = integer
Read/Write at run time and design time.
Property applies to ValueItems collection.

Description This property controls the maximum number of items to be displayed in the built-in combo box.   
The default value for this property is 5.
When the Presentation property of a column's ValueItems collection is set to either of the
combo box options (sorted or unsorted), the MaxComboItems property determines the combo
box height in terms of the number of value items displayed.
If the total number of value items is less than or equal to MaxComboItems, then all value
items will be shown.    If the total number of value items exceeds MaxComboItems, only
MaxComboItems will be shown, but a scroll bar will appear at the right edge of the drop-down
combo to allow users to bring the other value items into view.
Use the ValueItems property to access the ValueItems collection for a Column object.   

MultipleLines Property

Syntax TDBGrid.MultipleLines = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property determines whether a single row can span multiple lines.    In this context, the
terms line and row are defined as follows:

· A line is a single physical row of cells displayed in a grid.    Do not confuse this with a
line of text inside a grid cell; depending upon the settings of the RowHeight and
WrapText properties, data in a grid cell may be displayed in multiple lines of text.

· A row displays a single record and may contain multiple lines or multiple physical rows.
The default value of MultipleLines is False, which means that a single record or row cannot
span multiple lines.    If necessary, the user can operate the horizontal scroll bar to view all of the
columns within a row.    This is how the grid normally displays data.   
However, if the MultipleLines property is True, then a single record or row may span multiple
lines.    This feature enables the user to view simultaneously all of the columns (fields) of a
record within the width of the grid without scrolling horizontally.   
When MultipleLines is set to True, the horizontal scroll bar will be hidden if present, regardless
of the setting of the ScrollBars property.    The grid will automatically span or wrap the columns
to multiple lines so that all columns will be visible within the width of the grid.    If the resulting
column layout is not to your liking, you can adjust it at either design time or run time by
changing the widths and orders of the columns.

Note If the ScrollBars property is set to 4 - Automatic, the design time layout may not match the run
time layout, owing to the absence of the scroll bar at design time.    To ensure that the layout
does not change at run time, use a different setting for the ScrollBars property.

Name Property

Syntax style.Name

Read-only at run time.    Read/Write at design time.
Property applies to Style object.

Description This property returns the name of a style object.   
The Name property is set at design time in the Styles property page when a style is first
created.    Styles cannot be renamed, even at design time.   
When a TDBGrid control is first created, its Styles collection contains seven built-in styles
named Normal, Heading, Selected, Caption, HighlightRow, EvenRow, and OddRow.

Note For an independent style object, the Name property always returns an empty string.    An
independent style object is not a member of the Styles collection, but is a standalone object
created in code with a Dim or Set statement using the New keyword.   

NumberFormat Property

Syntax column.NumberFormat = string
Read/Write at run time and design time.
Property applies to Column object.

Description This property returns or sets a value indicating the format string for a grid column.    By default,
the NumberFormat property contains an empty string, and column data is unformatted.   
For numeric data, the following predefined format names can be used:

General Number Display number as is, with no thousand separators.   

Currency Display number with thousand separator, if appropriate; display two
digits to the right of the decimal separator.    Note that output is
based on system locale settings.   

Fixed Display at least one digit to the left and two digits to the right of the
decimal separator.   

Standard Display number with thousands separator, at least one digit to the
left and two digits to the right of the decimal separator.   

Percent Display number multiplied by 100 with a percent sign (%) appended
to the right; always display two digits to the right of the decimal
separator.   

Scientific Use standard scientific notation.   

Yes/No Display No if number is 0; otherwise, display Yes.   

True/False Display False if number is 0; otherwise, display True.   

On/Off Display Off if number is 0; otherwise, display On.   
For date and time data, the following predefined format names can be used:

General Date Display a date and/or time.    For real numbers, display a date and
time (for example, 4/3/93 05:34 PM); if there is no fractional part,
display only a date (for example, 4/3/93); if there is no integer part,
display only a time (for example, 05:34 PM).    Date display is
determined by your system settings.   

Long Date Display a date according to your system's long date format.   

Medium Date Display a date using the medium date format appropriate for the
language version of Visual Basic.   

Short Date Display a date using your system's short date format.   

Long Time Display a time using your system's long time format: includes hours,
minutes, seconds.   

Medium Time Display a time in 12-hour format using hours and minutes and the
AM/PM designator.   

Short Time Display a time using the 24-hour format (for example, 17:45).   
For arbitrary data, the following predefined format names can be used:

Edit Mask Use the column's EditMask property to format the data for display
as well as editing.

FormatText Event Fire the FormatText event for the associated column.    This option
allows you to write your own formatting code for situations where

Visual Basic's intrinsic formatting is unavailable or does not suit your
needs.

The NumberFormat property also accepts user-defined format strings.    See the Microsoft
Visual Basic documentation (Format function) for details.   
If the NumberFormat property is set to an invalid string, cell data are displayed as #ERR#.   

Note The NumberFormat property works only in container environments that support Visual Basic
formatting through OLE.    If a container does not provide this support, the NumberFormat
property can still be set without causing an error, but cell data will not be formatted.   
However, the FormatText Event option can be used in any container environment, even if Visual
Basic formatting is unavailable.

OddRowStyle Property

Syntax object.OddRowStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property sets or returns the Style object that controls the appearance of an odd-numbered
row in a grid or split where the AlternatingRowStyle property is set to True.    By default, this is
the built-in OddRow style.
To change the appearance of even-numbered rows, set the EvenRowStyle property.

Order Property

Syntax column.Order = integer
Read/Write at run time.    Not available at design time.
Property applies to Column object.

Description This property sets or returns the zero-based display position of a column within the Columns
collection.   
Use the Order property to determine the location of a column relative to other columns within
the same split, subject to end-user move operations.    If AllowColMove is never set to True,
then this property returns the same value as ColIndex.
You can also set the Order property in code to move a single unselected column or all selected
columns.    For example, consider a grid with four columns.    To move the last column (index 3)
all the way to the left, you would code:

TDBGrid1.Columns(3).Order = 0
To reverse this action, you would set the order to the number of columns:

TDBGrid1.Columns(3).Order = TDBGrid1.Columns.Count
Note that you still use index 3 to refer to the original last column even after it has been moved.   
This allows code that references columns by numeric index instead of by name to remain
consistent, which is especially critical for unbound mode applications.

Note If one or more columns are selected, then setting the Order property of an unselected column
has no effect.    However, setting the Order property of a selected column moves all columns in
the selected range.

Parent Property

Syntax style.Parent

Read/Write at run time and design time.
Property applies to Style object.

Description This property sets or returns the parent style of a named style object.    If a style has no parent,
then this property returns a null variant.   
The Parent property is used at run time to change the parent style from which the style in
question inherits.    Typically, this is done when creating a new style in code, as in the following
example:

Dim BoldHeading As TrueDBGrid50.Style
Set BoldHeading = TDBGrid1.Styles.Add("BoldHeading")
BoldHeading.Parent = "Heading"
BoldHeading.Font.Bold = True
This code first creates a new style, BoldHeading, then sets its parent to the built-in Heading
style.    This causes the new style to inherit all attributes from the built-in style.    The bold
attribute of the new style's font is then overridden.

Note For an independent style object, a trappable error will occur if you attempt to set the Parent
property.    An independent style object is not a member of the Styles collection, but is a
standalone object created in code with a Dim or Set statement using the New keyword.   

Presentation Property

Syntax valueitems.Presentation = value
Read/Write at run time and design time.
Property applies to ValueItems collection.

Values Design Time Run Time

0 - Normal (default) dbgNormal
1 - Radio Button dbgRadioButton
2 - Combo Box dbgComboBox
3 - Sorted Combo Box dbgSortedComboBox

Description This property determines how the members of a ValueItems collection are displayed within the
associated column.   
If set to 0 - Normal (the default), value items are displayed as text or graphics depending upon
the setting of the DisplayValue and Translate properties.   
If set to 1 - Radio Button, value items are displayed as a group of radio buttons within the cell.   
If set to 2 - Combo Box, value items are displayed in a drop-down combo box within the current
cell.   
If set to 3 - Sorted Combo Box, value items are displayed in sorted order in a drop-down combo
box within the current cell.   
Use the ValueItems property to access the ValueItems collection for a Column object.   

RecordSelectors Property

Syntax object.RecordSelectors = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Description This property returns or sets a value indicating if record selectors are displayed in a grid or split. 
If True (the default), record selectors are displayed at the left edge of the grid or split.   
If False, record selectors are not displayed.   
If a grid contains multiple splits, then setting its RecordSelectors property has the same effect
as setting the RecordSelectors property of each split individually.   

Note When the user selects a row by clicking its record selector, the bookmark of the selected row is
added to the SelBookmarks collection.   

Row Property

Syntax object.Row = integer
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property specifies the zero-based index of the current row relative to the first displayed row.
It may be set at run time to highlight a different cell within the current column.   
The Row property accepts values ranging from 0 to VisibleRows - 1.    An error occurs if you
attempt to set it to an invalid row index.   
If the current row is not visible, then this property returns -1.   
For a TDBGrid control, changing the Row property at run time does not affect selected rows.   
Use the collection returned by the SelBookmarks property to select or deselect individual rows.
For a TDBDropDown control, changing the Row property at run time also changes the value of
the SelectedItem property.

RowCount Property

Syntax rowbuffer.RowCount = long
Read/Write at run time.    Not available at design time.
Property applies to RowBuffer object.

Description This property returns or sets the number of rows in a RowBuffer object passed to an unbound
event procedure for a TDBGrid control.   
In the UnboundReadData event, this property indicates how many rows the grid is requesting. 
After filling those rows by setting the Value and Bookmark properties, your event procedure
should set the RowCount property to the number of rows actually fetched.   
In the UnboundAddData and UnboundWriteData events, this property is always set to 1,
since only a single row can be added or updated at a time.    However, you can set this property
to 0 to indicate that the add or update operation failed.   

Note When a RowBuffer object is passed to an unbound event procedure, the initial value of the
RowCount property also specifies the maximum value.    An error will occur if you attempt to
exceed the maximum value.   

RowDividerStyle Property

Syntax object.RowDividerStyle = value
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Values Design Time Run Time

0 - No dividers dbgNoDividers
1 - Black line dbgBlackLine
2 - Dark gray line (default) dbgDarkGrayLine
3 - Raised dbgRaised
4 - Inset dbgInset
5 - ForeColor dbgUseForeColor
6 - Light gray line dbgLightGrayLine

Description This property determines the style of the border drawn between grid rows.   
The RowDividerStyle property does not control whether rows can be resized by dragging their
border.    Use the AllowRowSizing property to control this behavior.   

RowHeight Property

Syntax object.RowHeight = single
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns or sets the height of all grid rows in terms of the coordinate system of the
grid's container.   
The RowHeight property accepts a floating point number from 0 to 10,000.    The default value
depends upon the character height of the current font.   
A setting of 0 causes the grid to readjust its display so that each row occupies a single line of
text in the current font.    Therefore, the following statements will set the row height so that
exactly two lines of text are shown in each row:

TDBGrid1.RowHeight = 0
TDBGrid1.RowHeight = TDBGrid1.RowHeight * 2
If the control's AllowRowSizing property is set to True, then the user can adjust the
RowHeight property at run time by dragging the row divider between any pair of record
selectors.   

ScrollBars Property

Syntax object.ScrollBars = value
Read/Write at run time and design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Values Design Time Run Time

0 - None dbgNone
1 - Horizontal dbgHorizontal
2 - Vertical dbgVertical
3 - Both dbgBoth
4 - Automatic (default) dbgAutomatic

Description This property returns or sets a value indicating whether a grid or split has horizontal or vertical
scroll bars.   
The default setting for this property causes horizontal and/or vertical scroll bars to be displayed
only if the object's contents extend beyond its borders.   
If a grid contains multiple splits, then setting its ScrollBars property has the same effect as
setting the ScrollBars property of each split individually.   

ScrollGroup Property

Syntax split.ScrollGroup = integer
Read/Write at run time and design time.
Property applies to Split object.

Description This property is used to synchronize vertical scrolling between splits.    All splits with the same
ScrollGroup setting will be synchronized when vertical scrolling occurs within any one of them. 
Splits belonging to different groups can scroll independently, allowing different splits to display
different parts of the database.   
If the ScrollBars property for a split is set to 4 - Automatic, then only the rightmost split of the
group will have a vertical scroll bar.    If there is only one split, then setting this property has no
effect.   
Setting the FirstRow property for one split affects all other splits in the same group, keeping
the group synchronized.   
Newly created splits have a ScrollGroup value of 1.   

SelBookmarks Property

Syntax TDBGrid.SelBookmarks

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns a collection of selected row bookmarks.   

SelectedBackColor Property

Syntax object.SelectedBackColor = color
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Description This property controls the background color of a selected row and column within a grid or split.   
Colors may be specified as RGB values or system default colors.   
By default, the selected background color of a grid or split is determined by its SelectedStyle
property setting.    Setting the SelectedBackColor property overrides the style setting without
changing the definition of the style itself.   
If the SelectedBackColor property of a grid or split is changed to the same value as the
BackColor property of its corresponding selected style, then the object will inherit its selected
background color from the style, and subsequent changes to the style's BackColor property will
affect the object as well.   

SelectedForeColor Property

Syntax object.SelectedForeColor = color
Read/Write at run time and design time.
Property applies to TDBGrid control and Split object.

Description This property controls the foreground color of a selected row and column within a grid or split.   
Colors may be specified as RGB values or system default colors.   
By default, the selected foreground color of a grid or split is determined by its SelectedStyle
property setting.    Setting the SelectedForeColor property overrides the style setting without
changing the definition of the style itself.   
If the SelectedForeColor property of a grid or split is changed to the same value as the
ForeColor property of its corresponding selected style, then the object will inherit its selected
foreground color from the style, and subsequent changes to the style's ForeColor property will
affect the object as well.   

SelectedItem Property

Syntax TDBDropDown.SelectedItem = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBDropDown control.

Description This property returns or sets the bookmark identifying the selected item in a TDBDropDown
control.   
Use the value returned by the SelectedItem property to determine the current row in a
TDBDropDown control.   
When you set the SelectedItem property to a valid value in code, the row associated with that
value becomes the current row, and the drop-down grid adjusts its display to bring the new
current row into view if necessary.   
The SelectedItem property is defined as a Variant to accommodate user-defined bookmarks in
unbound mode.   

Note For the TDBDropDown control, the SelectedItem and Bookmark properties are synonymous.

SelectedStyle Property

Syntax object.SelectedStyle = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control and Split object.

Description This property returns or sets the Style object that controls the appearance of selected rows and
columns within a grid or split.   

SelEndCol Property

Syntax object.SelEndCol = integer
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property returns or sets the zero-based ordinal position    of the rightmost selected column
in a split.    If no columns are selected, then this property returns -1.   
If a grid contains multiple splits, then setting its SelEndCol property has the same effect as
setting the SelEndCol property of the current split.    The index of the current split is available
through the TDBGrid control's Split property.   
Setting this property to -1 deselects all columns and also sets the SelStartCol property to -1.

Note You can also use the ClearSelCols method to deselect all columns within a split.   

SelLength Property

Syntax TDBGrid.SelLength = long
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns or sets the number of characters selected within the grid's editing window. 
When editing is not is progress, this property returns 0.   
Setting SelLength to a value less than 0 causes a run time error.   
Use the SelLength property in combination with the SelStart and SelText properties to set the
insertion point, establish an insertion range, select substrings, or clear text.    These properties
are useful for implementing copy, cut, and paste operations that transfer string data to and from
the clipboard.   

SelStart Property

Syntax TDBGrid.SelStart = long
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns or sets the starting point of the text selection within the grid's editing
window.    If no text is currently selected, then this property indicates the position of the insertion
point.   
When editing is not is progress, this property returns 0.   
Setting SelStart to a value greater than SelLength sets it to SelLength.    Changing SelStart
changes the selection to an insertion point and sets SelLength to 0.   
Use the SelStart property in combination with the SelLength and SelText properties to set the
insertion point, establish an insertion range, select substrings, or clear text.    These properties
are useful for implementing copy, cut, and paste operations that transfer string data to and from
the clipboard.   

SelStartCol Property

Syntax object.SelStartCol = integer
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Split object.

Description This property returns or sets the zero-based ordinal position    of the leftmost selected column in
a split.    If no columns are selected, then this property returns -1.   
If a grid contains multiple splits, then setting its SelStartCol property has the same effect as
setting the SelStartCol property of the current split.    The index of the current split is available
through the TDBGrid control's Split property.   
Setting this property to -1 deselects all columns and also sets the SelEndCol property to -1.

Note You can also use the ClearSelCols method to deselect all columns within a split.   

SelText Property

Syntax TDBGrid.SelText = string
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns or sets the string containing the currently selected text within the grid's
editing window.    If no text is currently selected, then this property returns an empty string.   
Setting SelText to a new value sets SelLength to 0 and replaces the selected text with the new
string.   
Use the SelText property in combination with the SelStart and SelLength properties to set the
insertion point, establish an insertion range, select substrings, or clear text.    These properties
are useful for implementing copy, cut, and paste operations that transfer string data to and from
the clipboard.   

Size Property

Syntax split.Size = variant
Read/Write at run time and design time.
Property applies to Split object.

Description This property returns or sets the size of a split.    The meaning of the value returned by this
property is determined by the split's SizeMode property setting.   
If SizeMode is set to the default value of 0 - Scalable, then the value returned by the Size
property is an integer indicating the relative size of the split with respect to other scalable splits. 
If SizeMode is set to 1 - Exact, then the value returned by the Size property is a floating point
number indicating the exact size of the split in terms of the coordinate system of the grid's
container.   
If SizeMode is set to 2 - Number of Columns, then the value returned by the Size property is an
integer indicating the number of columns displayed in the split.   

Note Note that when there is only one split (the grid's default behavior), the split spans the entire
width of the grid, the SizeMode property is always 0 - dbgScalable, and the Size property is
always 1.    Setting either of these properties has no effect when there is only one split.    If there
are multiple splits, and you then remove all but one, the SizeMode and Size properties of the
remaining split automatically revert to 0 and 1, respectively.

SizeMode Property

Syntax split.SizeMode = value
Read/Write at run time and design time.
Property applies to Split object.

Values Design Time Run Time

0 - Scalable (default) dbgScalable
1 - Exact dbgExact
2 - Number of Columns dbgNumberOfColumns

Description This property determines how the Size property is used to determine the actual size of a split.   
If set to 0 - Scalable (the default), then the value returned by the Size property is an integer
indicating the relative size of the split with respect to other scalable splits.    For example, if a
grid contains 3 scalable splits with Size properties equal to 1, 2, and 3, then the size of each
split would be 1/6, 1/3, and 1/2 of the total grid width, respectively.   
If set to 1 - Exact, then the value returned by the Size property is a floating point number
indicating the exact size of the split in terms of the coordinate system of the grid's container.   
This setting allows you to fix the size of the split so that it always has the same width, even if
new splits are added or existing splits are removed.   
If set to 2 - Number of Columns, then the value returned by the Size property is an integer
indicating the number of columns displayed in the split, and the split will adjust its width to
display the number of full columns specified by the Size property.    For example, if Size is set to
2, and the user scrolls the split horizontally, then the width of the split will change so that 2 full
columns are displayed, regardless of how wide the columns are.   

Note Consider a grid containing both scalable splits and splits with a fixed number of columns.    If a
split with a fixed number of columns is scrolled horizontally, the total width remaining for the
scalable splits may change because grid columns are generally of different widths.    However,
the ratios of the sizes of the scalable splits remain the same as specified by their Size
properties.   
Note that when there is only one split (the grid's default behavior), the split spans the entire
width of the grid, the SizeMode property is always 0 - dbgScalable, and the Size property is
always 1.    Setting either of these properties has no effect when there is only one split.    If there
are multiple splits, and you then remove all but one, the SizeMode and Size properties of the
remaining split automatically revert to 0 and 1, respectively.

Split Property

Syntax TDBGrid.Split = integer
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property specifies the zero-based index of the current split.   

Splits Property

Syntax TDBGrid.Splits

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control.

Description This property returns a collection of Split objects.   

Style Property

Syntax object.Style = variant
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Description This property returns or sets the Style object that controls the normal appearance of a cell
within a grid, column, or split.   

Styles Property

Syntax object.Styles

Read-only at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns a collection of Style objects.   

TabAcrossSplits Property

Syntax TDBGrid.TabAcrossSplits = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property controls the behavior of the tab and arrow keys at split borders.   
If True, the tab and arrow keys will move the current cell across split boundaries.    When at the
last column of the rightmost split (or the first column of the leftmost split), they will either wrap
to the next row, stop, or move to other controls depending on the values of the
WrapCellPointer and TabAction properties.   
If False (the default), the tab and arrow keys will not move the current cell across split
boundaries.    They will either wrap to the next row, stop, or move to other controls depending on
the values of the WrapCellPointer and TabAction properties.   

Note The TabAcrossSplits property does not determine if the tab and arrow keys will move from cell
to cell, or from control to control, or wrap to the next row.    Use the AllowArrows,
WrapCellPointer, and TabAction properties to control this behavior.    If the tab and arrow keys
are able to move from cell to cell, this property determines whether they will move across split
boundaries to adjacent splits.   

TabAction Property

Syntax TDBGrid.TabAction = value
Read/Write at run time and design time.
Property applies to TDBGrid control.

Values Design Time Run Time

0 - Control Navigation (default) dbgControlNavigation
1 - Column Navigation dbgColumnNavigation
2 - Grid Navigation dbgGridNavigation

Description This property defines the behavior of the tab key.   
If set to 0 - Control Navigation (the default), the tab key moves to the next or previous control on
the form.   
If set to 1 - Column Navigation, the tab key moves the current cell to the next or previous
column.    However, if this action would cause the current row to change, then the next or
previous control on the form receives focus.   
If set to 2 - Grid Navigation, the tab key moves the current cell to the next or previous column.   
The behavior of the tab key at row boundaries is determined by the WrapCellPointer property. 
When this setting is used, the tab key never results in movement to another control.   

Note The TabAction property does not determine if the tab key will cross split boundaries.    Use the
TabAcrossSplits property to control this behavior.   

Text Property

Syntax object.Text = string
Read/Write at run time.    Not available at design time.
Property applies to TDBGrid and TDBDropDown controls, Column object.
This is the default property of the TDBGrid and TDBDropDown controls.

Description When applied to a Column object, this property returns or sets the formatted data value in a
column for the current row.   
The value returned by the Text property is derived from the underlying data value by applying
the formatting as specified by the NumberFormat property of the Column object.   
When the Text property is set for a formatted column, the underlying data value cannot be
derived, and the Text and Value properties will subsequently return the same result.   
Use the Value property to access the underlying data value in a column for the current row.
When applied to a TDBGrid or TDBDropDown control, this property returns or sets the text of
the current cell.    If the current cell is at EOF or BOF, an empty string is returned.

Top Property

Syntax column.Top

Read-only at run time.    Not available at design time.
Property applies to Column object.

Description This property returns the position of a column's top edge relative to the top of the grid in terms
of the coordinate system of the grid's container.
If the column contains a header, the Top property returns the position of the header's top edge;
if the column does not contain a header, the Top property returns the position of the top edge of
the column's cell within the first displayed row.
If the grid's MultipleLines property is False (the default value), a single record cannot span
multiple lines in the grid, and the Top property returns the same value for all columns.
If the grid's MultipleLines property is True, a single record may span multiple lines in the grid.   
For columns on the first line, the Top property returns the height of the grid's caption bar and
split headings, if present.    For columns on succeeding lines, the Top property returns this value
plus an appropriate multiple of the column header height.
Columns on the same line will return the same Top property value, while columns occupying
lower lines in a row will return larger Top property values since they are farther away from the
top of the grid.
For example, the following code places a text box on top of the header for the first column:

Text1.Top = TDBGrid1.Top + TDBGrid1.Columns(0).Top
Use the Top property in conjunction with Left, Width, and RowTop to determine the exact
location and size of a column heading.   

Note To overlay the text box exactly on a column header, you may need to account for an extra pixel
in the width and height, depending upon the settings of the DividerStyle and
RowDividerStyle properties.    In Visual Basic, if the ScaleMode property of the parent form is
set to pixels, then you can simply add 1.    If the ScaleMode is set to twips, then you can add
the TwipsPerPixelX and TwipsPerPixelY properties of the Screen object.

Translate Property

Syntax valueitems.Translate = boolean
Read/Write at run time and design time.
Property applies to ValueItems collection.

Description This property determines whether a column's underlying data values are automatically
displayed in an alternate form as specified by the ValueItem objects contained in a column's
ValueItems collection.   
If True, data values that match the Value property of a ValueItem are displayed using the
corresponding DisplayValue setting.    The DisplayValue property may contain either text or
graphics.   
If False (the default), no translation is performed.   
Use the ValueItems property to access the ValueItems collection for a Column object.   

Validate Property

Syntax valueitems.Validate = boolean
Read/Write at run time and design time.
Property applies to ValueItems collection.

Description This property determines whether values entered by the user must match one of the ValueItem
objects contained in a column's ValueItems collection.   
If True, the grid automatically validates the user's input when the current cell is changed.    If the
cell contents do not match the DisplayValue setting of one of the ValueItem objects, then
focus remains on the current cell and its prior contents are restored.   
If False (the default), the grid performs no validation.    However, you can still use the
BeforeColUpdate event to validate the user's changes.   
The BeforeColUpdate event will not be executed for a column if both of the following are true:

1. The associated ValueItems collection contains at least one ValueItem.   
2. The Validate property of the ValueItems collection is set to True.   

Use the ValueItems property to access the ValueItems collection for a Column object.   

Value Property (Column)

Syntax column.Value = variant
Read/Write at run time.    Not available at design time.
Property applies to Column object.

Description This property returns or sets the underlying data value in a column for the current row.   
The Value property is useful for simulating data entry within a cell.    When this property is set,
the value displayed in the cell respects the setting of the column's NumberFormat property.   
This property always returns a string variant, even if the data type of the underlying field is
numeric.   
Use the Text property to access the formatted data value in a column for the current row.   

Value Property (RowBuffer)

Syntax rowbuffer.Value (Row, Col) = variant
Read/Write at run time.    Not available at design time.
Property applies to RowBuffer object.

Description This property returns or sets the data value for the specified cell within a RowBuffer object
passed to an unbound event procedure for a TDBGrid control.   
The Row argument is a long integer specifying the row where the value is placed.    The range of
this argument can be from 0 to RowCount - 1.   
The Col argument is an integer specifying the column where the value is placed.    The range of
this argument can be from 0 to ColumnCount - 1.   
In the UnboundReadData event, your code must provide data values for the rows being
fetched.    In the UnboundAddData and UnboundWriteData events, the user's changes are
passed to your event procedures via a RowBuffer object.   

Value Property (Style)

Syntax style.Value = variant
Read/Write at run time (with restrictions).    Not available at design time.
Property applies to Style object.

Description This property returns the name of a style object.   
For style objects, the Value property is a synonym for the Name property, so the following
statements are equivalent:

Debug.Print TDBGrid1.Styles(0)
Debug.Print TDBGrid1.Styles(0).Name
For style objects that are members of the Styles collection, this property is read-only, and a
trappable error will occur if you attempt to set it in code.    However, for independent style
objects, and for the CellStyle argument of the FetchCellStyle event, the Value property may
be set in code to initialize the style object:

CellStyle.Value = "MyStyle"
CellStyle = "MyStyle" ' Both statements are equivalent

Note For an independent style object, the Value property always returns an empty string.    An
independent style object is not a member of the Styles collection, but is a standalone object
created in code with a Dim or Set statement using the New keyword.

Value Property (ValueItem)

Syntax valueitem.Value = variant
Read/Write at run time and design time.
Property applies to ValueItem object.

Description This property returns or sets the underlying data value for a member of a ValueItems
collection.   
The DisplayValue property returns the translated data value for a value item.   
Use the ValueItems property to access the ValueItems collection for a Column object.   

ValueItems Property

Syntax column.ValueItems

Read-only at run time.    Not available at design time.
Property applies to Column object.

Description This property returns a collection of ValueItem objects for a column.   

Visible Property

Syntax column.Visible = boolean
Read/Write at run time and design time.
Property applies to Column object.

Description This property returns a boolean indicating whether a column in a grid or split is currently visible
or capable of being scrolled into view.   
If True, then the column has not been hidden in code or by the user.   
If False, then the column is hidden and cannot be scrolled into view.   
For columns created at design time, the default value of this property is True.    For columns
created in code at run time, the default value of this property is False.   

Note If a column has been scrolled out of view, its Visible property remains True.   

VisibleCols Property

Syntax object.VisibleCols

Read-only at run time.
Property applies to TDBGrid and TDBDropDown controls.

Description For TDBGrid controls, this property returns the number of visible columns in the current split.   
The value returned includes both fully and partially displayed columns.    You can use the Split
property of the TDBGrid control to determine the index of the current split.   
For TDBDropDown controls, this property returns the number of visible columns in the entire
control, since there can only be one split.    The value returned includes both fully and partially
displayed columns.

VisibleRows Property

Syntax object.VisibleRows = integer
Read-only at run time.
Property applies to TDBGrid and TDBDropDown controls.

Description This property returns the number of visible rows in the control.    The value returned includes
both fully and partially displayed rows.   

VScrollWidth Property

Syntax object.VScrollWidth

Read-only at run time.    Not available at design time.
Property applies to TDBGrid control and Split object.

Description The VScrollWidth property returns the width of a split's vertical scroll bar in container units,
which depend on the ScaleMode of the container.    If no vertical scroll bar exists, then the
returned value is zero.    If object is a TDBGrid control, then its current split is used.
You can use the VScrollWidth and HScrollHeight properties to check if the scroll bars are
present and to obtain the scroll bar size when designing the grid layout and sizing the grid and
its columns.

Width Property

Syntax column.Width = single
Read/Write at run time and design time.
Property applies to Column object.

Description This property returns or sets the width of a column in terms of the coordinate system of the
grid's container.   
Use the Width property in conjunction with Left, RowHeight, and RowTop to determine the
size and placement of controls displayed on top of a grid cell.   

Note The DefColWidth property controls the default width of new columns created at run time.   

WrapCellPointer Property

Syntax TDBGrid.WrapCellPointer = boolean
Read/Write at run time and design time.
Property applies to TDBGrid control.

Description This property determines the behavior of the arrow keys if AllowArrows is True.   
If True, the cell pointer will wrap from the last column to the first in the next row (or from the
first column to the last in the previous row).   
If False (the default), the cell pointer will not wrap to the next (or previous) row, but will stop at
the last (or first) column of the current row.   
If TabAcrossSplits is False, the cell pointer will wrap only within the current split.    If
TabAcrossSplits is True, the cell pointer will move from one split to the next before wrapping
occurs.   
If TabAction is set to 2 - Grid Navigation, the tab key will behave like the arrow keys, and will
automatically wrap to the next or previous cell.   

WrapText Property

Syntax object.WrapText = boolean
Read/Write at run time and design time.
Property applies to Column and Style objects.

Description This property returns or sets a value indicating whether an object word wraps text at cell
boundaries.   
If True, a line break occurs before words that would otherwise be partially displayed.   
If False (the default), no line break occurs and text is clipped at the cell's right edge.   
Use this property in conjunction with the RowHeight property to produce multiline displays.   
By default, the word wrap behavior of a column is determined by its Style property setting.   
Setting the WrapText property overrides the style setting without changing the definition of the
style itself.   
If the WrapText property of a column is changed to the same value as its corresponding style,
then the column will inherit its word wrap behavior from the style, and subsequent changes to
the style's WrapText property will affect the column as well.   
For Style objects, the value of the WrapText property is inherited from the parent style (if any)
unless explicitly overridden, in which case the aforementioned inheritance rules also apply.   

Method Reference
{button ,JI(`',`Quick_Reference_for_All_Methods')}    Quick Reference for All Methods
{button ,JI(`',`TDBGrid_Control_Methods')}    TDBGrid Control Methods
{button ,JI(`',`TDBDropDown_Control_Methods')}    TDBDropDown Control Methods
{button ,JI(`',`Column_Object_Methods')}    Column Object Methods
{button ,JI(`',`Layouts_Collection_Methods')}    Layouts Collection Methods
{button ,JI(`',`Columns_Collection_Methods')}    Columns Collection Methods
{button ,JI(`',`SelBookmarks_Collection_Methods')}    SelBookmarks Collection Methods
{button ,JI(`',`Split_Object_Methods')}    Split Object Methods
{button ,JI(`',`Splits_Collection_Methods')}    Splits Collection Methods
{button ,JI(`',`Style_Object_Methods')}    Style Object Methods
{button ,JI(`',`Styles_Collection_Methods')}    Styles Collection Methods
{button ,JI(`',`ValueItems_Collection_Methods')}    ValueItems Collection Methods

Quick Reference for All Methods
AboutBox Displays the About box
Add Adds a new item to a collection
AddCellStyle Adds a cell condition to an object
AddRegexCellStyle Adds a regular expression cell condition to an object
CaptureImage Returns a captured image of a control's display
CellText Returns displayed column text for any row
CellValue Returns underlying column value for any row
Clear Removes all value items from the collection
ClearCellStyle Removes a cell condition from an object
ClearFields Clears the current column/field layout
ClearRegexCellStyle Removes a regular expression cell condition from an object
ClearSelCols Deselects all selected columns in a split
Close Disconnects a grid from its data source
ColContaining Identifies a column under an X coordinate
Delete Deletes the current row and moves to the next row
GetBookmark Returns a bookmark relative to the current row
HoldFields Uses the current column/field layout for all displays
Item Returns a member of a collection given a name or index
LoadLayout Loads a saved layout
MoveFirst Moves to the first row
MoveLast Moves to the last row
MoveNext Moves to the next row
MovePrevious Moves to the previous row
MoveRelative Moves to the specified row and offset
PostMsg Posts a message to a control to fire the PostEvent event
ReBind Reinitializes a control from its data source
Refresh Updates a control's screen display
Remove Removes a member from a collection
ReOpen Reconnects a grid to its data source
Reset Resets style properties to inherited values
RowBookmark Returns the bookmark corresponding to a display row
RowContaining Identifies a row under a Y coordinate
RowTop Returns the Y position of a row's top border
Scroll Scrolls a control's data area
SplitContaining Identifies a split under an X, Y coordinate pair
Update Updates a grid's current row

TDBGrid Control Methods
AboutBox Displays the About box
AddCellStyle Adds a cell condition to a grid
AddRegexCellStyle Adds a regular expression cell condition to a grid
CaptureImage Returns a captured image of a grid's display
ClearCellStyle Removes a cell condition from a grid
ClearFields Clears the current column/field layout
ClearRegexCellStyle Removes a regular expression cell condition from a grid
ClearSelCols Deselects all selected columns in the current split
Close Disconnects a grid from its data source
ColContaining Identifies a column under an X coordinate
Delete Deletes the current row and moves to the next row
GetBookmark Returns a bookmark relative to the current row
HoldFields Uses the current column/field layout for all displays
LoadLayout Loads a saved layout
MoveFirst Moves to the first row
MoveLast Moves to the last row
MoveNext Moves to the next row
MovePrevious Moves to the previous row
MoveRelative Moves to the specified row and offset
PostMsg Posts a message to a grid to fire the PostEvent event
ReBind Reinitializes a grid from its data source
Refresh Updates a grid's screen display
ReOpen Reconnects a grid to its data source
RowBookmark Returns the bookmark corresponding to a display row
RowContaining Identifies a row under a Y coordinate
RowTop Returns the Y position of a row's top border
Scroll Scrolls a grid's data area
SplitContaining Identifies a split under an X, Y coordinate pair
Update Updates a grid's current row

TDBDropDown Control Methods
AboutBox Displays the About box
AddCellStyle Adds a cell condition to a dropdown
AddRegexCellStyle Adds a regular expression cell condition to a dropdown
CaptureImage Returns a captured image of a dropdown's display
ClearCellStyle Removes a cell condition from a dropdown
ClearFields Clears the current column/field layout
ClearRegexCellStyle Removes a regular expression cell condition from a dropdown
ClearSelCols Deselects all selected columns
ColContaining Identifies a column under an X coordinate
GetBookmark Returns a bookmark relative to the current row
HoldFields Uses the current column/field layout for all displays
PostMsg Posts a message to the dropdown to fire the PostEvent event
ReBind Reinitializes a dropdown from its data source
Refresh Updates a dropdown's screen display
RowBookmark Returns the bookmark corresponding to a display row
RowContaining Identifies a row under a Y coordinate
RowTop Returns the Y position of a row's top border
Scroll Scrolls a dropdown's data area

Column Object Methods
AddCellStyle Adds a cell condition to a column
AddRegexCellStyle Adds a regular expression cell condition to a column
CellText Returns displayed text for any row
CellValue Returns underlying value for any row
ClearCellStyle Removes a cell condition from a column
ClearRegexCellStyle Removes a regular expression cell condition from a column

Columns Collection Methods
Add Adds a new column to the collection
Item Returns a single column object given a name or index
Remove Removes an existing column from the collection

Layouts Collection Methods
Add Adds a new layout to the collection
Item Returns the name of a layout given an index
Remove Removes an existing layout from the collection

SelBookmarks Collection Methods
Add Adds a bookmark to the list of selected rows
Item Returns an individual selected row bookmark
Remove Removes a bookmark from the list of selected rows

Split Object Methods
AddCellStyle Adds a cell condition to a split
AddRegexCellStyle Adds a regular expression cell condition to a split
ClearCellStyle Removes a cell condition from a split
ClearRegexCellStyle Removes a regular expression cell condition from a split
ClearSelCols Deselects all selected columns in a split

Splits Collection Methods
Add Adds a new split at the given index
Item Returns a single split object given an index
Remove Removes the split with the given index

Style Object Methods
Reset Resets style properties to inherited values

Styles Collection Methods
Add Adds a new named style to the collection
Item Returns a single style object given a name or index
Remove Removes an existing style from the collection

ValueItems Collection Methods
Add Appends a new value item to the collection
Clear Removes all value items from the collection
Item Returns a single value item given an index
Remove Removes a value list item from the collection

AboutBox Method

Syntax object.AboutBox

Method applies to TDBGrid and TDBDropDown controls.
Arguments None
Return Value None
Description This method displays the version number and copyright notice for the specified control.   

Add Method

Syntax object.Add (item)
Method applies to Columns, Layouts, SelBookmarks, Splits, Styles, and ValueItems
collections.

Arguments item is an expression or object that specifies the member to add to the collection.   
Return Value A reference to the newly created object where appropriate, otherwise none.
Description For the Columns, Splits, and Styles collections, this method creates a new instance of the

appropriate object, adds it to the collection, and returns it to the caller.
For the Layouts, SelBookmarks, and ValueItems collections, this method adds the specified
object to the collection without returning a value.
The data type of the item argument depends on the collection.    For the Columns and Splits
collections, item is a zero-based integer denoting the index of the newly created column or split.
For the SelBookmarks collection, item is a variant representing a bookmark that identifies a
particular row.    Depending upon the setting of the DataMode property, item may have been
obtained from a bound data source, an unbound mode or application mode event, or an XArray
row index.
For the Styles collection, item is the unique name of the style to be created.
For the ValueItems collection, item is an independent ValueItem object.
For the Layouts collection, item is the name of a grid layout to be saved to the binary layout file
specified by the LayoutFileName property.    All of the grid's persistent properties are saved in
their current state.    If the named layout already exists in the file, the property settings are
overwritten.    If the named layout does not already exist, it is added to the file.

AddCellStyle Method

Syntax object.AddCellStyle condition, style
Method applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Arguments condition is a combination of one or more CellStyleConstants.   
style is a Style object that specifies font and color attributes.   

Return Value None
Description This method allows you to control the font and color of cells within a grid, column, or split

according to the status values (CellStyleConstants) specified by the condition argument:

1 - dbgCurrentCell The cell is the current cell as specified by the Bookmark, Col, and
Split properties.    At any given time, only one cell can have this
status.    When the MarqueeStyle property is set to 6 - Floating
Editor, this condition is ignored.

2 - dbgMarqueeRow The cell is part of a highlighted row marquee.    When the
MarqueeStyle property indicates that the entire current row is to be
highlighted, all visible cells in the current row have this additional
condition set.

4 - dbgUpdatedCell The cell contents have been modified by the user but not yet written
to the database.    This condition is also set when cell contents have
been modified in code with the Text or Value properties.   

8 - dbgSelectedRow The cell is part of a row selected by the user or in code.    The
SelBookmarks collection contains a bookmark for each selected
row.   

0 - dbgNormalCell The cell satisfies none of these conditions.   
You can add the first four values together to specify multiple cell conditions.    For example, a cell
status value of 9 (dbgCurrentCell + dbgSelectedRow) denotes a current cell within a selected
row.    You can also use a cell status value of 0 (dbgNormalCell) to refer to only those cells
without any of the four basic cell conditions.
The style argument specifies the attributes that will override the default font and color
characteristics for cells within an object.    For example, the following code causes updated cells
to be displayed in red:

Dim S As New TrueDBGrid50.Style
S.ForeColor = vbRed
TDBGrid1.AddCellStyle dbgUpdatedCell, S
Each time the AddCellStyle method is invoked, the specified cell condition is added to the list
of existing conditions.    Hence, by repeated use of this method it is possible to set up multiple
conditions to affect the appearance of a grid, column, or split.

Note If a cell condition already exists for a particular condition value, the new style setting replaces
the existing one.

AddRegexCellStyle Method

Syntax object.AddRegexCellStyle condition, style, regex
Method applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Arguments condition is a combination of one or more CellStyleConstants.   
style is a Style object that specifies font and color attributes.   
regex is a regular expression string.   

Return Value None
Description This method allows you to control the font and color of cells within a grid, column, or split

according to their contents.    The status values(CellStyle Constants) specified by the condition
argument determine which cells are affected:

1 - dbgCurrentCell The cell is the current cell as specified by the Bookmark, Col, and
Split properties.    At any given time, only one cell can have this
status.    When the floating editor MarqueeStyle property setting is
in effect, this condition is ignored.

2 - dbgMarqueeRow The cell is part of a highlighted row marquee.    When the
MarqueeStyle property indicates that the entire current row is to be
highlighted, all visible cells in the current row have this additional
condition set.

4 - dbgUpdatedCell The cell contents have been modified by the user but not yet written
to the database.    This condition is also set when cell contents have
been modified in code with the Text or Value properties.   

8 - dbgSelectedRow The cell is part of a row selected by the user or in code.    The
SelBookmarks collection contains a bookmark for each selected
row.   

0 - dbgNormalCell The cell satisfies none of these conditions.   

-1 - dbgAllCells All cells satisfy this condition.
You can add the first four values together to specify multiple cell conditions.    For example, a cell
status value of 9 (dbgCurrentCell + dbgSelectedRow) denotes a current cell within a selected
row.    You can also use a cell status value of 0 (dbgNormalCell) to refer to only those cells
without any of the four basic cell conditions.    To designate that a cell condition should apply to
all cells regardless of status, use a cell status value of -1 (dbgAllCells).
The regex argument is a regular expression string that describes the pattern matching to be
performed on cell contents.    The regular expressions supported by True DBGrid are a subset of
standard Unix regular expression syntax and are not compatible with the Visual Basic Like
operator.    The following special characters are supported:

p* Any pattern followed by an asterisk matches zero or more
occurrences of that pattern.    For example, ab*c matches ac, abc, and
abbcy (partial match).

p+ Any pattern followed by a plus sign matches one or more occurrences
of that pattern.    For example, ab+c matches abc and abbcy, but not
ac.

[list] A list of case-sensitive characters enclosed in brackets matches any
one of those characters in the given position in the string.    Character
ranges can be used, as in [abcd], which is equivalent to [a-d].   
Multiple ranges can also be used.    For example, [A-Za-z0-9] matches

any letter or digit.    Bracketed patterns can also be combined with
either the * or + operators.    The pattern [A-Z]+ matches a sequence
of one or more uppercase letters.

[^list] If a list starts with a caret, it matches any character except those
specified in the list.

. (period) A period represents any single character.

^p A caret at the beginning of a pattern forces a match to occur at the
start of a cell.    Otherwise, the pattern can match anywhere within a
cell.

p$ A dollar sign at the end of a pattern forces a match to occur at the
end of a cell.    Otherwise, the pattern can match anywhere within a
cell.

\c Any character preceded by a backslash represents itself, unless
enclosed in brackets, in which case the backslash is interpreted
literally.

Any other character represents itself and will be compared with respect to case.
The style argument specifies the attributes that will override the default font and color
characteristics for cells within an object.    For example, the following code causes normal cells
containing the letters "SQL" to be displayed in bold:

Dim S As New TrueDBGrid50.Style
S.Font.Bold = True
TDBGrid1.AddRegexCellStyle dbgNormalCell, S, "SQL"
Each time the AddRegexCellStyle method is invoked, the specified cell condition is added to
the list of existing conditions.    Hence, by repeated use of this method it is possible to set up
multiple conditions to affect the appearance of a grid, column, or split.

Note If a cell condition already exists for a particular pair of condition and regex values, the new style
setting replaces the existing one.

CaptureImage Method

Syntax object.CaptureImage

Method applies to TDBGrid and TDBDropDown controls.
Arguments None
Return Value A picture object containing a snapshot of the control's display.   
Description This method returns an image of the grid in a format that you can assign to the Picture

property of a Visual Basic form or control, or the PaintPicture method of the Printer object.   

CellText Method

Syntax column.CellText (bookmark)
Method applies to Column object.

Arguments bookmark is a variant representing a grid row.   
Return Value A string containing the displayed column text for the specified row.   
Description The CellText method returns a formatted string representation of the data in a column for the

row specified by the bookmark argument.    Using the CellText method is similar to accessing
the Text property, except that you can select a specific row from which to retrieve the value.   
The value returned by the CellText method is derived from the underlying data value by
applying the formatting as specified by the NumberFormat property of the Column object.   
Using the CellText method to extract information from a cell doesn't affect the current
selection.
Use the CellValue method to access the unformatted data value for the specified row.   

CellValue Method

Syntax column.CellValue (bookmark)
Method applies to Column object.

Arguments bookmark is a variant representing a grid row.   
Return Value A variant containing the underlying data value for the specified row.   
Description The CellValue method returns the raw data value in a column for the row specified by the

bookmark argument.    Using the CellValue method is similar to accessing the Value property,
except that you can select a specific row from which to retrieve the value.   
Using the CellValue method to extract information from a cell doesn't affect the current
selection.   
Use the CellText method to access the formatted data value for the specified row.   

Clear Method

Syntax valueitems.Clear

Method applies to ValueItems collection.
Arguments None
Return Value None
Description The Clear method removes all ValueItem objects from a ValueItems collection associated with

a Column object.

ClearCellStyle Method

Syntax object.ClearCellStyle condition
Method applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Arguments condition is a combination of one or more CellStyleConstants.   
Return Value None
Description The ClearCellStyle method removes a cell condition established with a previous call to the

AddCellStyle method for the object in question.    If no such cell condition exists, then calling
this method has no effect.
If the condition argument is -1 (dbgAllCells), then all non-regex cell conditions are removed,
regardless of status.

ClearFields Method

Syntax object.ClearFields

Method applies to TDBGrid and TDBDropDown controls.
Arguments None
Return Value None
Description The ClearFields method restores the default grid layout (with two blank columns) so that

subsequent ReBind operations will automatically derive new column bindings from the (possibly
changed) data source.    You can cancel the grid's automatic layout behavior by invoking the
HoldFields method.

ClearRegexCellStyle Method

Syntax object.ClearRegexCellStyle condition [, regex]
Method applies to TDBGrid and TDBDropDown controls, Column and Split objects.

Arguments condition is a combination of one or more CellStyleConstants.   
regex is an optional regular expression string.   

Return Value None
Description The ClearRegexCellStyle method removes a cell condition established with a previous call to

the AddRegexCellStyle method for the object in question.    If no such cell condition exists,
then calling this method has no effect.
If regex is omitted, then all cell conditions for any regular expression matching the condition
argument are removed.    If condition is -1 (dbgAllCells), then all regex cell conditions are
removed, regardless of status or expression.
If regex is supplied, then the single cell condition matching both arguments is removed.   
However, if condition is -1 (dbgAllCells), then all cell conditions for the specified regular
expression are removed, regardless of status.

ClearSelCols Method

Syntax object.ClearSelCols

Method applies to TDBGrid and TDBDropDown controls, Split object.
Arguments None
Return Value None
Description The ClearSelCols method deselects all columns in a split.    If no columns are selected, then this

method does nothing.   
If a grid contains multiple splits, then invoking its ClearSelCols method has the same effect as
invoking the ClearSelCols method for the current split.    The index of the current split is
available through the TDBGrid control's Split property.   
Use the SelStartCol and SelEndCol properties to determine the current column selection
range for a split.   

Close Method

Syntax TDBGrid.Close [repaint]
Method applies to TDBGrid control.

Arguments repaint is an optional boolean that determines whether the grid should clear its display.
Return Value None
Description The Close method disconnects the grid from the data source.    The optional repaint argument

instructs the grid whether or not to "clear" the grid of data.    If repaint is True (the default if not
specified), the grid is cleared of all data; if repaint is False, the data currently on display at the
time of the close remains, but the grid's user interface is disabled so that no operations can be
performed on the grid.    All database related coding operations (such as MoveNext,
MovePrevious) will return data access errors until the connection is re-established with any of
the following methods: ReBind, Refresh, or ReOpen.
Passing a value of False to the Close method is useful when operations are performed that
would otherwise "flicker" the display.
The data source connection is automatically reopened whenever the grid's ReBind, Refresh. or
ReOpen methods are executed.    The grid will be repopulated with data and the appropriate row
will be made current.    Care should be taken when using ReBind or ReOpen with unbound
grids, as these operations assume the current row bookmark still exists.
In the case of a bound grid, Close allows database operations to be performed without
interference from the grid.    For example, closing the grid and closing the Recordset and
Database objects associated with the Data control:

TDBGrid1.Close
Data1.Recordset.Close
Data1.Database.Close
would allow database operations which manipulate the database files (such as pack or copy) to
be performed.
The Close method can also be used to temporarily disconnect a grid from its data source when
many notification-generating operations need to be performed.    For example, if your application
contains a loop that deletes all of the selected records in a grid, you can first Close (disconnect)
the grid as follows:

TDBGrid1.Close False
so that no notifications will be processed by the grid.    Otherwise, the grid will show every row
movement and deletion as the records are deleted.    The False argument tells the grid not to
repaint the screen, which has the effect of leaving the grid display unchanged.    When the
record delete operations are completed, perform a grid ReOpen (or ReBind) to reconnect and
repaint the grid with the remaining (undeleted) records.    This technique is also useful for
RDC/RDO where clones are not available.

ColContaining Method

Syntax object.ColContaining (coordinate)
Method applies to TDBGrid and TDBDropDown controls.

Arguments coordinate is a single that defines a horizontal coordinate (X value) in twips.   
Return Value An integer corresponding to the index of the column beneath the specified X coordinate.   
Description The ColContaining method returns the ColIndex value of the grid column containing the

specified coordinate.    This value ranges from 0 to Columns.Count - 1.
This method is useful when working with mouse and drag events when you are trying to
determine where the user clicked or dropped another control in terms of a grid column.   
If coordinate is outside of the grid's data area, this method returns -1.   
The ColContaining method returns the ColIndex of the column indicated, not the visible
column position.    For example, if coordinate falls within the first visible column, but two columns
have been scrolled off the left side of the control, the ColContaining method returns 2, not 0
(assuming that the user did not move any columns previously).

Note You must convert the coordinate argument to twips, even if the container's ScaleMode setting
specifies a different unit of measurement.

Delete Method

Syntax TDBGrid.Delete

Method applies to TDBGrid control.
Arguments None
Return Value None
Description The Delete method deletes the current record, then automatically moves to the next available

record.    If the last record is deleted, then EOF becomes the current position.

GetBookmark Method

Syntax object.GetBookmark (offset)
Method applies to TDBGrid and TDBDropDown controls.

Arguments offset is a long integer that defines the target row relative to the current row.   
Return Value A variant containing a bookmark relative to the current row as specified by offset.   
Description The GetBookmark method returns a bookmark for a row relative to the current row, which need

not be visible.   
If offset is 0, this method returns the bookmark of the current row.    The value returned will be
the same as that returned by the Bookmark property.   
If offset is 1, this method returns the bookmark of the row following the current row.    Similarly, if
offset is -1, this method returns the bookmark of the row preceding the current row.   
If offset is an arbitrary integer N, this method returns the bookmark of the Nth row following the
current row if N is positive, or preceding the current row if N is negative.   
If offset targets a row after the last available record or before the first available record, then this
method returns Null.

Note Do not confuse the GetBookmark method with the RowBookmark method, which can only
return bookmarks for visible rows.   

HoldFields Method

Syntax object.HoldFields

Method applies to TDBGrid and TDBDropDown controls.
Arguments None
Return Value None
Description The HoldFields method sets the current column/field layout as the customized layout so that

subsequent ReBind operations will use the current layout for display.    You can resume the
grid's automatic layout behavior by invoking the ClearFields method.
The HoldFields method is especially useful in the unbound modes when you have specified the
column layout in code and would like to keep it intact after a ReBind operation.

Item Method

Syntax object.Item (index)
Method applies to Columns, SelBookmarks, Splits, Styles, and ValueItems collections.

Arguments index is an expression that specifies the collection member to be accessed.   
Return Value A reference to the specified object.
Description Use the Item method to access a specific member of a True DBGrid collection.

All collections accept a zero-based index argument.    The Columns and Styles collections also
accept named arguments.

Note The Item method is not required.    The following expressions are equivalent:

TDBGrid1.Columns(0)
TDBGrid1.Columns.Item(0)

LoadLayout Method

Syntax TDBGrid.LoadLayout

Method applies to TDBGrid control.
Arguments None
Return Value None
Description The LoadLayout method loads a previously saved grid layout (as specified in the LayoutName

property) from a binary layout storage file (as specified in the LayoutFileName property), and
configures the grid accordingly.    Before calling this method, you must set the LayoutFileName
and LayoutName properties to valid values.    You can use this method to easily change the grid
layout at run time.
To save the current grid layout to a binary layout storage file, use the Add method of the
Layouts collection.    To remove a named layout from a binary layout storage file, use the
Remove method of the Layouts collection.

MoveFirst Method

Syntax TDBGrid.MoveFirst

Method applies to TDBGrid control.
Arguments None
Return Value None
Description The MoveFirst method operates like its Recordset counterpart; it moves the current record to

the first record available.

MoveLast Method

Syntax TDBGrid.MoveLast

Method applies to TDBGrid control.
Arguments None
Return Value None
Description The MoveLast method operates like its Recordset counterpart; it moves the current record to

the last record available.

MoveNext Method

Syntax TDBGrid.MoveNext

Method applies to TDBGrid control.
Arguments None
Return Value None
Description The MoveNext method operates like its Recordset counterpart; it moves the current record to

the next record available.

MovePrevious Method

Syntax TDBGrid.MovePrevious

Method applies to TDBGrid control.
Arguments None
Return Value None
Description The MovePrevious method operates like its Recordset counterpart; it moves the current

record to the previous record available.

MoveRelative Method

Syntax TDBGrid.MoveRelative offset [, bookmark]
Method applies to TDBGrid control.

Arguments offset is a long integer that specifies the number of records to move.    A positive value indicates
forward movement; a negative value indicates backward movement.
bookmark is an optional variant that specifies the origin of the relative movement.    If not
specified, the current record is assumed.

Return Value None
Description The MoveRelative method operates like the Move method of the Recordset object; it moves

the current record offset rows relative to the specified bookmark.

PostMsg Method

Syntax object.PostMsg MsgId
Method applies to TDBGrid and TDBDropDown controls.

Arguments MsgId is an integer that identifies the message being posted.
Return Value None
Description The PostMsg method is used in conjunction with the PostEvent event to postpone operations

which are illegal within the grid's events.    If the PostMsg method is called, the grid will fire the
PostEvent event with the MsgId of the corresponding PostMsg invocation after all pending
operations are completed.    You can then safely perform all desired operations in the PostEvent
event.
For example, it is not possible to perform the Data control's Refresh method within the grid's
AfterUpdate event because database operations are still pending, and the refresh cannot be
tolerated.    Instead of performing the refresh in the AfterUpdate event, you can call the
PostMsg method (with a MsgId value of 1, for instance).    After all pending database operations
are completed, the grid will fire the PostEvent event.    You can then perform the refresh
operation safely in this event, after confirming that the MsgId argument passed in is 1.
You can use any non-zero integral value for MsgId, which will be passed to the PostEvent event
for identification purposes.
The special case where MsgId is zero is used to clear any pending PostMsg invocations which
have not yet been processed.    A PostEvent event will fire for this case.

Note Take care to avoid recursive situations when using PostMsg and PostEvent.

ReBind Method

Syntax object.ReBind

Method applies to TDBGrid and TDBDropDown controls.
Arguments None
Return Value None
Description This method re-establishes the connection with the bound data source, causing the TDBGrid

control to perform the same operations that occur when you set the DataSource property at
design time.   
If you have not modified the grid columns at design time, then executing the ReBind method
will reset the columns, headings, and other properties based on the current data source.   
However, if you have altered the columns in any way at design time (even if you leave the
DataField properties blank), then the grid will assume that you wish to maintain the modified
grid layout and will not automatically reset the columns.   
For an unbound grid with its DataMode property set to 2 - Unbound Extended or 3 - Application,
this method discards all data and fires the UnboundReadDataEx or ClassicRead event to refill
the grid with records from the unbound data source.    After the grid has finished refilling its
cache, it fires the FirstRowChange and RowColChange events.   
For an unbound grid with its DataMode property set to 1 - Unbound, this method is similar to
the Refresh method except that the grid attempts to restore the current and topmost rows.   

Note To force the grid to reset the column bindings even if the columns were modified at design time,
invoke the ClearFields method immediately before ReBind.    Conversely, to cancel the grid's
automatic layout response and force the grid to use the current column/field layout, invoke the
HoldFields method immediately before ReBind.
The HoldFields method is especially useful in the unbound modes when you have specified the
column layout in code and would like to keep it intact after a ReBind operation.

Refresh Method

Syntax object.Refresh

Method applies to TDBGrid and TDBDropDown controls.
Arguments None
Return Value None
Description For a bound grid (one with its DataMode property set to 0) and an unbound grid with its

DataMode property set to 2 - Unbound Extended or 3 - Application, this method simply forces
the entire grid to be repainted.    Database access may or may not occur in these cases.   
For an unbound grid one with its DataMode property set to 1 - Unbound, this method discards
all data and fires the UnboundReadData event to refill the grid with records from the unbound
data source.    After the grid has finished refilling its cache, it fires the FirstRowChange and
RowColChange events.   

Note To force a bound grid to discard all of its data and refetch records from the database, use the
Data control's Refresh method.   
If the grid's data source has been disconnected with the Close method, calling Refresh will
implicitly ReOpen the data source and set the current row to the first available row.

Remove Method

Syntax object.Remove (index)
Method applies to Columns, Layouts, SelBookmarks, Splits, Styles, and ValueItems
collections.

Arguments index is an expression that specifies the collection member to be removed.   
Return Value None
Description Use the Remove method to delete a specific member of a True DBGrid collection.

All collections accept a zero-based index argument.    The Columns and Styles collections also
accept named arguments.

ReOpen Method

Syntax TDBGrid.ReOpen [bookmark]
Method applies to TDBGrid control.

Arguments bookmark is an optional variant that specifies the row to position to immediately after the data
source is reopened.    If specified, it must be a valid bookmark.

Return Value None
Description The ReOpen method reconnects the grid to its data source.    The grid is repopulated and the

current row is positioned to the row identified by the optional bookmark argument.    If bookmark
is not specified, then the current row reflects the current row of the data source.
In unbound mode, if the current row needs to be changed after the ReOpen operation, you can
significantly reduce the number of UnboundReadData (or UnboundReadDataEx) events that
fire by specifying the optional bookmark argument.

Note If ReOpen is called while the grid is still connected to its data source, the grid implicitly
performs a Close first:

TDBGrid1.Close False
The optional bookmark is honored as usual when the data source is reopened.

Reset Method

Syntax style.Reset

Method applies to Style object.
Arguments None
Return Value None
Description This method causes a style to inherit all of its properties from its parent style.   

RowBookmark Method

Syntax object.RowBookmark (rownumber)
Method applies to TDBGrid and TDBDropDown controls.

Arguments rownumber is an integer denoting a displayed row.   
Return Value A variant containing a bookmark corresponding to the display row specified by rownumber.   
Description The RowBookmark method returns a bookmark for a visible row relative to the first displayed

row.   
If rownumber is 0, this method returns the bookmark of the first displayed row.    The value
returned will be the same as that returned by the FirstRow property.   
Allowable values for the rownumber argument range from 0 to VisibleRows - 1.   
This method only returns the current row (as determined by the grid's Bookmark property) if
the current row is visible and the rownumber argument is equal to the grid's Row property.   

Note Do not confuse the RowBookmark method with the GetBookmark method, which returns a
bookmark relative to the current row, even if the row is not visible.   

RowContaining Method

Syntax object.RowContaining (coordinate)
Method applies to TDBGrid and TDBDropDown controls.

Arguments coordinate is a single that defines a vertical coordinate (Y value) in twips.   
Return Value An integer corresponding to the display row beneath the specified Y coordinate.   
Description The RowContaining method returns the zero-based index of the display row containing the

specified coordinate.    This value ranges from 0 to VisibleRows - 1.   
When handling mouse and drag events, this method is useful when you need to determine
where the user clicked or dropped another control in terms of a grid row.   
If coordinate is outside of the grid's data area, this method returns -1.   

Note You must convert the coordinate argument to twips, even if the container's ScaleMode setting
specifies a different unit of measurement.

RowTop Method

Syntax object.RowTop (rownumber)
Method applies to TDBGrid and TDBDropDown controls.

Arguments rownumber is an integer denoting a displayed row.   
Return Value A single corresponding to the Y position of the specified display row, based on the coordinate

system of the grid's container.   
Description The RowTop method returns the Y coordinate of the top of a visible row relative to the top of the

grid, as given by the grid's Top property.
Allowable values for the rownumber argument range from 0 to VisibleRows - 1.   
Use the RowTop method in conjunction with RowHeight, Left, and Width to determine the
size and placement of controls displayed on top of a grid cell.   

Scroll Method

Syntax object.Scroll coloffset, rowoffset
Method applies to TDBGrid and TDBDropDown controls.

Arguments coloffset is a long integer denoting the number of columns to scroll and the direction in which to
scroll them.   
rowoffset is a long integer denoting the number of rows to scroll and the direction in which to
scroll them.   

Return Value None
Description This method scrolls the grid horizontally and vertically in a single operation.   

Positive offsets scroll right and down.    Negative offsets scroll left and up.    Column offsets that
are out of range cause a trappable error.    Row offsets that are out of range scroll to the
beginning or end of the database.   
The same effect can be achieved by setting the LeftCol and FirstRow properties, but these
must be set independently.   

SplitContaining Method

Syntax TDBGrid.SplitContaining (x, y)
Method applies to TDBGrid control.

Arguments x and y are singles that define a coordinate pair in twips.   
Return Value An integer corresponding to the index of the split beneath the specified coordinate pair.   
Description The SplitContaining method returns the Index value of the split containing the specified

coordinate pair.    This value ranges from 0 to Splits.Count - 1.
This method is useful when working with mouse and drag events when you are trying to
determine where the user clicked or dropped another control in terms of a grid column.   
If either argument is outside of the grid's data area, this method returns -1.

Note You must convert the x and y arguments to twips, even if the container's ScaleMode setting
specifies a different unit of measurement.

Update Method

Syntax TDBGrid.Update

Method applies to TDBGrid control.
Arguments None
Return Value None
Description This methods forces data from the current row to be updated to the underlying database.    It

applies to both a bound grid and an unbound grid.

Event Reference
{button ,JI(`',`Quick_Reference_for_All_Events')}    Quick Reference for All Events
{button ,JI(`',`TDBGrid_Control_Events')}    TDBGrid Control Events
{button ,JI(`',`TDBDropDown_Control_Events')}    TDBDropDown Control Events

Quick Reference for All Events
AfterColEdit Fired after column data is edited
AfterColUpdate Occurs after data moves from cell to the grid buffer
AfterDelete Occurs after record deletion from grid
AfterInsert Occurs after record insertion in grid
AfterUpdate Occurs after record changes are written to the database
BeforeColEdit Fired upon an attempt to edit column data
BeforeColUpdate Occurs before data moves from cell to the grid buffer
BeforeDelete Occurs before record deletion from grid
BeforeInsert Occurs before record insertion in grid
BeforeUpdate Occurs before record changes are written to the database
ButtonClick Occurs when a column button has been clicked
Change Occurs when the grid contents have changed
ClassicAdd Fired when a new row is added to the unbound dataset
ClassicDelete Fired when an unbound row needs to be deleted
ClassicRead Fired when the control requires unbound data for display
ClassicWrite Fired when an unbound row needs to be modified
Click Fired when a mouse click occurs
ColEdit Fired when column data is edited
ColMove Occurs before repainting when columns are moved
ColResize Occurs before repainting when a column is resized
ComboSelect Fired when the user selects a ValueItems combo entry
DblClick Fired when a mouse double click occurs
DragCell Fired when a drag operation is initiated
DropDownClose Fired when the dropdown is closed
DropDownOpen Fired when the dropdown is displayed
Error Occurs when an associated action fails
FetchCellStyle Fired when the FetchStyle property is True for a column
FetchCellTips Fired when the CellTips property is set to True
FetchRowStyle Fired when the FetchRowStyle property is set to True
FirstRowChange Fired when the FirstRow property changes
FormatText Fired when specified by the NumberFormat property
HeadClick Occurs when a column header has been clicked
KeyDown Occurs when a key is pressed
KeyPress Occurs when an ANSI key is pressed and released
KeyUp Occurs when a key is released
LeftColChange Fired when the LeftCol property changes
MouseDown Occurs when a mouse button is pressed
MouseMove Occurs when the mouse moves
MouseUp Occurs when a mouse button is released
OnAddNew Fired when a user action causes an AddNew operation
Paint Fired when a control repaints itself
PostEvent Occurs after a PostMsg method is called
RowChange Occurs when a different row becomes current
RowColChange Occurs when a different cell becomes current
RowResize Occurs when rows are resized
Scroll Occurs when a control is scrolled using the scroll bars
SelChange Occurs when the current selected cell range changes
SplitChange Occurs when a different split becomes current
UnboundAddData Fired when a new row is added to the unbound dataset
UnboundColumnFetch Fetches unbound column data when a control is bound
UnboundDeleteRow Fired when an unbound row needs to be deleted
UnboundFindData Fired when the dropdown needs to find a row
UnboundGetRelativeBookmark Fired when the control needs a relative bookmark

UnboundReadData Fired when the control requires unbound data for display
UnboundReadDataEx Fired when the control requires unbound data for display
UnboundWriteData Fired when an unbound row needs to be modified
ValueItemError Fired when invalid data is typed into a ValueItems column

TDBGrid Control Events
AfterColEdit Fired after column data is edited
AfterColUpdate Occurs after data moves from cell to the grid buffer
AfterDelete Occurs after record deletion from grid
AfterInsert Occurs after record insertion in grid
AfterUpdate Occurs after record changes are written to the database
BeforeColEdit Fired upon an attempt to edit column data
BeforeColUpdate Occurs before data moves from cell to the grid buffer
BeforeDelete Occurs before record deletion from grid
BeforeInsert Occurs before record insertion in grid
BeforeUpdate Occurs before record changes are written to the database
ButtonClick Occurs when a column button has been clicked
Change Occurs when the grid contents have changed
ClassicAdd Fired when a new row is added to the unbound dataset
ClassicDelete Fired when an unbound row needs to be deleted
ClassicRead Fired when the grid requires unbound data for display
ClassicWrite Fired when an unbound row needs to be modified
Click Fired when a mouse click occurs
ColEdit Fired when column data is edited
ColMove Occurs before grid repainting when columns are moved
ColResize Occurs before grid repainting when a column is resized
ComboSelect Fired when the user selects a ValueItems combo entry
DblClick Fired when a mouse double click occurs
DragCell Fired when a drag operation is initiated
Error Occurs when an associated action fails
FetchCellStyle Fired when the FetchStyle property is True for a column
FetchCellTips Fired when the CellTips property is set to True
FetchRowStyle Fired when the FetchRowStyle property is set to True
FirstRowChange Fired when the FirstRow property changes
FormatText Fired when specified by the NumberFormat property
HeadClick Occurs when a column header has been clicked
KeyDown Occurs when a key is pressed
KeyPress Occurs when an ANSI key is pressed and released
KeyUp Occurs when a key is released
LeftColChange Fired when the LeftCol property changes
MouseDown Occurs when a mouse button is pressed
MouseMove Occurs when the mouse moves
MouseUp Occurs when a mouse button is released
OnAddNew Fired when a user action causes an AddNew operation
Paint Fired when the grid repaints itself
PostEvent Occurs after a PostMsg method is called
RowColChange Occurs when a different cell becomes current
RowResize Occurs when rows are resized
Scroll Occurs when the grid is scrolled using the scroll bars
SelChange Occurs when the current selected cell range changes
SplitChange Occurs when a different split becomes current
UnboundAddData Fired when a new row is added to the unbound dataset
UnboundColumnFetch Fetches unbound column data when the grid is bound
UnboundDeleteRow Fired when an unbound row needs to be deleted
UnboundGetRelativeBookmark Fired when the grid needs a relative bookmark
UnboundReadData Fired when the grid requires unbound data for display
UnboundReadDataEx Fired when the grid requires unbound data for display
UnboundWriteData Fired when an unbound row needs to be modified
ValueItemError Fired when invalid data is typed into a ValueItems column

TDBDropDown Control Events
ClassicRead Fired when the dropdown needs unbound data for display
Click Fired when a mouse click occurs
ColMove Occurs before repainting when columns are moved
ColResize Occurs before repainting when a column is resized
DblClick Fired when a mouse double click occurs
DragCell Fired when a drag operation is initiated
DropDownClose Fired when the dropdown is closed
DropDownOpen Fired when the dropdown is displayed
Error Occurs when an associated action fails
FetchCellStyle Fired when the FetchStyle property is True for a column
FirstRowChange Fired when the FirstRow property changes
FormatText Fired when specified by the NumberFormat property
HeadClick Occurs when a column header has been clicked
KeyDown Occurs when a key is pressed
KeyPress Occurs when an ANSI key is pressed and released
KeyUp Occurs when a key is released
LeftColChange Fired when the LeftCol property changes
MouseDown Occurs when a mouse button is pressed
MouseMove Occurs when the mouse moves
MouseUp Occurs when a mouse button is released
Paint Fired when the dropdown repaints itself
PostEvent Occurs after a PostMsg method is called
RowChange Occurs when a different row becomes current
RowResize Occurs when rows are resized
Scroll Occurs when the dropdown is scrolled with the scroll bars
SelChange Occurs when the current selected cell range changes
UnboundColumnFetch Fetches unbound column data when the control is bound
UnboundFindData Fired when the dropdown needs to find a row
UnboundGetRelativeBookmark Fired when the dropdown needs a relative bookmark
UnboundReadData Fired when the dropdown needs unbound data for display
UnboundReadDataEx Fired when the dropdown needs unbound data for display
ValueItemError Fired when invalid data is typed into a ValueItems column

AfterColEdit Event

Syntax TDBGrid_AfterColEdit (ByVal ColIndex As Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column that was edited.   
Description The AfterColEdit event occurs after editing is completed in a grid cell.   

When the user completes editing within a grid cell, as when tabbing to another column in the
same row, pressing the ENTER key, or clicking on another cell, the BeforeColUpdate and
AfterColUpdate events are executed, and data from the cell is moved to the grid's copy buffer. 
The AfterColEdit event immediately follows the AfterColUpdate event.   
When editing is completed in a grid cell, this event is always triggered, even if no changes were
made to the cell or the BeforeColUpdate event was canceled.   
The AfterColEdit event will not be fired if the BeforeColEdit event is canceled.   

AfterColUpdate Event

Syntax TDBGrid_AfterColUpdate (ByVal ColIndex As Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column that was updated.   
Description The AfterColUpdate event occurs after data is moved from a cell to the grid's internal copy

buffer.   
When the user completes editing within a grid cell, as when tabbing to another column in the
same row, pressing the ENTER key, or clicking on another cell, the BeforeColUpdate event is
executed, and unless canceled, data from the cell is moved to the grid's copy buffer.    Once
moved, the AfterColUpdate event is executed.   
The AfterColUpdate event occurs after the BeforeColUpdate event, and only if the Cancel
argument in the BeforeColUpdate event is not set to True.   
Once the AfterColUpdate event procedure begins, the cell data has already been moved to the
grid's copy buffer and can't be canceled, but other updates can occur before the data is
committed to the Recordset.

AfterDelete Event

Syntax TDBGrid_AfterDelete ()
Event applies to TDBGrid control.

Arguments None
Description The AfterDelete event occurs after the user deletes a selected record from the grid.   

When the user selects a record selector in the grid and presses DEL or CTRL+X, the BeforeDelete
event is executed, and unless canceled, the row is deleted.    Once the row is deleted, the
AfterDelete event is executed.   
While the AfterDelete event procedure is executing, the bookmark of the deleted row is
available in the collection provided by the SelBookmarks property.   
The AfterDelete event cannot be canceled.    It is fired in both bound and unbound modes.   

AfterInsert Event

Syntax TDBGrid_AfterInsert ()
Event applies to TDBGrid control.

Arguments None
Description The AfterInsert event occurs after the user inserts a new record into the grid.    It can be used

to update other tables or to perform post-update cleanup of other controls.   
When the user selects the AddNew row (the last row in the grid) and enters a character in one of
the cells, the BeforeInsert event is executed, and unless canceled, the row is scrolled up one
line and its record selector changes to show that it has been modified.    However, a new row has
not yet been added to the database.   
Once the user commits the new row by moving to another row within the grid, the
BeforeUpdate event is triggered, followed by the AfterUpdate and AfterInsert events.    If
the BeforeUpdate event is canceled, then the AfterUpdate and AfterInsert events will not
be fired.   
When the AfterInsert event is triggered, the record has already been added to the database.   
The Bookmark property can be used to access the new record.   
The AfterInsert event cannot be canceled.    It is fired in both bound and unbound modes.   

AfterUpdate Event

Syntax TDBGrid_AfterUpdate ()
Event applies to TDBGrid control.

Arguments None
Description The AfterUpdate event occurs after changed data has been written to the database from the

grid.   
When the user moves to another row, or the Update method of the grid or Recordset object is
executed, data is moved from the grid's copy buffer to the Data control's copy buffer and written
to the database.    Once the write operation is complete, the AfterUpdate event is triggered.   
The Bookmark property can be used to access the updated record.   
The AfterUpdate event cannot be canceled.    It is fired in both bound and unbound modes.   

BeforeColEdit Event

Syntax TDBGrid_BeforeColEdit (ByVal ColIndex As Integer, ByVal KeyAscii As Integer, Cancel As
Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column about to be edited.   
KeyAscii is an integer representing the ANSI key code of the character typed by the user to
initiate editing, or 0 if the user initiated editing by clicking the mouse.    KeyAscii is passed by
value, not by reference; you cannot change its value to initiate editing with a different character.
Cancel is an integer that may be set to True to prevent the user from editing the cell.   

Description The BeforeColEdit event occurs just before the user enters edit mode by typing a character.    If
a floating editor marquee is not in use, this event also occurs when the user clicks the current
cell or double clicks another cell.   
If your event procedure sets the Cancel argument to True, the cell will not enter edit mode.   
Otherwise, the ColEdit event is fired immediately, followed by the Change and KeyUp events
for the KeyAscii argument, if non-zero.   
Use this event to control the editability of cells on a per-cell basis, or to translate the initial
keystroke into a default value.   

Note The KeyAscii argument can only be 0 if a floating editor marquee is not in use.   

BeforeColUpdate Event

Syntax TDBGrid_BeforeColUpdate (ByVal ColIndex As Integer, OldValue As Variant, Cancel As Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column about to be updated.   
OldValue is a variant containing the original data.   
Cancel is an integer that may be set to True to prevent the update from occurring.   

Description The BeforeColUpdate event occurs after editing is completed in a cell, but before data is
moved from the cell to the grid's internal copy buffer.   
The data specified by the OldValue argument moves from the cell to the grid's copy buffer when
the user completes editing within a cell, as when tabbing to another column in the same row,
pressing the ENTER key, or clicking on another cell.    Before the data has been moved from the
cell into the grid's copy buffer, the BeforeColUpdate event is triggered.    This event gives your
application an opportunity to check the individual grid cells before they are committed to the
grid's copy buffer.   
If your event procedure sets the Cancel argument to True, the previous value is restored in the
cell, the grid retains focus, and the AfterColUpdate event is not triggered.    You can also
change the current cell text by setting OldValue to the value you want to display (other than the
previous value).
To restore OldValue in the cell and permit the user to move focus off of the cell, set Cancel to
False and set the cell to OldValue as follows:

Cancel = False
TDBGrid1.Columns(ColIndex).Value = OldValue
Setting the Cancel argument to True prevents the user from moving focus away from the control
until the application determines that the data can be safely moved back to the grid's copy
buffer.   

BeforeDelete Event

Syntax TDBGrid_BeforeDelete (Cancel As Integer)
Event applies to TDBGrid control.

Arguments Cancel is an integer that may be set to True to prevent the deletion from occurring.   
Description The BeforeDelete event occurs before a selected record is deleted from the grid.   

When the user selects a record selector in the grid and presses DEL or CTRL+X, the BeforeDelete
event is triggered to give your application a chance to override the user's action.   
If your event procedure sets the Cancel argument to True, the row is not deleted.    Otherwise,
the grid deletes the row and triggers the AfterDelete event.   
The bookmark of the row selected for deletion is available in the collection provided by the
SelBookmarks property.   

Note If more than one row is selected, the error message Cannot delete multiple rows is displayed,
and the BeforeDelete event will not be fired.   

BeforeInsert Event

Syntax TDBGrid_BeforeInsert (Cancel As Integer)
Event applies to TDBGrid control.

Arguments Cancel is an integer that may be set to True to prevent the insertion from occurring.   
Description The BeforeInsert event occurs before a new record is added from the grid.   

When the user selects the AddNew row (the last row in the grid) and enters a character in one of
the cells, the BeforeInsert event is triggered to give your application a chance to override the
user's action.   
If your event procedure sets the Cancel argument to True, no insertion takes place and the cell is
cleared.    Otherwise, the AddNew row is scrolled up one line and its record selector changes to
show that it has been modified.    However, a new row has not yet been added to the database.   
Once the user commits the new row by moving to another row within the grid, the
BeforeUpdate event is triggered, followed by the AfterUpdate and AfterInsert events.    If
the BeforeUpdate event is canceled, then the AfterUpdate and AfterInsert events will not
be fired.   

BeforeUpdate Event

Syntax TDBGrid_BeforeUpdate (Cancel As Integer)
Event applies to TDBGrid control.

Arguments Cancel is an integer that may be set to True to prevent the update from occurring.   
Description The BeforeUpdate event occurs before data is moved from the grid's internal copy buffer to

the Data control's copy buffer and then written to the database.   
When the user moves to another row, or the Update method of the grid or Recordset object is
executed, data is moved from the grid's copy buffer to the Data control's copy buffer and then
written to the database.
Just before the data is moved from the grid's copy buffer back into the Data control's copy
buffer, the BeforeUpdate event is triggered.    Unless the copy operation is canceled, the
AfterUpdate event is triggered after the data has been moved back into the Data control's
copy buffer and written to the database.   
The Bookmark property can be used to access the updated record.   
If your event procedure sets the Cancel argument to True, focus remains on the control, the
AfterUpdate event is not triggered, and the record is not saved to the database.   
You can use this event to validate data in a record before permitting the user to commit the
change to the Data control's copy buffer.    Setting the Cancel argument to True prevents the
user from moving focus to another control until the application determines whether the data can
be safely moved back to the Data control's copy buffer.

ButtonClick Event

Syntax TDBGrid_ButtonClick (ByVal ColIndex As Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column whose button was clicked.   
Description This event is fired when the current cell's built-in button is clicked.    The built-in button is

enabled for a column when its Button property is set to True, its DropDown property is set to
the name of a valid TDBDropDown control, or the Presentation property of its associated
ValueItems collection is set to one of the combo box options.
Typically, you enable the column button when you want to drop down a Visual Basic control
(such as the built-in combo box, a bound list box, or even another True DBGrid control) for
editing or data entry.    When the button in the current cell is clicked, the ButtonClick event will
be fired.    You can then write code to drop down the desired control from the cell.

Change Event

Syntax TDBGrid_Change ()
Event applies to TDBGrid control.

Arguments None
Description The Change event occurs when the user changes the text within a grid cell.   

This event is only fired when the current cell is being edited and the user enters or deletes a
character, pastes text from the clipboard, or cuts text to the clipboard.    It does not apply to
database changes.   

ClassicAdd Event

Syntax TDBGrid_ClassicAdd (NewRowBookmark As Variant, ByVal Col As Integer, Value As    Variant)
Event applies to TDBGrid control.

Arguments NewRowBookmark is a variant that must be set to a unique bookmark for subsequent references
to the newly added row.   
Col is an integer that identifies the column to receive the new value.
Value is a variant used to transfer the new data from the grid to the unbound data source.

Description The ClassicAdd event is fired when the user adds a new row of data to an application mode
grid (one with its DataMode property set to 3 - Application).    This event alerts your application
that it must add a new row of data to its unbound dataset.
This event adds data one cell at a time, so it may fire multiple times in order to add data for all
the columns in a row.    The Col argument contains the column index corresponding to the newly
entered cell data.    If the user has not added data to a column, the ClassicAdd event will not
fire for that column index.    If you want to add a default value to a column, you can do that in
the grid's BeforeUpdate event.
The Value argument contains the cell data entered by the user.
NewRowBookmark must be set to the bookmark of the newly added row, or else the user will
not be able to move to another row without first canceling the new row with the ESC key.    If the
NewRowBookmark is set to different values when the event is called with different column
indexes, the grid will use the last non Null value returned by the user.
This event will not be fired if the AllowAddNew property is set to False.    Conversely, if you do
not implement this event, then you must ensure that AllowAddNew is never set to True.   

Note If the add operation fails in the underlying data source, then you should set NewRowBookmark
to Null.

ClassicDelete Event

Syntax TDBGrid_ClassicDelete (Bookmark As Variant)
Event applies to TDBGrid control.

Arguments Bookmark is a variant that uniquely identifies the row to be deleted.   
Description The ClassicDelete event is fired when the user deletes an existing row within an unbound grid

(one with its DataMode property set to 3).    This event alerts your application that it must
delete the row specified by the Bookmark argument from its unbound dataset.   
The Bookmark argument contains a bookmark supplied by your application in either the
ClassicRead or ClassicAdd event.   
This event will not be fired if the AllowDelete property is set to False.    Conversely, if you do
not implement this event, then you must ensure that AllowDelete is never set to True.   

Note If the delete operation fails in the underlying data source, then you should set Bookmark to Null
to inform the grid of the failure.    This will cause the grid's Error event to fire.    The row
specified by Bookmark will remain selected.   

ClassicRead Event

Syntax object_ClassicRead (Bookmark As Variant, ByVal Col As Integer, Value As Variant)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Bookmark is a variant that identifies the row being requested.   
Col is an integer that identifies the column being requested.   
Value is a variant used to transfer unbound column data to the grid.   

Description The ClassicRead event is fired when an unbound grid (one with its DataMode property set to
3) needs to display the value of a cell as specified by the Bookmark and CoI arguments.
To return an unbound value to the grid, simply set the Value argument to the desired result.    If
you do not assign a value, the cell will remain blank.   

ClassicWrite Event

Syntax TDBGrid_ClassicWrite (Bookmark As Variant, ByVal Col As Integer, Value As Variant)
Event applies to TDBGrid control.

Arguments Bookmark is a variant that uniquely identifies the row to be updated.   
Col is an integer that identifies the column to be updated.
Value is a variant used to transfer data from the grid to the unbound data source.

Description The ClassicWrite event is fired when the user modifies an existing row within an application
mode grid (one with its DataMode property set to 3 - Application) and attempts to commit the
changes by moving to a different row or by calling the Update method.    This event alerts your
application that it must update the cell specified by the Bookmark and Col arguments within its
unbound dataset.   
The Bookmark argument contains a bookmark supplied by your application in either the
ClassicRead or ClassicAdd event.   
The Value argument contains the cell data entered by the user.
This event will not be fired if the AllowUpdate property is set to False.    Conversely, if you do
not implement this event, then you must ensure that AllowUpdate is never set to True.   

Note If the update operation fails in the underlying data source, then you should set the Bookmark
argument to Null.
You can force the ClassicWrite event to occur in code by calling the Update method.    This
method is particularly valuable when the unbound dataset contains a single row and
AllowAddNew is False, since there is no way for the user to trigger the update by moving to
another row in this case.

Click Event

Syntax object_Click ()
Event applies to TDBGrid and TDBDropDown controls.

Arguments None
Description The Click event occurs when the user presses then releases a mouse button over the grid.   

Clicking a grid also generates MouseDown and MouseUp events in addition to the Click
event.    The order of events for both the TDBGrid and TDBDropDown controls is MouseDown,
MouseUp, and Click.   
When the user clicks a noncurrent row, the Click event fires before the grid attempts to
reposition to the row that was clicked.    If the attempt succeeds, the grid then fires the
RowColChange (or RowChange) event.    For this reason, you should not use the Click event
to perform operations that depend upon the current row.

Note You can use the PostMsg method and PostEvent event to defer processing until the row
change has completed.

ColEdit Event

Syntax TDBGrid_ColEdit (ByVal ColIndex As Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column being edited.   
Description The ColEdit event occurs when a cell first enters edit mode by typing a character.    If a floating

editor marquee is not in use, this event also occurs when the user clicks the current cell or
double clicks another cell.   
The ColEdit event immediately follows the BeforeColEdit event only when the latter is not
canceled.   
When the user completes editing within a grid cell, as when tabbing to another column in the
same row, pressing the ENTER key, or clicking on another cell, the BeforeColUpdate and
AfterColUpdate events are executed if the data has been changed.    The AfterColEdit event
is then fired to indicate that editing is completed.   

ColMove Event

Syntax object_ColMove (ByVal Position As Integer, Cancel As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Position is an integer that specifies the target location of the selected columns.   
Cancel is an integer that may be set to True to prohibit movement.   

Description The ColMove event occurs when the user has finished moving the selected columns.    Your
event procedure can either accept the movement or cancel it altogether.   
The Position argument ranges from 0, which denotes the left edge, to the total number of
columns, which denotes the right edge.
To determine which columns are being moved, examine the SelStartCol and SelEndCol
properties.
If you set the Cancel argument to True, no movement occurs.    Selected columns always remain
selected, regardless of the Cancel setting.   

Note This event is only fired when the user moves the selected columns to a new location.   

ColResize Event

Syntax object_ColResize (ByVal ColIndex As Integer, Cancel As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments ColIndex is an integer that identifies the column that was resized.   
Cancel is an integer that may be set to True to undo resizing.   

Description The ColResize event occurs after the user has finished resizing a column, but before columns to
the right are repositioned.    Your event procedure can accept the change, alter the degree of
change, or cancel the change completely.   
If you set the Cancel argument to True, the previous column width is restored and no repainting
occurs.    To alter the degree of change, set the Width property of the Column object specified
by the ColIndex argument to the desired value.   
It is not necessary to execute the Refresh method within this event procedure.    Doing so
causes the grid to be repainted even if the Cancel argument is True.

ComboSelect Event

Syntax TDBGrid_ComboSelect (ByVal ColIndex As Integer)
Event applies to TDBGrid control.

Arguments ColIndex is an integer that identifies the column being edited.   
Description The ComboSelect event is triggered when the user selects (by clicking) a built-in combo box

item.    The built-in combo box is enabled for a column when the Presentation property of its
associated ValueItems collection is set to one of the combo box options.
This event is useful for determining the contents of the cell before the user exits editing mode.   
By setting the EditActive property to False within this event procedure, you can force the grid
to exit editing mode without allowing the user a chance to edit his selection.

DblClick Event

Syntax object_DblClick ()
Event applies to TDBGrid and TDBDropDown controls.

Arguments None
Description The DblClick event occurs when the user presses then releases a mouse button twice in rapid

succession over the grid.   
Double clicking a grid also generates MouseDown, MouseUp, and Click events in addition to
the DblClick event.    The order of events for the TDBGrid control is MouseDown, MouseUp,
Click, DblClick, and MouseUp.   

Note When the MarqueeStyle property of a TDBGrid control is set to the default value of 6 -
Floating Editor, the DblClick event will not fire when the user double-clicks a noncurrent cell
within the grid.    This is because the first click is used by the floating editor to begin editing,
placing the cell into edit mode at the character on which the click occurred.    Double-clicking the
current cell of the grid fires the DblClick event normally, however.

DragCell Event

Syntax TDBGrid_DragCell (ByVal SplitIndex As Integer, RowBookmark As Variant, ByVal    ColIndex As
Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments SplitIndex is an integer that identifies the split containing the cell being dragged.
RowBookmark is a variant that identifies the row containing the cell being dragged.
ColIndex is an integer that identifies the column containing the cell being dragged.

Description The DragCell event is triggered when the user presses the left mouse button and starts
dragging the mouse.    This event is used to notify the programmer when the user wants to begin
a drag-and-drop operation.    Using the SplitIndex, RowBookmark, and Col arguments, you can
determine the exact location of the mouse pointer at the start of the drag-and-drop operation.
You can initiate dragging in this event automatically by invoking the grid's Drag method.

DropDownClose Event

Syntax TDBDropDown_DropDownClose ()
Event applies to TDBDropDown control.

Arguments None
Description The DropDownClose event is triggered when a TDBDropDown control is closed, which occurs

when:
· The user selects an item from the dropdown.
· The user clicks the current cell's built-in button.
· The user presses ALT+DOWN ARROW.
· The dropdown loses focus.

The built-in button is enabled for a column when its DropDown property is set to the name of a
valid TDBDropDown control.

DropDownOpen Event

Syntax TDBDropDown_DropDownOpen ()

Event applies to TDBDropDown control.
Arguments None
Description The DropDownOpen event is triggered when a TDBDropDown control is opened, which occurs

when:
· The user clicks the current cell's built-in button.
· The user presses ALT+DOWN ARROW.   

The built-in button is enabled for a column when its DropDown property is set to the name of a
valid TDBDropDown control.

Error Event

Syntax object_Error (DataError As Integer, Response As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments DataError is an integer that identifies the error that occurred.   
Response is an integer that may be set to 0 to suppress error message display.   

Description The Error event occurs only as the result of a data access error that takes place when no Visual
Basic code is being executed.   
Even if your application handles run time errors in code, errors can still occur when none of your
code is executing, as when the user clicks a Data control button or changes the current record
by interacting with a bound control.    If a data access error results from such an action, the
Error event is fired.   
If you set the Response argument to 0, no error message will be displayed.   
If the Response argument retains its default value of 1, or if you do not code an event procedure
for the Error event, the message associated with the error will be displayed.   

Note Use the ErrorText property to retrieve the error string that will be displayed.

FetchCellStyle Event

Syntax TDBGrid_FetchCellStyle (ByVal Condition As Integer, ByVal Split As Integer, Bookmark As
Variant, ByVal Col As Integer, ByVal CellStyle As TrueDBGrid50.StyleDisp)
TDBDropDown_FetchCellStyle (ByVal Condition As Integer, Bookmark As Variant, ByVal Col As
Integer, ByVal CellStyle As TrueDBGrid50.StyleDisp)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Condition is the sum of one or more CellStyleConstants describing the disposition of the cell
being displayed.   
Split is an integer that identifies the split containing the cell being displayed.    This argument is
omitted for TDBDropDown controls.
Bookmark is a variant that identifies the row containing the cell being displayed.
Col is an integer that identifies the column containing the cell being displayed.
CellStyle is a Style object used to override the font and color characteristics of the cell being
displayed.

Description The FetchCellStyle event occurs when the grid is about to display cell data in a column whose
FetchStyle property is set to True.    By setting one or more properties of the Style object
passed in the CellStyle parameter, your application can change the appearance of individual
cells.

FetchCellTips Event

Syntax TDBGrid_FetchCellTips (ByVal SplitIndex As Integer, ByVal ColIndex As Integer, ByVal RowIndex
As Long, CellTip As String, ByVal FullyDisplayed As Boolean, ByVal TipStyle As
TrueDBGrid50.StyleDisp)
Event applies to TDBGrid control.

Arguments SplitIndex is the zero-based index of the split the cursor is over.
ColIndex is an integer that identifies the column the cursor is over.    This is either a zero-based
column index or a (negative) CellTipConstants value.

 RowIndex is an integer that identifies the row the cursor is over.    This is either a zero-based row
index or a (negative) CellTipConstants value.
CellTip contains the text to be displayed in the pop-up text box.
FullyDisplayed is a boolean that is True if CellTip will fit entirely within the boundaries of the cell.

 TipStyle is a Style object used to override the font and color characteristics of the cell tip text.
Description If the CellTips property is not set to 0 - None, the FetchCellTips event will be fired whenever

the grid has focus and the cursor is idle for a small amount of time (defined by the
CellTipsDelay property) over the grid cells area, the record selectors, the column header, the
split header, or the grid caption.    This event will not fire if the cursor is over the scroll bars.
If the cursor is over a grid cell, CellTip contains the contents of the cell as text.    By default, the
grid will display up to 256 characters of the cell contents in a pop-up text box, enabling the user
to peruse the contents of a cell even if it is not big enough to be displayed in its entirety.   
Instead of displaying the cell text, you can also modify CellTip to display your own message.   
However, if you set CellTip to Null or an empty string, the text box will not be displayed.
If the cursor is not over a grid column, ColIndex will be negative and equal to one of the
following CellTipConstants, depending upon the cursor position:

dbgOnRecordSelector Cursor is over a record selector

dbgOnEmptyColumn Cursor is over the blank area to the right of the last column
If the cursor is not over a data row, RowIndex will be negative and equal to one of the following
CellTipConstants, depending upon the cursor position:

dbgOnColumnHeader Cursor is over a column header

dbgOnSplitHeader Cursor is over a split header

dbgOnEmptyRow Cursor is over the empty rows area (if EmptyRows is True) or the
blank area (if EmptyRows is False)

dbgOnCaption Cursor is over the grid caption

dbgOnAddNew Cursor is over the AddNew row
If the cursor is over an empty row (that is, a row below the AddNew row), or is not over the grid
cells area, the value of CellTip is Null, and the pop-up text box will not be displayed.    If you
modify CellTip so that it is no longer Null, the text box will display the changed value.
By setting the properties of the TipStyle object, you can control the background color, text color,
and font of the pop-up text box.    By default, the TipStyle object uses the system ToolTip colors
and the font attributes of the current column.
You can program this event to provide context-sensitive help or tips to your users.    For example,
if the user points to column header, you can provide a more detailed description of the column.   
If the user points to a record selector, you can display instructions for selecting multiple records.

You can also provide content-sensitive help to your users using this event.    By default, CellTip
contains the text of the cell under the cursor.    However, you can also determine other cell
values if desired.    Using the grid's Row property and RowBookmark method, you can retrieve
the bookmark of the row under the cursor, then use the CellValue or CellText method to derive
other cell values.

FetchRowStyle Event

Syntax TDBGrid_FetchRowStyle (ByVal Split As Integer, Bookmark As Variant, ByVal    RowStyle As
TrueDBGrid50.StyleDisp)
TDBDropDown_FetchRowStyle (Bookmark As Variant, ByVal    RowStyle As
TrueDBGrid50.StyleDisp)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Split is the zero-based index of the split for which formatting information is being requested.   
This argument is omitted for TDBDropDown controls.
Bookmark is a variant that uniquely identifies the row to be displayed.

 RowStyle is a Style object used to convey font and color information to the grid.
Description The FetchRowStyle event is fired whenever the grid is about to display a row of data, but only

if the FetchRowStyle property is True for the grid or one of its splits.
Use the FetchRowStyle event to control formatting on a per-row basis, as it is much more
efficient than coding the FetchCellStyle event to apply the same formatting to all columns.

Note A common application of row-based formatting is to present rows in alternating colors to
enhance their readability.    Although you could use the FetchRowStyle event to achieve this
effect, the AlternatingRowStyle property is easier to use, as it requires no coding.

FirstRowChange Event

Syntax TDBGrid_FirstRowChange (ByVal SplitIndex As Integer)
TDBDropDown_FirstRowChange ()
Event applies to TDBGrid and TDBDropDown controls.

Arguments SplitIndex is the zero-based index of the split in which the row change occurred.    This argument
is omitted for TDBDropDown controls.

Description The FirstRowChange event occurs when the first displayed row of a control or split is changed. 
This event is triggered under several circumstances:

· When the grid is first displayed.   
· When the user scrolls through the grid with the vertical scroll bar or navigation keys.   
· When data in the grid is changed in a way that implicitly affects the first row, such as

when the first displayed record is deleted.   
· When the FirstRow property is changed in code to a different value.   

When multiple cell change events are sent, the order will be SplitChange, FirstRowChange,
LeftColChange, and RowColChange.    None of these events will be sent until any modified
data has been validated with the BeforeColUpdate event.   

FormatText Event

Syntax object_FormatText (ColIndex As Integer, Value As Variant)
Event applies to TDBGrid and TDBDropDown controls.

Arguments ColIndex is an integer that identifies the column being displayed.   
Value is a variant containing the underlying data value.

Description The FormatText event occurs when the grid is about to display cell data in a column whose
NumberFormat property is set to the string FormatText Event.
The Value argument contains the underlying data value and also serves as a placeholder for the
formatted data to be displayed.
This event allows you to provide your own text formatting for cases where Visual Basic's intrinsic
formatting is either unavailable or does not suit your needs.   

HeadClick Event

Syntax object_HeadClick (ColIndex As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments ColIndex is an integer that identifies the column header that was clicked.   
Description The HeadClick event occurs when the user clicks on the header for a particular grid column.   

One possible action for this event is to re-sort the Recordset object based on the selected
column.   

KeyDown, KeyUp Events

Syntax object_KeyDown (KeyCode As Integer, Shift As Integer)
object_KeyUp (KeyCode As Integer, Shift As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments KeyCode is an integer or constant representing a Windows key code.    For example, the Visual
Basic object library provides the constants vbKeyF1 (the F1 key) and vbKeyHome (the HOME key).   
Shift is an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at the time of the
event.    The Shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the values 1, 2,
and 4, respectively.    Some, all, or none of the bits can be set, indicating that some, all, or none
of the keys are pressed.    For example, if both CTRL and ALT are pressed, the value of Shift is 6.   

Description The KeyDown (KeyUp) event occurs when the user presses (releases) a key.    Although these
events are fired for most keystrokes, they are most often used for:

· Extended character keys such as function keys.   
· Navigation keys.   
· Combinations of keys with standard keyboard modifiers.   
· Distinguishing between the numeric keypad and regular number keys.   

Note The tab key does not generate KeyDown or KeyUp events.   

KeyPress Event

Syntax object_KeyPress (KeyAscii As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments KeyAscii is an integer representing an ANSI key code.    KeyAscii is passed by reference; changing
it sends a different character to the grid.    Changing KeyAscii to 0 cancels the keystroke so the
grid receives no character.   

Description The KeyPress event occurs when the user presses and releases one of the following kinds of
keys:

· A printable keyboard character.   
· The CTRL key combined with an alphabetic or special character.   
· The ENTER or BACKSPACE key.   

Use the KeyPress event to test keystrokes for validity or to format characters as they are
typed.   

LeftColChange Event

Syntax TDBGrid_LeftColChange (ByVal SplitIndex As Integer)
TDBDropDown_LeftColChange ()
Event applies to TDBGrid and TDBDropDown controls.

Arguments SplitIndex is the zero-based index of the split in which the column change occurred.    This
argument is omitted for TDBDropDown controls.

Description The LeftColChange event occurs when the first visible column of a grid or split is changed.   
This event is triggered under several circumstances:

· When the grid is first displayed.   
· When the user scrolls through the grid with the horizontal scroll bar or navigation keys. 
· When the LeftCol property is changed in code to a different value.   
· When the Visible property of the current left column is set to False.   
· When the Width property of the current left column is set to 0.   
· When the user resizes the current left column so that it is no longer visible.   
· When the user moves the current left column or moves another column into its place.

When multiple cell change events are sent, the order will be SplitChange, FirstRowChange,
LeftColChange, and RowColChange.    None of these events will be sent until any modified
data has been validated with the BeforeColUpdate event.   

MouseDown, MouseUp Events

Syntax object_MouseDown (Button As Integer, Shift As Integer, X As Single, Y As Single)
object_MouseUp (Button As Integer, Shift As Integer, X As Single, Y As Single)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Button is an integer that identifies the button that was pressed or released to cause the event.   
The Button argument is a bit field with bits corresponding to the left button (bit 0), right button
(bit 1), and middle button (bit 2).    These bits correspond to the values 1, 2, and 4, respectively.   
Only one of the bits is set, indicating the button that caused the event.   
Shift is an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys when the button
specified in the Button argument is pressed or released.    A bit is set if the key is down.    The
Shift argument is a bit field with the least-significant bits corresponding to the SHIFT key (bit 0),
the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the values 1, 2, and 4,
respectively.    Some, all, or none of the bits can be set, indicating that some, all, or none of the
keys are pressed.    For example, if both CTRL and ALT are pressed, the value of Shift is 6.   
X and Y are single-precision numbers that specify the current location of the mouse pointer.   
They are always expressed in terms of the coordinate system of the grid's container.   

Description Use a MouseDown or MouseUp event procedure to specify actions that will occur when a
given mouse button is pressed or released.    Unlike the Click and DblClick events,
MouseDown and MouseUp events enable you to distinguish between the left, right, and
middle mouse buttons.    You can also write code for mouse/keyboard combinations that use the
SHIFT, CTRL, and ALT keyboard modifiers.   

MouseMove Event

Syntax object_MouseMove (Button As Integer, Shift As Integer, X As Single, Y As Single)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Button is an integer that corresponds to the state of the mouse buttons in which a bit is set if
the button is down.    The Button argument is a bit field with bits corresponding to the left button
(bit 0), right button (bit 1), and middle button (bit 2).    These bits correspond to the values 1, 2,
and 4, respectively.    The Button argument indicates the complete state of the mouse buttons;
some, all, or none of these three bits can be set, indicating that some, all, or none of the buttons
are pressed.   
Shift is an integer that corresponds to the state of the SHIFT, CTRL, and ALT keys.    A bit is set if the
key is down.    The Shift argument is a bit field with the least-significant bits corresponding to the
SHIFT key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the values
1, 2, and 4, respectively.    Some, all, or none of the bits can be set, indicating that some, all, or
none of the keys are pressed.    For example, if both CTRL and ALT are pressed, the value of Shift is
6.   
X and Y are single-precision numbers that specify the current location of the mouse pointer.   
They are always expressed in terms of the coordinate system of the grid's container.   

Description The MouseMove event is generated continually as the mouse pointer moves across the grid.   
This event is primarily useful for implementing drag-and-drop behavior on a per-column basis.   

OnAddNew Event

Syntax TDBGrid_OnAddNew ()
Event applies to TDBGrid control.

Arguments None
Description The OnAddNew event occurs when an AddNew operation has been initiated by either of the

following:
· The user modifies a cell within the AddNew row.    Typically, this occurs as soon as the

user types a character, but may also occur as a result of a built-in radio button or
combo box selection.

· The Value or Text property of a column is set in code when the current cell is within
the AddNew row.

This event is fired in both bound and unbound modes.    However, it will only be fired if the grid's
AllowAddNew property is True.
When the OnAddNew event is fired, the value of the AddNewMode property is 2 - AddNew
Pending.

Paint Event

Syntax object_Paint ()
Event applies to TDBGrid and TDBDropDown controls.

Arguments None
Description The Paint event is triggered whenever the grid repaints itself (that is, whenever it receives a

WM_PAINT message).    This occurs frequently in the Windows environment and is generally useful
only for special circumstances.    In this event, programmers familiar with the Windows API may
use the grid's hWnd property to paint special effects such as lines, bitmaps, and icons in
appropriate cells of the grid.

PostEvent Event

Syntax object_PostEvent (ByVal MsgId As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments MsgId is an integer that identifies the message posted by the PostMsg method.   
Description The PostEvent event is used in conjunction with the PostMsg method to postpone operations

that are illegal within the grid's events.    If the PostMsg method is called, the grid will fire the
PostEvent event with the MsgId of the corresponding PostMsg invocation after all pending
operations are completed.    You can then safely perform all desired operations in the PostEvent
event.
For example, it is not possible to perform the Data control's Refresh method within the grid's
AfterUpdate event because database operations are still pending, and the refresh cannot be
tolerated.    Instead of performing the refresh in the AfterUpdate event, you can call the
PostMsg method (with a MsgId value of 1, for instance).    After all pending database operations
are completed, the grid will fire the PostEvent event.    You can then perform the refresh
operation safely in this event, after confirming that the MsgId argument passed in is 1.
The special case where MsgId is zero is used to clear any pending PostMsg invocations that
have not yet been processed.    A PostEvent event will fire for this case.
A following code illustrates a typical PostEvent handler:

Private Sub TDBGrid1_PostEvent(ByVal MsgId As Integer)
Select Case MsgId
 Case 0
 Exit Sub
 Case 1
 Data1.Refresh
 Case 2
 ' Process other postponed operations
End Select
End Sub

Note Take care to avoid recursive situations when using PostMsg and PostEvent.

RowChange Event

Syntax TDBDropDown_RowChange ()
Event applies to TDBDropDown control.

Arguments None
Description The RowChange event occurs when the current row changes to a different row.    This event is

triggered under several circumstances:
· When a dropdown is first displayed.   
· When the user moves the current row by clicking on another row or using the

navigation keys.   
· During incremental searching.

The current row position is provided by the Bookmark property.

RowColChange Event

Syntax TDBGrid_RowColChange (LastRow As Variant, ByVal LastCol As Integer)
Event applies to TDBGrid control.

Arguments LastRow is a variant bookmark that identifies the former current row.   
LastCol is an integer that identifies the former current column.   

Description The RowColChange event occurs when the current cell changes to a different cell.    This event
is triggered under several circumstances:

· When the grid is first displayed.   
· When the user moves the current cell by clicking another cell or using the navigation

keys.   
· When data in the grid is changed in a way that implicitly affects the current row, such

as when the current row is deleted when it is the last row in the grid.
· When the Bookmark, Row, Col, or Split properties are changed in code to a different

value.   
The current cell position is provided by the Bookmark and Col properties.    The previous cell
position is specified by the LastRow and LastCol arguments.   
If the user edits data and then moves the current cell position to a new row, the update events
for the original row are completed before another cell becomes the current cell.   
If a cell change also results in a change to the current split, then the SplitChange event will
always precede the RowColChange event.   

RowResize Event

Syntax object_RowResize (Cancel As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Cancel is an integer that may be set to True to undo resizing.   
Description The RowResize event occurs when the user has finished resizing a grid row.    Your event

procedure can accept the change, alter the degree of change, or cancel the change completely.   
The TDBGrid control's RowHeight property determines the height of all rows in the control.   
If you set the Cancel argument to True, the previous row height is restored and no repainting
occurs.    To alter the degree of change, set the RowHeight property to the desired value.   
It is not necessary to execute the Refresh method within this event procedure.    Doing so
causes the grid to be repainted even if the Cancel argument is True.   

Scroll Event

Syntax object_Scroll (Cancel As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Cancel is an integer that may be set to True to prevent the scroll operation from occurring.   
Description The Scroll event occurs when the user scrolls the grid horizontally or vertically using the scroll

bars.   
This event is fired before the grid is repainted to display the results of the scroll operation.    If
you set the Cancel argument to True, the scroll operation fails and no repainting occurs.   
It is not necessary to execute the Refresh method within this event procedure.    Doing so
causes the grid to be repainted even if the Cancel argument is True.   
You can use this event to perform calculations or to manipulate controls that must be
coordinated with ongoing changes in the grid's scroll bars.   

Note Within this event procedure, the values of the FirstRow and LeftCol properties are not
updated to reflect the pending scroll operation.    You cannot determine the orientation or
magnitude of the pending scroll operation by examining these properties.   
Avoid using a MsgBox statement or function in this event.   
This event only fires when the user operates the scroll bars; it will not fire in response to
keyboard navigation, data control notifications, or code.

SelChange Event

Syntax object_SelChange (Cancel As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments Cancel is an integer that may be set to True to undo the new selection.   
Description The SelChange event occurs when the user selects a different range of rows or columns.    This

event is triggered under several circumstances:
· When the user selects a single row by clicking its record selector.   
· When the user adds a row to the list of selected rows by clicking its record selector

while holding down the CTRL key.   
· When the user selects a single column by clicking its header.   
· When the user changes the range of selected columns by dragging to an adjacent

column within the header row.   
· When the user extends the range of selected columns by holding down the SHIFT key

and clicking an unselected column header.
· When the user clears the current row or column selection by clicking an individual cell,

in which case this event precedes RowColChange.
The current range of selected columns is provided by the SelStartCol and SelEndCol
properties.    The bookmarks of the selected rows are available in the SelBookmarks collection. 
Within this event procedure, these properties and collections reflect the user's pending
selection(s).   
If your event procedure sets the Cancel argument to True, the previous row and column
selections (if any) are restored, and the aforementioned properties revert to their previous
values.   
This event is only triggered by user interaction with the grid.    It cannot be triggered by code.   

Note When the user selects a column, any row selections are cleared.    Similarly, when the user
selects a row, any column selections are cleared.   

SplitChange Event

Syntax TDBGrid_SplitChange ()
Event applies to TDBGrid control.

Arguments None
Description The SplitChange event occurs when the current cell changes to a different cell in another split. 

This event is triggered under several circumstances:
· When the grid is first displayed.   
· When the user clicks a cell in another split, subject to the setting of the AllowFocus

property.   
· When the user presses a navigation key to cross a split boundary, subject to the setting

of the TabAcrossSplits property.   
· When the Split property is changed in code to a different value.   
· When a new split is inserted before the current split via code or user interaction.   
· When the current split is removed via code or user interaction.   

If the user edits data and then moves the current cell position to a new row in another split, the
update events for the original row are completed before the SplitChange event is executed.   
If a split change also results in a change to the current row or column, then the SplitChange
event will always precede the RowColChange event.   

UnboundAddData Event

Syntax TDBGrid_UnboundAddData (ByVal RowBuf As TrueDBGrid50.RowBuffer, NewRowBookmark As
Variant)
Event applies to TDBGrid control.

Arguments RowBuf is a RowBuffer object used to transfer new row data to the grid.   
NewRowBookmark is a variant that must be set to a unique bookmark for subsequent references
to the newly added row.   

Description The UnboundAddData event is fired when the user adds a new row of data to an unbound grid
(one with its DataMode property set to 1 - Unbound or 2 - Unbound Extended).    This event
alerts your application that it must add a new row of data to its unbound dataset.   
The RowBuf argument contains a single row of data to be written to the unbound dataset.    Since
only one row of data can be added at a time, the value of its RowCount property will always be
1.    The number of columns in a RowBuffer is given by its ColumnCount property.   
The Value property of the RowBuf argument contains the cell data entered by the user.    If the
user did not modify a particular cell, then the corresponding entry in the Value property will
contain a Null variant.    In Visual Basic, the IsNull function can be used to test for this condition. 
Before returning from this event, NewRowBookmark must be set to the bookmark of the newly
added row, or else the user will not be able to move to another row without first canceling the
new row with the ESC key.   
This event will not be fired if the AllowAddNew property is set to False.    Conversely, if you do
not implement this event, then you must ensure that AllowAddNew is never set to True.   

Note If the add operation fails in the underlying data source, then you should set the row buffer's
RowCount property to 0 to inform the grid of the failure.    The grid will not display an error
message, but will leave the row in a modified state.    At that point, the user can either correct
the data or press the ESC key to cancel the operation.   

UnboundColumnFetch Event

Syntax TDBGrid_UnboundColumnFetch (Bookmark As Variant, Col As Integer, Value As Variant)
Event applies to TDBGrid control.

Arguments Bookmark is a variant that identifies the row being requested.   
Col is an integer that identifies the column being requested.   
Value is a variant used to transfer unbound column data to the grid.   

Description The UnboundColumnFetch event is fired when a bound grid (one with its DataMode property
set to 0 - Bound) needs to display the value of a cell in an unbound column as specified by the
Bookmark and Col arguments.    For a bound grid, any column with an empty DataField
property and a non-empty Caption property is considered an unbound column.   
To return an unbound value to the grid, simply set the Value argument to the desired result.    If
you do not assign a value, the cell will remain blank.   
Use this event to implement calculated fields based on other columns or to display local data
alongside remote bound data.   
Your application is responsible for storing data entered into an unbound column by the user.   
Use the Column object's Text property to retrieve unbound values within the BeforeUpdate
and BeforeInsert events.   
If an unbound column is used to display a calculated result based on other columns, then you do
not need to store the unbound values since they can always be calculated "on the fly" using
either the Column object's Text property or data access objects.   

Note Do not confuse unbound columns with unbound mode.    The UnboundColumnFetch event is
only fired when a bound grid contains one or more unbound columns.   
During the execution of this event, row movement is not permitted.   

UnboundDeleteRow Event

Syntax TDBGrid_UnboundDeleteRow (Bookmark As Variant)
Event applies to TDBGrid control.

Arguments Bookmark is a variant that uniquely identifies the row to be deleted.   
Description The UnboundDeleteRow event is fired when the user deletes an existing row within an

unbound grid (one with its DataMode property set to 1 - Unbound or 2 - Unbound Extended).   
This event alerts your application that it must delete the row specified by the Bookmark
argument from its unbound dataset.   
The Bookmark argument contains a bookmark supplied by your application in the
UnboundReadData, UnboundReadDataEx, or UnboundAddData event.   
This event will not be fired if the AllowDelete property is set to False.    Conversely, if you do
not implement this event, then you must ensure that AllowDelete is never set to True.   

Note If the delete operation fails in the underlying data source, then you should set Bookmark to Null
to inform the grid of the failure.    This will cause the grid's Error event to fire.    The row
specified by Bookmark will remain selected.   

UnboundFindData Event

Syntax TDBDropDown_UnboundFindData (StartLocation As Variant, ByVal ReadPriorRows    As Boolean,
ByVal IncludeCurrent As Boolean, ByVal Col As Integer, ByVal Value As Variant, ByVal SeekFlags
As Integer, NewLocation As Variant)
Event applies to TDBDropDown control.

Arguments StartLocation is a bookmark that specifies the starting row for the search.
ReadPriorRows indicates the direction in which the dropdown is searching for data.    If False, you
should provide data in the forward direction starting with the row specified by StartLocation.    If
True, you should provide data in the backward direction, starting with the row specified by
StartLocation.
IncludeCurrent indicates the inclusion of StartLocation in the search.    If False, you should not
use StartLocation when searching for data.    If True,    StartLocation should be included in the
search.
Col is a column index that specifies the data column for the search.
Value is the value to be searched for.
SeekFlags is an UnboundFindConstants value that provides additional information about how the
search should be performed.
The NewLocation argument is initially Null.    However, before returning from this event, you
should set it to a bookmark that uniquely identifies the row where the data was found.    If you do
not set the value of NewLocation, it is assumed that no values match and the dropdown will be
positioned at the first row.

Description When a dropdown control is activated, it will attempt to position to the record that matches the
current cell text of its parent grid.    To do this, the dropdown will fire the UnboundFindData
event, which allows you to set the current record position within the dropdown.
The SeekFlags argument specifies how to compare the Value argument to dropdown column
data:

dbgSeekLT Find first column data less than Value

dbgSeekLE Find first column data less than or equal to Value

dbgSeekEQ Find first column data equal to Value

dbgSeekGE Find first column data greater than or equal to Value

dbgSeekGT Find first column data greater than Value

dbgSeekPartialEQ Find first column data that partially matches Value starting from the
first character position

Note This event will not fire when DataMode is set to 0 - Bound.

UnboundGetRelativeBookmark Event

Syntax object_UnboundGetRelativeBookmark (StartLocation As Variant, ByVal Offset As Long,
NewLocation As Variant, ApproximatePosition As Long)
Event applies to TDBGrid and TDBDropDown controls.

Arguments StartLocation is a bookmark that, together with Offset, specifies the row to be returned in
NewLocation.    A StartLocation of Null indicates a request for a row from BOF or EOF.
Offset specifies the relative position (from StartLocation) of the row to be returned in
NewLocation.    A positive number indicates a forward relative position; a negative number
indicates a backward relative position.
NewLocation is a variable that receives the bookmark of the row specified by StartLocation plus
Offset.    If the row specified is beyond the first or the last row (that is, beyond BOF or EOF), then
NewLocation should be set to Null.
ApproximatePosition is a variable that optionally receives the ordinal position of NewLocation.   
Setting this variable will enhance the ability of the grid to display its vertical scroll bar
accurately.    If the exact ordinal position of NewLocation is not known, you can set it to a
reasonable, approximate value, or just ignore this parameter.

Description This event is mandatory when the DataMode property is set to 3 - Application.    For DataMode
1 - Unbound, this event is optional.    It is not used when the DataMode property is set to 2 -
Unbound Extended.   
This event is used in conjunction with the UnboundReadData or ClassicRead events when the
grid needs to obtain positional information about your underlying data.    By coding this event for
DataMode setting 1 - Unbound, you can dramatically improve the performance of the grid.   
However, you do not need to change existing applications; you can ignore this event and they
will continue to function properly.   
Before returning from this event, you must set NewLocation to a valid bookmark.    For example,
if Offset is 1 (or -1), then you must return in NewLocation the bookmark of the row that follows
(or precedes) StartLocation.    However, if the requested row is beyond the first or last row, then
you should return Null in NewLocation to inform the grid of BOF/EOF conditions.

UnboundReadData Event

Syntax object_UnboundReadData (ByVal RowBuf As TrueDBGrid50.RowBuffer, StartLocation As
Variant, ByVal ReadPriorRows As Boolean)
Event applies to TDBGrid and TDBDropDown controls.

Arguments RowBuf is a RowBuffer object used to transfer row data to the grid.   
StartLocation is a variant bookmark that identifies the row to position to before fetching the next
or previous page of records.    If Null, the grid is requesting the first or last page of records as
determined by the ReadPriorRows argument.   
ReadPriorRows is a boolean that determines the direction in which rows are to be fetched.    If
True, the grid is requesting records that precede StartLocation.    If False, the grid is requesting
records that follow StartLocation.   

Description The UnboundReadData event is fired when an unbound grid (one with its DataMode property
set to 1 - Unbound) requires data for display, such as when it is first loaded or the user scrolls
the grid display.   
The RowBuf argument acts like a two-dimensional array of variants corresponding to the grid
cells being fetched.    By populating its Value property with the appropriate data, your event
procedure transfers rows from the unbound dataset to the grid.   
Use the row buffer's RowCount property to determine how many rows of data the grid is
requesting.    Use its ColumnCount property to determine the number of columns to be
populated.   
The RowBuf argument is also used to store a set of variant bookmarks that uniquely identify
rows in the unbound dataset.    The format of these bookmarks is determined solely by your
application.    For example, they may be primary key fields, row numbers, or array indexes,
depending upon the nature of the unbound dataset.   
Your event procedure supplies bookmarks to the grid by populating the row buffer's Bookmark
property for each row returned.    Keep in mind that the bookmarks you provide in the
UnboundReadData event may be subsequently passed to the UnboundWriteData and
UnboundDeleteRow events depending on how the user interacts with the grid.    In addition,
bookmark-based TDBGrid properties and methods such as Bookmark, FirstRow,
GetBookmark, and RowBookmark are also designed to work with these unbound bookmarks. 
It is not necessary to fill the row buffer completely, and it is in fact acceptable to return no rows
at all.    The row buffer's RowCount property can be set to indicate that fewer rows were
returned than requested.    The grid interprets this to mean that there are no more rows to
retrieve in the indicated direction.    Thus, it is only necessary to fill the row buffer completely if
there are more valid rows to be retrieved.   

Note True DBGrid is very conservative in its assumptions about row counts and BOF/EOF conditions.   
As a result, it may seem that the UnboundReadData event fires "too often."    This should not
be interpreted as a sign of inefficiency, but rather as an assurance that an unbound grid
performs accurately with large multiuser databases.   

UnboundReadDataEx Event

Syntax object_UnboundReadDataEx (ByVal RowBuf As TrueDBGrid50.RowBuffer,    StartLocation As
Variant, ByVal Offset As Long, ApproximatePosition As Long)
Event applies to TDBGrid and TDBDropDown controls.

Arguments RowBuf is a RowBuffer object used to transfer row data to the grid.   
StartLocation is a bookmark that, together with Offset, specifies the starting row for data
transfer.    A StartLocation of Null indicates a request for data from BOF or EOF.    For example, if
StartLocation is Null and Offset is 2 (or -2), then you should retrieve data starting from the
second (or second to last) row.
Offset specifies the relative position (from StartLocation) of the first row of data to be
transferred.    A positive number indicates a forward relative position; a negative number
indicates a backward relative position.
ApproximatePosition is a variable that optionally receives the ordinal position of the first row of
data to be transferred.    Setting this variable will enhance the ability of the grid to display its
vertical scroll bar accurately.    If the exact ordinal position of the row is not known, you can set it
to a reasonable, approximate value, or just ignore this parameter.

Description The UnboundReadDataEx event is fired when an unbound grid (one with its DataMode
property set to 2 - Unbound Extended) requires a bookmark for a specific row or data for display,
such as when it is first loaded or the user scrolls the grid display.   
Before returning from the UnboundReadDataEx event, you must fill the Bookmark array of
RowBuf with unique row identifiers, and the Value array with the actual data.    For example, if
Offset is 1 (or -1), then you must fill in RowBuf, starting from the row that follows (or precedes)
StartLocation.
The RowBuf argument acts like a two-dimensional array of variants corresponding to the grid
cells being fetched.    By populating its Value property with the appropriate data, your event
procedure transfers rows from the unbound dataset to the grid.   
Use the row buffer's RowCount property to determine how many rows of data the grid is
requesting.    Use its ColumnCount property to determine the number of columns to be
populated, if any.    If ColumnCount is zero, the grid is requesting the bookmark of a single row;
if ColumnCount is nonzero, the grid is requesting RowCount rows of data and their
corresponding bookmarks.
The ColumnIndex property specifies the grid column index corresponding to a row buffer
column index; you must fill in the Value property array with column data according to the
column index specified by the ColumnIndex property array.
The RowBuf argument is also used to store a set of variant bookmarks that uniquely identify
rows in the unbound dataset.    The format of these bookmarks is determined solely by your
application.    For example, they may be primary key fields, row numbers, or array indexes,
depending upon the nature of the unbound dataset.   
Your event procedure supplies bookmarks to the grid by populating the row buffer's Bookmark
property for each row returned.    Keep in mind that the bookmarks you provide in the
UnboundReadDataEx event may be subsequently passed to the UnboundWriteData and
UnboundDeleteRow events depending on how the user interacts with the grid.    In addition,
bookmark-based TDBGrid properties and methods such as Bookmark, FirstRow,
GetBookmark, and RowBookmark are also designed to work with these unbound bookmarks. 
It is not necessary to fill the row buffer completely, and it is in fact acceptable to return no rows
at all.    The row buffer's RowCount property can be set to indicate that fewer rows were
returned than requested.    The grid interprets this to mean that there are no more rows to
retrieve in the indicated direction.    Thus, it is only necessary to fill the row buffer completely if

there are more valid rows to be retrieved.   

UnboundWriteData Event

Syntax TDBGrid_UnboundWriteData (ByVal RowBuf As TrueDBGrid50.RowBuffer, WriteLocation As
Variant)
Event applies to TDBGrid control.

Arguments RowBuf is a RowBuffer object used to transfer modified row data from the grid to the unbound
data source.   
WriteLocation is a variant bookmark that uniquely identifies the row to be updated.   

Description The UnboundWriteData event is fired when the user modifies an existing row within an
unbound grid (one with its DataMode property set to 1 - Unbound or 2 - Unbound Extended)
and attempts to commit the changes by moving to a different row.    This event alerts your
application that it must update the row specified by the WriteLocation argument within its
unbound dataset.   
The RowBuf argument contains a single row of data to be written to the unbound dataset.    Since
only one row of data can be updated at a time, the value of its RowCount property will always
be 1.    The number of columns in a RowBuffer is given by its ColumnCount property.   
The WriteLocation argument contains a bookmark supplied by your application in either the
UnboundReadData, UnboundReadDataEx, or UnboundAddData event.   
The Value property of the RowBuf argument contains the cell data entered by the user.    If the
user did not modify a particular cell, then the corresponding entry in the Value property will
contain a Null variant, not the current cell contents.    In Visual Basic, the IsNull function can be
used to test for this condition.   
This event will not be fired if the AllowUpdate property is set to False.    Conversely, if you do
not implement this event, then you must ensure that AllowUpdate is never set to True.   

Note If the update operation fails in the underlying data source, then you should set the row buffer's
RowCount property to 0 to inform the grid of the failure.    The grid will not display an error
message, but will leave the row in a modified state.    At that point, the user can either correct
the data or press the ESC key to cancel the operation.   
You can force the UnboundWriteData event to occur in code by calling the Update method.   
This method is particularly valuable when the unbound dataset contains a single row and
AllowAddNew is False, since there is no way for the user to trigger the update by moving to
another row in this case.

ValueItemError Event

Syntax object_ValueItemError (ColIndex As Integer)
Event applies to TDBGrid and TDBDropDown controls.

Arguments ColIndex is an integer that identifies the column being edited.   
Description The ValueItemError event is triggered when the user attempts to enter invalid data into a

column that is using value lists.    This event is only triggered when the associated ValueItems
collection has its Validate property set to True.
This event is useful even if the user is permitted to enter values not present in the ValueItems
collection, as you may want to add the new value to the collection in this event.    It also allows
you to control how you want to respond to incorrect input.

Constant Reference
{button ,JI(`',`AddNewMode_Constants')}    AddNewMode Constants
{button ,JI(`',`Alignment_Constants')}    Alignment Constants
{button ,JI(`',`Appearance_Constants')}    Appearance Constants
{button ,JI(`',`BorderStyle_Constants')}    BorderStyle Constants
{button ,JI(`',`CellStyle_Constants')}    CellStyle Constants
{button ,JI(`',`CellTip_Constants')}    CellTip Constants
{button ,JI(`',`CellTipPresentation_Constants')}    CellTipPresentation Constants
{button ,JI(`',`DataMode_Constants')}    DataMode Constants
{button ,JI(`',`DividerStyle_Constants')}    DividerStyle Constants
{button ,JI(`',`Error_Constants')}    Error Constants
{button ,JI(`',`ExposeCellMode_Constants')}    ExposeCellMode Constants
{button ,JI(`',`MarqueeStyle_Constants')}    MarqueeStyle Constants
{button ,JI(`',`Presentation_Constants')}    Presentation Constants
{button ,JI(`',`ScrollBars_Constants')}    ScrollBars Constants
{button ,JI(`',`SplitSizeMode_Constants')}    SplitSizeMode Constants
{button ,JI(`',`TabAction_Constants')}    TabAction Constants
{button ,JI(`',`UnboundFind_Constants')}    UnboundFind Constants

AddNewMode Constants

Applies To AddNewMode property
Values Description Run Time

0 - No AddNew pending dbgNoAddNew
1 - Current cell in AddNew row dbgAddNewCurrent
2 - AddNew pending dbgAddNewPending

Alignment Constants

Applies To Alignment and HeadAlignment properties
Values Design Time Run Time

0 - Left (default) dbgLeft
1 - Right dbgRight
2 - Center dbgCenter
3 - General dbgGeneral

Appearance Constants

Applies To Appearance property
Values Design Time Run Time

0 - Flat dbgFlat
1 - 3D (default) dbg3D

BorderStyle Constants

Applies To BorderStyle property
Values Design Time Run Time

0 - None dbgNoBorder
1 - Fixed Single (default) dbgFixedSingle

CellStyle Constants

Applies To AddCellStyle, AddRegexCellStyle, ClearCellStyle, and ClearRegexCellStyle methods;
FetchCellStyle event

Values Description Run Time

-1 - All Cells dbgAllCells
0 - Cells without status conditions dbgNormalCell
1 - Current cell dbgCurrentCell
2 - Cells in a highlighted row dbgMarqueeRow
4 - Cells that have been modified dbgUpdatedCell
8 - Cells in a selected row dbgSelectedRow

CellTip Constants

Applies To FetchCellTips event
Values Description Run Time

-1 - On Record Selector dbgOnRecordSelector
-2 - On Empty Column dbgOnEmptyColumn
-1 - On Column Header dbgOnColumnHeader
-2 - On Split Header dbgOnSplitHeader
-3 - On Empty Row dbgOnEmptyRow
-4 - On Caption dbgOnCaption
-5 - On AddNew Row dbgOnAddNew

CellTipPresentation Constants

Applies To CellTips property
Values Design Time Run Time

0 - None (default) dbgNoCellTips
1 - Anchored dbgAnchored
2 - Floating dbgFloating

DataMode Constants

Applies To DataMode property
Values Design Time Run Time

0 - Bound (default) dbgBound
1 - Unbound dbgUnbound
2 - Unbound Extended dbgUnboundEx
3 - Application dbgUnboundAp
4 - Storage dbgUnboundSt

DividerStyle Constants

Applies To DividerStyle and RowDividerStyle properties
Values Design Time Run Time

0 - No dividers dbgNoDividers
1 - Black line dbgBlackLine
2 - Dark gray line (default) dbgDarkGrayLine
3 - Raised dbgRaised
4 - Inset dbgInset
5 - ForeColor dbgUseForeColor
6 - Light gray line dbgLightGrayLine

Error Constants

Applies To Trappable errors for TDBGrid and TDBDropDown controls
Values Description Run Time

4097 - Cannot initialize data bindings dbgBINDERROR
4098 - Invalid setting for name property dbgINVPROPVAL
6145 - Invalid column index dbgCOLINDEX
6146 - Control not properly initialized dbgNOTINIT
6147 - Column not found dbgCNOTFOUND
6148 - Invalid row number dbgINVROWNUM
6149 - Invalid bookmark dbgINVBOOKMARK
6150 - Invalid selected row bookmark index dbgBADSELRIDX
6151 - Scroll arguments out of range dbgSCROLLRANGE
6152 - Invalid setting for ScrollBars property dbgINVSBSTYLE
6153 - Error occurred while trying to update record dbgUPDERROR
6154 - Error occurred while trying to add record dbgADDERROR
6155 - Error occurred while trying to delete record dbgDELERROR
6156 - Data type mismatch during field update dbgCOLDATA
6157 - Data type incompatible with column data type dbgINCOMPAT
6158 - name is not a valid data field name dbgFIELDERR
6159 - Cannot delete multiple rows dbgDELMULTROWS
6160 - Data access error dbgDATAACCESS
6161 - Operation is invalid within the event name dbgBADEVENT
6162 - Property is not available in this context dbgNOPROPNOW
6163 - No current record dbgNOCURREC
6164 - Caption text is too long dbgCAPTOOLONG
6244 - Invalid split index dbgSPLITINDEX
6245 - Invalid value list index dbgVLINDEX
6246 - Error accessing value item dbgVITEMERR
6247 - Invalid style index dbgSTYLEINDEX
6248 - Duplicate style name dbgDUPSTYLE
6249 - Error accessing style dbgSTYLEERR
6250 - Error updating style dbgUPDSTYLE
6251 - Error removing style dbgREMSTYLE
6252 - Error adding cell condition dbgADDCELLCOND
6253 - Invalid style name dbgSTYLENAME
6254 - Error applying style dbgAPPLYSTYLE
6255 - Bitmap is too large dbgBMPTOOLARGE

ExposeCellMode Constants

Applies To ExposeCellMode property
Values Design Time Run Time

0 - Scroll on Select (default) dbgScrollOnSelect
1 - Scroll on Edit dbgScrollOnEdit
2 - Never Scroll dbgNeverScroll

MarqueeStyle Constants

Applies To MarqueeStyle property
Values Design Time Run Time

0 - Dotted Cell Border dbgDottedCellBorder
1 - Solid Cell Border dbgSolidCellBorder
2 - Highlight Cell dbgHighlightCell
3 - Highlight Row dbgHighlightRow
4 - Highlight Row, Raise Cell dbgHighlightRowRaiseCell
5 - No Marquee dbgNoMarquee
6 - Floating Editor (default) dbgFloatingEditor

Presentation Constants

Applies To Presentation property
Values Design Time Run Time

0 - Normal (default) dbgNormal
1 - Radio Button dbgRadioButton
2 - Combo Box dbgComboBox
3 - Sorted Combo Box dbgSortedComboBox

ScrollBars Constants

Applies To ScrollBars property
Values Design Time Run Time

0 - None dbgNone
1 - Horizontal dbgHorizontal
2 - Vertical dbgVertical
3 - Both dbgBoth
4 - Automatic (default) dbgAutomatic

SplitSizeMode Constants

Applies To SizeMode property
Values Design Time Run Time

0 - Scalable (default) dbgScalable
1 - Exact dbgExact
2 - Number of Columns dbgNumberOfColumns

TabAction Constants

Applies To TabAction property
Values Design Time Run Time

0 - Control Navigation (default) dbgControlNavigation
1 - Column Navigation dbgColumnNavigation
2 - Grid Navigation dbgGridNavigation

UnboundFind Constants

Applies To UnboundFindData event
Values Description Run Time

-1 - Less Than dbgSeekLT
-2 - Less Than or Equal dbgSeekLE
-3 - Equal dbgSeekEQ
-4 - Greater Than or Equal dbgSeekGE
-5 - Greater Than dbgSeekGT
-6 - Partially Equal dbgSeekPartialEQ

XArray Reference
{button ,JI(`',`XArray_Object_Properties')}    XArray Object Properties
{button ,JI(`',`XArray_Object_Methods')}    XArray Object Methods

XArray Object Properties
AutoReDim Controls redimensioning when the last element is deleted
Count Returns the number of elements for a given dimension
LowerBound Returns the lower bound for a given dimension
UpperBound Returns the upper bound for a given dimension
Value Sets/returns the value of an individual array element

XArray Object Methods
AboutBox Displays a dialog box with information about the array object
Clear Deallocates all data associated with an array object
Delete Deletes an index from a given dimension
DeleteDim Deletes a given dimension in its entirety
Get Returns the value of an array element
Insert Inserts a new index into a given dimension
InsertDim Inserts a new dimension into an array object
ReDim Sets the dimensions of an array object while preserving its data
Set Assigns a value to an array element

AboutBox Method (XArray)

Syntax XArray.AboutBox

Arguments None
Return Value None
Description This method displays the copyright notice for XArray.

AutoReDim Property (XArray)

Syntax XArray.AutoReDim = boolean
Read/Write at run time.    Not available at design time.

Arguments None
Description This property sets or returns a boolean that controls whether a dimension is automatically

removed when its last element is deleted.
If True (the default), deleting the last element of a dimension removes the dimension in its
entirety while preserving the data in other dimensions.
If False, deleting the last element of a dimension does not remove the dimension, but causes it
to have zero dimensions.    This behavior is like that of standard Visual Basic arrays.
When you set the Array property of a TDBGrid or TDBDropDown control to an XArray object,
the grid will automatically set the AutoReDim property of the XArray object to False.

Example Consider an XArray with two rows and three columns, initialized as follows:

Dim MyArray As New XArray
Dim i, j As Integer
MyArray.ReDim 0, 1, 0, 2
For i = 0 To 1
 For j = 0 To 2
 MyArray(i, j) = "Row " & i & ", Col " & j
 Next j
Next i
If AutoReDim is True, then deleting the last remaining row effectively turns a two-dimensional
array into a one-dimensional array:

MyArray.Delete 1, 0 ' delete first row
MyArray.Delete 1, 0 ' delete last remaining row
Debug.Print MyArray.Count(1) ' prints 3
Debug.Print MyArray.Count(2) ' prints 0
Debug.Print MyArray(0) ' prints "Row 1, Col 0"
Debug.Print MyArray(1) ' prints "Row 1, Col 1"
Debug.Print MyArray(1, 99) ' prints "Row 1, Col 1"
Note that the second dimension index is ignored in the last line.
However, if AutoReDim is False, then deleting the last remaining row removes all dimensions:

MyArray.Delete 1, 0 ' delete first row
MyArray.Delete 1, 0 ' delete last remaining row
Debug.Print MyArray.Count(1) ' prints 0
Debug.Print MyArray.Count(2) ' prints 0
Debug.Print MyArray(0) ' Error: Subscript out of range
Debug.Print MyArray(1) ' Error: Subscript out of range
Debug.Print MyArray(1, 99) ' Error: Subscript out of range

Clear Method (XArray)

Syntax XArray.Clear

Arguments None
Return Value None
Description This method deallocates all data associated with the XArray while preserving its dimensions.   

After the Clear method executes, all of the array elements contain empty variants, and both of
the following Visual Basic expressions evaluate to True for any element:

IsEmpty(element)
VarType(element) = 0

Count Property (XArray)

Syntax XArray.Count (nDim)
Read-only at run time.    Not available at design time.

Arguments nDim is a one-based integer specifying an array dimension.
Description This property returns a long integer that specifies the number of elements contained in a given

dimension of an XArray.    The value returned is always equal to:

MyArray.UpperBound(nDim) - MyArray.LowerBound(nDim) + 1
If the specified dimension does not exist, the Count property returns 0.

Example The following example uses one-based row indexes (the first dimension) and zero-based column
indexes (the second dimension):

MyArray.ReDim 1, 100, 0, 5
Dim N As Long
N = MyArray.Count(1) ' returns 100
N = MyArray.Count(2) ' returns 6

Delete Method (XArray)

Syntax XArray.Delete nDim, index
Arguments nDim is a one-based integer specifying an array dimension.

index is a long integer specifying an element position within the dimension nDim.
Return Value None
Description This method deletes the element at position index from the dimension specified by nDim while

preserving data and shifting the indexes of the remaining elements appropriately.
When the last element in a dimension is deleted, the AutoReDim property determines whether
the dimension is removed completely.

Example The following example initializes an XArray with 10 rows and 6 columns, then removes the fifth
column:

MyArray.ReDim 0, 9, 0, 5
Dim i, j As Integer
For i = 0 To 9
 For j = 0 To 5
 MyArray(i, j) = "Row " & i & ", Col " & j
 Next j
Next i
Debug.Print MyArray(1, 4) ' prints Row 1, Col 4
Debug.Print MyArray(1, 5) ' prints Row 1, Col 5

' remove the 4th index in the 2nd dimension
MyArray.Delete 2, 4
Debug.Print MyArray.Count(2) ' prints 5
Debug.Print MyArray.UpperBound(2) ' prints 4
Debug.Print MyArray(1, 4) ' prints Row 1, Col 5

' the next line now gives a "Subscript out of range" error
Debug.Print MyArray(1, 5)

DeleteDim Method (XArray)

Syntax XArray.DeleteDim nDim
Arguments nDim is a one-based integer specifying an array dimension.
Return Value None
Description This method removes the dimension specified by nDim while preserving data and shifting the

remaining dimensions as appropriate.
Example The following example initializes an XArray with 10 rows and 4 columns, then removes the first

dimension.    The resulting one-dimensional array contains the four elements from the former
first row:

MyArray.ReDim 1, 10, 1, 4
MyArray(1, 1) = "earth"
MyArray(1, 2) = "fire"
MyArray(1, 3) = "water"
MyArray(1, 4) = "air"

' delete the first dimension
MyArray.DeleteDim 1
Debug.Print MyArray.Count(1) ' prints 4
Debug.Print MyArray.Count(2) ' prints 0
Debug.Print MyArray(1) ' prints earth
Debug.Print MyArray(4) ' prints air

Get Method (XArray)

Syntax XArray.Get var, index1 [, index2, index3, ..., index10]
Arguments var is a variable that receives a variant value from the specified array element.
 index1 through index10 are long integers specifying an index into the dimension corresponding

to their order in the argument list.
Return Value None
Description The Get method provides an alternate way of retrieving a value from an XArray element and is

useful for those VBA dialects that do not support XArray's default Value property, such as early
versions of VBScript.
The var argument receives the variant value of the specified XArray element.    index1 is the
index of the first dimension, index2 is the index of the second dimension, and so on.    The
number of indexes required is equal to the number of dimensions specified with the ReDim
method.

Example The three statements following the variable declaration are all equivalent:

Dim var As Variant
MyArray.Get var, x, y
var = MyArray.Value(x, y)
var = MyArray(x, y)

Insert Method (XArray)

Syntax XArray.Insert nDim, index
Arguments nDim is a one-based integer specifying an array dimension.

index is a long integer specifying an element position within the dimension nDim.
Return Value None
Description This method inserts a new element at position index into the dimension specified by nDim while

preserving data and shifting the indexes of the existing elements appropriately.
If index is greater than the value of the UpperBound property for dimension nDim, then
UpperBound is adjusted to the new index.

Example The following example initializes an XArray with 10 rows and 6 columns, then inserts a new
column before the fifth column:

MyArray.ReDim 0, 9, 0, 5
Dim i, j As Integer
For i = 0 To 9
 For j = 0 To 5
 MyArray(i, j) = "Row " & i & ", Col " & j
 Next j
Next i
Debug.Print MyArray(1, 4) ' prints Row 1, Col 4
Debug.Print MyArray(1, 5) ' prints Row 1, Col 5

' insert a new 4th index in the 2nd dimension
MyArray.Insert 2, 4
Debug.Print MyArray.Count(2) ' prints 7
Debug.Print MyArray.UpperBound(2) ' prints 6
Debug.Print IsEmpty(MyArray(1, 4)) ' prints True
Debug.Print MyArray(1, 5) ' prints Row 1, Col 4
Debug.Print MyArray(1, 6) ' prints Row 1, Col 5

InsertDim Method (XArray)

Syntax XArray.InsertDim nDim, lbound, ubound
Arguments nDim is a one-based integer specifying an array dimension.

lbound is a long integer specifying the lower bound of the new dimension.
ubound is a long integer specifying the upper bound of the new dimension.

Return Value None
Description This method inserts a new dimension at the position specified by nDim while preserving existing

data and shifting dimensions as appropriate.    The lbound and ubound arguments define the
lower and upper bounds for accessing elements in the new dimension.

Example The following example initializes an XArray with 10 rows and 4 columns, then inserts a new
second dimension with 7 elements:

MyArray.ReDim 1, 10, 1, 4
Dim i, j As Integer
For i = 1 To 10
 For j = 1 To 4
 MyArray(i, j) = 0
 Next j
Next i
MyArray(1, 4) = 100
MyArray(2, 3) = 200

' insert a new 2nd dimension with LowerBound=0, UpperBound=6
MyArray.InsertDim 2, 0, 6
Debug.Print MyArray.Count(1) ' prints 10
Debug.Print MyArray.Count(2) ' prints 7
Debug.Print MyArray.Count(3) ' prints 4

' set an element using all three dimensions
MyArray(2, 6, 3) = 300
Debug.Print MyArray(2, 6, 3) ' prints 300
Debug.Print MyArray(1, 0, 4) ' prints 100, formerly (1, 4)
Debug.Print MyArray(2, 0, 3) ' prints 200, formerly (2, 3)
Debug.Print MyArray(1, 0, 3) ' prints 0, formerly (1, 3)

' this prints True, since the element is uninitialized
Debug.Print IsEmpty(MyArray(1, 1, 4))

' this gives an error: Subscript out of range
Debug.Print MyArray(0, 1, 4)

LowerBound Property (XArray)

Syntax XArray.LowerBound (nDim)
Read-only at run time.    Not available at design time.

Arguments None
Description This property returns a long integer that specifies the lower bound index for a given dimension

of an XArray.
If the specified dimension does not exist, the LowerBound property returns 0.

Example The following example uses one-based row indexes (the first dimension) and zero-based column
indexes (the second dimension):

MyArray.ReDim 1, 100, 0, 5
Dim N As Long
N = MyArray.LowerBound(1) ' returns 1
N = MyArray.LowerBound(2) ' returns 0

ReDim Method (XArray)

Syntax XArray.ReDim lb1, ub1 [, lb2, ub2, ..., lb10, ub10]
Arguments lb1 (ub1) through lb10 (ub10) are long integers specifying the lower (upper) bound of the

dimension corresponding to their order in the argument list.
Return Value None
Description This method is used to set or reset the dimensions of an XArray object while preserving any

existing data.    For each array dimension, you must specify both a lower bound index (lb1, lb2,
…) and an upper bound index (ub1, ub2, …).
A newly created XArray object does not have any default dimensions; therefore, you must use
the ReDim method before you can assign or access array elements.

Example The following example creates and initializes a two-dimensional XArray.    The first dimension
has 100 elements, with indexes starting at 1 and ending at 100.    the second dimension has 6
elements, with indexes starting at 0 and ending at 5.

Dim MyArray As New XArray
MyArray.ReDim 1, 100, 0, 5

Note Although XArray supports up to 10 dimensions, when used in conjunction with True DBGrid's
storage mode (DataMode 4), only two-dimensional and one-dimensional arrays make sense.

Set Method (XArray)

Syntax XArray.Set value, index1 [, index2, index3, ..., index10]
Arguments value is a variant to be assigned to an array element.
 index1 through index10 are long integers specifying an index into the dimension corresponding

to their order in the argument list.
Return Value None
Description The Set method provides an alternate way of assigning a value to an XArray element and is

useful for those VBA dialects that do not support XArray's default Value property, such as early
versions of VBScript.
The value argument is the variant value to be assigned to the XArray element.    index1 is the
index of the first dimension, index2 is the index of the second dimension, and so on.    The
number of indexes required is equal to the number of dimensions specified with the ReDim
method.

Example The following three statements are equivalent:

MyArray.Set "Hello", x, y
MyArray.Value(x, y) = "Hello"
MyArray(x, y) = "Hello"

UpperBound Property (XArray)

Syntax XArray.UpperBound (nDim)
Read-only at run time.    Not available at design time.

Arguments None
Description This property returns a long integer that specifies the upper bound index for a given dimension

of an XArray.
If the specified dimension does not exist, the UpperBound property returns 0.

Example The following example uses one-based row indexes (the first dimension) and zero-based column
indexes (the second dimension):

MyArray.ReDim 1, 100, 0, 5
Dim N As Long
N = MyArray.UpperBound(1) ' returns 100
N = MyArray.UpperBound(2) ' returns 5

Value Property (XArray)

Syntax XArray.Value (index1 [, index2, index3, ..., index10]) = variant
Read/Write at run time.    Not available at design time.

Arguments index1 through index10 are long integers specifying an index into the dimension corresponding
to their order in the argument list.

Description The Value property sets or returns the variant value of an individual XArray element.    The
number of indexes required is equal to the number of dimensions specified with the ReDim
method.    For instance, given an array with three dimensions, the following statement assigns a
string value to an individual element:

MyArray.Value(x, y, z) = "Hello"
Similarly, the following statement retrieves it:

s$ = MyArray.Value(x, y, z)
Note that the Value property is the default property for XArray.    Therefore, the preceding
statements can be shortened to:

MyArray(x, y, z) = "Hello"
s$ = MyArray(x, y, z)

Example Since the elements of an XArray object are true variants, you can arbitrarily mix data types
within a row (or column), as in the following example:

MyArray(1, 1) = "Hello" ' string
MyArray(1, 2) = 1.98 ' floating point
MyArray(1, 3) = 250000 ' long integer
MyArray(2, 2) = True ' boolean
MyArray(2, 3) = LoadPicture("xyz.bmp") ' bitmap

Note Although XArray can be used to store picture data, True DBGrid's storage mode (DataMode 4),
only accepts string and numeric data, and will not render XArray picture data as an in-cell
graphic.

