
 PowerTCP Version 3.0
 General Information on PowerTCP
 PowerTCP Tutorial
 Frequently Asked Questions
 Additional Resources

Protocol Overview Reference

TCP - Transmission Control Protocol

Telnet - Telecommunications Protocol

VT Emulation

FTP - File Transfer Protocol

SMTP - Simple Mail Transfer Protocol

POP3 - Post Office Protocol

UDP - User Datagram Protocol

SNMP - Simple Network Management

TFTP - Trivial File Transfer Protocol

General Information on PowerTCP
PowerTCP is a set of TCP/IP communications libraries that you can quickly utilize to build
powerful TCP/IP applications. Each library hides the details of the communications protocol
from the calling application, providing an explicit and easy-to-use interface.
PowerTCP provides network communications using the TCP/IP protocol suite, automatically
taking care of many details of socket library programming, including:

· Setting up connections (creating sockets, resolving names, making active
and passive connections, etc.)

· Closing connections (destroying sockets and buffers, etc.)
· Data buffering and application flow control
· Safe error recovery
· Optimized design with event notification
· Tested operation on numerous Windows Sockets implementations
· Upper-layer features depending on the application-layer protocol

implemented

PowerTCP Interfaces
IMPORTANT: PowerTCP and Event Processing
The Windows Socket Interface and PowerTCP
Introduction to Asynchronous Event Notification
Flow Control

PowerTCP Interfaces
General Information

PowerTCP provides five interfaces in the form of:
· C++ class libraries from which user classes are derived. This requires

Microsoft C++ compiler compatibility because this interface is supplied as
static linked libraries. 16-bit versions are provided in all models, and a 32-
bit version is provided for Windows NT and Windows 95.

· Dynamic Link Libraries, for use with C/C++, or any other language which
supports DLLs. 16 and 32-bit versions are provided.

· Visual Basic custom controls which provide an easy-to-use interface to TCP
through properties and events.

· Delphi VCL Components, for use in Borland's Delphi environment.
· OLE controls for many high-level development environments.

All PowerTCP libraries have an identical internal architecture. C++ is the native mode
provided in library form, with C, Visual Basic, Delphi, and OLE interfaces added and
compiled as separate .DLL, .VBX, .DCU and .OCX files.

PowerTCP and Event Processing
General Information
IMPORTANT
Visual Basic was designed to protect your program from re-entrancy by only allowing one
event to be fired at any one time. Consequently, if you put a debugging break point inside a
PowerTCP event, no other events will be fired. Similarly, if you use a MsgBox to display a
value within a PowerTCP event, all other communication events will be disabled while the
MsgBox captures the thread of execution. Also, if a DoEvents statement is placed within any
Visual Basic event, all PowerTCP communication events will be disabled by Visual Basic.

Therefore, to effectively debug your communications program, you should capture
values by putting them into an edit box or some other control that does not trap your
thread within an event handler. Breakpoints and MsgBox's can interrupt the data
stream you are trying to work with.

CRITICAL
NEVER use the DoEvents statement within a Visual Basic event, as all PowerTCP event
notification will be disabled.

The Windows Socket Interface and PowerTCP
General Information
PowerTCP libraries lie between your application and the Windows Sockets interface
(WINSOCK.DLL and/or WSOCK32.DLL). This section describes exactly how these components
interact.
Figure 1-1 below illustrates the Standard Open Systems Interconnect (OSI) 7-layer
communications model. In the middle is an illustration of how TCP/IP maps to this model, and
to the right we show how PowerTCP libraries fit into the picture.

Figure 1-1. Standard OSI 7-layer communications model and PowerTCP

The computer supplies the hardware (Physical Layer) necessary to make data
communications work. Typically, this is an RS-232 port or a network interface card (ethernet,
token-ring, etc.), and often includes the Data Link Layer (media access control or MAC and
logical link control or LLC found on most network interface cards).
Interfacing to the Data Link Layer is the Network Layer where the IP (Internet Protocol)
communication processing takes place. This interface can be implemented using de-facto
standards like the Network Device Interface Standard (NDIS) or Open Data-link Interface
(ODI).
TCP and UDP protocol processing is usually considered as operating within the Transport
Layer, and is normally implemented by the same vendor that provides the IP processing.
Consequently, there is no standard interface between the Network and Transport Layers
when it comes to TCP/IP.
A standard interface is necessary, however, between the Application Layer where the Upper-
Layer Protocol (Telnet, FTP, SMTP, TFTP, etc.) is implemented and the Transport Layer that is
provided by the TCP/IP vendor. This enables third-party developers to write TCP/IP
applications. Currently, under UNIX and Windows, vendors provide static libraries (the
"socket library") that allow application developers to utilize TCP/IP services. Recently,
however, the advent of dynamically-linked libraries under Windows enabled the industry to
standardize on a Windows socket library standard, which is now in effect, and is called the
"Windows Sockets" interface (version 1.1 is current as of this writing). This standard allows
our libraries to run on many TCP/IP transports, greatly increasing the market for TCP/IP
applications written for Windows.
All PowerTCP products interface to the Windows Sockets interface, and rely on it for
operation. PowerTCP adds value to the Windows Sockets interface by encapsulating all
library calls in an optimized fashion. PowerTCP provides:

1. A completely event-driven, turn-key design. By using PowerTCP libraries,
you take advantage of an optimized design with few entry points. Little
design work is required within the application.

2. Accelerated development. By following the examples provided, application
development is normally accelerated by months. Only an understanding of
the upper-layer protocol functionality is necessary, without requiring
detailed understanding of the Windows Sockets interface/behavior.

3. Risk management. Tested components reduce risk and unexpected project
delays.

PowerTCP provides these features and upper-layer protocols through all supported
interfaces.

Introduction to Asynchronous Event Notification
General Information
There are different kinds of methods used to notify programs when communication events
occur. The simplest type is synchronous blocking. Disk access under DOS, for example, is
synchronous blocking because the Read() function does not return until it has data from the
disk file. In other words, program execution is blocked by the I/O action until it completes.
This may be acceptable when dealing with high-speed local access, but synchronous
blocking is inappropriate when the I/O action may involve a TCP/IP host on the other side of
the world.
A second type is synchronous non-blocking. Using this mechanism, one could launch a
request to read the disk, and check back later to see if it completed successfully. The
program could do other things while the I/O occurs, enhancing response to user input, etc.
The drawback to this approach, however, is that the application must set a timer and poll for
completion. Several checks may take place before the I/O is complete, and when it finishes
there is wasted time until the program checks again.
A third type is asynchronous. This mechanism is preferred for the following reasons:

· A program spends only a small amount of time in the function
· No inefficient polling mechanism is needed
· Immediate event notification produces faster response times

One of the most advanced and distinguishing features of the PowerTCP line is that it uses
asynchronous I/O for all communications. The Connect process, for example, sends the host
name specified to the DNS (Domain Name Server) and immediately returns control to the
application. After the DNS replies with the resolved address, a connection request is made.
When that completes, the application is notified of the connection event using the Visual
Basic event mechanism. The custom control has a Connect event that PowerTCP calls when
a successful connection is created. Similarly, event notification occurs for all other
significant events that occur during the communications session.
This type of event-driven communications code results in very concise code with low
structural overhead.

Flow Control
General Information
To maximize data throughput, you should understand the flow control mechanisms provided
by PowerTCP. This section describes the flow control issue for the sending and receiving of
data.
Sending Data
Most communications interfaces are polling-oriented, where the user attempts to send x
bytes and gets feedback from the system that y bytes were accepted by the system buffers.
The Windows Sockets interface and the Windows asynchronous interface functions behave in
this manner. This implies that you must set up some type of incremental feeding mechanism
in your application.
PowerTCP does this for you, so there must be an event that notifies your program when the
system has accepted your data. This is Send event, which is called when your buffer has
been completely accepted by the system buffer. For applications that must maximize
transmission rates, you should submit large buffers using the Send property upon
notification of each Send event for the previous buffer. This will maximize output without
requiring excessive buffer memory.
Receiving Data
When receiving large buffers of data, we recommend that you process the data immediately
(for most applications). If this involves significant processing, then the TCP receive buffers
will fill and the local host will effectively slow the transmission rate from the sender of the
data. This is called backpressure and is the best way to compensate for high loading at your
end of the connection. PowerTCP also provides an alternative option for users who want to
receive data only when polled - the Recv property signals PowerTCP it is time to read from
the network buffers, and limits the size of received buffers to an arbitrary count (setting to 0
turns off automatic receiving of data). This technique can be used to increase backpressure
if desired.
Closing TCP and UDP Connections
The Recv event occurs with RecvData = "" when the connection is terminated.
NOTE
PowerTCP uses messages from the Winsock interface to generate receive and send activity.
Each Winsock receive message causes data to be read into a buffer and passed to the user's
application. Each Winsock send event causes PowerTCP to fill the send buffers with as much
data as can be accepted at that time.

PowerTCP Tutorial

The Application
The sample application created in this chapter is similar to the one included with PowerTCP,
accessible in the PowerTCP program group. You can run the sample by clicking on its icon, or
open the Visual Basic project by clicking on its icon.

The sample created in this chapter differs only in minor ways, such as the absence of an
About box.
Step 1: Add the necessary files

Step 1: Add the necessary files
The first step is to add the necessary files to the project.

First, add the POWERTCP.BAS file from the \POWERTCP\INCLUDE directory to your project.
This file defines all necessary constants for PowerTCP, which makes your code more
readable.

   

Next, add both the P16TNTB5.VBX and P16VT2B5.VBX files to your project from your \
WINDOWS\SYSTEM directory. These are the Telnet and VT emulation custom controls,
respectively.
Step 2: Create the user interface

Step 2: Create the user interface
The next step is to place the appropriate controls and menus on the appropriate forms.
Figure 3-1 below shows the main application window, with the property settings for each
control:

Figure 3-1. The main application window.

Next: Add the Menus

Add the Menus
The menus for the window are shown below in Figure 3-2:

Figure 3-2. The menu design window.

Next: Add a Second Form

Add a Second Form
Another form must be added to the project, which will be brought up when the user chooses
the Connect... from the Session menu. The form appears in Figure 3-3:

Figure 3-3. Adding a second form.

Step 3: Write the code

Step 3: Write the code
This section lists and explains the code needed for a Telnet application.
Next: Make the Connection

Make the Connection
The following code should be placed in the event handler of the Session/Connect... menu:
Sub mnuCRemoteSystem_Click ()
 frmConnect.Show 1
End Sub

This displays the connection form.
The following code should be placed in the events handler of the Connect button on the
Connection form:
Sub cmdConnect_Click ()
 ' Set the port (this is normally 23)
 frmTelnet.TNT1.RemotePort = Val(txtPort)

 ' Tell the control where to connect to
 frmTelnet.TNT1.RemoteHost = HostName

 ' Tell the control to connect
 frmTelnet.TNT1.Action = CONNECTCOMM

 ' Hide this form
 Unload Me
End Sub

When the connection is established, enable the VT control and show its cursor:
Sub TNT1_Connect ()
 VT1.Enabled = True
 VT1.Cursor = True
End Sub

This provides UI feedback to the user. If the user had clicked Cancel, the form would be
unloaded:
Sub cmdCancel_Click ()
 Unload Me
End Sub
Next: Disconnect

Disconnect
The code for closing communications is shown here. It should be placed in the
Session/Disconnect event:
Sub mnuCDisconnect_Click ()
 ' Close the connection
 TNT1.Action = CLOSECOMM
End Sub
Next: Transfer the data over the connection

Transfer the data
When data arrives over the connection, place it in the VT control. The arrival of a zero-length
string indicates the connection has been closed.
Sub TNT1_Recv (RecvData As String)
 If RecvData = "" Then
 ' Let the user know the connection is down
 VT1.Cursor = False
 Else
 ' Place the received characters into the VT control
 VT1.Display = RecvData
 End If
End Sub

Similarly, when a key is pressed in the VT control, respond by sending it to the Telnet control:
Sub VT1_KeyPress (KeyString As String)
 ' Send the character to the host
 TNT1.Send = KeyString
End Sub
Next: Option Negotiation

Option Negotiation
Option negotiation is the process where the two ends of the Telnet connection try to
determine what features they will and won't support. This program will support these
features:

· Host echoing
· Suppressing go-aheads (leads to faster transfers)

The Telnet custom control supports two types of option negotiation - automatic and
customizable. In this example, automatic option negotiation is selected by setting the
AutoOption property on the Telnet control to True at design time (this is the default value).
MORE INFO
The following code is skeleton code for handling option negotiation. Each occurrence of
Option_you_wish_to_support should be replaced by a Telnet option negotiation constant from
POWERTCP.BAS. For example, a common option is SUPPRESS_GO_AHEADS.

Sub TNT1_Cmd (Cmd As Integer, TelnetOption As Integer, SubOption As String)
 Select Case Cmd

 Case DO_CMD
 ' The host wants us to support something
 If TelnetOption = Option_you_wish_to_support Then
 ' The host wants to negotiate the option
 TNT1.WillOption = Option_you_wish_to_support
 ElseIf TelnetOption = Other_Option_you_wish_to_support Then
 ' The host wants to negotiate the option
 TNT1.WillOption = Other_Option_you_wish_to_support
 Else
 ' We won't support any other options
 TNT1.WontOption = TelnetOption
 End If

 Case SB_CMD
 ' The host requires more information about
 ' a feature

 ' Negotiate the Option_you_wish_to_support suboption
 If TelnetOption = Option_you_wish_to_support Then
 TNT1.SubOption = Additional_option_infomation
 TNT1.DoSubOption = Option_you_wish_to_support
 End If

 Case DONT_CMD
 ' The host wants us to not do something

 If TelnetOption = Option_you_wish_to_support or TelnetOption
= Other_Option_you_wish_to_support Then

 ' We only support those options
 TNT1.WontOption = TelnetOption
 End If

 Case WILL_CMD
 ' The host will do something and is asking
 ' for permission

 If TelnetOption = Option_you_wish_to_support Then
 ' Tell the host he can do it
 TNT1.DoOption = Option_you_wish_to_support
 ElseIf TelnetOption = Other_Option_you_wish_to_support Then
 ' Tell the host he can do it
 TNT1.DoOption = Other_Option_you_wish_to_support
 Else
 ' We don't support any other options
 TNT1.DontOption = TelnetOption
 End If

 Case WONT_CMD
 ' If the host won't do something, then we will
 ' confirm it, because we have to.

 TNT1.DontOption = TelnetOption
 End Select

End Sub
Next: Edit Commands

Edit Commands
This terminal emulator program will support two edit commands - Copy and Paste. Copy will
copy selected text into the clipboard, and Paste will send the text in the clipboard to the
connected Telnet host. The code below shows how easy this is:
Sub mnuECopy_Click ()
 ' Copy the selected text to Clipboard by clearing
 ' it and using the Mid$ function to grab the selected
 ' chunk of text

 ClipBoard.Clear
 ClipBoard.SetText Mid$(VT1.Text, VT1.SelStart, VT1.SelLength)
End Sub

Sub mnuEPaste_Click ()
 ' Send the clipboard text across the connection
 TNT1.Send = ClipBoard.GetText()
End Sub
Next: Resizing the VT Control

Resizing the VT control
It would be a nice feature if the VT control resized itself to the size of the window whenever
the window was resized. To implement this, add the following code to the form's Resize
event:
Sub Form_Resize ()
 ' Make the control fit the screen
 VT1.Left = 0
 VT1.Top = 0
 VT1.Height = Me.ScaleHeight
 VT1.Width = Me.ScaleWidth
End Sub
Step 4: Run the program

Step 4: Run the program
The Telnet program is now complete. To test it, choose "Connect..." from the Session menu,
type in the name of a Telnet server (most likely a UNIX host), and click Connect. You now
have a fully-function Telnet application.

Figure 3-4. The finished application.

Back to Contents

About TCP
The Transmission Control Protocol (TCP) is a data communications protocol - a set of rules for
communications between computers. TCP provides a reliable stream of data between two
applications. TCP is a general-purpose protocol with a large number of uses: TCP is the base
protocol used for Telnet, FTP, and many other "upper-layer" protocols. Using TCP, you can
implement any of these more complicated protocols.
TCP Features
TCP/IP Connections
TCP and PowerTCP
More on TCP
TCP Sample Application
TCP Custom Control

TCP Features
About TCP
TCP is built upon the IP protocol, which provides an unreliable transfer of data. Because TCP
uses IP to transmit data, TCP must use methods to make it reliable. TCP provides the
following features:
When one end of a TCP connection receives data, it sends a message back to the other end,
acknowledging that it received it. If one end of a connection does not receive a confirmation
after it sends data, it will re-send the data until it receives a confirmation or times out.
TCP keeps checksums on data sent. If the checksum on received data does not match the
data sent, it will discard the data and not acknowledge having received the data. The other
end will then re-send the data because it will not have received an acknowledgment.
Both ends of a TCP connection contain buffers to store data before it is used by applications.
TCP makes sure that neither buffer will overflow. This is known as flow control.
Data submitted to TCP for transmission may be split up or combined into data segments
which TCP considers the optimal size. Bytes sent from one end of a TCP connection will
arrive at the other end in the same order, but not necessarily in the same size segments as
they were submitted.
TCP ensures that bytes are ordered correctly. TCP implements this by checking the order of
received data, deleting duplicate data if necessary, and acknowledging received packets.
TCP is a stream-oriented protocol. This means that the flow of data in TCP is without any
predictable breaks in the data. It is up to an application to define meaningful record
blocking.
TCP provides simultaneous two-way (full-duplex) data transfer. This means that data can
flow from both ends of a connection at the same time.

TCP Connections
About TCP
TCP is a connection-oriented protocol. This means that a connection must be established
between two computer systems before they can exchange data. The way this works is:

1. A client sends a message to a server requesting a connection.
2. The server responds, acknowledging the message to connect.
3. The client then sends a second message to the server acknowledging the

server's message.

These three steps make the connection. The server must have already been listening for
connections before the client could connect. The server made a passive connection    (it was
listening for client trying to connect). The client application which initiated the connection
created an active connection.
Closing a connection works in a similar way. One end makes an active close (initiating a
close). The other end then performs a passive close.

TCP and PowerTCP
About TCP
PowerTCP takes advantage of all the features that make TCP reliable, so the application does
not have to be concerned about implementing flow control, checksums, or
acknowledgments.
For developing client software that make active connections:

1. Connect to a remote computer by setting Action = CONNECTCOMM.
2. Send or process received data with the Send property and the Recv

event.
3. Close the connection by setting Action = CLOSECOMM.

For developing server software that listen for connections:
1. Listen for incoming connections by setting Action = LISTENCOMM.
2. When a remote client tries to connect, respond to the Accept event by

creating a new control and assigning the new connection to the new
control using the Session property.

3. This new session can send or process received data by using the Send
property and the Recv event.

4. Close the new session by setting Action = CLOSECOMM.
5. Stop listening by setting Action = CLOSECOMM when it is time to

terminate the server.

Each new session is a new custom control. Figure 4-1 below demonstrates this operation:

Figure 4-1. How a PowerTCP server accepts new connections

This method allows the server to dynamically create a new session for each remote client
trying to connect, which allows each session to be entirely independent from the listener.
The listener can be subsequently shut down, or it can be left open to continue to accept
passive connections. The number of passive connections generated is limited only by
available memory and any limits imposed by the TCP/IP sub-system.

More on TCP
About TCP
One of the reasons TCP/IP has become so popular is because it has been implemented on so
many operating systems and hosts. This is called heterogeneous operation, and is
demonstrated whenever a PC is used to logon to an IBM host using Telnet, and then uses FTP
to send a file to a VAX system half-way around the world. In figure 4-1 above we show how
connections are established using PowerTCP, but we could substitute any TCP/IP host into
the picture and still be completely accurate.
All Internet standards are published as RFCs (Request For Comment). These describe the
network protocols, and other standards, in detail. To learn more about RFCs, see Additional
Resources.

TCP Sample Application
About TCP
The TCP sample application that comes with the PowerTCP Standard Toolkit for VB is an
excellent example of how to use the TCP VBX. This sample demonstrates connectivity to
some common ports available on many TCP/IP servers.
This section will explain the steps involved in constructing a simple application. The steps
are to connect to a port, send some data, receive some data, repeat the two previous steps
as often as necessary, and then close the connection.
1) Connect to a host. The CONNECT button, when selected, initiates a connection.
Sub ConnectButton_Click ()
 TCP1.RemotePort = 7 ' set the port to connect to
 TCP1.RemoteHost = HostName ' set the hostname
 TCP1.Action = CONNECTCOMM ' establish the connection
End Sub

2) Confirm the connection. After the connection is attempted, one of two things will happen:
the Connect event will fire or the Exception event will fire.
The Connect Event Subroutine may include the following:
Sub TCP1_Connect ()
 Status = "Connected to " & TCP1.RemoteHost & " on port " & TCP1.RemotePort
 ' perform any UI update to indicate a connected state..
End Sub

If there was a problem, the Exception event will fire:
Sub TCP1_Exception (ErrorCode As Integer, ErrorDesc As String)
 Status = ErrorDesc ' show the user the Error Received
End Sub

3)    Send Data. Once we are connected, data can be sent by selecting a button:
Sub GoButton_Click ()
 ' use the DataTag property to tag this send with a value
 TCP1.DataTag = Len(Data)
 ' now send some data from our Data edit box
 TCP1.Send = Data
End Sub

Once the Data is sent, the SendEvent will fire to tell us when the data has been accepted by
the system buffers.
Sub TCP1_Send (DataTag As Long)
 BytesOut = Val(BytesOut) + DataTag ' update out cnt
End Sub

And, as always, if there is a problem, the Exception event will fire.
4) Receive Data. Data received by the application comes to it via the Recv event.
Sub TCP1_Recv (RecvData As String)
 If RecvData = "" Then
 ' Connection has been closed
 Status = "Closed"
 Else
 ' Append data into edit box
 RecvWindow.SelText = RecvData
 End If
End Sub

5) Close the Connection.
Sub CloseButton_Click ()
 ' use CLOSECOMM to close connection gracefully
 ' use ABORTCOMM to close connection abruptly
 TCP1.Action = CLOSECOMM
End Sub

The five steps outlined above illustrate how a simple TCP application is constructed. If you
have any further questions, please refer directly to the sample source code.

TCP Custom Control
About TCP

P16TCPB5.VBX
Object Type
PowerTCP_TCP
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the Properties and Events
section.
Properties

*Action
*DataTag
*Flags
hWnd
Index
*LocalDotAddr

*LocalName
*LocalPort
Left
Name
*OemLicense
Parent

*Recv
*RemoteHost
*RemotePort
*Send
*SendByte
*SendString

*Session
*State
Tag
Top
*Urgent

Events
*Accept
*Connect

*Exception
*Listen

*Recv
*Send

About Telnet
Telnet is a communications protocol - a set of rules for communications between
applications. Telnet stands for "Telecommunications Network Protocol." Telnet
communication works between different types of computers and operating systems,
because the protocol is the same for all systems. Telnet is often used for remote login
(accessing one system from another over a network). A typical use for Telnet would be a
terminal connecting with a server using Telnet to access the server's resources.
Many computers support the Telnet protocol. The main use for Telnet is for client-server
based terminal communications. Telnet is used to log into remote systems and give
commands. It can be used to access remote databases, control other systems, and distribute
work between multiple systems, among other applications.
Telnet is similar to TCP - in fact, it is built upon it. But, unlike TCP, Telnet provides several
additional features and concepts which makes it an "upper-layer" protocol.
Using Telnet, both ends of a connection send data to each other. Typically, a terminal will
send commands to a server (or host), and the server will respond with messages or data. For
example, a user at a terminal could type "help" and the server could respond with "Type a
command to get help on".
Telnet provides option negotiation as a method for establishing conventions between two
applications. During a session, either application may send the other a command, asking or
telling about a specific option. A typical option would be "echoing". The process of option
negotiation would determine if either application will support echoing. See the section
"Option Negotiation" below for more information on option negotiation.
Telnet Connections

The Network Virtual Terminal
Option Negotiation
Telnet and PowerTCP
More on Telnet
Telnet Sample Application
Telnet Custom Control

Telnet Connections
About Telnet
Connections are made on a port - a method of distinguishing multiple sessions on a single
computer. The standard Telnet port is 23. Most Telnet connections are made to port 23.
To make a connection, you must specify a port and also a host name or address to connect
to. All TCP/IP systems on a network have an IP address - a number which distinguishes them
from other systems. All IP addresses have the same format - x.x.x.x where each x is a
number from 0 to 255 (except for the first x, which may be from 0 to 247). A typical IP
address might be 129.229.1.2. Most networks also support host names, where the network
will translate a name (such as "server3") into an IP address.
PowerTCP supports two types of connections - active and passive. An active connection is
where an application tries to connect to a server. An example of this would be a terminal
connecting to a Telnet server. A passive connection is where a computer receives a
connection from a remote computer. An example of this would be a Telnet server waiting for
terminal connections.

The Network Virtual Terminal
About Telnet
The Network Virtual Terminal (NVT) is a concept Telnet uses to represent both computers in a
connection. Both ends of a Telnet connection must support the concept of an NVT. The NVT
is an imaginary character-based device with a keyboard and a printer (input and output).
Incoming data goes to the printer, and input from the keyboard goes to the other end of the
Telnet connection.
The NVT supports the 7-bit character set known as NVT ASCII. NVT ASCII is the same as
normal ASCII text, except that only 7 bits represent the character. The eighth high bit of the
byte must be set to 0. In NVT ASCII, an end of line is represented by a two character
sequence CR,LF (carriage return, linefeed). A carriage return is represented by the two
character sequence CR,NULL (carriage return, null character).
Both ends of a Telnet connection map their own terminal device characteristics to and from
the NVT. For example, a program must change all 8-bit ASCII characters to the NVT character
set. The NVT is intended to strike a balance between being overly restrictive (not providing
some computers a rich enough vocabulary for mapping into their local character sets), and
being overly inclusive (penalizing users with modest terminals).
Please refer to RFC 854 for more information on the NVT.

Option Negotiation
About Telnet
Option negotiation is the process of two applications agreeing on what features they will or
won't provide. Each application may send a command to the other, and each may respond
to commands. A typical option negotiation session could proceed as shown below (although
over 40 different options might be negotiated):

Computer a Computer b
1. I will echo back what you
send to me.

2. OK, do echo back what I send
to you.
3. Do suppress go-aheads.

4. No, I won't suppress go-
aheads.

5. Don't suppress go-aheads.
6. OK, I won't suppress go-
aheads.

Either computer may initiate negotiation of an option. They may ask the other computer to
support or not to support an option, or that they will or won't support an option. The other
computer may then respond that they will or won't support an option, or ask the other
computer to support or not to support an option. The four commands follow:

Comman
d

Description

WILL The sender wants to support the option
WONT The sender will not support the option
DO The sender wants the receiver to support the option
DONT The sender wants the receiver to not support the

option

The different pairs of commands and responding commands follow:
Command Response
WILL
I will support this option

DO
OK, do support it

WILL
I will support this option

DONT
No, don't support it

WONT
I won't support this option

DONT
OK, don't support it

DO
Do support this option

WILL
OK, I will support it

DO
Do support this option

WONT
No, I won't support it

DONT
Don't support this option

WONT
OK, I won't support it

NOTE
Notice that if a computer does not want an option supported (WONT/DONT), then the other
computer must comply, responding with a DONT or WONT.

Telnet also provides sub-option negotiation. Sub-option negotiation means negotiating
details about a specific option. An example would be the option "terminal type". For both
computers to decide to support the same terminal type, you wouldn't want a different option
for each individual terminal type, so you use a sub-option. A typical sub-option negotiation is
shown below:

Computer a Computer b
1. I will support different
terminal types.

2. OK, do support different terminal
types.

3. OK, send your terminal
type sub-option.

4. My terminal type sub-option is
"IBMPC".

As you can see, option negotiation and sub-option negotiation make Telnet very flexible and
adaptable to many different terminal configurations.
Please refer to applicable RFCs for complete information on Telnet and Telnet option
negotiation.

Telnet and PowerTCP
About Telnet

The additional functionality that Telnet provides above TCP is option negotiation.
PowerTCP searches for all Telnet commands, strips them out of the data stream, and
provides them to your application via a simple event notification. Automatic replies
can also be enabled by using the AutoOption property. Convenient properties are also
provided for sending out Telnet command strings.

TROUBLE
Most difficulties have option negotiation as their cause. If your Telnet application "hangs" at
any point, always check your option negotiation code first (or make sure that AutoOption =
True if you want automatic option negotiation).

More on Telnet
About Telnet
All Internet standards are published as RFCs (Request For Comment). These describe the
network protocols, and other standards, in detail. If you are interested in learning more
about networking, see Additional Resources.
NOTE
The RFCs associated with Telnet are listed below (some of these have been included with
your software distribution in RFCS.ZIP):
854, 855, 856, 857, 858, 859, 860, 861, 885, 927, 933, 946, 1041, 1043, 1053, 1073, 1079,
1080, 1091, 1096, 1097, 1112, 11122, 1143, 1184, 1205

Telnet Sample Application
About Telnet
The Telnet Sample application that comes with the PowerTCP Standard Toolkit for VB is an
excellent example of how to use the Telnet VBX. This sample demonstrates connectivity to
some common ports available on most Telnet servers.
This section will explain the steps involved in constructing a simple Telnet application. The
steps are to connect to a port, send some keyboard input generated by the user, receive
some data and display it, repeat the two previous steps as often as necessary, and then
close the connection.
1) Connect to a Server. The following sample code is fired when the CONNECT button is
selected:
Sub cmdConnect_Click ()
 ' Select from the possible service ports
 Select Case cmbPort
 Case "telnet"
 ' Standard telnet
 frmTelnet.TNT1.RemotePort = 23
 Case "echo"
 ' Echos back whatever is sent
 frmTelnet.TNT1.RemotePort = 7
 Case "discard"
 ' Does not echo back what is sent
 frmTelnet.TNT1.RemotePort = 9
 Case "daytime"
 ' Returns the date and time
 frmTelnet.TNT1.RemotePort = 13
 Case "chargen"
 ' Generates a stream of characters
 frmTelnet.TNT1.RemotePort = 19
 Case Else
 ' user put in another number
 frmTelnet.TNT1.RemotePort = Val(cmbPort)
 End Select

 frmTelnet.TNT1.RemoteHost = HostName ' specify host
 frmTelnet.TNT1.Action = CONNECTCOMM ' initiate connection
 Unload Me
End Sub

2) Confirm the connection. After the connection is attempted, either    the Connect event will
fire or the Exception event will fire. The Connect Event Subroutine may include the following:
Sub TNT1_Connect ()
 ' Provide some UI feedback to user
 VT1.Cursor = True
 Me.Caption = " VT220 - " & Format$(TNT1.RemoteHost)
End Sub

3) Send Data. Once connected to a Telnet server, data is sent by typing on the keyboard.
The VT control, which is used in the Telnet sample, has an event that fires when a key is
pressed. The data in the KeyString is sent to the server by using the Send property.

Sub VT1_KeyPress (KeyString As String)
 ' Send the character to the host
 TNT1.Send = KeyString
 ' If the LocalEcho menu option is checked, then
 ' we should display it locally as well.
 If mnuOLocalEcho.Checked = True Then VT1.Display = KeyString
End Sub

4) Receive Data. Data received by this program come to it via the Recv event. This program
moves the data to the VT220 display by assigning the RecvData parameter to the VT's
Display property.
Sub TNT1_Recv (RecvData As String)
 If Len(RecvData) = 0 Then
 ' provide some UI feedback
 Me.Caption = " VT220"
 VT1.Cursor = False
 Else
 ' Place the received characters into the VT-220 emulator
 VT1.Display = RecvData
 End If
End Sub

5) Close the Connection. The Telnet session can be discontinued by simply executing the
Disconnect function from the Menu. This function executes the CLOSECOMM action in order
to destroy the Telnet Connection. Note that when complete, the Recv event will be fired to
confirm this action.
Sub mnuCDisconnect_Click ()
 TNT1.Action = CLOSECOMM
End Sub

The five steps outlined above illustrate how a powerful Telnet Emulator can be constructed
with only a few lines of code. If you have additional questions, please refer directly to the
sample source code.

Telnet Custom Control
About Telnet

P16TNTB5.VBX
Object Type
PowerTCP_TNT
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the Properties and Events
section.
Properties

*Action
*Cmd
*DataTag
*DontOption
*DoOption
*DoSubOption
*Flags
hWnd

Index
*LocalDotAddr
*LocalName
*LocalPort
Left
Name
*OemLicense
Parent

*Recv
*RemoteHost
*RemotePort
*Send
*SendByte
*SendString
*Session
*State

*SubOption
Tag
Top
*Urgent
*WillOption
*WontOption

Events
*Accept
*Cmd

*Connect
*Exception

*Listen
*Recv

*Send

About VT Emulation
VT emulation is a terminal protocol. It differs from TCP and Telnet in that it does not include
rules for data communications, but for data display. The VT protocols include VT52, VT100,
and VT220. Each contains certain rules for interpreting incoming data. For example, one rule
dictates that when a certain combination of characters is received, it means to clear the
terminal screen.
Digital Equipment developed the VT emulation protocols for their VT terminals. This
hardware contained a screen and keyboard. Eventually, the same VT emulation protocols
were being used in terminal software programs for PCs. The VT52, 100, and 220 protocols
became terminal emulation standards, along with others such as ANSI. This product
implements these protocols and is available as a complementary part of the PowerTCP
product.
For more information on VT emulation, contact Digital Equipment Corporation.
VT Emulation and PowerTCP
Key Mapping
VT Character String Tables
VT Custom Control

VT Emulation and PowerTCP
About VT Emulation
A VT emulation custom control is included with PowerTCP mainly to be used with the Telnet
control. When data is received in the Recv event of the Telnet control, place the data into
the VT control with a statement similar to the following:

Sub Telnet1_Recv (RecvData as String)
 VT1.Display = RecvData
End Sub

When the user types within the VT control, use a statement similar to the following to
send it across the Telnet connection:

Sub VT1_KeyPress (KeyString As String)
 Telnet1.Send = KeyString
End Sub

In this way, data can be seamlessly transferred between the two controls.

Key Mapping
About VT Emulation
The custom control utilizes a default key mapping that is generally position-based. For
example, the PF1 key on the VT220 is at the top of the keypad, so the NumLock key on the
PC keyboard is mapped to the PF1 function. The following table summarizes the keyboard
mappings:

VT Key PC Key
Find Insert
InsertHere Home
Remove Page Up
Select Delete
PrevScreen End
NextScreen Page Down
PF1 Num Lock
PF2 / (on numeric keypad)
PF3 * (on numeric keypad)
PF4 - (on numeric keypad)
, (comma) + (on numeric keypad)
- (minus) Ctrl + "+" (numeric keypad)
Enter Enter (on numeric keypad)
F6 - F10 (with Shift for user-
defined keys)

F6 - F10 (with Ctrl for user defined
keys)

F11 - F20 (with Shift for user-
defined keys)

Shift + F1–Shift + F10 (with Ctrl for
user defined keys)

Help F11
Do F12

There are two ways to modify these default mappings:
1. When the KeyDown Event is called, the KeyCode and Shift parameters

can be changed to another value. For example, to remap F1 to PF1, when
the F1 virtual key code is seen, it can be changed to the NumLock virtual
key code. This will have the effect of generating the PF1 sequence
whenever the F1 key is depressed (since F1 will generate the NumLock key
code and the NumLock key code always generates a PF1).

2. When the KeyDown Event is called, the KeyCode parameter can be set to
0 (canceling out the default string normally generated by the key) and the
user can send any arbitrary string directly out the communications
channel. When F1 is pressed, for example, the user may program the "SS3
P" sequence.

VT Character String Tables
About VT Emulation
The following tables are provided as a guide to the character strings generated by the
VT220. The reader may wish to find more complete programming information directly from
Digital Equipment Corporation.

Control Sequences
Control Sequence 7-bit Mode 8-bit Mode
CSI ESC [0x9b
SS3 ESC O Ox8f

Main Keypad Function Keys
VT/IBM Key Code Transmitted
Backspace BS character
Tab HT character
Return CR or CRLF depending upon the NewLine

property
Ctrl, Lock, Shift Does not send a code
Space Bar SP character

Edit Keys
VT Key IBM Key VT 220 Code VT 100/52 Code
Find Insert CSI 1 ~ None
Insert Here Home CSI 2 ~ None
Remove Page Up CSI 3 ~ None
Select Delete CSI 4 ~ None
Prev Screen End CSI 5 ~ None
Next Screen Page Down CSI 6 ~ None

Cursor Control Keys
VT/IBM Key VT100/220

Code
Normal
Cursor Key
Mode

VT100/220
Code
Application
Cursor Key
Mode

VT52 Code

Normal
Cursor Key
Mode

VT52 Code

Application
Cursor Key
Mode

Up Arrow CSI A SS3 A ESC A ESC A
Down Arrow CSI B SS3 B ESC B ESC B
Right Arrow CSI C SS3 C ESC C ESC C
Left Arrow CSI D SS3 D ESC D ESC D

Auxiliary Keypad Keys
VT Key IBM Key VT100/2

20 Code
Numeri
c
Keypad
Mode

VT100/22
0 Code
Applicati
on
Keypad
Mode

VT52 Code

Numeric
Keypad
Mode

VT52 Code

Application
Keypad
Mode

0 0 0 SS3 p 0 ESC ? p
1 1 1 SS3 q 1 ESC ? q
2 2 2 SS3 r 2 ESC ? r
3 3 3 SS3 s 3 ESC ? s
4 4 4 SS3 t 4 ESC ? t
5 5 5 SS3 u 5 ESC ? u
6 6 6 SS3 v 6 ESC ? v
7 7 7 SS3 w 7 ESC ? w
8 8 8 SS3 x 8 ESC ? x
9 9 9 SS3 y 9 ESC ? y
- Ctrl + "+" - (minus) SS3 m - ESC ? m
, + ,

(comma)
SS3 l , ESC ? l

. . . (period) SS3 n . ESC ? n
Enter Enter CR or

CR/LF
SS3 M CR or CR/LF ESC ? M

PF1 NumLock SS3 P SS3 P ESC P ESC P
PF2 / SS3 Q SS3 Q ESC Q ESC Q
PF3 * SS3 R SS3 R ESC R ESC R
PF4 - SS3 S SS3 S ESC S ESC S

Top Row Function Keys
VT Key IBM Key VT220 Code VT100/52 Code
Hold Screen F1 (none) (none)
Print Screen F2 (none) (none)
Set-up F3 (none) (none)
Data/Talk F4 (none) (none)
Break F5 (none) (none)
F6 F6 CSI 1 7 ~ (none)
F7 F7 CSI 1 8 ~ (none)
F8 F8 CSI 1 9 ~ (none)
F9 F9 CSI 2 0 ~ (none)
F10 F10 CSI 2 1 ~ (none)
F11 (ESC) <shift> F1 CSI 2 3 ~ ESC
F12 (BS) <shift> F2 CSI 2 4 ~ BS
F13 (LF) <shift> F3 CSI 2 5 ~ LF
F14 <shift> F4 CSI 2 6 ~ (none)
Help F11 CSI 2 8 ~ (none)
Do F12 CSI 2 9 ~ (none)
F17 <shift> F7 CSI 3 1 ~ (none)
F18 <shift> F8 CSI 3 2 ~ (none)
F19 <shift> F9 CSI 3 3 ~ (none)
F20 <shift> F10 CSI 3 4 ~ (none)

VT Custom Control
About VT Emulation

P16VT2B5.VBX
Object Type
PowerTCP_VT2
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the following sections.
Properties

*AnswerBack
*AutoPrint
*AutoRepeat
*AutoWrap
*BackColor
*Bell
*BoldColor
*BufferRows
*Cols
*ColWidth
*Cursor
*CursorCol
*CursorKeys

*CursorRow
*CursorStyle
*Display
*DisplayString
*Enabled
*EnableNewLine
FontBold
FontItalic
*FontName
FontSize
*ForeColor
Height
hWnd

Index
*Keypad
Left
MousePointer
Name
*NewLine
*OemLicense
Parent
*PrinterControlle
r
*PrintPassthroug
h
*PrintScreen
*Reset
*RowHeight

*Rows
*Scroll
*SelLength
*SelStart
*Style
*Terminal
*Text
TabIndex
*Tabs
TabStop
Tag
Top
Width

Events
*Click
*HostCommand

*KeyDown
*KeyPress

*NewLine

Methods
*Clear

About FTP
FTP stands for File Transfer Protocol. It provides a standard method for transferring files
between computers. Using FTP, you can get directory listings, retrieve files, upload files, and
more. An FTP client accesses files stored on a server. An FTP server responds to FTP clients,
providing directory and file data. FTP is based upon both TCP and Telnet, so that FTP differs
from other protocols in that it actually consists of two connections - a control connection
which uses Telnet, and a data connection which uses TCP.
FTP Connections
Data Representation
Common FTP Commands
FTP and PowerTCP
FTP Sample Application
FTP Custom Control

FTP Connections
About FTP
When an FTP session is initiated, a control connection is created. The control connection is
used for login, sending commands, and receiving information. The control connection utilizes
the Telnet protocol. It usually uses the standard FTP port 21.
An FTP connection is generally made between a client and server. However, a client can
control file transfers between two servers. See the FTP RFC (number 959) for detailed
information about this and other FTP features.
During login, a user name and password must be given. Many FTP servers support
anonymous FTP, where the user name is "anonymous" and the password is the user's email
address.
Once the login is complete, commands can be sent across the control connection. Typical
commands are RETR (retrieve a file), STOR (upload a file), and QUIT (logoff). For more
information, please refer to the RFC.
An FTP server responds to commands with three-digit codes and descriptions across the
control connection. Each of the three digits have a different meaning, shown in the chart
below. The code descriptions are taken directly from the RFC.

First-digit codes:
Code Description
1yz Positive Preliminary reply. The requested action is being initiated;

expect another reply before proceeding with a new command. (The
user-process sending another command before the completion
reply would be in violation of protocol; but server-FTP processes
should queue any commands that arrive while a preceding
command is in progress.)    This type of reply can be used to
indicate that the command was accepted and the user-process
may now pay attention to the data connections, for
implementations where simultaneous monitoring is difficult. The
server-FTP process may send at most one 1yz reply per command.

2yz Positive Completion reply. The requested action has been
successfully completed. A new request may be initiated.

3yz Positive Intermediate reply. The command has been accepted, but
the requested action is being held in abeyance, pending receipt of
further information. The user should send another command
specifying this information. This reply is used in command
sequence groups.

4yz Transient Negative Completion reply. The command was not
accepted and the requested action did not take place, but the error
condition is temporary and the action may be requested again. The
user should return to the beginning of the command sequence, if
any. It is difficult to assign a meaning to "transient", particularly
when two distinct sites (Server- and User-processes) have to agree
on the interpretation. Each reply in the 4yz category might have a
slightly different time value, but the intent is that the user-process
is encouraged to try again. A rule of thumb in determining if a
reply fits into the 4yz or the 5yz (Permanent Negative) category is
that replies are 4yz if the commands can be repeated without any
change in command form or in properties of the User or Server
(e.g., the command is spelled the same with the same arguments
used; the user does not change his file access or user name; the
server does not put up a new implementation.)

5yz Permanent Negative Completion reply. The command was not
accepted and the requested action did not take place. The User-
process is discouraged from repeating the exact request (in the
same sequence). Even some "permanent" error conditions can be
corrected, so the human user may want to direct his User-process
to reinitiate the command sequence by direct action at some point
in the future (e.g., after the spelling has been changed, or the user
has altered his directory status.)

Second-digit codes
(x4z has not yet been defined by the RFC):

Code Description
x0z Syntax. These replies refer to syntax errors, syntactically correct

commands that don't fit any functional category, and
unimplemented or superfluous commands.

x1z Information. These are replies to requests for information, such as
status or help.

x2z Connections. Replies referring to the control and data connections.
x3z Authentication and accounting. Replies for the login process and

accounting procedures.
x5z File system. These replies indicate the status of the Server file

system vis-à-vis the requested transfer or other file system action.

The third-digit codes are more detailed. Refer to the RFC for these. Normally, an FTP
response will consist of the code followed by an English description. Examples:
200 PORT command successful.
150 Opening ASCII mode data connection for /bin/ls.
226 Transfer complete.
221 Goodbye.

A data connection is opened when one of three things happen:
· The client sends a file to the server
· The server sends a file to the client
· The server sends a directory listing to the client

Once a data connection has transferred its data, it is closed. The control connection always
exists, but the data connection is dynamic. Note that only one data connection can exist at
the same time. The following steps are taken to create the data connection:

1. The client chooses an unused port number to accept the connection on,
because the client is always in control of file transfers.

2. The client waits for a connection on that port.
3. The client sends the port number to the server over the control

connection, using the PORT command.
4. The client sends a command which transfers data across a data

connection (such as STOR, RETR, or LIST).
5. The server connects to the correct port using its local port 20.

Once the data connection is established, a file transfer or directory listing can take place.
The connection is closed after the transfer takes place.

Data Representation
About FTP
Data can be transferred over the data connection in many different modes. File type, format
control, structure, and transmission mode can all be controlled. However, the only commonly
used feature is file type. The rest will generally not be changed.
There are four options for file type, but ASCII and IMAGE are most commonly used:

· ASCII. This is the default mode. Different computer systems implement
new-line characters in different ways. Many UNIX systems use the ASCII
character 13 (CR). Microsoft Windows uses ASCII character 13 followed by
10 (CR-LF). When ASCII mode is enabled, proper conversions are made
between the server and client. This mode should be used only for text
files. Using this mode on binary files will cause them to become corrupted.

· EBCDIC. This is not commonly used. It is an alternative way of transferring
files between two EBCDIC systems.

· IMAGE (binary). This sends an exact replica of the file across the
connection, preserving each byte with no conversions. It should be used
for all binary files, which include all programs and many document files.

· Local file type. This is not commonly used. It is a method of transferring
data between two computers with different byte sizes. However, virtually
all computers today use 8-bit bytes, so this is not applicable.

PowerTCP ensures the proper data type is set before any data transfer is
initiated.

Common FTP Commands
About FTP
The table below lists some of the more common commands used in FTP. The RFC contains all
valid commands.

Command Description
ABOR Cancels the previous command issued, and

halts any data transfer in progress.
LIST filelist Lists all files and directories in the directory.
PASS password Sends the user's password to the server during

login.
PORT
n1,n2,n3,n4,n5,n
6

Sends the client's IP address in the first four
arguments and the port in the fifth and sixth
arguments.

QUIT Logs off the server.
RETR filename Retrieves a file from the server.
STOR filename Places a file on the server.
TYPE type Specifies the file type (A for ASCII, or I for

IMAGE)
USER username Sends the user's name to the server.

FTP and PowerTCP
About FTP

1. Login. PowerTCP combines the control connection establishment process
with the login (authentication) process. When the LoginHost property is
set, the FTP library resolves the host name, makes the connection, handles
the entire authentication process, and notifies the application when it has
completed.

2. Data Connection Establishment. PowerTCP handles all the details of
ensuring the proper data representation type is set, and automatically
establishing a data connection (listening on a local port, sending the PORT
command, accepting a passive connection, etc.) when any of the data
transfer commands are used.

3. File spooling. If a local file is specified, PowerTCP will handle transferring
data to and from that file automatically. However, the program can still opt
to have complete control over all data transferred.

4. Renaming Files. PowerTCP sequences the RNFR and RNTO commands so
the application does not have to.

5. Restart. PowerTCP sequences the REST command with the data transfer
command currently in progress.

6. Error Checking and Synchronization. PowerTCP saves state
information which is necessary for the correct interpretation of replies
coming from the server. Replies are then reported to the application with
the associated status information. All replies are checked for validity
against the last command sent.

7. Complete RFC 959 functionality. If you need the flexibility of using your
own command strings, this is supported, bypassing any status-checking.
PowerTCP can even be used to control two FTP servers, transferring files
between them!

A property is provided for each of the FTP commands (except where related commands have
been sequenced together for your convenience). For example, single commands like HELP

and PWD have one property associated with each. Other command sequences, such as
USER, PASS and ACCT are fired off by a single property, where PowerTCP takes care of the
sequencing. File transfer properties (STOR, STOU, APPE) automatically sequence TYPE, PORT
and transfer commands, greatly simplifying the mechanism of completing passive data port
connections.
It may still be necessary, however, for the application to know what codes are expected
back when a command is sent. Although PowerTCP encapsulates many of the details, and a
"Status" enumerated type simplifies this task, you may wish to recognize the successful
completion of any command.
In general, there is a one-to-one correspondence between FTP commands and PowerTCP
library functions. Exceptions are Store, Retrieve, Append, StoreUnique, LoginHost, Rename,
and Restart, which combine several commands into a single property. The libraries
"remember" what command was sent last, checking for valid and invalid replies received
back from the FTP server.
The documentation that follows later in this help file describes each property. Please refer to
RFC 959 for a thorough description of each command, along with more general descriptions
and guidance describing how the FTP protocol operates.

FTP Sample Application
About FTP
The FTP Sample application that comes with the PowerTCP Standard Toolkit for VB is an
excellent example of how to use the FTP VBX. This sample demonstrates connectivity to an
FTP Server and implements many of the features available in the FTP Protocol.
This section will explain the steps involved in constructing a simple application. The steps
are to connect to an FTP server, execute commands defined by the RFC and then Logout.
1) Connect to an FTP Server. The LOGIN button, when selected, initiates the following code.
The LoginHost Property actually triggers the connection attempt.
Sub Command1_Click ()
FTP1.User = User
 FTP1.Password = Pass
 FTP1.Account = Acct
 FTP1.LoginHost = Host ' initiate a connection
End Sub

2) Confirm the connection. After the connection is attempted, the Connect event will fire or
the Exception event will fire. If the Connect event fires, then the user will receive replies
from the FTP server via the Reply event. You will only need to provide code for the Connect
event if you wish to capture the parameters provided there. The connection can be
confirmed the first time the Reply event is fired as shown below.
Sub FTP1_Reply (Status As Integer, LastCommand As Integer,

 Code As Integer, Reply As String)
 If Reply <> "" Then Text1.SelText = Reply ' show the reply
 Select Case (Status)
 Case FTP_UNKNOWN
 ' spontaneous data or reply from Command
 Status1 = "Unknown"
 Case FTP_SUCCESS
 ' operation completed successfully
 ' if LastCommand=FTP_PASS, we know we're logged in
 ' if LastCommand=FTP_RETR, we know we have the file now
 ' if LastCommand=FTP_STOR, we know the file has gone to the host
 ' if LastCommand=FTP_LIST, we have received the directory listing
 ' if LastCommand=FTP_CLOSED, control connection is closed
 ' etc . . .
 Status1 = "Success"
 ' launch you next request, like next file to transfer
 Case FTP_ERROR
 ' unexpected error
 Status1 = "Error"
 Case FTP_FAILURE
 ' failure to complete successfully
 Status1 = "Failure"
 Case FTP_WORKING
 ' informative...wait for next reply
 Status1 = "Working"
 End Select
End Sub

3) Executing FTP Functionality. Once connected, the FTP program can now execute any of
the FTP actions that are listed in the drop down list box by simply selecting one of them and
then selecting the Send Command button.
Sub Command18_Click ()
 If Auto Then
 ' indicates PowerTCP will auto-spool data

 ' LocalFileSpec property keys auto-spooling
 FTP1.LocalFileSpec = LocalName
 Else
 ' indicates your program will open and spool file
 FTP1.LocalFileSpec = ""
 End If
 ' specify how much data will read/written for each file access
 FTP1.BufferSize = BufferSize
 Select Case Combo1.Text
 Case "APPE"
 FTP1.Appe = PathName
 Case "CDUP"
 FTP1.ChDirUp = True
 Case "CWD"
 FTP1.ChDir = PathName
 Case "DELE"
 FTP1.Dele = PathName
 Case "LIST"
 FTP1.List = PathName
 Case "MKD"
 FTP1.MakeDir = PathName
 Case "NLST"
 FTP1.NameList = PathName
 Case "PWD"
 FTP1.PrintWorkingDir = True
 Case "RENAME"
 FTP1.Rename = PathName
 Case "RETR"
 FTP1.Retrieve = PathName
 Case "RMD"
 FTP1.RemoveDir = PathName
 Case "STOR"
 FTP1.Store = PathName
 Case "STOU"
 FTP1.StoreUnique = PathName
 End Select
End Sub

4) Receive File and Listing Data. If LocalFileSpec is set to "", then all Data received by this
application comes to it via the Recv event or. If LocalFileSpec is set to a value, then the
Transfer event is fired to notify your program of the transfer's progress. This is also the
mechanism for receiving directory listings.
On a retrieve with the LocalFileSpec set to NULL, the file 'pieces' will arrive through this
event:
Sub FTP1_Recv (RecvData As String)
 ' put data into open file
 If RecvData = "" Then
 ' close file that was previously opened…FTP server is done
 Close #1
 FileNum = 0
 Else
 ' put data into file, but we could do anything with it
 ' if a listing, you could display it instead. . .
 Print #1, RecvData;
 End If
End Sub

Sub FTP1_Transfer (LastCommand As Integer, BlockCnt As Long, ByteCnt As Long)
 ' put up some kind of UI progress indicator…
End Sub

5) Close the Connection. The control connection can be closed at any time by simply
executing the Logout function as is done in the LOGOUT button on the form.
Sub Command2_Click ()
 FTP1.Logout = True
 ' Reply event will be fired with LastCommand=FTP_QUIT and
 ' again with LastCommand=FTP_CLOSED
End Sub

The five steps outlined above illustrate how the FTP control is used. If you have further
questions, please refer directly to the sample source code.

FTP Custom Control
About FTP

P16FTPB5.VBX
Object Type
PowerTCP_FTP
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the following sections.
Properties

*Abort
*Account
*Allocate
*Appe
*BufferSize
*ChDir
*ChDirUp
*CloseControl
*CloseData
*Command
*Dele
*FileStruct
*Flags
*Help

hWnd
Index
*LastCommand
Left
*List
*ListenTimeout
*LocalFileSpec
*LocalDotAddr
*LoginHost
*LogOut
*MakeDir
*Mode
Name
*NameList

*Noop
*OemLicense
Parent
*Passive
*Password
*Port
*PrintWorkingDir
*Reinitialize
*RemoveDir
*Rename
*Restart
*Retrieve
*Send
*SendByte

*SendString
*Site
*Status
*Store
*StoreUnique
*StructMount
*System
Tag
Top
*Type
*TypeTransfer
*User

Events
*Connect
*Exception

*Log
*Recv

*Reply
*Send

*Transfer

About SMTP
SMTP is a protocol used for sending electronic mail. SMTP is built upon TCP, like many other
protocols. Note that SMTP is used only for sending mail. Receiving mail is handled by a
separate protocol, such as POP3.
PowerTCP also supports automatic UUENCODE and MIME encoding for attachments as
desired.
Features of SMTP
SMTP and PowerTCP
SMTP Sample Application
SMTP Constants
SMTP Custom Control

SMTP Commands
About SMTP
The eight most commonly used SMTP commands are listed below:
Command Description
DATA Used to send the body of a mail message.
HELO Used to inform the server of the sending computer's name.
MAIL Used to inform the server of the originator of the mail message.
NOOP Causes the server to respond with an OK. NOOP stands for NO OPeration.
RCPT Used to inform the server of the recipient(s) of the mail message.
RSET Aborts any current mail transfer and resets both ends of the connection.
QUIT Used to send the mail and close the connection.
VRFY Sent from the client to the sender for verification of a recipient address.

A piece of electronic mail consists of three parts:
· The envelope. This contains information about the originator and

recipients. See RFC 821 for more information.

· The headers. These are lines at the beginning of the mail message which
contain other information. They consist of a title, colon, and data. For
example:

Subject: This is a sample header

· The body. This contains the actual text of the message.

SMTP uses NVT ASCII for transmitting all mail messages (see the Telnet section for
information on NVT ASCII).

SMTP and PowerTCP
About SMTP
The PowerTCP SMTP custom control encapsulates SMTP client operation as completely as
possible, using a high-level interface for many programming environments. The SMTP
custom control is based upon the PowerTCP SMTP C++ Class.
PowerTCP complies with RFC 821, Simple Mail Transfer Protocol client operations, handling
most of the details of the protocol. You may wish to familiarize yourself with this document
which is included with the PowerTCP Toolkit. Properties are provided for initiating SMTP
activity, and events are generated to provide your program with data and/or notification that
additional data can be sent. In accordance with RFC 821, the following functionality is
provided:

· Mail. PowerTCP handles all sequencing of messages to send mail to a
host, and optionally builds header information into the message body.

· Verifying and Expanding. Verification of mail addresses and expanding
of mailing lists is supported.

· Sending and Mailing. Send, Send or Mail, Send and Mail are supported.
· Hello and Quit. HELO and QUIT messages are automatically used for

channel opening and closing.
· Relaying. Specify a forward path as a parameter to utilize relaying

facilities.

To utilize the PowerTCP SMTP custom control, 3 basic steps are involved:
1. Your application connects to a mail server. Upon successful completion,

PowerTCP sends a HELO message to the host.
2. Your application can now use the Mail, Help, Verify, and Expand properties

to accomplish desired activity.
3. Your application uses the Action property to send the QUIT message to

terminate the session.
Each PowerTCP component handles a single TCP channel to the host. The following table
shows what action properties cause what SMTP replies to be sent by the SMTP server:

PowerTCP API SMTP Log Reply from SMTP Server Smtp Event
Call (PowerTCP LastCommand

sends) Status
Action = 'Connect' 220 test Sendmail -TestMail Inc
CONNECTCOMM ready at Mon, 8 Jan 1996 12:08:54

-0500 gripes to root@test.domain.com
SMTP_CONNECT
SMTP_WORKING

HELO test 250 test.domain.com Hello me
(me.domain.com), pleased to meet you.

SMTP_HELO
SMTP_SUCCESS

Action = MAIL FROM: test SMTP_MAIL
SEND_MAIL 250 test... Sender ok SMTP_WORKING

RCPT TO: test SMTP_RCPT
250 test... Recipient ok SMTP_WORKING

DATA 354 Enter mail, end with SMTP_DATA
"." on a line by itself SMTP_WORKING

Test Message !!! SMTP_DATA
250 Ok SMTP_SUCCESS

Action QUIT 221 test.domain.com closing connection
= CLOSECOMM SMTP_QUIT

SMTP_CLOSED

SMTP Sample Application
About SMTP
The SMTP sample application that comes with the PowerTCP Standard Toolkit for VB is an
excellent example of how to use the SMTP VBX.
The steps involved to send mail are as follows: Connect to a SMTP Server, Mail the message,
and then close the connection.
1) Connect to an SMTP Server. The SEND button, when selected, initiates a connection.
Sub Command2_Click ()
 ' Set required parameters in order to perform a successful MAIL
 ' RemoteHost is the mail server that will accept the mail
 SMTP1.RemoteHost = HostName
 ' Set ACTION to make an attempt to connect to the server
 SMTP1.Action = CONNECTCOMM
End Sub

2) If the Connect event is fired, then the Smtp event will also fire with received information.
From the information, we can determine what to do next. If the Smpt event is fired with
LastCommand=SMTP_HELO and Status=SMTP_SUCCESS, then the SMTP Server is ready for
our mail.
When all of the mail has been sent, the Smtp event will fire with a LastCommand of
SMTP_DATA and Status of SMTP_SUCCESS. At that point it is safe to send another message,
or close the connection. In the sample, we choose to close the connection.

Sub SMTP1_Smtp (Status As Integer, LastCommand As Integer, ReplyCode As Integer,
ReplyStr As String, Complete As Integer)

 ' display the reply from the mail server
 Text5.SelText = ReplyStr

 If LastCommand = SMTP_DATA Then
 ' mail has been sent…close down connection
 SMTP1.Action = CLOSECOMM 'close
 Text5.SelText = "Connection Closed !!" & Chr$(13) & Chr$(10)
 Exit Sub
 End If

 ' If the SMTP_SUCCESS (Good status from the Smtp Server)
 ' and a good connection has been
 ' established (LastCommand=SMTP_HELO)
 ' then go ahead and send the message.
 If Status=SMTP_SUCCESS And LastCommand = SMTP_HELO Then
 ' Set your address for the header
 SMTP1.Sender = UserName
 ' list of all recipients
 SMTP1.Recipients = Destination
 ' PowerTCP will construct the header
 SMTP1.HeaderSubject = Subject
 ' set the message to be sent
 SMTP1.Message = Message.Text
 ' Set up the Attachments and their types
 ' we construct comma-delimited attachments with encoding mode
 SMTP1.Attachments = ""
 SMTP1.AttachTypes = ""
 For i = 0 To List1.ListCount - 1
 SMTP1.Attachments = SMTP1.Attachments & List1.List(i) & ","
 SMTP1.AttachTypes = SMTP1.AttachTypes & Left$(Attachtype.Text, 1) & ","
 Next I

 If SMTP1.Attachments <> "" Then
 ' clear the extra comma we put in
 SMTP1.Attachments = Left$(SMTP1.Attachments, Len(SMTP1.Attachments) - 1)
 SMTP1.AttachTypes = Left$(SMTP1.AttachTypes, Len(SMTP1.AttachTypes) - 1)
 End If

 SMTP1.Action = SEND_MAIL ' send the mail message!
 End If

End Sub

3) If the Mail message has attachments, then the Attach event will fire each time a buffer of
data is sent to the SMTP server. The Attach event will report PercentComplete of the entire
mail message transferred so the programmer can display progress information. The sample
application displays a message box with a gauge that displays the percent transferred.
Sub SMTP1_Attach (FileSpec As String, PercentComplete As Long)
 If PercentComplete = 100 Then ' the file transfer is done
 Form3.Hide
 End If
 If PercentComplete = 0 Then ' file transfer is beginning
 Form3.Show
 End If
 If PercentComplete > 0 And PercentComplete < 100 Then
 Form3.Caption = FileSpec
 Form3.Text2.Width = PercentComplete * 60
 End If
End Sub

SMTP Constants
About SMTP
The following constants should be used to control and monitor SMTP activity.
' Status in the Smtp event
Global Const SMTP_CLOSED = 0 ' connection is closed
Global Const SMTP_SUCCESS = 1 ' successful reply
Global Const SMTP_ERROR = 2 ' error reply
Global Const SMTP_FAILURE = 3 ' failure reply
Global Const SMTP_WORKING = 4 ' PowerTCP working

' LastCommand in the Smtp event
Global Const SMTP_DATA = 0 ' Data (Mail) being sent
Global Const SMTP_EXPN = 1 ' Expand was performed
Global Const SMTP_HELO = 2 ' Hello greeting was done.
Global Const SMTP_HELP = 3 ' Help was requested
Global Const SMTP_MAIL = 4 ' MAIL command was sent
Global Const SMTP_NOOP = 5 ' NOACTION command
Global Const SMTP_QUIT = 6 ' QUIT Command
Global Const SMTP_RCPT = 7 ' Recipient Command sent
Global Const SMTP_RSET = 8 ' RESET Command
Global Const SMTP_SAML = 9 ' SEND and MAIL Command
Global Const SMTP_SEND = 10 ' SEND Command
Global Const SMTP_SOML = 11 ' SEND or MAIL Command
Global Const SMTP_TURN = 12 ' NOT IMPLEMENTED
Global Const SMTP_VRFY = 13 ' VERIFY Command
Global Const SMTP_CONNECT = 14' first greeting received from host

' Actions for SMTP
Global Const CONNECTCOMM = 0 ' Connect to host
Global Const CLOSECOMM = 2 ' Close connection
Global Const ABORTCOMM = 3 ' Abort connection
Global Const RESET_MAIL = 4 ' Reset server
Global Const SEND_MAIL = 5 ' Send mail (normally used)
Global Const SEND_SEND = 6 ' Send
Global Const SEND_SOML = 7 ' Send or mail
Global Const SEND_SAML = 8 ' Send and mail
Global Const NOOP_MAIL = 11 ' No operation

SMTP Custom Control
About SMTP

P16SMTB5.VBX
Object Type
PowerTCP_SMTP
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the Properties and Events
section.
Properties

*Action
*Attachments
*AttachTypes
*Expand
*Flags
*HeaderDate
*HeaderFrom
*HeaderSubject

*HeaderTo
*Help
hWnd
Index
Left
*LocalDotAddr
*LocalName
*LocalPort

*Message
Name
*OemLicense
Parent
*Recipients
*RemoteHost
*RemotePort
*Sender

*State
Tag
Top
*Verify

Events
*Attach
*Connect

*Exception
*Log

*Smtp

About POP3
The objective of the Post Office Protocol is to allow mail to be received on a remote host (the
POP3 server) that is always available to accept mail on your behalf, and to make that mail
available to your system (the POP3 client) upon demand. This allows the flexibility to have a
PC intermittently connected to the Internet, yet still have local mail management. The
PowerTCP POP3 control encapsulates POP3 client operation as completely as possible, using
a high-level interface for many programming environments.
The SMTP control documented in the previous chapter is often used in conjunction with the
POP3 control to provide a complete e-mail solution in a PC operating environment.
POP3 and PowerTCP
POP3 Sample Application
POP3 Constants
POP3 Custom Control

POP3 and PowerTCP
About POP3

PowerTCP complies with RFC 1725, Post Office Protocol Version 3, handling most of
the details of the protocol. MIME and UUENCODE decoding of file attachments is also
supported. You may wish to familiarize yourself with this document which is included
with the PowerTCP Toolkit. Methods are provided for initiating POP3 activity, and
events are generated to provide your program with data and/or notifications. In
accordance with RFC 1725, the following functionality is provided:
Channel Initialization and Authorization. PowerTCP optimizes the TCP connection
process and integrates it with authorization process. A single method is called to
automate the connection and authorization process.
POP3 messaging. Methods are provided for most POP3 protocol commands: STAT,
LIST, RETR, DELE, NOOP, RESET, TOP, and UIDL. (APOP, USER and PASS are
integrated into the connect process, and QUIT is integrated into the close process.)
Receiving mail. An event is fired for receiving full or partial (top) mail messages.
Receiving lists. An event is fired when scan listings and drop listings are received.
Automatic UUENCODE and MIME. UUENCODE and MIME algorithms are invoked
automatically when sensed in received mail. Attachments are automatically spooled
to disk.
To utilize the PowerPOP3 Class Library, 3 basic steps are involved:

1. Connect to a POP3 server using the Action=CONNECTCOMM. PowerTCP
uses the APOP command if the Secret parameter is specified, otherwise
the UserName and Password parameters are used. If the APOP command
fails, PowerTCP attempts to use the UserName and Password parameters.

2. Use the DeleteMsg, List, Retrieve, Status, Top, TopLines, and Uidl
properties as required by your application.

3. Close the connection using the Close (FALSE) method and wait for a final
OnPop3 to be called before terminating    your application.

Note that each POP3 object handles a single TCP channel to a POP3 server.
The table below illustrates a sample POP3 session with the typical replies from the
server and corresponding PowerTCP event calls.    The first column shows the API call
and in braces the corresponding POP3 command(s) generated on your behalf.    Note
that the second Pop3Event() generated in response to a Top() command provides a
status of POP3_MAIL and can include header and message text if more than 0 lines of
the mail are requested.    The second Pop3Event() generated in response to a
Retrieve() will have a status of POP_HEADER and contain the complete header, and
subsequent Pop3Event() calls will have a status of POP3_MAIL until the message is
complete.
The FileEvent() and Pop3Event() related to processing attachment data provide the
filename of the spooled file.    Note that if Flags = PT_OVERWRITE in the Connect()
call, this filename may not match the name provided in the attachment header, as in
the example which follows.    In this case, overwrite is not allowed, so a new filename
is automatically generated.    "MYFILE.DAT, and "MYFIL1.DAT" through "MYFI24.DAT"
already exist, so "MYFI25.DAT" is used.    Up to 100 versions of a file are allowed
before an exception is generated.
The table below illustrates a typical exchange between the POP3 Control and Mail
Server.

PowerTCP API POP3 Log Reply from POP3 Server Pop3 Event
Call (PowerTCP LastCommand

sends) Status
Action = 'Connect' +OK UCB Pop server POP3_CONNECT
CONNECTCOMM (version)

POP3_REPLY_POS
USER test +OK Password required POP3_USER

for test.
POP3_REPLY_POS
PASS xxxx +OK test has 5 POP3_PASS

message(s)(860 octets).
POP3_REPLY_POS

Action = STAT +OK 5 86000 POP3_STAT
GET_POP3_STATUS

POP3_REPLY_POS
Lines = 0
TopLines = 1 TOP 1 0 Return-Path: <jones@who.domain.com>

Date: Sat, 6 Jan 1996 19:20:30 -0500
Received: from us.domain.com by

who.domain.com
Message-Id: <9601070.A2@who.domain.com>
To: test@who.domain.com
From: doe@who.domain.com (John Doe)
Subject: Test message
Status: RO
. POP3_TOP

POP3_REPLY_POS
Retrieve = 1 RETR 1 Return-Path: <jones@who.domain.com>

Date: Sat, 6 Jan 1996 19:20:30 -0500
Received: from us.domain.com by

who.domain.com
Message-Id: <9601070.A2 @who.domain.com>
To: test@who.domain.com
From: doe@who.domain.com (John Doe)
Subject: Test message
Status: RO.

This is a mail test
. POP3_RETR

POP3_REPLY_POS
DeleteMsg = 1 DELE 1 +OK Message 1 has been deleted.

POP3_DELE

POP3_REPLY_POS
DeleteMsg = 999 DELE 999 -ERR Message 999 does not exist.

POP3_DELE

POP3_REPLY_NEG
Action = QUIT +OK POP Server signing off. POP3_QUIT
CLOSECOMM POP3_CLOSE

POP3 Sample Application
About POP3
The POP3 Sample Application provided in your Toolkit provides an excellent example of how
to implement a POP client. This application connects to a POP server, displays the available
messages, then downloads them to your workstation. The attachments are decoded on the
fly.
The basic steps are: Connect, Retrieve Messages, then Close.
1) Connect to a POP Server. The following code is fired when the Retrieve Messages button is
selected.
Sub GetM_Click ()
 POP31.AttachmentDir = dir1.Path ' Set the Attachment Directory
 If POP31.State = CONNECTED Then
 POP31.Action = GET_POP3_STATUS
 Else
 POP31.RemoteHost = Host ' mail server name or address
 POP31.User = User ' user name (POP3 account)
 POP31.Password = Pass ' user password for account
 POP31.Action = CONNECTCOMM ' initiate connections
 End If
End Sub

2) Use the Pop3 Event. The Pop3 event does a great deal of work in this application. This
event will receive the Pop3 Server replies that include all mail data and replies from the
POP3 server.
Sub POP31_Pop3 (Status As Integer, LastCommand As Integer, ReplyStr As String,
FileSpec As String, Mode As String, PercentComplete As Integer)
 Dim holdres As String
 Dim hold1 As String

 ' Status gives general information from the maildrop
 Select Case Status

 Case POP3_CLOSED
 ' Indication of a closed maildrop
 Text1.SelText = "Maildrop connection closed."

 Case POP3_REPLY_POS
 ' positive reply from server
 ' Output the status string for information
 Text1.SelText = ReplyStr

 Select Case LastCommand
 Case POP3_PASS
 ' This condition indicates a new connection
 ' PowerTCP sent your password
 ' Note: If you want to delete mail from the maildrop
 ' add your condition here and use the DeleteMsg
 ' Property. Then in the POP3_REPLY_POS look for
 ' LastCommand being
 ' equal to POP3_DELE to close the connection again.
 If bRetrieveMail Then
 ' Get the selected message
 POP31.Retrieve = Val(Left(List1, 5))
 Else
 ' Find the number of messages in the MailDrop
 ' Issue the STAT command
 POP31.Action = GET_POP3_STATUS

 End If

 Case POP3_STAT
 ' Parse the string to determine number of new messages
 FirstSpace = InStr(ReplyStr, " ")
 SecondSpace = InStr(FirstSpace + 1, ReplyStr, " ")
 TotalMessages = Mid(ReplyStr, FirstSpace + 1, SecondSpace - (FirstSpace +
1))
 nM = nMessages

 ' With new messages found, get the message header using
 ' TopLines
 If TotalMessages > 0 And nM > 0 Then
 POP31.TopLines = TotalMessages ' Retrieves the top
 Else
 GetM.Enabled = True ' Enable the Retrieve Button
 ' No new messages. Close maildrop.
 POP31.Action = CLOSECOMM
 End If
 End Select

 Case POP3_REPLY_NEG ' An error from the pop server was returned
 MsgBox ReplyStr
 ' Error with POP server. Close maildrop.
 POP31.Action = CLOSECOMM

 Case POP3_FILE
 ' Denotes an attachment status
 Percent.Caption = FileSpec
 Percent.Show
 Percent.Text2.Width = PercentComplete * 60

 Case POP3_MAIL
 ' Indicates data...a MAIL Message
 Select Case LastCommand
 Case POP3_TOP
 ' We have a message header
 If PercentComplete = 100 Then
 ' Begin Parsing
 result = Space(5)
 LSet result = Str$(TotalMessages)
 holdres = GetPieceOfString(ReplyStr, "Return-Path:", 30)
 If InStr(holdres, "NO Return-Path:") Then
 holdres = GetPieceOfString(ReplyStr, "From", 30)
 End If
 result = result & holdres
 result = result & " "
 result = result & GetPieceOfString(ReplyStr, "Date:", 18)
 result = result & " "
 result = result & GetPieceOfString(ReplyStr, "Subject:", 30)
 List1.AddItem result
 If List1.ListIndex < nMessages Then
 ' if this is not the last message, inc row
 List1.ListIndex = List1.ListIndex + 1
 End If

 ' Continue to drive the retrieving of messages
 TotalMessages = TotalMessages - 1
 nM = nM - 1
 If TotalMessages > 0 And nM > 0 Then
 ' Not done, get next message
 POP31.TopLines = TotalMessages

 Else
 GetM.Enabled = True
 ' All done. Close maildrop
 POP31.Action = CLOSECOMM
 End If

 End If

 Case POP3_RETR
 ' Indicates MAIL being retrieved
 If PercentComplete = 100 Then
 Percent.Hide
 Else
 Percent.Caption = FileSpec
 Percent.Show
 Percent.Text2.Width = PercentComplete * 60
 End If

 ' Mail Message being retrieved
 MailMsg.Text1.SelText = ReplyStr & Chr$(13) & Chr$(10)

 ' if we are done, close connection and show mail
 If PercentComplete = 100 Then
 ' We have our message. Close maildrop
 POP31.Action = CLOSECOMM
 MailMsg.Show
 End If

 End Select ' Case on LastCommand in POP3_MAIL case
 End Select ' Case on the POP3 Reply Status Type

End Sub

3) Retrieving a Complete Message. Once the Headers from all of the Mail Messages are
pulled down, the user can double-click on any of the messages and the complete message
will be pulled down.
Sub List1_DblClick ()
 ' specify location for all attachment received
 POP31.AttachmentDir = dir1.Path
 ' The Message number to retrieve…
 POP31.Retrieve = Val(Left(List1, 5))
End Sub

POP3 Constants
About POP3
The following constants should be used to control and monitor POP3 activity.
' Status in the POP3 event
Global Const POP3_CLOSED = 0 ' The connection to the POP3 server is closed.

Global Const POP3_REPLY_POS = 1
' The POP3 server has responded with a positive "+OK", indicating a positive
' reply to the previous message sent to the server. If a multi-line reply
' and the end is not present in the Reply buffer, then PercentComplete will
' be 0 to indicate this fact. If a single-line reply or includes the end of
' a multi-line reply, then PercentComplete will be 100.

Global Const POP3_REPLY_NEG = 2
' The POP3 server has responded with a negative "-ERR", indicating a
' negative reply to the previous message sent to the server.

Global Const POP3_MAIL = 3
' The Reply buffer holds part or all of a mail message header and/or body.

Global Const POP3_FILE = 4
' The Reply buffer holds part or all of a file. The Mode parameter may be
' checked for the encoding method used for the file. The FileSpec parameter
' specifies the file being filled if the AttachmentDir property was
' specified.

Global Const POP3_HEADER = 5
' The Reply buffer holds a complete mail header. Occurs only in response to Retrieve
requests.

' LastCommand in the Pop3 event
Global Const POP3_APOP = 0 ' APOP Authentication sent
Global Const POP3_DELE = 1 ' Delete Message
Global Const POP3_LIST = 2 ' List a particular MAIL message(s)
Global Const POP3_NOOP = 3 ' No Action
Global Const POP3_PASS = 4 ' Password
Global Const POP3_QUIT = 5 ' Quit the MAIL
Global Const POP3_RSET = 6 ' Reset the POP Server
Global Const POP3_RETR = 7 ' Retrieve a MAIL Message
Global Const POP3_STAT = 8 ' Check Status
Global Const POP3_TOP = 9 ' TOP of Mail Message
Global Const POP3_UIDL = 10 ' Not Implemented
Global Const POP3_USER = 11 ' Username
Global Const POP3_CONNECT = 12 ' Reply received after connecting to server.

' Actions for POP3
Global Const CONNECTCOMM = 0 ' Connect to server
Global Const CLOSECOMM = 2 ' Close connection
Global Const ABORTCOMM = 3 ' Abort connection
Global Const GET_POP3_STATUS = 5 ' Get the POP3 Status
Global Const SEND_NOOP_POP3 = 11 ' Send a NOOP to the POP server
Global Const SEND_RESET_POP3 = 12 ' Reset the POP3 Server

POP3 Custom Control
About POP3

P16POPB6.VBX
Object Type
PowerTCP_POP3
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the Properties and Events
section.
Properties

*Action
*AttachmentDir
*DeleteMsg
*Flags
hWnd
Index
Left

*Lines
*List
*LocalDotAddr
*LocalName
*LocalPort
*MailFileSpec
Name

*OemLicense
Parent
*Password
*RemoteHost
*RemotePort
*Retrieve
*Secret

*State
Tag
Top
*TopLines
*Uidl
*User

Events
*Connect
*Exception

*File
*Log

*Pop3
*Header

About UDP
UDP means User Datagram Protocol. UDP is built upon IP just as TCP is. However, there are
differences in the ways that UDP and TCP use IP. UDP provides an unreliable transmission of
packets between two computers. This differs from TCP in two ways: TCP is reliable, and it
provides a data stream instead of individual packets.
UDP is unreliable because when data is sent, the sender has no way of knowing if the data
reached its destination or not. UDP packets are sent and received individually, and not split
apart or recombined. A data stream (used by TCP) would send the data in arbitrary packets,
ensuring only that data would be received in the same order in which it was sent.
In UDP, no true connections are made. A computer simply opens a UDP port and waits for
data. Computers can send data to each other on a particular port. This is in contrast to TCP,
where a connection must be established before data is transferred.
UDP is the base protocol for upper-layer protocols such as SNMP (Simple Network
Management Protocol) and TFTP (Trivial File Transfer Protocol). These protocols are
implemented using UDP.
The only features UDP provides over IP are port numbers and checksums (which are
optional, and not always implemented). UDP data is sent and received on specified ports,
which allow a computer to handle multiple connections at the same time on different ports.
For more information on UDP, refer to RFC 768.
UDP and PowerTCP
UDP Custom Control

UDP and PowerTCP
About UDP
All PowerTCP custom controls with the exception of UDP are compatible with all versions of
Microsoft Visual Basic (including version 1.0). However, the UDP control is compatible only
with versions 2.0, 3.0 and 4.0. This means that the UDP custom control cannot be used with
Visual Basic 1.0, Microsoft Visual C++ (using MFC), PowerBuilder, and Delphi (there is a
separate Delphi PowerTCP Toolkit, however, with Delphi components instead of VBXs).
However, all other PowerTCP custom controls will work in these environments.

UDP Custom Control
About UDP

P16UDPB5.VBX
Object Type
PowerTCP_UDP
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the following sections.
Properties

*Action
*DataTag
*Flags
hWnd
Index

*LocalDotAddr
*LocalPort
Left
Name
Parent

*OemLicense
*RemoteHost
*RemotePort
*Send
*State

Tag
Top

Events
*Connect *Exception *Recv *Send

About SNMP
SNMP stands for Simple Network Management Protocol. This section describes SNMP
(version 1) only briefly because of its complexity. See RFCs 1213, 1155, and 1157 for
more information, or one of the books listed in Additional Resources.
SNMP provides for basic network monitoring and management functions between a
management station and managed nodes through applications located on the nodes,
called agents.    These agents maintain a database of information about managed
nodes and when queried by the manager, retrieve data from the database and send
it back to the manager in a response.    SNMP over TCP/IP uses UDP packets as its
transport for these queries and responses, as well as for traps.    Traps are sent to the
management station when certain events occur, like when a node comes up or is
shut down.   
PowerTCP supports the encoding and decoding of these packets, greatly simplifying
the task of getting and setting SNMP object values.    Use PowerTCP to create BOTH
SNMP Management Applications AND SNMP Agent Applications. PowerTCP supports
SNMP version 1.

SNMP Messages
SNMP and PowerTCP
SNMP Custom Control

SNMP Messages
About SNMP

Five different types of messages are exchanged between the manager and its
managed nodes.

1. get-request - retrieves the value of one or more objects from an agent's
MIB.

2. get-next-request - retrieves the next value of one or more objects from an
agent's MIB.

3. set-request - sets the value of one or more objects in an agent's MIB.
4. get-response - returns the value of one or more objects in response to a

manager's request.
5. trap - notifies a manager when an event occurs on an agent.

SNMP and PowerTCP
About SNMP

PowerTCP makes building a network management application in Microsoft Windows a
much easier task by providing an asynchronous, event driven interface to the
messages used by SNMP.    The PowerTCP SNMP interface:

1. Handles the building and encoding of outbound messages through the
ActionAction_SNMP property.

2. Handles the parsing and decoding of inbound messages and notifies the
application by generating a RecvSnmpRecvSnmp Event.

3. Handles the parsing and decoding of inbound trap messages and notifies
the application by generating a RecvTrapRecvTrap event.

4. Greatly simplifies set-up and tear-down operations.

SNMP Custom Control
About SNMP

P16SNMB5.VBX
Object Type
PowerTCP_SNMP
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the following sections.
Properties

*Action
*Community
*Enterprise
*ErrorIndex
*ErrorStatus
*Flags
*GeneralTrap

hWnd
Index
*LocalDotAddr
*LocalPort
Left
Name
*nObjects

*NodeDotAddr
Parent
*ObjectID
*ObjectType
*ObjectValue
*OemLicense
*RemoteHost

*RemotePort
*RequestID
*SpecialTrap
*State
*TimeStamp
Tag
Top

Events
*Connect
*Exception

*RecvSnmp
*RecvTrap

*Send

About TFTP
TFTP stands for Trivial File Transfer Protocol. It is a protocol used for transferring files using
the UDP protocol. This is in contrast to FTP, which uses TCP. TFTP was originally designed to
be a small, simple method for file transfer during bootstrapping.
TFTP provides only rules for uploading and downloading files. Because it is based on UDP, it
is not necessarily reliable, and so data corruption can occur if UDP checksums are not
enabled by the operating system.
TFTP does not provide any kind of security. Therefore, TFTP servers generally restrict access
to files in a TFTP directory. TFTP does not include support for transferring directory listings,
or many other features which FTP implements. TFTP is also generally slower than FTP file
transfers because every packet is acknowledged. The standard TFTP port is 69.
TFTP is more useful than FTP when it is important to minimize usage of system resources,
and when simple file transfers are needed without dealing with security features like
username and password. It may also be quicker than FTP for small file transfers, as less
setup is required for each transfer.
For more information on TFTP, see RFC 1350.
TFTP and PowerTCP
TFTP Custom Control

TFTP and PowerTCP
About TFTP
PowerTCP supports TFTP revision 2.

TFTP Custom Control
About TFTP

P16TFTB5.VBX
Object Type
PowerTCP_TFTP
The properties and events for this control are listed in the following table. Properties and
events that apply only to this control, or which require special consideration when used with
it, are marked with an asterisk (*). They are documented in the following sections.
Properties

*AbortTransfer
*Action
*Flags
hWnd
Index

*LocalDotAddr
*LocalFileSpec
Left
*MaxRetries
Name

Parent
*OemLicense
*RemoteFileSpe
c
*RemoteHost
*ServerPort

*State
*TimeoutInterval
Tag
Top

Events
*Connect *Exception *Tftp

Abort Property
Applies To
FTP.
Description
Sends an abort (ABOR) command. Tells the server to abort the previous FTP file transfer
command (APPE, STOR, RETR or STOU) and any associated transfer of data. The control
connection is not closed by the server, and the data connection is closed. This property is
not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Abort = True
Remarks
Successful completion is indicated by checking the Status parameter in the Reply Event.
Data Type
Integer (Boolean)
See Also
Reply Event.

AbortTransfer Property
Applies To
TFTP.
Description
Aborts the file transfer specified. The TransferID is reported in the TFTP event.
Usage
[form.][control.]AbortTransfer = TransferID
Data Type
Long

Account Property
Applies To
FTP.
Description
The account used for logging in to an FTP host.
Usage
[form.][control.]Account = stringexpression
Remarks
Only some FTP hosts require an account identifier. Most require only a username and
password. This should be set before the LoginHost property is set.
Data Type
String
See Also
Password Property; User Property.

Action Property (POP3)
Applies To
POP3.
Description
The Action property sets the state of the control, ends a connection with another computer,
or sends POP3 messages without parameters. Properties are used to send POP3 messages
with parameters. This property is not displayed at design time, and write-only at run time.
Usage
[form.][control.]Action = setting
Remarks
The Action property settings are:
Constant Description
CONNECTCOMM = 0 Sets the state to Connecting. This connects you with a remote

computer. You must have previously specified the RemoteHost, User and Password
properties. You will receive a Connect event when the channel is created.

CLOSECOMM = 2 Closes the connection with another computer by sending a QUIT
message. You are notified with a Pop3 Event (Status = POP3_CLOSED) when a
connection is closed.

ABORTCOMM = 3 Terminates TCP connection with no delay. Preferably, you should use
the CLOSECOMM setting instead. You are notified with a Pop3 Event (Status =
POP3_CLOSED) when a connection is closed.

GET_POP3_STATUS = 5 The POP3 server issues a positive response with a line
containing information for the maildrop. This line is called a "drop listing" for that
maildrop. In order to simplify parsing, all POP3 servers are required to use a certain
format for drop listings. The positive response consist of "+OK" followed by a single
space, the number of messages in the maildrop, a single space, and the size of the
maildrop in octets. The protocol makes no requirement on what follows the maildrop
size. Minimal implementations end that line of the response with a CRLF pair. More
advanced implementations may include other information. Note that messages
marked as deleted are not counted in either total.

SEND_NOOP_POP3 = 11 Sends a NOOP message to the POP3 server.
SEND_RESET_POP3 = 12 Sends a RESET message to the POP3 server. If any messages

have been marked as deleted by the POP3 server, they are unmarked. The POP3
server then replies with a positive response.

Data Type
Integer
See Also
Connect Event; Exception Event; Pop3 Event; State Property.

Action Property (SMTP)
Applies To
SMTP.
Description
The Action property makes a connection, disconnects, or sends mail. This property is not
displayed at design time, and write-only at run time.
Usage
[form.][control.]Action = setting
Remarks
The Action property settings are:
Constant Description
CONNECTCOMM = 0 Sets the state to Connecting. This connects you with a remote

computer. You must have previously specified the RemoteHost property. If the
connect is successful, you will receive a Connect event.

CLOSECOMM = 2 Closes the connection with another computer by sending a QUIT
message. When an active connection is closed, you are notified with an Smtp Event
where the Status is SMTP_CLOSED.

ABORTCOMM = 3 Terminates TCP connection with no delay. Preferably, you should use
the CLOSECOMM setting instead. When an active connection is closed, you are
notified with an Smtp Event where the Status is SMTP_CLOSED.

RESET_MAIL = 4 Sends a Reset message to the mail host, causing it to terminate the
current mail transaction.

SEND_MAIL = 5 Initiates a mail message. You should have previously set the following
properties: Sender, Recipient, HeaderDate, HeaderSubject, HeaderTo, and Message.

SEND_SEND = 6 Initiates a send message. You should have previously set the following
properties: Sender, Recipient, HeaderDate, HeaderSubject, HeaderTo, and Message.

SEND_SOML = 7 Initiates a send or mail message. You should have previously set the
following properties: Sender, Recipient, HeaderDate, HeaderSubject, HeaderTo, and
Message.

SEND_SAML = 8 Initiates a send and mail message. You should have previously set the
following properties: Sender, Recipient, HeaderDate, HeaderSubject, HeaderTo, and
Message.

SEND_NOOP_MAIL = 11 This command does not affect any parameters or previously
entered commands. It specifies no action other than that the receiver send an OK
reply. This command has no effect on the reverse-path buffer, the forward-path
buffer, or the mail data buffer.

Data Type
Integer
See Also
Connect Event; Exception Event; Smtp Event; State Property.

Action Property (SNMP)
Applies To
SNMP.
Description
The Action property initiates a change-of-state and is also used to generate get-request, get-
next-request and set-request SNMP packets. This property is not displayed at design time,
and write-only at run time.
Usage
[form.][control.]Action = setting
Remarks
The Action property settings are:
Constant Description
CONNECTCOMM = 0 Allocates socket resources and establishes a local SNMP session. If

successful, you will receive a Connect event. If not, you will receive an Exception
event.

CLOSECOMM = 2 Closes the session after any outstanding packets are sent.
ABORTCOMM = 3 Aborts the session.
SNMP_GET_REQUEST = 4 Generates and sends a get-request SNMP packet.
SNMP_GET_NEXT_REQUEST = 5 Generates and sends a get-next-request SNMP packet.
SNMP_GET_RESPONSE = 6 Generates and sends a get_response SNMP packet.
SNMP_SET_REQUEST = 7 Generates and sends a set-request SNMP packet.
SNMP_TRAP_MESSAGE = 8 Generates and sends a trap SNMP packet.

Data Type
Integer
See Also
State Property; Connect Event; Exception Event; RecvSnmp Event

Action Property (TCP, Telnet)
Applies To
TCP, Telnet.
Description
The Action property makes a connection, disconnects, or listens for connections. This
property is not displayed at design time, and write-only at run time.
Usage
[form.][control.]Action = setting
Remarks
The Action property settings are:
Setting Description
CONNECTCOMM = 0 Connect - Attempts to make a connection with a remote computer. You

must have previously specified the RemoteHostRemoteHost and
RemotePortRemotePort properties. If the connect is successful, you will receive a
Connect event.

LISTENCOMM = 1 Listen - Begins to listen for remote computers trying to connect. When
a computer sends a message to the control that it wants to connect, you must assign
the connection to a new control. For more information on the Listening state, see the
Listen and Accept events. If entering Listening state was successful, you will receive
a Listen event.

CLOSECOMM = 2 Close - Closes the connection (after flushing all sent data) or stops
listening for new connections. When an active connection is closed, you are notified
with a Recv Event where the length of the RecvData parameter is 0.

ABORTCOMM = 3 Abort - Terminates the TCP connection with no delay. Preferably, you
should use CLOSECOMM instead. When an active connection is closed, you are
notified with a Recv Event where the length of the RecvData parameter is 0.

Example
The following lines of code show how to make a connection to the computer eagle1.dart.com
on the Telnet port.
Telnet1.RemoteHost = "eagle1.dart.com"
Telnet1.RemotePort = 23 ' The standard Telnet port
Telnet1.Action = CONNECTCOMM ' We will receive the
 ' Connect event when
 ' it is established
Data Type
Integer
See Also
Accept Event; State Property; Connect Event; Exception Event; Listen Event.

Action Property (TFTP)
Applies To
TFTP.
Description
The Action property initiates a change-of-state. This property is not displayed at design time,
and write-only at run time.
Usage
[form.][control.]Action = setting
Remarks
The Action property settings are:
Setting Description
CONNECTCOMM = 0 Allocates socket resources and establishes a TFTP session. If

successful, you will receive a Connect event. If not, you will receive an Exception
event.

LISTENCOMM = 1 Sets the state to Connected. This establishes a local TFTP server. If
successful, you will receive a Connect event. If not, you will receive an Exception
event.

CLOSECOMM = 2 Closes the session after all file activity is complete. You will receive the
Tftp event with Op = TFTP_CLOSED as confirmation.

ABORTCOMM = 3 Immediately aborts all file transfer activity and closes. You will receive
the Tftp event with Op = TFTP_CLOSED as confirmation.

GET_NETASCII = 8 Initiate a get file operation using NETASCII mode.
GET_OCTET = 9 Initiate a get file operation using OCTET mode.
PUT_NETASCII = 10 Initiate a put file operation using NETASCII mode.
PUT_OCTET = 11 Initiate a put file operation using OCTET mode.

Data Type
Integer
See Also
State Property; Connect Event; Exception Event.

Action Property (UDP)
Applies To
UDP.
Description
The Action property initiates a change of state. This property is not displayed at design time,
and write-only at run time.
Usage
[form.][control.]Action = setting
Remarks
The Action property settings are:
Constant Description
CONNECTCOMM = 0 Makes a connection and establishes a local UDP session. If successful,

you will receive a ConnectConnect_UDP_SNMP event. If not, you will receive an
ExceptionException event.

CLOSECOMM = 2 Closes the session after outstanding buffers are sent. The
RecvRecv_Event_UDP event is called with RecvData = "" as confirmation.

ABORTCOMM = 3 Closes the session immediately, destroying any outstanding buffers.
The RecvRecv_Event_UDP event is called with RecvData = "" as confirmation.

Data Type
Integer
See Also
Accept Event; State Property; Connect Event; Exception Event; Listen Event.

Allocate Property
Applies To
FTP.
Description
Sends an allocate (ALLO) command. May be required by some servers to reserve sufficient
storage to accommodate the new file to be transferred. This property is not displayed at
design time, and is write-only at run time.
Usage
[form.][control.]Allocate = stringexpression
Remarks
Set the Allocate Property to the maximum file size and maximum record size values desired.
Each value should be separated by a space, with the second value optional. Do not put an
'R' between the two values. For example:
FTP1.Allocate = "1024 512"
Successful completion is indicated by checking the Status parameter in Reply Event.
Data Type
String
See Also
Reply Event.

AnswerBack Property
Applies To
VT.
Description
Sets or returns a string expression that is sent by the control whenever an ENQ is received.
Usage
[form.][control.]AnswerBack = stringexpression
Data Type
String

Appe Property
Applies To
FTP.
Description
Sends an append with create (APPE) command. Similar to the Store Property, except that if
the file exists then additional data is appended to it. This property is not displayed at design
time, and is write-only at run time.
Usage
[form.][control.]Appe = stringexpression (PathName)
Remarks
Setting the Appe Property to a pathname will set-up a data connection and deposit all data
sent across it into the pathname specified.
Successful completion is indicated by checking the Status parameter in Reply Event.
Data Type
String
See Also
Send Event; Send Property; Reply Event.

AttachmentDir Property
Applies To
POP3.
Description
Specifies the path to be used for attached files. Should be set before the Retrieve property is
used.
Usage
[form.][control.]AttachmentDir[= stringexpression]
Remarks
Since PowerTCP supports MIME and UUENCODE specifications, attached files must be
spooled into a directory. This property sets the location to be used.
Data Type
String

Attachments Property
Applies To
SMTP.
Description
Sets or returns a string of comma-delimited file specifications.
Usage
[form.][control.]Attachments[= stringexpression]
Remarks
This property must be set before invoking Action = SEND_MAIL if attachments are to be
included. There is a one-to-one correspondence between each attachment file specified with
the Attachments property and the encoding modes specified by the AttachTypes property.
Data Type
String
See Also
AttachTypes Property.

AttachTypes Property
Applies To
SMTP.
Description
Sets or returns a string of comma-delimited attachment encoding modes.
Usage
[form.][control.]AttachTypes[= stringexpression]
Remarks
A NULL value may be used if no encoding is required, otherwise the string must contain an
encoding mode for each file attachment in the Attachments property.
The table below lists the valid encoding modes.
Setting Description
M MIME (Base64 Encoding)
U UU Encoding
N No Encoding

Data Type
String
See Also
Attachments Property.

AutoOption Property
Applies To
Telnet.
Description
Sets or returns whether automatic option negotiation is enabled.
Usage
[form.][control.]AutoOption[= {True|False}]
Remarks
When True, there is no need to respond to the Cmd event, as option negotiation is taken
care of. The automatic option negotiation responds with Will Suppress Go Aheads, Do
Suppress Go Aheads, and Do Echo commands. If you wish to support additional features,
you should set this property to FALSE and write custom code in the Cmd event.
Data Type
Integer (Boolean)
See Also
Cmd Event.

AutoPrint Property
Applies To
VT.
Description
Sets or returns whether auto print mode is on.
Usage
[form.][control.]AutoPrint[= {True|False}]
Remarks
When True, the control will print displayed lines to the default printer.
Data Type
Integer (Boolean)

AutoRepeat Property
Applies To
VT.
Description
Sets or returns whether depressed keys will generate more than one character.
Usage
[form.][control.]AutoRepeat[= {True|False}]
Remarks
If False, only a single character will be generated when a key is depressed for a time
interval.
If True, multiple characters will be generated until the key is released.
Data Type
Integer (Boolean)

AutoWrap Property
Applies To
VT.
Description
Sets or returns whether display text prints at the last column or automatically wraps to the
next line when more data is received than fits in one row.
Usage
[form.][control.]AutoWrap[= {True|False}]
Remarks
If False, characters received after the right margin are overwritten into the last character
position of the current line.
If True, a character received after the right margin automatically appears in the first
character position of the next line.
Data Type
Integer (Boolean)

BackColor Property
Applies To
VT.
Description
Sets or returns the color used for screen background.
Usage
[form.][control.]BackColor [= numericexpression]
Remarks
RGB and system colors are supported. The new color is immediately used.
Examples
The following are all valid statements:
VT1.BackColor = RGB(255, 0, 0) ' Red
VT1.BackColor = QBColor(12) ' Red
VT1.BackColor = &H8000000F ' System button color
 ' (normally gray)
Data Type
Long

Bell Property
Applies To
VT.
Description
Sets or returns whether the audio bell is enabled or disabled.
Usage
[form.][control.]Bell[= {True|False}]
Remarks
If True, the ASCII BEL character will cause the system bell to sound. In addition, some actions
(like attempting to scroll past the scroll range) will cause the bell to sound.
If False, the system bell is disabled.
Data Type
Integer (Boolean)

BoldColor Property
Applies To
VT.
Description
Sets or returns the color used for characters displayed with the bold attribute.
Usage
[form.][control.]BoldColor [= numericexpression]
Remarks
RGB and system colors are supported. The new color is immediately used.
Examples
The following are all valid statements:
VT1.BoldColor = RGB(255, 0, 0) ' Red
VT1.BoldColor = QBColor(12) ' Red
VT1.BoldColor = &H8000000F ' System button color
 ' (normally gray)
Data Type
Long

BufferRows Property
Applies To
VT.
Description
Sets or returns the number of lines used for scroll-back buffering.
Usage
[form.][control.]BufferRows[=numericexpression]
Remarks
The BufferRows can be reset at any time; data will be preserved if possible.
Data Type
Integer
See Also
Cols Property; Rows Property; Text Property.

BufferSize Property
Applies To
FTP.
Description
Sets the size of the individual blocks of data which are sent over the data connection during
a file transfer.
Usage
[form.][control.]BufferSize[= numericexpression]
Remarks
The BufferSize property can be used to optimize the transfer rate between computers. A
value which is too low can slow down a transfer, but so can a value which is too high. In
addition, the optimal value may vary between machines. A value between six thousand and
twelve thousand usually works well.
The BufferSize property only applies to file transfers which are handled by PowerTCP (using
the LocalFileSpec property). If your program is manually "feeding" the data to the FTP
control, then the size of the strings the control is given is essentially the buffer size.
Data Type
Integer

ChDir Property
Applies To
FTP.
Description
Sends the Change Working Directory (CWD) command. Use this property to change the
current working directory. This property is not displayed at design time, and is write-only at
run time.
Usage
[form.][control.]ChDir = stringexpression (PathName)
Remarks
Successful completion is indicated by checking the Status parameter in Reply Event.
Data Type
String
See Also
Reply Event.

ChDirUp Property
Applies To
FTP.
Description
Sends a Change to Parent Directory (CDUP) command. Use this property to change the
current working directory to the parent directory. This property is not displayed at design
time, and is write-only at run time.
Usage
[form.][control.]ChDirUp    = True
Remarks
Successful completion is indicated by checking the Status parameter in Reply Event.
Data Type
Integer (Boolean)
See Also
Reply Event.

CloseControl Property
Applies To
FTP.
Description
This property can be set to close the FTP control connection. Under normal circumstances,
Logout should be used instead. This property is not displayed at design time, and is write-
only at run time.
Usage
[form.][control.]CloseControl = True
Data Type
Integer (Boolean)
See Also
Logout Property.

CloseData Property
Applies To
FTP.
Description
This property is used to close the FTP data connection. This property is not displayed at
design time, and is write-only at run time.
Usage
[form.][control.]CloseData = True
Remarks
For Store, StoreUnique, and Appe commands you can use the Send property to feed the file
to the server. When complete, CloseData should be set to True to signal the end of the file
transfer.
Data Type
Integer (Boolean)
See Also
Flags Property.

Cmd Property
Apples To
Telnet.
Description
The Cmd property sends a Telnet command to the other end of the connection. This property
is not displayed at design time, and write-only at run time.
Usage
[form.][control.]Cmd = numericexpression
Remarks
The Cmd property is used only when AutoOption is set to False, since it is used during option
negotiation.
For more information on option negotiation, see the Option Negotiation section of the Telnet
chapter.
Data Type
Integer
See Also
Cmd Event.

Cols Property
Applies To
VT.
Description
Sets or returns the number of columns being used for the display.
Usage
[form.][control.]Cols[= numericexpression]
Remarks
Cols can be reset at any time; data will be preserved if possible. Only 80 and 132 are valid
values. Attempting to set Cols to other values will result in a runtime error.
Data Type
Integer
See Also
BufferRows Property; Rows Property; Text Property.

ColWidth Property
Applies To
VT.
Description
Returns the width of a column according to the measurement units set up by the container
object (normally the form).
Usage
[form.][control.]ColWidth
Remarks
Read-only at runtime. When multiplied by the number of columns (80 or 132), the
application can compute the width of the control necessary to view one screen of data.
Example
The following line of code makes the control the optimum width with no truncation or extra
space (the scroll bar is normally 255 twips wide):
VT1.Width = VT1.Cols * VT1.ColWidth + 255
Data Type
Integer
See Also
Cols Property.

Command Property
Applies To
FTP.
Description
Sends an FTP command string for transmission over the control connection. This property is
not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Command = stringexpression
Remarks
This property is used if you want to bypass the library functions that handle command string
creation and reply synchronization and checking. It may be useful if the FTP host is not
responding as expected by the protocol, and you wish to troubleshoot the operation.
PowerTCP will terminate the command with a CR/LF pair.
When used, the PowerTCP control has no way of knowing what the current synchronization
is, and uses FTP_UNKNOWN as the Status value for the Reply Event.
Example
A sample command to set the host and port would be:
FTP1.Command = "PORT 129,229,1,5,0,200"

Data Type
String
See Also
Reply Event.

Community Property
Applies To
SNMP.
Description
Specifies the community name to use for the get-request, get-next-request, or set-request
messages. The value is set each time a RecvSnmp or RecvTrap Event is called. Typical values
are "public" or "private".
Usage
[form.][control.]Community[= stringexpression]
Remarks
Must match the community name that is specified on the agent.
Data Type
String

Cursor Property
Applies To
VT.
Description
Sets or returns whether the cursor is displayed or not. The location of the cursor is
unaffected.
Usage
[form.][control.]Cursor[= {True|False}]
Remarks
If True, displays the cursor. If 0, hides the cursor. Note that the cursor is only shown when
the control has the focus.
Data Type
Integer (Boolean)

CursorCol Property
Applies To
VT.
Description
Returns the current cursor column position (between 1 and either 80 or 132). Read-only at
runtime.
Usage
[form.][control.]CursorCol
Data Type
Integer
See Also
Cols Property; CursorRow Property.

CursorKeys Property
Applies To
VT.
Description
Sets or returns whether the cursor keys send ANSI cursor control sequences or application
control functions.
Usage
[form.][control.]CursorKeys[= setting]
Setting Description
0 Normal Cursor Keys. Cursor keys send ANSI cursor control sequences (up, down, left

and right).
1 Application Cursor Keys. Cursor keys send application program control functions.

Data Type
Integer (Enumerated)

CursorRow Property
Applies To
VT.
Description
Returns the current cursor row position.
Usage
[form.][control.]CursorRow
Remarks
Since the Rows property can be changed, the range of CursorRow is between 1 and the
Rows Property.
Data Type
Integer
See Also
Rows Property; CursorCol Property.

CursorStyle Property
Applies To
VT.
Description
Sets or returns the cursor style displayed.
Usage
[form.][control.]CursorStyle[= setting%]
Setting Description
0 Block cursor.
1 Underline cursor.

Data Type
Integer (Enumerated)

DataTag Property
Applies To
TCP, Telnet, SMTP, UDP.
Description
A multi-purpose value which is passed back to the Send event after setting the Send,
SendByte, or SendString properties. This property is not displayed at design time.
Usage
[form.][control.]DataTag[= numericexpression]
Remarks
The DataTag property is comparable to the Tag property in many standard controls -    the
developer may use it for many different purposes. The DataTag property is slightly different,
however. When you set the Send property to send a string, and then receive the Send event,
the value of DataTag at the time the string was sent is passed back to you as an argument.
This makes it useful as a tag to mark sent data.
Data Type
Long
See Also
Send Event; Send Property.

Dele Property
Applies To
FTP.
Description
Sends a Delete (DELE) command. Causes the specified file to be deleted at the server site.
This property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Dele = stringexpression (PathName)
Remarks
Set the Dele Property to the pathname of the file you wish to delete. For example:
FTP1.Dele = "filename.hog" ' free up some disk space

Data Type
String
See Also
Reply Event.

DeleteMsg Property
Applies To
POP3.
Description
Set the Delete Property to a message number to send a POP3 DELE message. This property
is not visible at design-time and is write-only at run-time.
Usage
[form.][control.]DeleteMsg = [numericexpression]
Remarks
The POP3 server marks the message as deleted. Any future reference to the message-
number associated with the message in a POP3 command generates an error. The POP3
server does not actually delete the message until Action=CLOSECOMM is set. The reply
from the POP3 server causes the Pop3 event to fire.
Data Type
Integer

Display Property
Applies To
VT.
Description
When set to a string of data, interprets and displays that data according to the current
Terminal property setting.
Usage
[form.][control.]DisplayString[= stringexpression]
Remarks
Write only at runtime. If the Enabled Property is False, setting this property has no effect.
Important
This is a Visual Basic 2.0 property, and can contain NULL characters that will be ignored by
the emulator. For Delphi, PowerBuilder, and Microsoft Visual C++, you should use the
DisplayString property.
Example
The following example displays all data received from a Telnet control:
Sub Telnet1_Recv (RecvData As String)
 VT1.Display = RecvData
End Sub

Data Type
String
See Also
DisplayString Property; Enabled Property; KeyPress Event.

DisplayString Property
Applies To
VT.
Description
When set to a string of data, interprets and displays that data according to the current
Terminal property setting.
Usage
[form.][control.]Display[= stringexpression]
Remarks
Write only at runtime. If the Enabled Property is False, setting this property has no effect.
Important
This property should be used instead of Display only in PowerBuilder, Delphi, and Visual C+
+, as they use null-terminated strings. This is a Visual Basic 1.0-compatible property.
Data Type
String
See Also
Enabled Property; KeyPress Event.

DoOption, DontOption Properties
Applies To
Telnet.
Description
The DoOption and DontOption properties are set to negotiate with the other end of the
connection to enable or disable an option. These properties are not displayed at design time,
and are write-only at run time.
Usage
[form.][control.]DoOption = numericexpression
[form.][control.]DontOption = numericexpression
Remarks
When you set the DoOption or DontOption properties, a command is immediately sent
across the connection to command the other end to do the option. This tells the other end of
the connection, "Do/don't support option x." The other end may respond with either a Will or
a Won't command, agreeing or refusing. This command will generate a Cmd event, with the
command they sent as an argument.
These properties should only be used when AutoOption is set to False.
For more information on option negotiation, see the Option Negotiation section of the Telnet
chapter.
The different options you may send are defined in the POWERTCP.BAS constants file.
Data Type
Integer
See Also
Cmd Event; DoSubOption Property; SubOption Property; WillOption and WontOption
Properties.

DoSubOption Property
Applies To
Telnet.
Description
The DoSubOption property sends the option it is set to, plus the sub-option in the SubOption
property, to the other end of the connection. This property is not displayed at design time,
and is write-only at run time.
Usage
[form.][control.]DoSubOption = numericexpression
Remarks
The DoSubOption property is used in sub-option negotiation. To send a sub-option, you must
follow these steps:
Set the SubOption property to the sub-option you want to send. See the SubOption
property for more information.
Set the DoSubOption property to the option you are negotiating. This will send both the
option and sub-option to the other end of the connection.
When a control receives a sub-option in the Cmd event, then the Cmd argument will be
SB_CMD, the TelnetOption argument will be equal to the DoSubOption property sent, and the
SubOption argument will be identical to the SubOption property sent.
For more information on option negotiation, see the Option Negotiation section of the Telnet
chapter.
The different options you can send are defined in the POWERTCP.BAS constants file.
Data Type
Integer
See Also
Cmd Event; DontOption and DoOption Properties; SubOption Property; WillOption and
WontOption Properties.

Enabled Property
Applies To
VT.
Description
Enables the control for display and keyboard input.
Usage
[form.][control.]Enabled[= {True|False}]
Remarks
When set to True, the control will accept display input and will generate KeyDown and
KeyPress events when the user types. The cursor is shown if the Cursor property is True.
When set to False, the control will not accept display input or respond to user input. The
cursor is then hidden.
Data Type
Integer (Boolean)

EnableNewLine Property
Applies To
VT.
Description
Sets or returns a value that determines whether the NewLine event is enabled.
Usage
[form.][control.]EnableNewLine[=    {True|False}]
Data Type
Integer (Boolean)
See Also
NewLine Event.

Enterprise Property
Applies To
SNMP.
Description
The enterprise name to use for traps. Value is set each time a RecvTrap Event is called. This
value is used when sending traps.
Usage
[form.][control.]Enterprise[= stringexpression]
Remarks
The Enterprise property is equal to the sending agent's sysObjectID.
Data Type
String

ErrorIndex Property
Applies To
SNMP.
Description
Specifies the index to the variable in error within the packet.
Usage
[form.][control.]ErrorIndex[= numericexpression]
Data Type
Integer
See Also
ErrorStatus Property.

ErrorStatus Property
Applies To
SNMP.
Description
Indicates the type of error associated with the ErrorIndex property.
Usage
[form.][control.]ErrorStatus[= numericexpression]
Remarks
The ErrorStatus property may be one of the following:
Value Name Description
0 noError No error exists
1 tooBig The agent was not able to fit the reply into a single SNMP message
2 noSuchName The operation specified a variable which did not exist
3 badValue A set operation specified an invalid value or syntax
4 readOnly The manager attempted to change a read-only variable
5 genErr An error occurred which did not fit the other errors

Data Type
Integer (Enumerated)
See Also
ErrorIndex Property.

Expand Property
Applies To
SMTP.
Description
Set Expand to a mailing list or alias string to have the mail host provide you with a list of
names and addresses. This property is write-only and is not displayed at design time.
Usage
[form.][control.]Expand = stringexpression
Remarks
This command asks the receiver to confirm that the argument identifies a mailing list, and if
so, to return the membership of that list. The full name of the users (if known) and the fully
specified mailboxes are returned in a multi-line reply. This command has no effect on any of
the reverse-path buffer, the forward-path buffer, or the mail data buffer (see RFC 841).
PowerTCP buffers up the reply and calls the Smtp event with the names/addresses. Each
line, formatted as "250 -name <address>", is separated by a CR/LF pair. The last line has no
CR/LF on the end.
Data Type
String
See Also
Smtp Event.

FileStruct Property
Applies To
FTP.
Description
Sends a File Structure (STRU) command. Specify the file structure to use. This property is
not displayed at design time, and is write-only at run time.
Usage
[form.][control.] FileStruct = numericexpression
Remarks
The table below shows valid settings:
Setting Description
0 File (no record structure) - Default
1 Record Structure
2 Page Structure

Data Type
Integer
See Also
Reply Event.

Flags Property
Applies To
TCP, Telnet, SMTP, POP3, FTP, UDP, TFTP, SNMP.
Description
The Flags property allows you to set certain options for the controls.
Usage
[form.][control.]Flags[= flag]
Remarks
The following constants are available to use:
Constant Description
PT_NOFLAGS = 0 Use this value to specify no flags.
PT_DEBUG = 1 Enables debugging information to be put into the PowerTCP icon at the

bottom of the screen. When set, PTCPxx.DBG is created in your default directory (xx
is a number between 1 and 99), which contain all received and sent data.

PT_REUSEADDR = 2 This flag forces the socket to be reusable, meaning that more than one
socket can bind to a given port number. This is necessary for some protocols, such as
FTP.

PT_KEEPALIVE = 4 Forces the socket to send "keep-alive" packets, verifying the
connection is alive during periods of non-use.

PT_SHOW = 8 Shows an icon at the bottom of the screen for each TCP session. This is helpful
in monitoring the state of the connection.

PT_TCPNODELAY = 16 Flag used when creating a TCP connection to enable the
TCP_NODELAY socket option.

PT_OVERWRITE = 32 When the OverWrite Property is clear the POP3 and TFTP controls are
directed to overwrite existing attachment or output files.    Setting the OverWrite
Property directs the controls to generate a unique attachment or output filename by
overlaying a 1 - 99 count on the last two characters of the filename; e.g.
"ABCDEF.DOC", if it already exists, will be received as "ABCDE1.DOC".    Up to 99
version are allowed, e.g. "ABCD99.DOC".    Further attempts to receive this filename
will generate an exception.

These flags are defined in POWERTCP.BAS. They can be combined with the or statement.
For example:
Example
Tcp1.Flags = PT_DEBUG or PT_SHOW
UDP, SNMP, and TFTP Specific
For UDP, SNMP, and TFTP, the only applicable flags are PT_DEBUG and PT_SHOW.
Data Type
Integer

FontName Property
Applies To
VT.
Description
 Sets and returns the font used by the emulator.
Usage
[form.][control.]FontName [= stringexpression]
Remarks
If found in the path, the control will load the POWERVT.FON file on initialization, and remove
it when terminated. If not found, the control will select a similar font as described below. This
file contains two font face names: VT220_ascii and VT220_special. These fonts come in
many sizes and are used if specified. The ascii font is similar to the VT220's font in
appearance, and the special font contains the graphic characters used to draw lines, boxes,
etc.
You can allow the user to specify any font, however, and the control will force it to be fixed in
width and will choose the closest matching font loaded on the system. Likewise, double-high
and double-wide fonts will be selected, but the appearance may not be as polished as using
the VT 220 fonts described above. However, monospaced fonts are suggested (Courier,
Courier New, FixedSys, and Terminal).
When notified that the host is sending the control to wide-mode (132 column), you may
want to specify a smaller font size to fit it onto the screen (use the FontSize property).
Data Type
String
See Also
Cols Property.

ForeColor Property
Applies To
VT.
Description
Sets or returns the color used for alphanumeric and graphic characters.
Usage
[form.][control.]ForeColor [= numericexpression]
Remarks
RGB and system colors are supported. The new color is immediately used.
Examples
The following are all valid statements:
VT1.ForeColor = RGB(255, 0, 0) ' Red
VT1.ForeColor = QBColor(12) ' Red
VT1.ForeColor = &H8000000F ' System button color
 ' (normally gray)
Data Type
Long

GeneralTrap Property
Applies To
SNMP.
Description
Specifies a general trap to send or receive. Set this before using the Action property.
Usage
[form.][control.]GeneralTrap[= numericexpression]
Remarks
GeneralTrap may be one of the following values:

Constant Name Description
SNMP_COLD_START coldStart The agent is initializing

itself.
SNMP_WARM_START warmStart The agent is reinitializing

itself.
SNMP_LINK_DOWN linkDown An interface has gone from

the up to the down state.
SNMP_LINK_UP linkUp An interface has gone from

the down to the up state.
SNMP_AUTHENTICATION_FAILURE
authenticationFailure    A message was received from an SNMP manager with

an invalid community.
SNMP_EGP_NEIGHBOR_LOSS egpNeighborLoss An EGP peer

changed to the down state.
SNMP_ENTERPRISE_SPECIFIC enterpriseSpecific Specific to the SNMP

implementation.

Data Type
Integer (Enumerated)

HeaderDate Property
Applies To
SMTP.
Description
When set to True, specifies that PowerTCP should add a "Date:" line in the header of
subsequent messages sent. The system date is used.
Usage
[form.][control.]HeaderDate [= True | False]
Remarks
Default is True.
Data Type
Integer (Boolean)

HeaderFrom Property
Applies To
SMTP.
Description
When set to True, specifies that PowerTCP should add a "From:" line in the header of
subsequent messages sent.
Usage
[form.][control.]HeaderFrom [= True | False]
Remarks
Default is TRUE. PowerTCP uses the value of the Sender property to construct the line.
Data Type
Integer (Boolean)

HeaderSubject Property
Applies To
SMTP.
Description
When set to a string value, specifies that PowerTCP should add a "Subject:" line in the
header of subsequent messages sent.
Usage
[form.][control.]HeaderSubject [= stringexpression]
Remarks
If "", then no subject is generated.
Data Type
String

HeaderTo Property
Applies To
SMTP.
Description
When set to a string value, specifies that PowerTCP should add a "To:" line in the header of
subsequent messages sent.
Usage
[form.][control.]HeaderTo [= True | False]
Remarks
Default is TRUE. Uses Recipient in Recipient string for the header line. Uses the rest of the
Recipient string for constructing the "CC:" line (if applicable).
Data Type
Integer (Boolean)

Help Property (FTP)
Applies To
FTP.
Description
Sends a Help (HELP) command. Causes the server to send helpful information regarding its
implementation status over the control connection to the user. May take an argument (e.g.
SITE, LIST, etc.). This property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Help = stringexpression
Remarks
Set the Help Property to the FTP command you want help on:
Example
FTP1.Help = "LIST"
Data Type
String
See Also
Reply Event.

Help Property (SMTP)
Applies To
SMTP.
Description
Set the Help property to the SMTP message of interest to have the HELP message sent. This
property is write-only and is not displayed at design time.
Usage
[form.][control.]Help = numericexpression
Remarks
This command causes the receiver to send helpful information to the sender of the HELP
command. The command takes an argument (e.g., any command name) and returns more
specific information as a response. This command has no effect on the reverse-path buffer,
the forward-path buffer, or the mail data buffer.
Example
SMTP1.Help = SMTP_MAIL
Data Type
Integer

Keypad Property
Applies To
VT.
Description
Sets or returns whether the keypad sends ASCII character codes or escape sequences.
Usage
[form.][control.]Keypad[= setting%]
Setting Description
0 Numeric Keypad. Causes the auxiliary keypad to send ASCII character codes

corresponding to the numeric characters on the keys.
1 Application Keypad. Causes the auxiliary keypad to send escape sequences used by

an application program.

Data Type
Integer (Enumerated)

LastCommand Property
Applies To
FTP.
Description
While waiting for an FTP reply, returns the outstanding FTP command last sent to the FTP
server.
Usage
[form.][control.]LastCommand
Remarks
After the FTP reply is received, returns FTP_CLEAR. This property is not displayed at design
time, and is read-only at run-time.
Data Type
Integer

Lines Property
Applies To
POP3.
Description
The Lines property should be set before the TopLines property. It specifies the number of
lines the POP3 server should provide for the mail message requested. Defaults to 10.
Usage
[form.][control.]Lines = [numericexpression]
Remarks
See remarks section of TopLines property.
Data Type
Integer
See Also
TopLines Property.

List Property (FTP)
Applies To
FTP.
Description
Sends a List (LIST) command. Causes a list to be sent from the server to the client.
Usage
[form.][control.]List = stringexpression (PathName)
Remarks
If the pathname specifies a directory or other group of files, the server should transfer a list
of files in the specified directory. If the pathname specifies a file then the server should send
current information on the file. A null ("") argument implies the user's current working or
default directory. This property is not displayed at design time, and is write-only at run time.
The following example will cause a listing of root's directory to arrive at the Recv Event:
Example
FTP1.List = "/users/root"
Data Type
String
See Also
Reply Event.

List Property (POP3)
Applies To
POP3.
Description
The List property, when set to 0 or a message number, provides a "scan listing" of all
messages or the message referenced. This property is write-only at run-time.
Usage
[form.][control.]List[= numericexpression]
Remarks
If a non-zero argument is given and the POP3 server issues a positive response, then the
Pop3 event is called with a line containing information for that message. This line is called a
"scan listing" for that message and looks like this:
+OK 2 200

(MessageNumber is 2, it contains 200 octets, and the string is terminated with a
CR/LF)

If a zero argument was given and the POP3 server issues a positive response, then the
response is multi-line. After the initial +OK, for each message in the maildrop, the POP3
server responds with a line containing information for that message. This line is also called a
"scan listing" for that message. The multi-line looks like this:
+OK 2 messages (320 octets)
1 120
2 200

In order to simplify parsing, all POP3 servers are required to use a certain format for scan
listings. A scan listing consists of the message-number of the message, followed by a single
space and the exact size of the message in octets, and a CR/LF. Messages marked as deleted
are not listed.
Data Type
Integer
See Also
Pop3 Event.

ListenTimeout Property (FTP)
Applies To
FTP.
Description
The ListenTimeout property, when set, will cause the passive data connection to time-out if
no connection is established within the time specified. The default is 15 seconds.
Usage
[form.][control.]ListenTimeout[= numericexpression]
Data Type
Integer

LocalDotAddr Property
Applies To
TCP, Telnet, FTP, SMTP, POP3, UDP, SNMP, TFTP.
Description
Used to specify a local host IP address when the default address is not desired. This property
is only useful for multi-homed hosts (hosts with more than one network card or network
connection) where binding to a specific address is desired.
Usage
[form.][control.]LocalDotAddr[= stringexpression]
Remarks
LocalDotAddr is used to specify the local address used when active and passive connections
are requested. This parameter is only necessary on a multi-homed host with more that one
IP address. Normally, one does not specify a LocalDotAddr (0 is used), allowing the default
address to be used.
Data Type
String
See Also
LocalName Property.

LocalFileSpec Property
Applies To
FTP, TFTP.
Description
Specifies a local filename (with path) before initiating a file transfer.
Usage
[form.][control.]LocalFileSpec[= stringexpression]
Remarks
The LocalFileSpec must contain a full path name, with the full filename, such as "c:\temp\
test.txt".
FTP Specific. For sending files using FTP, the LocalFileSpec should be set to the filename
which will be sent (before using the Store, StoreUnique, or Appe properties). For receiving
files, the LocalFileSpec should be set to the filename in which the incoming data will be
placed (before using the Retrieve property). The Transfer event is called each time a block of
data is sent or received, so that your program can monitor the amount of data transferred.
If LocalFileSpec is set to nothing (""), then sending and receiving data must be handled by
your code, using the Send and Recv events.
TFTP Specific. For TFTP, the LocalFileSpec property must be set before setting the Action
property to PUT_NETASCII, PUT_OCTET, GET_NETASCII or GET_OCTET.
Data Type
String
See Also
Appe Property; Recv Event; Send Event; Store Property; StoreUnique Property.

LocalName Property
Applies To
TCP, Telnet, SMTP, POP3.
Description
Contains the name of the local computer. This property is not available at design time, and
read-only at run time.
Usage
[form.][control.]LocalName
Remarks
This property contains the name of your computer only while the control is either listening
or connected.
Data Type
String
See Also
LocalDotAddr Property.

LocalPort Property
Applies To
TCP, Telnet, SMTP, POP3, UDP, SNMP.
Description
Specifies the port to listen on, or the local port to use when connecting.
Usage
[form.][control.]LocalPort[= numericexpression]
Remarks
For active connections, setting LocalPort to 0 will cause the protocol to assign an
"ephemeral" port address that is subsequently reported by the Connect event. This is the
recommended value for active connections. Setting LocalPort to a non-zero will force the
socket to bind to that local port, which could fail if that port was used recently (see the flag
PT_REUSEADDR in the Flags property). For passive connections, LocalPort must be set to a
value between 1 and 65535.
Data Type
Long
See Also
Action Property (TCP, Telnet); Action Property (SNMP); Action Property (UDP); Flags Property;
Listen Event; LocalDotAddr Property.

LoginHost Property
Applies To
FTP.
Description
This property will resolve the specified host name to an IP address , make a control
connection, and log into the host.
Usage
[form.][control.]LoginHost = stringexpression (RemoteHost)
Remarks
If successful, Connect Event is called to notify you of the connection. It will then proceed
with logging into the host using the User, Password, and Account Properties specified. Reply
Event is fired during this process, informing you of the status of the login process. This
property is not displayed at design time, and is write-only at run time. The following example
illustrates the process:
Sub Form_Load ()
 ' Set remote login information
 FTP1.User = "anonymous" ' for anonymous FTP login
 FTP1.Password = "baldwin@dart.com"
 ' Account property does not usually need to be set
 FTP.LoginHost = "ftp.dart.com" ' our FTP server
 ' connection process starts...
 ' wait for successful connection and login...
 ' Connect Event will be called first...
 ' Reply Event will be called with server replies...
End Sub

Data Type
String
See Also
Reply Event.

Logout Property
Applies To
FTP.
Description
Sends a Logout (QUIT) command. Use this property to terminate an FTP session.
Usage
[form.][control.]Logout = True
Remarks
If a file transfer is not in progress, the server closes the control connection. If    a file transfer
is in progress, the connection will remain open for result response and the server will then
close it. This property is not displayed at design time, and is write-only at run time.
Logout is normally used to allow the FTP server to terminate service gracefully. If not
successful, the CloseControl property can be used to terminate the control connection from
the client side.
Data Type
Integer (Boolean)

MailFileSpec Property
Applies To
POP3.
Description
Specifies the FileSpec to be used for the next retrieved mail message. May be set before the
Retrieve Property is used.
Usage
[form.][control.]MailFileSpec [= stringexpression]
Remarks Received mail is always reported in the Pop3 Event. If this property is set to a
valid file specification, then the mail message is also spooled to the file (encoded file
attachments are spooled to the directory specified by the AttachmentDir Property).
Data Type
String

MakeDir Property
Applies To
FTP.
Description
Sends a Make Directory (MKD) command. This causes the directory specified in the
pathname to be created. This property is not displayed at design time, and is write-only at
run time.
Usage
[form.][control.]MakeDir = stringexpression (PathName)
Example
The following example illustrates the creation of a directory:
FTP1.MakeDir = "/users/crazyhorse/temp"
Data Type
String
See Also
Reply Event.

MaxRetries Property
Applies To
TFTP.
Description
The MaxRetries property is used to set the maximum number of times an unacknowledged
packet will be re-sent before aborting.
Usage
[form.][control.]MaxRetries[= numericexpression]
Remarks
The default value is 3. Minimum is 1 and maximum is 5.
Data Type
Integer
See Also
TimeoutInterval Property.

Message Property
Applies To
SMTP.
Description
Mail message to be sent when the Action property is used to send mail.
Usage
[form.][control.]Message[= stringexpression]
Remarks
This is a level 1 string (NULL terminated with no embedded NULLs).
Data Type
String

Mode Property
Applies To
FTP.
Description
Sends a Transfer Mode (MODE) command. Specifies the data transfer mode. This property is
not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Mode = numericexpression
Remarks
The table below lists the valid modes:
Setting Description
0 Stream Transfer Mode (Default)
1 Block Transfer Mode
2 Compressed Transfer Mode

Data Type
Integer
See Also
Reply Event.

NameList Property
Applies To
FTP.
Description
Sends a Name List (NLST) command. This causes a directory listing to be sent from server to
user site.
Usage
[form.][control.]NameList = stringexpression (PathName)
Remarks
The pathname should specify a directory or other system-specific file group descriptor; a
NULL argument implies the current directory. The server will return a stream of names of
files in the Recv event and no other information. This property is not displayed at design
time, and is write-only at run time. The following example illustrates the listing of a
directory:
Example
FTP1.NameList = "/users/root"
Data Type
String
See Also
Reply Event.

NewLine Property
Applies To
VT.
Description
Sets or returns the selected end-of-line code.
Usage
[form.][control.]NewLine[= setting]
Remarks
Some hosts would prefer a CR/LF pair as an end-of-line code, sent when the Enter key is
pressed.
Setting Description
0 CR only (Chr$(13))
1 CR/LF pair (Chr$(13) & Chr$(10))

Data Type
Integer (Enumerated)

nObjects Property
Applies To
SNMP.
Description
Specifies number of objects contained in the ObjectID, ObjectType, and ObjectValue arrays.
Usage
[form.][control.]nObjects[= numericexpression]
Remarks
Since these arrays are dynamically allocated, the using program must set the nObjects
property to the correct size before assigning values to these arrays. When read from within
the RecvSnmp and RecvTrap events, specifies the number of objects received within that
Datagram packet.
Data Type
Integer

NodeDotAddr Property
Applies To
SNMP.
Description
Specifies the IP address (x.x.x.x) of the node used when a Trap message is sent (using the
Action property) or received (in the Trap Event).
Usage
[form.][control.]NodeDotAddr[= stringexpression]
Data Type
String

Noop Property
Applies To
FTP.
Description
Sends a NoOp (NOOP) command. Specifies no action other than that the server send an OK
reply. This property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Noop = True
Data Type
Integer (Boolean)
See Also
Reply Event.

ObjectID Property
Applies To
SNMP.
Description
Specifies an array of strings where each entry specifies an SNMP object such as
"1.3.6.1.2.1.1.1.0" for sysDescr. This property is not available at design-time, and is
read/write at run-time.
Usage
[form.][control.]ObjectID(index)[= stringexpression]
Remarks
PowerTCP updates this array before RecvSnmp or RecvTrap events are called. For every
entry in the ObjectID property array, there is a corresponding entry in the ObjectValue and
ObjectType property arrays.
The nObjects property is used to determine or set the size of the array.
Data Type
String
See Also
ObjectValue Property; ObjectType Property.

ObjectValue Property
Applies To
SNMP.
Description
An array of strings where each entry specifies an SNMP object value. This property is not
available at design-time, and is read/write at run-time.
Usage
[form.][control.]ObjectValue(index)[= stringexpression]
Remarks
PowerTCP updates this array before RecvSnmp and RecvTrap events are called. For every
entry in the ObjectID property array, there is a corresponding entry in the ObjectValue and
ObjectType property arrays.
The nObjects property is used to determine or set the size of the array.
Data Type
String
See Also
ObjectID Property; ObjectType Property.

ObjectType Property
Applies To
SNMP.
Description
An array of integers where each entry specifies an SNMP object type. This property is not
available at design-time, and is read/write at run-time.
Usage
[form.][control.]ObjectType(n)[= numericexpression]
Remarks
PowerTCP updates this array before RecvSnmp and RecvTrap events are called. ObjectType
specifies an SMI type(basically either a Long or a String). For every entry is the ObjectID
property array, there is a corresponding entry in the ObjectValue and ObjectType property
arrays.
The nObjects property is used to determine or set the size of the array.
Possible settings include:
Constant
SNMP_INTEGER = 2
SNMP_OCTET_STRING = 4
SNMP_NULL = 5
SNMP_OBJECT_ID = 6
SNMP_SEQUENCE = 48
SNMP_SET_OF = 49
SNMP_IPADDRESS = 64
SNMP_COUNTERS = 65
SNMP_GUAGE32 = 66
SNMP_TIMETICKS = 67
SNMP_OPAQUE = 68
SNMP_NSAP = 69
SNMP_COUNTER64 = 70
SNMP_UINTEGER32 = 71

Data Type
Integer
See Also
ObjectID Property; ObjectValue Property.

OemLicense Property
Applies To
TCP, Telnet, FTP, SMTP, POP3, VT, UDP, SNMP, TFTP.
Description
Specifies a unique license string given to you by Dart Communications.
Usage
[form.][control.]OemLicense[= stringexpression]
Remarks
You must set the OemLicense to its correct value at run-time before the Action property is
set. This property is used to provide optimal performance for OEM customers.
Data Type
String

Passive Property
Applies To
FTP.
Description
Sends a Passive (PASV) command. Requests the FTP server listen on a data port. This
property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Passive = True
Data Type
Integer (Boolean)
See Also
Reply Event.

Password Property (FTP)
Applies To
FTP.
Description
Specifies the account password used when logging in.
Usage
[form.][control.]Password = stringexpression (user password)
Remarks
Must be set before using the LoginHost property.
Data Type
String
See Also
Account Property, User Property.

Password Property (POP3)
Applies To
POP3.
Description
Specifies the password to be used for authentication. Must be set prior to setting
Action=CONNECTCOMM.
Usage
[form.][control.]Password = stringexpression
Remarks
USER/PASS authentication is used unless the Secret property is set, indicating that APOP
authentication is to be used.
Data Type
String

Port Property
Applies To
FTP.
Description
Sends a Data Port (PORT) command. Use this property to tell the FTP server what host
address and port it should use for the next FTP data connection. This property is not
displayed at design time, and is write-only at run time.
Usage
[form.][control.]Port = stringexpression
Remarks
For controlling two FTP servers and transferring files between them, use the Passive property
to instruct one server to accept the data connection, then use the Port Property to instruct
the second what host and port it should connect to.
For sending and receiving files and lists, PowerTCP automatically sends the PORT command
so you do not have to use this property for normal operations.
If desired, however, a local port can be opened explicitly for commands sent using the
Command property. Set Port equal to "". This will cause the library to open a listening socket,
construct a PORT command, and send it over the control connection. The subsequent file
transfer command will cause the server to connect to the specified port.
Data Type
String
See Also
Reply Event.

PrinterController Property
Applies To
VT.
Description
When set to True, disables the display of text and sends all data to the default printer. When
set to False, the Display Property displays text normally and nothing is sent to the printer.
Usage
[form.][control.]PrinterController[= {True|False}]
Remarks
Behavior is the same as the VT220.
Data Type
Integer (Boolean)

PrintPassthrough Property
Applies To
VT.
Description
When set to True, normal printer drivers are bypassed and characters proceed directly to the
printer port.
Usage
[form.][control.]PrintPassthrough[= {True|False}]
Remarks
This is used in conjunction with the AutoPrint, PrinterController and PrintScreen properties.
PrinterController must be set before entering PrinterController or AutoPrint mode.
Data Type
Integer (Boolean)

PrintScreen Property
Applies To
VT.
Description
When set to True, sends a printout of the current screen (normally 24x80) to the printer. This
is write-only at run-time.
Usage
[form.][control.]PrintScreen = True
Data Type
Integer (Boolean)

PrintWorkingDir Property
Applies To
FTP.
Description
Sends a Print Working Directory (PWD) command. Causes the name of the current working
directory to be returned in the reply. This property is not displayed at design time, and is
write-only at run time.
Usage
[form.][control.]PrintWorkingDir = True
Data Type
Integer (Boolean)
See Also
Reply Event.

Recipients Property
Applies To
SMTP.
Description
Specifies the recipients of subsequent mail messages as a comma-delimited string of
addresses. Write-only at run-time.
Usage
[form.][control.]Recipients = stringexpression
Remarks
The Recipient string should be used to specify the mail recipient(s) before the Action
property is set.
Data Type
String

Recv Property
Applies To
TCP, Telnet.
Description
The Recv property allows you to set the maximum size of received strings reported by the
Recv Event.
Usage
[form.][control.]Recv = numericexpression
Remarks
Recv can be set to 0 to disable the reporting of data, providing backpressure over the TCP
connection. When called, the receive buffers are immediately checked for data, and if
present, will be reported with one call to the Recv Event.
The Recv Property should be used in special cases only, and only while a connection exists.
The Recv Property has no effect when a connection does not exist. The Recv Property must
be set each time a connection is made, as the value is not persistent from one connection to
the next.
Data Type
Integer

Reinitialize Property
Applies To
FTP.
Description
Sends a Reinitialize (REIN) command. Use this property to terminate a USER, flushing all I/O
and account information, except to allow the transfer in progress to complete. This property
is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]Reinitialize = True
Data Type
Integer (Boolean)
See Also
Reply Event.

RemoteFileSpec Property
Applies To
TFTP.
Description
Specifies a remote file name (with path) before setting Action = PUT_NETASCII, PUT_OCTET,
GET_NETASCII or GET_OCTET.
Usage
[form.][control.]RemoteFileSpec[= stringexpression]
Remarks
Specifies the remote file used for getting data from, or the remote file used for sending data
to during file transfers.
Data Type
String

RemoteHost Property
Applies To
TCP, Telnet, SMTP, POP3, UDP, SNMP, TFTP.
Description
Specifies the name or IP address (x.x.x.x) of a remote computer to connect to, or that you
are currently connected to. Or, for UDP-based protocols, specifies the destination of packets.
Usage
[form.][control.]RemoteHost[= stringexpression]
Remarks
Before connecting to a remote computer, you must specify the RemoteHost and RemotePort
properties. RemoteHost identifies the computer to connect to, and RemotePort identifies the
port to use.
After you set the RemoteHost and RemotePort properties, you can connect to a remote
computer by setting the Action property to CONNECTCOMM.
The RemoteHost property can also be used to determine what computer you are currently
connected to. If you already accepted a connection from a remote computer by using the
Session property, you can check what computer you are connected to by reading the
RemoteHost property.
Data Type
String
See Also
Action Property (TCP, Telnet); Action Property (SMTP); Action Property (POP3); Action Property
(TFTP); Action Property (UDP); Action Property (SNMP); RemotePort Property.

RemotePort Property
Applies To
TCP, Telnet, SMTP, POP3, SNMP.
Description
Specifies the port to make a connection to.
Usage
[form.][control.]RemotePort[= numericexpression]
Remarks
This property must be set before a connection can be made. Different protocols have
different standard values for this. The table below lists the standard RemotePort for several
protocols:
Protocol Port
ECHO 7
DISCARD 9
DAYTIME 17
CHARGEN 19
Telnet 23
FTP 21
SMTP 25
POP3 110
SNMP Agent 161 (UDP)
SNMP Trap 162 (UDP)
REXEC 512
RLOGIN 513
RSH 514

Data Type
Long
See Also
Action Property (TCP, Telnet); Action Property (SNMP); RemoteHost Property.

RemoveDir Property
Applies To
FTP.
Description
Sends a Remove Directory (RMD) command. Causes the directory specified to be removed.
This property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.] RemoveDir = stringexpression (PathName)
Remarks
To remove a directory:
Example
FTP1.RemoveDir = "/user/root/test"
Data Type
String
See Also
Reply Event.

Rename Property
Applies To
FTP.
Description
When used, this property first sends a Rename From (RNFR) command, waits for a reply,
then sends a Rename To (RNTO) command and waits for a reply. The Reply Event uses
FTP_WORKING for Status when reporting the intermediate step. This property is not
displayed at design time, and is write-only at run time.
Usage
[form.][control.] Rename    = stringexpression
Remarks
To rename a file specify both files on the command line with a space in between:
Example
FTP1.Rename = "/user/root/from.txt /user/root/to.txt"
Data Type
String
See Also
Reply Event.

RequestID Property
Applies To
SNMP.
Description
Unique number used to distinguish outstanding packets. This is the best tool to determine
what response belongs to which requests when they are returned in the RecvSnmp Event.
Usage
[form.][control.]RequestID[= numericexpression]
Data Type
Long
See Also
Action Property.

Reset Property
Applies To
VT.
Description
Resets the display characteristics. Write-only at runtime.
Usage
[form.][control.]Reset = True
Remarks
When set to True, resets display attributes (cursor position to home, etc.). This does not
clear the screen. Use the Clear method to fill the display with blanks.
Data Type
Integer (Boolean)

Restart Property
Applies To
FTP.
Description
Sends a Restart (REST) command. Restarts file transfer from the marker specified. This
property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.] Restart = stringexpression
Remarks
Set the Restart Property to the value of the server marker (data checkpoint).
Data Type
String
See Also
Reply Event.

Retrieve Property (FTP)
Applies To
FTP.
Description
Sends a Retrieve (RETR) command. Causes the server to make a data connection and
transfer a copy of the file specified to the client. This property is not displayed at design
time, and is write-only at run time.
Usage
[form.][control.] Retrieve = stringexpression (PathName)
Remarks
The Recv Event is called with data sent by the server. If the LocalFileSpec property is
specified (not equal to ""), then PowerTCP will take care of placing incoming data into the
file.
Data Type
String
See Also
Recv Event, Reply Event.

Retrieve Property (POP3)
Applies To
POP3.
Description
When set to a message number, instructs the POP3 server to send the specified message.
This property is not displayed at design time, and write-only at run time.
Usage
[form.][control.]Retrieve = numericexpression
Remarks
The AttachmentDir and MailFileSpec properties should be set prior to setting this property, if
desired.
If the POP3 server issues a positive response, then the response given is multi-line. After the
initial +OK, the POP3 server sends the message corresponding to the given message-
number. The Pop3 Event will likely be called numerous times for large mail messages.

If the POP3 server issues a positive response, then the response given is multi-line.
After the initial +OK, the POP3 server sends the message corresponding to the given
message-number. This message may include files encoded using MIME or UUENCODE
techniques. For large messages, Pop3 Event will likely be called numerous time.
The mail message and attached file data is provided in the Reply parameter of Pop3
Event. An Pop3 Event call with status = POP3_HEADER signals the complete mail
header.    This will be followed by a Header Event which returns the parsed common
header fields.   
Calls to Pop3 Event with status = POP3_MAIL will return the message data. The mail
body is only saved to disk if MailFileSpec is not NULL.
Attachments are only decoded if a valid AttachmentDir is specified.    Calls to Pop3
Event with status = POP3_FILE will return the decoded attachment data.    File Event
signals the closing of an attachment file, and the attachment file name actually
created.

Data Type
Integer
See Also
AttachmentDir Property; MailFileSpec Property.

RowHeight Property
Applies To
VT.
Description
Returns the height of a single character (or line) according to the measurement units set up
by the container object (normally the form).
Usage
[form.][control.]RowHeight
Remarks
Read-only at runtime. When multiplied by the Rows property, the application can compute
the height of the control necessary to view one screen of data.
Data Type
Integer
See Also
Rows Property.

Rows Property
Applies To
VT.
Description
Sets or returns the number of rows being used for the screen.
Usage
[form.][control.]Rows[=setting]
Remarks
Normally 24, but some programs support larger numbers. This can be dynamically re-sized,
with PowerTCP preserving as much data as possible.
Data Type
Integer
See Also
Cols Property.

Scroll Property
Applies To
VT.
Description
Sets or returns how quickly lines appear on the screen.
Usage
[form.][control.]Scroll[= setting%]
Setting Description
0 Jump Scroll. Displays new lines as fast as they are received, causing a jump scroll.
1 Smooth Scroll. Limits the speed at which new lines appear on the screen, causing a

smooth and steady scroll.

Data Type
Integer (Enumerated)

Secret Property
Applies To
POP3.
Description
This property is used to set the "shared secret" that the APOP message uses to minimize
username/password traffic on the network. Not currently implemented.
Usage
[form.][control.]Secret = stringexpression
Remarks
If set to "", normal USER/PASS messages are used for authentication purposes. If set to the
"shared secret" string that is also known to the POP3 server, then an APOP message is sent.
Refer to the POP3 RFC for a complete description.
Data Type
String

SelLength Property
Applies To
VT.
Description
Sets or returns the length of the text area highlighted by the user on the screen.
Usage
[form.][control.]SelLength[=setting%]
Remarks
When set to 0, no text is selected.
Data Type
Integer
See Also
SelStart Property; Text Property.

SelStart Property
Applies To
VT.
Description
Sets or returns the start of the text area highlighted by the user on the screen.
Usage
[form.][control.]SelStart [= setting%]
Remarks
The user is allowed to highlight text anywhere on the main screen or in the scrollback buffer
area. SelStart provides a 0-based index into the Text array (the first character starts at 0) to
allow the program access to the highlighted text. Use the InStr function to access selected
text.
To determine what area of the display is selected, multiply the number of columns by the
number of rows in the scrollback buffer (BufferRows property). This provides an offset into
the display area, from which any screen location can be calculated.
Example
To access the currently selected text, use the following line, where VT1 is the name of the
control:
Mid$(VT1.Text, VT1.SelStart, VT1.SelLength)
Data Type
Integer
See Also
SelLength Property; Text Property, Style Property.

Send Property
Applies To
TCP, Telnet, FTP, UDP.
Description
Sends a string of text to a remote computer. This property is not displayed at design time,
and write-only at run time.
Usage
[form.][control.]Send = stringexpression
Remarks
To send data the State property must be CONNECTED. To send a message to the other end
of the connection, assign a string of text to the Send property. This sends the text to the
other computer.
When the string is accepted by the local system for transmission the Send Event is fired. The
remote computer will receive a Recv event, with the sent text as an argument.
The Send property may include null characters, as it is a Visual Basic 2.0 property. For
environments which use null-terminated strings (such as Delphi, PowerBuilder, and Microsoft
Visual C++), the SendString property should be used.
FTP Specific
When used in the FTP control, this sends data across the data connection, and not the
control connection. When a data connection is first established, PowerTCP fires the Send
Event to signal the application it can start processing the FTP STOR, STOU, or APPE
operation. When finished sending data, the CloseData Property should be used to signal
PowerTCP to close the data connection.
UDP Specific
UDP is a Visual Basic 2.0 control, and so does not support the SendByte or SendString
properties.
Data Type
String
See Also
Recv Event; Send Event; DataTag Property; SendByte Property, SendString Property; Urgent
Property.

SendByte Property
Applies To
TCP, Telnet, FTP.
Description
Sends a byte to a remote computer. This property is not displayed at design time, and write-
only at run time.
Usage
[form.][control.]SendByte = numericexpression
Remarks
This property is similar to the Send Property, but sends a single byte. This is useful for
sending a NULL character in a programming environment that only supports Visual Basic 1.0
custom controls. Values may range from 0 to 255.
Data Type
Integer
See Also
Send Property; Send Event; DataTag Property.

Sender Property
Applies To
SMTP.
Description
Used to specify the address of the sender of the mail message.
Usage
[form.][control.]Sender = stringexpression
Remarks
Must be set to a proper value prior to sending mail.
Data Type
String

SendString Property
Applies To
TCP, Telnet, FTP.
Description
Sends a null-terminated string to a remote computer (the null character is not sent). This
property is not displayed at design time, and write-only at run time.
Usage
[form.][control.]SendString = stringexpression
Remarks
This property is similar to the Send property, but uses null-terminated strings. This property
should not be used in Visual Basic, but must be used in Delphi, PowerBuilder, and Microsoft
Visual C++, as these environments use null-terminated strings. Note that this is a Visual
Basic 1.0-compatible property.
Data Type
String
See Also
Recv Event; Send Event; DataTag Property; SendByte Property, SendString Property; Urgent
Property.

ServerPort Property
Applies To
TFTP.
Description
When functioning as a server, this property allows you to set the server port to a different
value than the "well-known" TFTP port of 69. When functioning as a client, this property
allows you to contact a TFTP server that is using a port other than port 69.
Usage
[form.][control.]ServerPort[= numericexpression]
Remarks
Default value is 69.
Data Type
Long

Session Property
Applies To
TCP, Telnet.
Description
The Session property accepts a connection sent to a control in Listen mode. This property is
not available at design time, and write-only at run time.
Usage
[form.][control.]Session = numericexpression
Remarks
When a remote computer connects to a "listening" control, the listening control must "pass
on" the connection to another PowerTCP control. To do this, you must perform the following
steps:

· Find the NewSession parameter in the Accept event of the listening control
(this represents information about the connection).

· Assign the NewSession parameter to the Session property of a new control
(you may want to use a control array for this, to accept numerous
connections). This control now becomes the other end of the connection
initiated by the remote computer. A Connect event will fire in the new
control, telling the program that the connection was successful.

Example
A typical use of this property is shown below:
Sub TCP1_Accept(NewSession As Long)
 ' Transfer the connection to another TCP control
 TCP2.Session = NewSession
End Sub

Data Type
Long
See Also
Accept Event; Listen Event.

Site Property
Applies To
FTP.
Description
Sends a Site Parameters (SITE) command. Used by the server to provide services specific to
its system that are essential to file transfer but not sufficiently universal to be included as
commands in the protocol. This property is not displayed at design time, and is write-only at
run time.
Usage
[form.][control.]Site    = stringexpression
Data Type
String
See Also
Send Event, Reply Event.

SpecialTrap Property
Applies To
SNMP.
Description
Enterprise specific trap. Defined by agent application vendor.
Usage
[form.][control.]SpecialTrap[= numericexpression]
Remarks
Must be set before Action is set to SNMP_TRAP. Usually set to 0.
Data Type
Integer

State Property
Applies To
TCP, Telnet, SMTP, POP3, UDP, SNMP, TFTP.
Description
The State property contains a value representing the current state of the control. This
property is not displayed at design time, and read-only at run time.
Usage
[form.][control.]State
Remarks
You can read the State property to check on the current state of the control. The state may
be one of the following (the constants are defined in POWERTCP.BAS):
Constant Description
CLOSED = 1 The control has not allocated any resources.
CONNECTING = 2 The control is in the process of trying to connect to a remote computer.
CONNECTED = 4 The control is actively connected to a remote computer, or a UDP-

based protocol has allocated resources.
LISTENING = 8 The control is currently listening for new connections.
CLOSING = 16 The control is in the process of closing (outstanding buffers may be

flushing).

UDP, SNMP Specific
The CONNECTING and LISTENING states will not occur in these component s.
TFTP Specific
The CONNECTING state will not occur in the TFTP component.
Example
The following example will send a string of data only if a connect exists:
If TCP1.State = CONNECTED Then
 TCP1.Send = "How many TCP/IP programmers does it take to screw in a light bulb?"
End If

Data Type
Integer
See Also
Action Property (TCP, Telnet); Action Property (SMTP); Action Property (POP3); Action Property
(UDP); Action Property (SNMP); Action Property (TFTP).

Status Property
Applies To
FTP.
Description
Sends a Status (STAT) command. Causes a status response to be sent over the control
connection in the form of a reply. This property is not displayed at design time, and is write-
only at run time.
Usage
[form.][control.]Status    = stringexpression
Data Type
String
See Also
Reply Event.

Store Property
Applies To
FTP.
Description
Sends a Store (STOR) command. Causes the server to accept the data transferred via the
data connection and to store the data as a file at the server site. This property is not
displayed at design time, and is write-only at run time.
Usage
[form.][control.]Store    = stringexpression (PathName)
Remarks
If the LocalFileSpec property is set to nothing (""), then once the data connection is
established, PowerTCP calls the Send event to signal the application to begin sending data
using the Send property.
If the LocalFileSpec property contains a filename, then PowerTCP sends the data
automatically from the file.
The Type property is checked and the TYPE command is sent if the FTP server needs to be
informed of a different data type.
Data Type
String
See Also
Send Property, Send Event, Reply Event.

StoreUnique Property
Applies To
FTP.
Description
Sends a Store Unique (STOU) command. Similar to the Store Property, except that the
resultant file is to be created in the current directory under a name unique to that directory.
This property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]StoreUnique    = stringexpression (PathName)
Remarks
If the LocalFileSpec property is set to nothing (""), then once the data connection is
established, PowerTCP calls the Send event to signal the application to begin sending data
using the Send property.
If the LocalFileSpec property contains a filename, then PowerTCP sends the data
automatically from the file.
The Type property is checked and the TYPE command is sent if the FTP server needs to be
informed of a different data type.
Data Type
String
See Also
Send Property, Send Event, Reply Event.

StructMount Property
Applies To
FTP.
Description
Sends a Structure Mount (SMNT) command. Use this property to mount a different file
system data structure without altering login or accounting information. This property is not
displayed at design time, and is write-only at run time.
Usage
[form.][control.]StructMount    = stringexpression
Data Type
String
See Also
Reply Event.

Style Property
Applies To
VT.
Description
Contains a string of bytes (stored as characters) which represent style information about
their associated character in the Text property. Read-only at runtime.
Usage
[form.][control.]Style
Remarks
Each character is a bitwise OR of:
0 - Normal
1 - Inverse
2 - Bold
4 - Blink
8 - Underline
The Style property is always the same size as the Text property.
Example
The following example determines if the first character at the top of the buffer in the control
is bold or not. The Asc() function converts the character to a number, and it is then
combined with 2 using the And function to see if bit 2 is set.
If (Asc(Left$(VT.Style, 1)) And 2) Then MsgBox "We have a winner--the character is
BOLD!!!"

Data Type
String
See Also
Text Property.

SubOption Property
Applies To
Telnet.
Description
The SubOption property is set to send a sub-option along with an option during option
negotiation. This property is not displayed at design time, and write-only at run time.
Usage
[form.][control.]SubOption = stringexpression
Remarks
Setting only the SubOption property does not send the sub-option. See the DoSubOption
Property for information on how to send sub-options. This is a Visual Basic 2.0 property, and
may include embedded nulls. Sub-option support in Visual Basic 1.0-compatible
environments (Delphi, PowerBuilder, Visual C++) can be provided by using the SendString
and SendByte properties to send the proper sequence of bytes.
This property should only be used when the AutoOption property is set to False.
Data Type
String
See Also
Cmd Event; DoOption and DontOption Properties; DoSubOption Property; WillOption,
WontOption Properties.

System Property
Applies To
FTP.
Description
Sends a System (SYST) command. Used to find out the type of operating system at the
server. This property is not displayed at design time, and is write-only at run time.
Usage
[form.][control.]System = True
Data Type
Integer (Boolean)
See Also
Reply Event.

Tabs Property
Applies To
VT.
Description
Sets or returns a list of comma delimited tab stops to be used for display formatting.
Usage
[form.][control.]Tabs = stringexpression
Example
VT1.Tabs = "9, 17, 25, 33, 41, 49, 57, 65, 73"
Data Type
String

Terminal Property
Applies To
VT.
Description
Sets or returns the terminal type being emulated.
Usage
[form.][control.]Terminal[= setting%]
Constant Description
VT_TTY = 0 TTY. All control sequences are displayed, not interpreted.
VT_VT52 = 1 VT52 emulation.
VT_VT100 = 2VT100 emulation
VT_VT220_7 = 3 VT220 emulation with 7-bit controls (default)
VT_VT220_8 = 4 VT220 emulation with 8-bit controls

Data Type
Integer (Enumerated)

Text Property
Applies To
VT.
Description
A string of text which contains every character in the buffer and screen sections of the
control. Read-only at runtime.
Usage
[form.][control.]Text
Remarks
Each line in the Text property is terminated by a CR/LF pair (Chr$(13) & Chr$(10)). The Text
string can be very large as it contains the scrollback buffer (number of columns plus 2 for a
CR/LF pair, then multiplied by BufferSize) followed by the screen contents (number of
columns plus 2, then multiplied by Rows). Use SelStart as a pointer into the start of any
selected text, and SelLength for the length of the selected text.
Example
The following example copies all the text in the current screen (but not buffer) into the
clipboard:
Clipboard.Clear ' Clear all contents
Clipboard.SetText Right$(VT1.Text, (VT1.Rows + VT1.BufferRows) * (VT1.Cols + 2))

Data Type
String
See Also
Style Property; SelStart Property; SelLength Property; Rows Property;    Cols Property.

TimeStamp Property
Applies To
SNMP.
Description
Value to send (when Action is used to send a Trap message) or value received (when
RecvTrap Event is called).
Usage
[form.][control.]TimeStamp[= numericexpression]
Remarks
This value is in hundredths of seconds from agent startup.
Data Type
Long
See Also
Action Property.

TimeoutInterval Property
Applies To
TFTP.
Description
The TimeoutInterval property is used to set the number of seconds PowerTCP will wait for an
acknowledgment until re-sending a packet.
Usage
[form.][control.]TimeoutInterval[= numericexpression]
Remarks
The default value is 1000 (one second).
Data Type
Integer
See Also
MaxRetries Property.

TopLines Property
Applies To
POP3.
Description
The TopLines property, when set to a message number, uses the Lines property to construct
and send a POP3 TOP message.
Usage
[form.][control.]TopLines[= numericexpression]
Remarks

If the POP3 server issues a positive response, then the reply is multi-line. After the
initial +OK, the POP3 server sends the headers of the message, a blank line
separates the headers from the body, and then the number of lines in the message's
body. Note that if the number of lines requested by the POP3 client is greater than
the number of lines in the body, then the POP3 server sends the entire message.
This header and message data is provided to the application through Pop3 Event with
status = POP3_MAIL.    This will be immediately followed by a Header Event which
provides the parsed common header fields.    Note that if Header Event fields are to
be used, the buffer returned from Pop3 Event with status = POP3_MAIL must not be
modified.

Data Type
Integer
See Also
Lines Property.

Type, TypeTransfer Properties
Applies To
FTP.
Description
Sends a Representation Type (TYPE) command. Refer to RFC 959 for a complete description
of possible representation types.
Usage
[form.][control.]Type    = numericexpression
Remarks The Type property is an enumerated type. The TypeTransfer property is an
integer, and is compatible with the PowerBuilder environment (Type is not a compatible word
in that environment). Type or TypeTranfer should be set before using Appe, Store,
StoreUnique or Retrieve.
Constant Description
FTP_ASCII = 0 Every line is terminated with a CR/LF sequence for transfer
FTP_EBCDIC = 1 EBCDIC transfer.
FTP_IMAGE = 2 Exact binary image transferred
FTP_IGNORE = 3 Do not enforce any type. Use current state for the transfer.

Data Type
Integer (enumerated type for Type Property)
See Also
Reply Event.

Uidl Property
Applies To
POP3.
Description
When set to a message number, asks the POP3 server to reply with the unique ID of the
message. When set to 0, asks the POP3 server to reply with all unique IDs. This property is
not displayed at design time, and read-only at run time. Not currently implemented.
Usage
[form.][control.]Uidl = numericexpression
Remarks
When set to a message number, the POP3 server issues a positive response with a line
containing information for that message. This line is called a "unique-id listing" for that
message.
When set to 0, and the POP3 server issues a positive response, then the response given is
multi-line. After the initial +OK, for each message in the maildrop, the POP3 server responds
with a line containing information for that message. This line is called a "unique-id listing" for
that message.
In order to simplify parsing, all POP3 servers are required to use a certain format for unique-
id listings. A unique-id listing consists of the message-number of the message, followed by a
single space and the unique-id of the message. No information follows the unique-id in the
unique-id listing.
The unique-id of a message is an arbitrary server-determined string, consisting of characters
in the range 0x21 to 0x7E, which uniquely identifies a message within a maildrop and which
persists across sessions. The server should never reuse a unique-id in a given maildrop, for
as long as the entity using the unique-id exists.
Note that messages marked as deleted are not listed.
Data Type
Integer
See Also
Action Property.

Urgent Property
Applies To
TCP, Telnet.
Description
The Urgent Property, when set to True, specifies that all data sent using the Send Property
will be sent as TCP Urgent or Out-Of-Band data. Write-only at run time.
Usage
[form.][control.]Urgent = True
Remarks
This property generally should not be used except in special cases.
Data Type
Integer (Boolean)

User Property (FTP)
Applies To
FTP.
Description
Specifies the user name for an account, used when logging in.
Usage
[form.][control.]User = stringexpression
Remarks
This must be set before using the LoginHost property.
Data Type
String
See Also
Account Property; Password Property.

User Property (POP3)
Applies To
POP3.
Description
Specifies the user name to be used for authentication. Must be set prior to setting
Action=CONNECTCOMM.
Usage
[form.][control.]User [= stringexpression]
Remarks
USER/PASS authentication is used unless the Secret property is set, indicating that APOP
authentication is to be used first.
Data Type
String

Verify Property
Applies To
SMTP.
Description
Asks the mail receiver to confirm that the argument identifies a mail address. If it is a user
name, the full name of the user (if known) and the fully specified mailbox are returned.
Usage
[form.][control.]Verify = stringexpression
Remarks
This command asks the receiver to confirm that the argument identifies a user. If it is a user
name, the full name of the user (if known) and the fully specified mailbox are returned. This
command has no effect on the reverse-path buffer, the forward-path buffer, or the mail data
buffer.
Data Type
String

WillOption, WontOption Properties
Applies To
Telnet.
Description
The WillOption and WontOption properties, when set, send a command to the other end of
the connection that you will or won't support an option. These properties are not displayed
at design time and write-only at run time.
Usage
[form.][control.]WillOption = numericexpression
[form.][control.]WontOption = numericexpression
Remarks
When you set the WillOption or WontOption properties, a command is immediately sent
across the connection to command the other end to do the option. This tells the other end of
the connection, "I will/won't support option x." The other end may respond with either a Do
or a Don't command, agreeing or disagreeing. This command will generate a Cmd event,
with the command they sent as an argument.
The different options you may send are defined in the POWERTCP.BAS constants file.
Note that these properties should not be used if AutoOption is set to False.
Data Type
Integer
See Also
Cmd Event; DoOption and DontOption Properties; DoSubOption Property; SubOption
Property.

Accept Event
Applies To
TCP, Telnet.
Description
The Accept event is generated when a remote computer sends a connect message to a
listening control.
Syntax
Sub ctlname_Accept (NewSession As Long)
Remarks
This event will be generated when the control is in listening mode and a remote computer is
trying to connect to it. See the Session property for more information and details on how to
respond to it.
See Also
Session Property; Listen Event; Action Property (TCP, Telnet).

Attach Event
Applies To
SMTP.
Description
The Accept event is generated periodically during the transfer of a mail message and its
attachments.
Syntax
Sub ctlname_Attach (FileSpec As String, PercentComplete As Long)
Remarks
This event will be generated when the control is transferring a mail message and
attachments to a remote host. The PercentComplete is for the ENTIRE mail message. The
FileSpec will change as the attachments are sent. PercentComplete of    100 indicates that
the entire message and all attachments have been sent.
See Also
Action Property (SMTP).

Click Event
Applies To
VT.
Description
The Click event is generated when the user clicks on the VT display window.
Syntax
Sub ctlname_Click (xPos As Long, yPos As Long)
xPos x position of pointer in client coordinates when user clicked left button
yPos y position of pointer in client coordinates when user clicked left button

Cmd Event
Applies To
Telnet.
Description
The Cmd event is generated when a control sends you a Telnet option negotiation code.
Syntax
Sub ctlname_Cmd (Cmd As Integer, TelnetOption As Integer, SubOption As String)
Remarks
When the Cmd event is generated, you should respond with the DontOption, DoOption,
DoSubOption, WillOption, and WontOption properties.
The following table describes the different commands you may receive in the Cmd
argument:
Setting Description
GO_AHEAD_CMD The other end of the connection has received the data, and is telling

you that you may send more. You can eliminate the necessity of this command by
negotiating the SUPPRESS_GO_AHEAD option.

WILL_CMD, WONT_CMD    These two commands tell you that the sender will or won't support
a certain option. You can agree or refuse by sending the DoOptionDoOption or
DontOptionDoOption command.

DO_CMD, DONT_CMD    These two commands tell you to enable or disable a certain option.
You may enable or disable the option yourself, or you can refuse by sending the
WillOptionWillOption or WontOptionWillOption command.

SB_CMD This command tells you that the sender will negotiate a sub-option.

The POWERTCP.BAS constants file defines the different Telnet option codes you may receive.
Example
See the Tutorial for an example of skeleton option negotiation code.
See Also
Cmd Property; DontOption Property; DoOption Property; DoSubOption Property; WillOption
Property; WontOption Property.

Connect Event (TCP, Telnet, SMTP)
Applies To
TCP, Telnet, SMTP.
Description
The Connect event is generated when a control successfully connects to a remote computer,
or when you accept a remote connection from another computer.
Syntax
Sub ctlname_Connect ()
Remarks
The Connect event lets you execute code immediately after you connect to a remote
computer, or after a remote computer connects to you. The RemoteHost, RemotePort,
LocalDotAddr, and LocalPort properties will be updated with current information and may be
read.
See Also
Session Property; Action Property (TCP, Telnet), Action Property (SMTP), Connect Event (FTP).

Connect Event (FTP)
Applies To
FTP.
Description
The Connect Event is generated when the user's control connection establishes contact with
the FTP server.
Syntax
Sub ctlname_Connect (RemoteDotAddr As String, RemotePort As Long, LocalDotAddr As
String, LocalPort As Long, LocalName As String)
RemoteDotAddr Address of FTP server in xxx.xxx.xxx.xxx notation.
RemotePort Remote port assigned to connection.
LocalDotAddr Local address in xxx.xxx.xxx.xxx notation.
LocalPort Local port assigned to connection.
LocalName The name of the local host computer.

Remarks
All parameters passed in the event can only be found in this event. Therefore, if an
application needs to access this information at a later point, it must be saved in a global
variable.
See Also
Reply Event

Connect Event (POP3)
Applies To
POP3.
Description
The Connect event is generated when a control successfully connects to a remote computer,
or when you accept a remote connection from another computer.
Syntax
Sub ctlname_Connect ()
Remarks
The RemoteHost and RemotePort properties will be updated with current information and
may be read. The POP3 control will take care of sending authentication messages (USER,
PASS, APOP), so you may only want to update status information from within this event.
See Also
Action Property

Connect Event (TFTP)
Applies To
TFTP.
Description
The Connect event is generated when a TFTP client or server is successfully established.
Syntax
Sub ctlname_Connect (LocalPort As Long, LocalName As String, MaxByteCnt As Long)
LocalPort Local port number assigned to the session.
LocalName Domain name of the network interface used.
MaxByteCnt Maximum number of bytes supported by the UDP transport for a single

Datagram.

Remarks
The Connect event lets you execute code immediately after you establish a TFTP client. The
LocalDotAddr property will be updated with current information and may be read.
See Also
Action Property

Connect Event (UDP, SNMP)
Applies To
UDP, SNMP.
Description
The Connect event is generated when a UDP session is successfully established.
Syntax
Sub ctlname_Connect (LocalName As String, MaxByteCnt As Long)
LocalName Domain name of the network interface used.
MaxByteCnt Maximum number of bytes supported by the UDP transport for a single

Datagram.

Remarks
The Connect event lets you execute code immediately after you establish a UDP session.
The LocalDotAddr and LocalPort properties will be updated with current information and may
be read.
See Also
Action Property (SNMP); Action Property (UDP)

Exception Event
Applies To
TCP, Telnet, FTP, SMTP, POP3, UDP, SNMP, TFTP.
Description
The Exception event is generated when an error occurs.
Syntax
Sub ctlname_Exception (ErrorCode As Integer, ErrorDesc As String)
Remarks
The POWERTCP.BAS constants file defines the different error codes you can receive. The
table below lists all possible values.
ErrorCode Description
PT_OK = 0 OK - check for advisory text message.
PT_HARDWARE = 1 Hardware failure.
PT_PROTOCOL = 2 Protocol software failure.
PT_BADNAME = 3 Name of host cannot be resolved to address.
PT_CONNREFUSED =4    Connection to host refused - remote host is not listening.
PT_NOROUTE = 5 No route to host (check network part of address).
PT_NOHOST = 6 Remote host is not available (check host part of address).
PT_NOMEM = 7 Insufficient local resources to allocate resources, accept buffer or

create channel.
PT_ADDRINUSE = 8 Address/port in use. Could indicate a corrupted transport layer.
PT_NOTCONNECTED = 9    Attempt made to use a session that is not in the PT_CONNECTED

state.
PT_NORESOURCE = 10    Insufficient resources on remote host. TFTP error code 3.
PT_NOTACCEPTED = 11    Application did not properly accept passive connection.
PT_SOFTWARE = 12 General software error.
PT_REMOTECLOSE = 13    Remote host reset or closed connection. A Receive Event will

follow, indicating a closed connection.
PT_WARNING = 14 General warning. Not currently used.
PT_ERROR = 15 General error. TFTP error code 0.
PT_NOFILE = 16 TFTP error code 1.
PT_ACCESSVIO = 17 TFTP error code 2.
PT_ILLEGALOP = 18 TFTP error code 4.
PT_UNKNOWNID = 19    TFTP error code 5.
PT_FILEEXISTS = 20 TFTP error code 6.
PT_NOUSER = 21 TFTP error code 7.
PT_INUSE = 22 Attempt made to open a session that is already in use.
PT_NOWINSOCK = 23 Error encountered accessing WINSOCK.DLL or WSOCK32.DLL.

See Also
Action Property (TCP, Telnet); Action Property (SMTP); Action Property (POP3); Action Property
(UDP); Action Property (SNMP); Action Property (TFTP).

File Event
Applies To
POP3.
Description
The File event is generated when a file is closed that contains a mail message or a decoded
file attachment.
Syntax
Sub ctlname_File (FileSpec As String, Mode As String, FileSize As Long)
Remarks

PowerTCP calls this function to notify the application of the successful receipt of a
mail message and each attached file.
PowerTCP calls this function to notify the application of the successful spooling of the
mail message or attached file.    The received file is closed before this event is called. 
If mail message spooling is not enabled    then no File Event is generated related to
the message body, since no file is created.    Note that mail message data is always
returned by Pop3 Event.
The EncodeType is for informational purposes only.    All data is fully decoded prior to
spooling or sending to the user.
If the size of the file created exceeds the maximum count represented by an
Unsigned Long, the FileSize parameter returned will not be valid.

See Also
MailFileSpec Property; AttachmentDir Property; Pop3 Event.

OnHeader Event
PowerTCP calls this function after receiving and parsing the header portion of a mail
message.

Applies To
POP3

Syntax
Object_OnHeader (nLastCommand, sReturnPath, sReceived, sDate, sFrom,
sSubject, sSender, sTo, sCc)

nLastCommand An Integer value that specifies the last command sent to a POP3
server – either POP3_RETR or POP3_TOP, refer to the CommandConstants for
details.

sReturnPath A String containing the mail header ReturnPath field or zero length string.
sReceived A String containing the mail header Received field or zero length string.
sDate A String containing the mail header Date field or zero length string.
sFrom A String containing the mail header From field or zero length string.
sSubject A String containing the mail header Subject field or zero length string.
sSender A String containing the mail header Sender field or zero length string.
sTo A String containing the mail header To field or zero length string.
sCc A String containing the mail header Cc field or zero length string.

Remarks
PowerTCP calls this function to notify the application of the receipt and parsing of a
mail message header. Header Event returns eight common fields as strings, whereas
Pop3 Event (when status = POP3_HEADER) returns the complete header for you to
parse.    Either or both events can be used.    Calls to Header Event will be generated
in response to successful Retrieve and Top property settings.
The fields returned by Header Event may be folded - containing embedded
CRLF<whitespace>.    Further, if a mail message contains duplicate header fields, the
sequence of duplicates (including fields field name) will be returned as a single string.
If a field has not been located, a zero length string is returned.
Warning: if Header Event is to be utilized, you must not modify the buffer returned
by Pop3 Event (when status=POP3_HEADER), as this will invalidate the parsing of the
header fields returned by . Header Event.

HostCommand Event
Applies To
VT.
Description
The HostCommand event is generated when the host commands the terminal to perform an
action. Unless Ignore is set to TRUE, the VT control will effect the commanded change.
Syntax
Sub ctlname_HostCommand (Attribute As Integer, Value As Long, Ignore As Integer)
Attribute Attribute being set or reset.
Value Set (TRUE) or reset (FALSE).
Ignore Set to TRUE to defeat the instruction from the host.

Remarks
Most applications will not require any code for this event.
The possible values for Attribute are defined in the POWERTCP.BAS file, with descriptions.

KeyDown Event
Applies To
VT.
Description
The KeyDown event is generated when the user presses a key.
Syntax
Sub ctlname_KeyDown (KeyCode As Integer, Shift As Integer, Extended As Integer)
Remarks
This event provides a preview of the key so that the program can change the virtual key
code or shift attribute to a different value by setting KeyCode to a new value (for key
mapping applications). You can also set KeyCode to 0 (negating any processing by the
control) and send your own substitution string to the host. If KeyCode is not equal to zero
when the event finishes, the control will send a key sequence for the current value of
KeyCode.
KeyCode is any valid virtual key code. Shift is a bitwise OR of :
1 - Shift key depressed
2 - Control key depressed
Extended is 1 if the key is part of the extended keyboard. For example, both Enter keys have
the same virtual key code, but the Enter key on the numeric keypad would have a value of 1
for the Extended parameter.
See Also
KeyPress Property.

KeyPress Event
Applies To
VT.
Description
The KeyPress event is generated when the emulator has data to be sent to the host.
Syntax
Sub ctlname_KeyPress (KeyString As String)
Remarks
This event provides the actual data that should be sent to the host program. You should use
the KeyDown Event for any key substitution applications.
See Also
KeyDown Property.

Listen Event
Applies To
TCP, Telnet.
Description
The Listen event is generated when the control enters listening mode, by setting the Action
property to Listen (Action = LISTENCOMM).
Syntax
Sub ctlname_Listen ()
Remarks
The Listen event is a confirmation that the control entered listening mode. When the Action
property is set to Listen, the Listen event will be generated if the control was successful in
entering Listen mode.
See Also
Accept Event, Session Property, Action Property.

Log Event (FTP)
Applies To
FTP.
Description
The Log Event is used to notify the application of FTP commands sent by PowerTCP and
status information that are not part of the FTP protocol. These descriptive messages may be
posted into an edit box for review during the development process.
Syntax
Sub ctlname_Log (Message As String)
Remarks
Log messages are advisory only.

Log Event (SMTP, POP3)
Applies To
SMTP, POP3.
Description
The Log event is generated when the PowerTCP library sends a message to the server.
Syntax
Sub ctlname_Log (Cmd As String)
Remarks
Command is the exact command sent to the server. It is useful for displaying activity
generated by the PowerTCP library.

NewLine Event
Applies To
VT.
Description
The NewLine event occurs when the cursor changes rows. This property is useful for
capturing data to a disk file or other destination.
Syntax
Sub ctlname_NewLine (LineText As String)
Remarks
If you are implementing logging (capturing), you should write LineText to the disk file.
LineText contains the line of text in which the cursor was positioned before it moved. Note
that LineText ends with a CR/LF (Chr$(13) & Chr$(10)), so that if the Print # statement is
used to send it to a file, the statement should end with a semicolon.
Example
Sub VT1_NewLine (LineText As String)
 ' This will send the text to file #1, which must have
 ' been previously opened by the program.
 Print #1, LineText;
End Sub

Pop3 Event
Applies To

POP3.
Description
PowerTCP calls Pop3 Event when a reply has arrived from the POP3 server. The body of this
event is where you must insert all your control code to interpret the success and/or failure of
the commands sent to the POP3 server.
Syntax
Sub ctlname_Pop3 (Status As Integer, LastCommand As Integer, ReplyStr As String,
FileSpec As String, Mode As String, PercentComplete As Integer)
Status Status or State of POP3 dialog with host. See table below.
LastCommand Last command sent to POP3 server. See descriptions below.
ReplyStr Data sent from POP3 server responding to last command sent. PowerTCP may

call this method numerous times while retrieving a single mail message.
FileSpec Specification of file currently being transferred. If spooling the mail

header/body to a file, Status would be equal to POP3_MAIL. If spooling an attachment
to a file, Status would be equal to POP3_FILE.

Mode The file encoding method if Status = POP3_FILE. The codes are the following:
 M - MIME Base 64 Encoding.
 U - UU Encoding.
 N - No Encoding.
PercentComplete A number between 0 and 100 specifying the percent retrieved of the

complete Message(i.e. Mail plus all attachments). When Retrieving a mail message,
the only indication that the message is complete is PercentComplete = 100 and
Status = POP3_FILE or POP3_MAIL.

Remarks
You will initiate a POP3 session by calling the Connect method, after which all replies
from the POP3 server will cause PowerTCP to call Pop3 event. Besides providing a
buffer that contains the raw data sent from the POP3 server, PowerTCP handles
interpretation of the stream, calling this method with parameters that provide useful
information for the developer. PowerTCP calls the Pop3 event when a reply has
arrived from the POP3 server in response to a POP3 message being sent to the
server, or the connection is closed. The body of this function is where you place all
your control and status code to interpret the success and/or failure of the commands
sent to the POP3 server.
The LastCommand parameter is used to determine what method was used last, so
you know how to interpret the reply. Then check Status to find out if the reply is a
standard POP3 reply (pop3_ReplyPos or pop3_ReplyNeg), the header of a mail
message (pop3_Header), part of a mail message body (pop3_Mail), or part of a file
attachment (pop3_File).
When Status = pop3_Header in response to a Retrieve request, the ReplyStr contains
the entire mail header.    Note that most header fields are more easily available from
the Header event which returns common fields as separate null terminated strings.   
Generally, the Pop3 Event with Status = pop3_Header can be ignored, and the
header information retrieved from the Header Event call which will immediately
follow Pop3 Event.    Note that the ReplyStr buffer returned from Pop3 Event must not

be modified if it is intended to use the Header Event
In response to TopLines , an Pop3 Event) with Status = pop3_Header is not generated.
This response will be pop3Mail since it can contain header and message data if more
than 0 lines were requested from the file.    In this case, Header Event will still provide
the correct parsed header data.
When Status =pop3_File, decoded data of an attached file is pointed to by ReplyStr.   
This response occurs only after Retreive request when attachments are included with
the mail.    Repeated calls to Pop3 Event will be made with this status until all of the
attachment file is processed.    If spooling is enabled FileSpec contains the name of
the file storing the data, and the data buffer has already been spooled to disk prior to
this call.    The FileSpec used for spooling attachments may not match the filename
described in the mail message headers if the NoOverWrite Property is set.    This is
discussed in the Connect() method description.
Note that PercentComplete cannot be used to detect completion of a particular
attached file, although the completion of all attachments is signaled by
PercentComplete equal 100.    The completion a single attachment file is signaled by
File Event.
The Mail Message is spooled to disk if the MailFileSpec parameter of the Retrieve
method is not NULL. File attachments are automatically decoded and spooled to disk
if the AttachmentDir parameter of the Retrieve function is not NULL. Attachment files
are complete and closed when PowerTCP calls the File Event.
You can monitor the progress of the entire transfer as the Status value goes from
pop3_ReplyPos (the initial indication that mail will follow), to pop3_Header, to
pop3_Mail (possibly called several times while the mail message is spooled), to
pop3_File (probably called multiple times while FileSpec changes to indicate the
receipt of several files). While Status is pop3_Mail or pop3_File, PercentComplete will
be increasing from 0 or more up to 100. A value of 100 is positive indication that the
mail and all attachments have been received, and another POP3 command can be
issued.
The mail message is spooled to disk if the MailFileSpec parameter of the Retrieve
method is not NULL. File attachments are automatically decoded and spooled to disk
if the AttachmentDir parameter of the Retrieve method is not NULL (they are also
reported when PowerTCP calls the File event).
A closed connection is confirmed when nStatus = pop3_Closed and nReply =NULL.

POP3 Status Description
POP3_CLOSED = 0 - The connection to the POP3 Server is closed.
POP3_REPLY_POS = 1 -. This status is generated as the first response to any successful

command sent to the POP3 server. (The POP3 server has responded with a "+OK").   
Reply provides data associated with the response, which may be multi-line, as
indicated by PercentComplete not equal 100.    Such a multi-line response will
ultimately be terminated by a Pop3 Event call with PercentComplete equal 100.

POP3_REPLY_NEG = 2 - The POP3 server has responded with "-ERR", indicating a Negative
reply to the previous message sent to the server.

POP3_MAIL = 3 - Data of a mail message is pointed to by.    Occurs in response to LIST, TOP
or RETR commands. Repeated calls to Pop3 Event will be made with this status until
all of the mail body is processed.    When this status occurs with
PercentComplete=100, that signals completion of the mail message (e.g. a
CRLF,".",CRLF sequence has been received).

POP3_FILE = 4 - When a file is being written, the Filename parameter contains the current

file name. The file data is specified by the FileSpec parameter.
POP3_HEADER = 5 - A complete mail header has been assembled and is pointed to by

ReplyStr.    Occurs in response to RETR commands only.    One header is returned per
call.    See Remarks.

POP3 Commands Description
POP3_APOP = 0 Sent during authentication process by PowerTCP.
POP3_DELE = 1 Sent by the DeleteMsg property.
POP3_LIST = 2 Sent by the List property.
POP3_NOOP = 3 Sent by the Action property.
POP3_PASS = 4 Sent by the Action property.
POP3_QUIT = 5 Sent by the Action property.
POP3_RSET    = 6 Sent by the Action property.
POP3_RETR = 7 Sent by the Retrieve property.
POP3_STAT = 8 Sent by the Action property.
POP3_TOP = 9 Sent by the TopLines property.
POP3_UIDL = 10 Sent by the Uidl property.
POP3_USER = 11 Sent by the Action property.
POP3_CONNECT = 12 Used after a TCP connection is established with a POP3 server

to indicate the initial greeting from the server.

See Also
File Event.

Recv Event (TCP, Telnet, FTP)
Applies To
TCP, Telnet, FTP.
Description
The Recv event is generated when the other end of a connection sends data. It can also
signal that the connection has been closed.
Syntax
Sub ctlname_Recv (RecvData As String)
Remarks
When one end of a connection uses the Send property to send a string of text, the other end
will generate at least one Recv event. The RecvData argument will contain the text sent.
If the control does not respond to the Recv event, the received string will be lost. Therefore,
the program should either respond to the string, or store it in a global variable for later use.
The data contained within the RecvData parameter may include null characters within it.
Important
If the length of RecvData is 0, this signals that the connection has been closed.
FTP Specific
Data is received in this event in response to the List, NameList, and Retrieve properties. The
receipt of this event with the length of RecvData equal to 0 signals the closing of the data
connection, implying that the file should be closed or other termination action be
accomplished.
Note that when retrieving a file, the Recv event is called only if the LocalFileSpec property is
set to an empty string ("").
Example
The following example places received data into a text box and notifies the user when the
connection goes down:
Sub TCP1_Recv (RecvData As String)
 If RecvData = "" Then
 ' The connection has terminated
 MsgBox "The connection has been closed."
 Else
 Text1.Text = Text1.Text & RecvData
 End If
End Sub

See Also
Send Event, Send Property.

Recv Event (UDP)
Applies To
UDP
Description
The Recv event is generated when a Datagram is received or the socket is closed.
Syntax
Sub ctlname_Recv (RecvData As String, RemoteDotAddr As String, RemotePort As Long
)
Remarks
When a Datagram is received PowerTCP will generate the Recv event. The RecvData
argument contains the text received. The RemoteDotAddr string contains the dot address of
the source host, and RemotePort contains the source host port. Your program should either
use the string, or store it in a global variable for later use.
The data contained within the Data parameter may include null characters within it.
If the length of RecvData is 0 (RecvData = ""), this signifies that the State is now
PT_CLOSED.
See Also
Send Event, Send Property.

RecvSnmp Event
Applies To
SNMP.
Description
The RecvSnmp event is generated when an SNMP agent sends a response to your query, or
when your SNMP agent receives a query from an SNMP manager.
Syntax
Sub ctlname_RecvSnmp (MessageType As Integer)
MessageType Type of message received.

Remarks
When a query is received by your agent or a response to a query is received by your
manager, PowerTCP will generate the RecvSnmp event. Possible values for MessageType are
included in POWERTCP.BAS:
SNMP_GET_REQUEST (4) - Your agent applications has received a request or information.
SNMP_GET_NEXT_REQUEST (5) - Your agent application has received another request.
SNMP_SET_REQUEST (6) - Your agent has received data to set a local value.
SNMP_GET_RESPONSE (7) - Your manager has received a response from a remote manager.
The RemoteHost string contains the dot address of the SNMP agent. Information from the
agent is stored in the following properties just before this event is fired: Community,
ErrorStatus, ErrorIndex, RemoteHost (in dot address notation), RemotePort, RequestID,
nObjects, ObjectID, ObjectValue and ObjectType. All of these values must be copied
elsewhere if they are to be kept as they will be overwritten in the next RecvSnmp or
RecvTrap Event.
See Also
Send Event, Action Property.

RecvTrap Event
Applies To
SNMP.
Description
The Trap event is generated when the SNMP agent sends you an unsolicited trap message.
Syntax
Sub ctlname_RecvTrap ()
Remarks
This event is fired whenever a trap packet arrives on the LocalPort.
When a trap is received from an SNMP agent, PowerTCP will generate the Trap event. The
RemoteHost Property string contains the address of the SNMP agent. Additional information
from the agent is stored in the following properties just before this event is fired:
Community, Enterprise, NodeDotAddr, GeneralTrap, SpecialTrap, TimeStamp, nObjects,
RemoteHost (in dot address format), RemotePort, ObjectID, ObjectValue, and ObjectType.

Reply Event
Applies To
FTP.
Description
PowerTCP calls the Reply Event when a reply has arrived on the control connection. The body
of this event is where you must insert all your control code to interpret the success and/or
failure of the commands sent to the FTP server.
Syntax
Sub ctlname_Reply (Status As Integer, LastCommand As Integer, ReplyCode As
Integer, ReplyStr As String)

Status Status of FTP dialog.
LastCommand Last command sent to FTP server (enumerated type).
ReplyCode FTP protocol return code (integer value of first 3 digits of ReplyStr).
ReplyStr NULL-terminated reply string

Remarks
The Status parameter indicates how PowerTCP has interpreted the result. A table describing
these values follows below.
The LastCommand parameter specifies the last command sent out over the connection
(assuming a PowerTCP property was used, and not the Command property). This means that
you do not have to save the command which was sent last.
The ReplyCode parameter is a value between 110 and 553 that indicates the status of the
FTP server. The meaning of these values can be found in RFC 959 (included in the PowerTCP
SDK software distribution). This value is provided for your convenience if detailed debugging
is required.
The ReplyStr parameter is the raw reply string passed back from the FTP server. We make
this easier because we buffer up a complete reply and NULL terminate it to make it easier to
interpret. ReplyStr can be a multi-line string separated by CR/LF pairs. No CR/LF is included
on the last line.
You will put most of your code within this event. Typically, you should check for the
appropriate LastCommand and an FTP_SUCCESS status as indicators. For example, if
retrieving multiple files, check for LastCommand = FTP_RETR and Status = FTP_SUCCESS to
determine when to send the next one. Please refer to the included FTP sample applications
to see how this is easily implemented.
The following table describes the possible status indications:
FTP_STATUS Description
FTP_UNKNOWN = 0 Command Property was used for sending last command (in lieu of

another PowerTCP property), or the FTP server has volunteered spontaneous
information (such as a system shutdown message)

FTP_SUCCESS = 1 The sent FTP command (or sequence of commands sent by PowerTCP)
has completed successfully.

FTP_ERROR = 2 The sent FTP command has generated an error condition. This
message indicates bad synchronization of commands over the control connection.

FTP_FAILURE = 3 The sent FTP command has generated a failure condition. This
message can be expected due to a security access error or other failure encountered

under normal conditions.
FTP_WORKING = 4 The send FTP command has completed successfully, but PowerTCP is

sending a follow-on command to complete a sequence of command. Sequences are
generated by properties like LoginHost, Rename, Retrieve and Store.

The FTP_COMMAND enumerated types follow:
FTP_COMMAND Description
FTP_CLOSED = 0 Control connection is closed after LogOut property is used.
FTP_CLEAR = 1 Command property used or reply has cleared last command.
FTP_USER = 2See User property.
FTP_PASS = 3 See Password property.
FTP_ACCT = 4See Account property.
FTP_CWD = 5 See ChDir property.
FTP_CDUP = 6See ChDirUp property.
FTP_SMNT =7 See StructMount property.
FTP_QUIT = 8 See LogOut property.
FTP_REIN = 9 See Reinitialize property.
FTP_PORT = 10 See Port property.
FTP_PASV = 11 See Passive property.
FTP_TYPE = 12 See Type property.
FTP_STRU = 13 See StructMount property.
FTP_MODE = 14 See Mode property.
FTP_RETR = 15 See Retrieve property.
FTP_STOR = 16 See Store property.
FTP_STOU = 17 See StoreUnique property.
FTP_APPE = 18 See Appe property.
FTP_ALLO = 19 See Allocate property.
FTP_REST = 20 See Restart property.
FTP_RNFR = 21 See Rename property.
FTP_RNTO = 22 See Rename property.
FTP_ABOR = 23 See Abort property.
FTP_DELE = 24 See Dele property.
FTP_RMD = 25 See RemoveDir property.
FTP_MKD = 26 See MakeDir property.
FTP_PWD = 27 See PrintWorkingDir property.
FTP_LIST = 28See List property.
FTP_NLST = 29 See NameList property.
FTP_SITE = 30See Site property.
FTP_SYST = 31 See System property.
FTP_STAT = 32 See Status property.
FTP_HELP = 33 See Help property.
FTP_NOOP = 34 See Noop property.

See Also

Send Event, Send Property.

Send Event (TCP, Telnet, FTP, UDP)
Applies To
TCP, Telnet, FTP, UDP.
Description
The Send event is generated when the PowerTCP control successfully buffers a string to the
system buffers.
Syntax
Sub ctlname_Send (DataTag As Long)
DataTag The value of the DataTag property when the data was sent.

Remarks
This event is generated when the system network buffers have successfully accepted data
for transmission.
FTP Specific
When the Store, StoreUnique, or Appe properties are used, the PowerTCP library and FTP
server accomplish the steps to establish a data connection. When established, PowerTCP
calls the Send event to signal that the application may now start sending data by using the
Send property. Note that this event is generated only if the LocalFileSpec property is set to
an empty string (""). DataTag is a value that indicates how many bytes were sent.
See Also
Recv Event; Send Property; DataTag Property.

Send Event (SNMP)
Applies To
SNMP.
Description
The Send event is generated when the PowerTCP control successfully submitted a string to
the system buffers.
Syntax
Sub ctlname_Send (RequestID As Long)
RequestID Reflects the value of the RequestID Property when the Action Property was

used to send an SNMP packet.

Remarks
PowerTCP uses RequestID to tag all SNMP packets sent using the Action property:
SNMP_GET_REQUEST, SNMP_GET_NEXT_REQUEST, SNMP_SET_REQUEST,
SNMP_GET_RESPONSE, or SNMP_TRAP_MESSAGE.
See Also
Action Property.

Smtp Event
Applies To
SMTP.
Description
PowerTCP calls the Smtp Event when a reply has arrived from the mail receiver. The body of
this event is where you must insert all your control code to interpret the success and/or
failure of the commands sent to the mail receiver.
Syntax
Sub ctlname_Smtp (Status As Integer, LastCommand As Integer, ReplyCode As Integer,
ReplyStr As String, Complete As Integer)
Status Status of SMTP dialog with host.
LastCommand Last command sent to SMTP server (enumerated type).
ReplyCode SMTP protocol return code (integer value of first 3 digits of ReplyStr).
ReplyStr NULL-terminated reply string
Complete True if last line of multi-line reply.

Remarks
PowerTCP calls the Smtp event when a reply has arrived on the SMTP connection or the
connection is closed. The body of this event is where you must insert all your control code to
interpret the success and/or failure of the commands sent to the SMTP server.
The Status parameter indicates how PowerTCP has interpreted the result. A table describing
these values follows below.
The LastCommand parameter specifies the last command sent to the SMTP server.
The ReplyCode parameter is a value between 211 and 554 that indicates the status of the
SMTP server. The meaning of these values can be found in RFC 821 (included in the
PowerTCP SDK software distribution). These values need only be interpreted if protocol
problems are encountered.
The ReplyStr parameter is the raw reply string passed back from the SMTP recipients.
PowerTCP makes this easier because it buffers up a complete line and NULL terminates it to
make it easier to interpret. ReplyStr can be a multi-line string separated by CR/LF pairs. No
CR/LF is included on the last line.
A closed connection is confirmed when Status = SMTP_CLOSED.
The following tables describes the possible status and command indications:
SMTP StatusDescription
SMTP_CLOSED = 0 The connection is closed.
SMTP_SUCCESS = 1 The sent SMTP command (or sequence of commands sent by

PowerTCP) has completed successfully.
SMTP_ERROR = 2 The sent SMTP command has generated an error condition. This

message indicates bad synchronization of commands over the channel.
SMTP_FAILURE = 3 The sent SMTP command has generated a failure condition. This

message can be expected due to a security access error or other failure encountered
under normal conditions.

SMTP_WORKING = 4 The SMTP command has completed successfully, but PowerTCP is
sending a follow-on command to complete a sequence of commands. Sequences are

generated by calling methods like Mail.

SMTP Commands Description
SMTP_DATA = 0 Sent when Action = SEND_MAIL is set.
SMTP_EXPN = 1 Sent when Expand property is set.
SMTP_HELO = 2 Sent when Action = CONNECTCOMM is set.
SMTP_HELP = 3 Sent when Help property is set.
SMTP_MAIL = 4 Sent when Action = SEND_MAIL is set.
SMTP_NOOP = 5 Sent when Action = SEND_NOOP_MAIL is set.
SMTP_QUIT    = 6 Sent when Action = CLOSECOMM is set.
SMTP_RCPT = 7 Sent when Action = SEND_MAIL is set.
SMTP_RSET = 8 Sent when Action = RESET_MAIL is set.
SMTP_SAML = 9 Sent when Action = SEND_SAML is set.
SMTP_SEND = 10 Sent when Action = SEND_SEND is set.
SMTP_SOML = 11 Sent when Action = SEND_SOML is set.
SMTP_VRFY = 13 Sent when the Verify property is set.
SMTP_CONNECT = 14 First reply from SMTP server after connection is established.

Tftp Event
Applies To
TFTP.
Description
The Tftp event is generated when a Datagram with file data is sent or received.
Syntax
Sub ctlname_Tftp (Op As Integer, LocalFileSpec As String, Block As Long, ByteCnt As
Integer, TransferID As Long, ActiveCnt As Integer, RemoteDotAddr As String,
RemotePort As Long, ErrorCode As Integer, ErrorDesc As String)
Op TFTP_GET indicates file is being stored locally. TFTP_PUT indicates file is being read.

TFTP_CLOSED indicates the local socket was just closed.
LocalFileSpec LocalFileSpec from file currently used for buffering incoming data.
Block Value of 0 signals the start of a file transfer (client and server operation), before any

data has been accessed. Value of 1 signals the first packet (512-byte piece) of the
file, and increments by one for each subsequent packet. Multiply Block by 512 to
determine how much of the file has already been transferred.

ByteCnt The byte count of the packet sent. This will be 516 (4 byte header and 512
bytes of data) for all blocks except for the last one. The end of a transfer is known
when 4 <= ByteCnt <= 515. The closing of the associated UDP socket is known by a
value of 0 (Op is also TFTP_CLOSED).

TransferID Counter that identifies transfer taking place. This value starts at 1 and is
incremented for each unique file transfer.

ActiveCnt Number of active transfers. Will always be 1 for TFTP client operation. Will
always be at 0 or more for TFTP server operations.

RemoteDotAddr The Internet dot address of the remote host that is involved with the
file transfer.

RemotePort Port number of remote host that is involved with the file transfer.
ErrorCode See the Exception event.
ErrorDesc See the Exception event.

Remarks
This event is called automatically when a TFTP server or client has received or sent file data.
The transfer being reported can be aborted by setting AbortTransfer = TransferID from within
this event.
When data is received, PowerTCP automatically sends an acknowledgment. If the
acknowledgment is not received at the other end, then another data packet will be sent
(again because the other side did not receive an acknowledgment). PowerTCP will not write
duplicate buffers to disk, but will call Tftp() for duplicate packets that are received or sent.
This allows you to monitor re-transmits.
A Block value of 0 signals the start of a file transfer (client and server operation), before any
data has been accessed. A Block value of 1 is used for the first packet (512-byte piece) of
the file, and increments by one for each subsequent packet. Multiply Block by 512 to
determine how much of the file has transferred.
See Also
Send Property.

Transfer Event
Applies To
FTP.
Description
The Transfer event is called when the FTP control automatically sends or receives data
during a file transfer.
Syntax
Sub ctlname_Transfer (LastCommand As Integer, BlockCnt As Long, ByteCnt As Long)
LastCommand The command which initiated the file transfer. This may be FTP_RETR,

FTP_STOR, FTP_STOU, or FTP_APPE.
BlockCnt This specifies which block has been sent. The first block is 1, the second block

is 2, and so on. A BlockCnt of zero signals that the transfer is complete.
ByteCnt This contains the total number of bytes which have been transferred so far.

Remarks
This event is only called if the file transfer was handled by the control (signaled by
specifying the LocalFileSpec Property). Otherwise, the Send Event and Recv Event are called
instead.
See Also
LocalFileSpec Property; Recv Event; Send Event.

Clear Method
Applies To
VT.
Description
Clears the control of all text.
Usage
[form.][control.]Clear
Remarks
Inserts spaces into the screen display and scrollback buffer. Positions the cursor at row 1,
column 1.
Data Type
Integer
See Also
Reset Property

Additional Resources
RFC stands for Request for Comment. The RFCs are a set of Internetworking documents
which define the standards for all Internet protocols. The text of many RFCs has been
included with PowerTCP. However, for more information, call 1.800.235.3151 (we're just a
little too much into IP addresses here...), or write to:

SRI International, Room EJ291
333 Ravenswood Avenue
Menlo Park, CA 94025

In addition, you can send email:
to: rfc-info@ISI.EDU
subject: getting rfcs

In the body of your mail type:
help: ways_to_get_rfcs

We have also found the following texts to be useful to our programming staff (especially
number five):

1. Black, Uyless 1992, TCP/IP and Related Protocols, McGraw-Hill, Inc.
2. Comer, Douglas E. & Stevens, David L. 1993, Internetworking with TCP/IP

Volume III -    Client-Server Programming and Applications, Prentice-Hall,
Englewood Cliffs, New Jersey

3. Stallings, William 1993, SNMP,SNMPV2, and CMIP: the practical guide to
network management standards, Addison-Wesley Publishing Company,
Reading, Massachusetts

4. Stevens, W. Richard 1990, UNIX Network Programming, Prentice Hall,
Englewood Cliffs, New Jersey

5. Stevens, W. Richard 1994, TCP/IP Illustrated, Volume 1 - The Protocols,
Addison-Wesley Publishing Company, Reading, Massachusetts

Frequently Asked Questions
This section contains information which may help you when trouble-shooting. If you are
trying to find a solution to a problem, check in the following places:

· The manual
· Online help (possibly more current than the manual)
· The Read Me file (more current than online help)
· This section (Frequently Asked Questions)
· The sample applications which come with PowerTCP. These contain

hundreds of lines of sample code which may contain the answer to your
problem.

· Technical support

Q. The PowerTCP samples work, but my application doesn't. What should I
check for?
A. The most common problem encountered by Visual Basic PowerTCP programmers is
caused by DoEvents. NEVER put a DoEvents statement within a Visual Basic event, as
all other event notification will be blocked by Visual Basic (no PowerTCP events will be
called). This is a documented "feature" of Visual Basic that is meant to protect
against re-entrancy and infinite loops. It has the unfortunate side-effect of disabling
all event-driven communication activity.
Q. How can I write a TCP server program which accepts many connections
at the same time? I don't want to have to create a hundred controls at
design time for each accepted connection.
A. You can create a form with two PowerTCP controls on it. One will handle incoming
connections. The other will become a control array for each connection. Its Index
property should be set to 0.
When the listening control accepts a connection, it can use the Load statement to
create a new PowerTCP control in the array. It can then pass the connection on to this
new control.
A variation on this method is to have a listening control on one form, and another
control on another form. When the listening control accepts a connection, it can
create a new instance of the other form and pass the connection to the control on the
newly created form. This is demonstrated in the Echo Server sample which comes
with PowerTCP.
Q. When I try to connect to a Telnet server using the Telnet custom control,
the connection is made but nothing seems to be happening. What could be
the problem?
A. First, make sure that the RemotePort property is set to 23, which is the standard
Telnet port. If this does not fix the problem, try running the Telnet sample which
comes with PowerTCP. If the sample does not work, then the problem is with the
Telnet server or with your TCP stack.
However, if the PowerTCP sample functions properly, and the RemotePort is set to 23,
the problem is most likely caused by option negotiation. If the AutoOption property is
False, and you have not written any custom option negotiation code, then set
AutoOption to true. This will enable automatic option negotiation, and should solve
the problem.
If you are using customized option negotiation (AutoOption = False and you respond
to the Cmd event), then make sure that you respond to every Will, Won't, Do, Don't,
and SubOption message. Many Telnet servers require absolute compliance, and will

not function otherwise. You can use the skeleton code in the tutorial section for
option negotiation as a model for your own.
Q. The VT control is not functioning correctly. When I send data to it,
nothing is displayed, and I can't type anything in it.
A. Make sure that both the Enabled and Cursor properties are set to true.
Q. Reading from the VT control's Text property is very slow, and I have to
read from it repeatedly. What can I do?
A. When part of the VT's text property is accessed using the Mid$ function, Visual
Basic copies all the VT control's data into a new location and accesses it from there.
This can be slow if done repeatedly. If the Text property is assigned to a string
variable, and the string variable is accessed, performance can increase by a factor of
2000%, since accessing variables is approximately twenty times faster than
accessing properties.
Q. PowerTCP isn't working at all. The samples programs will load, but they
don't send data correctly. In addition, I seem to be getting GPFs every so
often. What could be the problem?
A. First, make sure that you have a Winsock version 1.1-compliant TCP/IP stack on
your computer. If you have Windows NT or Windows 95, you can install it using your
Windows Setup program. If you have Windows for Workgroups, one is available from
Microsoft free of charge. In addition, there are several third-party and shareware
stacks available. One widely-used shareware stack is Trumpet Winsock.
If you are certain you have a stack on your computer, make sure you have only one.
If you have two or more stacks installed (Microsoft and Trumpet, for example), this
could be the source of conflicts.
If other TCP/IP applications function correctly, but not PowerTCP, make sure that the
PowerTCP files are in the proper directories. For example, if the Visual Basic custom
controls are not in the \WINDOWS\SYSTEM directory, the Visual Basic samples will not
work.
Q. Under Delphi and PowerBuilder, some of the data I send becomes
corrupted, especially when I use suboption negotiation under Telnet. What
could be the problem?
A. Under Delphi and PowerBuilder, strings are null-terminated. Therefore, if you try to
send a string which contains null characters (Chr$(0)), it will be truncated at that
point. The solution is to use the SendString and/or SendByte functions. Setting
SendByte to 0 successfully sends a null character.
Q. I have problems when I try to use the Type property in the FTP control
when I use it with PowerBuilder. What might be wrong?
A. The keyword Type is a reserved word in PowerBuilder, and so a new property has
been added to the control - TypeTransfer. This is identical to the Type property, but is
PowerBuilder-compatible. The Type property has not been removed from PowerTCP
for backwards-compatibility reasons.
Q. What are all the PTxx.DBG files in my default directory?
A. If the PT_DEBUG flag has been set to enable debugging for PowerTCP, all sent and
received data is captured into a single file. You may want to delete these files after
each time you use debugging with PowerTCP, as some of them may be quite large,
depending on the data sent and received.
Q. When I receive a carriage return in the Recv event and place it in a text
box, it shows up as a black square. How can I make it appear as a carriage

return?
A. Carriage returns are sent as Chr$(13). In Windows, ending a line requires two
characters--a Chr$(13) followed by a linefeed character (Chr$(10)). To solve your
problem, you must search through the data you receive for carriage returns and add
a linefeed character after each one before you place them in a text box.
Q. The same thing happens when a backspace character is received—
instead of deleting the previous character, it places a black box in the text
box I add it to. How can I make it delete the previous character?
A. Backspace characters are sent as Chr$(8). You must search for these characters
when you receive them, and perform the delete yourself when you find one. For
example, if you receive the backspace character, instead of placing it in a text box,
you should say Text1 = Left$(Text1, Len(Text1) - 1). This will delete the last character
from the text box.

