
 PDQTapi Help Contents
Technical Support Distribution Copyright and Trademarks

Welcome and thank you for choosing PDQTapi, the Microsoft Windows telephony control from the
Crescent Division of Progress Software. This topic provides access to setup information and
introduces the important programming concepts and techniques that you must know to use the
PDQTapi control in a Visual Basic 4.0 (VB4) application. It also provides access to reference
information for the PDQTapi control. To learn more about PDQTapi, select one of the following topics:

What is Telephony and TAPI?
What is PDQTapi?
Using PDQTapi
PDQTapi Control Reference

The information in this help file is designed for VB4 programmers who have a basic understanding of
telecommunications. For more information about TAPI concepts and design, see the Microsoft Win32
Telephony (TAPI) Programmer's Reference.

Copyright © 1996 Progress Software Corporation

The information in this help file is subject to change without notice and Progress Software Corporation
assumes no responsibility for any errors that may appear in this document.

Crescent Internet ToolPak™, EnQuiry™, PowerPak Pro™, Progress®, and VB4 Plus Pak™
are trademarks of Progress Software Corporation

Crescent™, NetPak®, PDQComm®, QuickPak®, and XRef™ are trademarks or registered
trademarks of Crescent Software, Inc.

All other company and product names are the trademarks or registered trademarks of their respective
companies.

 What is Telephony and TAPI?
Related Topics

Telephony is a technology that allows computers to access the communications features and services
of a telephone network. For example, a modem, the telephone line, specialized communications
software, etc., all of these technologies combine to allow a computer to access a telephone network.
The Microsoft Windows Telephony Application Programming Interface (TAPI) is a library and
supporting services that allows programmers to build 32-bit applications that use the communications
features and services available on a telephone network. TAPI is currently part of the Microsoft
Windows 95 operating system and will soon be part of the Microsoft Windows NT 4.0 (Cairo)
operating system.

Basically, TAPI allows you to build applications that can place, receive, and manage calls from your
computer. It supports both voice and data calls. Your application can place calls using a variety of
hardware devices on telephone networks that offer complex services, like voice mail, e-mail,
conferencing, and call waiting. All these services use different technologies to manage calls and
transmit voice and data; however, TAPI hides these servicespecific details from your applications.

The TAPI architecture allows you to create 32-bit applications that can use any available service on
the telephone network without including service-specific code in your application. The TAPI library,
called TAPI32.DLL, provides a set of functions that allow you to place, receive, and manage calls that
access services using generic representations of devices and locations.

A location is a set of values that identifies and provides information about the calling application
on a telephone network. The location includes a name, phone number, and other information about the
caller. The topic Locations provides more information about TAPI locations.

A device is any communications device that facilitates calls on a telephone network, such as a
modem.

Each device has an associated TAPI service provider. A service provider describes a device, the
service it provides, and it allows you to configure and interact with the device. The term service
represents the functionality provided by a service provider and its associated device. The TAPI
service support application, called TAPIEXE.EXE, maintains information about the available service
providers defined on the current system and facilitates communication between the TAPI32.DLL and
the service providers. The topic TAPI Service Providers and Devices more information about TAPI
services, service providers, and devices.

For more information about TAPI, see the Microsoft Win32 Telephony (TAPI) Programmer's
Reference.

What is Telephony and TAPI?
 TAPI Service Providers and Devices
 Locations
What is PDQTapi?
Using PDQTapi
PDQTapi Control Reference

 TAPI Service Providers and Devices
Related Topics

A TAPI service provider is actually a dynamic link library (DLL) that executes the device-specific
functions required to complete a communications task using a hardware device, such as a telephone,
a modem, a fax board, or an ISDN card. To be "device-independent", an application must access
these functions through the TAPI32.DLL library and not through the service provider directly. To
receive requests from the TAPI dynamic link library, the service provider must be implemented with
the Telephony Service Provider Interface (TSPI).

A user can install and configure any number of service providers on a computer as long as the service
providers do not access the same hardware device. Some service providers can access multiple
devices. The user relates the device and the service provider during installation. The service provider
can also provide common dialog boxes that allow you to define configuration information for the
device(s) associated with the service provider.

For example, the following TAPI common dialog boxes allows you to define and configure a modem.

There can be only one active TAPI service provider on a computer at a time. The TAPI32.DLL
provides functions that determine what service providers are available on a system and allow you to
select one for use in an application. In this way, any number of applications can request services from
the same service provider; the TAPI dynamic link library manages all access to the service provider.

 Locations
Related Topics

A location is a set of values that identifies and provides information about the calling application on a
telephone network. TAPI provides a common dialog boxes that allows you to define one or more
locations.

Multiple location definitions provide the ability access the network through TAPI regardless of the
location of your computer (i.e. at home, at work, etc.). There can be only one active TAPI location on
a computer at a time and all TAPI applications on a machine share that location definition.

 What is PDQTapi?
Related Topics

The Crescent PDQTapi Telephony control (PDQTapi) is a 32-bit, OLE-enabled control that provides a
simple, easy-to-use interface to TAPI from a VB4 application. The properties, methods, and events of
the PDQTapi control allow a VB4 application to do the following on a telephone network:

Set and configure devices and locations
Place outgoing calls
Receive incoming data calls
Monitor the status of calls and handle call errors
Terminate calls

The control file for the PDQTapi control is called PDQTAPI.OCX.

Voice vs. Data Calls

The PDQTapi control provides the ability to place both data and voice calls. You can also receive data
calls with this control, but you cannot receive voice calls.

NOTE Data calls with the PDQTapi control require the assistance of a PDQComm control.
PDQComm is an OLE-enabled control that allows you to embed serial communications functionality
in a VB4 application. The PDQComm control provides the ability to control the transmission line and
creates and maintains buffers for sending and receiving data.

The topic Using PDQTapi and PDQComm for Data Calls provides information about placing,
receiving, and managing data calls with the PDQTapi control. For information about the properties,
methods, and events of the PDQTapi control, see the PDQTapi Control Reference. For more
information about the PDQComm control, see the PDQComm User's Guide.

What is Telephony and TAPI?
What is PDQTapi?
 Hardware and Software Requirements
 Installation
 File Distribution
 PDQTapi Demonstrations
 Technical Support
Using PDQTapi
PDQTapi Control Reference

 Hardware and Software Requirements
Related Topics

PDQTapi has the following hardware and software requirements:
Any IBM-compatible machine with an 80386 processor or higher
A 3 1/2 inch floppy drive
2 MB of free space on your hard disk
A modem.
Microsoft Windows 95

NOTE The Microsoft Windows TAPI library (TAPI32.DLL) must be installed and registered
properly on your system before you can use the PDQTapi control. Currently, the Microsoft
Windows TAPI library is available only for the Microsoft Windows 95 operating system.

Microsoft Visual Basic 4.0 (32-bit) for Windows and the hardware and software that it requires to
function

The PDQCOM32.OCX control file for data calls.

 Installation
Related Topics

The installation program installs the PDQTAPI.OCX control file into the \SYSTEM subdirectory of the
Microsoft Windows 95 operating system. It also registers and licenses the control in the Windows 95
registry. All demonstration projects and the PDQTAPI.HLP and PDQTAPI.CNT help files for the
PDQTapi reside in the \PDQTapi subdirectory of the product installation directory.

 File Distribution
Related Topics

You may distribute any application you create using PDQTapi routines, as long as you distribute the
application only as an executable. You may also distribute the PDQTAPI.OCX control file with your
compiled application, but not in such a way that other people can reuse it to build other applications.

See the "End-user Product License Agreement" at the beginning of the PDQTapi Users Guide for
more information about the license to use this product.

 PDQTapi Demonstrations
Related Topics

The PDQTapi control has two sample projects that demonstrate the power and simplicity of the
PDQTapi control.

Sample Project Description
DEALER.VBP This project allows you to browse a list of Crescent product

distributors and select a distributor to dial for a voice call. It uses
the PDQTapi control to place and manage the call. This sample
also demonstrates several different techniques that allow users to
define a device and location for a call.

TAPICOMM.VBP This project allows you to specify a number, place a call, and
perform a file transfer between a remote site and your local
machine. This sample demonstrates the use of the PDQTapi
control with the PDQComm control to place and manage a data
call.

These sample projects reside in the \PDQTapi directory. Explore these projects to learn about the
PDQTapi control and the common programming techniques used in a VB4 telephony application.

 Technical Support
Related Topics

The Crescent technical support staff is ready to help you with problems that you encounter when
installing or using PDQTapi. It does not matter what component of PDQTapi you are having a problem
with; the Crescent technical support staff will do its best to help you succeed with PDQTapi.

If you need technical support, contact Crescent using any of the following methods:

By Telephone Contact Crescents North American technical support staff at
(617) 280-3000 -- Monday through Friday from 9:00 a.m. to
5:00 p.m. EST.

By FAX Contact Crescent by FAX at
(617) 280-4025.

Via BBS Contact Crescent through our 24-hour bulletin board service
at (617) 280-4221.

Via CompuServe Contact Crescent through CompuServe address
70662,2605

Crescent also maintains a section in the MS Windows
Components A+ Forum on CompuServe. To reach the
Crescent section, type the following at the CompuServe
prompt:
GO CRESCENT

By Electronic Mail Contact Crescent using the Internet address
crescent-support@progress.com

Via the WWW View the Crescent Web page at
http://www.progress.com/crescent

By Mail Address your correspondence to:
Technical Support
Crescent Division, Progress Software Corporation
14 Oak Park
Bedford, Massachusetts 01730

Please have your product name, version number, serial number, and system configuration information
available so that the Crescent technical support staff can process your support requests as efficiently
as possible.

 Using PDQTapi
Related Topics

This topics describes how to use the PDQTapi control to initiate calls and perform basic call-
management tasks in a VB4 application. It provides information on the following subjects:

Selecting Locations and Devices
Placing, Receiving, and Terminating Calls
Monitoring Call Status and Error Handling

For more information about the PDQTapi methods, properties, and events, see the PDQTapi Control
Reference.

What is Telephony and TAPI?
What is PDQTapi?
Using PDQTapi
 Selecting Locations and Devices
 Placing, Receiving, and Terminating Calls
 Monitoring Call Status and Error Handling
PDQTapi Control Reference

 Selecting Locations and Devices
Related Topics

Before you can place a call using the PDQTapi control, there must be a current device and location
defined for your system. For a basic description of a TAPI device or location, see the topic What is
Telephony and TAPI?.

The PDQTapi has the following methods, properties, and events that allow you to set, read, and
manage the device and location information for a call.

Method/Property/Event Description
AreaCode property Contains the area code of the currently selected

location.
CountryCode property Contains the country code of the currently selected

location.
CurrentDevice property Specifies the current TAPI device.
Devices property Identifies the number of TAPI devices installed on

the current system.
EnumTapiDevices method Populates a list or combo box (or any control with an

AddItem method) with the list of currently installed
TAPI devices.

EnumTapiLocations method Populates a list or combo box (or any control with an
AddItem method) with the list of currently configured
TAPI locations.

Location property Identifies the currently active location.
LocationChange event Occurs whenever the current location is changed by

the user or another application.
SetCallSettings method Displays the TAPI Location common dialog boxes to

allow a user to change, modify, or add a new or
current location.

SetModemSettings method Displays the TAPI Device common dialog boxes to
allow a user to change, modify, or add a new or
current device.

NOTE There must be at least one modem and location already defined on your system before
you can use these properties and methods to access location and device information for a call. To
setup a device and location on your system, use the Modems utility located in the Control Panel
application in Microsoft Windows 95.

The DEALER.VBP sample project demonstrates the use of most of these PDQTapi methods,
properties, and events. The following picture shows the DEALER.FRM module of DEALER.VBP.

What is Telephony and TAPI?
What is PDQTapi?
Using PDQTapi
 Selecting Locations and Devices
 Displaying and Setting Locations and Devices for Calls
 Using the TAPI Common Dialogs to Select Locations and Devices
 Understanding the LocationChange Event
 Placing, Receiving, and Terminating Calls
 Monitoring Call Status and Error Handling
PDQTapi Control Reference

 Displaying and Setting Locations and Devices for Calls
Related Topics

The TAPI Device (cmbTapi(0)) and Location (cmbTapi(1)) combo boxes of the DEALER.VBP project
demonstrate the use of the EnumTapiDevices and EnumTapiLocations methods. The Form_Load
event procedure of the DEALER.FRM module demonstrates how to use these methods to populate
the combo boxes with the devices and locations currently defined on the system.

DEALER.FRM:
Private Sub Form_Load()

dtaEnQuiry1.DatabaseName = App.Path & "\Dealers.mdb"
PDQTapi1.CurrentDevice = 0
PDQTapi1.EnumTapiDevices cmbTapi(0)
cmbTapi(0).ListIndex = PDQTapi1.CurrentDevice
cmbTapi(1).ListIndex = PDQTapi1.EnumTapiLocations(cmbTapi(1))

End Sub
This event procedure also sets the CurrentDevice property and then uses this property to set the
ListIndex property of the cmbTapi(0) combo box.

When a user selects a new device or location from the TAPI Device (cmbTapi(0)) or Location
(cmbTapi(1)) combo box, the Click event procedure for the cmbTapi control array sets the Location
and CurrentDevice properties for the PDQTapi1 control.

DEALER.FRM:
Private Sub cmbTapi_Click(Index As Integer)

If Index Then
PDQTapi1.Location = cmbTapi(1).Text

Else
PDQTapi1.CurrentDevice = cmbTapi(0).ListIndex

End If
End Sub

 Using the TAPI Common Dialogs to Select Locations and Devices
Related Topics

The DEALER.VBP project also allows a user to select and define TAPI devices and locations using
the TAPI common dialog boxes. The Device Settings and Location Settings commands on the File
menu of the DEALER.VBP project use the SetCallSettings and SetModemSettings methods to
display TAPI common dialog boxes that allow users to select or define new TAPI locations or devices.
The Click event procedure for the m_File menu of the DEALER.FRM module demonstrates how to
call the SetCallSettings and SetModemSettings methods.

DEALER.FRM:
Private Sub m_File_Click(Index As Integer)

Select Case Index
Case 0

Dim strPhoneNumber As String
strPhoneNumber = txtEnQuiry10.Text
DialStatus.Dial txtEnQuiry1.Text
gFunction% = TAPI_PLACECALL
PDQTapi1.PlaceCall "", strPhoneNumber

Case 1
MsgBox "EMail support is currently not implemented", 48,_

"Crescent Dealer Network"
Case 2

MsgBox "Web support is currently not implemented", 48,_
"Crescent Dealer Network"

Case 4
PDQTapi1.SetModemSettings

Case 5
Dim rtnPNum As String
rtnPNUM = PDQTapi1.SetCallSettings ""

Case 7
Unload Me
End

End Select

End Sub

 Understanding the LocationChange Event
Related Topics

It is important to note that the current location setting is shared by all other TAPI applications on the
current system. When another application changes the location setting, your application might need to
know about the change. The LocationChange event of the PDQTapi control occurs whenever another
application changes the current location setting. For example, the LocationChange event procedure
of the PDQTapi1 control located in the DEALER.FRM module of the DEALER.VBP project resets the
contents and selection of the Locations (cmbTapi(1)) combo box whenever the event occurs.

DEALER.FRM:
Private Sub PDQTapi1_LocationChange()

cmbTapi(1).Clear
cmbTapi(1).ListIndex = PDQTapi1.EnumTapiLocations(cmbTapi(1))

End Sub
For more information about the PDQTapi methods, properties, and events, see the PDQTapi Control
Reference.

 Placing, Receiving, and Terminating Calls
Related Topics

The PDQTapi control has three methods that perform the most basic TAPI call management
functions.
Methods Descriptions
PlaceCall Directs TAPI to place a call using the current location and device,

and a specified number.
WaitForCall Directs TAPI to open a line and monitor it for incoming calls.
HangUp Disconnects an active call.
To place a call with the PDQTapi control, there must be an active TAPI device and location defined on
the current system. You can place both voice and data calls using the PDQTapi control. If you are
placing a data call, you must specify a PDQComm control as a parameter to PlaceCall method.

To receive a call with the PDQTapi control, there must be an active device defined on the current
system. The PDQTapi control can receive incoming data calls, but not voice calls. The WaitForCall
method toggles a "call-monitoring" mode for the active TAPI device on the current system. To activate
call-monitoring, execute the WaitForCall method with a PDQComm control as a parameter to the
method. To deactivate call-monitoring, execute the WaitForCall method with a null string in place of a
PDQComm control parameter.

While the HangUp method is simple to understand, the topic Monitoring Call Status and Error
Handling provides information about when to hang-up a TAPI call. For more information about
handling data calls with PDQTapi, see the topic Using PDQTapi and PDQComm for Data Calls.

What is Telephony and TAPI?
What is PDQTapi?
Using PDQTapi
 Selecting Locations and Devices
 Placing, Receiving, and Terminating Calls
 Understanding Canonical Addresses for Calls
 Using PDQTapi and PDQComm for Data Calls
 Monitoring Call Status and Error Handling
PDQTapi Control Reference

 Understanding Canonical Addresses for Calls
Related Topics

The address of a call is the phone number used to place a call. The canonical address format is
universal storage format for phone numbers that accomodates both domestic and international calls
regardless of the location of the caller. A canonical address is an ASCII string with the following
structure:

+CountryCode [(AreaCode)] SubscriberNumber

The plus sign (+) is a required indicator that the phone number is in canonical address format. The
following table describe the parameters.

Parameter Description
CountryCode A string containing one or more digit characters (0-9). This string

represents the country in which the address is located.
AreaCode An optional string containing one or more digit characters (0-9).

This string identifies a region in the country in which the address
is located. If you specify an area code, you must enclose it in
parentheses.

SubscriberNumber A string containing one or more digit characters (0-9). It can also
contain dahses (-), spaces, and periods (.). This string identifies
the number of a phone or device on the telephone network.

For example, the following is the canonical address of the Crescent bulletin board:

+1 (617) 280-4221

TAPI operations that involve a phone number require the number in canonical address format. The
PDQTapi method TranslateNumber allows you to generate the canonical address format for a
specified telephone number. The PlaceCall and SetCallSettings methods can also take phone
numbers that are not in canonical format and then translate and use them.

 Using PDQTapi and PDQComm for Data Calls
Related Topics

To place or receive a data call using the PDQTapi control, you must use a PDQComm control. It is
important to understand the roles of the PDQTapi and PDQComm controls in this tandem relationship.
Use the PDQTapi control to manage the call and use the PDQComm control to manage the line
configuration and data transmission.

When you execute a PlaceCall or WaitForCall method with a specified PDQComm control, PDQTapi
sets the properties of the PDQComm control to the appropriate settings to handle the call. You then
use the properties, methods, and events of the PDQComm control to configure the communications
line, initiate data transfers, and configure and manage data buffers. Use the PDQTapi HangUp
method to terminate a call and all PDQComm processing associated with the call.

NOTE When using the PDQTapi and PDQComm controls together, do not open the
communications port with the PDQComm control.

The TAPICOMM.VBP sample project demonstrates the use of the PDQTapi and PDQComm controls
to manage a data call. See the topic Placing, Receiving, and Terminating Calls for more information
about PDQTapi and call management. For more information about the PDQComm control and data
transmission, see the PDQComm User's Guide.

 Monitoring Call Status and Error Handling
Related Topics

The PDQTapi has the following events that allow you to monitor calls and handle errors that occur
during call processing.
Event Description
OnTapi Occurs when an operation initiated by a PlaceCall and HangUp

method completes. See the topic Using the OnTapi Event for
more information.

CallState Occurs when the state changes during the progress of a call.
See the topic Using the CallStateEvent for more information.

The topic Understanding OnTapi and CallState Event Relationships provides information about how to
use these two event together.

What is Telephony and TAPI?
What is PDQTapi?
Using PDQTapi
 Selecting Locations and Devices
 Placing, Receiving, and Terminating Calls
 Monitoring Call Status and Error Handling
 Using the OnTapi Event
 Using the CallState Event
 Understanding OnTapi and CallState Event Relationships
PDQTapi Control Reference

 Using the OnTapi Event
Related Topics

The OnTapi event monitors the success of the asynchronous methods of the PDQTapi control:
HangUp and PlaceCall. Asynchronous methods start an action and immediately returns control to
your program before the completion of the action. For example, when you execute the PlaceCall
method to place a call, control returns to your application while TAPI attempts to allocate handles for
the line and call. When TAPI successfully allocates the handles in response to the PlaceCall method,
an OnTapi event occurs.

The OnTapi event returns two parameters: a request ID and a status value.

The request ID identifies the PlaceCall or HangUp method that caused the event to occur. Both the
PlaceCall and HangUp methods return a request ID that you can use to direct processing in an
OnTapi event procedure.

The status parameter of the OnTapi event returns a zero (0) to indicate that the request succeeded or
a non-zero value to indicate the request failed. A PlaceCall method is successful when TAPI allocates
valid line and call handles for the request. A HangUp method is successful when the TAPI deallocates
line and call handles for the request. The CallHandle and LineHandle properties contain the handles
for the call associated with a PDQTapi control.

The OnTapi event procedure of the PDQTapi1 control located in the DEALER.FRM module of the
DEALER.VBP demonstration project, shows how to use this event to track the status of asynchronous
method calls.

DEALER.FRM:
Private Sub PDQTapi1_OnTapi(ByVal lRequestID As Long, ByVal lStatus As
Long)
.
.
.
If lRequestID = PLACECALL_ID And lStatus <> 0 Then
 DialStatus.SetStatus "Call could not be completed"
 DialStatus!cmdLog.Enabled = True
End If

End Sub
A PDQTapi control has an "active" call when the CallHandle and LineHandle properties contain non-
zero values, or valid handles. The successful execution of a PlaceCall method yields an active call.
The WaitForCall method allocates a line handle when upon receiving an incoming data call and then
allocates a call handle.

 Using the CallState Event
Related Topics

Once you have an active call, use the CallState event to monitor state changes for the call. The
CallStateConstants object of the PDQTapi control establishes constants for different call states. The
following table describes the different call states and associated constants:
Constant Value Description
PDQ_CALLSTATE_ACCEPTED 4 The call has been accepted

by a remote application.
PDQ_CALLSTATE_BUSY 64 The call is receiving a busy

tone and that the call cannot
be completed.

PDQ_CALLSTATE_CONFERENCED 2048 The call is part of a multi-
party conference call.

PDQ_CALLSTATE_CONNECTED 256 The call has established a
connection to a remote party.
Information can now flow
over the call between the
calling and remote parties.

PDQ_CALLSTATE_DIALING 16 A phone number is being
sent to the switch.

PDQ_CALLSTATE_DIALTONE 8 The call is receiving a dial
tone from the switch. This
means that the switch is
ready to receive a phone
number for dialing.

PDQ_CALLSTATE_DISCONNECTED 16384 The remote location has
disconnected the call.

PDQ_CALLSTATE_IDLE 1 No call exists.
PDQ_CALLSTATE_OFFERING 2 The call is being offered to

the station, signaling the
arrival of a new call.

PDQ_CALLSTATE_ONHOLD 1024 The call is on hold by the
switch.

PDQ_CALLSTATE_ONHOLDPENDCONF 4096 The call is currently on hold
while it is being added to a
multi-party conference.

PDQ_CALLSTATE_ONHOLDPENDTRANSFE
R

8192 The call is currently on hold
while it is being transferred.

PDQ_CALLSTATE_PROCEEDING 512 The dialing process has
succeeded and the call is
now proceeding through the
switch or telephone network.

PDQ_CALLSTATE_RINGBACK 32 The remote location has
been alerted to the call.

PDQ_CALLSTATE_SPECIALINFO 128 The network has sent special
information, usually in
response to a failure to
connect.

PDQ_CALLSTATE_UNKNOWN 32768 The state of the call is
unknown.

The CallState event procedure of the PDQTapi1 control located in the DEALER.FRM module of the

DEALER.VBP demonstration project, shows how to use this event to track the status of a call. Notice
the use of the call state constants in the Case statement to direct processing.

DEALER.FRM:
Private Sub PDQTapi1_CallState(ByVal lCallState As Long, ByVal lExtraInfo
As Long)
.
.
If gFunction% = TAPI_PLACECALL Then

Select Case lCallState
Case PDQ_CALLSTATE_IDLE 'PlaceCall done

gFunction% = 0
Debug.Print "PDQ_CALLSTATE_IDLE"

Case PDQ_CALLSTATE_DIALTONE
DialStatus.SetStatus "Dialtone available ..."
Debug.Print "PDQ_CALLSTATE_DIALTONE"

Case PDQ_CALLSTATE_DIALING
DialStatus.SetStatus "Dialing ..."
Debug.Print "PDQ_CALLSTATE_DIALING"

Case PDQ_CALLSTATE_BUSY
DialStatus.SetStatus "Busy"
Debug.Print "PDQ_CALLSTATE_BUSY"

Case PDQ_CALLSTATE_CONNECTED
DialStatus.SetStatus "Connected"
DialStatus.Connected True
Debug.Print "PDQ_CALLSTATE_CONNECTED"

Case PDQ_CALLSTATE_DISCONNECTED
DialStatus.SetStatus "Call complete"
DialStatus.Connected False
Debug.Print "PDQ_CALLSTATE_DISCONNECTED"

Case Else
Debug.Print "PlaceCall "; lCallState; lExtraInfo

End Select
ElseIf gFunction% = TAPI_HANGUP Then

If lCallState = PDQ_CALLSTATE_IDLE Then
gFunction% = 0
Debug.Print "PDQ_CALLSTATE_IDLE"
DialStatus.SetStatus "Call complete"
DialStatus.Connected False

End If
End If

End Sub

 Understanding OnTapi and CallState Event Relationships
Related Topics

It is important to note that the PlaceCall and HangUp methods cause both OnTapi and CallState
events to occur. An OnTapi event associated with a PlaceCall method occurs before all related
CallState events for that action. The CallState events associated with the PlaceCall method vary
depending upon the success of the call and the telephone network configuration.

An OnTapi event associated with a HangUp method occurs after all related CallState events occur for
that action. A successful HangUp method causes a single CallState event to occur for the
PDQ_CALLSTATE_IDLE state.

It is also important to note that a PDQ_CALLSTATE_DISCONNECTED call state event is not the
same as issuing a HangUp method. Unlike the HangUp method, the
PDQ_CALLSTATE_DISCONNECTED call state event does not occur an OnTapi event or deallocate
the active line and call handles. For more information about TAPI call states, see the Microsoft Win32
Telephony (TAPI) Programmer's Reference.

What is Telephony and TAPI?
What is PDQTapi?
Using PDQTapi

 PDQTapi Control
Related Topics

The Crescent PDQTapi Telephony control allows a Visual Basic application to easily place, receive
and manage calls, and configure devices on a telephone network using the Microsoft Windows
Telephony Application Programming Interface (TAPI).

NOTE The PDQTapi control is a 32-bit control. The Microsoft Windows TAPI library
(TAPI32.DLL) must be installed and registered properly on your system before you can use the
PDQTapi control. Currently, the Microsoft Windows TAPI library is available only for the Microsoft
Windows 95 operating system.

File Name

PDQTAPI.OCX

Control Name

PDQTapi

Comments

To place a call with the PDQTapi control, do the following:

1. Define a location. A location is a set of values that identifies the calling application on the
telephone network. Use the SetCallSettings method to display a standard TAPI dialog box that
allows a user to access existing location definitions or define a new one. The Location property
allows you to set the location for a call programmatically.

2. Define a device. A device is the communications device that facilitates the call on the telephone
network, such as a modem. Use the SetModemSettings method to display a standard TAPI dialog
box that allows a user to access existing device definitions or define a new one. The
CurrentDevice property allows you to set the device for a call programmatically.

3. Place the call using the PlaceCall method.

Use the HangUp method to terminate the call.

Error handling for the PDQTapi control involves monitoring OnTapi and CallState events. The
PlaceCall and HangUp methods of the PDQTapi control are the only asynchronous methods for the
control. Use the OnTapi event to monitor the success or failure of these commands. Once the
PDQTapi control establishes a call, use the CallState event to monitor activity on the line. The
CallState event occurs when the status of a call changes and it has a parameter that returns the
status of the call. You can use predefined constants to test the status value and execute code in
response to the call status change.

The PDQTapi control only places and manages calls. If you intend to manage data transmissions
during a call, you must use the PDQComm control with the PDQTapi control. The PDQComm control
creates and manages buffers for data transfers. It also allows you to configure the line for data
transmission. Both the PlaceCall and WaitForCall methods of the PDQTapi control allow you to
designate a PDQComm control to handle data transmission for a call.

Properties
About Devices Object
AreaCode Index Parent

CallHandle LineHandle Tag
CountryCode Location TapiName
CurrentDevice Name TapiVersion
DeviceName

Methods
EnumTapiDevices PlaceCall SetModemSettings
EnumTapiLocations SetCallSettings TranslateNumber
HangUp SetDeviceByName WaitForCall

Events
CallState LocationChange OnTapi

Constants

The CallState event returns a status parameter that is an enumerated integer value representing the
state of the call. This value is from a discrete list of integer values. To make your code more readable,
the PDQTapi control supports the use of constants for reading the status parameter of the CallState
event. For more information about these constants, see the PDQTapi Control Constants topic.

 AreaCode Property
The AreaCode property contains the area code of the currently selected location.

Applies To

PDQTapi

Syntax
AreaCode$ = [form.]PDQTapi1.AreaCode

Data Type

String

Usage

Read only at runtime.

Comments

The PDQTapi control uses this value when you submit a telephone number without country and area
codes.

See Also

CountryCode

 CallHandle Property
The CallHandle property contains the handle of the currently allocated call.

Applies To

PDQTapi

Syntax
hCall& = [form.]PDQTapi1.CallHandle

Data Type

Long

Usage

Read only at runtime.

Comments

This property contains a zero (0) value when there is no active call and a non-zero value when there
is an active call.

See Also

LineHandle

 CallState Event
The CallState event occurs when the state changes during the progress of a call.

Applies To

PDQTapi

Syntax
Sub PDQTapi1_CallState(State&, Extra&)

Parameters

State& - The state of the current call.

Extra& - Aditional information if applicable.

Comments

The values for State& are defined in the CallStateConstants object shown in the section PDQTapi
Control Constants.

Example

The following example from the DEALER.VBP sample project demonstrates the use of constants and
a Case statement in a CallState event procedure to test the state of a call.

Sub PDQTapi1_CallState(lCallState, lExtraInfo)
Debug.Print "CallState fired: CallHandle "; Hex$(PDQTapi1.CallHandle); "
CallState "; lCallState; " Call Detail "; lExtraInfo

If gFunction% = TAPI_PLACECALL Then
 Select Case lCallState
 Case PDQ_CALLSTATE_IDLE 'PlaceCall done
 gFunction% = 0
 Debug.Print "PDQ_CALLSTATE_IDLE"
 Case PDQ_CALLSTATE_DIALTONE
 DialStatus.SetStatus "Dialtone available ..."
 Debug.Print "PDQ_CALLSTATE_DIALTONE"
 Case PDQ_CALLSTATE_DIALING
 DialStatus.SetStatus "Dialing ..."
 Debug.Print "PDQ_CALLSTATE_DIALING"
 Case PDQ_CALLSTATE_BUSY
 DialStatus.SetStatus "Busy"
 Debug.Print "PDQ_CALLSTATE_BUSY"
 Case PDQ_CALLSTATE_CONNECTED
 DialStatus.SetStatus "Connected"
 DialStatus.Connected True
 Debug.Print "PDQ_CALLSTATE_CONNECTED"
 gFunction% = 0
 Case PDQ_CALLSTATE_DISCONNECTED
 DialStatus.SetStatus "Call complete"
 DialStatus.Connected False
 'gRequest& = PDQTapi1.HangUp
 'gFunction% = TAPI_HANGUP

 Debug.Print "PDQ_CALLSTATE_DISCONNECTED"
 gFunction% = 0
 Case Else
 Debug.Print "PlaceCall "; lCallState; lExtraInfo
 End Select
ElseIf gFunction% = TAPI_HANGUP Then
 If lCallState = PDQ_CALLSTATE_IDLE Then
 gFunction% = 0
 Debug.Print "PDQ_CALLSTATE_IDLE"
 DialStatus.SetStatus "Call complete"
 DialStatus.Connected False
 End If
End If
End Sub

See Also

WaitForCall

 CountryCode Property
The CountryCode property contains the country code of the currently selected location.

Applies To

PDQTapi

Syntax
CountryCode$ = [form.]PDQTapi1.CountryCode

Data Type

String

Usage

Read only at runtime.

Comments

The PDQTapi control uses this value when you submit a telephone number without country and area
codes.

See Also

AreaCode

 CurrentDevice Property
The CurrentDevice property contains a value identifying the currently selected TAPI device.

Applies To

PDQTapi

Syntax
[form.]PDQTapi1.CurrentDevice = lDevice&

Data Type

Long

Usage

Read/Write only at runtime.

Comments

This property allows you to select the TAPI device you want to use for a call. The value can be from 0
to one leas than the total number of TAPI devices (PDQTapi1.Devices - 1).

See Also

Devices, DeviceName, EnumTapiDevices, SetDeviceByName, SetModemSettings

 DeviceName Property
The DeviceName property returns the string name of the current TAPI device.

Applies To

PDQTapi

Syntax
DeviceName$ = [form.]PDQTapi1.DeviceName

Data Type

String

Usage

Read only at runtime.

Comment

While the integer ID associated with a particular TAPI device varies depending upon the installation
and deinstallation of other TAPI devices, the name string associated with a TAPI device remains
constant.

See Also

CurrentDevice, Devices, EnumTapiDevices, SetDeviceByName, SetModemSettings

 Devices Property
The Devices property identifies the number of TAPI devices installed on the current system.

Applies To

PDQTapi

Syntax
lDevices& = [form.]PDQTapi1.Devices

Data Type

Long

Usage

Read only at runtime.

See Also

CurrentDevice, DeviceName, EnumTapiDevices, SetDeviceByName, SetModemSettings

 EnumTapiDevices Method
The EnumTapiDevices method populates a list or combo box (or any control with an AddItem method)
with the list of currently installed TAPI devices.

Applies To

PDQTapi

Syntax
PDQTapi1.EnumTapiDevices varControl

Parameters

varControl - Any OLE control with an AddItem method.

Returns

Nothing.

Comments

If you pass EnumTapiDevices a control that does not have an AddItem method, or any other data
type, an error occurs. You can use On Error to process the error.

See Also

CurrentDevice, Devices, DeviceName, SetDeviceByName, SetModemSettings

 EnumTapiLocations Method
The EnumTapiLocations method populates a list or combo box (or any control with an AddItem
method) with the list of currently configured TAPI locations.

Applies To

PDQTapi

Syntax
CurrentLocal% = PDQTapi1.EnumTapiDevices(varControl)

Parameters

varControl - Any OLE control with an AddItem method.

Returns

The ListIndex of the currently selected location.

Comments

If you pass EnumTapiLocations a control that does not have an AddItem method, or any other data
type, an error occurs. You can use On Error to process the error.

Use the return value to set the ListIndex property of the control.

See Also

Locations, SetCallSettings

 HangUp Method
The HangUp method disconnects an active call.

Applies To

PDQTapi

Syntax
RequestID% = PDQTapi1.HangUp

Parameters

None.

Returns

The request ID.

Comments

The HangUp method is an asynchronous method and it returns control to your application before the
action is complete. If the return value is a positive number, the OnTapi event occurs with this ID to
indicate success or failure.

See Also

PlaceCall, OnTapi, WaitForCall

 LineHandle Property
The LineHandle property contains the handle of the currently allocated line.

Applies To

PDQTapi

Syntax
hLine& = [form.]PDQTapi1.LineHandle

Data Type

Long

Usage

Read only at runtime.

Comments

This property contains a zero (0) value when there is no active line and a non-zero value when there
is an active line. If you call the WaitForCall method to wait for incoming calls, the PDQTapi control
allocates a line.

See Also

CallHandle

 Location Property
The Location property identifies the currently active location.

Applies To

PDQTapi

Syntax
MyLocation$ = [form.]PDQTapi1.Location

Data Type

String

Usage

Read/Write at runtime.

Comments

This property contains the text of the current location. The location is global to all TAPI applications,
so if another application changes the location, the PDQTapi notifies you of the location change with a
LocationChange event. You can also use this property to set the current location. It requires you to set
the property to the exact location string you want.

See Also

EnumTapiLocations, LocationChange, SetCallSettings

 LocationChange Event
The LocationChange event occurs whenever the current location is changed by the user or another
application.

Applies To

PDQTapi

Syntax
Sub PDQTapi1_LocationChange()

Comments

This event occurs only when another TAPI control or TAPI-enabled application changes the current
location. It allows you to update your user interface or do any other processing necessary when the
location changes.

Example

The following example clears a combo box and reinitializes it when a location change occurs.

Sub PDQTapi1_LocationChange
cmbTapiLocation.Clear
cmbTapiLocation.ListIndex = _

PDQTapi1.EnumTAPILocations(cmbTapiLocation)
End Sub

See Also

EnumTapiLocations, Location, SetCallSettings

 OnTapi Event
The OnTapi event occurs when an operation initiated by a PlaceCall or HangUp method completes.

Applies To

PDQTapi

Syntax
Sub PDQTapi1_OnTapi(RequestID&, Status&)

Parameters

RequestID& - The request ID returned from the asynchronous method call.

Status& - The success or failure of the method call. Zero (0) indicates success, while a non-zero
value indicates an error.

Comments

Both the PlaceCall and HangUp methods return a request ID value. The OnTapi event returns a
parameter that you can use to map the event to a specific request. It also returns a status parameter
that reports the success or failure of the request. A PlaceCall method is successful when TAPI
allocates valid line and call handles for the request. A HangUp method is successful when TAPI
deallocates line and call handles for the request. The CallHandle and LineHandle properties contain
the handles for the call associated with a PDQTapi control.

Once a PlaceCall method succeeds, use the CallState event to monitor the state of the call on the
telephone network.

See Also

CallHandle, CallState, HangUp, LineHandle, PlaceCall

 PlaceCall Method
The PlaceCall method directs TAPI to place a call.

Applies To

PDQTapi

Syntax
RequestID% = PDQTapi1.PlaceCall(CommControl, strNumber$)

Parameters

CommControl - If this call is for data transmission, specify the PDQComm control that takes over
processing if the call is successful. If this is a voice call, specify a null string.

strNumber$ - The number you are dialing. Ideally, this number will be in canonical (i.e. +1 (617) 280-
4221) or dialable format (i.e. 16172804221). If it is not, the method will attempt to format it.

Returns

The request ID.

Comments

To place a call with the PDQTapi control, there must be an active TAPI device and location defined on
the current system. You can place both voice and data calls using the PDQTapi control.

Use the TranslateNumber method to translate phone numbers into canonical address format. For
more information about canonical address format, see the section "Understanding Canonical
Addresses for Calls" in Chapter 1.

If you are placing a data call, you must specify a PDQComm control as a parameter to PlaceCall
method.

The PlaceCall method is an asynchronous method and it returns control to your application before the
action is complete. If the return value is a positive number, the OnTapi event occurs with this ID to
indicate success or failure.

See Also

HangUp, OnTapi, TranslateNumber, WaitForCall

 SetCallSettings Method
The SetCallSettings method displays the TAPI Location common dialog box to allow a user to
change, modify, or add a new or current location.

Applies To

PDQTapi

Syntax
strDisplay$ = PDQTapi1.SetCallSettings(strNumberIn$)

Parameters

strNumberIn$ - An optional telephone number that will be displayed in the dialog box.

Returns

The specified phone number in a displayable format.

Comments

You must have a device and location defined on your current system to use the SetCallSettings
method to display the TAPI Location dialog box.

See Also

EnumTapiLocations, Locations, SetModemSettings, TranslateNumber

 SetDeviceByName Method
The SetDeviceByName method allows you to set the current TAPI device using the name string of the
device.

Applies To

PDQTapi

Syntax
success = PDQTapi1.SetDeviceByName(DeviceName$)

Parameters

DeviceName$ - A string identifier for a registered TAPI device on the current system.

Returns

success - A boolean value representing the success (TRUE) or failure (FALSE) of the operation..

See Also

CurrentDevice, Devices, DeviceName, EnumTapiDevices, SetModemSettings

 SetModemSettings Method
The SetModemSettings method displays the TAPI Device common dialog box to allow a user to
change, modify, or add a new or current device.

Applies To

PDQTapi

Syntax
PDQTapi1.SetModemSettings

Parameters

None.

Returns

Nothing.

Comments

This method globally configures the device, meaning all changes made here affect other TAPI
applications. You must have a device defined on your current system to use the SetModemSettings
method to display the TAPI Device dialog box.

See Also

CurrentDevice, Devices, EnumTapiDevices, SetCallSettings

 TapiName Property
The TapiName property contains a user friendly name that identifies your application to the TAPI
service provider.

Applies To

PDQTapi

Syntax
TapiName$ = [form.]PDQTapi1.TapiName

Data Type

String

Usage

Read/Write at design time, read only at runtime.

Comments

This property is optional. It tells the TAPI service provider who you are.This property is useful for
debugging service providers.

 TapiVersion Property
The TapiVersion property identifies the TAPI API level supported by the currently selected device.

Applies To

PDQTapi

Syntax
lVersion& = [form.]PDQTapi1.TapiVersion

Data Type

Long

Usage

Read only at runtime.

Comments

This property has the major version of the TAPI API level stored in the high word and the minor
version of the TAPI API level stored in the low word. To access them, do the following:

MajorVersion% = CINT(PDQTapi1.TapiVersion \ &H10000)

MinorVersion% = CINT(PDQTapi1.TapiVersion AND &HFFFF&)

 TranslateNumber Method
The TranslateNumber method creates a canonical, a dialable and a displayable version of a
telephone number based on the currently selected TAPI device and location.

Applies To

PDQTapi

Syntax
PDQTapi1.TranslateNumber strNumIn$, strCanonical$, strDial$, strDisplay$

Parameters

strNumIn$ - The phone number to translate

strCanonical - The canonical version of the number (modified) (i.e. +1 (617) 280-4221)

strDial$ - The dialable version based on location and device (modified) (i.e. 16172804221)

strDisplay$ - The displayable version based on location and device (modified)
(i.e. 1 (617) 280-4221)

Returns

The noted modified parameters.

Comments

If you pass in a number without country or area codes, TranslateNumber assumes it is the currently
set location. TranslateNumber attempts to create a canonical address, but may not succeed
depending on the format of the number passed.

See Also

PlaceCall

 WaitForCall Method
The WaitForCall method directs TAPI to open a line and monitor it for incoming calls.

Applies To

PDQTapi

Syntax
Success% = PDQTapi1.WaitForCall(CommControl)

Parameters

CommControl - A PDQComm control or a null string. You call this method with a null string to disable
call-monitoring.

Returns

An integer value indicating the success or failure of the method. A zero (0) value indicates success.
An non-zero value indicates failure.

Comments

To receive a call with the PDQTapi control, there must be an active device defined on the current
system. The PDQTapi control can receive incoming data calls, but not voice calls.

The WaitForCall method toggles a "call-monitoring" mode for the active TAPI device on the current
system. To activate call-monitoring, execute the WaitForCall method with a PDQComm control as a
parameter to the method. When you activate call-monitoring with the WaitForCall method, TAPI
assigns a handle for the line and the incoming call. To deactive call-monitoring, execute the
WaitForCall method with a null string in place of a PDQComm control parameter.

The CallState event occurs when the current TAPI device receives an incoming call. Use the
PDQ_CALLSTATE_CONNECTED constant in a CallState event procedure to test for an incoming call
and perform the desired processing.

See Also

CallHandle, HangUp, LineHandle, OnTapi, PlaceCall

 PDQTapi Control Constants
The CallState event returns a status parameter that is an enumerated integer value representing the
state of the call. This value is from a discrete list of integer values. To make your code more readable,
the PDQTapi control supports the use of constants for reading the status parameter of the CallState
event. These constants are defined as part of the CallStateConstants object.

CallStateConstants
Constant Value Description
PDQ_CALLSTATE_ACCEPTED 4 The call has been accepted by a

remote application.

PDQ_CALLSTATE_BUSY 64 The call is receiving a busy tone
and the call cannot be completed.

PDQ_CALLSTATE_CONFERENCED 2048 The call is part of a multi-party
conference call.

PDQ_CALLSTATE_CONNECTED 256 The call has established a
connection to a remote party.
Information can now flow over the
call between the calling and
remote parties.

PDQ_CALLSTATE_DIALING 16 A phone number is being sent to
the switch.

PDQ_CALLSTATE_DIALTONE 8 The call is receiving a dial tone
from the switch. This means that
the switch is ready to receive a
phone number for dialing.

PDQ_CALLSTATE_DISCONNECTED 16384 The remote location has
disconnected the call.

PDQ_CALLSTATE_IDLE 1 No call exists.

PDQ_CALLSTATE_OFFERING 2 The call is being offered to the
station, signaling the arrival of a
new call.

PDQ_CALLSTATE_ONHOLD 1024 The call is on hold by the switch.

PDQ_CALLSTATE_ONHOLDPENCONF 4096 The call is currently on hold while
it is being added to a multi-party
conference.

PDQ_CALLSTATE_ONHOLDPENDTRA
NSFER

8192 The call is currently on hold while
it is being transferred.

PDQ_CALLSTATE_PROCEEDING 512 The dialing process has
succeeded and the call is now
proceeding through the switch or
telephone network.

PDQ_CALLSTATE_RINGBACK 32 The remote location has been
alerted to the call.

PDQ_CALLSTATE_SPECIALINFO 128 The network has sent special
information, usually in response to
a failure to connect.

PDQ_CALLSTATE_UNKNOWN 32768 The state of the call is unknown.

