
Contents
User's Guide

Introduction
Introducing List Pro
Information for Users of Previous Products
List Pro Controls
Using the FarPoint Property Designer
Tutorial
Using ActiveX Controls
Using DLL Controls

How-to-Guides
Getting Started
Working with Columns
Working with Groups
Working with List Items
Customizing the Control's Appearance

Reference Guide
Properties
Events
Functions and Methods
Messages (DLL only)
Structures (DLL only)
Styles (DLL only)

DataFieldList Property
See Also

Applies To

fpCombo control

Description

Sets or returns the data field name to which the list in an fpCombo control is bound. This property is available for Visual Basic
users only.

Syntax

Visual Basic [form.]fpCombo1.DataFieldList[= text$]

Designer Page

General subtab of the Data Binding designer page

Remarks

The DataFieldList property lets you bind the list in a single-column fpCombo control to a different data field than the edit field.
Use the DataField property to bind the edit field of an fpCombo control.

Use the DataFieldList property for single-column fpCombo controls. Do not set the DataFieldList property for a multiple-column
fpCombo control; use the ColDataField property to bind specific columns.

For more information on how to bind a data field, refer to the DataField property in the Visual Basic documentation.

Data Type

String

See Also
Creating Column Headers

Working with Databases

ColDataField, DataSourceList properties

DataSourcehWnd Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the window handle to a Data control on another form. This property is available at run time only. This property is
available for VBX controls in Visual Basic only.

Syntax

Visual Basic [form.]control.DataSourcehWnd[= value%]

Remarks

The DataSourcehWnd property lets you bind a VBX control to a Data control located on another form. You can also use the
DataSourcehWnd property to change to a different bound Data control.

To obtain the window handle of the Data control to which you want to bind the control, use the ListPro_GetControlhWnd
function.

For all controls, before you set the DataSourcehWnd property, you must set the DataField property for the control to designate
which field to display from the Data control.

Data Type

Integer

Print Copy Close

The following example creates two forms, one containing a two-column fpList control and one containing a two-column fpCombo
control.

To try this example, create two forms. Place a Data control on Form1. Bind the Data control to Visual Basic's BIBLIO.MDB
database using the DatabaseName property and to the Titles table using the RecordSource property. Place the fpList control on
Form1 and bind it to the Data control using the DataSource property. The following code specifies that the fpList control displays
the Title and Au_ID (Author ID) fields.

Create Form2 and place an fpCombo control on it. The following code binds the fpCombo control to the Data control on Form1
using the DataSourcehWnd and DataSourcehWndList properties. The fpCombo control displays the Title and Year Published
fields.

When you run the project, click Form1 to display Form2.

Visual Basic
' Form Load event for Form1
Sub Form1_Load ()
fpList1.Columns = 2
fpList1.DataAutoSizeCols = False
fpList1.Col = 0
fpList1.ColDataField = "Title"
fpList1.ColWidth = 60
fpList1.Col = 1
fpList1.ColDataField = "Au_ID"
fpList1.ColWidth = 15
End Sub

' Show Form2 when user clicks Form1
Sub Form1_Click
Form2.Show
End Sub

' Form Load event for Form2
Sub Form2_Load ()
fpCombo1.Columns = 2
fpCombo1.DataAutoSizeCols = False
fpCombo1.ColumnEdit = 0
fpCombo1.Col = 0
fpCombo1.ColDataField = "Title"
fpCombo1.ColWidth = 60
fpCombo1.Col = 1
fpCombo1.ColDataField = "Year Published"
fpCombo1.ColWidth = 20
fpCombo1.DataSourcehWnd = ListPro_GetControlhWnd(Form1.Data1)
fpCombo1.DataSourcehWndList = ListPro_GetControlhWnd(Form1.Data1)
End Sub

See Also
Binding to a Data Control on a Different Form

DataSourcehWndList property

ListPro_GetControlhWnd function

DataSourcehWndList Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the window handle to a Data control on another form. This property is available at run time only. This property is
available for VBX controls in Visual Basic only.

Syntax

Visual Basic [form.]fpCombo1.DataSourcehWndList[= value%]

Remarks

The DataSourcehWndList property lets you bind the list in an fpCombo control to a Data control located on another form. You
can also use the DataSourcehWndList property to change to a different bound Data control.

To obtain the window handle of the Data control to which you want to bind the fpCombo list, use the ListPro_GetControlhWnd
function.

Data Type

Integer

See Also
Binding to a Data Control on a Different Form

DataSourcehWnd property

ListPro_GetControlhWnd function

DataSourceList Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the name of the Data control through which the list in an fpCombo control is bound. This property is read-only at
run time. This property is available for Visual Basic users only.

Syntax

Visual Basic [form.]fpCombo1.DataSourceList[= text$]

Remarks

The DataSourceList property lets you bind the list in an fpCombo control to a different Data control than the edit field.

Double-click the DataSourceList property in the Properties window to bind the list to an available Data control.

Use the DataSource property to bind the edit field in an fpCombo control.

Data Type

String

See Also
Working with Databases

DataFieldList property

DataSync Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns the method for synchronizing the Data control and the selected item in the fpCombo or fpList controls. This
property is available for Visual Basic users only.

Syntax

Visual Basic [form.]control.DataSync[= setting%]

Designer Page

General subtab of the Data Binding designer page

Remarks

The following settings are available:
Setting Description Constant
0 - None Removes synchronization

between the selected list item
and the Data control

LC_DATASYNC_NONE

1 - Update Data
 Control

Moves the Data control to a
different record when the
selected list item changes

LC_DATASYNC_UPDATE_DATA

2 - Update Bound
 Control

Changes the selected list item
when the Data control moves to
a different record

LC_DATASYNC_UPDATE_BOUND

3 - Update Both (Default) Moves the Data
control when the list item
changes and selects another
list item when the Data control
moves

LC_DATASYNC_UPDATE_BOTH

When binding an fpCombo or fpList control to a database field, each value in the list represents a record. The DataSync
property determines whether selecting a different list item also scrolls the Data control to another record and whether clicking
the Data control's arrows also highlights another list item.

Data Type

Integer (Enumerated)

See Also
Working with Databases

DataFieldList, DataSourceList properties

EditHeight Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the height of the edit field in an fpCombo control.

Syntax

C UINT CbxGetEditHeight(HWND hWnd, long FAR *lpValue);
UINT CbxSetEditHeight(HWND hWnd, long value);

C++ long CfpComboBox::GetEditHeight(void);
CfpComboBox::SetEditHeight(long value);

Visual Basic [form.]fpCombo1.EditHeight[= value!]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the EditHeight property is 1, which sets the height of the edit field to the size of the current default font.

In Visual Basic, the measurement unit used by the EditHeight property depends on the setting of the form's ScaleMode property.
The default ScaleMode setting is twips (1/1440 of an inch). Generally the ActiveX and VBX controls use twips as the default
measurement unit, and the DLL control uses pixels as the default measurement unit.

Data Type

Single

See Also
MaxEditLen, MultiLine properties

EnableKeyEvents Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether keyboard events occur for an fpCombo or fpList control. This property is available for ActiveX and VBX
controls only.

Syntax

C++ BOOL Class::GetEnableKeyEvents(void);
Class::SetEnableKeyEvents(BOOL value);

Visual Basic [form.]control.EnableKeyEvents[= boolean%]

Designer Page

Miscellaneous designer page

Remarks

The default value for the EnableKeyEvents property is True, which triggers the standard Visual Basic KeyDown, KeyPress, and
KeyUp events. When the EnableKeyEvents property is set to False, the keyboard events do not occur.

Disabling these events speeds up the performance of the fpCombo and fpList controls.

Data Type

Integer (Boolean)

See Also
EnableMouseEvents, EnableTopChangeEvent properties

EnableMouseEvents Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether mouse events occur for an fpCombo or fpList control. This property is available for VBX controls only.

Syntax

C++ BOOL Class::GetEnableMouseEvents(void);
Class::SetEnableMouseEvents(BOOL value);

Visual Basic [form.]control.EnableMouseEvents[= boolean%]

Designer Page

Miscellaneous designer page

Remarks

The default value for the EnableMouseEvents property is True, which triggers the standard Visual Basic MouseDown,
MouseMove, and MouseUp events. When the EnableMouseEvents property is set to False, the mouse events do not occur.

Disabling these events speeds up the performance of the fpCombo and fpList controls.

Data Type

Integer (Boolean)

See Also
EnableKeyEvents, EnableTopChangeEvent properties

EnableTopChangeEvent Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the TopChange event occurs for an fpCombo or fpList control. This property is available for ActiveX and
VBX controls only.

Syntax

C++ BOOL Class::GetEnableTopChangeEvent(void);
Class::SetEnableTopChangeEvent(BOOL value);

Visual Basic [form.]control.EnableTopChangeEvent[= boolean%]

Designer Page

Miscellaneous designer page

Remarks

The default value for the EnableTopChangeEvent property is True, which triggers the TopChange event. When the
EnableTopChangeEvent property is set to False, the TopChange event does not occur.

Disabling the TopChange event speeds up the performance of the fpCombo and fpList controls.

Data Type

Integer (Boolean)

See Also
EnableKeyEvents, EnableMouseEvents properties

TopChange event

ExtendCol Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether column borders are displayed beyond the last row in a multiple-column control.

Syntax

C UINT LC_GetExtendCol(HWND hWnd, short FAR *lpValue);
UINT LC_SetExtendCol(HWND hWnd, short value);

C++ short Class::GetExtendCol(void);
Class::SetExtendCol(short value);

Visual Basic [form.]control.ExtendCol[= setting%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Auto (Default) If horizontal lines

are displayed, columns
extend to the last row;
otherwise, columns
extend to the control
border

LC_EXTENDCOL_AUTO

1 - No Columns extend to the
last row

LC_EXTENDCOL_NO

2 - Yes Columns extend to the
control border

LC_EXTENDCOL_YES

Use the ExtendRow property in the same manner to extend rows and row selection.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a list box control with three columns. Flat lines are displayed between the columns and both
columns and rows are extended.

C
LC_SetColumns(hWnd, 3);
LC_SetLineApplyTo(hWnd, LC_LINEAPPLYTO_COLS);
LC_SetLineStyle(hWnd, LC_LINESTYLE_FLAT);
LC_SetExtendCol(hWnd, LC_EXTENDCOL_YES);
LC_SetExtendRow(hWnd, LC_EXTENDROW_YES);

C++
fpList1->SetColumns(3);
fpList1->SetLineApplyTo(LC_LINEAPPLYTO_COLS);
fpList1->SetLineStyle(LC_LINESTYLE_FLAT);
fpList1->SetExtendCol(LC_EXTENDCOL_YES);
fpList1->SetExtendRow(LC_EXTENDROW_YES);

Visual Basic
fpList1.Columns = 3
fpList1.LineApplyTo = LC_LINEAPPLYTO_COLS
fpList1.LineStyle = LC_LINESTYLE_FLAT
fpList1.ExtendCol = LC_EXTENDCOL_YES
fpList1.ExtendRow = LC_EXTENDROW_YES

See Also
Customizing Lines

ExtendRow, LineApplyTo, LineStyle properties

ExtendRow Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether rows and row selection are displayed beyond the last column in multiple-column controls.

Syntax

C UINT LC_GetExtendRow(HWND hWnd, short FAR *lpValue);
UINT LC_SetExtendRow(HWND hWnd, short value);

C++ short Class::GetExtendRow(void);
Class::SetExtendRow(short value);

Visual Basic [form.]control.ExtendRow[= setting%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Auto (Default) If vertical lines

are displayed, rows and
row selection extend to
the last column;
otherwise, rows and row
selection extend to the
control border

LC_EXTENDROW_AUTO

1 - No Rows and row selection
extend to the last column

LC_EXTENDROW_NO

2 - Yes Rows and row selection
extend to the control
border

LC_EXTENDROW_YES

Use the ExtendCol property in the same manner to extend columns.

Data Type

Integer (Enumerated)

See Also
Customizing Lines

ExtendCol, LineApplyTo, LineStyle properties

Font Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns font characteristics of displayed text. This property is available for ActiveX controls only.

Designer Page

List subtab of the ApplyTo designer page

ActiveX Use

The Font property is a stock property.

Remarks

The List Pro ActiveX controls combine the FontBold, FontItalic, FontName, FontSize, FontStrikethru, and FontUnderline
properties into the Font property. However, the ActiveX controls still support these properties in existing projects.

The attributes of the Font property default to the following values:
Attribute Default value
Bold False
Italic False
Name MS Sans Serif
Size 10
Strikethru False
Underline False

If you double-click the Font property in some property browsers, the control displays the Fonts dialog box for setting font
characteristics. You can also set font characteristics in code.

Data Type

Font

Print Copy Close

The following example sets the font to be bold in an fpCombo control.

ActiveX
fpCombo1.Font.Bold = True

See Also
Changing Text Color and Fonts

FontEmpty property

FontEmpty Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the current font attributes for a part of the control are cleared and the new font attributes are inherited
from the part's hierarchical predecessor.

Syntax

C UINT LC_GetFontEmpty(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetFontEmpty(HWND hWnd, BOOL value);

C++ BOOL Class::GetFontEmpty(void);
Class::SetFontEmpty(BOOL value);

Visual Basic [form.]control.FontEmpty[= boolean%]

Designer Page

List subtab of the ApplyTo designer page (Clear Font button in property value area for the Font property)

Remarks

The default value for the FontEmpty property is False. When the FontEmpty property is set to True for a part of the control, the
font attributes for that part are cleared and the font attributes are inherited from the part's hierarchical predecessor. Setting the
FontEmpty property to True is like the Default setting for other designated-list properties such as AlignH and TextOrientation.

For more information about the hierarchy of property settings, refer to Appendix C "Hierarchy of Property Settings" of the printed
List Pro User's Guide.

You can use the ListApplyTo property to specify where the FontEmpty property applies.

Data Type

Integer (Boolean)

Print Copy Close

The following example creates a combo box control that has three columns. The first column is a child of the first group. The first
column inherits the font characteristics of its parent group.

C
LC_SetColumns(hWnd, 3);
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetGroups(hWnd, 2);
LC_SetGroupHeaderShow(hWnd, TRUE);
LC_SetGrp(hWnd, 0);
LC_SetGrpHeaderText(hWnd, "Title");
LC_SetGrp(hWnd, 1);
LC_SetGrpHeaderText(hWnd, "ISBN");
/* Assign columns to groups */
LC_SetCol(hWnd, 0);
LC_SetColParentGroup(hWnd, 0);
LC_SetCol(hWnd, 1);
LC_SetColParentGroup(hWnd, 1);
LC_SetCol(hWnd, 2);
LC_SetColParentGroup(hWnd, 1);
/* Make font for group 0 italic */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_GROUP);
LC_SetGrp(hWnd, 0);
LC_SetFontItalic(hWnd, TRUE);
/* Clear fonts from column 0 (inherit from parent group) */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetCol(hWnd, 0);
LC_SetFontEmpty(hWnd, TRUE);

C++
fpCombo1->SetColumns(3);
fpCombo1->SetColumnHeaderShow(FALSE);
fpCombo1->SetGroups(2);
fpCombo1->SetGroupHeaderShow(TRUE);
fpCombo1->SetGrp(0);
fpCombo1->SetGrpHeaderText("Title");
fpCombo1->SetGrp(1);
fpCombo1->SetGrpHeaderText("ISBN");
// Assign columns to groups
fpCombo1->SetCol(0);
fpCombo1->SetColParentGroup(0);
fpCombo1->SetCol(1);
fpCombo1->SetColParentGroup(1);
fpCombo1->SetCol(2);
fpCombo1->SetColParentGroup(1);
// Make font for group 0 italic
fpCombo1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_GROUP);
fpCombo1->SetGrp(0);
fpCombo1->SetFontItalic(TRUE);
// Clear fonts from column 0 (inherit from parent group)
fpCombo1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
fpCombo1->SetCol(0);
fpCombo1->SetFontEmpty(TRUE);

Visual Basic
fpCombo1.Columns = 3
fpCombo1.ColumnHeaderShow = False
fpCombo1.Groups = 2
fpCombo1.GroupHeaderShow = True
fpCombo1.Grp = 0
fpCombo1.GrpHeaderText = "Title"
fpCombo1.Grp = 1
fpCombo1.GrpHeaderText = "ISBN"

' Assign columns to groups
fpCombo1.Col = 0
fpCombo1.ColParentGroup = 0
fpCombo1.Col = 1
fpCombo1.ColParentGroup = 1
fpCombo1.Col = 2
fpCombo1.ColParentGroup = 1
' Make font for group 0 italic
fpCombo1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_GROUP
fpCombo1.Grp = 0
fpCombo1.FontItalic = True
' Clear fonts from column 0 (inherit from parent group)
fpCombo1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpCombo1.Col = 0
fpCombo1.FontEmpty = True

See Also
Changing Text Color and Fonts

Font, ListApplyTo properties

GrayAreaColor Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the color of the gray area surrounding drop-down combo and simple combo style fpCombo controls.

Syntax

C UINT CbxGetGrayAreaColor(HWND hWnd, COLORREF FAR *lpValue);
UINT CbxSetGrayAreaColor(HWND hWnd, COLORREF value);

C++ COLORREF CfpComboBox::GetGrayAreaColor(void);
CfpComboBox::SetGrayAreaColor(COLORREF value);

Visual Basic [form.]fpCombo1.GrayAreaColor[= color&]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the GrayAreaColor property is &H8000000F&.

This property has no effect if the Style property is set to 2 (Drop-Down List).

Data Type

Color

See Also
Choosing the fpCombo Control Style

Style property

GroupHeaderHeight Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the height of the group header text.

Syntax

C UINT LC_GetGroupHeaderHeight(HWND hWnd, long FAR *lpValue);
UINT LC_SetGroupHeaderHeight(HWND hWnd, long value);

C++ long Class::GetGroupHeaderHeight(void);
Class::SetGroupHeaderHeight(long value);

Visual Basic [form.]control.GroupHeaderHeight[= value!]

Designer Page

General subtab of the Groups designer page

Remarks

The default value for the GroupHeaderHeight property is 1, which specifies that the group header height is automatically sized
to fit the text.

In Visual Basic, the measurement unit used by the GroupHeaderHeight property depends on the setting of the form's
ScaleMode property. The default ScaleMode setting is twips (1/1440 of an inch). Generally the ActiveX and VBX controls use
twips as the default measurement unit, and the DLL control uses pixels as the default measurement unit.

Data Type

Single

Print Copy Close

The following example creates a combo box control with two groups. The group header height of the first group is 600 twips.
Group header text is displayed on multiple lines.

C
LC_SetGroups(hWnd, 2);
LC_SetGroupHeaderShow(hWnd, TRUE);
/* Set group header height */
LC_SetGroupHeaderHeight(hWnd, 60);
/* Display text on multiple lines */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_GROUP_HEADERS);
LC_SetMultiLine(hWnd, LC_MULTILINE_MULTIPLE_LINE);
LC_SetGrp(hWnd, 0);
LC_SetGrpHeaderText(hWnd, "Date Service Received From Provider");
LC_SetGrp(hWnd, 1);
LC_SetGrpHeaderText(hWnd, "Service Provider");

C++
fpCombo1->SetGroups(2);
fpCombo1->SetGroupHeaderShow(TRUE);
// Set group header height
fpCombo1->SetGroupHeaderHeight(60);
// Display text on multiple lines
fpCombo1->SetListApplyTo(LC_LISTAPPLYTO_GROUP_HEADERS);
fpCombo1->SetMultiLine(LC_MULTILINE_MULTIPLE_LINE);
fpCombo1->SetGrp(0);
fpCombo1->SetGrpHeaderText("Date Service Received From Provider");
fpCombo1->SetGrp(1);
fpCombo1->SetGrpHeaderText("Service Provider");

Visual Basic
fpCombo1.Groups = 2
fpCombo1.GroupHeaderShow = True
' Set group header height
fpCombo1.GroupHeaderHeight = 600
' Display text on multiple lines
fpCombo1.ListApplyTo = LC_LISTAPPLYTO_GROUP_HEADERS
fpCombo1.MultiLine = LC_MULTILINE_MULTIPLE_LINE
fpCombo1.Grp = 0
fpCombo1.GrpHeaderText = "Date Service Received From Provider"
fpCombo1.Grp = 1
fpCombo1.GrpHeaderText = "Service Provider"

See Also
Creating Group Headers

GroupHeaderShow, Groups, Grp, GrpHeaderText, GrpHide, MultiLine properties

GroupHeaderShow Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether to display the header text for a group.

Syntax

C UINT LC_GetGroupHeaderShow(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetGroupHeaderShow(HWND hWnd, BOOL value);

C++ BOOL Class::GetGroupHeaderShow(void);
Class::SetGroupHeaderShow(BOOL value);

Visual Basic [form.]control.GroupHeaderShow[= boolean%]

Designer Page

General subtab of the Groups designer page

Remarks

The default value for the GroupHeaderShow property is False. To show the group header text, set the GroupHeaderShow
property to True.

Use the GrpHeaderText property to specify the header text.

Note You must display group headers to drag and drop groups.

Data Type

Integer (Boolean)

See Also
Creating Group Headers

GroupHeaderHeight, Groups, Grp, GrpHeaderText, GrpHide properties

Groups Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of groups in the control.

Syntax

C UINT LC_GetGroups(HWND hWnd, short FAR *lpValue);
UINT LC_SetGroups(HWND hWnd, short value);

C++ short Class::GetGroups(void);
Class::SetGroups(short value);

Visual Basic [form.]control.Groups[= value%]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the Groups property is 0.

Columns in multiple-column fpCombo and fpList controls can be grouped together. These columns are children of the group. A
child of a group can be another group (GrpParentGroup property) or a column (ColParentGroup property), but not both at the
same time. A column can be a child of a group that is a child of another group. For more information about groups and how they
work, see Groups.

Children of groups exhibit the following characteristics:

If you move a group, the group's children move with it.

When you hide a group (GrpHide property), the group's children are also hidden.

Children are automatically sized to fit the group width (GrpWidth property). This can result in text not being fully displayed
in a column or group header.

Tip If you are using groups, all columns should be assigned to a group.

Data Type

Integer

Print Copy Close

The following example creates a list box control with four groups. Group 3 is hidden and Group 1 is locked against resizing.

C
LC_SetGroups(hWnd, 4);
LC_SetGroupHeaderShow(hWnd, TRUE);
LC_SetAllowGrpResize(hWnd, LC_ALLOWGRPRESIZE_RESIZEHEADER);
/* Define groups */
LC_SetGrp(hWnd, 0);
LC_SetGrpID(hWnd, 1);
LC_SetGrp(hWnd, 1);
LC_SetGrpID(hWnd, 2);
LC_SetGrp(hWnd, 2);
LC_SetGrpID(hWnd, 3);
LC_SetGrp(hWnd, 3);
LC_SetGrpID(hWnd, 4);
/* Hide group 3 */
LC_SetGrpFromID(hWnd, 3);
LC_SetGrpHide(hWnd, TRUE);
/* Lock group 1 against resizing */
LC_SetGrpFromID(hWnd, 1);
LC_SetGrpLockResize(hWnd, TRUE);

C++
fpList1->SetGroups(4);
fpList1->SetGroupHeaderShow(TRUE);
fpList1->SetAllowGrpResize(LC_ALLOWGRPRESIZE_RESIZEHEADER);
// Define groups
fpList1->SetGrp(0);
fpList1->SetGrpID(1);
fpList1->SetGrp(1);
fpList1->SetGrpID(2);
fpList1->SetGrp(2);
fpList1->SetGrpID(3);
fpList1->SetGrp(3);
fpList1->SetGrpID(4);
// Hide group 3
fpList1->SetGrpFromID(3);
fpList1->SetGrpHide(TRUE);
// Lock group 1 against resizing
fpList1->SetGrpFromID(1);
fpList1->SetGrpLockResize(TRUE);

Visual Basic
fpList1.Groups = 4
fpList1.GroupHeaderShow = True
fpList1.AllowGrpResize = LC_ALLOWGRPRESIZE_RESIZEHEADER
' Define groups
fpList1.Grp = 0
fpList1.GrpID = 1
fpList1.Grp = 1
fpList1.GrpID = 2
fpList1.Grp = 2
fpList1.GrpID = 3
fpList1.Grp = 3
fpList1.GrpID = 4
' Hide group 3
fpList1.GrpFromID = 3
fpList1.GrpHide = True
' Lock group 1 against resizing
fpList1.GrpFromID = 1
fpList1.GrpLockResize = True

See Also
Creating Groups

Groups

ColParentGroup, GroupHeaderHeight, GroupHeaderShow, Grp, GrpFromID, GrpFromName, GrpHeaderText, GrpHide, GrpID,
GrpLockResize, GrpName, GrpParentGroup, GrpPos, GrpPosInParent, GrpsFrozen, GrpWidth properties

Grp Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the index number of a group in an fpCombo or fpList control.

Syntax

C UINT LC_GetGrp(HWND hWnd, short FAR *lpValue);
UINT LC_SetGrp(HWND hWnd, short value);

C++ short Class::GetGrp(void);
Class::SetGrp(short value);

Visual Basic [form.]control.Grp[= value%]

Designer Pages

Grp drop-down list box on:

Specific subtab of the Groups designer page
List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page

Remarks

The default value for the Grp property is 0.

The Grp property specifies the group on which the designated-group properties (such as GrpHeaderText and GrpHide) operate.
Group numbers start with 0, which designates the top, leftmost group. Groups are numbered from left to right and top to bottom
within their parent group, if any, and then within the control.

Group index numbers are based on the physical position of the group in the control. For example, assume you define three
groups (0, 1, and 2). These groups appear in that order from left to right across the top of the control. If you move Group 2 to the
far left side of the control, this group now has a group index number of 0. For more information on groups, see Referencing a
Group.

You must set the Groups property to a value greater than zero before using this property.

You can use the GrpID and GrpName properties to assign unique identifiers to a group. You can then use the GrpFromID or
GrpFromName properties to specify the group to which the designated-group properties apply, regardless of where the group
physically appears in the control.

Tip Because group index numbers are based on the physical position of the group in the control, if you plan on moving
groups or allowing the user to move groups, we strongly recommend you use one of the unique group identifiers (GrpID
or GrpName property) to reference a group rather than the Grp property.

Data Type

Integer

See Also
Referencing a Group

Using the FarPoint Property Designer

GroupHeaderHeight, GroupHeaderShow, Groups, GrpFromID, GrpFromName, GrpHeaderText, GrpHide, GrpID,
GrpLockResize, GrpName, GrpParentGroup, GrpPos, GrpPosInParent, GrpWidth properties

GrpFromID Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the group on which the designated-group properties operate by using the group identifier number.

Syntax

C UINT LC_GetGrpFromID(HWND hWnd, long FAR *lpValue);
UINT LC_SetGrpFromID(HWND hWnd, long value);

C++ long Class::GetGrpFromID(void);
Class::SetGrpFromID(long value);

Visual Basic [form.]control.GrpFromID[= value&]

Designer Pages

Grp ID drop-down list box on:

Specific subtab of the Groups designer page
List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page

Remarks

The default value for the GrpFromID property is 0.

You must set the GrpID property to create the group identifier number before setting the GrpFromID property. Once you define
an identifier number for a group, you can use the GrpFromID property to specify the group on which the designated-group
properties (such as GrpHeaderText and GrpHide) operate. The GrpFromID property works the same as the Grp property in this
respect.

You can also use the GrpName and GrpFromName properties in a similar fashion.

Tip Because group index numbers are based on the physical position of the group in the control, if you plan on moving
groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to reference
a group rather than the Grp property.

Data Type

Integer (Long)

See Also
Applying Properties to a Specific Group

Referencing a Group

Grp, GrpFromName, GrpID, GrpName properties

GrpFromName Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the group on which the designated-group properties operate by using the group name.

Syntax

C UINT LC_GetGrpFromName(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetGrpFromName(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetGrpFromName(LPSTR buffer, UNIT bufferSize);
Class::SetGrpFromName(LPCSTR value);

Visual Basic [form.]control.GrpFromName[= text$]

Designer Pages

Grp Name drop-down list box on:

Specific subtab of the Groups designer page
List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page

Remarks

You must set the GrpName property to define the group name before setting the GrpFromName property. Once you define a
name for a group, you can use the GrpFromName property to specify the group on which the designated-group properties (such
as GrpHeaderText and GrpHide) operate. The GrpFromName property works the same as the Grp property in this respect.

The GrpName property is case-sensitive; however, the GrpFromName property is not case-sensitive.

You can also use the GrpID and GrpFromID properties in a similar fashion.

Tip Because group index numbers are based on the physical position of the group in the control, if you plan on moving
groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to reference
a group rather than the Grp property.

Data Type

String

Print Copy Close

The following example creates a list box control with five groups. Groups 3 and 4 are children of the first group. Group 5 is a
child of the second group.

C
LC_SetGroups(hWnd, 5);
LC_SetGroupHeaderShow(hWnd, TRUE);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetGroupHeaderShow(hWnd, TRUE);
/* Define parent groups */
LC_SetGrp(hWnd, 0);
LC_SetGrpHeaderText(hWnd, "Management");
LC_SetGrp(hWnd, 1);
LC_SetGrpHeaderText(hWnd, "Human Resources");
/* Define child groups */
LC_SetGrp(hWnd, 2);
/* Name */
LC_SetGrpName(hWnd, "A1");
LC_SetGrp(hWnd, 3);
/* Title */
LC_SetGrpName(hWnd, "A2");
LC_SetGrp(hWnd, 4);
/* Salary */
LC_SetGrpName(hWnd, "A3");
/* Define position in control */
LC_SetGrpFromName(hWnd, "A3");
LC_SetGrpHeaderText(hWnd, "Salary");
LC_SetGrpPos(hWnd, 2);
LC_SetGrpFromName(hWnd, "A2");
LC_SetGrpHeaderText(hWnd, "Title");
LC_SetGrpPos(hWnd, 3);
LC_SetGrpFromName(hWnd, "A1");
LC_SetGrpHeaderText(hWnd, "Name");
LC_SetGrpPos(hWnd, 4);
/* Define parent group and position in parent */
/* Title column */
LC_SetGrpFromName(hWnd, "A2");
LC_SetGrpParentGroup(hWnd, 0);
LC_SetGrpPosInParent(hWnd, 0);
/* Name column */
LC_SetGrpFromName(hWnd, "A1");
LC_SetGrpParentGroup(hWnd, 0);
LC_SetGrpPosInParent(hWnd, 1);
/* Salary column */
LC_SetGrpFromName(hWnd, "A3");
LC_SetGrpParentGroup(3);
LC_SetGrpPosInParent(hWnd, 0);

C++
fpList1->SetGroups(5);
fpList1->SetGroupHeaderShow(TRUE);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetGroupHeaderShow(TRUE);
// Define parent groups
fpList1->SetGrp(0);
fpList1->SetGrpHeaderText("Management");
fpList1->SetGrp(1);
fpList1->SetGrpHeaderText("Human Resources");
// Define child groups
fpList1->SetGrp(2);
// Name
fpList1->SetGrpName("A1");
fpList1->SetGrp(3);

// Title
fpList1->SetGrpName("A2");
fpList1->SetGrp(4);
// Salary
fpList1->SetGrpName("A3");
// Define position in control
fpList1->SetGrpFromName("A3");
fpList1->SetGrpHeaderText("Salary");
fpList1->SetGrpPos(2);
fpList1->SetGrpFromName("A2");
fpList1->SetGrpHeaderText("Title");
fpList1->SetGrpPos(3);
fpList1->SetGrpFromName("A1");
fpList1->SetGrpHeaderText("Name");
fpList1->SetGrpPos(4);
// Define parent group and position in parent
// Title column
fpList1->SetGrpFromName("A2");
fpList1->SetGrpParentGroup(0);
fpList1->SetGrpPosInParent(0);
// Name column
fpList1->SetGrpFromName("A1");
fpList1->SetGrpParentGroup(0);
fpList1->SetGrpPosInParent(1);
// Salary column
fpList1->SetGrpFromName("A3");
fpList1->SetGrpParentGroup(3);
fpList1->SetGrpPosInParent(0);

Visual Basic
fpList1.Groups = 5
fpList1.GroupHeaderShow = True
fpList1.LineStyle = LC_LINESTYLE_LOWERED
fpList1.GroupHeaderShow = True
' Define parent groups
fpList1.Grp = 0
fpList1.GrpHeaderText = "Management"
fpList1.Grp = 1
fpList1.GrpHeaderText = "Human Resources"
' Define child groups
fpList1.Grp = 2
' Name
fpList1.GrpName = "A1"
fpList1.Grp = 3
' Title
fpList1.GrpName = "A2"
fpList1.Grp = 4
' Salary
fpList1.GrpName = "A3"
' Define position in control
fpList1.GrpFromName = "A3"
fpList1.GrpHeaderText = "Salary"
fpList1.GrpPos = 2
fpList1.GrpFromName = "A2"
fpList1.GrpHeaderText = "Title"
fpList1.GrpPos = 3
fpList1.GrpFromName = "A1"
fpList1.GrpHeaderText = "Name"
fpList1.GrpPos = 4
' Define parent group and position in parent
' Title column
fpList1.GrpFromName = "A2"
fpList1.GrpParentGroup = 0

fpList1.GrpPosInParent = 0
' Name column
fpList1.GrpFromName = "A1"
fpList1.GrpParentGroup = 0
fpList1.GrpPosInParent = 1
' Salary column
fpList1.GrpFromName = "A3"
fpList1.GrpParentGroup= 3
fpList1.GrpPosInParent = 0

See Also
Applying Properties to a Specific Group

Referencing a Group

Grp, GrpFromID, GrpID, GrpName properties

GrpHeaderText Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the string to display in the group header.

Syntax

C UINT LC_GetGrpHeaderText(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetGrpHeaderText(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetGrpHeaderText(LPSTR buffer, UINT bufferSize);
Class::SetGrpHeaderText(LPCSTR value);

Visual Basic [form.]control.GrpHeaderText[= text$]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpHeaderText property is an empty string.

You must set the GroupHeaderShow property to True to display the group headers.

Before you set the GrpHeaderText property, you must specify a group with the Grp, GrpFromID, or GrpFromName property.

Data Type

String

See Also
Creating Group Headers

GroupHeaderHeight, GroupHeaderShow, Groups, Grp, GrpFromID, GrpFromName, GrpHide properties

GrpHide Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether to display a specific group and its associated children.

Syntax

C UINT LC_GetGrpHide(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetGrpHide(HWND hWnd, BOOL value);

C++ BOOL Class::GetGrpHide(void);
Class::SetGrpHide(BOOL value);

Visual Basic [form.]control.GrpHide[= boolean%]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpHide property is False. To hide a group, set the GrpHide property to True.

Before you set the GrpHide property, you must specify a group with the Grp, GrpFromID, or GrpFromName property.

Tip Another way to hide a group is to set the GrpWidth property to 0.

Data Type

Integer (Boolean)

See Also
Customizing Groups

GroupHeaderShow, Groups, Grp, GrpFromID, GrpFromName, GrpHeaderText, GrpID, GrpName, GrpParentGroup, GrpWidth
properties

GrpID Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the group identifier number.

Syntax

C UINT LC_GetGrpID(HWND hWnd, long FAR *lpValue);
UINT LC_SetGrpID(HWND hWnd, long value);

C++ long Class::GetGrpID(void);
Class::SetGrpID(long value);

Visual Basic [form.]control.GrpID[= value&]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpID property is 1.
Before you set the GrpID property, you must specify a group with the Grp property.
The GrpID property defines a unique identifier number for a group. Once you define an identifier number for a group, you can use
the GrpFromID property to specify the group on which the designated-group properties (such as GrpHeaderText and GrpHide)
operate. The GrpFromID property works the same as the Grp property in this respect.

You can also use the GrpName and GrpFromName properties in a similar fashion.

Tip Because group index numbers are based on the physical position of the group in the control, if you plan on moving
groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to reference
a group rather than the Grp property.

Data Type

Integer (Long)

See Also
Applying Properties to a Specific Group

Referencing a Group

Grp, GrpFromID, GrpFromName, GrpName properties

GrpLockResize Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether a group is locked and cannot be resized by dragging the group border.

Syntax

C UINT LC_GetGrpLockResize(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetGrpLockResize(HWND hWnd, BOOL value);

C++ BOOL Class::GetGrpLockResize(void);
Class::SetGrpLockResize(BOOL value);

Visual Basic [form.]control.GrpLockResize[= boolean%]

Designer Page

Specific subtab of the Groups designer page

Remarks

When the AllowGrpResize property is set to a value greater than zero, the user can resize groups by dragging their borders.
When set to True, the GrpLockResize property locks a specific group, preventing it from being resized.

The default value for the GrpLockResize property is False. Set the GrpLockResize property to True to prevent the user from
dragging the right border of a group to resize it.

Before you set the GrpLockResize property, you must specify a group with the Grp, GrpFromID, or GrpFromName property.

Data Type

Integer (Boolean)

See Also
Customizing Groups

Using the Mouse to Resize Groups

AllowGrpResize, Groups, Grp, GrpFromID, GrpFromName, GrpID, GrpName properties

GrpName Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the group name.

Syntax

C UINT LC_GetGrpName(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetGrpName(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetGrpName(LPSTR buffer, UINT bufferSize);
Class::SetGrpName(LPCSTR value);

Visual Basic [form.]control.GrpName[= text$]

Designer Page

Specific subtab of the Groups designer page

Remarks

You must set the Grp property to specify a group before setting the GrpName property.

The GrpName property defines a unique name for a group. Once you define a name for a group, you can use the
GrpFromName property to specify the group on which the designated-group properties (such as GrpHeaderText and GrpHide)
operate. The GrpFromName property works the same as the Grp property in this respect.

The GrpName property is case-sensitive; however, the GrpFromName property is not case-sensitive.

You can also use the GrpID and GrpFromID properties in a similar fashion.

Tip Because group index numbers are based on the physical position of the group in the control, if you plan on moving
groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to reference
a group rather than the Grp property.

Data Type

String

See Also
Applying Properties to a Specific Group

Referencing a Group

Grp, GrpFromID, GrpFromName, GrpID properties

GrpParentGroup Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of the parent group of another group.

Syntax

C UINT LC_GetGrpParentGroup(HWND hWnd, short FAR *lpValue);
UINT LC_SetGrpParentGroup(HWND hWnd, short value);

C++ short Class::GetGrpParentGroup(void);
Class::SetGrpParentGroup(short value);

Visual Basic [form.]control.GrpParentGroup[= value%]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpParentGroup property is 1, which specifies that a group has no parent.
Before you set the GrpParentGroup property, you must specify a group with the Grp, GrpFromID, or GrpFromName property.
Groups can have children. A child of a group can be another group or a column (ColParentGroup property), but not both at the same
time. A column can be a child of a group that is a child of another group. For more information about groups and how they work, see
Groups.

Children of groups exhibit the following characteristics:

If you move a group, the group's children move with it.

When you hide a group (GrpHide property), the group's children are also hidden.

Children are automatically sized to fit the group width (GrpWidth property). This can result in text not
being fully displayed in a column or group header.

Use the GrpParentGroup property to specify a group as a child of another group.

Tips

Define all groups (Grp, GrpID, and GrpName properties) in the control before moving groups with the
GrpParentGroup property.

Because group index numbers are based on the physical position of the group in the control, if you
plan on moving groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to
reference a group rather than the Grp property.

Data Type

Integer

See Also
Creating Children of Groups

Groups

ColParentGroup, GroupHeaderShow, Groups, Grp, GrpFromID, GrpFromName, GrpHide, GrpID, GrpLockResize, GrpName,
GrpPosInParent, GrpWidth properties

GrpPos Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the position number of a group within an fpCombo or fpList control.

Syntax

C UINT LC_GetGrpPos(HWND hWnd, short FAR *lpValue);
UINT LC_SetGrpPos(HWND hWnd, short value);

C++ short Class::GetGrpPos(void);
Class::SetGrpPos(short value);

Visual Basic [form.]control.GrpPos[= value%]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpPos property is 0.

Before you set the GrpPos property, you must specify a group with the Grp, GrpFromID, or GrpFromName property.

Use the GrpPosInParent property to define the position number of a group within its parent. If groups are grouped, the
GrpPosInParent property defines the position number within the group's parent group. If groups are not grouped, the value of
the GrpPosInParent property is the same as the value of the GrpPos property.

Tips

Define all groups (Grp, GrpID, and GrpName properties) in the control before moving groups with the
GrpParentGroup property.

Because group index numbers are based on the physical position of the group in the control, if you
plan on moving groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to
reference a group rather than the Grp property.

Note If you move a group, group index numbers will change. For more information, see Referencing a Group.

Data Type

Integer

See Also
Defining the Position of Groups in the Control

Referencing a Group

Groups, Grp, GrpFromID, GrpFromName, GrpID, GrpName, GrpParentGroup, GrpPosInParent properties

GrpPosInParent Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the position number of a group within its parent.

Syntax

C UINT LC_GetGrpPosInParent(HWND hWnd, short FAR *lpValue);
UINT LC_SetGrpPosInParent(HWND hWnd, short value);

C++ short Class::GetGrpPosInParent(void);
Class::SetGrpPosInParent(short value);

Visual Basic [form.]control.GrpPosInParent[= value%]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpPosInParent property is 0 when the Groups property isset to a value greater than 0. Otherwise, the

default value is 1.
Before you set the GrpPosInParent property, you must specify a column with the Grp, GrpFromID, or GrpFromName property.
If groups are grouped, the GrpPosInParent property defines the position number within the group's parent group. Use the GrpPos
property to define the position number of a group within the control. If groups are not grouped, the value of the GrpPosInParent
property is the same as the value of the GrpPos property.

Tips

Define all groups (Grp, GrpID, and GrpName properties) in the control before moving groups with the
GrpParentGroup property.

Because group index numbers are based on the physical position of the group in the control, if you
plan on moving groups, we strongly recommend you use one of the unique group identifiers (GrpID or GrpName property) to
reference a group rather than the Grp property.

Note If you move a group, group index numbers will change. For more information, see Referencing a Group.

Data Type

Integer

See Also
Defining the Position of Groups in the Control

Referencing a Group

Groups, Grp, GrpFromID, GrpFromName, GrpID, GrpName, GrpParentGroup, GrpPos properties

GrpsFrozen Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of groups on the left that do not scroll horizontally in a multiple-group fpCombo or fpList control.

Syntax

C UINT LC_GetGrpsFrozen(HWND hWnd, short FAR *lpValue);
UINT LC_SetGrpsFrozen(HWND hWnd, short value);

C++ short Class::GetGrpsFrozen(void);
Class::SetGrpsFrozen(short value);

Visual Basic [form.]control.GrpsFrozen[= value%]

Designer Page

General subtab of the Groups designer page

Remarks

The default value for the GrpsFrozen property is 0.

Setting the GrpsFrozen property to 1 freezes the first group (group 0, the top, leftmost group) so that it remains visible when the
user clicks the horizontal scroll bar. Setting the GrpsFrozen property to values greater than 1 freezes the corresponding groups.
For example, setting the GrpsFrozen property to 2 freezes the first and second groups.

Before setting the GrpsFrozen property, you must create a multiple-group fpCombo or fpList control by setting the Groups
property.

Data Type

Integer

Print Copy Close

The following example creates a combo box control with four columns and four groups. The first three groups are frozen to
prevent horizontal scrolling

C
LC_SetColumns(hWnd, 4);
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetGroups(hWnd, 4);
LC_SetGroupHeaderShow(hWnd, TRUE);
/* Freeze first three groups */
LC_SetGrpsFrozen(hWnd, 3);
/* Define groups */
LC_SetGrp(hWnd, 0);
fpCombo1->SetGrpHeaderText(hWnd, "Name");
LC_SetGrp(hWnd, 1);
LC_SetGrpHeaderText(hWnd, "Address");
LC_SetGrp(hWnd, 2);
LC_SetGrpHeaderText(hWnd, "Phone");
LC_SetGrp(hWnd, 3);
LC_SetGrpHeaderText(hWnd, "E-Mail");
/* Assign cols to groups */
LC_SetCol(hWnd, 0);
LC_SetColParentGroup(hWnd, 0);
LC_SetCol(hWnd, 1);
LC_SetColParentGroup(hWnd, 1);
LC_SetCol(hWnd, 2);
LC_SetColParentGroup(hWnd, 2);
LC_SetCol(hWnd, 3);
LC_SetColParentGroup(hWnd, 3);

C++
fpCombo1->SetColumns(4);
fpCombo1->SetColumnHeaderShow(FALSE);
fpCombo1->SetGroups(4);
fpCombo1->SetGroupHeaderShow(TRUE);
// Freeze first three groups
fpCombo1->SetGrpsFrozen(3);
// Define groups
fpCombo1->SetGrp(0);
fpCombo1->SetGrpHeaderText("Name");
fpCombo1->SetGrp(1);
fpCombo1->SetGrpHeaderText("Address");
fpCombo1->SetGrp(2);
fpCombo1->SetGrpHeaderText("Phone");
fpCombo1->SetGrp(3);
fpCombo1->SetGrpHeaderText("E-Mail");
// Assign cols to groups
fpCombo1->SetCol(0);
fpCombo1->SetColParentGroup(0);
fpCombo1->SetCol(1);
fpCombo1->SetColParentGroup(1);
fpCombo1->SetCol(2);
fpCombo1->SetColParentGroup(2);
fpCombo1->SetCol(3);
fpCombo1->SetColParentGroup(3);

Visual Basic
fpCombo1.Columns = 4
fpCombo1.ColumnHeaderShow = False
fpCombo1.Groups = 4
fpCombo1.GroupHeaderShow = True
' Freeze first three groups
fpCombo1.GrpsFrozen = 3

' Define groups
fpCombo1.Grp = 0
fpCombo1.GrpHeaderText = "Name"
fpCombo1.Grp = 1
fpCombo1.GrpHeaderText = "Address"
fpCombo1.Grp = 2
fpCombo1.GrpHeaderText = "Phone"
fpCombo1.Grp = 3
fpCombo1.GrpHeaderText = "E-Mail"
' Assign cols to groups
fpCombo1.Col = 0
fpCombo1.ColParentGroup = 0
fpCombo1.Col = 1
fpCombo1.ColParentGroup = 1
fpCombo1.Col = 2
fpCombo1.ColParentGroup = 2
fpCombo1.Col = 3
fpCombo1.ColParentGroup = 3

See Also
Customizing Groups

Groups, Grp properties

GrpWidth Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width of a group.

Syntax

C UINT LC_GetGrpWidth(HWND hWnd, float FAR *lpValue);
UINT LC_SetGrpWidth(HWND hWnd, float value);

C++ float Class::GetGrpWidth(void);
Class::SetGrpWidth(float value);

Visual Basic [form.]control.GrpWidth[= value!]

Designer Page

Specific subtab of the Groups designer page

Remarks

The default value for the GrpWidth property is 1, which specifies that the group width is automatically
sized to the default column width. The unit of measurement is determined by the ColumnWidthScale property.

If you group groups, widths for groups are adjusted to fit within the parent group and the GrpWidth property setting is ignored. For
more information, see Calculating the Width of Group Children.
Before you set the GrpWidth property, you must specify a column with the Grp, GrpFromID, or GrpFromName property.

Columns that are children of a group are automatically sized to fit the group width. The GrpWidth property overrides the
ColWidth property.

Data Type

Single

Print Copy Close

The following example creates a combo box control with two groups. The width of the first group is 20 and the width of the
second group is 30.

C
LC_SetGroups(hWnd, 2);
LC_SetGroupHeaderShow(hWnd, TRUE);
/* Define groups */
LC_SetGrp(hWnd, 0);
LC_SetGrpWidth(hWnd, 20);
LC_SetGrpHeaderText(hWnd, "Date of Service");
LC_SetGrp(hWnd, 1);
LC_SetGrpWidth(hWnd, 30);
LC_SetGrpHeaderText(hWnd, "Service Provided By");

C++
fpCombo1->SetGroups(2);
fpCombo1->SetGroupHeaderShow(TRUE);
// Define groups
fpCombo1->SetGrp(0);
fpCombo1->SetGrpWidth(20);
fpCombo1->SetGrpHeaderText("Date of Service");
fpCombo1->SetGrp(1);
fpCombo1->SetGrpWidth(30);
fpCombo1->SetGrpHeaderText("Service Provided By");

Visual Basic
fpCombo1.Groups = 2
fpCombo1.GroupHeaderShow = True
' Define groups
fpCombo1.Grp = 0
fpCombo1.GrpWidth = 20
fpCombo1.GrpHeaderText = "Date of Service"
fpCombo1.Grp = 1
fpCombo1.GrpWidth = 30
fpCombo1.GrpHeaderText = "Service Provided By"

See Also
Calculating the Width of Group Children

Specifying the Group Width

ColumnWidthScale, ColWidth, Groups, Grp, GrpFromID, GrpFromName, GrpID, GrpLockResize, GrpName properties

HighestPrecedence Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns which color is displayed at the intersection of a row and column with color settings.

Syntax

C UINT LC_GetHighestPrecedence(HWND hWnd, short FAR *lpValue);
UINT LC_SetHighestPrecedence(HWND hWnd, short value);

C++ short Class::GetHighestPrecedence(void);
Class::SetHighestPrecedence(short value);

Visual Basic [form.]control.HighestPrecedence[= setting%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

When a color is set for a row and a different color is set for a column, the HighestPrecedence property determines which color
takes precedence when the colors intersect.

Setting Description Constant
0 - Row (Default) The row color

takes precedence
LC_HIGHESTPRECEDENCE_ROW

1 - Col The column color takes
precedence

LC_HIGHESTPRECEDENCE_COL

2 - Combined The row and column
colors are combined and
displayed as a third color

LC_HIGHESTPRECEDENCE_COMBINED

The HighestPrecedence property setting also influences how properties are applied to the control. For more information, see
Appendix C, "Hierarchy of Property Settings" in the printed List Pro User's Guide.

Data Type

Integer (Enumerated)

See Also
Applying Properties to Specific Parts of the Control

BackColor, ForeColor, ListApplyTo properties

hWnd Property
See Also

Applies To

fpCombo, fpList controls

Description

Returns the window handle of the control. This property is available for ActiveX and VBX controls only.

Syntax

C++ short Class::GethWnd(void);

Visual Basic [form.][control.]hWnd

ActiveX Use

The hWnd property is a stock property.

Remarks

Use the hWnd property with Windows API calls.

Refer to the Visual Basic documentation for additional information about this property.

Data Type

Integer

See Also
DataSourcehWnd, DataSourcehWndList properties

InsertRow Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets whether to insert a new item or row of text in the list of an fpCombo or fpList control.

Syntax

C UINT LC_SetInsertRow(HWND hWnd, LPCSTR value);

C++ Class::SetInsertRow(LPCSTR value);

Visual Basic [form.]control.InsertRow[= text$]

Designer Page

Add Data designer page

Remarks

The InsertRow property is functionally equivalent to the Visual Basic AddItem method. However, the fpCombo and fpList
controls can display more rows than the AddItem method can add (the AddItem method is limited to 32,768 rows). By using the
InsertRow property, you can add two billion rows to an fpCombo or fpList control.

By default (when the Row property is set to its default value, 0), inserting items with the InsertRow property adds a new row to

the top of the list. If you set the Row property to 1, new rows are added to the end of the list. If the list is
sorted, set the Row property to

1, otherwise the rows will be inserted in an unsorted manner.

Data Type

String

See Also
Adding List Items

Row property

ItemData Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns a long integer value that is associated with a row in the list.

Syntax

C UINT LC_GetItemData(HWND hWnd, long FAR *lpValue);
UINT LC_SetItemData(HWND hWnd, long value);

C++ long Class::GetItemData(void);
Class::SetItemData(long value);

Visual Basic [form.]control.ItemData[= value&]

Remarks

Use the ItemData property to associate unique four-byte values to rows in an fpCombo or fpList control. You can then use these

numbers in code to identify the items. If you do not specify a row (that is, the value of the Row property is
1) before setting this property, the ItemData property will return an error code value of 30501.

A typical use of the ItemData property is for an index into an array of data structures associated with items in an fpList control.

For example, you can use an employee's identification number to identify each employee name in an fpList control. By writing
appropriate code, you can sort the numbers or let users search the numbers. To insert the identification numbers, fill the
corresponding elements in the ItemData array with the employee numbers.

Data Type

Integer (Long)

Print Copy Close

The following example adds items to an fpCombo control. The code assigns an identification number to each item using the
ItemData and NewIndex properties.

C
LC_SetColumns(hWnd, 1);
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "John Doe");
LC_SetRow(hWnd, LC_GetNewIndex(hWnd, &xIndex));
LC_SetItemData(hWnd, "123456789");
LC_SetInsertRow(hWnd, "Mary Smith");
LC_SetRow(hWnd, LC_GetNewIndex(hWnd, &xIndex));
LC_SetItemData(hWnd, "987654321");

C++
fpCombo1->SetColumns(1);
fpCombo1->SetColumnHeaderShow(FALSE);
fpCombo1->SetRow(-1);
fpCombo1->SetInsertRow("John Doe");
fpCombo1->SetRow(fpCombo1->GetNewIndex());
fpCombo1->SetItemData("123456789");
fpCombo1->SetInsertRow("Mary Smith");
fpCombo1->SetRow(fpCombo1->GetNewIndex());
fpCombo1->SetItemData("987654321");

Visual Basic
fpCombo1.Columns = 1
fpCombo1.ColumnHeaderShow = False
fpCombo1.Row = -1
fpCombo1.InsertRow = "John Doe"
fpCombo1.Row = fpCombo1.NewIndex
fpCombo1.ItemData = "123456789"
fpCombo1.InsertRow = "Mary Smith"
fpCombo1.Row = fpCombo1.NewIndex
fpCombo1.ItemData = "987654321"

See Also
NewIndex, Row properties

JoinID Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the identification number for a joined set of cells.

Syntax

C UINT LC_GetJoinID(HWND hWnd, long FAR *lpValue);
UINT LC_SetJoinID(HWND hWnd, long value);

C++ long Class::GetJoinID(void);
Class::SetJoinID(long value);

Visual Basic [form.]control.JoinID[= value&]

Designer Page

Merge/Join designer page

Remarks

With the JoinID property, you can create a set of cells that share property characteristics (that is, they are identical in content
and appearance). The property characteristics of the first cell you assign to the joined set are applied to the other cells in the
joined set. Adjacent cells with the same identification number are also merged unless rows have multiple levels. Adjacent cells in
rows with multiple levels have the same content and appearance but are not merged.

The advantage of joined cells is that a property that is set for one joined cell is applied to all joined cells. For example, if you
want the same background color for all cells in a joined set, you set the BackColor property for one cell in the set.

All cells on one form with the same identification number are in the same joined set. The identification number for a cell must be
greater than 0 for the cell to be considered a part of the joined set. Joined cells do not have to be adjacent to one another.

The default value for the JoinID property is 0, which specifies that the cell is not part of a joined set.

You must set the Col and Row properties to define a cell before setting this property.

Data Type

Integer

Print Copy Close

The following example creates a list box control with three columns. Cells in the first two columns in the first four rows are
joined.

C
LC_SetColumns(hWnd, 3);
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetColumnLevels(hWnd, 2);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
for (j = 0; j < 3; j++)

{
LC_SetRow(hWnd, j);
for (i = 0; i < 3; i++)

{
LC_SetCol(hWnd, i);
LC_SetColText(hWnd, i);
}

}

LC_SetCol(hWnd, 1);
LC_SetColLevel(hWnd, 1);
for (k = 0; k < 3; k++)

LC_SetCol(hWnd, 0);
LC_SetRow(hWnd, k);
LC_SetJoinID(hWnd, 18);
LC_SetCol(hWnd, 1)
LC_SetRow(hWnd, k);
LC_SetJoinID(hWnd, 18);

C++
fpList1->SetColumns(3);
fpList1->SetColumnHeaderShow(FALSE);
fpList1->SetColumnLevels(2);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
for (j = 0; j < 3; j++)

{
fpList1->SetRow(j);
for (i = 0; i < 2; i++)

{
fpList1->SetCol(i);
fpList1->SetColText(i);
}

}

fpList1->SetCol(1);
fpList1->SetColLevel(1);
for (k = 0; k < 3; k++)

fpList1->SetCol(0);
fpList1->SetRow(k);
fpList1->SetJoinID(18);
fpList1->SetCol(1)
fpList1->SetRow(k);
fpList1->SetJoinID(18);

Visual Basic
fpList1.Columns = 3
fpList1.ColumnHeaderShow = False
fpList1.ColumnLevels = 2
fpList1.LineStyle = LC_LINESTYLE_LOWERED
For j = 0 to 3

fpList1.Row = j
For I = 0 to 2

fpList1.Col = I

fpList1.ColText = I
Next

Next

fpList1.Col = 1
fpList1.ColLevel = 1
For k = 0 to 3

fpList1.Col = 0
fpList1.Row = k
fpList1.JoinID = 18
fpList1.Col = 1
fpList1.Row = k
fpList1.JoinID = 18

Next

See Also
Joining Cells

Col, Row properties

Line3DDark Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the shadow color of three-dimensional lines.

Syntax

C UINT LC_GetLine3DDark(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetLine3DDark(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetLine3DDark(void);
Class::SetLine3DDark(COLORREF value);

Visual Basic [form.]control.Line3DDark[= color]

Designer Page

Line subtab of the ApplyTo designer page

Remarks

The default value for the Line3DDark property is &H80000010& (Windows system button shadow color).

Use the Line3DDark and Line3DLight properties to change the three-dimensional line colors. To create three-dimensional lines
along the borders of each cell, you must set the LineStyle property to either 3 (Lowered), 4 (Raised), 5 (Lowered w/ Line), or 6
(Raised w/ Line).

You can set the ListApplyTo property before you set the Line3DDark property to designate the part of the control to which the
three-dimensional shadow color applies. Use the LineApplyTo property to specify the lines to which the shadow color applies.
Use the Line3DWidth property to specify the line width.

Data Type

Color

See Also
Customizing Lines

Line3DLight, Line3DWidth, LineApplyTo, LineStyle, ListApplyTo properties

Line3DLight Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the highlight color of three-dimensional lines.

Syntax

C UINT LC_GetLine3DLight(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetLine3DLight(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetLine3DLight(void);
Class::SetLine3DLight(COLORREF value);

Visual Basic [form.]control.Line3DLight[= color]

Designer Page

Line subtab of the ApplyTo designer page

Remarks

The default value for the Line3DLight property is &H00FFFFFF& (white).

Use the Line3DDark and Line3DLight properties to change the three-dimensional line colors. To create three-dimensional lines
along the borders of each cell, you must set the LineStyle property to either 3 (Lowered), 4 (Raised), 5 (Lowered w/ Line), or 6
(Raised w/ Line).

You can set the ListApplyTo property before you set the Line3DLight property to designate the part of the control to which the
three-dimensional highlight color applies. Use the LineApplyTo property to specify the lines to which the highlight color applies.
Use the Line3DWidth property to specify the line width.

Data Type

Color

See Also
Customizing Lines

Line3DDark, Line3DWidth, LineApplyTo, LineStyle, ListApplyTo properties

Line3DWidth Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width in pixels of three-dimensional lines.

Syntax

C UINT LC_GetLine3DWidth(HWND hWnd, short FAR *lpValue);
UINT LC_SetLine3DWidth(HWND hWnd, short value);

C++ short Class::GetLine3DWidth(void);
Class::SetLine3DWidth(short value);

Visual Basic [form.]control.Line3DWidth[= value%]

Designer Page

Line subtab of the ApplyTo designer page

Remarks

The default value for the Line3DWidth property is 1 pixel.

To create three-dimensional lines along the right and bottom borders of each cell, you must set the LineStyle property to either 3
(Lowered), 4 (Raised), 5 (Lowered w/ Line), or 6 (Raised w/ Line). Use the Line3DDark and Line3DLight properties to change
the three-dimensional line colors.

You can set the ListApplyTo property before you set the Line3DWidth property to designate the part of the control to which the
three-dimensional width applies. Use the LineApplyTo property to specify the lines to which the width applies.

Both the highlight and shadow portions are set to the width specified by the Line3DWidth property. Therefore, the total width of
three-dimensional lines is equal to the sum of the widths of the highlight and shadow portions.

Use the LineWidth property to specify the width of flat lines.

Data Type

Integer

See Also
Customizing Lines

Line3DDark, Line3DLight, LineApplyTo, LineStyle, LineWidth, ListApplyTo properties

LineApplyTo Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether line properties apply to the lines between rows, between columns, or between columns when multiple
levels exist, or to all lines.

Syntax

C UINT LC_GetLineApplyTo(HWND hWnd, short FAR *lpValue);
UINT LC_SetLineApplyTo(HWND hWnd, short value);

C++ short Class::GetLineApplyTo(void);
Class::SetLineApplyTo(short value);

Visual Basic [form.]control.LineApplyTo[= setting%]

Designer Page

Line Apply To drop-down list box on the Line subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default (Default) Applies

properties to all lines
LC_LINEAPPLYTO_DEFAULT

1 - Rows Applies properties to
lines between rows

LC_LINEAPPLYTO_ROWS

2 - Cols Applies properties to
lines between columns

LC_LINEAPPLYTO_COLS

3 - ColsH Applies properties to
horizontal lines between
columns when multiple
levels exist

LC_LINEAPPLYTO_COLSH

You can set the ListApplyTo property before you set the LineApplyTo property to designate the part of the control to which this
property applies.

Use the LineApplyTo property before setting the following line properties:
Line3DDark LineColor
Line3DLight LineStyle
Line3DWidth LineWidth

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a list box control that displays a lowered, three-dimensional line style. The width of the three-
dimensional lines is 2 pixels. When a row is selected, a 3-pixel, blue, flat line is displayed below the row.

C
/* Display lowered line style */
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
/* green RGB(0, 255, 0) */
LC_SetLine3DDark(hWnd, 0x0000FF00);
/* red RGB(255, 0, 0) */
LC_SetLine3DLight(hWnd, 0x000000FF);
LC_SetLine3DWidth(hWnd, 2);
/* Display flat line when row is selected */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SEL_ROWS);
LC_SetLineApplyTo(hWnd, LC_LINEAPPLYTO_ROWS);
LC_SetLineStyle(hWnd, LC_LINESTYLE_FLAT);
LC_SetLineWidth(hWnd, 3);
/* blue RGB(0, 0, 255) */
LC_SetLineColor(hWnd, 0x00FF0000);

C++
// Display lowered line style
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
// green RGB(0, 255, 0)
fpList1->SetLine3DDark(0x0000FF00);
// red RGB(255, 0, 0)
fpList1->SetLine3DLight(0x000000FF);
fpList1->SetLine3DWidth(2);
// Display flat line when row is selected
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SEL_ROWS);
fpList1->SetLineApplyTo(LC_LINEAPPLYTO_ROWS);
fpList1->SetLineStyle(LC_LINESTYLE_FLAT);
fpList1->SetLineWidth(3);
// blue RGB(0, 0, 255)
fpList1->SetLineColor(0x00FF0000);

Visual Basic
' Display lowered line style
fpList1.LineStyle = LC_LINESTYLE_LOWERED
' green RGB(0, 255, 0)
fpList1.Line3DDark = &H0000FF00&
' red RGB(255, 0, 0)
fpList1.Line3DLight = &H000000FF&
fpList1.Line3DWidth = 2
' Display flat line when row is selected
fpList1.ListApplyTo = LC_LISTAPPLYTO_SEL_ROWS
fpList1.LineApplyTo = LC_LINEAPPLYTO_ROWS
fpList1.LineStyle = LC_LINESTYLE_FLAT
fpList1.LineWidth = 3
' blue RGB(0, 0, 255)
fpList1.LineColor = &H00FF0000&

See Also
Working with Lines

Line3DDark, Line3DLight, Line3DWidth, LineColor, LineStyle, LineWidth, ListApplyTo properties

LineColor Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the color of flat lines between columns and rows.

Syntax

C UINT LC_GetLineColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetLineColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetLineColor(void);
Class::SetLineColor(COLORREF value);

Visual Basic [form.]control.LineColor[= color]

Designer Page

Line subtab of the ApplyTo designer page

Remarks

The default value for the LineColor property is &H80000008& (Windows system text color).

Set the LineStyle property to 2 (Flat), 5 (Lowered w/ Line), or 6 (Raised w/ Line) to display flat lines.

You can set the ListApplyTo property before you set the LineStyle property to designate the part of the control to which the line
style applies. Use the LineApplyTo property to specify the lines to which the line color applies.

Use the Line3DDark and Line3DLight properties to change the highlight and shadow colors of three-dimensional lines.

Data Type

Color

See Also
Customizing Lines

Line3DDark, Line3DLight, LineApplyTo, LineStyle, ListApplyTo properties

LineStyle Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the appearance of lines between columns, rows, or both.

Syntax

C UINT LC_GetLineStyle(HWND hWnd, short FAR *lpValue);
UINT LC_SetLineStyle(HWND hWnd, short value);

C++ short Class::GetLineStyle(void);
Class::SetLineStyle(short value);

Visual Basic [form.]control.LineStyle[= setting%]

Designer Page

Line subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default (Default) Uses the line

style of the hierarchical
predecessor

LC_LINESTYLE_DEFAULT

1 - None Does not display lines LC_LINESTYLE_NONE
2 - Flat Displays a flat line LC_LINESTYLE_FLAT
3 - Lowered Displays lines with a

lowered three-
dimensional
appearance

LC_LINESTYLE_LOWERED

4 - Raised Displays lines with a
raised three-
dimensional
appearance

LC_LINESTYLE_RAISED

5 - Lowered w/ Line Displays lines with a
lowered three-
dimensional
appearance and a flat
line

LC_LINESTYLE_LOWERED_W_LINE

6 - Raised w/ Line Displays lines with a
raised three-
dimensional
appearance and a flat
line

LC_LINESTYLE_RAISED_W_LINE

If you set the LineStyle property to 2 (Flat), 5 (Lowered w/ Line), or 6 (Raised w/ Line), you can set the LineApplyTo property and
designated-line properties to define where and how lines are displayed.

You can set the ListApplyTo property before you set the LineStyle property to designate the part of the control to which the line
style applies.

Data Type

Integer (Enumerated)

See Also
Working with Lines

ExtendCol, ExtendRow, LineApplyTo, ListApplyTo properties

LineWidth Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width in pixels of flat lines.

Syntax

C UINT LC_GetLineWidth(HWND hWnd, short FAR *lpValue);
UINT LC_SetLineWidth(HWND hWnd, short value);

C++ short Class::GetLineWidth(void);
Class::SetLineWidth(short value);

Visual Basic [form.]control.LineWidth[=value%]

Designer Page

Line subtab of the ApplyTo designer page

Remarks

The default value for the LineWidth property is 1 pixel.

To create flat lines, set the LineStyle property to 2 (Flat), 5 (Lowered w/ Line), or 6 (Raised w/ Line).

You can set the ListApplyTo property before you set the LineWidth property to designate the part of the control to which the line
width applies. Use the LineApplyTo property to specify the lines to which the width applies.

Use the Line3DWidth property to specify the width of three-dimensional lines.

Data Type

Integer

Print Copy Close

The following example creates a single-column fpList control with three-dimensional lines for both the list and the selections and
sorts the values in ascending order.

C
LC_SetSorted(hWnd, LC_SORTED_ASCENDING);
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "Ocracoke");
LC_SetInsertRow(hWnd, "Chowan");
LC_SetInsertRow(hWnd, "Hatteras");
LC_SetInsertRow(hWnd, "Kill Devil Hills");
LC_SetInsertRow(hWnd, "Kitty Hawk");
LC_SetInsertRow(hWnd, "Croatan");
LC_SetInsertRow(hWnd, "Oregon Inlet");
/* Create a 3D look for the list box */
/* light gray RGB(192, 192, 192) */
LC_SetBackColor(hWnd, 0x00C0C0C0);
LC_SetLineApplyTo(hWnd, LC_LINEAPPLYTO_DEFAULT);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED_W_LINE);
/* white RGB(255, 255, 255) */
LC_SetLine3DLight(hWnd, 0x00FFFFFF);
/* dark gray RGB(128, 128, 128) */
LC_SetLine3DDark(hWnd, 0x00808080);
LC_SetLineWidth(hWnd, 3);
/* Create a 3D look for the selections (allow up to 5 selections) */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SEL_ROWS);
LC_SetLineStyle(hWnd, LC_LINESTYLE_RAISED);
/* medium blue RGB(0, 0, 192) */
LC_SetLine3DLight(hWnd, 0x00C00000);
/* dark blue RGB(0, 0, 128) */
LC_SetLine3DDark(hWnd, 0x00800000);
LC_SetLine3DWidth(hWnd, 2);
LC_SetSelDrawFocusRect(hWnd, FALSE);
LC_SetSelMax(hWnd, 5);

C++
fpList1->SetSorted(LC_SORTED_ASCENDING);
fpList1->SetRow(-1);
fpList1->SetInsertRow("Ocracoke");
fpList1->SetInsertRow("Chowan");
fpList1->SetInsertRow("Hatteras");
fpList1->SetInsertRow("Kill Devil Hills");
fpList1->SetInsertRow("Kitty Hawk");
fpList1->SetInsertRow("Croatan");
fpList1->SetInsertRow("Oregon Inlet");
// Create a 3D look for the list box
// light gray RGB(192, 192, 192)
fpList1->SetBackColor(0x00C0C0C0&);
fpList1->SetLineApplyTo(LC_LINEAPPLYTO_DEFAULT);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED_W_LINE);
// white RGB(255, 255, 255)
fpList1->SetLine3DLight(0x00FFFFFF);
// dark gray RGB(128, 128, 128)
fpList1->SetLine3DDark(0x00808080);
fpList1->SetLineWidth(3);
// Create a 3D look for the selections (allow up to 5 selections)
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SEL_ROWS);
fpList1->SetLineStyle(LC_LINESTYLE_RAISED);
// medium blue RGB(0, 0, 192)
fpList1->SetLine3DLight(0x00C00000);
// dark blue RGB(0, 0, 128)
fpList1->SetLine3DDark(0x00800000&);
fpList1->SetLine3DWidth(2);

fpList1->SetSelDrawFocusRect(FALSE);
fpList1->SetSelMax(5);

Visual Basic
fpList1.Sorted = LC_SORTED_ASCENDING
fpList1.Row = -1
fpList1.InsertRow = "Ocracoke"
fpList1.InsertRow = "Chowan"
fpList1.InsertRow = "Hatteras"
fpList1.InsertRow = "Kill Devil Hills"
fpList1.InsertRow = "Kitty Hawk"
fpList1.InsertRow = "Croatan"
fpList1.InsertRow = "Oregon Inlet"
' Create a 3D look for the list box
' light gray RGB(192, 192, 192)
fpList1.BackColor = &H00C0C0C0&
fpList1.LineApplyTo = LC_LINEAPPLYTO_DEFAULT
fpList1.LineStyle = LC_LINESTYLE_LOWERED_W_LINE
' white RGB(255, 255, 255)
fpList1.Line3DLight = &H00FFFFFF&
' dark gray RGB(128, 128. 128)
fpList1.Line3DDark = &H00808080&
fpList1.LineWidth = 3
' Create a 3D look for the selections (allow up to 5 selections)
fpList1.ListApplyTo = LC_LISTAPPLYTO_SEL_ROWS
fpList1.LineStyle = LC_LINESTYLE_RAISED
' medium blue RGB(0, 0, 192)
fpList1.Line3DLight = &H00C00000&
' dark blue RGB(0, 0, 128)
fpList1.Line3DDark = &H00800000&
fpList1.Line3DWidth = 2
fpList1.SelDrawFocusRect = False
fpList1.SelMax = 5

See Also
Customizing Lines

Line3DWidth, LineApplyTo, LineStyle, ListApplyTo properties

List Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns text from one row in the list portion of an fpCombo or fpList control. This property is available at run time only.

Syntax

C UINT LC_GetList(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetList(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetList(LPSTR buffer, UINT bufferSize);
Class::SetList(LPCSTR value);

Visual Basic [form.]control.List[=text$]

Designer Page

Add Data designer page

Remarks

Use the List property to access list items in single-column fpCombo and fpList controls (when the Columns property is set to 0).

If you use the List property to access list items in multiple-column fpCombo and fpList controls, the column values are separated
by the character specified by the ColumnSeparatorChar property. Use the ColList property to set or return specific column
values in multiple-column fpCombo and fpList controls.

You must specify a row with the Row property before you set the List property.

Note The List property is not an array property as it is in Visual Basic.

Data Type

String

See Also
Accessing List Items

ColList, Columns, ColumnSeparatorChar, Row properties

List3DText Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether text in an fpCombo or fpList control looks three-dimensional.

Syntax

C UINT LC_GetList3DText(HWND hWnd, short FAR *lpValue);
UINT LC_SetList3DText(HWND hWnd, short value);

C++ short Class::GetList3DText(void);
Class::SetList3DText(short value);

Visual Basic [form.]control.List3DText[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The List3DText property adds three-dimensional effects to the text in the list.

The following settings are available:
Setting Description Constants
0 - None (Default) Removes three-

dimensional effect from
text

LC_LIST3DTEXT_NONE

1 - Lowered Creates lowered three-
dimensional text

LC_LIST3DTEXT_LOWERED

2 - Raised Creates raised three-
dimensional text

LC_LIST3DTEXT_RAISED

3 - Lowered w/
 Shading

Creates lowered three-
dimensional text with extra
shading

LC_LIST3DTEXT_LOWERED_W_SHADING

4 - Raised w/
 Shading

Creates raised three-
dimensional text with extra
shading

LC_LIST3DTEXT_RAISED_W_SHADING

5 - Default Uses the three-
dimensional text effect of
the hierarchical
predecessor

LC_LIST3DTEXT_DEFAULT

You can set the ListApplyTo property before you set the List3DText property to designate the part of the control to which the
three-dimensional text effect applies.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates an fpList control that contains a list of the names of rivers. The text in the list is three-
dimensional, and the colors of the background and the text of an item change when the user selects the item.

C
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "Nile");
LC_SetInsertRow(hWnd, "Ganges");
LC_SetInsertRow(hWnd, "Mississippi");
LC_SetInsertRow(hWnd, "Yangtze");
LC_SetInsertRow(hWnd, "Orinoco");
/* Set list text to be three-dimensional */
LC_SetList3DText(hWnd, LC_LIST3DTEXT_LOWERED_W_SHADING);
LC_SetList3DTextOffset(hWnd, 1);
/* blue RGB(0, 0, 255) */
LC_SetList3DTextHighlightColor(hWnd, 0x00FF0000);
/* light gray RGB(192, 192, 192) */
LC_SetList3DTextShadowColor(hWnd, 0x00C0C0C0);
/* Set background and text colors of selected items */
LC_SetListApplyTo(hWnd, LC_LISTAPPLY_SEL_ROWS);
/* green RGB(0, 255, 0) */
LC_SetBackColor(hWnd, 0x0000FF00);
/* red RGB(255, 0, 0) */
LC_SetForeColor(hWnd, 0x000000FF);

C++
fpList1->SetRow(-1);
fpList1->SetInsertRow("Nile");
fpList1->SetInsertRow("Ganges");
fpList1->SetInsertRow("Mississippi");
fpList1->SetInsertRow("Yangtze");
fpList1->SetInsertRow("Orinoco");
// Set list text to be three-dimensional
fpList1->SetList3DText(LC_LIST3DTEXT_LOWERED_W_SHADING);
fpList1->SetList3DTextOffset(1);
// blue RGB(0, 0, 255)
fpList1->SetList3DTextHighlightColor(0x00FF0000);
// light gray RGB(192, 192, 192)
fpList1->SetList3DTextShadowColor(0x00C0C0C0);
// Set background and text colors of selected items
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SEL_ROWS);
// green RGB(0, 255, 0)
fpList1->SetBackColor(0x0000FF00);
// red RGB(255, 0, 0)
fpList1->SetForeColor(0x000000FF);

Visual Basic
fpList1.Row = -1
fpList1.InsertRow = "Nile"
fpList1.InsertRow = "Ganges"
fpList1.InsertRow = "Mississippi"
fpList1.InsertRow = "Yangtze"
fpList1.InsertRow = "Orinoco"
' Set list text to be three-dimensional
fpList1.List3DText = LC_LIST3DTEXT_LOWERED_W_SHADING
fpList1.List3DTextOffset = 1
' blue RGB(0, 0, 255)
fpList1.List3DTextHighlightColor = &H00FF0000&
' light gray RGB(192, 192, 192)
fpList1.List3DTextShadowColor = &H00C0C0C0&
' Set background and text colors of selected items
fpList1.ListApplyTo = LC_LISTAPPLYTO_SEL_ROWS
' green RGB(0, 255, 0)

fpList1.BackColor = &H0000FF00&
' red RGB(255, 0, 0)
fpList1.ForeColor = &H000000FF&

See Also
Creating Three-Dimensional Text

List3DTextHighlightColor, List3DTextOffset, List3DTextShadowColor, ListApplyTo properties

List3DTextHighlightColor, List3DTextShadowColor Properties
See Also Example

Applies To

fpCombo, fpList controls

Description

Set or return the highlight and shadow colors of the three-dimensional text in an fpCombo or fpList control.

Syntax

C UINT LC_GetList3DTextHighlightColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetList3DTextHighlightColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetList3DTextHighlightColor(void);
Class::SetList3DTextHighlightColor(COLORREF value);

Visual Basic [form.]control.List3DTextHighlightColor[= color]

Note The List3DTextHighlightColor and List3DTextShadowColor properties use the same syntax.

Designer Page

List subtab of the ApplyTo designer page

Remarks

The List3DTextHighlightColor and List3DTextShadowColor properties let you change the highlight and shadow colors of three-
dimensional text. To create three-dimensional text, set the List3DText property to a value other than 0 (None). To heighten the
three-dimensional effect, choose a light shade for the highlight color and a darker shade for the shadow color. For the
List3DTextShadowColor property to have an effect, the List3DText property must be set to 3 (Lowered w/ Shading) or 4 (Raised
w/ Shading).

The default values for these properties are &H80000014& (Windows system button highlight color) for List3DTextHighlightColor
and &H80000010& (Windows system button shadow color) for List3DTextShadowColor.

You can set the ListApplyTo property before you set the List3DTextHighlightColor or List3DTextShadowColor property to
designate the part of the control to which the three-dimensional highlight or shadow color applies.

Data Type

Color

See Also
Creating Three-Dimensional Text

List3DText, List3DTextOffset, ListApplyTo properties

List3DTextOffset Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width in pixels of the offset for three-dimensional text in an fpCombo or fpList control.

Syntax

C UINT LC_GetList3DTextOffset(HWND hWnd, short FAR *lpValue);
UINT LC_SetList3DTextOffset(HWND hWnd, short value);

C++ short Class::GetList3DTextOffset(void);
Class::SetList3DTextOffset(short value);

Visual Basic [form.]control.List3DTextOffset[= value%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

Changing the List3DTextOffset property makes three-dimensional text appear more raised or lowered. As a rule, the larger the
font size, the more you should increase the offset.

The default value for the List3DTextOffset property is 1 pixel.

You can set the ListApplyTo property before you set the List3DTextOffset property to designate the part of the control to which
the three-dimensional text offset applies.

Data Type

Integer

See Also
Creating Three-Dimensional Text

List3DText, List3DTextHighlightColor, List3DTextShadowColor, ListApplyTo properties

ListApplyTo Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns where to apply designated-list properties.

Syntax

C UINT LC_GetListApplyTo(HWND hWnd, short FAR *lpValue);
UINT LC_SetListApplyTo(HWND hWnd, short value);

C++ short Class::GetListApplyTo(void);
Class::SetListApplyTo(short value);

Visual Basic [form.]control.ListApplyTo[= setting%]

Designer Pages

List Apply To drop-down list box on:

List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default (All) (Default) Applies

properties to the entire
control

LC_LISTAPPLYTO_DEFAULT_ALL

1 - All Rows Applies properties to all
rows

LC_LISTAPPLYTO_ALL_ROWS

2 - All Cols Applies properties to all
columns

LC_LISTAPPLYTO_ALL_COLS

3 - All Groups Applies properties to all
groups including
children

LC_LISTAPPLYTO_ALL_GROUPS

4 - Sel Rows Applies properties to
selected rows

LC_LISTAPPLYTO_SEL_ROWS

5 - Odd Rows Applies properties to
odd-numbered rows

LC_LISTAPPLYTO_ODD_ROWS

6 - Even Rows Applies properties to
even-numbered rows

LC_LISTAPPLYTO_EVEN_ROWS

7 - Col Headers Applies properties to
column headers

LC_LISTAPPLYTO_COL_HEADERS

8 - Group Headers Applies properties to
group headers

LC_LISTAPPLYTO_GROUP_HEADERS

9 - Single Col
 Header

Applies properties to
specified column
header

LC_LISTAPPLYTO_SINGLE_COL_HEADER

10 - Single Group
 Header

Applies properties to
specified group header

LC_LISTAPPLYTO_SINGLE_GROUP_HEADER

11 - Single Group Applies properties to
specified group
including children

LC_LISTAPPLYTO_SINGLE_GROUP

12 - Single Item Applies properties to a
specified column, row,
or cell

LC_LISTAPPLYTO_SINGLE_ITEM

If you set the ListApplyTo property to 9 (Single Col Header), set the Col, ColFromID, or ColFromName property to specify the
column. If you set the ListApplyTo property to 10 (Single Group Header) or 11 (Single Group), set the Grp, GrpFromID, or
GrpFromName property to specify the group. If you set the ListApplyTo property to 12 (Single Item), set the Col, ColFromID, or

ColFromName property and the Row property as appropriate.

You can use the ListApplyTo property before setting any of the following properties:
AlignH FontUnderline List3DTextHighlightColor
AlignV ForeColor List3DTextOffset
BackColor Line3DDark List3DTextShadowColor
Font Line3DLight MultiLine
FontBold Line3DWidth Picture
FontEmpty LineApplyTo PictureAlignH
FontItalic LineColor PictureAlignV
FontName LineStyle PictureSel
FontSize LineWidth TextOrientation
FontStrikethru List3DText
If you set the ListApplyTo property to 3 (All Groups) or 11 (Single Group), property settings for children will be overridden.

Data Type

Integer (Enumerated)

See Also
Applying Properties to Specific Parts of the Control

AlignH, AlignV, BackColor, Col, ColFromID, ColFromName, Font, FontEmpty, ForeColor, Grp, GrpFromID, GrpFromName,
Line3DDark, Line3DLight, Line3DWidth, LineApplyTo, LineColor, LineStyle, LineWidth, List3DText, List3DTextHighlightColor,
List3DTextOffset, List3DTextShadowColor, MultiLine, Picture, PictureAlignH, PictureAlignV, PictureSel, Row, TextOrientation
properties

ListCount Property

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of items in the list of an fpCombo or fpList control.

Syntax

C UINT LC_GetListCount(HWND hWnd, long FAR *lpValue);
UINT LC_SetListCount(HWND hWnd, long value);

C++ long Class::GetListCount(void);
Class::SetListCount(long value);

Visual Basic [form.]control.ListCount[= value&]

Designer Page

Add Data designer page

Remarks

The ListCount property provides the number of items in the list of an fpCombo or fpList control.

Data Type

Integer (Long)

ListDown Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns whether the drop-down list is currently displayed in a drop-down fpCombo control. This property is available at
run time only.

Syntax

C UINT CbxGetListDown(HWND hWnd, BOOL FAR *lpValue);
UINT CbxSetListDown(HWND hWnd, BOOL value);

C++ BOOL CfpComboBox::GetListDown(void);
CfpComboBox::SetListDown(BOOL value);

Visual Basic [form.]fpCombo1.ListDown[= boolean%]

Remarks

You can use this property to determine if the drop-down list is up or down, or to force the drop-down list to be displayed or to be
removed from the screen.

When the ListDown property is set to True, the drop-down fpCombo control displays its drop-down list.

You must move the focus to the fpCombo control (using the Form's Activate event or the SetFocus method) before setting the
ListDown property.

Data Type

Integer (Boolean)

Print Copy Close

The following example sets the drop-down list to be displayed whenever the fpCombo control receives the focus. The drop-
down list is automatically removed whenever the fpCombo control loses the focus.

C
void OnGotFocus(UNIT, int, Cwnd*, LPVOID)
{

CbxSetListDown(hWnd, TRUE);
}

C++
void CLBDlg::OnGotFocus(UNIT, int, Cwnd*, LPVOID)
{

m_fpCombo->SetListDown(TRUE);
}

Visual Basic
Sub fpCombo1_GotFocus ()
' Display list when fpCombo control receives focus
fpCombo1.ListDown = True
End Sub

See Also
MaxDrop, Style properties

ListGrayAreaColor Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the color of the gray area between cells and the control border.

Syntax

C UINT LC_GetListGrayAreaColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetListGrayAreaColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetListGrayAreaColor(void);
Class::SetListGrayAreaColor(COLORREF value);

Visual Basic [form.]control.ListGrayAreaColor[= color]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the ListGrayAreaColor property is &H8000000B& (the default color, which is light gray).

Data Type

Color

See Also
Changing the List Gray Area Color

BorderGrayAreaColor, GrayAreaColor properties

ListIndex Property
Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the index of the currently selected row in an fpCombo or fpList control. This property is available at run time only.

Syntax

C UINT LC_GetListIndex(HWND hWnd, long FAR *lpValue);
UINT LC_SetListIndex(HWND hWnd, long value);

C++ long Class::GetListIndex(void);
Class::SetListIndex(long value);

Visual Basic [form.]control.ListIndex[= value&]

Remarks

The ListIndex property returns 1 when no rows are selected.

Data Type

Integer (Long)

ListLeftOffset Property
See Also

Applies To

fpCombo control

Description

Sets or returns the size in pixels of the offset of the list from the left side of an fpCombo control.

Syntax

C UINT CbxGetListLeftOffset(HWND hWnd, long FAR *lpValue);
UINT CbxSetListLeftOffset(HWND hWnd, long value);

C++ long CfpComboBox::GetListLeftOffset(void);
CfpComboBox::SetListLeftOffset(long value);

Visual Basic [form.]fpCombo1.ListLeftOffset[= value!]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the ListLeftOffset property is 1, which sets the offset to the following values:
fpCombo Style Value
Simple combo 7 pixels
Drop-down combo 7 pixels
Drop-down list 0 pixels

Data Type

Single

See Also
Choosing the fpCombo Control Style

Style property

ListWidth Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the width of the list portion in an fpCombo control.

Syntax

C UINT CbxGetListWidth(HWND hWnd, long FAR *lpValue);
UINT CbxSetListWidth(HWND hWnd, long value);

C++ long CfpComboBox::GetListWidth(void);
CfpComboBox::SetListWidth(long value);

Visual Basic [form.]fpCombo1.ListWidth[= value%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the ListWidth property is 1, which sets the width of the list to be the same as the
width of the edit field, less the width of the ListLeftOffset property setting.

In Visual Basic, the measurement unit used by the ListWidth property depends on the setting of the form's ScaleMode property.
The default ScaleMode setting is twips (1/1440 of an inch). Generally the ActiveX and VBX controls use twips as the default
measurement unit, and the DLL control uses pixels as the default measurement unit.

The ListWidth property does not apply when the Style property is set to 1 (Simple Combo).

When the ListWidth property setting is less than the sum of the column widths set for display, the far right columns are
truncated. Use a horizontal scroll bar when the ListWidth property setting is less than the sum of the column widths.

Data Type

Integer

Print Copy Close

The following example creates a drop-down fpCombo control that displays a list of cities. The list width is set to accommodate
the cities listed, and horizontal and vertical scroll bars are disabled unless they are needed.

C
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "Abilene");
LC_SetInsertRow(hWnd, "Tifton");
LC_SetInsertRow(hWnd, "Alamosa");
LC_SetInsertRow(hWnd, "Garden City");
LC_SetInsertRow(hWnd, "Glens Falls");
LC_SetInsertRow(hWnd, "Adrian");
/* Set width of list */
LC_SetListWidth(hWnd, 250);
/* Show scroll bars as disabled when not needed */
LC_SetScrollBarH(hWnd, LC_SCROLLBARH_SHOW_DISABLED);
LC_SetScrollBarV(hWnd, LC_SCROLLBARV_SHOW_DISABLED);

C++
fpCombo1->SetRow(-1);
fpCombo1->SetInsertRow("Abilene");
fpCombo1->SetInsertRow("Tifton");
fpCombo1->SetInsertRow("Alamosa");
fpCombo1->SetInsertRow("Garden City");
fpCombo1->SetInsertRow("Glens Falls");
fpCombo1->SetInsertRow("Adrian");
// Set width of list
fpCombo1->SetListWidth(250);
// Show scroll bars as disabled when not needed
fpCombo1->SetScrollBarH(LC_SCROLLBARH_SHOW_DISABLED);
fpCombo1->SetScrollBarV(LC_SCROLLBARV_SHOW_DISABLED);

Visual Basic
fpCombo1.Row = -1
fpCombo1.InsertRow = "Abilene"
fpCombo1.InsertRow = "Tifton"
fpCombo1.InsertRow = "Alamosa"
fpCombo1.InsertRow = "Garden City"
fpCombo1.InsertRow = "Glens Falls"
fpCombo1.InsertRow = "Adrian"
' Set width of list
fpCombo1.ListWidth = 2500
' Show scroll bars as disabled when not needed
fpCombo1.ScrollBarH = LC_SCROLLBARH_SHOW_DISABLED
fpCombo1.ScrollBarV = LC_SCROLLBARV_SHOW_DISABLED

See Also
ColumnWidthScale, ListLeftOffset, Style properties

MaxDrop Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the number of rows to display in the drop-down list of an fpCombo control.

Syntax

C UINT CbxGetMaxDrop(HWND hWnd, short FAR *lpValue);
UINT CbxSetMaxDrop(HWND hWnd, short value);

C++ short CfpComboBox::GetMaxDrop(void);
CfpComboBox::SetMaxDrop(short value);

Visual Basic [form.]fpCombo1.MaxDrop[= value%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the MaxDrop property is 8 rows.

The edit field, header, and horizontal scroll bar, when displayed, are not counted as rows.

The MaxDrop property does not apply when the Style property is set to 1 (Simple Combo).

Data Type

Integer

See Also
Specifying the Number of Rows Displayed in the Drop-Down List

ListDown, Style properties

MaxEditLen Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the maximum number of characters of text that the user can enter in the edit field.

Syntax

C UINT CbxGetMaxEditLen(HWND hWnd, short FAR *lpValue);
UINT CbxSetMaxEditLen(HWND hWnd, short value);

C++ short CfpComboBox::GetMaxEditLen(void);
CfpComboBox::SetMaxEditLen(short value);

Visual Basic [form.]fpCombo1.MaxEditLen[= value%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the MaxEditLen property is 150 characters.

Use the ColumnEdit property to specify which column appears in the edit field.

Data Type

Integer

Print Copy Close

The following example creates a five-column, simple combo style combo box control. The maximum number of characters
allowed in the edit field is 10.

C
LC_SetColumns(hWnd, 5);
LC_SetStyle(hWnd, CBX_STYLE_SIMPLE_COMBO);
LC_SetMaxEditLen(hWnd, 10);

C++
fpCombo1->SetColumns(5);
fpCombo1->SetStyle(CBX_STYLE_SIMPLE_COMBO);
fpCombo1->SetMaxEditLen(10);

Visual Basic
fpCombo1.Columns = 5
fpCombo1.Style = CBX_STYLE_SIMPLE_COMBO
fpCombo1.MaxEditLen = 10

See Also
Choosing the fpCombo Control Style

ColumnEdit property

MergeAdjustView Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the view of cell contents of merged rows or columns is adjusted as the user scrolls through the list.

Syntax

C UINT LC_GetMergeAdjustView(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetMergeAdjustView(HWND hWnd, BOOL value);

C++ BOOL Class::GetMergeAdjustView(void);
Class::SetMergeAdjustView(BOOL value);

Visual Basic [form.]control.MergeAdjustView[= boolean%]

Designer Page

Merge/Join designer page

Remarks

The default value for the MergeAdjustView property is False. If you set the MergeAdjustView property to True, the cell contents
of merged rows or columns are always vertically (in the case of merged rows) or horizontally (in the case of merged columns)
centered in the portion of the cell that is displayed. The cell contents do not scroll out of the viewing area until the entire merged
area is out of the viewing area.

Data Type

Integer (Boolean)

See Also
Merging Columns or Rows

ColMerge, RowMerge properties

MouseOverArea Property
See Also Example

Applies To

fpCombo control

Description

Returns where the mouse is positioned in an fpCombo control.

Syntax

C UINT CbxGetMouseOverArea(HWND hWnd, short FAR *lpValue);

C++ short CfpComboBox::GetMouseOverArea(void);

Visual Basic [form.]fpCombo1.MouseOverArea

Remarks

The following values can be returned:
Return value Description Constant
0 - None Mouse is not over the

drop-down arrow, edit
field, or list portion of the
control

CBX_MOUSEOVERAREA_NONE

1 - Button Mouse is positioned over
the drop-down arrow
button

CBX_MOUSEOVERAREA_BUTTON

2 - Edit Mouse is positioned over
the edit field

CBX_MOUSEOVERAREA_EDIT

3 - List Mouse is positioned over
the list portion of the
control

CBX_MOUSEOVERAREA_LIST

You can use this property in events such as MouseMove, Click, or DblClick.

Data Type

Integer (Boolean)

Print Copy Close

The following example prints a message describing where the mouse is positioned when the user moves the mouse.

C
void OnButtonDblClickLB(UINT, int, Cwnd*, LPVOID)
{

short x;

sprintf(buffer, "%d", CbxGetMouseOverArea(hWnd, &x));
MessageBox(buffer, "MouseOverCol", MB_OK);

}
C++

void CAboutDlg::OnButtonDblClickLB(UINT, int, Cwnd*, LPVOID)
{

fpCombo1=(CfpComboBox*)GetDlgItem(IDC_COMBO);

sprintf(buffer, "%d", fpCombo1->GetMouseOverArea());
MessageBox(buffer, "MouseOverCol", MB_OK);

}
Visual Basic

Sub fpCombo1_MouseMove(Button As Integer, Shift As Integer, X As Single, Y As
Single)

' Display what part of the combo box the mouse is over
If fpCombo1.MouseOverArea = 0 Then

Debug.Print "Mouse is not over the arrow, edit field, or list"
ElseIf fpCombo1.MouseOverArea = 1 Then

Debug.Print "Mouse is over the drop-down arrow"
ElseIf fpCombo1.MouseOverArea = 2 Then

Debug.Print "Mouse is over the edit field"
Else

Debug.Print "Mouse is over the list"
End If

End Sub

See Also
MouseOverCol, MouseOverColHeader, MouseOverGrp, MouseOverGrpHeader, MouseOverRow properties

MouseOverCol Property
See Also

Applies To

fpCombo, fpList controls

Description

Returns the number of the column over which the mouse is currently positioned in a multiple-column fpCombo or fpList control.
This property is available at run time only.

Syntax

C UINT LC_GetMouseOverCol(HWND hWnd, short FAR *lpValue);

C++ short Class::GetMouseOverCol(void);

Visual Basic [form.]control.MouseOverCol

Remarks

This property returns the number of the column over which the mouse pointer is currently positioned. Column numbers start with
zero, which specifies the top, leftmost column.

The MouseOverCol property returns 1 when the cursor is not positioned on the fpCombo or fpList control
or on a specific column. The MouseOverCol property returns

1 for single-column fpCombo or fpList controls (when the Columns property is set to 0).
Use the MouseOverColHeader property to distinguish between the header and the body of the column.

Data Type

Integer

See Also
Columns, MouseOverArea, MouseOverColHeader, MouseOverGrp, MouseOverGrpHeader, MouseOverRow properties

MouseOverColHeader Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Returns the number of the column header over which the mouse is currently positioned in a multiple-column fpCombo or fpList
control. This property is available at run time only.

Syntax

C UINT LC_GetMouseOverColHeader(HWND hWnd, long FAR *lpValue);

C++ long Class::GetMouseOverColHeader(void);

Visual Basic [form.]control.MouseOverColHeader

Remarks

This property returns the number of the column header over which the mouse pointer is currently positioned. Column numbers
start with zero, which specifies the top, leftmost column header.

The MouseOverColHeader property returns 1 when the cursor is not positioned on the fpCombo or fpList
control or on a specific column header. The MouseOverColHeader property returns

1 for single-column fpCombo or fpList controls (when the Columns property is set to 0).

Data Type

Integer

Print Copy Close

The following example creates a three-column fpList control with customized column header text. To try this example, create an
fpList control and a Text control on your form. When you run the example, as you move the mouse over the fpList control's
column headers, the Text control displays the column header text.

Visual Basic
Sub Form_Load ()
fpList1.Columns = 3
fpList1.Row = -1
fpList1.InsertRow = "ACME" & Chr$(9) & "4459" & Chr$(9) & "(919) 555-3275"
fpList1.InsertRow = "Buster" & Chr$(9) & "4528" & Chr$(9) & "(919) 555-1982"
fpList1.InsertRow = "Caref" & Chr$(9) & "4656" & Chr$(9) & "(919) 555-0378"
fpList1.ColumnHeaderShow = True
fpList1.Col = 0
fpList1.ColHeaderText = "Publisher"
fpList1.Col = 1
fpList1.ColHeaderText = "ID Number"
fpList1.Col = 2
fpList1.ColHeaderText = "Fax Number"
End Sub

Sub fpList1_MouseMove (Button As Integer, Shift As Integer, x As Single, y As
Single)
k = fpList1.MouseOverColHeader
If k >= 0 Then

fpList1.Col = k
Text1.Text = fpList1.ColHeaderText

Else
Text1.Text = ""

End If
End Sub

See Also
Columns, MouseOverArea, MouseOverCol, MouseOverGrp, MouseOverGrpHeader, MouseOverRow properties

MouseOverGrp Property
See Also

Applies To

fpCombo, fpList controls

Description

Returns the number of the group over which the mouse is currently positioned in a multiple-group fpCombo or fpList control.
This property is available at run time only.

Syntax

C UINT LC_GetMouseOverGrp(HWND hWnd, short FAR *lpValue);

C++ short Class::GetMouseOverGrp(void);

Visual Basic [form.]control.MouseOverGrp

Remarks

This property returns the number of the group over which the mouse pointer is currently positioned. Group numbers start with
zero, which specifies the top, leftmost group.

The MouseOverGrp property returns 1 when the cursor is not positioned on the fpCombo or fpList control
or on a specific group.

Use the MouseOverGrpHeader property to distinguish between the header and the body of the group.

Data Type

Integer

See Also
Groups, MouseOverArea, MouseOverCol, MouseOverColHeader, MouseOverGrpHeader, MouseOverRow properties

MouseOverGrpHeader Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Returns the number of the group header over which the mouse is currently positioned in a multiple-group fpCombo or fpList
control. This property is available at run time only.

Syntax

C UINT LC_GetMouseOverGrpHeader(HWND hWnd, short FAR *lpValue);

C++ short Class::GetMouseOverGrpHeader(void);

Visual Basic [form.]control.MouseOverGrpHeader

Remarks

This property tells you the group header the user is pointing to at run time. Group numbers start with zero, which specifies the
top, leftmost group header.

The MouseOverGrpHeader property returns 1 when the cursor is not positioned on the fpCombo or fpList
control or on a specific group header.

Data Type

Integer

Print Copy Close

The following example creates a three-group fpList control with customized group header text. To try this example, create an
fpList control and a Text control on your form. When you run the example, as you move the mouse over the fpList control's
group headers, the Text control displays the group header text.

Visual Basic
Sub Form_Load ()
fpList1.Groups = 3
fpList1.Columns = 3
fpList1.ColumnHeaderShow = False
fpList1.Row = -1
fpList1.InsertRow = "ACME" & Chr$(9) & "4459" & Chr$(9) & "(919) 555-3275"
fpList1.InsertRow = "Buster" & Chr$(9) & "4528" & Chr$(9) & "(919) 555-1982"
fpList1.InsertRow = "Caref" & Chr$(9) & "4656" & Chr$(9) & "(919) 555-0378"
fpList1.GroupHeaderShow = True
fpList1.Grp = 0
fpList1.GrpHeaderText = "Publisher"
fpList1.Grp = 1
fpList1.GrpHeaderText = "ID Number"
fpList1.Grp = 2
fpList1.GrpHeaderText = "Fax Number"
fpList1.Col = 0
fpList1.ColParentGroup = 0
fpList1.Col = 1
fpList1.ColParentGroup = 1
fpList1.Col = 2
fpList1.ColParentGroup = 2
End Sub

Sub fpList1_MouseMove (Button As Integer, Shift As Integer, x As Single, y As
Single)
k = fpList1.MouseOverGrpHeader
If k >= 0 Then

fpList1.Grp = k
Text1.Text = fpList1.GrpHeaderText

Else
Text1.Text = ""

End If
End Sub

See Also
Groups, MouseOverArea, MouseOverCol, MouseOverColHeader, MouseOverGrp properties

MouseOverRow Property
See Also

Applies To

fpCombo, fpList controls

Description

Returns the number of the row over which the mouse is currently positioned in an fpCombo or fpList control. This property is
available at run time only.

Syntax

C UINT LC_GetMouseOverRow(HWND hWnd, long FAR *lpValue);

C++ long Class::GetMouseOverRow(void);

Visual Basic [form.]control.MouseOverRow

Remarks

This property returns the number of the row (list item) over which the mouse pointer is currently positioned. Row numbers start
with zero, which specifies the first row.

The MouseOverRow property returns a value of 1 when the cursor is not positioned on the fpCombo or
fpList control or on a row. The MouseOverRow property returns the same value for single- and multiple-column lists.

Data Type

Integer

See Also
Columns, MouseOverArea, MouseOverCol, MouseOverColHeader properties

MultiLine Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether text displays on a single line or on multiple lines.

Syntax

C UINT LC_GetMultiLine(HWND hWnd, short FAR *lpValue);
UINT LC_SetMultiLine(HWND hWnd, short value);

C++ short Class::GetMultiLine(void);
Class::SetMultiLine(short value);

Visual Basic [form.]control.MultiLine[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default Uses the same setting as the

hierarchical predecessor
LC_MULTILINE_DEFAULT

1 - Single Line (Default) Text displays on one
line

LC_MULTILINE_SINGLE_LINE

2 - Multiple Line Text displays on multiple lines LC_MULTILINE_MULTIPLE_LINE
Use the ListApplyTo property to specify the area of the list to which the MultiLine property applies.

You must use the RowHeight property to increase the height of each row that displays text on multiple lines.

Data Type

Integer (Enumerated)

See Also
Wrapping Text in a List Pro Control

ListApplyTo, RowHeight properties

MultiSelect Property
See Also Example

Applies To

fpList control

Description

Sets or returns whether and when the user can select multiple items in an fpList control.

Syntax

C UINT LbxGetMultiSelect(HWND hWnd, short FAR *lpValue);
UINT LbxSetMultiSelect(HWND hWnd, short value);

C++ short CfpListBox::GetMultiSelect(void);
CfpListBox::SetMultiSelect(short value);

Visual Basic [form.]fpList1.MultiSelect[= setting%]

Designer Page

Miscellaneous designer page

Remarks

The following settings are available:
Setting Description Constant
0 - None (Default) Prevents multiple

selections
LBX_MULTISELECT_NONE

1 - Simple Allows user to click the mouse
button or to press the
Spacebar to select or deselect
an item in the list and to use
the arrow keys to move the
focus

LBX_MULTISELECT_SIMPLE

2 - Extended Allows user to either LBX_MULTISELECT_EXTENDED

Press Shift and click or press
Shift and an arrow key to
extend the highlighting to the
current item

Press Ctrl and click to select
or deselect items

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates an fpList control that lets the user select all the items in the list by double-clicking the control.

Visual Basic
Sub Form_Load ()
fpList1.Row = -1
fpList1.InsertRow = "North Carolina"
fpList1.InsertRow = "Ohio"
fpList1.InsertRow = "Virginia"
fpList1.InsertRow = "Florida"
fpList1.InsertRow = "California"
fpList1.MultiSelect = LBX_MULTISELECT_EXTENDED
End Sub

Sub fpList1_DblClick ()
fpList1.Action = LC_ACTION_SELECTALL
End Sub

See Also
Accessing List Items

Action, NextSel properties

NewIndex Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Returns the index of the item most recently added to an fpCombo or fpList control. This property is available at run time only.

Syntax

C UINT LC_GetNewIndex(HWND hWnd, long FAR *lpValue);

C++ long Class::GetNewIndex(void);

Visual Basic [form.]control.NewIndex

Remarks

This property is useful with sorted lists when you need a list of values that correspond to each item in the ItemData property
array. As you add an item in a sorted list, the item is inserted in the list alphabetically. This property tells you where the item was
inserted so you can insert a corresponding value using the ItemData property at the same index.

The NewIndex property returns 1 if there are no items in the list or if an item has been deleted since the
last item was added.

Data Type

Integer (Long)

See Also
ItemData property

NextSel Property
See Also Example

Applies To

fpList control

Description

Sets or returns the number of the next selected row when multiple rows are selected. This property is available at run time only.

Syntax

C UINT LbxGetNextSel(HWND hWnd, long FAR *lpValue);
UINT LbxSetNextSel(HWND hWnd, long value);

C++ long CfpListBox::GetNextSel(void);
CfpListBox::SetNextSel(long value);

Visual Basic [form.]fpList1.NextSel[= value&]

Remarks

Use the SelCount property to determine how many rows have been selected.

Data Type

Integer (Long)

Print Copy Close

The following example creates a list box control that allows simple multiple selection of list items. When the user selects an item
in a list, the list item is displayed in a text box.

Visual Basic
Sub Form_Load()

m_LB.MultiSelect = LC_MULTISELECT_SIMPLE
End Sub

Sub m_LB_SelChange(ItemIndex As Long)
Text1.Text = m_LB.NextSel()

End Sub

See Also
MultiSelect, SelCount, Selected, SelMax properties

NoIntegralHeight Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the list of an fpCombo or fpList control is automatically resized so that an entire row is displayed on the
bottom.

Syntax

C UINT LC_GetNoIntegralHeight(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetNoIntegralHeight(HWND hWnd, BOOL value);

C++ BOOL Class::GetNoIntegralHeight(void);
Class::SetNoIntegralHeight(BOOL value);

Visual Basic [form.]control.NoIntegralHeight[= boolean%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for this property is False, which resizes the list when necessary to display an entire row at the bottom.

When the value of this property is True, the list does not automatically resize.

Data Type

Integer (Boolean)

See Also
RowHeight property

Picture Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the graphic that is displayed in a list item. This property is available at run time only.

Syntax

C UINT LC_GetPicture(HWND hWnd, short FAR *retPictType,
short FAR *retPictHndType, LPVOID buffer,

UINT nBufferSize, HPALETTE FAR *retHPal);

LC_SetPicture(HWND hWnd, short pictType, short pictHndType,

DWORD pictHndOrRes, HPALETTE hPal);
C++ LPVOID Class::GetPicture(short FAR* retPictType,

short FAR* retPictHndType, LPVOID buffer,

UINT bufferSize, HPALETTE FAR* retHPal);

Class::SetPicture(short retPictType, short retHndType,

DWORD buffer, HPALETTE hPal);
Visual Basic [form.]control.Picture[= picture]

Designer Page

List subtab of the ApplyTo designer page

Remarks

You can display small graphics (bitmaps or icons) as list items in an fpCombo or fpList control. You can display text and graphics
simultaneously. The Picture property specifies the graphic displayed when a list item is not selected. In contrast, the PictureSel
property specifies the graphic displayed when a list item is selected. For example, you can display a closed book icon when a
list item is not selected and an open book icon when an item is selected.

You can use the ListApplyTo property to specify where the graphic is displayed.

Use the PictureAlignH and PictureAlignV properties to specify how the graphic is horizontally and vertically aligned.

Data Type

Picture

Print Copy Close

The following example sets the row height to the height of an icon displayed in the second row.

C
LC_SetColumns(hWnd, 1);
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetInsertRow(hWnd, "Row 1");
LC_SetInsertRow(hWnd, "Row 2");
LC_SetInsertRow(hWnd, "Row 3");
/* Set RowHeight to height of an icon in twips */
LC_SetRowHeight(hWnd, Screen.TwipsPerPixelY * 32);
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetRow(hWnd, 1);
/* Load icon */
HICON hiconMail;
hbmpMail = LoadBitmap(hInstance, "mail01a");
LC_SetPicture(hWnd, FP_PICT_TYPE_ICON, FP_HNDTYPE_HANDLE, hiconMail, hPalette);

C++
fpList1->SetColumns(1);
fpList1->SetColumnHeaderShow(FALSE);
fpList1->SetInsertRow("Row 1");
fpList1->SetInsertRow("Row 2");
fpList1->SetInsertRow("Row 3");
// Set RowHeight to height of an icon in twips
fpList1->SetRowHeight(Screen.TwipsPerPixelY * 32);
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
fpList1->SetRow(1);
// Convert hIcon to hPic
PIC picture;
HPIC hPic;
HICON hIcon;
hIcon=LoadIcon(AfxGetInstanceHandle(), "mail01");
picture.picData.ico.hIcon=hIcon;
picture.picType=PICTURE_ICON;
hPic=AfxSetPict(NULL,&picture);
fpList1->SetPicture(hPic);

Visual Basic
fpList1.Columns = 1
fpList1.ColumnHeaderShow = False
fpList1.InsertRow = "Row 1"
fpList1.InsertRow = "Row 2"
fpList1.InsertRow = "Row 3"
' Set RowHeight to height of an icon in twips
fpList1.RowHeight = Screen.TwipsPerPixelY * 32
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.Row = 1
fpList1.Picture = LoadPicture("c:\listpro\icons\mail01a.ico")

See Also
Displaying Graphics

ListApplyTo, PictureAlignH, PictureAlignV, PictureSel properties

PictureAlignH Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the horizontal alignment of a bitmap or icon in a list item.

Syntax

C UINT LC_GetPictureAlignH(HWND hWnd, short FAR *lpValue);
UINT LC_SetPictureAlignH(HWND hWnd, short value);

C++ short Class::GetPictureAlignH(void);
Class::SetPictureAlignH(short value);

Visual Basic [form.]control.PictureAlignH[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default Uses the same setting

as the hierarchical
predecessor

LC_PICTUREALIGNH_DEFAULT

1 - Left Left-justifies the graphic LC_PICTUREALIGNH_LEFT
2 - Center Centers the graphic LC_PICTUREALIGNH_CENTER
3 - Right Right-justifies the

graphic
LC_PICTUREALIGNH_RIGHT

4 - Left of Text (Default) Displays the
graphic to the left of the
text

LC_PICTUREALIGNH_LEFT_OF_TEXT

5 - Right of Text Displays the graphic to
the right of the text

LC_PICTUREALIGNH_RIGHT_OF_TEXT

If you set the PictureAlignH property to 4 (Left of Text) or 5 (Right of Text), the text is displayed to the right or left of the graphic,
not immediately next to it.

You can use the ListApplyTo property to specify the area of the control to which to apply the horizontal alignment of graphics.

Use the PictureAlignV property to specify the vertical alignment of graphics.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a two column list box. The first column contains a graphic and the second column contains text.
The graphic is displayed at the center and top of the cell.

C
LC_SetColumns(hWnd, 2);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetRowHeight(hWnd, 45);
LC_SetInsertRow(hWnd, "\t");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColName(hWnd, "Pix");
LC_SetColHeaderText(hWnd, "Picture");
LC_SetCol(hWnd, 1);
LC_SetColName(hWnd, "Desc");
LC_SetColHeaderText(hWnd, "Description");
/* Specify graphic and text */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetColFromName(hWnd, "Pix");
LC_SetRow(hWnd, 0);
/* Load bitmap */
HBITMAP hbmpBalloon;
hbmpBalloon = LoadBitmap(hInstance, "Balloon");
LC_SetPicture(hWnd, FP_PICT_TYPE_BITMAP, FP_HNDTYPE_HANDLE, hbmpBalloon, hPalette);
/* Add column text */
LC_SetColFromName(hWnd, "Desc");
LC_SetColText(hWnd, "Balloon");
/* Align graphic in first column */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetColFromName(hWnd, "Pix");
LC_SetPictureAlignH(hWnd, LC_PICTUREALIGNH_CENTER);
LC_SetPictureAlignV(hWnd, LC_PICTUREALIGNV_TOP);

C++
fpList1->SetColumns(2);
fpList1->SetColumnHeaderShow(TRUE);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetRowHeight(45);
fpList1->SetInsertRow("\t");
// Define columns
fpList1->SetCol(0);
fpList1->SetColName("Pix");
fpList1->SetColHeaderText("Picture");
fpList1->SetCol(1);
fpList1->SetColName("Desc");
fpList1->SetColHeaderText("Description");
// Specify graphic and text
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
fpList1->SetColFromName("Pix");
fpList1->SetRow(0);
// Convert hBitmap to hPic
PIC picture;
HPIC hPic;
HBITMAP hBitmap;
hBitmap=LoadBitmap(AfxGetInstanceHandle(), "balloon");
picture.picData.bmp.hbitmap=hbitmap;
picture.picType=PICTYPE_BITMAP;
hPic=AfxSetPict(NULL, &picture);
fpList1->SetPicture(hPic);
// Add column text
fpList1->SetColFromName("Desc");
fpList1->SetColText("Balloon");

// Align graphic in first column
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
fpList1->SetColFromName("Pix");
fpList1->SetPictureAlignH(LC_PICTUREALIGNH_CENTER);
fpList1->SetPictureAlignV(LC_PICTUREALIGNV_TOP);

Visual Basic
fpList1.Columns = 2
fpList1.ColumnHeaderShow = True
fpList1.LineStyle = LC_LINESTYLE_LOWERED
fpList1.RowHeight = 600
fpList1.InsertRow = "" & Chr$(9) & ""
' Define columns
fpList1.Col = 0
fpList1.ColName = "Pix"
fpList1.ColHeaderText = "Picture"
fpList1.Col = 1
fpList1.ColName = "Desc"
fpList1.ColHeaderText = "Description"
' Specify graphic and text
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.ColFromName = "Pix"
fpList1.Row = 0
fpList1.Picture = LoadPicture("c:\vb16\bitmaps\assorted\balloon.bmp")
' Add column text
fpList1.ColFromName = "Desc"
fpList1.ColText = "Balloon"
' Align graphic in first column
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.ColFromName = "Pix"
fpList1.PictureAlignH = LC_PICTUREALIGNH_CENTER
fpList1.PictureAlignV = LC_PICTUREALIGNV_TOP

See Also
Aligning Text and Graphics

ListApplyTo, Picture, PictureAlignV, PictureSel properties

PictureAlignV Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the vertical alignment of a bitmap or icon in a list item.

Syntax

C UINT LC_GetPictureAlignV(HWND hWnd, short FAR *lpValue);
UINT LC_SetPictureAlignV(HWND hWnd, short value);

C++ short Class::GetPictureAlignV(void);
Class::SetPictureAlignV(short value);

Visual Basic [form.]control.PictureAlignV[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default Uses the same setting

as the hierarchical
predecessor

LC_PICTUREALIGNV_DEFAULT

1 - Top Displays the graphic at
the top of the row

LC_PICTUREALIGNV_TOP

2 - Center (Default) Displays the
graphic in the center of
the row

LC_PICTUREALIGNV_CENTER

3 - Bottom Displays the graphic at
the bottom of the row

LC_PICTUREALIGNV_BOTTOM

4 - Top of Text Displays the graphic
above the text

LC_PICTUREALIGNV_TOP_OF_TEXT

5 - Bottom of Text Displays the graphic
below the text

LC_PICTUREALIGNV_BOTTOM_OF_TEXT

You can use the ListApplyTo property to specify the area of the control to which to apply the vertical alignment of graphics.

Use the PictureAlignH property to specify the horizontal alignment of graphics.

Data Type

Integer (Enumerated)

See Also
Aligning Text and Graphics

ListApplyTo, Picture, PictureAlignH, PictureSel properties

PictureSel Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the graphic to display when a row is selected. This property is available at run time only.

Syntax

C UINT LC_GetPictureSel(HWND hWnd, short FAR *retPictType,
short FAR *retPictHndType, LPVOID buffer,

UINT nBufferSize, HPALETTE FAR *retHPal);

LC_SetPictureSel(HWND hWnd, short pictType, short pictHndType,

DWORD pictHndOrRes, HPALETTE hPal);
C++ LPVOID Class::GetPictureSel(short FAR* retPictType,

short FAR* retPictHndType, LPVOID buffer,

UINT bufferSize, HPALETTE FAR* retHPal);

Class::SetPictureSel(short retPictType, short retHndType,

DWORD buffer, HPALETTE hPal);
Visual Basic [form.]control.PictureSel[= picture]

Designer Page

List subtab of the ApplyTo designer page

Remarks

You can display small graphics (bitmaps or icons) as list items in an fpCombo or fpList control. You can display text and graphics
simultaneously. The PictureSel property specifies the graphic displayed when a list item is selected. In contrast, the Picture
property specifies the graphic displayed when a list item is not selected. For example, you can display a closed book icon when
a list item is not selected and an open book icon when an item is selected.

If you want to specify that the graphic appear in a particular column when a row is selected, set the Col, ColFromID, or
ColFromName property before setting the PictureSel property.

You can use the ListApplyTo property to specify where the graphic is displayed.

Use the PictureAlignH and PictureAlignV properties to specify how the graphic is horizontally and vertically aligned.

Data Type

Picture

Print Copy Close

The following example creates a list box control with two columns. When the first row is selected, a balloon icon is displayed.
When the second row is selected, a calendar icon is displayed.

C
LC_SetColumns(hWnd, 2);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetRowHeight(hWnd, 45);
LC_SetInsertRow(hWnd, "\tBalloon");
LC_SetInsertRow(hWnd, "\tCalendar");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColName(hWnd, "Pix");
LC_SetColHeaderText(hWnd, "Picture");
LC_SetCol(hWnd, 1);
LC_SetColName(hWnd, "Desc");
LC_SetColHeaderText(hWnd, "Description");
/* Graphic to display when first row is selected */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetColFromName(hWnd, "Pix");
LC_SetRow(hWnd, 0);
/* Load bitmap */
HBITMAP hbmpBalloon;
hbmpBalloon = LoadBitmap(hInstance, "balloon");
LC_SetPicture(hWnd, FP_PICT_TYPE_BITMAP, FP_HNDTYPE_HANDLE, hbmpBalloon, hPalette);
/* Graphic to display when second row is selected */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetColFromName(hWnd, "Pix");
LC_SetRow(hWnd, 1);
HBITMAP hbmpCalendar;
hbmpCalendar = LoadBitmap(hInstance, "calendar");
LC_SetPicture(hWnd, FP_PICT_TYPE_BITMAP, FP_HNDTYPE_HANDLE, hbmpCalendar, hPalette);

C++
fpList1->SetColumns(2);
fpList1->SetColumnHeaderShow(TRUE);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetRowHeight(45);
fpList1->SetInsertRow("\tBalloon");
fpList1->SetInsertRow("\tCalendar");
// Define columns
fpList1->SetCol(0);
fpList1->SetColName("Pix");
fpList1->SetColHeaderText("Picture");
fpList1->SetCol(1);
fpList1->SetColName("Desc");
fpList1->SetColHeaderText("Description");
// Graphic to display when first row is selected
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
fpList1->SetColFromName("Pix");
fpList1->SetRow(0);
// Convert hBitmap to hPic
PIC picture;
HPIC hPic;
HBITMAP hBitmap;
hBitmap=LoadBitmap(AfxGetInstanceHandle(), "balloon");
picture.picData.bmp.hbitmap=hbitmap;
picture.picType=PICTYPE_BITMAP;
hPic=AfxSetPict(NULL, &picture);
fpList1->SetPicture(hPic);
// Graphic to display when second row is selected
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);

fpList1->SetColFromName("Pix");
fpList1->SetRow(1);
// Convert hBitmap to hPic
PIC picture;
HPIC hPic;
HBITMAP hBitmap;
hBitmap=LoadBitmap(AfxGetInstanceHandle(), "calendar");
picture.picData.bmp.hbitmap=hbitmap;
picture.picType=PICTYPE_BITMAP;
hPic=AfxSetPict(NULL, &picture);
fpList1->SetPicture(hPic);

Visual Basic
fpList1.Columns = 2
fpList1.ColumnHeaderShow = True
fpList1.LineStyle = 3 'LC_LINESTYLE_LOWERED
fpList1.RowHeight = 600
fpList1.InsertRow = "" & Chr$(9) & "Balloon"
fpList1.InsertRow = "" & Chr$(9) & "Calendar"
' Define columns
fpList1.Col = 0
fpList1.ColName = "Pix"
fpList1.ColHeaderText = "Picture"
fpList1.Col = 1
fpList1.ColName = "Desc"
fpList1.ColHeaderText = "Description"
' Graphic to display when first row is selected
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.ColFromName = "Pix"
fpList1.Row = 0
fpList1.PictureSel = LoadPicture("c:\vb16\bitmaps\assorted\balloon.bmp")
' Graphic to display when second row is selected
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.ColFromName = "Pix"
fpList1.Row = 1
fpList1.PictureSel = LoadPicture("c:\vb16\bitmaps\assorted\calendar.bmp")

See Also
Displaying Graphics

Col, ColFromID, ColFromName, ListApplyTo, Picture, PictureAlignH, PictureAlignV properties

ReadOnly Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether an fpCombo or fpList control allows the user to select list items.

Syntax

C UINT LC_GetReadOnly(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetReadOnly(HWND hWnd, BOOL value);

C++ BOOLClass::GetReadOnly(void);
Class::SetReadOnly(BOOL value);

Visual Basic [form.]control.ReadOnly[= boolean%]

Designer Page

Miscellaneous designer page

Remarks

The default value for the ReadOnly property is False, which allows the user to select list items by clicking a mouse button while
the pointer is on an item or by pressing the arrow keys to scroll up and down the list.

Setting the ReadOnly property to True creates an fpCombo or fpList control that displays a list of items that cannot be selected.
A read-only fpCombo or fpList control is useful for displaying multiple rows of data without letting the user highlight individual
values or rows. When the ReadOnly property is set to True, the user can still scroll through the list using the scroll bar, as well
as move or resize columns, as specified by the AllowColDragDrop and AllowColResize properties.

Data Type

Integer (Boolean)

See Also
AllowColDragDrop, AllowColResize, Columns properties

Row Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns a row in an fpCombo or fpList control. This property is available at run time only.

Syntax

C UINT LC_GetRow(HWND hWnd, long FAR *lpValue);
UINT LC_SetRow(HWND hWnd, long value);

C++ longClass::GetRow(void);
Class::SetRow(long value);

Visual Basic [form.]control.Row[= value&]

Designer Pages

Row box on:

List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page
Add Data designer page
Misc subtab of the Appearance designer page
Merge/Join designer page

Remarks

The default value for the Row property is 0, which designates the first row of the list. To choose an entire row, set the Col

property to 1 before setting the Row property.
You must specify a row by setting the Row property before retrieving data with the List or ColList properties.

Data Type

Integer (Long)

See Also
Adding List Items

Columns, Rows, and Cells

Col, ColList, ExtendRow, InsertRow, List properties

RowHeight Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the height in twips of rows in the list portion of an fpCombo or fpList control.

Syntax

C UINT LC_GetRowHeight(HWND hWnd, long FAR *lpValue);
UINT LC_SetRowHeight(HWND hWnd, long value);

C++ long Class::GetRowHeight(void);
Class::SetRowHeight(long value);

Visual Basic [form.]control.RowHeight[= value%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the RowHeight property is 1, which sets the row height based on the size of the font
used in the fpCombo and fpList controls. To specify the height of a particular row, set the Row property before setting the
RowHeight property.

If you have multiple levels of columns in a row, the height of every level is equal to the row height. For example, if the control has
three levels and the row height is set to 100 twips, each level within the row is 100 twips high.

In Visual Basic, the measurement unit used by the RowHeight property depends on the setting of the form's ScaleMode
property. The default ScaleMode setting is twips (1/1440 of an inch). Generally, the ActiveX and VBX controls use twips as the
default measurement unit, and the DLL controls use pixels as the default measurement unit.

Data Type

Integer (Long)

Print Copy Close

The following example creates a three-column fpList control. Text wraps in the second column. Solid horizontal lines are
displayed between list items.

C
LC_SetColumns(hWnd, 3);
LC_SetColumnHeaderShow(FALSE);
/* Insert data */
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "AAA\t1500 Blue Ridge Road Suite 215 Raleigh, NC 27588\t(919)
555-1234");
LC_SetInsertRow(hWnd, "ABA\t20394 Capital Boulevard Raleigh, NC 27583\t(919) 555-
5678");
LC_SetInsertRow(hWnd, "ACA\t7893 Glenwood Avenue Suite 2003 Raleigh, NC 27588\t(919)
555-9012");
LC_SetLineApplyTo(hWnd, LC_LINEAPPLYTO_ROWS);
LC_SetLineStyle(hWnd, LC_LINESTYLE_SOLID);
LC_SetCol(hWnd, 0);
LC_SetColWidth(hWnd, 10);
LC_SetCol(hWnd, 1);
/* Wrap text in column */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetMultiLine(hWnd, LC_MULTILINE_MULTIPLE_LINE);
LC_SetColWidth(hWnd, 25);
LC_SetRowHeight(hWnd, 60);

C++
fpList1->SetColumns(3);
fpList1->SetColumnHeaderShow(FALSE);
// Insert data
fpList1->SetRow(-1);
fpList1->SetInsertRow("AAA\t1500 Blue Ridge Road Suite 215 Raleigh, NC 27588\t(919)
555-1234");
fpList1->SetInsertRow("ABA\t20394 Capital Boulevard Raleigh, NC 27583\t(919) 555-
5678");
fpList1->SetInsertRow("ACA\t7893 Glenwood Avenue Suite 2003 Raleigh, NC 27588\t(919)
555-9012");
fpList1->SetLineApplyTo(LC_LINEAPPLYTO_ROWS);
fpList1->SetLineStyle(LC_LINESTYLE_FLAT);
fpList1->SetCol(0);
fpList1->SetColWidth(10);
fpList1->SetCol(1);
// Wrap text in column
fpList1->SetListApplyTo(LC_LISTAPPLYT0_SINGLE_ITEM);
fpList1->SetMultiLine(LC_MULTILINE_MULTIPLE_LINE);
fpList1->SetColWidth(25);
fpList1->SetRowHeight(60);

Visual Basic
fpList1.Columns = 3
fpList1.ColumnHeaderShow = False
' Insert data
fpList1.Row = -1
fpList1.InsertRow = "AAA" & Chr$(9) & "1500 Blue Ridge Road Suite 215 Raleigh, NC
27588" & Chr$(9) & "(919) 555-1234"
fpList1.InsertRow = "ABA" & Chr$(9) & "20394 Capital Boulevard Raleigh, NC 27583" &
Chr$(9) & "(919) 555-5678"
fpList1.InsertRow = "ACA" & Chr$(9) & "7893 Glenwood Avenue Suite 2003 Raleigh, NC
27588" & Chr$(9) & "(919) 555-9012"
fpList1.LineApplyTo = LC_LINEAPPLYTO_ROWS
fpList1.LineStyle = LC_LINESTYLE_FLAT
fpList1.Col = 0
fpList1.ColWidth =10

fpList1.Col = 1
' Wrap text in column
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.MultiLine = LC_MULTILINE_MULTIPLE_LINE
fpList1.ColWidth = 25
fpList1.RowHeight = 600

See Also
Wrapping Text in a List Pro Control

EditHeight, MultiLine, Row properties

RowMerge Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether and how cells within a row with the same contents should be grouped in a single cell spanning multiple
columns.

Syntax

C UINT LC_GetRowMerge(HWND hWnd, short FAR *lpValue);
UINT LC_SetRowMerge(HWND hWnd, short value);

C++ short Class::GetRowMerge(void);
Class::SetRowMerge(short value);

Visual Basic [form.]control.RowMerge[= setting%]

Designer Page

Merge/Join designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Off (Default) Cells that contain

the same text are not
merged

LC_ROWMERGE_OFF

1 - Always Cells that contain the same
text are always merged

LC_ROWMERGE_ALWAYS

2 - Restricted Cells that contain the same
text are merged only when
adjacent cells to the left and
to the top are also merged

LC_ROWMERGE_RESTRICTED

You must set the Row property to specify the row number before setting the RowMerge property.

Note You cannot merge rows if they have multiple levels. If the ColumnLevels property is set to a value greater than zero, the
RowMerge property is automatically set to 0 (Off).

You might use this property to reconfigure database information. For example, assume your database contains schedule status
for products that undergo a five-step process and the normal way to display that data is by product name (row 0) and process

status (rows 1 5).

You could merge rows and display products that have completed all processes.

Use the ColMerge property to merge columns that contain the same text.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a four-column list box control. Cells with the same text in the first and third rows are always
merged. Cells with the same text in the second row are merged restrictively.

C
LC_SetColumns(hWnd, 4);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetColumnHeaderShow(hWnd, TRUE);
/* C - complete I - incomplete */
LC_SetInsertRow(hWnd, "Beans\tC\tC\tC");
LC_SetInsertRow(hWnd, "Pea\tC\tC\tI");
LC_SetInsertRow(hWnd, "Corn\tC\tI\tI");
LC_SetInsertRow(hWnd, "Rice\tI\tI\tI");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColHeaderText(hWnd, "Product");
LC_SetCol(hWnd, 1);
LC_SetColHeaderText(hWnd, "P1");
LC_SetCol(hWnd, 2);
LC_SetColHeaderText(hWnd, "P2");
LC_SetCol(hWnd, 3);
LC_SetColHeaderText(hWnd, "P3");
/* Merge the first three rows */
LC_SetRow(hWnd, 0);
LC_SetRowMerge(hWnd, LC_ROWMERGE_ALWAYS);
LC_SetRow(hWnd, 1);
LC_SetRowMerge(hWnd, LC_ROWMERGE_RESTRICTED);
LC_SetRow(hWnd, 2);
LC_SetRowMerge(hWnd, LC_ROWMERGE_ALWAYS);

C++
fpList1->SetColumns(4);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetColumnHeaderShow(TRUE);
// C - complete I - incomplete
fpList1->SetInsertRow("Beans\tC\tC\tC");
fpList1->SetInsertRow("Peas\tC\tC\tI");
fpList1->SetInsertRow("Corn\tC\tI\tI");
fpList1->SetInsertRow("Rice\tI\tI\tI");
// Define columns
fpList1->SetCol(0);
fpList1->SetColHeaderText("Product");
fpList1->SetCol(1);
fpList1->SetColHeaderText("P1");
fpList1->SetCol(2);
fpList1->SetColHeaderText("P2");
fpList1->SetCol(3);
fpList1->SetColHeaderText("P3");
// Merge the first three rows
fpList1->SetRow(0);
fpList1->SetRowMerge(LC_ROWMERGE_ALWAYS);
fpList1->SetRow(1);
fpList1->SetRowMerge(LC_ROWMERGE_RESTRICTED);
fpList1->SetRow(2);
fpList1->SetRowMerge(LC_ROWMERGE_ALWAYS);

Visual Basic
fpList1.Columns = 4
fpList1.LineStyle = LC_LINESTYLE_LOWERED
fpList1.ColumnHeaderShow = True
' C - complete I - incomplete
fpList1.InsertRow = "Beans" & Chr$(9) & "C" &Chr$(9) & "C" & Chr$(9) & "C"
fpList1.InsertRow = "Peas" & Chr$(9) & "C" &Chr$(9) & "C" & Chr$(9) & "I"

fpList1.InsertRow = "Corn" & Chr$(9) & "C" &Chr$(9) & "I" & Chr$(9) & "I"
fpList1.InsertRow = "Rice" & Chr$(9) & "I" &Chr$(9) & "I" & Chr$(9) & "I"
' Define columns
fpList1.Col = 0
fpList1.ColHeaderText = "Product"
fpList1.Col = 1
fpList1.ColHeaderText = "P1"
fpList1.Col = 2
fpList1.ColHeaderText = "P2"
fpList1.Col = 3
fpList1.ColHeaderText = "P3"
' Merge the first three rows
fpList1.Row = 0
fpList1.RowMerge = LC_ROWMERGE_ALWAYS
fpList1.Row = 1
fpList1.RowMerge = LC_ROWMERGE_RESTRICTED
fpList1.Row = 2
fpList1.RowMerge = LC_ROWMERGE_ALWAYS

See Also
Merging Columns and Rows

ColMerge, ColumnLevels, MergeAdjustView, Row properties

ScrollBarH Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the horizontal scroll bar in an fpCombo or fpList control is displayed continuously or only when
necessary.

Syntax

C UINT LC_GetScrollBarH(HWND hWnd, short FAR *lpValue);
UINT LC_SetScrollBarH(HWND hWnd, short value);

C++ short Class::GetScrollBarH(void);
Class::SetScrollBarH(short value);

Visual Basic [form.]control.ScrollBarH[= setting%]

Designer Page

Scroll subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Show Displays the horizontal

scroll bar
LC_SCROLLBARH_SHOW

1 - Show When
 Needed

(Default) Displays the
horizontal scroll bar
when necessary and
hides it when it is not
necessary

LC_SCROLLBARH_SHOW_WHEN_NEEDED

2 - Show Disabled Displays the horizontal
scroll bar as disabled
when it is not necessary

LC_SCROLLBARH_SHOW_DISABLED

3 - Hide Does not display the
horizontal scroll bar

LC_SCROLLBARH_HIDE

Data Type

Integer (Enumerated)

See Also
Displaying and Customizing Scroll Bars

ScrollHInc, ScrollHScale, ScrollBarV properties

ScrollBarV Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the vertical scroll bar in an fpCombo or fpList control is displayed continuously or only when necessary.

Syntax

C UINT LC_GetScrollBarV(HWND hWnd, short FAR *lpValue);
UINT LC_SetScrollBarV(HWND hWnd, short value);

C++ short Class::GetScrollBarV(void);
Class::SetScrollBarV(short value);

Visual Basic [form.]control.ScrollBarV[= setting%]

Designer Page

Scroll subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Show Displays the vertical

scroll bar
LC_SCROLLBARV_SHOW

1 - Show When
 Needed

(Default) Displays the
vertical scroll bar when
necessary and hides it
when it is not necessary

LC_SCROLLBARV_SHOW_WHEN_NEEDED

2 - Show
 Disabled

Displays the vertical
scroll bar as disabled
when it is not necessary

LC_SCROLLBARV_SHOW_DISABLED

3 - Hide Does not display the
vertical scroll bar

LC_SCROLLBARV_HIDE

Data Type

Integer (Enumerated)

See Also
Displaying and Customizing Scroll Bars

ScrollBarH property

ScrollHInc Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of units for the amount the list box scrolls when the user moves the horizontal scroll box in an
fpCombo or fpList control.

Syntax

C UINT LC_GetScrollHInc(HWND hWnd, short FAR *lpValue);
UINT LC_SetScrollHInc(HWND hWnd, short value);

C++ short Class::GetScrollHInc(void);
Class::SetScrollHInc(short value);

Visual Basic [form.]control.ScrollHInc[= value%]

Designer Page

Scroll subtab of the Appearance designer page

Remarks

This property works with the ScrollHScale property to determine the amount the list box scrolls when the user clicks the left and
right scroll arrows. The ScrollHScale property determines the measurement unit used for the amount of movement.

The default value for the ScrollHInc property is 0. When the ScrollHInc property is set to 0, the following default values are
assigned, depending on the value of the ScrollHScale property:

ScrollHScale property setting Default scrolling increment
0 - Twips 200 twips
1 - Pixels 15 pixels
2 - Avg Char Width 1 character
3 - Max Char Width 1 character
4 - Column Not applicable

(Scrolls one column at a time.)

Data Type

Integer

See Also
Displaying and Customizing Scroll Bars

ScrollBarH, ScrollHScale properties

ScrollHScale Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the unit of measurement for the amount the list box scrolls when the user moves the horizontal scroll box in an
fpCombo or fpList control.

Syntax

C UINT LC_GetScrollHScale(HWND hWnd, short FAR *lpValue);
UINT LC_SetScrollHScale(HWND hWnd, short value);

C++ short Class::GetScrollHScale(void);
Class::SetScrollHScale(short value);

Visual Basic [form.]control.ScrollHScale[= setting%]

Designer Page

Scroll subtab of the Appearance designer page

Remarks

The ScrollHScale property works in conjunction with the ScrollHInc property to determine the amount the list box scrolls. The
ScrollHInc property determines the number of units scrolled.

Setting Description Constant
0 - Twips Scrolls a specified number

of twips as determined by
the ScrollHInc property
setting

LC_SCROLLHSCALE_TWIPS

1 - Pixels Scrolls a specified number
of pixels as determined by
the ScrollHInc property
setting

LC_SCROLLHSCALE_PIXELS

2 - Avg Char Width (Default) Scrolls a
specified number of
characters based on the
average character width of
the current default font
multiplied by the
ScrollHInc property setting

LC_SCROLLHSCALE_AVG_CHAR

3 - Max Char Width Scrolls a specified number
of characters based on
the maximum character
width of the current default
font multiplied by the
ScrollHInc property setting

LC_SCROLLHSCALE_MAX_CHAR

4 - Column Scrolls one column at a
time if the Columns
property is set to a value
greater than 0
(If this value is set and the
Columns property is set to
0, the average character
width is used.)

LC_SCROLLHSCALE_COLUMN

5 - Top Group Scrolls one group at a
time based on the group
arrangement of the top
group if more than one
level of groups exists

LC_SCROLLHSCALE_TOP_GROUP

6 - Bottom Group Scrolls one group at a
time based on the group

LC_SCROLLHSCALE_BOTTOM_GROUP

arrangement of the bottom
group if more than one
level of groups exists

Data Type

Integer (Enumerated)

See Also
Displaying and Customizing Scroll Bars

Columns, ScrollHInc properties

SearchIgnoreCase Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether case is ignored when searching an fpCombo or fpList control.

Syntax

C UINT LC_GetSearchIgnoreCase(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetSearchIgnoreCase(HWND hWnd, BOOL value);

C++ BOOLClass::GetSearchIgnoreCase(void);
Class::SetSearchIgnoreCase(BOOL value);

Visual Basic [form.]control.SearchIgnoreCase[= boolean%]

Designer Page

Search designer page

Remarks

You can perform a search at run time by setting the SearchText property to the search string and setting the Action property to 0
(Search). Set the SearchIgnoreCase property to specify whether the control ignores case when searching.

The default value for the SearchIgnoreCase property is True, which means the control searches for characters regardless of
case. For example, if the SearchIgnoreCase property is set to True and the user searches for "milwaukee", the search will find
both "milwaukee" and "Milwaukee".

Data Type

Integer (Boolean)

See Also
Searching for List Items

Action, AutoSearch, SearchIndex, SearchMethod, SearchText properties

SearchIndex Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the index of the currently selected list item. The property is available at run time only.

Syntax

C UINT LC_GetSearchIndex(HWND hWnd, long FAR *lpValue);
UINT LC_SetSearchIndex(HWND hWnd, long value);

C++ longClass::GetSearchIndex(void);
Class::SetSearchIndex(long value);

Visual Basic [form.]control.SearchIndex[= value&]

Designer Page

Search designer page

Remarks

You can perform a search at run time by setting the SearchText property to the search string and setting the Action property to 0
(Search). When the fpCombo or fpList control finds a match, the SearchIndex property contains the index number of the
selected item.

The value of the SearchIndex property is 0 for the first list item. If the search is unsuccessful, the value of the SearchIndex

property is 1.

Data Type

Integer (Long)

See Also
Searching for List Items

Action, AutoSearch, SearchIgnoreCase, SearchMethod, SearchText properties

SearchMethod Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether an fpCombo or fpList control requires an exact match when searching for a list item.

Syntax

C UINT LC_GetSearchMethod(HWND hWnd, short FAR *lpValue);
UINT LC_SetSearchMethod(HWND hWnd, short value);

C++ short Class::GetSearchMethod(void);
Class::SetSearchMethod(short value);

Visual Basic [form.]control.SearchMethod[= setting%]

Designer Page

Search designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Exact Match (Default) Searches for a

value containing the
characters entered and
does nothing when an
exact match cannot be
found

LC_SEARCHMETHOD_EXACT_MATCH

1 - Greater or
 Equal

Searches for the next
letter when an exact
match cannot be found

LC_SEARCHMETHOD_GREATER_OR_EQUAL

2 - Partial Match Searches for the
characters specified by
the SearchText
property, but does not
require an exact match

LC_SEARCHMETHOD_PARTIAL_MATCH

You can perform a search at run time by setting the SearchText property to the search string and setting the Action property to 0
(Search).

The SearchIndex property returns the index of the selected list item.

You can use setting 2 (Partial Match) to enable searching similar to that provided by the AutoSearch property. For example, you
can design a text box that displays characters as the user types them and searches the list for those characters.

Data Type

Integer (Enumerated)

See Also
Searching for List Items

Action, AutoSearch, SearchIgnoreCase, SearchIndex, SearchText properties

SearchText Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the characters searched for in an fpCombo or fpList control. This property is available at run time only.

Syntax

C UINT LC_GetSearchText(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetSearchText(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetSearchText(LPSTR buffer, UINT bufferSize);
Class::SetSearchText(LPCSTR value);

Visual Basic [form.]control.SearchText[= text$]

Designer Page

Search designer page

Remarks

You can perform a search at run time by setting the SearchText property to the search string and setting the Action property to 0
(Search).

When the fpCombo or fpList control finds a match, the SearchIndex property contains the index number of the selected item.

Data Type

String

See Also
Searching for List Items

Action, AutoSearch, SearchIgnoreCase, SearchIndex, SearchMethod properties

SelCount Property
See Also

Applies To

fpList control

Description

Returns the number of items selected in an fpList control that allows multiple selections. This property is available at run time
only.

Syntax

C UINT LbxGetSelCount(HWND hWnd, long FAR *lpValue);

C++ long CfpListBox::GetSelCount(void);

Visual Basic [form.]fpList1.SelCount

Remarks

The default value for the SelCount property is 0.

Use the SelMax property to limit the number of rows that can be selected.

To create an fpList control that allows multiple selections, set the MultiSelect property.

Data Type

Integer (Long)

See Also
Accessing List Items

MultiSelect, NextSel, SelMax properties

SelDrawFocusRect Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether to draw a focus rectangle around a selection in an fpCombo or fpList control.

Syntax

C UINT LC_GetSelDrawFocusRect(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetSelDrawFocusRect(HWND hWnd, BOOL value);

C++ BOOLClass::GetSelDrawFocusRect(void);
Class::SetSelDrawFocusRect(BOOL value);

Visual Basic [form.]control.SelDrawFocusRect[= boolean%]

Designer Page

Miscellaneous designer page

Remarks

The default value for the SelDrawFocusRect property is True.

Setting the SelDrawFocusRect property to False hides the focus rectangle when a list item is selected, which may look better
with three-dimensional effects (setting the LineStyle property to 3 (Lowered), 4 (Raised), 5 (Lowered w/ Line), or 6 (Raised w/
Line) and the ListApplyTo property to 4 (Sel Rows)).

Data Type

Integer (Boolean)

See Also
Hiding the Focus Rectangle Around Selected Items

LineStyle, ListApplyTo properties

Selected Property
See Also

Applies To

fpList control

Description

Sets or returns the selection status of an item in an fpList control. This property is available at run time only.

Syntax

C UINT LbxGetSelected(HWND hWnd, BOOL FAR *lpValue);
UINT LbxSetSelected(HWND hWnd, BOOL value);

C++ BOOLCfpListBox::GetSelected(void);
CfpListBox::SetSelected(BOOL value);

Visual Basic [form.]fpList1.Selected[= boolean%]

Remarks

The default value for the Selected property is False.

When the Selected property is set to True, the item specified by the Row property is selected (highlighted).

Before setting the Selected property, you must specify a row with the Row property.

Note that the List Pro Selected property is not an array property as it is in Visual Basic. For more information, refer to the
Selected property in the Visual Basic documentation.

Data Type

Integer (Boolean)

See Also
Accessing List Items

List, ListIndex, MultiSelect, NextSel, Row, TopIndex properties

SelLength Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the number of characters selected in the edit field. This property is available at run time only.

Syntax

C UINT CbxGetSelLength(HWND hWnd, long FAR *lpValue);
UINT CbxSetSelLength(HWND hWnd, long value);

C++ long CfpComboBox::GetSelLength(void);
CfpComboBox::SetSelLength(long value);

Visual Basic [form.]fpCombo1.SelLength[= value&]

Remarks

Setting the SelLength property to a negative value causes a run-time error.

You must move the focus to the fpCombo control (using the Forms Activate event or the SetFocus method) before setting the
SelLength property.

Refer to the Visual Basic documentation for additional information about this property.

Data Type

Integer (Long)

Print Copy Close

The following example allows the user to search for a specified word using an fpCombo control, a text control, and a button
control. This example searches for a specified word and, if the word is found, positions it to be visible in the control.

Visual Basic
Sub Form_Load ()
fpCombo1.Text = "Search this text to see if there is some matching text within this
control."
End Sub

Sub Command_Click ()
Dim x As Integer
Dim Length As Integer
' Check for selected text and retrieve length of found text
x = InStr(fpCombo1.Text, Text1.Text)
Length = Len(fpCombo1.Text)
' If no matching text is found, display message and exit
If x = 0 Then

MsgBox "No matching text was found!"
Exit Sub

End If
' Select matching text

fpCombo1.SetFocus
fpCombo1.SelStart = x - 1
fpCombo1.SelLength = Len(Text1.Text)

End Sub

See Also
SelStart, SelText properties

SelMax Property
See Also Example

Applies To

fpList control

Description

Sets or returns the maximum number of rows that can be selected in an fpList control.

Syntax

C UINT LbxGetSelMax(HWND hWnd, long FAR *lpValue);
UINT LbxSetSelMax(HWND hWnd, long value);

C++ longCfpListBox::GetSelMax(void);
CfpListBox::SetSelMax(long value);

Visual Basic [form.]fpList1.SelMax[= value&]

Designer Page

Miscellaneous designer page

Remarks

The default value for the SelMax property is 1, which lets the user make any number of selections.
Use the SelCount property to return the actual number of rows selected.

Data Type

Integer (Long)

See Also
Accessing List Items

NextSel, SelCount properties

SelStart Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the starting point of selected characters or the position of the insertion point if no characters are selected in the
edit field. This property is available at run time only.

Syntax

C UINT CbxGetSelStart(HWND hWnd, long FAR *lpValue);
UINT CbxSetSelStart(HWND hWnd, long value);

C++ longCfpComboBox::GetSelStart(void);
CfpComboBox::SetSelStart(long value);

Visual Basic [form.]fpCombo1.SelStart[= value&]

Remarks

The value of the SelStart property is based on the number of characters in the edit field. The first position is zero.

You must move the focus to the fpCombo control (using the Forms Activate event or the SetFocus method) before setting the
SelStart property.

Visual Basic users can refer to the Visual Basic documentation for additional information about this property.

Data Type

Integer (Long)

See Also
SelLength, SelText properties

SelText Property
See Also

Applies To

fpCombo control

Description

Sets or returns the string containing the currently selected text in the edit field. This property is available at run time only.

Syntax

C UINT CbxGetSelText(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT CbxSetSelText(HWND hWnd, LPCSTR value);

C++ LPSTR CfpComboBox::GetSelText(LPSTR buffer, UINT bufferSize);
CfpComboBox::SetSelText(LPCSTR value);

Visual Basic [form.]fpCombo1.SelText[= text$]

Remarks

When no selection has been made in the control, the SelText property returns an empty string.

You can assign a string to the SelText property to replace the selected text.

You must move the focus to the fpCombo control (using the Forms Activate event or the SetFocus method) before setting the
SelText property.

Visual Basic users can refer to the Visual Basic documentation for additional information about this property.

Data Type

String

See Also
SelLength, SelStart properties

Sorted Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the type of sort performed on the contents of a single-column fpCombo or fpList control.

Syntax

C UINT LC_GetSorted(HWND hWnd, short FAR *lpValue);
UINT LC_SetSorted(HWND hWnd, short value);

C++ short Class::GetSorted(void);
Class::SetSorted(short value);

Visual Basic [form.]control.Sorted[= setting%]

Designer Page

Sort designer page

Remarks

The following settings are available:
Setting Description Constant
0 - None (Default) Removes sorting

from the column
LC_SORTED_NONE

1 - Ascending Sorts from the beginning of
the alphabet

LC_SORTED_ASCENDING

2 - Descending Sorts from the end of the
alphabet

LC_SORTED_DESCENDING

If you use the Sorted property on a multiple-column control, only the first column is sorted. Use the ColSorted property to
perform a sort on multiple-column List Pro controls.

Data Type

Integer (Enumerated)

See Also
Sorting List Items

ColSorted, ColSortSeq, SortState properties

SortState Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether sorting is temporarily turned off when adding items to a sorted list in an fpCombo or fpList control. This
property is available at run time only.

Syntax

C UINT LC_GetSortState(HWND hWnd, short FAR *lpValue);
UINT LC_SetSortState(HWND hWnd, short value);

C++ short Class::GetSortState(void);
Class::SetSortState(short value);

Visual Basic [form.]control.SortState[= setting%]

Designer Page

Sort designer page

Remarks

The SortState property greatly improves performance when adding large numbers of items or rows to a sorted list. When you
add an item to a sorted list, the fpCombo or fpList control inserts the item in the correct order. This process can take a long time
when the list is long and you are adding many items. To improve performance, set the SortState property to 2 (Suspend) before
adding the items. After adding the items, reset the SortState property to 1 (Active (Re-sort)) to sort the list immediately. If the list
does not need to be re-sorted until the next item is added, set the SortState property to 0 (Active).

The following settings are available:
Setting Description Constant
0 - Active (Default) Turns sorting on

without immediately re-
sorting the list (the list is
sorted when the next item
is added)

LC_SORTSTATE_ACTIVE

1 - Active
 (Re-sort)

Re-sorts the list quickly LC_SORTSTATE_ACTIVE_RESORT

2 - Suspend Turns off sorting
temporarily until SortState
property is reset to 0 or 1

LC_SORTSTATE_ACTIVE_SUSPEND

Data Type

Integer (Enumerated)

See Also
Sorting List Items

Col, ColSorted, ColSortSeq, Sorted properties

Style Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the type of combo box displayed by an fpCombo control.

Syntax

C UINT CbxGetStyle(HWND hWnd, short FAR *lpValue);
UINT CbxSetStyle(HWND hWnd, short value);

C++ short CfpComboBox::GetStyle(void);
CfpComboBox::SetStyle(short value);

Visual Basic [form.]fpCombo1.Style[= setting%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Drop-Down
 Combo

(Default) Creates a drop-down
list and an edit field

CBX_STYLE_DROPDOWN_COMBO

1 - Simple Combo Creates an edit field and a
standard list (like the fpList
control)

CBX_STYLE_SIMPLE_COMBO

2 - Drop-Down List Creates a drop-down list with a
static field

CBX_STYLE_DROPDOWN_LIST

Note If you choose 1 (Simple Combo), you must resize the control so that it is large enough to display the list portion.

For more information on each style, refer to the Style property in the Visual Basic documentation.

Data Type

Integer (Enumerated)

See Also
Choosing the fpCombo Control Style

DropDown event

Text property

Text Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the contents of the selected row in a single-column control. For the fpList control the Text property is available at
run time only.

Syntax

C UINT LC_GetText(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT CbxSetText(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetText(LPSTR buffer, UINT bufferSize);
Class::SetText(LPCSTR value);

Visual Basic [form.]control.Text[= text$]

Designer Page

Add Data designer page (for fpCombo control only)

Remarks

For the fpCombo control, when the Style property is set to 0 (Drop-Down Combo) or 1 (Simple Combo), the Text property
returns the text contained in the edit (or static) field. When the Style property is set to 2 (Drop-Down List), the Text property
returns the value of the selected list item.

For the fpList control, the Text property sets or returns the text for the currently selected row.

Visual Basic users can refer to the Visual Basic documentation for additional information about this property.

Data Type

String

See Also
Accessing List Items

SelLength, SelStart, SelText, Style properties

TextOrientation Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the text and graphic displayed in the control are rotated 90, 180, or 270 degrees or whether the text is
displayed vertically.

Syntax

C UINT LC_GetTextOrientation(HWND hWnd, short FAR *lpValue);
UINT LC_SetTextOrientation(HWND hWnd, short value);

C++ short Class::GetTextOrientation(void);
Class::SetTextOrientation(short value);

Visual Basic [form.]control.TextOrientation[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default Uses the text orientation setting

of the hierarchical predecessor
LC_TEXTORIENTATION_DEFAULT

1 - Horizontal (Default) Displays text and
graphics horizontally within
each cell

LC_TEXTORIENTATION_HORIZONTAL

2 - Vertical LTR Displays text vertically within
each cell and wraps from left to
right

LC_TEXTORIENTATION_VERTICAL_LTR

3 - Rotate Down Rotates text and graphics 90
degrees (to "3 o'clock")

LC_TEXTORIENTATION_ROTATE_DOWN

4 - Rotate Up Rotates text and graphics 270
degrees (to "9 o'clock")

LC_TEXTORIENTATION_ROTATE_UP

5 - Invert Rotates text and graphics 180
degrees (to "6 o'clock")

LC_TEXTORIENTATION_INVERT

6 - Vertical RTL Displays text vertically within
each cell and wraps from right
to left

LC_TEXTORIENTATION_VERTICAL_RTL

If the selected font does not rotate, the fpCombo or fpList control selects a similar, TrueType font that does rotate.

If you set the TextOrientation property to 1 (Vertical LTR) or 6 (Vertical RTL) and the MultiLine property is set to True, the text in
the list is displayed vertically from top to bottom and wraps from left to right (LTR) or right to left (RTL).

You might want to use setting 6 (Vertical RTL) for displaying text in languages that are written vertically and read from right to
left, such as Japanese. If you choose setting 6 (Vertical RTL), note that if the header text wraps, it wraps to the left (text runs top
to bottom, right to left).

You can use the ListApplyTo property to specify where the TextOrientation property applies.

Tip If you set the TextOrientation property to 1 (Vertical LTR) or 6 (Vertical RTL) and you are displaying graphics in the list
item, set the PictureAlignH property to 4 (Left of Text) or 5 (Right of Text) and the PictureAlignV property to 4 (Top of
Text) or 5 (Bottom of Text) for best results.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a two-column list box with the first column merged. The text in the first column is displayed
vertically from right to left.

C
LC_SetColumns(hWnd, 2);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetInsertRow(hWnd, "NY" & Chr$(9) & "Yankees");
LC_SetInsertRow(hWnd, "NY" & Chr$(9) & "Mets");
LC_SetInsertRow(hWnd, "CA" & Chr$(9) & "Padres");
LC_SetInsertRow(hWnd, "CA" & Chr$(9) & "Angels");
LC_SetInsertRow(hWnd, "CA" & Chr$(9) & "Giants");
LC_SetInsertRow(hWnd, "CA" & Chr$(9) & "Dodgers");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColID(hWnd, 11);
LC_SetCol(hWnd, 1);
LC_SetColID(hWnd, 22);
/* Merge first column and define column text */
LC_SetColFromID(hWnd, 11);
LC_SetColMerge(hWnd, 1);
LC_SetColHeaderText(hWnd, "State");
LC_SetColFromID(hWnd, 22);
LC_SetColHeaderText(hWnd, "Team");
/* Orient text in column headers horizontally */
LC_SetListApplyTo(hWnd, 7);
LC_SetTextOrientation(hWnd, LC_TEXTORIENTATION_HORIZONTAL);
/* Orient text in first column vertically RTL */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetColFromID(hWnd, 11);
LC_SetTextOrientation(hWnd, LC_TEXTORIENTATION_VERTICAL_RTL);

C++
fpList1->SetColumns(2);
fpList1->SetColumnHeaderShow(TRUE);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetInsertRow("NY" & Chr$(9) & "Yankees");
fpList1->SetInsertRow("NY" & Chr$(9) & "Mets");
fpList1->SetInsertRow("CA" & Chr$(9) & "Padres");
fpList1->SetInsertRow("CA" & Chr$(9) & "Angels");
fpList1->SetInsertRow("CA" & Chr$(9) & "Giants");
fpList1->SetInsertRow("CA" & Chr$(9) & "Dodgers");
// Define columns
fpList1->SetCol(0);
fpList1->SetColID(11);
fpList1->SetCol(1);
fpList1->SetColID(22);
// Merge first column and define column text
fpList1->SetColFromID(11);
fpList1->SetColMerge(1);
fpList1->SetColHeaderText("State");
fpList1->SetColFromID(22);
fpList1->SetColHeaderText("Team");
// Orient text in column headers horizontally
fpList1->SetListApplyTo(7);
fpList1->SetTextOrientation(LC_TEXTORIENTATION_HORIZONTAL);
// Orient text in first column vertically RTL
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
fpList1->SetColFromID(11);
fpList1->SetTextOrientation(LC_TEXTORIENTATION_VERTICAL_RTL);

Visual Basic

fpList1.Columns = 2
fpList1.ColumnHeaderShow = True
fpList1.LineStyle = 3 'LC_LINESTYLE_LOWERED
fpList1.InsertRow = "NY" & Chr$(9) & "Yankees"
fpList1.InsertRow = "NY" & Chr$(9) & "Mets"
fpList1.InsertRow = "CA" & Chr$(9) & "Padres"
fpList1.InsertRow = "CA" & Chr$(9) & "Angels"
fpList1.InsertRow = "CA" & Chr$(9) & "Giants"
fpList1.InsertRow = "CA" & Chr$(9) & "Dodgers"
' Define columns
fpList1.Col = 0
fpList1.ColID = 11
fpList1.Col = 1
fpList1.ColID = 22
' Merge first column and define column text
fpList1.ColFromID = 11
fpList1.ColMerge = 1
fpList1.ColHeaderText = "State"
fpList1.ColFromID = 22
fpList1.ColHeaderText = "Team"
' Orient text in column headers horizontally
fpList1.ListApplyTo = 7
fpList1.TextOrientation = LC_TEXTORIENTATION_HORIZONTAL
' Orient text in first column vertically RTL
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
fpList1.ColFromID = 11
fpList1.TextOrientation = LC_TEXTORIENTATION_VERTICAL_RTL

See Also
Orienting Text and Graphics

ListApplyTo, MultiLine, PictureAlignH, PictureAlignV, Text properties

ThreeDFrameColor Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Set or return the frame color.

Syntax

C UINT LC_GetThreeDFrameColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetThreeDFrameColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetThreeDFrameColor(void);
Class::SetThreeDFrameColor(COLORREF value);

Visual Basic [form.]control.ThreeDFrameColor[= color]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the ThreeDFrameColor property is &H8000000F& (Windows system button face color).

To add three-dimensional effects to a control, you can create inner and outer three-dimensional borders by setting the
ThreeDInsideStyle and ThreeDOutsideStyle properties. The ThreeDInsideWidth and ThreeDOutsideWidth properties let you
adjust the width of the three-dimensional borders.

You can create a frame to add space between the inner and outer three-dimensional borders. To create a frame, you must set
both the ThreeDInsideStyle and ThreeDOutsideStyle properties to values other than 0 (None). Then set the ThreeDFrameWidth
property to the width of the frame. For a small (default-sized) control, a frame width of 2 or 3 pixels looks best.

Data Type

Color

See Also
Creating a Frame

Appearance, ThreeDFrameWidth, ThreeDInsideHighlightColor, ThreeDInsideShadowColor, ThreeDInsideStyle,
ThreeDInsideWidth, ThreeDOutsideHighlightColor, ThreeDOutsideShadowColor, ThreeDOutsideStyle, ThreeDOutsideWidth
properties

ThreeDFrameWidth, ThreeDInsideWidth, ThreeDOutsideWidth Properties
See Also Example

Applies To

fpCombo, fpList controls

Description

Set or return the inner and outer border widths and the distance between the inner and outer borders, in pixels.

Syntax

C UINT LC_GetThreeDFrameWidth(HWND hWnd, short FAR *lpValue);
UINT LC_SetThreeDFrameWidth(HWND hWnd, short value);

C++ short Class::GetThreeDFrameWidth(void);
Class::SetThreeDFrameWidth(short value);

Visual Basic [form.]control.ThreeDFrameWidth[= value%]

Note The ThreeDFrameWidth, ThreeDInsideWidth, and ThreeDOutsideWidth properties use the same syntax.

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the ThreeDFrameWidth property is 0. The default value for the ThreeDInsideWidth and
ThreeDOutsideWidth properties is 1 pixel.

To add three-dimensional effects to a control, you can create inner and outer borders by setting the ThreeDInsideStyle and
ThreeDOutsideStyle properties. The ThreeDInsideWidth and ThreeDOutsideWidth properties let you adjust the width of the
three-dimensional borders. Customize the colors displayed in the inner and outer borders by setting the
ThreeDInsideHighlightColor, ThreeDInsideShadowColor, ThreeDOutsideHighlightColor, and ThreeDOutsideShadowColor
properties.

You can create a frame to add space between the inner and outer three-dimensional borders. To create a frame, you must set
both the ThreeDInsideStyle and ThreeDOutsideStyle properties to values other than 0 (None). Then set the ThreeDFrameWidth
property to the width of the frame. For a small (default-sized) control, a frame width of 2 or 3 pixels looks best.

For more information about customizing your control's borders, see Customizing the Control's Borders. For more information
about creating a frame for your control, see Creating a Frame.

You can specify a predefined border appearance for your control that automatically sets these and other properties by using the
Appearance property. For instructions and a description of the predefined appearance styles, see Using Predefined Appearance
Styles.

Data Type

Integer

Print Copy Close

The following example demonstrates how to create a frame for an fpList control.

C
LC_SetThreeDFrameWidth(hWnd, 3);
/* red RGB(255, 0, 0) */
LC_SetThreeDFrameColor(hWnd, 0x000000FF);
/* Define inside 3D look */
LC_SetThreeDInsideStyle(hWnd, LC_THREEDINSIDESTYLE_RAISED);
LC_SetThreeDInsideWidth(hWnd, 4);
/* yellow RGB(255, 255, 0) */
LC_SetThreeDInsideHighlightColor(hWnd, 0x0000FFFF);
/* blue RGB(0, 0, 255) */
LC_SetThreeDInsideShadowColor(hWnd, 0x00FF0000);
/* Define outside 3D look */
LC_SetThreeDOutsideStyle(hWnd, LC_THREEDOUTSIDESTYLE_LOWERED);
LC_SetThreeDOutsideWidth(hWnd, 4);
/* blue RGB(0, 0, 255) */
LC_SetThreeDOutsideHighlightColor(hWnd, 0x00FF0000);
/* yellow RGB(0, 255, 255) */
LC_SetThreeDOutsideShadowColor(hWnd, 0x00FFFF00);

C++
fpList1->SetThreeDFrameWidth(3);
// red RGB(255, 0, 0)
fpList1->SetThreeDFrameColor(0x000000FF);
// Define inside 3D look
fpList1->SetThreeDInsideStyle(LC_THREEDINSIDESTYLE_RAISED);
fpList1->SetThreeDInsideWidth(4);
// yellow RGB(0, 255, 255)
fpList1->SetThreeDInsideHighlightColor(0x00FFFF00);
// blue RGB(0, 0, 255)
fpList1->SetThreeDInsideShadowColor(0x00FF0000);
// Define outside 3D look
fpList1->SetThreeDOutsideStyle(LC_THREEDOUTSIDESTYLE_LOWERED);
fpList1->SetThreeDOutsideWidth(4);
// blue RGB(0, 0, 255)
fpList1->SetThreeDOutsideHighlightColor(0x00FF0000);
// yellow RGB(0, 255, 255)
fpList1->SetThreeDOutsideShadowColor(0x00FFFF00);

Visual Basic
fpList1.ThreeDFrameWidth = 3
' red RGB(255, 0, 0)
fpList1.ThreeDFrameColor = &H000000FF&
' Define inside 3D look
fpList1.ThreeDInsideStyle = LC_THREEDINSIDESTYLE_RAISED
fpList1.ThreeDInsideWidth = 4
' yellow RGB(0, 255, 255)
fpList1.ThreeDInsideHighlightColor = &H00FFFF00&
' blue RGB(0, 0, 255)
fpList1.ThreeDInsideShadowColor = &H00FF0000&
' Define outside 3D look
fpList1.ThreeDOutsideStyle = LC_THREEDOUTSIDESTYLE_LOWERED
fpList1.ThreeDOutsideWidth = 4
' blue RGB(0, 0, 255)
fpList1.ThreeDOutsideHighlightColor = &H00FF0000&
' yellow RGB(0, 255, 255)
fpList1.ThreeDOutsideShadowColor = &H00FFFF00&

See Also
Creating a Frame

Specifying the Border Appearance

Using Predefined Appearance Styles

Appearance, ThreeDFrameColor, ThreeDInsideHighlightColor, ThreeDInsideShadowColor, ThreeDInsideStyle,
ThreeDOutsideHighlightColor, ThreeDOutsideShadowColor, ThreeDOutsideStyle properties

ThreeDInsideHighlightColor, ThreeDOutsideHighlightColor Properties
See Also Example

Applies To

fpCombo, fpList controls

Description

Set or return the three-dimensional highlight colors of the control's inner and outer borders.

Syntax

C UINT LC_GetThreeDInsideHighlightColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetThreeDInsideHighlightColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetThreeDInsideHighlightColor(void);
Class::SetThreeDInsideHighlightColor(COLORREF value);

Visual Basic [form.]control.ThreeDInsideHighlightColor[= color]

Note The ThreeDInsideHighlightColor and ThreeDOutsideHighlightColor properties use the same syntax.

Designer Page

Border subtab of the Appearance designer page

Remarks

The default values for these properties are &H8000000F& (Windows system button face color) for ThreeDInsideHighlightColor
and &H80000014& (Windows system button highlight color) for ThreeDOutsideHighlightColor.

For these properties to have an effect, the ThreeDInsideStyle and ThreeDOutsideStyle properties must be set to values other
than 0 (None).

The ThreeDInsideHighlightColor is the color displayed for the highlight portion of the inner, three-dimensional border. The
ThreeDOutsideHighlightColor is the color displayed for the highlight portion of the outer, three-dimensional border.

To add three-dimensional effects to a control, you can create inner and outer borders by setting the ThreeDInsideStyle and
ThreeDOutsideStyle properties. The ThreeDInsideWidth and ThreeDOutsideWidth properties let you adjust the width of the
three-dimensional borders. Customize the highlight colors displayed for the inner and outer borders by setting the
ThreeDInsideHighlightColor and ThreeDOutsideHighlightColor properties.

For more information about customizing your control's borders, see Customizing the Control's Borders.

You can specify a predefined border appearance for your control that automatically sets these and other properties by using the
Appearance property. For instructions and a description of the predefined appearance styles, see Using Predefined Appearance
Styles.

Note Be aware of the control's and the form's background colors when choosing the settings for the
ThreeDInsideHighlightColor and ThreeDOutsideHighlightColor properties. For example, if you set the
ThreeDOutsideHighlightColor property to white, and the background color of the form is white, the highlight color will be
indistinguishable from the background.

Data Type

Color

See Also
Specifying the Border Appearance

Using Predefined Appearance Styles

Appearance, ThreeDFrameColor, ThreeDFrameWidth, ThreeDInsideShadowColor, ThreeDInsideStyle, ThreeDInsideWidth,
ThreeDOutsideShadowColor, ThreeDOutsideStyle, ThreeDOutsideWidth properties

ThreeDInsideShadowColor, ThreeDOutsideShadowColor Properties
See Also Example

Applies To

fpCombo, fpList controls

Description

Set or return the three-dimensional shadow colors of the control's inner and outer borders.

Syntax

C UINT LC_GetThreeDInsideShadowColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetThreeDInsideShadowColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetThreeDInsideShadowColor(void);
Class::SetThreeDInsideShadowColor(COLORREF value);

Visual Basic [form.]control.ThreeDInsideShadowColor[= color]

Note The ThreeDInsideShadowColor and ThreeDOutsideShadowColor properties use the same syntax.

Designer Page

Border subtab of the Appearance designer page

Remarks

The default values for these properties are &H80000006& (Windows system window frame color) for ThreeDInsideShadowColor
and &H80000010& (Windows system button shadow color) for ThreeDOutsideShadowColor.

For these properties to have an effect, the ThreeDInsideStyle and ThreeDOutsideStyle properties must be set to values other
than 0 (None).

To add three-dimensional effects to a control, you can create inner and outer borders by setting the ThreeDInsideStyle and
ThreeDOutsideStyle properties. The ThreeDInsideWidth and ThreeDOutsideWidth properties let you adjust the width of the
three-dimensional borders. Customize the shadow colors displayed for the inner and outer borders by setting the
ThreeDInsideShadowColor and ThreeDOutsideShadowColor properties.

For more information about customizing your control's borders, see Customizing the Control's Borders.

You can specify a predefined border appearance for your control that automatically sets these and other properties by using the
Appearance property. For instructions and a description of the predefined appearance styles, see Using Predefined Appearance
Styles.

Note Be aware of the control's and the form's background colors when choosing the settings for the
ThreeDInsideShadowColor and ThreeDOutsideShadowColor properties. For example, if you set the
ThreeDOutsideShadowColor property to white, and the background color of the form is white, the shadow color will be
indistinguishable from the background.

Data Type

Color

See Also
Specifying the Border Appearance

Using Predefined Appearance Styles

Appearance, ThreeDFrameColor, ThreeDFrameWidth, ThreeDInsideHighlightColor, ThreeDInsideStyle, ThreeDInsideWidth,
ThreeDOutsideHighlightColor, ThreeDOutsideStyle, ThreeDOutsideWidth properties

ThreeDInsideStyle, ThreeDOutsideStyle Properties
See Also Example

Applies To

fpCombo, fpList controls

Description

Set or return the three-dimensional style of the control's inner and outer borders.

Syntax

C UINT LC_GetThreeDInsideStyle(HWND hWnd, short FAR *lpValue);
UINT LC_SetThreeDInsideStyle(HWND hWnd, short value);

C++ short Class::GetThreeDInsideStyle(void);
Class::SetThreeDInsideStyle(short value);

Visual Basic [form.]control.ThreeDInsideStyle[= setting%]

Note The ThreeDInsideStyle and ThreeDOutsideStyle properties use the same syntax.

Designer Page

Border subtab of the Appearance designer page

Remarks

To add three-dimensional effects to a control, you can create inner and outer borders by setting these properties. The
ThreeDInsideWidth and ThreeDOutsideWidth properties let you adjust the width of the three-dimensional borders. Customize
the colors displayed in the inner and outer borders by setting the ThreeDInsideHighlightColor, ThreeDInsideShadowColor,
ThreeDOutsideHighlightColor, and ThreeDOutsideShadowColor properties.

The following settings are available:
Setting Description Constants
0 - None (Default) No three-dimensional

appearance
LC_THREEDINSIDESTYLE_NONE
LC_THREEDOUTSIDESTYLE_NONE

1 - Lowered Shadow color used to color the
top and left border sides,
highlight color used to color the
bottom and right border sides

LC_THREEDINSIDESTYLE_LOWERED
LC_THREEDOUTSIDESTYLE_LOWERED

2 - Raised Shadow color used to color the
bottom and right border sides,
highlight color used to color the
top and left border sides

LC_THREEDINSIDESTYLE_RAISED
LC_THREEDOUTSIDESTYLE_RAISED

You can create a frame by adding space between the inner and outer three-dimensional borders. To create a frame, you must
set both the ThreeDInsideStyle and ThreeDOutsideStyle properties to values other than 0 (None). Then set the
ThreeDFrameWidth property to specify the width of the frame. For a small (default-sized) control, a frame width or 2 or 3 pixels
looks best.

For more information about customizing your control's borders, see Customizing the Control's Borders. For more information
about creating a frame for your control, see Creating a Frame.

You can specify a predefined border appearance for your control that automatically sets these and other properties by using the
Appearance property. For instructions and a description of the predefined appearance styles, see Using Predefined Appearance
Styles.

Data Type

Integer (Enumerated)

See Also
Creating a Frame

Customizing the Control's Borders

Specifying the Border Appearance

Using Predefined Appearance Styles

Appearance, ThreeDFrameColor, ThreeDFrameWidth, ThreeDInsideHighlightColor, ThreeDInsideShadowColor,
ThreeDInsideWidth, ThreeDOnFocusInvert, ThreeDOutsideHighlightColor, ThreeDOutsideShadowColor, ThreeDOutsideWidth
properties

ThreeDOnFocusInvert Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether to invert the three-dimensional border colors when a control receives the focus.

Syntax

C UINT LC_GetThreeDOnFocusInvert(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetThreeDOnFocusInvert(HWND hWnd, BOOL value);

C++ BOOLClass::GetThreeDOnFocusInvert(void);
Class::SetThreeDOnFocusInvert(BOOL value);

Visual Basic [form.]control.ThreeDOnFocusInvert[= boolean%]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the ThreeDOnFocusInvert property is False.

When the ThreeDOnFocusInvert property is set to True, the three-dimensional effect is inverted while the control has the focus.
That is, the highlight and shadow colors are switched.

For the ThreeDOnFocusInvert property to have an effect, the ThreeDInsideStyle or ThreeDOutsideStyle property must be set to
a value other than 0 (None), and the Enabled property must be set to True.

Data Type

Integer (Boolean)

Print Copy Close

The following example creates an fpList control that inverts the three-dimensional effect when it receives the focus. The outer
three-dimensional style is lowered and the outer border width is 2 pixels.

C
/* Invert 3D when in focus */
LC_SetThreeDOnFocusInvert(hWnd, TRUE);
/* Lowered 3D style */
LC_SetThreeDOutsideStyle(hWnd, LC_THREEDOUTSIDESTYLE_LOWERED);
/* Outside border 3D width */
LC_SetThreeDOutsideWidth(hWnd, 2);

C++
// Invert 3D when in focus
fpList1->SetThreeDOnFocusInvert(TRUE);
// Lowered 3D style
fpList1->SetThreeDOutsideStyle(LC_THREEDOUTSIDESTYLE_LOWERED);
// Outside border 3D width
fpList1->SetThreeDOutsideWidth(2);

Visual Basic
' Invert 3D when in focus
fpList1.ThreeDOnFocusInvert = True
' Lowered 3D style
fpList1.ThreeDOutsideStyle = LC_THREEDOUTSIDESTYLE_LOWERED
' Outside border 3D width
fpList1.ThreeDOutsideWidth = 2

See Also
Displaying Focus on the Control

BorderDropShadow, ThreeDInsideStyle, ThreeDOutsideStyle properties

TopIndex Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the index of the item at the top of the list in an fpCombo or fpList control. This property is available at run time
only.

Syntax

C UINT LC_GetTopIndex(HWND hWnd, long FAR *lpValue);
UINT LC_SetTopIndex(HWND hWnd, long value);

C++ longClass::GetTopIndex(void);
Class::SetTopIndex(long value);

Visual Basic [form.]control.TopIndex[= value&]

Remarks

All items in an fpList control or in the list portion of an fpCombo control are numbered according to their current positions. The
first item has an index number of 0, the second item has an index of 1, and so on. The TopIndex property returns the index of
the item currently displayed at the top of the list. If the user scrolls down the list, the TopIndex property tells you which item is
shown at the top, regardless of which item is selected.

The default value for the TopIndex property is 0.

Data Type

Integer (Long)

Print Copy Close

The following example moves the current selection to the top of the fpList control.

Visual Basic
Sub fpList1_SelChange(ItemIndex)

fpList1.TopIndex = ItemIndex
End Sub

See Also
Accessing List Items

Searching for List Items

List, ListCount, ListDown, ListIndex properties

VirtualMode Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether an fpCombo or fpList control displays values from all records or operates in virtual mode.

Syntax

C UINT LC_GetVirtualMode(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetVirtualMode(HWND hWnd, BOOL value);

C++ BOOLClass::GetVirtualMode(void);
Class::SetVirtualMode(BOOL value);

Visual Basic [form.]control.VirtualMode[= boolean%]

Designer Page

Virtual Mode designer page

Remarks

The default value for the VirtualMode property is False. When this property is set to False, all the values in the list are displayed.

When the VirtualMode property is set to True, the fpCombo or fpList control only loads the number of rows defined by the
VirtualPageSize property. The remaining rows are retrieved as necessary. As the user scrolls down the list, the fpCombo or
fpList control can read records into memory in the background as specified by the VirtualPageSize and VirtualPagesAhead
properties.

When you bind the fpCombo or fpList control to large database tables, reading all the values may affect your application's
performance. You can set the VirtualMode property to True to improve speed and performance.

When using virtual mode, the scroll box does not accurately reflect the position of the top item because the control does not
know how many records there are. You can set the VRowCount property to enable the fpCombo or fpList control to create an
accurate scroll box range, or you can use the special scroll bars designed for use with virtual mode by setting the VScrollSpecial
and VScrollSpecialType properties. This scroll bar does not display a thumb print.

Data Type

Integer (Boolean)

See Also
Using Virtual Mode

Virtual Mode

VirtualPagesAhead, VirtualPageSize, VisibleRows, VRowCount, VScrollSpecial, VScrollSpecialType properties

VirtualPagesAhead Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of pages the list in an fpCombo or fpList control reads into memory in the background when the
VirtualMode property is set to True.

Syntax

C UINT LC_GetVirtualPagesAhead(HWND hWnd, long FAR *lpValue);
UINT LC_SetVirtualPagesAhead(HWND hWnd, long value);

C++ longClass::GetVirtualPagesAhead(void);
Class::SetVirtualPagesAhead(long value);

Visual Basic [form.]control.VirtualPagesAhead[= value&]

Designer Page

Virtual Mode designer page

Remarks

As the user scrolls through the list, the number of pages specified by this property are read into memory in the background.

The default value for the VirtualPagesAhead property is 0, which specifies that no pages are read in the background as the user
scrolls.

The page size is determined by the VirtualPageSize property setting.

Data Type

Integer (Long)

See Also
Using Virtual Mode

Virtual Mode

VirtualMode, VirtualPageSize properties

VirtualPageSize Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the size of virtual pages to be read into memory when the VirtualMode property is set to True.

Syntax

C UINT LC_GetVirtualPageSize(HWND hWnd, long FAR *lpValue);
UINT LC_SetVirtualPageSize(HWND hWnd, long value);

C++ longClass::GetVirtualPageSize(void);
Class::SetVirtualPageSize(long value);

Visual Basic [form.]control.VirtualPageSize[= value&]

Designer Page

Virtual Mode designer page

Remarks

The list in an fpCombo or fpList control reads memory one page at a time. The list then displays as many values as possible
given its size on the screen. Additional values are read from memory until the list reaches the end of the data currently in
memory, at which time an additional page is read.

Pages consist of rows of data to be displayed in the list. Pages can contain the same number of records as can be displayed in
the list, or they can contain more records to speed data retrieval.

The page size is the number of rows of data that are read into memory at one time. The default page size is the number of rows
that will fit in the displayed list, but you can specify a larger page size so that more rows are read at a time. The value of the
VirtualPageSize property indicates the number of rows to be read at a time.

The default value for the VirtualPageSize property is 0, which sets the page size as the current value of the VisibleRows
property. If you set this property to a value less than the value of the VisibleRows property, the virtual page size will be set to the
value of the VisibleRows property. For example, if the value of the VisibleRows property is 10 and you set the VirtualPageSize
property to 8, the virtual page size will be 10 rows.

You can load additional pages into memory in the background as the user works by setting the VirtualPagesAhead property.

Data Type

Integer (Long)

See Also
Using Virtual Mode

Virtual Mode

VirtualMode, VirtualPagesAhead, VisibleRows properties

VisibleRows Property
See Also

Applies To

fpCombo, fpList controls

Description

Returns the number of rows currently displayed in the list in an fpCombo or fpList control.

Syntax

C UINT LC_GetVisibleRows(HWND hWnd, long FAR *lpValue);

C++ long Class::GetVisibleRows(void);

Visual Basic [form.]control.VisibleRows[= value&]

Remarks

To set the number of rows displayed in the drop-down list of an fpCombo control, use the MaxDrop property.

Data Type

Integer (Long)

See Also
MaxDrop, VirtualMode, VirtualPageSize properties

VRowCount Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the scroll box range for an fpCombo or fpList control operating in virtual mode.

Syntax

C UINT LC_GetVRowCount(HWND hWnd, long FAR *lpValue);
UINT LC_SetVRowCount(HWND hWnd, long value);

C++ longClass::GetVRowCount(void);
Class::SetVRowCount(long value);

Visual Basic [form.]control.VRowCount[= value&]

Designer Page

Virtual Mode designer page

Remarks

Setting the VRowCount property to the total number of list items enables the fpCombo or fpList control to calculate an accurate
scroll box range during virtual mode when using the default scroll bars. By setting the VRowCount property, the scroll box
accurately reflects the position of the current selection.

The default value for the VRowCount property is 0, which internally defaults to 5,000 list items.

When the VirtualMode property is set to True, the fpCombo or fpList control is in virtual mode and reads only a specified number
of list items at a time. However, the fpCombo or fpList control cannot calculate an accurate scroll box range because it does not
know how many items are in the list. The VRowCount property saves time by providing this value.

The scroll box position will be most accurate if you set the VRowCount property to the exact number of items in the list. If you do
not know the exact number of list items, set the VRowCount property to an approximate number. The approximate number still
provides the scroll box with enough information to show the scroll box in more or less the correct position. This approximation is
preferable to determining the exact number of items in the list because it can be very time consuming to determine the exact
number.

Instead of the default scroll bar, you can display a special vertical scroll bar designed to work with virtual mode by setting the
VScrollSpecial property.

Data Type

Integer (Long)

Print Copy Close

The following example creates a two-column fpList control that has approximately 4,000 records. Virtual mode is used with a
virtual page size of 20. Vertical and horizontal scroll bars are displayed. The scroll box increment is 30 pixels. Special home,
end, page up, and page down scroll bars are displayed.

C
LC_SetColumns(hWnd, 2);
/* Use virtual mode */
LC_SetVirtualMode(hWnd, TRUE);
/* Display special scroll bars */
LC_SetVScrollSpecial(hWnd, TRUE);
/* Do not display line up and line down arrows */
LC_SetVScrollSpecialType(hWnd, 4);
/* Specify number of database records */
LC_SetVRowCount(hWnd, 4000);
/* Set virtual page size to 20 rows */
LC_SetVirtualPageSize(hWnd, 20);
/* Read ahead 5 pages while user scrolls */
LC_SetVirtualPagesAhead(hWnd, 5);
LC_SetScrollBarH(hWnd, LC_SCROLLBARH_SHOW);
LC_SetScrollBarV(hWnd, LC_SCROLLBARV_SHOW);
/* Set scrolling scale and increment to 30 pixels */
LC_SetScrollHScale(hWnd, LC_SCROLLHSCALE_PIXELS);
LC_SetScrollHInc(hWnd, 30);

C++
fpList1->SetColumns(2);
// Use virtual mode
fpList1->SetVirtualMode(TRUE);
// Display special scroll bars
fpList1->SetVScrollSpecial(TRUE);
// Do not display line up and line down arrows
fpList1->SetVScrollSpecialType(4);
// Specify number of database records
fpList1->SetVRowCount(4000);
// Set virtual page size to 20 rows
fpList1->SetVirtualPageSize(20);
// Read ahead 5 pages while user scrolls
fpList1->SetVirtualPagesAhead(5);
fpList1->SetScrollBarH(LC_SCROLLBARH_SHOW);
fpList1->SetScrollBarV(LC_SCROLLBARV_SHOW);
// Set scrolling scale and increment to 30 pixels
fpList1->SetScrollHScale(LC_SCROLLHSCALE_PIXELS);
fpList1->SetScrollHInc(30);

Visual Basic
fpList1.Columns = 2
' Use virtual mode
fpList1.VirtualMode = True
' Display special scroll bars
fpList1.VScrollSpecial = True
' Do not display line up and line down arrows
fpList1.VScrollSpecialType = 4
' Specify number of database records
fpList1.VRowCount = 4000
' Set virtual page size to 20 rows
fpList1.VirtualPageSize = 20
' Read ahead 5 pages while user scrolls
fpList1.VirtualPagesAhead = 5
fpList1.ScrollBarH = LC_SCROLLBARH_SHOW
fpList1.ScrollBarV = LC_SCROLLBARV_SHOW
' Set scrolling scale and increment to 30 pixels
fpList1.ScrollHScale = LC_SCROLLHSCALE_PIXELS

fpList1.ScrollHInc = 30

See Also
Using Virtual Mode

Virtual Mode

VirtualMode, VScrollSpecial properties

VScrollSpecial Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether a customized scroll bar is displayed in an fpCombo or fpList control.

Syntax

C UINT LC_GetVScrollSpecial(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetVScrollSpecial(HWND hWnd, BOOL value);

C++ BOOLClass::GetVScrollSpecial(void);
Class::SetVScrollSpecial(BOOL value);

Visual Basic [form.]control.VScrollSpecial[= boolean%]

Designer Page

Virtual Mode designer page

Remarks

The VScrollSpecial property displays a special, customized vertical scroll bar instead of the default Windows scroll bar. Instead
of a scroll box, this scroll bar has arrows the user clicks to go to the first or last page, the previous or next page, or the previous
or next line. You can remove some of these arrows by setting the VScrollSpecialType property. The special scroll bar does not
display a thumbprint.

The default value for the VScrollSpecial property is False, which means the customized scroll bar is not displayed.

The customized scroll bar works well with an fpCombo or fpList control in virtual mode (when the VirtualMode property is set to
True). In virtual mode, the fpCombo or fpList control reads only as many items as necessary to fill the list.

Although virtual mode improves performance, it prevents the default scroll bar in the fpCombo or fpList control from accurately
representing the position of the currently displayed item in the list. You can remedy this problem for the default scroll bar by
setting the VRowCount property, or you can use the customized scroll bar by setting the VScrollSpecial property.

Data Type

Integer (Boolean)

See Also
Using Virtual Mode

Virtual Mode

VirtualMode, VRowCount, VScrollSpecialType properties

VScrollSpecialType Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns which arrows are displayed on the customized scroll bar for an fpCombo or fpList control.

Syntax

C UINT LC_GetVScrollSpecialType(HWND hWnd, short FAR *lpValue);
UINT LC_SetVScrollSpecialType(HWND hWnd, short value);

C++ short Class::GetVScrollSpecialType(void);
Class::SetVScrollSpecialType(short value);

Visual Basic [form.]control.VScrollSpecialType[= value%]

Designer Page

Virtual Mode designer page

Remarks

When using a customized scroll bar for an fpCombo or fpList control (by setting the VScrollSpecial property to True), you can
remove some or all of the scroll bar arrows by setting the VScrollSpecialType property.

The following settings can be combined with the Or operator:
Value Description
0 (Default) Displays all the default arrows on the

customized scroll bar
1 Removes the home and end arrows
2 Removes the page up and page down arrows
4 Removes the line up and line down arrows

To remove more than one set of arrows, use the Or operator to combine two or more values. The Or operator lets you perform a
bitwise comparison of two numbers. The result sets more than one value. For more information, refer to the Or operator in the
Visual Basic documentation.

Data Type

Integer

See Also
Using Virtual Mode

Virtual Mode

VirtualMode, VScrollSpecial properties

WrapList Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns whether an fpCombo or fpList control wraps data in multiple columns.

Syntax

C UINT LC_GetWrapList(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetWrapList(HWND hWnd, BOOL value);

C++ BOOLClass::GetWrapList(void);
Class::SetWrapList(BOOL value);

Visual Basic [form.]control.WrapList[= boolean%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

The default value for the WrapList property is False.

When the WrapList property is set to False, each column must be set to display data individually using the designated-column
properties (such as Col and ColWidth).

When the WrapList property is set to True, items from a single-column fpCombo or fpList control are arranged in snaking
columns, filling the first column, then the second, and so on. A horizontal scroll bar is displayed if necessary.

When the WrapList property is set to True, all multiple-column support is disabled, and the designated-column property settings
are ignored. Also, when the WrapList property is set to True, no vertical scroll bar is displayed regardless of the ScrollBarV
property setting.

Data Type

Integer (Boolean)

See Also
Wrapping List Items in a Single-Column Control

Col, Columns, ColWidth, ScrollBarV, WrapWidth properties

WrapWidth Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns the width of the columns in an fpCombo or fpList control when the WrapList property is set to True.

Syntax

C UINT LC_GetWrapWidth(HWND hWnd, long FAR *lpValue);
UINT LC_SetWrapWidth(HWND hWnd, long value);

C++ longClass::GetWrapWidth(void);
Class::SetWrapWidth(long value);

Visual Basic [form.]control.WrapWidth[= value%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

When the WrapList property is set to True, list items in the fpCombo or fpList control are displayed in wrapping columns. The
WrapWidth property determines the width of the columns.

The default value for the WrapWidth property is 0, which uses the maximum item length.

In Visual Basic, the measurement unit used by the WrapWidth property depends on the setting of the form's ScaleMode
property. The default scale mode is twips (1/1440 of an inch). Generally, the ActiveX and VBX controls use twips as the default
measurement unit, and the DLL controls use pixels as the default measurement unit.

Data Type

Integer

See Also
Wrapping List Items in a Single-Column Control

WrapList property

Properties

Using the Property Topics

Understanding Syntax Conventions

Setting Enumerated Properties

Loading Pictures in C and C++

Standard Visual Basic Properties Supported by List Pro Controls

A
About

Action

AlignH

AlignV

AllowColDragDrop

AllowColResize

AllowGrpDragDrop

AllowGrpResize

Appearance

ApplyTo

AutoSearch

B
BackColor

BorderColor

BorderDropShadow

BorderDropShadowColor

BorderDropShadowWidth

BorderGrayAreaColor

BorderStyle

BorderWidth

C
Col

ColDataField

ColFormat

ColFromID

ColFromName

ColHeaderText

ColHide

ColID

ColLevel

ColLevelHeight

ColList

ColLockResize

ColMerge

ColName

ColParentGroup

ColPos

ColPosInParent

ColsFrozen

ColSortDataType

ColSorted

ColSortSeq

ColText

ColumnBound

ColumnEdit

ColumnHeaderHeight

ColumnHeaderShow

ColumnLevels

Columns

ColumnSearch

ColumnSeparatorChar

ColumnWidthScale

ColWidth

ComboGap

D
DataAutoHeadings

DataAutoSizeCols

DataBookmark

DataSourcehWnd

DataSourcehWndList

DataSourceList

DataSync

E
EditHeight

EnableKeyEvents

EnableMouseEvents

EnableTopChangeEvent

ExtendCol

ExtendRow

F
Font

FontEmpty

ForeColor

G
GrayAreaColor

GroupHeaderHeight

GroupHeaderShow

Groups

Grp

GrpFromID

GrpFromName

GrpHeaderText

GrpHide

GrpID

GrpLockResize

GrpName

GrpParentGroup

GrpPos

GrpPosInParent

GrpsFrozen

GrpWidth

H
HighestPrecedence

hWnd

I
InsertRow

ItemData

J
JoinID

L
Line3DDark

Line3DLight

Line3DWidth

LineApplyTo

LineColor

LineStyle

LineWidth

List

List3DText

List3DTextHighlightColor

List3DTextOffset

List3DTextShadowColor

ListApplyTo

ListCount

ListDown

ListGrayAreaColor

ListIndex

ListLeftOffset

ListWidth

M
MaxDrop

MaxEditLen

MergeAdjustView

MouseOverArea

MouseOverCol

MouseOverColHeader

MouseOverGrp

MouseOverGrpHeader

MouseOverRow

MultiLine

MultiSelect

N
NewIndex

NextSel

NoIntegralHeight

P
Picture

PictureAlignH

PictureAlignV

PictureSel

R
ReadOnly

Row

RowHeight

RowMerge

S
ScrollBarH

ScrollBarV

ScrollHInc

ScrollHScale

SearchIgnoreCase

SearchIndex

SearchMethod

SearchText

SelCount

SelDrawFocusRect

Selected

SelLength

SelMax

SelStart

SelText

Sorted

SortState

Style

T
Text

TextOrientation

ThreeDFrameColor

ThreeDFrameWidth

ThreeDInsideHighlightColor

ThreeDInsideShadowColor

ThreeDInsideStyle

ThreeDInsideWidth

ThreeDOnFocusInvert

ThreeDOutsideHighlightColor

ThreeDOutsideShadowColor

ThreeDOutsideStyle

ThreeDOutsideWidth

TopIndex

V
VirtualMode

VirtualPagesAhead

VirtualPageSize

VisibleRows

VRowCount

VScrollSpecial

VScrollSpecialType

W
WrapList

WrapWidth

This function is available for these classes:
CfpComboBox CfpListBox

No properties begin with this letter.

Using the Property Topics
The following table describes each section in the property topics.
Topic Section Description
Summary Box Illustrates

Whether the property can be
set using the FarPoint Property Designer

Whether the property is
read/write, read-only, or write-only

Whether the property is
available at run time, design time, or both

Applies To Lists which List Pro controls support the property
Description Provides a brief summary of the property
Syntax Shows how to set or read the value of the property in code

(See Understanding Syntax Conventions for information
about typographic usage in syntax statements.)
Notes

For C and C++ development
environments, the "syntax" statements are actually define
statements, provided to give you the most information about
the List Pro functions.

Unless stated otherwise, C++
syntax represents MFC sytnax for the DLL controls.

ActiveX Use Provides ActiveX information about the property
Designer Page Lists the FarPoint Property Designer Page and subtab

corresponding to the property, if applicable
Remarks Provides detailed and related information, including

enumerated property settings and constants
(See Setting Enumerated Properties for more information
about enumerated property settings.)

Data Type Indicates the Visual Basic data type of the property's values
See Also Provides references to related information
Example Provides C, C++, and Visual Basic example code that you

can print or copy to place in your project
Note Properties that are not set in the examples use their

default values. To determine the default value for a
property, refer to its description.

Understanding Syntax Conventions
The "Syntax" section uses the typographic conventions listed in the following table.

Example Description
value, color, control Italicized items are placeholders for information you supply.

(Substitute the name of the control for the word control in
syntax statements.)

short, BOOL Bold, italicized arguments indicate data types, pointers, and

user-defined types.
Class In programming syntax, blue text indicates additional

information is provided in a pop-up window. To access the
pop-up window, click the blue text. (Italicized blue text
indicates variable content, as described in the pop-up
window.)

[= value&] Items inside square brackets are optional.
Notes

For C and C++ development environments, the "syntax" statements are actually define statements
provided to give you the most information about the List Pro functions.

Unless otherwise stated, C++ syntax represents MFC syntax for the DLL controls.

Setting Enumerated Properties
Enumerated properties are those with a finite number of settings that can be specified with whole numbers (integers) or
constants. For example, the fpCombo control's AlignH property can be set to Default (0 or LC_ALIGNH_DEFAULT), Left (1 or
LC_ALIGNH_LEFT), Center (2 or LC_ALIGNH_CENTER), or Right (3 or LC_ALIGNH_RIGHT).

When setting enumerated properties in code, you can use either of the following methods:

Set the property to an integer value, for example,
fpCombo1.AlignH = 2

Set the property to a constant, for example,
fpCombo1.AlignH = LC_ALIGNH_CENTER

Using constants makes your code easier to read and requires fewer comments. In addition, constants are more readily
recognized by later versions of the controls because they do not change as integer values sometimes do.

Constants are defined for all List Pro enumerated properties in constants files. The Setup program copies constants files into the
\LSTPRO20\INCLUDE\ subdirectory. To use constants in your code, you must include the constants files in your applications.

Loading Pictures in C and C++
If you are using the C or C++ programming language and are loading pictures in your control, you must use additional code
before setting picture properties.

If you are using the C programming language, use code similar to the following to load a picture.
HBITMAP hbmpEducation;
HICON hiconHome;
hiconHome = LoadIcon(hInstance, "Home");
hbmpEducation = LoadBitmap(hInstance, "Education");

/* Load bitmap in the first column */
LC_SetCol(hWnd, 1);
LC_SetRow(hWnd, 1);
LC_SetPicture(hWnd, FP_PICT_TYPE_BITMAP, FP_HNDTYPE_HANDLE, hbmpEducation, 0);

/* Load icon in the first column */
LC_SetCol(hWnd, 1);
LC_SetRow(hWnd, 1);
LC_SetPicture(hWnd, FP_PICT_TYPE_ICON, FP_HNDTYPE_HANDLE, hiconHome, 0);

If you are using the C++ programming language and a List Pro DLL control, use code similar to the following to load a picture
(the bitmap is created in AppStudio).
/* using the resource ID with LC class calls */
m_comboControl.SetPicture(FP_PICT_TYPE_BITMAP, FP_HNDTYPE_RESID, IDC_LIST, 0);

If you are using the C++ programming language and a List Pro ActiveX control, you must use additional code before setting
picture properties. Use the following instructions to load the picture.

1. Declare a picture holder class.

CPictureHolder myPicture;
2. Create the picture using the Create function.

// Create picture from icon
myPicture.CreateFromIcon(IDI_MYICON);

3. Provide the picture for the control.

m_comboControl.SetPicture(myPicture.GetPictureDispatch());

If you are using the C++ programming language and a List Pro VBX control, use code similar to the following to convert an
hBitmap into an hPic (the bitmap is created in AppStudio).
// Convert hBitmap to hPic for the VBX using C++
PIC picture;
HPIC hPic;
HBITMAP hBitmap;

hBitmap=LoadBitmap(AfxGetInstanceHandle(),"bitmap");
picture.picData.bmp.hbitmap=hBitmap;
picture.picType=PICTYPE_BITMAP;
hPic=AfxSetPict(NULL,&picture);
fpList1->SetPicture(hPic);

Standard Visual Basic Properties Supported by List Pro Controls
The following table lists the standard Visual Basic properties that are supported by List Pro controls.

Refer to the Visual Basic documentation for more information on these properties.
DataChanged HelpContextID
DataField Index
DataSource Left
DragIcon MouseIcon (32-bit VB4 only)
DragMode MousePointer
Enabled Name
FontBold Parent
FontItalic TabIndex
FontName TabStop
FontSize Tag
FontStrikethru Top
FontUnderline Visible
Height Width

About Property
Example

Applies To

fpCombo, fpList controls

Description

Returns version information at run time. At design time, double-clicking this property displays a dialog box with version
information. This property is available for VBX controls only.

Syntax

C++ LPSTR Class::GetAbout(LPSTR buffer, UINT nBufferSize);

Visual Basic [form.]control.About

Remarks

The About dialog box displays the List Pro version number, control name, and version date. At run time, you can retrieve the
version number as a string and can convert the string to a floating-point number. The version number format is "V.R.NNN",
where "V" is the one-digit version number from 0 through 9, "R" is the one-digit update or revision number from 0 through 9, and
"NNN" is the three-digit update or maintenance release number from 000 through 999.

Data Type

String

Print Copy Close

The following example checks the version number of an fpList control and exits if the version is less than 1.5.000.

C++
// If the version number is less than 1.5.000, display a message box and exit
If (m_fpList1->GetAboutBox() < "1.5.000")

{
MessageBox("A later version of List Pro is needed to run this application.");
}

Else
{
MessageBox("This is a current VBX.");
}

Visual Basic
' If the version number is less than 1.5.000, display a message box and exit
If fpList1.About <= "1.5.000" Then

Beep
MsgBox "A later version of List Pro is needed to run this application."
End

Else
MsgBox "This is a current VBX."

End If

Action Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets a value that designates an action, such as inserting a column or deleting a row. This property is available at run time only.

Syntax

C UINT LC_SetAction(HWND hWnd, short value);

C++ Class::SetAction(short value);

Visual Basic [form.]control.Action[= setting%]

Designer Page

Setting 7 (Insert Column) and setting 8 (Delete Column) correspond to the Insert Column and Delete Column buttons on the
Specific subtab of the Columns designer page. Setting 10 (Insert Group) and setting 11 (Delete Group) correspond to the Insert
Group and Delete Group buttons on the Specific subtab of the Groups designer page. Setting 12 (Clone Column) corresponds
to the Clone Column button on the Specific subtab of the Columns designer page. Setting 4 (Delete Row) corresponds to the
Delete Row button on the Add Data designer page.

Remarks

Use the Action property in place of Visual Basic methods for the fpCombo and fpList controls. For example, use setting 4
(Delete Row) to delete the one hundred thousandth list item in a database because the Visual Basic RemoveItem method
supports only up to 32,768 list items.

The following settings are available:
Setting Description Constant
0 - Search Performs a search on the

list based on the search
properties, such as
SearchIgnoreCase,
SearchText, and
SearchMethod

LC_ACTION_SEARCH

1 - Select All Selects all rows in the list
box when the MultiSelect
property is set to 1
(Simple) or 2 (Extended)

LC_ACTION_SELECTALL

2 - Deselect All Deselects all items or
rows in the list

LC_ACTION_DESELECTALL

3 - Clear Clears all items or rows
from the list

LC_ACTION_CLEAR

4 - Delete Row Deletes an item or row
(Use the Row property to
specify the row to delete.)

LC_ACTION_DELETEROW

5 - Force Update Forces the list box to
display changes

LC_ACTION_FORCEUPDATE

6 - Clear Search
 Buffer

Clears the search buffer
when users search using
multiple characters by way
of the AutoSearch
property

LC_ACTION_CLEARSEARCHBUFFER

7 - Insert Column Inserts a column before
the specified column
(Use the Col property to
specify where to insert the
new column.)

LC_ACTION_INSERTCOL

8 - Delete Column Deletes a column
(Use the Col property to
specify the column to

LC_ACTION_DELETECOL

delete.)
9 - Virtual Refresh Forces the control to

discard the current page
of data and re-request the
data currently in the buffer
(Use this setting with the
VirtualMode property.)

LC_ACTION_VIRTUALREFRESH

10 - Insert Group Inserts a group before the
specified group
(Use the Grp property to
specify where to insert the
new group.)

LC_ACTION_INSERTGRP

11 - Delete Group Deletes a group
(Use the Grp property to
specify the group to
delete.)

LC_ACTION_DELETEGRP

12 - Clone Column Copies a column (all
attributes except data,
column identification
number or name, and data
field setting) and inserts
the cloned column to the
right of the copied column
(Use the Col property to
specify which column to
clone.)

LC_ACTION_CLONECOL

Data Type

Integer (Enumerated)

Print Copy Close

The following example adds rows to an fpList control, and then allows the user to delete the currently selected row.

C
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "North Carolina");
LC_SetInsertRow(hWnd, "Ohio");
LC_SetInsertRow(hWnd, "Virginia");
LC_SetInsertRow(hWnd, "Florida");
LC_SetInsertRow(hWnd, "California");

void OnLButtonDblClickLB(UINT, int, Cwnd*, LPVOID)
{

long Index;
LC_SetRow(hWnd, LC_GetListIndex(hWnd));
LC_SetRow(hWnd, LC_GetListIndex(hWnd, &Index));
LC_SetAction(hWnd, LC_ACTION_DELETEROW);

}
C++

bool CListBox_Dlg::OnInitDialog()
{

m_LB->SetRow(-1);
m_LB->InsertRow("North Carolina");
m_LB->InsertRow("Ohio");
m_LB->InsertRow("Virginia");
m_LB->InsertRow("Florida");
m_LB->InsertRow("California");

}

void CListBox_Dlg::OnLButtonDblClick(UINT, int, Cwnd*, LPVOID lpparams)
{

m_LB->SetRow(m_LB->GetListIndex());
m_LB->SetAction(LC_ACTION_DELETEROW);

}
Visual Basic

Sub Form_Load ()
fpList1.Row = -1
fpList1.InsertRow = "North Carolina"
fpList1.InsertRow = "Ohio"
fpList1.InsertRow = "Virginia"
fpList1.InsertRow = "Florida"
fpList1.InsertRow = "California"
End Sub

Sub fpList1_DblClick ()
Dim Choice As Integer

' Prompt if the user wants to delete the double-clicked item
Choice = MsgBox("Are you sure you want to delete this item?", 4)

' If Yes
If Choice = 6 Then

' Set current row
fpList1.Row = fpList1.ListIndex
' Delete item
fpList1.Action = LC_ACTION_DELETEROW

Else
Exit Sub

End If
End Sub

See Also
Cloning Columns

Creating Multiple Columns

Creating Groups

Searching for List Items

Sorting List Items

AutoSearch, Col, Grp, MultiSelect, Row, SearchIgnoreCase, SearchIndex, SearchMethod, SearchText, VirtualMode properties

AlignH Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the horizontal alignment of text in a column or group.

Syntax

C UINT LC_GetAlignH(HWND hWnd, short FAR *lpValue);
UINT LC_SetAlignH(HWND hWnd, short value);

C++ short Class::GetAlignH(void);
Class::SetAlignH(short value);

Visual Basic [form.]control.AlignH[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default Left justifies the text in

cells Centers the text in
headers

LC_ALIGNH_DEFAULT

1 - Left (Default) Left-justifies the
text

LC_ALIGNH_LEFT

2 - Center Centers the text LC_ALIGNH_CENTER
3 - Right Right-justifies the text LC_ALIGNH_RIGHT

You can set the ListApplyTo property before you set the AlignH property to designate the part of the control to which text
alignment applies.

Data Type

Integer (Enumerated)

Print Copy Close

The following example horizontally centers the column header text and vertically aligns text at the bottom of all rows.

C
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_COL_HEADER);
LC_SetAlignH(hWnd, LC_ALIGNH_CENTER);
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_ALL_ROWS);
LC_SetAlignV(hWnd, LC_ALIGNV_BOTTOM);

C++
fpList1->SetListApplyTo(LC_LISTAPPLYTO_COL_HEADER);
fpList1->SetAlignH(LC_ALIGNH_CENTER);
fpList1->SetListApplyTo(LC_LISTAPPLYTO_ALL_ROWS);
fpList1->SetAlignV(LC_ALIGNV_BOTTOM);

Visual Basic
fpList1.ListApplyTo = LC_LISTAPPLYTO_COL_HEADER
fpList1.AlignH = LC_ALIGNH_CENTER
fpList1.ListApplyTo = LC_LISTAPPLYTO_ALL_ROWS
fpList1.AlignV = LC_ALIGNV_BOTTOM

See Also
Aligning Text and Graphics

AlignV, ListApplyTo properties

AlignV Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the vertical alignment of text in a column or group.

Syntax

C UINT LC_GetAlignV(HWND hWnd, short FAR *lpValue);
UINT LC_SetAlignV(HWND hWnd, short value);

C++ short Class::GetAlignV(void);
Class::SetAlignV(short value);

Visual Basic [form.]control.AlignV[= setting%]

Designer Page

List subtab of the ApplyTo designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Default Centers the text vertically LC_ALIGNV_DEFAULT
1 - Top Displays the text at the top LC_ALIGNV_TOP
2 - Center (Default) Centers the text

vertically
LC_ALIGNV_CENTER

3 - Bottom Displays the text at the
bottom of the row

LC_ALIGNV_BOTTOM

You can set the ListApplyTo property before you set the AlignV property to designate the part of the control to which text
alignment applies.

Data Type

Integer (Enumerated)

See Also
Aligning Text and Graphics

AlignH, ListApplyTo properties

AllowColDragDrop Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the user can move columns at run time in a multiple-column fpCombo or fpList control by dragging and
dropping a column header.

Syntax

C UINT LC_GetAllowColDragDrop(HWND hWnd, short FAR *lpValue);
UINT LC_SetAllowColDragDrop(HWND hWnd, short value);

C++ short Class::GetAllowColDragDrop(void);
Class::SetAllowColDragDrop(short value);

Visual Basic [form.]control.AllowColDragDrop[= setting%]

Designer Page

General subtab of the Columns designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Off (Default) Prevents

columns from being
dragged and dropped

LC_ALLOWCOLDRAGDROP_OFF

1 - All Cols Enables any column to be
dragged and dropped

LC_ALLOWCOLDRAGDROP_ALLCOLS

2 - Non
 Frozen
 Cols

Enables any column
except frozen columns to
be dragged and dropped

LC_ALLOWCOLDRAGDROP_NONFROZENCOLS

When the AllowColDragDrop property is set to 1 (All Cols) or 2 (Non Frozen Cols), users can click the header of a column they
want to move, drag it to a new position, and release the mouse button to move the column.

Notes

If you move a column, the index number of any column affected by the move will change. When you
move a column to the left of its current position, the column index number of the column you move and of all columns to the right of
the destination column will change. When you move a column to the right of its current position, the column index number of the
column you move and of all columns between it and the destination column will change. For more information, see Referencing a
Column.

You must display column headers to drag and drop columns.
To create a multiple-column fpCombo or fpList control, set the Columns property to a value greater than 0.

To prevent frozen columns from being moved, set this property to 2 (Non Frozen Cols).

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a four-column fpList control. The first column is frozen, but the user can rearrange or resize other
columns by dragging and dropping at run time.

C
LC_SetColumns(hWnd, 4);
LC_SetAllowColDragDrop(hWnd, LC_ALLOWCOLDRAGDROP_NONFROZENCOLS);
/* Freeze first column */
LC_SetColsFrozen(hWnd, 1);
LC_SetAllowColResize(hWnd, LC_ALLOWCOLRESIZE_RESIZECOLORHEADER);
/* Show header */
LC_SetColumnHeaderShow(hWnd, TRUE);
/* First column */
LC_SetCol(hWnd, 0);
LC_SetColHeaderText(hWnd, "Name");
/* Second column */
LC_SetCol(hWnd, 1);
LC_SetColHeaderText(hWnd, "PubID");
/* Third column */
LC_SetCol(hWnd, 2);
LC_SetColHeaderText(hWnd, "Telephone");
/* Fourth column */
LC_SetCol(hWnd, 3);
LC_SetColHeaderText(hWnd, "Fax");

C++
fpList1->SetColumns(4);
fpList1->SetAllowColDragDrop(LC_ALLOWCOLDRAGDROP_NONFROZENCOLS);
// Freeze first column
fpList1->SetColsFrozen(1);
fpList1->SetAllowColResize(LC_ALLOWCOLRESIZE_RESIZECOLORHEADER);
// Show header
fpList1->SetColumnHeaderShow(TRUE);
// First column
fpList1->SetCol(0);
fpList1->SetColHeaderText("Name");
// Second column
fpList1->SetCol(1);
fpList1->SetColHeaderText("PubID");
// Third column
fpList1->SetCol(2);
fpList1->SetColHeaderText("Telephone");
// Fourth column
fpList1->SetCol(3);
fpList1->SetColHeaderText("Fax");

Visual Basic
fpList1.Columns = 4
fpList1.AllowColDragDrop = LC_ALLOWCOLDRAGDROP_NONFROZENCOLS
' Freeze first column
fpList1.ColsFrozen = 1
fpList1.AllowColResize = LC_ALLOWCOLRESIZE_RESIZECOLORHEADER
' Show header
fpList1.ColumnHeaderShow = True
' First column
fpList1.Col = 0
fpList1.ColHeaderText = "Name"
' Second column
fpList1.Col = 1
fpList1.ColHeaderText = "PubID"
' Third column
fpList1.Col = 2
fpList1.ColHeaderText = "Telephone"

' Fourth column
fpList1.Col = 3
fpList1.ColHeaderText = "Fax"

See Also
Referencing a Column

Moving Columns in the Control

ColsFrozen, Columns properties

DragDropCol event

AllowColResize Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the user can resize columns in a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetAllowColResize(HWND hWnd, short FAR *lpValue);
UINT LC_SetAllowColResize(HWND hWnd, short value);

C++ short Class::GetAllowColResize(void);
Class::SetAllowColResize(short value);

Visual Basic [form.]control.AllowColResize[= setting%]

Designer Page

General subtab of the Columns designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Off (Default) Prevents the

user from resizing the
column by dragging and
dropping a boundary

LC_ALLOWCOLRESIZE_OFF

1 - Resize Header Enables the user to resize
the column by dragging a
header boundary

LC_ALLOWCOLRESIZE_RESIZEHEADER

2 - Resize Col or
 Header

Enables the user to resize
the column by dragging
either a header boundary
or a column boundary

LC_ALLOWCOLRESIZE_RESIZECOLORHEADER

When the AllowColResize property is set to a value other than 0 (Off), the user can resize columns in a multiple-column
fpCombo or fpList control by dragging a column boundary. When the mouse passes over a column boundary, the pointer
changes to a resize pointer. The user can press the left mouse button and drag the boundary to resize the column.

Setting the ColLockResize property to a column number prevents a specific column from being resized.

When the user releases the mouse button after resizing the column, the ColWidthChange event occurs.

To create a multiple-column fpCombo or fpList control, set the Columns property to a value greater than 0.

Data Type

Integer (Enumerated)

See Also
Resizing Columns

ColLockResize, Columns properties

ColWidthChange event

AllowGrpDragDrop Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the user can move groups at run time in a multiple-group fpCombo or fpList control by dragging and
dropping a group header.

Syntax

C UINT LC_GetAllowGrpDragDrop(HWND hWnd, short FAR *lpValue);
UINT LC_SetAllowGrpDragDrop(HWND hWnd, short value);

C++ short Class::GetAllowGrpDragDrop(void);
Class::SetAllowGrpDragDrop(short value);

Visual Basic [form.]control.AllowGrpDragDrop[= setting%]

Designer Page

General subtab of the Groups designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Off (Default) Prevents groups

from being dragged and
dropped

LC_ALLOWGRPDRAGDROP_OFF

1 - All Grps Enables any group to be
dragged and dropped

LC_ALLOWGRPDRAGDROP_ALLGRPS

2 - Non
 Frozen
 Grps

Enables any group except
frozen groups to be
dragged and dropped

LC_ALLOWGRPDRAGDROP_NONFROZENGRPS

When the AllowGrpDragDrop property is set to 1 (All Grps) or 2 (Non Frozen Grps), users can click the header of a group they
want to move, drag it to a new position, and release the mouse button to move the group.

Notes

If you move a group, the index number of any group affected by the move will change. When you
move a group to the left of its current position, the group index number of the group you move and of all groups to the right of the
destination group will change. When you move a group to the right of its current position, the group index number of the group you
move and of all groups between it and the destination group will change. For more information, see Referencing a Group.

You must display group headers to drag and drop groups.
To create a multiple-group fpCombo or fpList control, set the Groups property to a value greater than 0.

To prevent frozen groups from being moved, set this property to 2 (Non Frozen Grps).

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a list box control with two groups and four columns. The user can drag and drop all nonfrozen
groups and can resize a group by dragging a header or group boundary.

C
LC_SetColumns(hWnd, 4);
LC_SetGroups(hWnd, 2);
LC_SetGroupHeaderShow(hWnd, TRUE);
/* Allow group resize */
LC_SetAllowGrpResize(hWnd, LC_ALLOWGRPRESIZE_RESIZEGRPORHEADER);
/* Allow group drag and drop */
LC_SetAllowGrpDragDrop(hWnd, LC_ALLOWGRPDRAGDROP_NONFROZENGRPS);
/* Create 1st group */
LC_SetGrp(hWnd, 0);
LC_SetGrpHeaderText(hWnd, "SSN");
/* Create 2nd group */
LC_SetGrp(hWnd, 1);
LC_SetGrpHeaderText(hWnd, "Date of Birth");
/* Assign columns to groups */
LC_SetCol(hWnd, 0);
LC_SetColParentGroup(hWnd, 0);
LC_SetCol(hWnd, 1);
LC_SetColParentGroup(hWnd, 0);
LC_SetCol(hWnd, 2);
LC_SetColParentGroup(hWnd, 1);
LC_SetCol(hWnd, 3);
LC_SetColParentGroup(hWnd, 1);

C++
fpList1->SetColumns(4);
fpList1->SetGroups(2);
fpList1->SetGroupHeaderShow(TRUE);
// Allow group resize
fpList1->SetAllowGrpResize(LC_ALLOWGRPRESIZE_RESIZEGRPORHEADER);
// Allow group drag and drop
fpList1->SetAllowGrpDragDrop(LC_ALLOWGRPDRAGDROP_NONFROZENGRPS);
// Create 1st group
fpList1->SetGrp(0);
fpList1->SetGrpHeaderText("SSN");
// Create 2nd group
fpList1->SetGrp(1);
fpList1->SetGrpHeaderText("Date of Birth");
// Assign columns to groups
fpList1->SetCol(0);
fpList1->SetColParentGroup(0);
fpList1->SetCol(1);
fpList1->SetColParentGroup(0);
fpList1->SetCol(2);
fpList1->SetColParentGroup(1);
fpList1->SetCol(3);
fpList1->SetColParentGroup(1);

Visual Basic
fpList1.Columns = 4
fpList1.Groups = 2
fpList1.GroupHeaderShow = True
' Allow group resize
fpList1.AllowGrpResize = LC_ALLOWGRPRESIZE_RESIZEGRPORHEADER
' Allow group drag and drop
fpList1.AllowGrpDragDrop = LC_ALLOWGRPDRAGDROP_NONFROZENGRPS
' Create 1st group
fpList1.Grp = 0
fpList1.GrpHeaderText = "SSN"

' Create 2nd group
fpList1.Grp = 1
fpList1.GrpHeaderText = "Date of Birth"
' Assign columns to groups
fpList1.Col = 0
fpList1.ColParentGroup = 0
fpList1.Col = 1
fpList1.ColParentGroup = 0
fpList1.Col = 2
fpList1.ColParentGroup = 1
fpList1.Col = 3
fpList1.ColParentGroup = 1

See Also
Referencing a Group

Moving Groups in the Control

Groups, Grp, GrpsFrozen properties

DragDropGrp event

AllowGrpResize Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the user can resize groups in a multiple-group fpCombo or fpList control.

Syntax

C UINT LC_GetAllowGrpResize(HWND hWnd, short FAR *lpValue);
UINT LC_SetAllowGrpResize(HWND hWnd, short value);

C++ short Class::GetAllowGrpResize(void);
Class::SetAllowGrpResize(short value);

Visual Basic [form.]control.AllowGrpResize[= setting%]

Designer Page

General subtab of the Groups designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Off (Default) Prevents the

user from resizing the
group by dragging and
dropping a boundary

LC_ALLOWGRPRESIZE_OFF

1 - Resize Header Enables the user to resize
the group by dragging a
header boundary

LC_ALLOWGRPRESIZE_RESIZEHEADER

2 - Resize Grp or
 Header

Enables the user to resize
the group by dragging
either a header boundary
or a group boundary

LC_ALLOWGRPRESIZE_RESIZEGRPORHEADER

When the AllowGrpResize property is set to a value other than 0 (Off), the user can resize groups in a multiple-group fpCombo
or fpList control by dragging a group boundary. When the mouse passes over a group boundary, the pointer changes to a resize
pointer. The user can press the left mouse button and drag the boundary to resize the group.

Setting the GrpLockResize property to a group number prevents a specific group from being resized.

When the user releases the mouse button after resizing the group, the GrpWidthChange event occurs.

To create a multiple-group fpCombo or fpList control, set the Groups property to a value greater than 0.

Data Type

Integer (Enumerated)

See Also
Resizing Groups

Groups, GrpLockResize properties

GrpWidthChange event

Appearance Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns predefined border styles.

Syntax

C UINT LC_GetAppearance(HWND hWnd, short FAR *lpValue);
UINT LC_SetAppearance(HWND hWnd, short value);

C++ short Class::GetAppearance(void);
Class::SetAppearance(short value);

Visual Basic [form.]control.Appearance[= setting%]

Designer Page

Border subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Custom Uses the current border

settings
LC_APPEARANCE_CUSTOM

1 - Flat (Default) Creates a control with
an outline border and no inner
or outer three-dimensional
borders, similar to Windows 3.1
and Windows NT 3.5

LC_APPEARANCE_FLAT

2 - 3-D Creates a control with inner
and outer three-dimensional
borders and no outline border,
similar to Windows 95

LC_APPEARANCE_3D

3 - 3-D with Border Creates a control with an
outline border and inner and
outer three-dimensional
borders

LC_APPEARANCE_3D_W_BORDER

The Appearance property settings correspond to predefined settings of the following properties:
BorderColor ThreeDInsideHighlightColor ThreeDOutsideHighlightColor
BorderStyle ThreeDInsideShadowColor ThreeDOutsideShadowColor
BorderWidth ThreeDInsideStyle ThreeDOutsideStyle
ThreeDFrameWidth ThreeDInsideWidth ThreeDOutsideWidth

If you apply a predefined appearance style, be aware that the settings for these properties might be changed. For complete
information, see Using Predefined Appearance Styles.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a combo box control that displays a three-dimensional appearance with a border. The control
also has a 4-pixel three-dimensional blue frame. The gray area color of both the list and the control border is white.

C
LC_SetAppearance(hWnd, LC_APPEARANCE_3D_WITH_BORDER);
LC_SetThreeDFrameWidth(hWnd, 4);
/* blue RGB(0, 0, 255) */
LC_SetThreeDFrameColor(hWnd, 0x00FF0000);
/* white RGB(255, 255, 255) */
LC_SetBorderGrayAreaColor(hWnd, 0x00FFFFFF);
/* white RGB(255, 255, 255) */
LC_SetListGrayAreaColor(hWnd, 0x00FFFFFF);

C++
fpCombo1->SetAppearance(LC_APPEARANCE_3D_WITH_BORDER);
fpCombo1->SetThreeDFrameWidth(4);
// blue RGB(0, 0, 255)
fpCombo1->SetThreeDFrameColor(0x00FF0000);
// white RGB(255, 255, 255)
fpCombo1->SetBorderGrayAreaColor(0x00FFFFFF);
// white RGB(255, 255, 255)
fpCombo1->SetListGrayAreaColor(0x00FFFFFF);

Visual Basic
fpCombo1.Appearance = LC_APPEARANCE_3D_WITH_BORDER
fpCombo1.ThreeDFrameWidth = 4
' blue RGB(0, 0, 255)
fpCombo1.ThreeDFrameColor = &H00FF0000&
' white RGB(255, 255, 255)
fpCombo1.BorderGrayAreaColor = &H00FFFFFF&
' white RGB(255, 255, 255)
fpCombo1.ListGrayAreaColor = &H00FFFFFF&

See Also
Customizing the Control's Borders

Using Predefined Appearance Styles

BorderColor, BorderStyle, BorderWidth, ThreeDFrameWidth, ThreeDInsideHighlightColor, ThreeDInsideShadowColor,
ThreeDInsideStyle, ThreeDInsideWidth, ThreeDOutsideHighlightColor, ThreeDOutsideShadowColor, ThreeDOutsideStyle,
ThreeDOutsideWidth properties

ApplyTo Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns which parts of the fpCombo control are affected by the three-dimensional border properties (such as
ThreeDFrameWidth), and foreground and background properties (such as BackColor). This property is available at run time
only.

Syntax

C UINT CbxGetApplyTo(HWND hWnd, short FAR *lpValue);
UINT CbxSetApplyTo(HWND hWnd, short value);

C++ short CfpComboBox::GetApplyTo(void);
CfpComboBox::SetApplyTo(short value);

Visual Basic [form.]fpCombo1.ApplyTo[= setting%]

Designer Page

Border subtab of the Appearance designer page
Color subtab of the Appearance designer page
Misc subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Both (Default) Apply properties to

both the list and the edit field
CBX_APPLYTO_BOTH

1 - List Only Apply properties to the list CBX_APPLYTO_LISTONLY
2 - Edit Only Apply properties to the edit field CBX_APPLYTO_EDITONLY

You can use the ApplyTo property before setting any of the following properties:
Action - Clear BorderWidth ThreeDInsideShadowColor
Appearance Font ThreeDInsideStyle
BackColor FontEmpty ThreeDInsideWidth
BorderColor ForeColor ThreeDOnFocusInvert
BorderDropShadow Text ThreeDOutsideHighlightColor
BorderDropShadowColor ThreeDFrameColor ThreeDOutsideShadowColor
BorderDropShadowWidth ThreeDFrameWidth ThreeDOutsideStyle
BorderGrayAreaColor ThreeDInsideHighlightColor ThreeDOutsideWidth
BorderStyle

Set the ApplyTo property before you set the affected properties. After you have finished setting the properties for a particular part
of the fpCombo control, set the ApplyTo property to 0 (Both) to ensure that succeeding settings apply to both parts.

Data Type

Integer (Enumerated)

Print Copy Close

The following example sets different color properties for the edit field and the list in an fpCombo control.

C
/* Add items to the fpCombo */
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "Row 1");
LC_SetInsertRow(hWnd, "Row 2");
LC_SetInsertRow(hWnd, "Row 3");
/* Set colors for edit field */
CbxSetApplyTo(hWnd, CBX_APPLYTO_EDITONLY);
/* blue RGB(0, 0, 255) */
LC_SetForeColor(hWnd, 0x00FF0000);
/* white RGB(255, 255, 255) */
LC_SetBackColor(hWnd, 0x00FFFFFF);
/* Set colors for list */
CbxSetApplyTo(hWnd, CBX_APPLYTO_LISTONLY);
/* green RGB(0, 255, 0) */
LC_SetForeColor(hWnd, 0x0000FF00);
/* white RGB(255, 255, 255) */
LC_SetBackColor(hWnd, 0x00FFFFFF);
/* Return setting to 0 (Both) */
CbxSetApplyTo(hWnd, CBX_APPLYTO_BOTH);

C++
// Add items to the fpCombo
fpCombo1->SetRow(-1);
fpCombo1->SetInsertRow("Row 1");
fpCombo1->SetInsertRow("Row 2");
fpCombo1->SetInsertRow("Row 3");
// Set colors for edit field
fpCombo1->SetApplyTo(CBX_APPLYTO_EDIT_ONLY);
// blue RGB(0, 0, 255)
fpCombo1->SetForeColor(0x00FF0000);
// white RGB(255, 255, 255)
fpCombo1->SetBackColor(0x00FFFFFF);
// Set colors for list
fpCombo1->SetApplyTo(CBX_APPLYTO_LIST_ONLY);
// green RGB(0, 255, 0)
fpCombo1->SetForeColor(0x0000FF00);
// white RGB(255, 255, 255)
fpCombo1->SetBackColor(0x00FFFFFF);
// Return setting to 0 (Both)
fpCombo1->SetApplyTo(CBX_APPLYTO_BOTH);

Visual Basic
' Add items to the fpCombo
fpCombo1.Row = -1
fpCombo1.InsertRow = "Row 1"
fpCombo1.InsertRow = "Row 2"
fpCombo1.InsertRow = "Row 3"
' Set colors for edit field
fpCombo1.ApplyTo = CBX_APPLYTO_EDITONLY
' blue RGB(0, 0, 255)
fpCombo1.ForeColor = &H00FF0000&
' white RGB(255, 255, 255)
fpCombo1.BackColor = &H00FFFFFF&
' Set colors for list
fpCombo1.ApplyTo = CBX_APPLYTO_LISTONLY
' green RGB(0, 255, 0)
fpCombo1.ForeColor = &H0000FF00&
' white RGB(255, 255, 255)
fpCombo1.BackColor = &H00FFFFFF&

' Return setting to 0 (Both)
fpCombo1.ApplyTo = CBX_APPLYTO_BOTH

See Also
Applying Properties to Specific Parts of the Control

Customizing the Controls Borders

Action, AlignH, AlignV, Appearance, BackColor, BorderColor, BorderDropShadow, BorderDropShadowColor,
BorderDropShadowWidth, BorderGrayAreaColor, BorderWidth, Font, FontEmpty, ForeColor, Text, ThreeDFrameColor,
ThreeDFrameWidth, ThreeDInsideHighlightColor, ThreeDInsideShadowColor, ThreeDInsideStyle, ThreeDInsideWidth,
ThreeDOnFocusInvert, ThreeDOutsideHighlightColor, ThreeDOutsideShadowColor, ThreeDOutsideStyle, ThreeDOutsideWidth
properties

AutoSearch Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns the type of search the user can perform when searching for a specific list item.

Syntax

C UINT LC_GetAutoSearch(HWND hWnd, short FAR *lpValue);
UINT LC_SetAutoSearch(HWND hWnd, short value);

C++ short Class::GetAutoSearch(void);
Class::SetAutoSearch(short value);

Visual Basic [form.]control.AutoSearch[= setting%]

Designer Page

Search designer page

Remarks

The AutoSearch property allows the user to type one or more characters to search for an item in the list of an fpList control or
drop-down list style fpCombo control. Typing a character initiates a search for the first item that begins with that character. The
control highlights the found item.

If the search character is not found and the setting is 1 (Single Char), no item is highlighted. If the setting is 2 (Multiple Char),
the selection highlighting moves to the closest available match for the search string as the characters are entered. If none of the
items begin with the first character entered, the fpCombo or fpList control does not move the selection. If the setting is 3 (Single
Char (Greater or Equal)), the fpCombo or fpList control highlights the next greater item if the search character is not found. For
example, the first item starting with the letter "g" will be highlighted if the user searched for the letter "f" and none of the items
begin with that letter.

The following settings are available:
Setting Description Constant
0 - None Removes the searching

capability
LC_AUTOSEARCH_NONE

1 - Single Char (Default) Lets the user type a
single search character and
highlights the first item
containing that character

LC_AUTOSEARCH_SINGLE_CHAR

2 - Multiple Char Lets the user type more than
one search character and
highlights the first item
containing those characters in
sequence (for example, to
highlight "Variegated" type
"var")

LC_AUTOSEARCH_MULTIPLE_CHAR

3 - Single Char
 (Greater or
 Equal)

Lets the user type a single
search character and highlights
the first item containing the
search character or, if the
search character is not found,
the next item starting with a
greater character

LC_AUTOSEARCH_SINGLE_GREATER

Set the Style property to 2 (Drop-Down List) to create a drop-down list style fpCombo control. Drop-down combo and simple
combo style fpCombo controls let users search by typing characters in the edit field. By default, these styles of fpCombo
controls always perform a multiple-character search. Therefore, setting the AutoSearch property for drop-down combo or simple
combo style fpCombo controls has no effect.

Use the ColumnSearch property to designate which column to search in a multiple-column fpCombo or fpList control.

Use the SearchText property to specify a search string at run time. Set the Action property to 0 (Search) after designating the

search string to perform the search at run time. Set the Action property to 6 (Clear Search Buffer) to clear the buffer after
performing a search.

Data Type

Integer (Enumerated)

See Also
Searching for List Items

Action, ColumnSearch, SearchMethod, SearchText, Style properties

BackColor, ForeColor Properties
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the background and foreground (text) colors of an fpCombo or fpList control.

Syntax

C UINT LC_GetBackColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetBackColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetBackColor(void);
Class::SetBackColor(COLORREF value);

Visual Basic [form.]control.BackColor[= color]

Note The BackColor and ForeColor properties use the same syntax.

Designer Page

List subtab of the ApplyTo designer page

ActiveX Use

The BackColor and ForeColor properties are stock properties.

Remarks

The default values are &H80000005& (Windows system window color) for the BackColor property and &H80000008& (Windows
system window text color) for the ForeColor property.

When using the three-dimensional properties, you can maximize the three-dimensional effect by selecting a foreground color
that contrasts with the background color. Also, the control's background color should contrast with the
ThreeDInsideShadowColor and ThreeDInsideHighlightColor property settings. The form's foreground color should contrast with
the ThreeDOutsideShadowColor and ThreeDOutsideHighlightColor property settings.

You can set the ListApplyTo property before you set the BackColor or ForeColor property to designate the part of the control to
which the color applies.

Visual Basic users can refer to the Visual Basic documentation for additional information about the BackColor and ForeColor
properties.

Data Type

Color

See Also
Changing the Background Color

Changing Text Color and Fonts

ListApplyTo, ThreeDInsideHighlightColor, ThreeDInsideShadowColor, ThreeDOutsideHighlightColor,
ThreeDOutsideShadowColor properties

BorderColor Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the color of the outline border.

Syntax

C UINT LC_GetBorderColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetBorderColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetBorderColor(void);
Class::SetBorderColor(COLORREF value);

Visual Basic [form.]control.BorderColor[= color]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the BorderColor property is &H80000006& (Windows system window frame color).

You must choose a solid color for the BorderColor. Also, the BorderWidth property must be set to a value greater than 0 and the
BorderStyle property must be set to a value other than 0 (No Border) to use the BorderColor property.

Every control has an outline border. In addition, the control can display inner and outer borders that can create a three-
dimensional effect. For more information, see Customizing the Control's Borders.

To hide the surrounding border, set the BorderStyle property to 0 (No Border) or set the BorderWidth property to 0.

Data Type

Color

Print Copy Close

The following example creates a combo box control whose surrounding border is red, is 3 pixels wide, and has a dash-dot style.

C
/* Set border color */
/* red RGB(255, 0, 0) */
LC_SetBorderColor(hWnd, 0x000000FF);
/* Set border width to 3 pixels */
LC_SetBorderWidth(hWnd, 3);
/* Set border style to dash dot */
LC_SetBorderStyle(hWnd, LC_BORDERSTYLE_DASH_DOT);

C++
// Set border color
// red RGB(255, 0, 0)
fpCombo1->SetBorderColor(0x000000FF);
// Set border width to 3 pixels
fpCombo1->SetBorderWidth(3);
// Set border style to dash dot
fpCombo1->SetBorderStyle(LC_BORDERSTYLE_DASH_DOT);

Visual Basic
' Set border color
' red RGB(255, 0, 0)
fpCombo1.BorderColor = &H000000FF&
' Set border width to 3 pixels
fpCombo1.BorderWidth = 3
' Set border style to dash dot
fpCombo1.BorderStyle = LC_BORDERSTYLE_DASH_DOT

See Also
Customizing the Control's Borders

Specifying the Border Appearance

Appearance, BorderStyle, BorderWidth properties

BorderDropShadow Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether and when a control displays a drop shadow.

Syntax

C UINT LC_GetBorderDropShadow(HWND hWnd, short FAR *lpValue);
UINT LC_SetBorderDropShadow(HWND hWnd, short value);

C++ short Class::GetBorderDropShadow(void);
Class::SetBorderDropShadow(short value);

Visual Basic [form.]control.BorderDropShadow[= setting%]

Designer Page

Border subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 - None (Default) No drop shadow

displayed
LC_BORDERDROPSHADOW_NONE

1 - Always Drop shadow always displayed LC_BORDERDROPSHADOW_ALWAYS
2 - On Focus Drop shadow displayed when

the control has the focus
LC_BORDERDROPSHADOW_ONFOCUS

When the BorderDropShadow property is set to 2 (On Focus), a drop shadow is displayed when the control has the focus. For
more information about ways to display the focus on the control, see Displaying Focus on the Control.

You can change the color and width of the drop shadow with the BorderDropShadowColor and BorderDropShadowWidth
properties.

If the drop shadow is only displayed when the control has the focus, you can change the color of the area where the drop
shadow is displayed (called the gray area). To change the gray area color, set the BorderGrayAreaColor property.

Notes

The BorderDropShadowWidth property setting affects the area inside the control's margins.

The Enabled property must be set to True for a control to receive the focus when the
BorderDropShadow property is set to 2 (On Focus).

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates an fpList control that displays a dark gray drop shadow when it receives the focus. The width of
the drop shadow is 3 pixels.

C
/* Display shadow when in focus */
LC_SetBorderDropShadow(hWnd, LC_BORDERDROPSHADOW_ONFOCUS);
/* dark gray RGB(128, 128, 128) */
LC_SetBorderDropShadowColor(hWnd, 0x00C0C0C0);
LC_SetBorderDropShadowWidth(hWnd, 3);

C++
// Display shadow when in focus
fpList1->SetBorderDropShadow(LC_BORDERDROPSHADOW_ONFOCUS);
// dark gray RGB(128, 128, 128)
fpList1->SetBorderDropShadowColor(0x00C0C0C0);
fpList1->SetBorderDropShadowWidth(3);

Visual Basic
' Display shadow when in focus
fpList1.BorderDropShadow = LC_BORDERDROPSHADOW_ONFOCUS
' dark gray RGB(128, 128, 128)
fpList1.BorderDropShadowColor = &H00C0C0C0&
fpList1.BorderDropShadowWidth = 3

See Also
Displaying Focus on the Control

Displaying Drop Shadows

BorderDropShadowColor, BorderDropShadowWidth, BorderGrayAreaColor properties

BorderDropShadowColor Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the color of a control's drop shadow.

Syntax

C UINT LC_GetBorderDropShadowColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetBorderDropShadowColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetBorderDropShadowColor(void);
Class::SetBorderDropShadowColor(COLORREF value);

Visual Basic [form.]control.BorderDropShadowColor[= color]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the BorderDropShadowColor property is &H80000010& (Windows system button shadow color).

To display a drop shadow, set the BorderDropShadow property to 1 (Always) or 2 (On Focus). The BorderDropShadowColor
property specifies the color of the drop shadow.

If the BorderDropShadow property is set to 2 (On Focus), when the control does not have the focus, the area where the drop
shadow color is displayed is the color specified by the BorderGrayAreaColor property.

Data Type

Color

Print Copy Close

The following example creates an fpList control that displays a custom drop shadow upon receiving the focus. Note the
difference between the drop shadow area and the border gray area.

C
LC_SetBorderDropShadow(hWnd, LC_BORDERDROPSHADOW_ONFOCUS);
/* dark gray RGB(128, 128, 128) */
LC_SetBorderDropShadowColor(hWnd, 0x00C0C0C0);
LC_SetBorderDropShadowWidth(hWnd, 3);
/* red RGB(255, 0, 0) */
LC_SetBorderGrayAreaColor(hWnd, 0x000000FF);

C++
fpList1->SetBorderDropShadow(LC_BORDERDROPSHADOW_ONFOCUS);
// dark gray RGB(128, 128, 128)
fpList1->SetBorderDropShadowColor(0x00C0C0C0);
fpList1->SetBorderDropShadowWidth(3);
// red RGB(255, 0, 0)
fpList1->SetBorderGrayAreaColor(0x000000FF);

Visual Basic
fpList1.BorderDropShadow = LC_BORDERDROPSHADOW_ONFOCUS
' dark gray RGB(128, 128, 128)
fpList1.BorderDropShadowColor = &H00C0C0C0&
fpList1.BorderDropShadowWidth = 3
' red RGB(255, 0, 0)
fpList1.BorderGrayAreaColor = &H000000FF&

See Also
Displaying Drop Shadows

BorderDropShadow, BorderDropShadowWidth, BorderGrayAreaColor, ThreeDOnFocusInvert properties

BorderDropShadowWidth Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width in pixels of the drop shadow.

Syntax

C UINT LC_GetBorderDropShadowWidth(HWND hWnd, short FAR *lpValue);
UINT LC_SetBorderDropShadowWidth(HWND hWnd, short value);

C++ short Class::GetBorderDropShadowWidth(void);
Class::SetBorderDropShadowWidth(short value);

Visual Basic [form.]control.BorderDropShadowWidth[= value%]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the BorderDropShadowWidth property is 3 pixels.

To display a drop shadow, set the BorderDropShadow property to 1 (Always) or 2 (On Focus). The BorderDropShadowColor
property specifies the color of the drop shadow.

Note Before you set the properties that size the client area of the control and the control itself, be sure to consider the
BorderDropShadowWidth property setting.

Data Type

Integer

See Also
Displaying Drop Shadows

BorderDropShadow, BorderDropShadowColor properties

BorderGrayAreaColor Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the border's gray area color to distinguish it from the form's BackColor.

Syntax

C UINT LC_GetBorderGrayAreaColor(HWND hWnd, COLORREF FAR *lpValue);
UINT LC_SetBorderGrayAreaColor(HWND hWnd, COLORREF value);

C++ COLORREF Class::GetBorderGrayAreaColor(void);
Class::SetBorderGrayAreaColor(COLORREF value);

Visual Basic [form.]control.BorderGrayAreaColor[= color]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the BorderGrayAreaColor property is &H8000000B& (the default color which is light gray).

If you change the surrounding border's gray area color, you can see it in the following circumstances:

When you create a drop shadow for the control by setting the BorderDropShadow property to 2 (On
Focus), you can see the color when the control does not have the focus.

When you create rounded corners by setting the BorderStyle property to 2 (Rounded) and setting the
BorderWidth property to a value greater than 3 pixels, you can see the color in the corners of the control.

When you create a three-dimensional frame by setting the ThreeDFrameWidth, ThreeDInsideStyle,
and ThreeDOutsideStyle properties, changing the surrounding border's gray area color keeps the outer border's highlight color from
defaulting to the background color of the form.

Data Type

Color

Print Copy Close

The following example creates a drop-down list combo box control with three columns. A blue drop shadow is displayed on
focus. The border gray area color is red.

C
LC_SetStyle(hWnd, CBX_STYLE_DROPDOWN_LIST);
LC_SetColumns(hWnd, 3);
LC_SetBorderDropShadow(hWnd, LC_BORDERDROPSHADOW_ONFOCUS);
/* blue RGB(0, 0, 255) */
LC_SetBorderDropShadowColor(hWnd, 0x00FF0000);
/* red RGB(255, 0, 0) */
LC_SetBorderGrayAreaColor(hWnd, 0x000000FF);

C++
fpCombo1->SetStyle(CBX_STYLE_DROPDOWN_LIST);
fpCombo1->SetColumns(3);
fpCombo1->SetBorderDropShadow(LC_BORDERDROPSHADOW_ONFOCUS);
// blue RGB(0, 0, 255)
fpCombo1->SetBorderDropShadowColor(0x00FF0000);
// red RGB(255, 0, 0)
fpCombo1->SetBorderGrayAreaColor(0x000000FF);

Visual Basic
fpCombo1.Style = CBX_STYLE_DROPDOWN_LIST
fpCombo1.Columns = 3
fpCombo1.BorderDropShadow = LC_BORDERDROPSHADOW_ONFOCUS
' blue RGB(0, 0, 255)
fpCombo1.BorderDropShadowColor = &H00FF0000&
' red RGB(255, 0, 0)
fpCombo1.BorderGrayAreaColor = &H000000FF&

See Also
Displaying Drop Shadows

BorderDropShadow, BorderDropShadowColor, BorderStyle, BorderWidth, ThreeDFrameWidth, ThreeDInsideStyle,
ThreeDOutsideStyle properties

BorderStyle Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the style of the outline border.

Syntax

C UINT LC_GetBorderStyle(HWND hWnd, short FAR *lpValue);
UINT LC_SetBorderStyle(HWND hWnd, short value);

C++ short Class::GetBorderStyle(void);
Class::SetBorderStyle(short value);

Visual Basic [form.]control.BorderStyle[= setting%]

Designer Page

Border subtab of the Appearance designer page

Remarks

The following settings are available:
Setting Description Constant
0 No Border LC_BORDERSTYLE_NO_BORDER
1 (Default) Single Line LC_BORDERSTYLE_SINGLE_LINE
2 Rounded LC_BORDERSTYLE_ROUNDED
3 Dash LC_BORDERSTYLE_DASH
4 Dot LC_BORDERSTYLE_DOT
5 Dash Dot LC_BORDERSTYLE_DASH_DOT
6 Dash Dot Dot LC_BORDERSTYLE_DASH_DOT_DOT

Every control has an outline border. In addition, controls can display inner and outer borders that create a three-dimensional
effect. Settings 1 (Single Line) or 2 (Rounded) of the BorderStyle property are recommended when creating a three-dimensional
effect for a control. For more information, see Customizing the Control's Borders.

To hide the surrounding border, set the BorderStyle property to 0 (No Border) or set the BorderWidth property to 0. The
BorderWidth property must be set to a value greater than 0 for the BorderStyle property to have an effect.

Data Type

Integer (Enumerated)

See Also
Customizing the Control's Borders

Specifying the Border Appearance

Appearance, BorderColor, BorderWidth properties

BorderWidth Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width in pixels of the outline border.

Syntax

C UINT LC_GetBorderWidth(HWND hWnd, short FAR *lpValue);
UINT LC_SetBorderWidth(HWND hWnd, short value);

C++ short Class::GetBorderWidth(void);
Class::SetBorderWidth(short value);

Visual Basic [form.]control.BorderWidth[= value%]

Designer Page

Border subtab of the Appearance designer page

Remarks

The default value for the BorderWidth property is 1 pixel.

Every control has an outline border. In addition, controls can display inner and outer borders that create a three-dimensional
effect. For more information, see Customizing the Control's Borders.

Setting the BorderWidth property to 0 hides the outline border; if the control does not display an outline border, the BorderColor
and BorderStyle properties have no effect.

Data Type

Integer

See Also
Customizing the Control's Borders

Specifying the Border Appearance

Appearance, BorderColor, BorderStyle, ThreeDInsideWidth, ThreeDOutsideWidth properties

Col Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the index number of a column in an fpCombo or fpList control.

Syntax

C UINT LC_GetCol(HWND hWnd, short FAR *lpValue);
UINT LC_SetCol(HWND hWnd, short value);

C++ shortClass::GetCol(void);
Class::SetCol(short value);

Visual Basic [form.]control.Col[= value%]

Designer Pages

Col drop-down list box on:

Specific subtab of the Columns designer page
List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page
Add Data designer page
Column subtab of the Data Binding designer page
Merge/Join designer page
Sort designer page
Search designer page

Remarks

The default value for the Col property is 0.

The Col property specifies the column on which the designated-column properties (such as AlignH and ColSorted) operate.
Column numbers start with 0, which designates the top, leftmost column. Columns are numbered from left to right and top to
bottom within their parent group, if any, and then within the control.

Column index numbers are based on the physical position of the column in the control. For example, assume you define three
columns (0, 1, and 2). These columns appear in that order from left to right across the top of the control. If you move Column 2
to the far left side of the control, this column now has a column index number of 0. For more information on columns, see
Referencing a Column.

To specify an entire column, set the Row property to 1 before setting the Col property.

You must set the Columns property to create a multiple-column fpCombo or fpList control before setting the Col property.

Note No column properties, including Col, apply when the WrapList property is set to True, regardless of the Columns
property value.

You can set the Col property using the FarPoint Property Designer. For more information, see Using the FarPoint Property
Designer.

You can use the ColID and ColName properties to assign unique identifiers to a column. You can then use the ColFromID or
ColFromName properties to specify the column to which the designated-column properties apply, regardless of where the
column physically appears in the control.

Tip Because column index numbers are based on the physical position of the column in the control, if you plan on moving
columns or changing column levels, or allowing the user to move columns, we strongly recommend you use one of the
unique column identifiers (ColID or ColName property) to reference a column rather than the Col property.

Data Type

Integer

See Also
Referencing a Column

Using the FarPoint Property Designer

AlignH, ColDataField, ColFormat, ColFromID, ColFromName, ColHeaderText, ColHide, ColID, ColLevel, ColLevelHeight,
ColList, ColLockResize, ColMerge, ColName, ColParentGroup, ColPos, ColPosInParent, ColSorted, ColSortSeq, ColText,
Columns, ColWidth, ExtendCol, Row, WrapList properties

ColDataField Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the data field to bind to a column in a multiple-column fpCombo or fpList control. This property is available for
Visual Basic users only.

Syntax

Visual Basic [form.]control.ColDataField[= text$]

Designer Pages

Column subtab of the Data Binding designer page

Remarks

Use the ColDataField property with multiple-column fpCombo and fpList controls. The ColDataField property lets you bind each
column to a separate field in the database bound to the Data control.

Before you set the ColDataField property, you must create a multiple-column control with the Columns property and specify a
column with the Col, ColFromID, or ColFromName property.

Instead of specifying the field name as the value, you can use the field number, written as "#field number". For example, instead
of using
fpCombo1.ColDataField = "Address"
you could use
fpCombo1.ColDataField = "#2"
The field number is zero-based.

Use the DataField property with single-column controls. Use the DataFieldList property to bind the list in a single-column
fpCombo control.

For more information on how to bind a data field, refer to the DataField property in the Visual Basic documentation.

Data Type

String

See Also
Providing Column Headers

Working with Databases

Col, ColFromID, ColFromName, Columns, DataFieldList properties

ColFormat Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the format string used for data display in a column. This property applies only when reading bound data. This
property is available for Visual Basic users only.

Syntax

Visual Basic [form.]control.ColFormat[= text$]

Designer Pages

Specific subtab of the Columns designer page
Column subtab of the Data Binding designer page

Remarks

The format string specified with the ColFormat property affects the way data is stored in the data field.

Before you set the ColFormat property, you must create a multiple-column control with the Columns property and specify a
column with the Col, ColFromID, or ColFromName property.

See the Visual Basic Format$ function for valid format strings.

Data Type

String

Print Copy Close

The following example creates a two-column fpCombo control that formats the data in the first column. To re-create this
example, create an fpCombo control and a Data control on a form. Bind the Data control to Visual Basic's BIBLIO.MDB
database using the DatabaseName property and to the Titles table using the RecordSource property. Then bind the fpCombo
control to the Data control using the DataSource and DataSourceList properties.

Visual Basic
fpCombo1.Columns = 2
' Display second column, "Title," in edit field
fpCombo1.ColumnEdit = 1
fpCombo1.DataAutoHeadings = False
fpCombo1.ColumnHeaderShow = True
fpCombo1.Col = 0
fpCombo1.ColDataField = "Year Published"
fpCombo1.ColHeaderText = "Year"
fpCombo1.ColFormat = "(####)"
fpCombo1.Col = 1
fpCombo1.ColDataField = "Title"
fpCombo1.ColHeaderText = "Title of Book"

See Also
Customizing Columns

Col, ColFromID, ColFromName, Columns, DataSourceList properties

ColFromID Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the column on which the designated-column properties operate by using the column identifier number.

Syntax

C UINT LC_GetColFromID(HWND hWnd, long FAR *lpValue);
UINT LC_SetColFromID(HWND hWnd, long value);

C++ long Class::GetColFromID(void);
Class::SetColFromID(long value);

Visual Basic [form.]control.ColFromID[= value&]

Designer Pages

Col ID drop-down list box on:

Specific subtab of the Columns designer page
List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page
Add Data designer page
Column subtab of the Data Binding designer page
Merge/Join designer page
Sort designer page
Search designer page

Remarks

The default value for the ColFromID property is 1.

To specify an entire column, set the Row property to 1 before setting the ColFromID property.

You must set the ColID property to create the column identifier number before setting the ColFromID property. Once you define
an identifier number for a column, you can use the ColFromID property to specify the column on which the designated-column
properties (such as ColHeaderText and ColSorted) operate. The ColFromID property works the same as the Col property in this
respect.

You can also use the ColName and ColFromName properties in a similar fashion.

Tip Because column index numbers are based on the physical position of the column in the control, if you plan on moving
columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Note No column properties, including ColFromID, apply when the WrapList property is set to True, regardless of the Columns
property value.

Data Type

Integer (Long)

Print Copy Close

The following example creates a two-column list box with two levels in every row. The first column's height is two levels.

C
LC_SetColumns(hWnd, 2);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetColumnLevels(hWnd, 2);
/* Insert data */
LC_SetInsertRow(hWnd, "SoftTech\tActiveX controls");
LC_SetInsertRow(hWnd, "FarOut\tVBX controls");
LC_SetInsertRow(hWnd, "OldHat\tDLL control");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColID(hWnd, 111);
LC_SetCol(hWnd, 1);
LC_SetColID(hWnd, 112);
/* Set level height and text for first column */
LC_SetColFromID(hWnd, 111);
LC_SetColLevelHeight(hWnd, 2);
LC_SetColHeaderText(hWnd, "Company");
/* Set level height and text for second column */
LC_SetColFromID(hWnd, 112);
LC_SetColHeaderText(hWnd, "Product");

C++
fpList1->SetColumns(2);
fpList1->SetColumnHeaderShow(TRUE);
fpList1->SetColumnLevels(2);
// Insert data
fpList1->SetInsertRow("SoftTech\tActiveX controls");
fpList1->SetInsertRow("FarOut\tVBX controls");
fpList1->SetInsertRow("OldHat\tDLL control");
// Define columns
fpList1->SetCol(0);
fpList1->SetColID(111);
fpList1->SetCol(1);
fpList1->SetColID(112);
// Set level height and text for first column
fpList1->SetColFromID(111);
fpList1->SetColLevelHeight(2);
fpList1->SetColHeaderText("Company");
// Set level height and text for second column
fpList1->SetColFromID(112);
fpList1->SetColHeaderText("Product");

Visual Basic
fpList1.Columns = 2
fpList1.ColumnHeaderShow = True
fpList1.ColumnLevels = 2
' Insert data
fpList1.InsertRow = "SoftTech" & Chr$(9) & "ActiveX controls"
fpList1.InsertRow = "FarOut" & Chr$(9) & "VBX controls"
fpList1.InsertRow = "OldHat" & Chr$(9) & "DLL control"
' Define columns
fpList1.Col = 0
fpList1.ColID = 111
fpList1.Col = 1
fpList1.ColID = 112
' Set level height and text for first column
fpList1.ColFromID = 111
fpList1.ColLevelHeight = 2
fpList1.ColHeaderText = "Company"

' Set level height and text for second columnApplying Properties to a Specific
Column
fpList1.ColFromID = 112
fpList1.ColHeaderText = "Product"

See Also
Applying Properties to a Specific Column

Referencing a Column

Col, ColDataField, ColFormat, ColFromName, ColHeaderText, ColHide, ColID, ColLevel, ColLevelHeight, ColList,
ColLockResize, ColMerge, ColName, ColParentGroup, ColPos, ColPosInParent, ColSorted, ColSortSeq, ColText, Columns,
ColWidth, Row, WrapList properties

ColFromName Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the column on which the designated-column properties operate by using the column name.

Syntax

C UINT LC_GetColFromName(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetColFromName(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetColFromName(LPSTR buffer, UINT bufferSize);
Class::SetColFromName(LPCSTR value);

Visual Basic [form.]control.ColFromName[= text$]

Designer Pages

Col Name drop-down list box on:

Specific subtab of the Columns designer page
List subtab of the ApplyTo designer page
Line subtab of the ApplyTo designer page
Add Data designer page
Column subtab of the Data Binding designer page
Merge/Join designer page
Sort designer page
Search designer page

Remarks

You must set the ColName property to define the column name before setting the ColFromName property. Once you define a
name for a column, you can use the ColFromName property to specify the column on which the designated-column properties
(such as ColHeaderText and ColSorted) operate. The ColFromName property works the same as the Col property in this
respect.

The ColName property is case-sensitive; however, the ColFromName property is not case-sensitive.

To specify an entire column, set the Row property to 1 before setting the ColFromName property.

You can also use the ColID and ColFromID properties in a similar fashion.

Tip Because column index numbers are based on the physical position of the column in the control, if you plan on moving
columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Note No column properties, including ColFromName, apply when the WrapList property is set to True, regardless of the
Columns property value.

Data Type

String

Print Copy Close

The following example creates a three-column list box control with three levels. Each column is on a different level.

C
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetColumns(hWnd, 3);
LC_SetColumnLevels(hWnd, 3);
LC_SetInsertRow(hWnd, "Bob Morris\t1994\tProgrammer");
LC_SetInsertRow(hWnd, "Rick Johnson\t1992\tWriter");
LC_SetInsertRow(hWnd, "Ann Bennett\t1995\tManager");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColName(hWnd, "NAME");
LC_SetCol(hWnd, 1);
LC_SetColName(hWnd, "DOH");
LC_SetCol(hWnd, 2);
LC_SetColName(hWnd, "TITL");
/* Define column levels */
LC_SetColFromName(hWnd, "NAME");
LC_SetColLevel(hWnd, 0);
LC_SetColFromName(hWnd, "TITL");
LC_SetColLevel(hWnd, 1);
LC_SetColFromName(hWnd, "DOH");
LC_SetColLevel(hWnd, 2);

C++
fpList1->SetColumnHeaderShow(FALSE);
fpList1->SetColumns(3);
fpList1->SetColumnLevels(3);
fpList1->SetInsertRow("Bob Morris\t1994\tProgrammer");
fpList1->SetInsertRow("Rick Johnson\t1992\tWriter");
fpList1->SetInsertRow("Ann Bennett\t1995\tManager");
// Define columns
fpList1->SetCol(0);
fpList1->SetColName("NAME");
fpList1->SetCol(1);
fpList1->SetColName("DOH");
fpList1->SetCol(2);
fpList1->SetColName("TITL");
// Define column levels
fpList1->SetColFromName("NAME");
fpList1->SetColLevel(0);
fpList1->SetColFromName("TITL");
fpList1->SetColLevel(1);
fpList1->SetColFromName("DOH");
fpList1->SetColLevel(2);

Visual Basic
fpList1.ColumnHeaderShow = False
fpList1.Columns = 3
fpList1.ColumnLevels = 3
fpList1.InsertRow = "Bob Morris" & Chr$(9) & 1994 & Chr$(9) &"Programmer"
fpList1.InsertRow = "Rick Johnson" & Chr$(9) & 1992 & Chr$(9) &"System Analyst"
fpList1.InsertRow = "Ann Bennett" & Chr$(9) & 1995 & Chr$(9) &"Manager"
' Define columns
fpList1.Col = 0
fpList1.ColName = "NAME"
fpList1.Col = 1
fpList1.ColName = "DOH"
fpList1.Col = 2
fpList1.ColName = "TITL"
' Define column levels
fpList1.ColFromName = "NAME"

fpList1.ColLevel = 0
fpList1.ColFromName = "TITL"
fpList1.ColLevel = 1
fpList1.ColFromName = "DOH"
fpList1.ColLevel = 2

See Also
Applying Properties to a Specific Column

Referencing a Column

Col, ColDataField, ColFormat, ColFromID, ColHeaderText, ColHide, ColID, ColLevel, ColLevelHeight, ColList, ColLockResize,
ColMerge, ColName, ColParentGroup, ColPos, ColPosInParent, ColSorted, ColSortSeq, ColText, Columns, ColWidth, Row,
WrapList properties

ColHeaderText Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns a string to display in the list header of an fpCombo or fpList control.

Syntax

C UINT LC_GetColHeaderText(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetColHeaderText(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetColHeaderText(LPSTR buffer, UINT bufferSize);
Class::SetColHeaderText(LPCSTR value);

Visual Basic [form.]control.ColHeaderText[= text$]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColHeaderText property is an empty string.

You must set the ColumnHeaderShow property to True to display the headers.

To display a user-defined header in a single-column, non-bound fpCombo or fpList control, set the Columns property to 1, the
Col property to 0, and the ColumnHeaderShow property to True before setting the ColHeaderText property. If you are working
with a single-column, bound control, do not set the DataField property for the single column. Specify the field to bind to the
column using the ColDataField property.

By default, when each column of a multiple-column fpCombo or fpList control is bound to a database, the field name is
displayed as the header text. To display other header text, you must set the DataAutoHeadings property to False and the
ColumnHeaderShow property to True.

To display a user-defined header in multiple-column, non-bound fpCombo or fpList controls, create a multiple-column control
with the Columns property, specify a column with the Col, ColFromID, or ColFromName property, and define the header text
with the ColHeaderText property.

Data Type

String

See Also
Providing Column Headers

Col, ColDataField, ColFromID, ColFromName, ColumnHeaderShow, Columns, DataAutoHeadings properties

ColHide Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether to hide a column in a multiple-column fpCombo or fpList control. This property is available at run time
only.

Syntax

C UINT LC_GetColHide(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetColHide(HWND hWnd, BOOL value);

C++ BOOL Class::GetColHide(void);
Class::SetColHide(BOOL value);

Visual Basic [form.]control.ColHide[= boolean%]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColHide property is False.

Use this property when you want to sort the values in a column without displaying the column by which values are sorted. You
might also want to use this property to provide the values to display in the edit field, as set by the ColumnEdit property, when
you do not want those values displayed in a list column.

Before you set the ColHide property, you must specify a column with the Col, ColFromID, or ColFromName property.

Tip Another way to hide a column is to set the ColWidth property to 0.

Data Type

Integer (Boolean)

See Also
Customizing Columns

Col, ColFromID, ColFromName, ColumnEdit, ColWidth properties

ColID Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the column identifier number.

Syntax

C UINT LC_GetColID(HWND hWnd, long FAR *lpValue);
UINT LC_SetColID(HWND hWnd, long value);

C++ long Class::GetColID(void);
Class::SetColID(long value);

Visual Basic [form.]control.ColID[= value&]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColID property is 1.
You must set the Col property to specify the column before setting the ColID property.
The ColID property defines a unique identifier number for a column. Once you define an identifier number for a column, you can use
the ColFromID property to specify the column on which the designated-column properties (such as ColHeaderText and ColSorted)
operate. The ColFromID property works the same as the Col property in this respect.

You can also use the ColName and ColFromName properties in a similar fashion.

Tip Because column index numbers are based on the physical position of the column in the control, if you plan on moving
columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Note No column properties, including ColID, apply when the WrapList property is set to True, regardless of the Columns
property value.

Data Type

Integer (Long)

See Also
Applying Properties to a Specific Column

Referencing a Column

Col, ColFromID, ColFromName, ColHeaderText, ColName, ColSorted, WrapList properties

ColLevel Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the column level within a row.

Syntax

C UINT LC_GetColLevel(HWND hWnd, short FAR *lpValue);
UINT LC_SetColLevel(HWND hWnd, short value);

C++ short Class::GetColLevel(void);
Class::SetColLevel(short value);

Visual Basic [form.]control.ColLevel[= value%]

Designer Page

Specific subtab of the Columns designer page

Remarks

Within a row you can have multiple levels of columns. The column levels are zero-based. The first level within a row is level 0.

The default value for the ColLevel property is 0, which displays all columns in a row on the same line.

Use the ColLevel property to define the level within a row where a column is displayed. Columns continue to be displayed on the
same level until you set the ColLevel property. For example, assume that an fpList control has three column levels and three
columns. Also assume that you want to display one column on each level within a row. To accomplish this, first define the
columns. Then for each column, set the ColLevel property to 0, 1, and 2, respectively (see Example).

Use the ColumnLevels property to specify the number of levels within each row of the control. Use the ColLevelHeight property
to define the height of a column in levels.

Before you set the ColLevel property, you must specify a column with the Col, ColFromID, or ColFromName property.

Tips Define all columns (Col, ColID, and ColName properties) in the control before moving columns with the ColLevel
property.

Because column index numbers are based on the physical position of the column in the control, if you plan on moving
columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Data Type

Integer

See Also
Creating Levels of Columns Within a Row

Col, ColFromID, ColFromName, ColID, ColLevelHeight, ColName, ColumnLevels properties

ColLevelHeight Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the height of a column in terms of levels.

Syntax

C UINT LC_GetColLevelHeight(HWND hWnd, short FAR *lpValue);
UINT LC_SetColLevelHeight(HWND hWnd, short value);

C++ short Class::GetColLevelHeight(void);
Class::SetColLevelHeight(short value);

Visual Basic [form.]control.ColLevelHeight[= value%]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColLevelHeight property is 1 level. The height of a level is equal to the row height.

The column level height applies to the same column in every row. For example, if you set the column level height of the first
column to 2 levels, the first column of every row will have a column level height of 2 levels.

Before you set the ColLevelHeight property, you must specify a column with the Col, ColFromID, or ColFromName property.

Use the ColumnLevels property to specify the number of levels within each row in the control. The column level height cannot
exceed this number.

Data Type

Integer

See Also
Creating Levels of Columns Within a Row

Col, ColFromID, ColFromName, ColLevel, ColumnLevels properties

ColList Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns a value in the specified row and column from the list in an fpCombo or fpList control. This property is available at
run time only.

Syntax

C UINT LC_GetColList(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetColList(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetColList(LPSTR buffer, UINT bufferSize);
Class::SetColList(LPCSTR value);

Visual Basic [form.]control.ColList[= text$]

Designer Page

Add Data designer page

Remarks

Use the ColList property to set or return a list item from a multiple-column fpCombo or fpList control. You must specify the
column and row with either the Col, ColFromID, or ColFromName property and the Row property before you set the ColList
property.

You can use the ColList property to add data to a nonbound column in a multiple-column bound fpCombo or fpList control. For
more information, see Adding Data to Nonbound Columns.

The default value for the ColList property is an empty string.

Note Use the List property to return a list item from a single-column fpCombo or fpList control.

Data Type

String

Print Copy Close

The following example creates a two-column fpCombo control. List items are added to the second column during the
Form_Load event. The first column is displayed in the edit field for user entry.

C
LC_SetColumns(hWnd, 2);
Cbx_SetColumnEdit(hWnd, 0);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetCol(hWnd, 0);
LC_SetColHeaderText(hWnd, "Inventory Date");
LC_SetColWidth(hWnd, 25);
LC_SetCol(hWnd, 1);
LC_SetColHeaderText(hWnd, "Title");
LC_SetCol(hWnd, 1);
LC_SetRow(hWnd, 0);
LC_SetColList(hWnd, "Ben Hur");
LC_SetCol(hWnd, 1);
LC_SetRow(hWnd, 1);
LC_SetColList(hWnd, "The Great Gatsby");

C++
fpCombo1->SetColumns(2);
fpCombo1->SetColumnEdit(0);
fpCombo1->SetColumnHeaderShow(TRUE);
fpCombo1->SetCol(0);
fpCombo1->SetColHeaderText("Inventory Date");
fpCombo1->SetColWidth(25);
fpCombo1->SetCol(1);
fpCombo1->SetColHeaderText("Title");
fpCombo1->SetCol(1);
fpCombo1->SetRow(0);
fpCombo1->SetColList("Ben Hur");
fpCombo1->SetCol(1);
fpCombo1->SetRow(1);
fpCombo1->SetColList("The Great Gatsby");

Visual Basic
fpCombo1.Columns = 2
fpCombo1.ColumnEdit = 0
fpCombo1.ColumnHeaderShow = True
fpCombo1.Col = 0
fpCombo1.ColHeaderText = "Inventory Date"
fpCombo1.ColWidth = 25
fpCombo1.Col = 1
fpCombo1.ColHeaderText = "Title"
fpCombo1.Col = 1
fpCombo1.Row = 0
fpCombo1.ColList = "Ben Hur"
fpCombo1.Col = 1
fpCombo1.Row = 1
fpCombo1.ColList = "The Great Gatsby"

See Also
Accessing List Items

Adding Data to Nonbound Columns

Col, ColFromID, ColFromName, List, Row properties

DataLoaded event

ColLockResize Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether a column in a multiple-column fpCombo or fpList control is locked and cannot be resized by dragging
the column border.

Syntax

C UINT LC_GetColLockResize(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetColLockResize(HWND hWnd, BOOL value);

C++ BOOL Class::GetColLockResize(void);
Class::SetColLockResize(BOOL value);

Visual Basic [form.]control.ColLockResize[= boolean%]

Designer Page

Specific subtab of the Columns designer page

Remarks

When the AllowColResize property is set to a value greater than zero, the user can resize columns by dragging their borders.
When set to True, the ColLockResize property locks a specific column, preventing it from being resized by dragging the column
border.

The default value for the ColLockResize property is False. Set the ColLockResize property to True to prevent the user from
dragging the right border of a column to resize it.

Before you set the ColLockResize property, you must specify a column with the Col, ColFromID, or ColFromName property.

Data Type

Integer (Boolean)

Print Copy Close

The following example creates a six-column fpList control. The first two columns are frozen and the third column is locked
against resizing.

C
LC_SetColumns(hWnd, 6);
LC_SetAllowColResize(hWnd, LC_ALLOWCOLRESIZE_RESIZECOLORHEADER);
/* Lock column 3 */
LC_SetCol(hWnd, 2);
LC_SetColLockResize(hWnd, TRUE);
/* Freeze the first two columns from scrolling */
LC_SetColsFrozen(hWnd, 2);

C++
fpList1->SetColumns(6);
fpList1->SetAllowColResize(LC_ALLOWCOLRESIZE_RESIZECOLORHEADER);
// Lock column 3
fpList1->SetCol(2);
fpList1->SetColLockResize(TRUE);
// Freeze the first two columns from scrolling
fpList1->SetColsFrozen(2);

Visual Basic
fpList1.Columns = 6
fpList1.AllowColResize = LC_ALLOWCOLRESIZE_RESIZECOLORHEADER
' Lock column 3
fpList1.Col = 2
fpList1.ColLockResize = True
' Freeze the first two columns from scrolling
fpList1.ColsFrozen = 2

See Also
Customizing Columns

Resizing Columns

AllowColResize, Col, ColFromID, ColFromName properties

ColMerge Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether and how cells within a column with the same contents should be grouped in a single cell spanning
multiple rows.

Syntax

C UINT LC_GetColMerge(HWND hWnd, short FAR *lpValue);
UINT LC_SetColMerge(HWND hWnd, short value);

C++ short Class::GetColMerge(void);
Class::SetColMerge(short value);

Visual Basic [form.]control.ColMerge[= setting%]

Designer Page

Merge/Join designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Off (Default) Cells that contain

the same text are not
merged

LC_COLMERGE_OFF

1 - Always Cells that contain the same
text are always merged

LC_COLMERGE_ALWAYS

2 - Restricted Cells that contain the same
text are merged only when
adjacent cells to the left are
also merged

LC_COLMERGE_RESTRICTED

Before you set the ColMerge property, you must specify a column with the Col, ColFromID, or ColFromName property.

Note You cannot merge columns if rows have multiple levels. If the ColumnLevels property is set to a value greater than zero,
the ColMerge property is automatically set to 0 (Off).

You might use this property to reconfigure database information. For example, assume your database contains manufacturing
data for two products and the normal way to display that data is by day of the week (column 0), product name (column 1), and
output (column 2). You could merge column 2 and display the data by product name.

You could also merge column 2 and display the data by product name.

Use the RowMerge property to merge cells in rows that contain the same text.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a four-column list box control. Cells with the same text in the first and third columns are always
merged. Cells with the same text in the second column are merged restrictively. The view of cell contents of the merged
columns is adjusted as the user scrolls through the list.

C
LC_SetColumns(hWnd, 4);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetMergeAdjustView(hWnd, TRUE);
LC_SetInsertRow(hWnd, "Monday\tBeans\tA23\t3.76");
LC_SetInsertRow(hWnd, "Monday\tBeans\tC17\t4.32");
LC_SetInsertRow(hWnd, "Monday\tCorn\tC17\t4.32");
LC_SetInsertRow(hWnd, "Monday\tRice\tD14\t5.43");
LC_SetInsertRow(hWnd, "Tuesday\tRice\tC17\t6.78");
LC_SetInsertRow(hWnd, "Tuesday\tCorn\tA23\t7.41");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColName(hWnd, "Day");
LC_SetColHeaderText(hWnd, "Day");
LC_SetCol(hWnd, 1);
LC_SetColName(hWnd, "Prod");
LC_SetColHeaderText(hWnd, "Product");
LC_SetCol(hWnd, 2);
LC_SetColName(hWnd, "Line");
LC_SetColHeaderText(hWnd, "Line");
LC_SetCol(hWnd, 3);
LC_SetColName(hWnd, "Amt");
LC_SetColHeaderText(hWnd, "Amount");
/* Merge the first three columns */
LC_SetColFromName(hWnd, "Day");
LC_SetColMerge(hWnd, LC_COLMERGE_ALWAYS);
LC_SetColFromName(hWnd, "Prod");
LC_SetColMerge(hWnd, LC_COLMERGE_RESTRICTED);
LC_SetColFromName(hWnd, "Line");
LC_SetColMerge(hWnd, LC_COLMERGE_ALWAYS);

C++
fpList1->SetColumns(4);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetColumnHeaderShow(TRUE);
fpList1->SetMergeAdjustView(TRUE);
fpList1->SetInsertRow("Monday\tBeans\tA23\t3.76");
fpList1->SetInsertRow("Monday\tBeans\tC17\t4.32");
fpList1->SetInsertRow("Monday\tCorn\tC17\t4.32");
fpList1->SetInsertRow("Monday\tRice\tD14\t5.43");
fpList1->SetInsertRow("Tuesday\tRice\tC17\t6.78");
fpList1->SetInsertRow("Tuesday\tCorn\tA23\t7.41");
// Define columns
fpList1->SetCol(0);
fpList1->SetColName("Day");
fpList1->SetColHeaderText("Day");
fpList1->SetCol(1);
fpList1->SetColName("Prod");
fpList1->SetColHeaderText("Product");
fpList1->SetCol(2);
fpList1->SetColName("Line");
fpList1->SetColHeaderText("Line");
fpList1->SetCol(3);
fpList1->SetColName("Amt");
fpList1->SetColHeaderText("Amount");
// Merge the first three columns
fpList1->SetColFromName("Day");

fpList1->SetColMerge(LC_COLMERGE_ALWAYS);
fpList1->SetColFromName("Prod");
fpList1->SetColMerge(LC_COLMERGE_RESTRICTED);
fpList1->SetColFromName("Line");
fpList1->SetColMerge(LC_COLMERGE_ALWAYS);

Visual Basic
fpList1.Columns = 4
fpList1.LineStyle = LC_LINESTYLE_LOWERED
fpList1.ColumnHeaderShow = True
fpList1.MergeAdjustView = True
fpList1.InsertRow = "Monday" & Chr$(9) & "Beans" &Chr$(9) & "A23" & Chr$(9) & "3.76"
fpList1.InsertRow = "Monday" & Chr$(9) & "Beans" &Chr$(9) & "C17" & Chr$(9) & "4.32"
fpList1.InsertRow = "Monday" & Chr$(9) & "Corn" &Chr$(9) & "C17" & Chr$(9) & "4.32"
fpList1.InsertRow = "Monday" & Chr$(9) & "Rice" &Chr$(9) & "D14" & Chr$(9) & "5.43"
fpList1.InsertRow = "Tuesday" & Chr$(9) & "Rice" &Chr$(9) & "C17" & Chr$(9) & "6.78"
fpList1.InsertRow = "Tuesday" & Chr$(9) & "Corn" &Chr$(9) & "A23" & Chr$(9) & "7.41"
' Define columns
fpList1.Col = 0
fpList1.ColName = "Day"
fpList1.ColHeaderText = "Day"
fpList1.Col = 1
fpList1.ColName = "Prod"
fpList1.ColHeaderText = "Product"
fpList1.Col = 2
fpList1.ColName = "Line"
fpList1.ColHeaderText = "Line"
fpList1.Col = 3
fpList1.ColName = "Amt"
fpList1.ColHeaderText = "Amount"
' Merge the first three columns
fpList1.ColFromName = "Day"
fpList1.ColMerge = LC_COLMERGE_ALWAYS
fpList1.ColFromName = "Prod"
fpList1.ColMerge = LC_COLMERGE_RESTRICTED
fpList1.ColFromName = "Line"
fpList1.ColMerge = LC_COLMERGE_ALWAYS

See Also
Merging Columns or Rows

Col, ColFromID, ColFromName, ColumnLevels, MergeAdjustView, RowMerge properties

ColName Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the column name.

Syntax

C UINT LC_GetColName(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetColName(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetColName(LPSTR buffer, UINT bufferSize);
Class::SetColName(LPCSTR value);

Visual Basic [form.]control.ColName[= text$]

Designer Page

Specific subtab of the Columns designer page

Remarks

You must set the Col property to create the column before setting the ColName property.

The ColName property defines a unique name for a column. Once you define a name for a column, you can use the
ColFromName property to specify the column on which the designated-column properties (such as ColHeaderText and
ColSorted) operate. The ColFromName property works the same as the Col property in this respect.

The ColName property is case-sensitive; however, the ColFromName property is not case-sensitive.

You can also use the ColID and ColFromID properties in a similar fashion.

Tip Because column index numbers are based on the physical position of the column in the control, if you plan on moving
columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Note No column properties, including ColName, apply when the WrapList property is set to True, regardless of the Columns
property value.

Data Type

String

See Also
Applying Properties to a Specific Column

Referencing a Column

Col, ColFromID, ColFromName, ColHeaderText, ColID, ColSorted, WrapList properties

ColParentGroup Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the parent group of a column.

Syntax

C UINT LC_GetColParentGroup(HWND hWnd, short FAR *lpValue);
UINT LC_SetColParentGroup(HWND hWnd, short value);

C++ short Class::GetColParentGroup(void);
Class::SetColParentGroup(short value);

Visual Basic [form.]control.ColParentGroup[= value%]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColParentGroup property is 1, which specifies that a column has no parent.
Before you set the ColParent property, you must specify a column with the Col, ColFromID, or ColFromName property.
Groups can have children. A child of a group can be another group (GrpParentGroup property) or a column, but not both at the
same time. A column can be a child of a group that is a child of another group. For more information about groups and how they
work, see Working with Groups.

Children of groups exhibit the following characteristics:

If you move a group, the group's children move with it.

When you hide a group (GrpHide property), the group's children are also hidden.

Children are automatically sized to fit the group width (GrpWidth property). This can result in text not
being fully displayed in a column.

Tips

Define all columns (Col, ColID, and ColName properties) in the control before moving columns with
the ColParentGroup property.

Because column index numbers are based on the physical position of the column in the control, if you
plan on moving columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

If you are using groups, all columns should be assigned to a group.

Data Type

Integer

Print Copy Close

The following example creates a three-column list box control that has two groups. The first two columns are children of group 1
and the third column is a child of group 2. The second column is in the first position in group 1 and the first column is in the
second position in group 1.

C
LC_SetColumns(hWnd, 3);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetLineStyle(hWnd, LC_LINESTYLE_LOWERED);
LC_SetGroups(hWnd, 2);
LC_SetGroupHeaderShow(hWnd, TRUE);
LC_SetGrp(hWnd, 0);
LC_SetGrpHeaderText(hWnd, "Management");
LC_SetGrpWidth(hWnd, 30);
LC_SetGrp(hWnd, 1);
LC_SetGrpHeaderText(hWnd, "Human Resources");
LC_SetInsertRow(hWnd, "Bob Morris\tProgrammer\t75000");
LC_SetInsertRow(hWnd, "Rick Johnson\tSystem Analyst\t65000");
LC_SetInsertRow(hWnd, "Ann Bennett\tManager\t80000");
/* Define columns */
LC_SetCol(hWnd, 0);
LC_SetColName(hWnd, "A1");
LC_SetCol(hWnd, 1);
LC_SetColName(hWnd, "A2");
LC_SetCol(hWnd, 2);
LC_SetColName(hWnd, "A3");
/* Define position in control */
LC_SetColFromName(hWnd, "A3");
LC_SetColHeaderText(hWnd, "Salary");
LC_SetColPos(hWnd, 0);
LC_SetColFromName(hWnd, "A2");
LC_SetColHeaderText(hWnd, "Title");
LC_SetColPos(hWnd, 1);
LC_SetColFromName(hWnd, "A1");
LC_SetColHeaderText(hWnd, "Name");
LC_SetColPos(hWnd, 3);
/* Define parent group and position in parent */
/* Title column */
LC_SetColFromName(hWnd, "A2");
LC_SetColParentGroup(hWnd, 0);
LC_SetColPosInParent(hWnd, 0);
/* Name column */
LC_SetColFromName(hWnd, "A1");
LC_SetColParentGroup(hWnd, 0);
LC_SetColPosInParent(hWnd, 1);
/* Salary column */
LC_SetColFromName(hWnd, "A3");
LC_SetColParentGroup(hWnd, 1);
LC_SetColPosInParent(hWnd, 0);
LC_SetColFromName("A2");
LC_SetColWidth(15);
LC_SetColFromName("A1");
LC_SetColWidth(15);
LC_SetColFromName("A3");
LC_SetColWidth(15);
LC_SetAlignH(LC_ALIGNH_CENTER);

C++
fpList1->SetColumns(3);
fpList1->SetColumnHeaderShow(TRUE);
fpList1->SetLineStyle(LC_LINESTYLE_LOWERED);
fpList1->SetGroups(2);
fpList1->SetGroupHeaderShow(TRUE);

fpList1->SetGrp(0);
fpList1->SetGrpHeaderText("Management");
fpList1->SetGrpWidth(30);
fpList1->SetGrp(1);
fpList1->SetGrpHeaderText("Human Resources");
fpList1->SetInsertRow("Bob Morris\tProgrammer\t75000");
fpList1->SetInsertRow("Rick Johnson\tSystem Analyst\t65000");
fpList1->SetInsertRow("Ann Bennett\tManager\t80000");
// Define columns
fpList1->SetCol(0);
fpList1->SetColName("A1");
fpList1->SetCol(1);
fpList1->SetColName("A2");
fpList1->SetCol(2);
fpList1->SetColName("A3");
// Define position in control
fpList1->SetColFromName("A3");
fpList1->SetColHeaderText("Salary");
fpList1->SetColPos(0);
fpList1->SetColFromName("A2");
fpList1->SetColHeaderText("Title");
fpList1->SetColPos(1);
fpList1->SetColFromName("A1");
fpList1->SetColHeaderText("Name");
fpList1->SetColPos(3);
// Define parent group and position in parent
// Title column
fpList1->SetColFromName("A2");
fpList1->SetColParentGroup(0);
fpList1->SetColPosInParent(0);
// Name column
fpList1->SetColFromName("A1");
fpList1->SetColParentGroup(0);
fpList1->SetColPosInParent(1);
// Salary column
fpList1->SetColFromName("A3");
fpList1->SetColParentGroup(1);
fpList1->SetColPosInParent(0);
fpList1->SetColFromName("A2");
fpList1->SetColWidth(15);
fpList1->SetColFromName("A1");
fpList1->SetColWidth(15);
fpList1->SetColFromName("A3");
fpList1->SetColWidth(15);
fpList1->SetAlignH(LC_ALIGNH_CENTER);

Visual Basic
fpList1.Columns = 3
fpList1.ColumnHeaderShow = True
fpList1.LineStyle = LC_LINESTYLE_LOWERED
fpList1.Groups = 2
fpList1.GroupHeaderShow = True
fpList1.Grp = 0
fpList1.GrpHeaderText = "Management"
fpList1.GrpWidth = 30
fpList1.Grp = 1
fpList1.GrpHeaderText = "Human Resources"
fpList1.InsertRow = "Bob Morris" & Chr$(9) & "Programmer" & Chr$(9) & 75000
fpList1.InsertRow = "Rick Johnson" & Chr$(9) & "System Analyst" & Chr$(9) & 65000
fpList1.InsertRow = "Ann Bennett" & Chr$(9) & "Manager" & Chr$(9) & 80000
' Define columns
fpList1.Col = 0
fpList1.ColName = "A1"
fpList1.Col = 1

fpList1.ColName = "A2"
fpList1.Col = 2
fpList1.ColName = "A3"
' Define position in control
fpList1.ColFromName = "A3"
fpList1.ColHeaderText = "Salary"
fpList1.ColPos = 0
fpList1.ColFromName = "A2"
fpList1.ColHeaderText = "Title"
fpList1.ColPos = 1
fpList1.ColFromName = "A1"
fpList1.ColHeaderText = "Name"
fpList1.ColPos = 3
' Define parent group and position in parent
' Title column
fpList1.ColFromName = "A2"
fpList1.ColParentGroup = 0
fpList1.ColPosInParent = 0
' Name column
fpList1.ColFromName = "A1"
fpList1.ColParentGroup = 0
fpList1.ColPosInParent = 1
' Salary column
fpList1.ColFromName = "A3"
fpList1.ColParentGroup= 1
fpList1.ColPosInParent = 0
fpList1.ColFromName = "A2"
fpList1.ColWidth = 15
fpList1.ColFromName = "A1"
fpList1.ColWidth = 15
fpList1.ColFromName = "A3"
fpList1.ColWidth = 15
fpList1.AlignH = LC_ALIGNH_CENTER

See Also
Making a Column a Child of a Group

Creating Children of Groups

Working with Groups

Col, ColFromID, ColFromName, ColID, ColName, Groups, GrpHide, GrpLockResize, GrpParentGroup, GrpWidth properties

ColPos Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the position number of a column within an fpCombo or fpList control.

Syntax

C UINT LC_GetColPos(HWND hWnd, short FAR *lpValue);
UINT LC_SetColPos(HWND hWnd, short value);

C++ short Class::GetColPos(void);
Class::SetColPos(short value);

Visual Basic [form.]control.ColPos[= value%]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColPos property is 0.

Before you set the ColPos property, you must specify a column with the Col, ColFromID, or ColFromName property.

Use the ColPosInParent property to define the position number of a column within its parent. If columns are grouped, the
ColPosInParent property defines the position number within the column's parent group. If columns are not grouped, the value of
the ColPosInParent property is the same as the value of the ColPos property.

Tips

Define all columns (Col, ColID, and ColName properties) in the control before moving columns with
the ColPos or CoPosInParent property.

Because column index numbers are based on the physical position of the column in the control, if you
plan on moving columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Note If you move a column, column index numbers will change. For more information, see Referencing a Column.

Data Type

Integer

See Also
Defining the Position of a Column Within the Control

Referencing a Column

Col, ColFromID, ColFromName, ColID, ColName, ColPosInParent, ColParentGroup properties

ColPosInParent Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the position number of a column within its parent.

Syntax

C UINT LC_GetColPosInParent(HWND hWnd, short FAR *lpValue);
UINT LC_SetColPosInParent(HWND hWnd, short value);

C++ short Class::GetColPosInParent(void);
Class::SetColPosInParent(short value);

Visual Basic [form.]control.ColPosInParent[= value%]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColPosInParent property is 1 when the Columns property is set to 0.
Before you set the ColPosInParent property, you must specify a column with the Col, ColFromID, or ColFromName property.
If columns are grouped, the ColPosInParent property defines the position number within the column's parent group. Use the ColPos
property to define the position number of a column within the control. If columns are not grouped, the value of the ColPosInParent
property is the same as the value of the ColPos property.

Tips

Define all columns (Col, ColID, and ColName properties) in the control before moving columns with
the ColPos or CoPosInParent property.

Because column index numbers are based on the physical position of the column in the control, if you
plan on moving columns or changing column levels, we strongly recommend you use one of the unique column identifiers (ColID or
ColName property) to reference a column rather than the Col property.

Note If you move a column, column index numbers will change. For more information, see Referencing a Column.

Data Type

Integer

See Also
Defining the Position of a Column Within the Control

Referencing a Column

Col, ColFromID, ColFromName, ColID, ColName, ColParentGroup, ColPos, Columns properties

ColsFrozen Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of columns on the left that do not scroll horizontally in a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetColsFrozen(HWND hWnd, short FAR *lpValue);
UINT LC_SetColsFrozen(HWND hWnd, short value);

C++ short Class::GetColsFrozen(void);
Class::SetColsFrozen(short value);

Visual Basic [form.]control.ColsFrozen[= value%]

Designer Page

General subtab of the Columns designer page

Remarks

The default value for the ColsFrozen property is 0.

Setting the ColsFrozen property to 1 freezes the first column (column 0, the top, leftmost column) so that it remains visible when
the user clicks the horizontal scroll bar. Setting the ColsFrozen property to values greater than 1 freezes the corresponding
columns. For example, setting the ColsFrozen property to 2 freezes the first and second columns.

Note If a frozen column is a child of a group and the group is not frozen, the column will not scroll horizontally. In this case,
the group setting takes precedence over the column setting.

Before setting the ColsFrozen property, you must create a multiple-column fpCombo or fpList control by setting the Columns
property.

Data Type

Integer

See Also
Customizing Columns

Columns property

ColSortDataType Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the data type of a column in a multiple-column fpCombo or fpList control to improve sorting.

Syntax

C UINT LC_GetColSortDataType(HWND hWnd, short FAR *lpValue);
UINT LC_SetColSortDataType(HWND hWnd, short value);

C++ short Class::GetColSortDataType(void);
Class::SetColSortDataType(short value);

Visual Basic [form.]control.ColSortDataType[= setting%]

Designer Page

Sort designer page

Remarks

The ColSortDataType property improves sorting in certain situations, such as when sorting by numeric values.

The following settings are available:
Setting Description Constant
0 - Text (No Case) (Default) Ignores case

when sorting list items
LC_COLSORTDATATYPE_TEXTNOCASE

1 - Text (Case) Sorts list items using case
(uppercase items come
before lowercase items,
as listed in the ANSI
character set)

LC_COLSORTDATATYPE_TEXTCASE

2 - Integer Assumes data to be
integer or long and sorts
in numerical order

LC_COLSORTDATATYPE_INTEGER

3 - Float Assumes data to be
floating-point numbers
and sorts in numerical
order, evaluating decimal
values

LC_COLSORTDATATYPE_FLOAT

To use the ColSortDataType property, you must create a multiple-column fpCombo or fpList control by setting the Columns
property to a value greater than 0.

You can sort by the values in a column by specifying a column with the Col, ColFromID, or ColFromName property and setting
the ColSorted property.

Data Type

Integer (Enumerated)

See Also
Sorting List Items

Col, ColFromID, ColFromName, ColSorted, ColSortSeq, Columns properties

ColSorted Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the type of sort performed on a column in a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetColSorted(HWND hWnd, short FAR *lpValue);
UINT LC_SetColSorted(HWND hWnd, short value);

C++ short Class::GetColSorted(void);
Class::SetColSorted(short value);

Visual Basic [form.]control.ColSorted[= setting%]

Designer Page

Sort designer page

Remarks

The following settings are available:
Setting Description Constant
0 - None (Default) Does not sort list items LC_COLSORTED_NONE
1 - Ascending Sorts list items from the

beginning of the alphabet or
the lowest number

LC_COLSORTED_ASCENDING

2 - Descending Sorts list items from the end
of the alphabet or the
highest number

LC_COLSORTED_DESCENDING

The ColSorted property is identical to the Sorted property but is used for multiple-column fpCombo of fpList controls. Use the
ColSortSeq property to specify the sequence in which the column is sorted. Column sequence is zero-based, with 0 designating
the first sort column, 1 designating the second sort column, and so on.

Before you set the ColSorted property, you must create a multiple-column fpCombo or fpList control with the Columns property
and you must specify a column with the Col, ColFromID, or ColFromName property.

Data Type

Integer (Enumerated)

See Also
Sorting List Items

Col, ColFromID, ColFromName, ColSortSeq, Columns, Sorted properties

ColSortSeq Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the order in which a column in a multiple-column fpCombo or fpList control is sorted.

Syntax

C UINT LC_GetColSortSeq(HWND hWnd, short FAR *lpValue);
UINT LC_SetColSortSeq(HWND hWnd, short value);

C++ short Class::GetColSortSeq(void);
Class::SetColSortSeq(short value);

Visual Basic [form.]control.ColSortSeq[= value%]

Designer Page

Sort designer page

Remarks

The default value for the ColSortSeq property is 1, which indicates that no sorting is to occur on the
column.

Before you set the ColSortSeq property, you must create a multiple-column fpCombo or fpList control with the Columns
property. For each column, set either the Col, ColFromID, or ColFromName property to specify the column, the ColSorted
property to specify the sort order, and the ColSortSeq property to specify the sequence in which the column is sorted. Column
sequence is zero-based, with 0 designating the first sort column, 1 designating the second sort column, and so on.

Data Type

Integer

See Also
Sorting List Items

Col, ColFromID, ColFromName, ColSorted, Columns properties

ColText Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the selected row's column text in a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetColText(HWND hWnd, LPSTR buffer, UINT nBufferSize);
UINT LC_SetColText(HWND hWnd, LPCSTR value);

C++ LPSTR Class::GetColText(LPSTR buffer, UINT bufferSize);
Class::SetColText(LPCSTR value);

Visual Basic [form.]control.ColText[= text$]

Remarks

Before you set the ColText property, you must create a multiple-column fpCombo or fpList control with the Columns property and
you should specify a column with the Col, ColFromID, or ColFromName property.

Data Type

String

Print Copy Close

The following example creates a three-column simple combo style fpCombo control. The first column is displayed in the edit
field and the third column is hidden. Text from the third column is displayed during the Change event.

C
void OnChangeLB(UNIT, int, Cwnd*, LPVOID)
{

LC_SetCol(hWnd, 2);
SetDlgItemText(hWndDLg, IDC_TEXT, LC_GetColText(hWnd);

}End Sub

LRESULT _export WINAPI WinMain(.............)
{

LC_SetColumns(hWnd, 3);
// Use simple combo style
CbxSetStyle(hWnd, CBX_STYLE_SIMPLE_COMBO);
// Display column 2 in edit field
CbxSetColumnEdit(hWnd, 1);
// Hide the third column
LC_SetCol(hWnd, 2);
LC_SetColHide(hWnd, TRUE);

}
C++

void CLBDialog::OnChangeLB(UNIT, int, Cwnd*, LPVOID)
{

m_fpCombo->SetCol(2);
SetDlgItemText(IDC_TEXT, m_fpCombo->GetColText();

}End Sub

Bool CLBDialog::OnInitDialog()
{

m_fpCombo->SetColumns(3);
// Use simple combo style
m_fpCombo->SetStyle(CBX_STYLE_SIMPLE_COMBO);
// Display column 2 in edit field
m_fpCombo->SetColumnEdit(1);
// Hide the third column
m_fpCombo->SetCol(2);
m_fpCombo->SetColHide(TRUE);

}
Visual Basic

Sub fpCombo1_Change ()
fpCombo1.Col = 2
Text1.Text = fpCombo1.ColText

End Sub

Sub Form_Load
fpCombo1.Columns = 3
' Use simple combo style
fpCombo1.Style = CBX_STYLE_SIMPLE_COMBO
' Display column 2 in edit field
fpCombo1.ColumnEdit = 1
' Hide the third column
fpCombo1.Col = 2
fpCombo1.ColHide = True

End Sub

See Also
Accessing List Items

Col, ColFromID, ColFromName, Columns properties

ColumnBound Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the number of the column whose value is written to the database when a multiple-column fpCombo control is
bound to a database field. This property is available for Visual Basic users only.

Syntax

Visual Basic [form.]fpCombo1.ColumnBound[= value%]

Designer Page

Column subtab of the Data Binding designer page

Remarks

The ColumnBound property designates which column's value is written to the database when the user selects an item in a
multiple-column list and the Data control updates the record and saves the value.

The default value for the ColumnBound property is 1, which writes all selected column values to the
database.

You can create multiple columns in an fpCombo control by setting the Columns property. Each column can be bound to a
database field by setting either the Col, ColFromID, or ColFromName property and the ColDataField property.

Data Type

Integer

Print Copy Close

In the following example, the fpCombo control is bound to two different Data controls. To try this example, create an fpCombo
control and two Data controls on a form. Bind the first Data control, Data1, to Visual Basic's BIBLIO.MDB database using the
DatabaseName property and to the Titles table using the RecordSource property. Bind the fpCombo control to Data1 using the
DataSource and DataSourceList properties. The list displays book titles and International Standard Book Numbers (ISBNs) per
the following code.

Bind the second Data control, Data2, to the Orders table in a user-created database. The following code sets the DataField
property to designate that Data2's ISBN field will receive data from the fpCombo control's edit field. The fpCombo control's edit
field will read data from Data1's ISBN field per the ColumnBound property and display titles in the edit field per the ColumnEdit
property.

Visual Basic
' Set combo box appearance
fpCombo1.EditHeight = 300
fpCombo1.ComboGap = 15
fpCombo1.ListLeftOffset = 100
fpCombo1.MaxDrop = 5
fpCombo1.Columns = 2
fpCombo1.GrayAreaColor = &H007D007D&

' Customize headers
fpCombo1.ColumnHeaderShow = True
fpCombo1.ColumnHeaderHeight = 400

' Bind combo box to database tables
' Display titles from Title table in edit field
fpCombo1.ColumnEdit = 0
' Write values from ISBN field in Title table
fpCombo1.ColumnBound = 3
' Write values to ISBN field in Order table
fpCombo1.DataField = "ISBN"

' Design columns in list
fpCombo1.DataAutoSizeCols = CBX_DATAAUTOSIZECOLS_MAXCOLWIDTH
fpCombo1.DataAutoHeadings = False
fpCombo1.ColumnWidthScale = LC_COLUMNWIDTHSCALE_PIXELS

' First column
fpCombo1.Col = 0
fpCombo1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_COL_HEADER
fpCombo1.ColDataField = "#1"
fpCombo1.ColHeaderText = "Title of Book"
fpCombo1.AlignH = LC_ALIGNH_LEFT
fpCombo1.ColWidth = 400
fpCombo1.MultiLine = LC_MULTILINE_MULTIPLE_LINE

' Second column
fpCombo1.Col = 1
fpCombo1.ColDataField = "ISBN"
fpCombo1.ColHeaderText = "ISBN"
fpCombo1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_COL_HEADER
fpCombo1.AlignH = LC_ALIGNH_CENTER
fpCombo1.ColWidth = 75

See Also
Binding Columns to Fields in a Database

Col, ColDataField, ColFromID, ColFromName, ColumnEdit, Columns DataSourceList properties

ColumnEdit Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns whether one column value or all column values are displayed in the edit field of a multiple-column fpCombo
control.

Syntax

C UINT CbxGetColumnEdit(HWND hWnd, short FAR *lpValue);
UINT CbxSetColumnEdit(HWND hWnd, short value);

C++ short CfpComboBox::GetColumnEdit(void);
CfpComboBox::SetColumnEdit(short value);

Visual Basic [form.]fpCombo1.ColumnEdit[= value%]

Designer Page

General subtab of the Columns designer page
Column subtab of the Data Binding designer page

Remarks

The ColumnEdit property displays a single column value in the edit field of bound or nonbound fpCombo controls. Set the
ColumnEdit property to the number of the list column to be displayed. The ColumnEdit property is zero-based; that is, setting the
ColumnEdit property to 0 specifies that the first column values are displayed in the edit field.

The default value for the ColumnEdit property is 1, which displays all column values in the edit field, with
column separator characters between column values.

To display values in the edit field that are not displayed in the list, add the column of values to the list, and then hide the column
with the ColHide property.

Data Type

Integer

See Also
Binding Columns to Fields in a Database

ColHide, Columns properties

ColumnHeaderHeight Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the height of the header in an fpCombo or fpList control.

Syntax

C UINT LC_GetColumnHeaderHeight(HWND hWnd, long FAR *lpValue);
UINT LC_SetColumnHeaderHeight(HWND hWnd, long value);

C++ long Class::GetColumnHeaderHeight(void);
Class::SetColumnHeaderHeight(long value);

Visual Basic [form.]control.ColumnHeaderHeight[= value&]

Designer Page

General subtab of the Columns designer page

Remarks

You can display a header for a bound fpCombo or fpList control by setting the ColumnHeaderShow property to True.

The default value for the ColumnHeaderHeight property is 1, which bases the height of the header on the
header font.

In Visual Basic, the measurement unit used by the ColumnHeaderHeight property depends on the setting of the form's
ScaleMode property. The default ScaleMode setting is twips (1/1440 of an inch). Generally the ActiveX and VBX controls use
twips as the default measurement unit, and the DLL control uses pixels as the default measurement unit.

Data Type

Integer (Long)

Print Copy Close

The following example creates a four-column combo box control. The column header height and edit field height are 400 twips.
The gap between the edit field and the drop-down arrow is 15 pixels. The gray area color is black and the maximum number of
rows displayed is 5.

C
LC_SetColumns(hWnd, 4);
LC_SetColumnHeaderShow(hWnd, TRUE);
LC_SetColumnHeaderHeight(hWnd, 30);
Cbx_SetEditHeight(hWnd, 30);
Cbx_SetComboGap(hWnd, 15);
/* black RGB(0, 0, 0) */
Cbx_SetGrayAreaColor(hWnd, 0x00000000);
/* Display max of 5 rows */
Cbx_SetMaxDrop(hWnd, 5);

C++
fpCombo1->SetColumns(4);
fpCombo1->SetColumnHeaderShow(TRUE);
fpCombo1->SetColumnHeaderHeight(30);
fpCombo1->SetEditHeight(30);
fpCombo1->SetComboGap(15);
// black RGB(0, 0, 0)
fpCombo1->SetGrayAreaColor(0x00000000);
// Display max of 5 rows
fpCombo1->SetMaxDrop(5);

Visual Basic
fpCombo1.Columns = 4
fpCombo1.ColumnHeaderShow = True
fpCombo1.ColumnHeaderHeight = 400
fpCombo1.EditHeight = 400
fpCombo1.ComboGap = 15
' black RGB(0, 0, 0)
fpCombo1.GrayAreaColor = &H00000000&
' Display max of 5 rows
fpCombo1.MaxDrop = 5

See Also
Customizing Column Headers

Wrapping Text in a List Pro Control

ColumnHeaderShow, ColHeaderText properties

ColumnHeaderShow Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether to display the column header in an fpCombo or fpList control.

Syntax

C UINT LC_GetColumnHeaderShow(HWND hWnd, BOOL FAR *lpValue);
UINT LC_SetColumnHeaderShow(HWND hWnd, BOOL value);

C++ BOOL Class::GetColumnHeaderShow(void);
Class::SetColumnHeaderShow(BOOL value);

Visual Basic [form.]control.ColumnHeaderShow[= boolean%]

Designer Page

General subtab of the Columns designer page

Remarks

You can create a header for a bound fpCombo or fpList control by setting the ColumnHeaderShow property to True. If the
ColHeaderText property does not specify a column header and the DataAutoHeadings property is set to True, the database field
name is used.

The default value for the ColumnHeaderShow property is False, which specifies that headers are not displayed for multiple-
column controls. To display a header for a single-column control, you must set the Columns property to 1 and the
ColumnHeaderShow property to True.

For multiple-column fpCombo and fpList controls, setting the ColumnHeaderShow property to True displays a header for every
column. If the column is bound to a database field and the DataAutoHeadings property is set to True, the data field name is the
header text. To change the header text, set the ColHeaderText property.

Note You must display column headers to drag and drop columns.

Data Type

Integer (Boolean)

See Also
Providing Column Headers

Binding Columns to Fields in a Database

ColHeaderText, ColumnHeaderHeight, Columns, DataAutoHeadings properties

ColumnLevels Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of levels in every row of the control.

Syntax

C UINT LC_GetColumnLevels(HWND hWnd, short FAR *lpValue);
UINT LC_SetColumnLevels(HWND hWnd, short value);

C++ short Class::GetColumnLevels(void);
Class::SetColumnLevels(short value);

Visual Basic [form.]control.ColumnLevels[= value%]

Designer Page

General subtab of the Columns designer page

Remarks

The default value for the ColumnLevels property is 1.

Every row has the same number of levels. You can specify the level on which a column is displayed with the ColLevel property.
You can set the height of a column in levels with the ColLevelHeight property.

If you display column headers and you have multiple levels in the control, the column headers also appear at multiple levels.

Note You cannot merge columns or rows if rows have multiple levels. If the number of levels is greater than zero, the
ColMerge and RowMerge properties have no effect.

Data Type

Integer

See Also
Creating Levels of Columns Within a Row

ColLevel, ColLevelHeight, ColMerge, RowMerge properties

Columns Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of columns to display in an fpCombo or fpList control.

Syntax

C UINT LC_GetColumns(HWND hWnd, short FAR *lpValue);
UINT LC_SetColumns(HWND hWnd, short value);

C++ short Class::GetColumns(void);
Class::SetColumns(short value);

Visual Basic [form.]control.Columns[= value%]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the Columns property is 0, which creates a single-column fpCombo or fpList control.

Setting the Columns property to 1 or greater creates a multiple-column fpCombo or fpList control. With a multiple-column
fpCombo or fpList control, use the designated-column properties (such as ColHide and ColWidth) to customize each column.
You can bind each column to a database field by setting the ColDataField property.

Though setting the Columns property to 1 creates an fpCombo or fpList control with only one column, this setting lets you use
the designated-column properties to customize your list.

Note When the WrapList property is set to True, the fpCombo or fpList control wraps list items without creating columns.
Therefore, no column properties apply, regardless of the Columns property setting.

Data Type

Integer

Print Copy Close

The following example creates a three-column fpCombo control. The list items are sorted by the first column, which is hidden.

C
/* Create three-column fpCombo control*/
LC_SetColumns(hWnd, 3);
/* Display contents of second column */
LC_SetColumnEdit(hWnd, 1);
/* Display headers */
LC_SetColumnHeaderShow(hWnd, TRUE);
/* First column hidden */
/* Primary sort */
LC_SetCol(hWnd, 0);
LC_SetColHeaderText(hWnd, "State");
LC_SetColSortDataType(hWnd, LC_COLSORTDATATYPE_TEXTNOCASE);
/* Make primary sort */
LC_SetColSortSeq(hWnd, 0);
LC_SetColSorted(hWnd, LC_COLSORTED_ASCENDING);
/* Hide column */
LC_SetColHide(hWnd, TRUE);
/* Second column */
/* Secondary sort */
LC_SetCol(hWnd, 1);
LC_SetColHeaderText(hWnd, "Company Name");
LC_SetColWidth(hWnd, 40);
LC_SetColSortDataType(hWnd, LC_COLSORTDATATYPE_TEXTNOCASE);
/* Make secondary sort */
LC_SetColSortSeq(hWnd, 1);
LC_SetColSorted(hWnd, LC_COLSORTED_ASCENDING);
LC_SetSortState(hWnd, LC_SORTSTATE_ACTIVE_RESORT);
/* Third column */
LC_SetCol(hWnd, 2);
LC_SetColHeaderText(hWnd, "Customer Name");
LC_SetColWidth(hWnd, 50);

C++
// Create three-column fpCombo control
fpCombo1->SetColumns(3);
// Display contents of second column
fpCombo1->SetColumnEdit(1);
// Display headers
fpCombo1->SetColumnHeaderShow(TRUE);
// First column hidden
// Primary sort
fpCombo1->SetCol(0);
fpCombo1->SetColHeaderText("State");
fpCombo1->SetColSortDataType(LC_COLSORTDATATYPE_TEXTNOCASE);
// Make primary sort
fpCombo1->SetColSortSeq(0);
fpCombo1->SetColSorted(LC_COLSORTED_ASCENDING);
// Hide column
fpCombo1->SetColHide(TRUE);
// Second column
// Secondary sort
fpCombo1->SetCol(1);
fpCombo1->SetColHeaderText("Company Name");
fpCombo1->SetColWidth(40);
fpCombo1->SetColSortDataType(LC_COLSORTDATATYPE_TEXTNOCASE);
// Make secondary sort
fpCombo1->SetColSortSeq(1);
fpCombo1->SetColSorted(LC_COLSORTED_ASCENDING);
fpCombo1->SetSortState(LC_SORTSTATE_ACTIVE_RESORT);
// Third column

fpCombo1->SetCol(2);
fpCombo1->SetColHeaderText("Customer Name");
fpCombo1->SetColWidth(50);

Visual Basic
' Create three-column fpCombo control
fpCombo1.Columns = 3
' Display contents of second column
fpCombo1.ColumnEdit = 1
' Display headers
fpCombo1.ColumnHeaderShow = True
' First column hidden
' Primary sort
fpCombo1.Col = 0
fpCombo1.ColHeaderText = "State"
fpCombo1.ColSortDataType = LC_COLSORTDATATYPE_TEXTNOCASE
' Make primary sort
fpCombo1.ColSortSeq = 0
fpCombo1.ColSorted = LC_COLSORTED_ASCENDING
' Hide column
fpCombo1.ColHide = True
' Second column
' Secondary sort
fpCombo1.Col = 1
fpCombo1.ColHeaderText = "Company Name"
fpCombo1.ColWidth = 40
fpCombo1.ColSortDataType = LC_COLSORTDATATYPE_TEXTNOCASE
' Make secondary sort
fpCombo1.ColSortSeq = 1
fpCombo1.ColSorted = LC_COLSORTED_ASCENDING
fpCombo1.SortState = LC_SORTSTATE_ACTIVE_RESORT
' Third column
fpCombo1.Col = 2
fpCombo1.ColHeaderText = "Customer Name"
fpCombo1.ColWidth = 50

See Also
Creating Multiple Columns

Col, ColDataField, ColHide, ColWidth, WrapList properties

ColumnSearch Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the number of the column searched when searching a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetColumnSearch(HWND hWnd, short FAR *lpValue);
UINT LC_SetColumnSearch(HWND hWnd, short value);

C++ short Class::GetColumnSearch(void);
Class::SetColumnSearch(short value);

Visual Basic [form.]control.ColumnSearch[= value%]

Designer Page

Search designer page

Remarks

Use the ColumnSearch property to designate which column to search in a multiple-column fpCombo or fpList control. The
ColumnSearch property is zero-based; that is, set the property to 0 to search the first column.

The default value for the ColumnSearch property is 1, which begins searching from the first column and
searches every column.

To create a multiple-column fpCombo or fpList control, you must set the Columns property to a value greater than zero.

Data Type

Integer

Print Copy Close

The following example creates a two-column fpList control. To try this example, create an fpList control, a Text control, and a
button control on a form. The fpList control searches for the search string entered into the Text control and scrolls to the first
matching item.

C
LRESULT _export WINAPI WinMain(..................)
{

/* Create a two-column fpList control */
LC_SetColumns(hWnd, 2);
/* Show column headers */
LC_SetColumnHeaderShow(hWnd, TRUE);
/* First column */
LC_SetCol(hWnd, 0);
LC_SetColHeaderText(hWnd, "City");
LC_SetColWidth(hWnd, 60);
/* Second column */
LC_SetCol(hWnd, 1);
LC_SetColHeaderText(hWnd,"Population");
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "Raleigh\t600,000");
LC_SetInsertRow("Cary\t60,000");
LC_SetInsertRow("Chapel Hill\t 45,000");

}

void OnClickm_LB(UNIT, int, Cwnd*, LPVOID)
{

long Index;
SetDlgItemText(IDC_BTN, "Find");
/* Get the search string */
LC_SetSearchText(hWnd, GetDlgItem(IDC_TEXT));
/* Search the first column */
LC_SetColumnSearch(hWnd,0);
/* Search for partial matches */
LC_SetSearchMethod(hWnd, LC_SEARCHMETHOD_PARTIAL_MATCH);
/* Start the search */
LC_SetAction(hWnd, LC_ACTION_SEARCH);
/* If a match is found, select the item */
If LC_SetSearchIndex(hWnd)! = -1)

LC_SetListIndex(hWnd,LC_GetSearchIndex(hWnd, &Index));
Else

/* If no match is found, reset the list */
 LC_SetListIndex(hWnd,0);

C++
void CDlg::OnInitDialog()
{

// Create a two-column fpList control
m_LB->SetColumns(2);
// Show column headers
m_LB->SetColumnHeaderShow(TRUE);
// First column
m_LB->SetCol(0);
m_LB->SetColHeaderText("City");
m_LB->SetColWidth(60);
// Second column
m_LB->SetCol(1);
m_LB->SetColHeaderText("Population");
m_LB->SetRow(-1);
m_LB->SetInsertRow("Raleigh\t600,000");
m_LB->SetInsertRow("Cary\t60,000");
m_LB->SetInsertRow("Chapel Hill\t45,000");

}

void CDlg::OnClickm_LB(UNIT, int, Cwnd*, LPVOID)
{

SetDlgItemText(IDC_BTN, "Find");
// Get the search string
GetDlgItemText(IDC_EDIT1, xdata, 100);
m_LB->SetSearchText(xdata);
// Search the first column
m_LB->SetColumnSearch(0);
// Search for partial matches
m_LB->SetSearchMethod(LC_SEARCHMETHOD_PARTIAL_MATCH);
// Start the search
m_LB->SetAction(LC_ACTION_SEARCH);
// If a match is found, select the item
If (m_LB->SetSearchIndex X()! X = -1)

m_LB->SetListIndex(m_LB->GetSearchIndex());
Else

// If no match is found, reset the list
m_LB->SetListIndex(0);

}
Visual Basic

Sub Form_Load ()
' Create a two-column fpList control
fpList1.Columns = 2
' Show column headers
fpList1.ColumnHeaderShow = True
' First column
fpList1.Col = 0
fpList1.ColHeaderText = "City"
fpList1.ColWidth = 60
' Second column
fpList1.Col = 1
fpList1.ColHeaderText = "Population"
fpList1.Row = -1
fpList1.InsertRow = "Raleigh\t600,000"
fpList1.InsertRow = "Cary\t60,000"
fpList1.InsertRow = "Chapel Hill\t45,000"
End Sub

Sub Command1_Click ()
Command1.Caption = "Find"
' Get the search string
Form1.fpList1.SearchText = Text1.Text
' Search the first column
Form1.fpList1.ColumnSearch = 0
' Search for partial matches
Form1.fpList1.SearchMethod = LC_SEARCHMETHOD_PARTIAL_MATCH
' Start the search
Form1.fpList1.Action = LC_ACTION_SEARCH
' If a match is found, select the item
If Form1.fpList1.SearchIndex <> -1 Then

Form1.fpList1.ListIndex = Form1.fpList1.SearchIndex
Else

' If no match is found, reset the list
Form1.fpList1.ListIndex = 0

End If
End Sub

See Also
Searching for List Items

AutoSearch, Columns, SearchIndex, SearchMethod, SearchText properties

ColumnSeparatorChar Property
See Also

Applies To

fpCombo, fpList controls

Description

Sets or returns the character used to separate column values in a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetColumnSeparatorChar(HWND hWnd, short FAR *lpValue);
UINT LC_SetColumnSeparatorChar(HWND hWnd, short value);

C++ short Class::GetColumnSeparatorChar(void);
Class::SetColumnSeparatorChar(short value);

Visual Basic [form.]control.ColumnSeparatorChar[= value%]

Designer Page

General subtab of the Columns designer page

Remarks

The ColumnSeparatorChar property lets you define the character that separates the values in each column. The default value
for the ColumnSeparatorChar property is 9 (the ASCII value of the Tab character).

In a multiple-column fpCombo control, the edit field displays a value from each column, separated by the character specified by
the ColumnSeparatorChar property.

To specify the separator character, set the ColumnSeparatorChar property to a single ASCII character.
To separate values with . . . Set ColumnSeparatorChar property to . . .
Tab character 9
Linefeed character 10
Carriage return 13
Space 32
Hyphen (-) 45
Forward slash (/) 47

You must insert this character when adding values to a multiple-column fpCombo or fpList control using the AddItem method or
the InsertRow property.

To display only one column value in the edit field, set the ColumnEdit property.

Data Type

Integer

See Also
Adding List Items

ColumnEdit, InsertRow properties

ColumnWidthScale Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the measurement unit used to specify column and group widths in a multiple-column fpCombo or fpList control.

Syntax

C UINT LC_GetColumnWidthScale(HWND hWnd, short FAR *lpValue);
UINT LC_SetColumnWidthScale(HWND hWnd, short value);

C++ short Class::GetColumnWidthScale(void);
Class::SetColumnWidthScale(short value);

Visual Basic [form.]control.ColumnWidthScale[= setting%]

Designer Page

General subtab of the Columns designer page

Remarks

The following settings are available:
Setting Description Constant
0 - Twips Sets the measurement

unit for column and group
width to twips

LC_COLUMNWIDTHSCALE_TWIPS

1 - Pixels Sets the measurement
unit for column and group
width to pixels

LC_COLUMNWIDTHSCALE_PIXELS

2 - Avg
 Char
 Width

(Default) Sets the
measurement unit for
column and group width to
the average character
width of the default font

LC_COLUMNWIDTHSCALE_AVG_CHAR_WIDTH

3 - Max
 Char
 Width

Sets the measurement
unit for column and group
width to the maximum
character width of the
default font

LC_COLUMNWIDTHSCALE_MAX_CHAR_WIDTH

Use the ColWidth property to specify the column width.

The GrpWIdth property also uses the ColumnWidthScale property to specify the unit of measurement.

Data Type

Integer (Enumerated)

Print Copy Close

The following example creates a multiple-column fpList control and changes the background and text colors of the third column
and row. Column widths are specified in twips.

C
LC_SetColumns(hWnd, 3);
LC_SetColumnHeaderShow(hWnd, FALSE);
LC_SetRow(hWnd, -1);
LC_SetInsertRow(hWnd, "1\tRaleigh\t919");
LC_SetInsertRow(hWnd, "2\tCharlotte\t704");
LC_SetInsertRow(hWnd, "3\tGreensboro\t910");
LC_SetInsertRow(hWnd, "4\tLouisburg\t919");
LC_SetInsertRow(hWnd, "5\tRoseboro\tt910");
LC_SetColumnWidthScale(hWnd, LC_COLUMNWIDTHSCALE_TWIPS);
LC_SetCol(hWnd, 0);
LC_SetColWidth(hWnd, 300);
/* Set column colors */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
LC_SetCol(hWnd, 2);
/* light blue RGB(0, 255, 255) */
LC_SetBackColor(hWnd, 0x00FFFF00);
/* dark blue RGB(0, 0, 128) */
LC_SetForeColor(hWnd, 0x00800000);
LC_SetRow(hWnd, 2);
/* Set row colors */
LC_SetListApplyTo(hWnd, LC_LISTAPPLYTO_SINGLE_ITEM);
/* blue RGB(0, 0, 255) */
LC_SetBackColor(hWnd, 0x00FF0000);
/* yellow RGB(255, 255, 0) */
LC_SetForeColor(hWnd, 0x0000FFFF);
/* Combine colors */
LC_SetHighestPrecedence(hWnd, LC_HIGHESTPRECEDENCE_COMBINED);

C++
fpList1->SetColumns(3);
fpList1->SetColumnHeaderShow(FALSE);
fpList1->SetRow(-1);
fpList1->SetInsertRow("1\tRaleigh\t919");
fpList1->SetInsertRow("2\tCharlotte\t704");
fpList1->SetInsertRow("3\tGreensboro\t910");
fpList1->SetInsertRow("4\tLouisburg\t919");
fpList1->SetInsertRow("5\tRoseboro\t910");
fpList1->SetColumnWidthScale(LC_COLUMNWIDTHSCALE_TWIPS);
fpList1->SetCol(0);
fpList1->SetColWidth(300);
// Set column colors
fpList1->SetCol(2);
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
// light blue RGB(0, 255, 255)
fpList1->SetBackColor(0x00FFFF00);
// dark blue RGB(0, 0, 128)
fpList1->SetForeColor(0x00800000);
// Set row colors
fpList1->SetRow(2);
fpList1->SetListApplyTo(LC_LISTAPPLYTO_SINGLE_ITEM);
// blue RGB(0, 0, 255)
fpList1->SetBackColor(0x00FF0000);
// yellow RGB(255, 255, 0)
fpList1->SetForeColor(0x0000FFFF);
// Combine colors
fpList1->SetHighestPrecedence(LC_HIGHESTPRECEDENCE_COMBINED);

Visual Basic

fpList1.Columns = 3
fpList1.ColumnHeaderShow = False
fpList1.Row = -1
fpList1.InsertRow = 1 & Chr$(9) & "Raleigh" & Chr$(9) & 919
fpList1.InsertRow = 2 & Chr$(9) & "Charlotte" & Chr$(9) & 704
fpList1.InsertRow = 3 & Chr$(9) & "Greensboro" & Chr$(9) & 910
fpList1.InsertRow = 4 & Chr$(9) & "Louisburg" & Chr$(9) & 919
fpList1.InsertRow = 5 & Chr$(9) & "Roseboro" & Chr$(9) & 910
fpList1.ColumnWidthScale = LC_COLUMNWIDTHSCALE_TWIPS
fpList1.Col = 0
fpList1.ColWidth = 300
' Set column colors
fpList1.Col = 2
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
' light blue RGB(0, 255, 255)
fpList1.BackColor = &H00FFFF00&
' dark blue RGB(0, 0, 128)
fpList1.ForeColor = &H00800000&
' Set row colors
fpList1.Row = 2
fpList1.ListApplyTo = LC_LISTAPPLYTO_SINGLE_ITEM
' blue RGB(0, 0, 255)
fpList1.BackColor = &H00FF0000&
' yellow RGB(255, 255, 0)
fpList1.ForeColor = &H0000FFFF&
' Combine colors
fpList1.HighestPrecedence = LC_HIGHESTPRECEDENCE_COMBINED

See Also
Specifying the Column Width

Specifying the Group Width

ColWidth, DataAutoSizeCols, GrpWidth properties

ColWidth Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns the width of a column in an fpCombo or fpList control.

Syntax

C UINT LC_GetColWidth(HWND hWnd, float FAR *lpValue);
UINT LC_SetColWidth(HWND hWnd, float value);

C++ float Class::GetColWidth(void);
Class::SetColWidth(float value);

Visual Basic [form.]control.ColWidth[= value&]

Designer Page

Specific subtab of the Columns designer page

Remarks

The default value for the ColWidth property is 1, which is treated as 1 inch.

The width returned by the ColWidth property is based on the measurement unit set with the ColumnWidthScale property.

If you group columns, widths for columns on any given level are adjusted to fit within the parent group and the ColWidth property
setting is ignored. For more information, see Calculating the Width of Group Children.

Before you set the ColWidth property, you must specify a column with the Col, ColFromID, or ColFromName property.

Before setting the ColWidth property for a bound fpCombo control or an fpList control with a bound list, set the
DataAutoSizeCols property to 0 (Off).

If you do not specify the number of columns for the fpCombo or fpList control and the control is bound to a database table with
multiple fields, the control determines the necessary number of columns to display in the list and sizes them using the
DataAutoSizeCols property setting.

Data Type

Integer (Long)

See Also
Specifying the Column Width

Calculating the Width of Group Children

Col, ColFromID, ColFromName, ColumnWidthScale, DataAutoSizeCols properties

ComboGap Property
See Also Example

Applies To

fpCombo control

Description

Sets or returns the size in pixels of the gap between the edit field and the drop-down arrow in a drop-down combo style
fpCombo control.

Syntax

C UINT CbxGetComboGap(HWND hWnd, short FAR *lpValue);
UINT CbxSetComboGap(HWND hWnd, short value);

C++ short CfpComboBox::GetComboGap(void);
CfpComboBox::SetComboGap(short value);

Visual Basic [form.]fpCombo1.ComboGap[= value%]

Designer Page

Misc subtab of the Appearance designer page

Remarks

Drop-down combo style fpCombo controls display a gap between the edit field and the drop-down arrow. Use this property to set
or return the size of the gap.

The default value for the ComboGap property is 7 pixels.

Keep the gap between the edit field and the drop-down arrow small to allow appropriate space for the edit field.

Data Type

Integer

See Also
Choosing the fpCombo Control Style

ListWidth, Style properties

DataAutoHeadings Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether the database field name is displayed as a header for a bound fpCombo or fpList control. This property is
available for Visual Basic users only.

Syntax

Visual Basic [form.]control.DataAutoHeadings[= boolean%]

Designer Page

General subtab of the Data Binding designer page

Remarks

The default value for the DataAutoHeadings property is True. When set to True, the DataAutoHeadings property creates a
header for the list and displays the database field name in the header.

When set to True, the DataAutoHeadings property displays a header even if the ColumnHeaderShow property is set to False.

Data Type

Integer (Boolean)

See Also
Providing Column Headers

ColHeaderText, ColumnHeaderShow properties

DataAutoSizeCols Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns whether columns in a multiple-column fpCombo or fpList control are automatically resized when bound to a
database. This property is available for Visual Basic users only.

Syntax

Visual Basic [form.]control.DataAutoSizeCols[= setting%]

Designer Page

General subtab of the Data Binding designer page

Remarks

The DataAutoSizeCols property automatically sizes list columns based on the data in the database field to which they are
bound. The following settings are available:

Setting Description Constant
0 - Off Prevents columns from

being sized automatically
LC_DATAAUTOSIZECOLS_OFF

1 - MaxColWidth Resizes columns based
on the maximum values
in the bound database
fields
Note This setting
requires slightly more
processing time than
other settings because
the database table must
be evaluated.

LC_DATAAUTOSIZECOLS_MAXCOLWIDTH

2 - BestGuess (Default) Resizes
columns based on the
data type of the field

LC_DATAAUTOSIZECOLS_BESTGUESS

3 - HeaderWidth Resizes columns based
on the width of the
column header

LC_DATAAUTOSIZECOLS_HEADERWIDTH

Consider setting the DataAutoSizeCols property to 3 (HeaderWidth) when you are working with data that contains few
characters in each column but includes large headers for the columns. For example, numeric data may be short, but may need
large headers to display information about the data.

If you want to set the size of each column separately at run time, set the DataAutoSizeCols property to 0 (Off) and set the
ColWidth property to the width you want.

Data Type

Integer (Enumerated)

See Also
Binding the Control to a Database

Binding Columns to Fields in a Database

ColDataField, Columns, ColWidth properties

DataBookmark Property
See Also Example

Applies To

fpCombo, fpList controls

Description

Sets or returns a bookmark for a row in a bound fpCombo or fpList control. This property is available for Visual Basic users only.

Syntax

Visual Basic [form.]control.DataBookmark[= text$]

Remarks

To specify a bookmark with the DataBookmark property, you must specify a row with the Row property.

You can save the bookmark for the current record by assigning the value of the DataBookmark property to a variable. To return
quickly to that record at any time after moving to a different record, set the recordset's Bookmark property to the value of that
variable.

Data Type

String

Print Copy Close

To try the following example, create an fpList control and a Data control on a form. Bind the Data control to Visual Basic's
BIBLIO.MDB database using the DatabaseName property and to the Authors table using the RecordSource property. Bind the
fpList control to the Data control using the DataSource property. The following code sets the current record to be the fifth item in
the list.

Visual Basic
Sub fpList1_DataLoaded ()
' Set the current record to the record in row 5
fpList1.Row = 5
Data1.Recordset.Bookmark = fpList1.DataBookmark
End Sub

See Also
Row property

Events
Standard Visual Basic Events Supported by List Pro Controls

CloseUp

ColWidthChange

DataLoaded

DataRowChanged

DragDropCol

DragDropGrp

DropDown

GrpWidthChange

SelChange

TopChange

VirtualRequest

VirtualSearch

Standard Visual Basic Events Supported by List Pro Controls
The following table lists the standard Visual Basic events that are supported by List Pro controls.

Refer to the Visual Basic documentation for more information on these events except for the DropDown and SelChange events.
The List Pro online help provides additional information on these events.
Change
Click
DblClick
DragDrop
DragOver
DropDown
GotFocus
KeyDown
KeyPress
KeyUp
LinkClose
LinkError
LinkNotify
LinkOpen
LostFocus
MouseDown
MouseMove
MouseUp
SelChange

CloseUp Event
See Also Example

Applies To

fpCombo control

Description

Occurs when the list portion of a fpCombo control closes.

Syntax

C++ (MFC) afx_msg void OnCloseUpfpCombo1(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvCloseUp(VBXEVENT far* event);

Visual Basic Sub fpCombo1_CloseUp ([Index As Integer])

Parameters

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array

Remarks

This event does not occur when the Style property is set to 1 (Simple Combo).

When the user selects an item, the fpCombo control's list closes and the CloseUp event occurs. You can use the CloseUp event
to make changes to a list (such as adding or removing items) after the user has selected an item.

Print Copy Close

The following example removes the selected item from the fpCombo when the fpCombo drop-down list closes.
Sub Form_Load ()

fpCombo1.AddItem "Pharr"
fpCombo1.AddItem "Scarborough"
fpCombo1.AddItem "Augusta"
fpCombo1.AddItem "Cleveland"
fpCombo1.AddItem "Brewton"
fpCombo1.AddItem "Banner Elk"
fpCombo1.AddItem "McMinnville"
fpCombo1.AddItem "Minot"
fpCombo1.AddItem "Steubenville"

End Sub

Sub fpCombo1_CloseUp ()
fpCombo1.RemoveItem fpCombo1.ListIndex
fpCombo1.Text = ""

End Sub

See Also
Style property

DropDown, SelChange events

ColWidthChange Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the user changes the width of a column using the mouse.

Syntax

C++ (MFC) afx_msg void OnColWidthChangecontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvColWidthChange(VBXEVENT far* event);

Visual Basic Sub control_ColWidthChange ([Index As Integer,] Col As Integer)

Parameters

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array
Col The column whose width has been changed

Remarks

The ColWidthChange event occurs when the user releases the mouse button after changing the width of a column.

Print Copy Close

The following example creates a fpList control that lets users resize columns by dragging column or header borders. The
example displays a message after each column width change that tells users which column changed and the new column width
in twips.
Sub Form_Load ()

fpList1.Columns = 2
fpList1.AllowColResize = LC_ALLOWCOLRESIZE_RESIZECOLORHEADER
fpList1.ColumnHeaderShow = True
fpList1.Col = 0
fpList1.ColHeaderText = "Place"
fpList1.Col = 1
fpList1.ColHeaderText = "State"
fpList1.LineStyle = LC_LINESTYLE_FLAT
fpList1.ScrollBarH = LC_SCROLLBAR_SHOW
fpList1.ScrollBarV = LC_SCROLLBAR_SHOW_WHEN_NEEDED
fpList1.AddItem "Ocracoke" & Chr(9) & "North Carolina"
fpList1.AddItem "Cape Cod" & Chr(9) & "Massachusetts"
fpList1.AddItem "Virginia Beach" & Chr(9) & "Virginia"
fpList1.AddItem "Myrtle Beach" & Chr(9) & "South Carolina"
fpList1.AddItem "Saint Simons" & Chr(9) & "Georgia"
fpList1.AddItem "Daytona Beach" & Chr(9) & "Florida"

End Sub

Sub fpList1_ColWidthChange (Col As Integer)
fpList1.ColumnWidthScale = LC_COLUMNWIDTHSCALE_TWIPS
fpList1.Col = Col
MsgBox "Column" & Col + 1 & " has been resized to " & fpList1.ColWidth & "
twips."

End Sub

See Also
AllowColResize property

DataLoaded Event
See Also

Applies To

fpCombo, fpList controls

Description

Occurs when the list is bound to a data control and the data has been loaded. This event is available only for Visual Basic users.

Syntax

Visual Basic Sub control_DataLoaded ([Index As Integer])

Parameters

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array

Remarks

When using a bound fpCombo or fpList control, perform any initializations in this event rather than the Form_Load event.

See Also
DataSourceList property

DataRowChanged Event

Applies To

fpCombo, fpList controls

Description

Occurs when the list is bound to a data control and a row of data has been changed. This event is available only for Visual Basic
users.

Syntax

Visual Basic Sub control_DataRowChanged(RowChanged As Long)

Parameter

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array
RowChanged Row number of the row that was changed

Remarks

When using a bound fpCombo or fpList control, perform any initializations in this event rather than the Form_Load event.

DragDropCol Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the user has completed dragging a column to a new location.

Syntax

C++ (MFC) afx_msg void OnDragDropColcontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvDragDropCol(VBXEVENT far* event);

Visual Basic Sub control_DragDropCol ([Index As Integer,] Col As Integer,

NewCol As Integer, Cancel As Integer)

Parameters

The following parameters are available:
Parameter Description
Index Identifies a control if it is in an array
Col Returns the column that the user requested to move
NewCol Returns the new location of the column that the user requested to move
Cancel When set to True, cancels this operation

Print Copy Close

The following example creates a fpList control that lets users drag and drop columns to change their position in the control. The
control displays a message when the column moves, telling the user which column moved and its new position.
Sub Form_Load ()

fpList1.Columns = 4
fpList1.AllowColDragDrop = LC_ALLOWCOLDRAGDROP_ALLCOLS
fpList1.ColumnHeaderShow = True
fpList1.Col = 0
fpList1.ColHeaderText = "State"
fpList1.Col = 1
fpList1.ColHeaderText = "Flower"
fpList1.ColWidth = 30
fpList1.Col = 2
fpList1.ColHeaderText = "Bird"
fpList1.ColWidth = 30
fpList1.Col = 3
fpList1.ColHeaderText = "Tree"
fpList1.ColWidth = 30
fpList1.AddItem "Alabama" & Chr(9) & "Camellia" & Chr(9) & "Yellowhammer" &
Chr(9) & "Southern Pine"
fpList1.AddItem "California" & Chr(9) & "Golden Poppy" & Chr(9) & "California
Valley Quail" & Chr(9) & "California Redwood"
fpList1.AddItem "Iowa" & Chr(9) & "Wild Rose" & Chr(9) & "Eastern Goldfinch" &
Chr(9) & "Oak"
fpList1.AddItem "Maine" & Chr(9) & "White Pine Cone and Tassel" & Chr(9) &
"Chickadee" & Chr(9) & "Eastern White Pine"
fpList1.AddItem "Minnesota" & Chr(9) & "Pink and White Lady's Slipper" & Chr(9) &
"Common Loon" & Chr(9) & "Red Pine"
fpList1.AddItem "Missouri" & Chr(9) & "Hawthorn" & Chr(9) & "Bluebird" & Chr(9) &
"Dogwood"
fpList1.AddItem "New Hampshire" & Chr(9) & "Purple Lilac" & Chr(9) & "Purple
Finch" & Chr(9) & "White Birch"
fpList1.AddItem "Wyoming" & Chr(9) & "Indian Paintbrush" & Chr(9) & "Meadowlark"
& Chr(9) & "Cottonwood"

End Sub

Sub fpList1_DragDropCol (Col As Integer, NewCol As Integer, Cancel As Integer)
MsgBox "Column " & Col+1 & " has been moved to column " & NewCol+1 & "."

End Sub

See Also
AllowColDragDrop property

DragDropGrp Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the user has completed dragging a group to a new location.

Syntax

C++ (MFC) afx_msg void OnDragDropGrpcontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvDragDropGrp(VBXEVENT far* event);

Visual Basic Sub control_DragDropGrp ([Index As Integer,] Grp As Integer,

NewGrp As Integer, Cancel As Integer)

Parameters

The following parameters are available:
Parameter Description
Index Identifies a control if it is in an array
Grp Returns the group that the user requested to move
NewGrp Returns the new location of the group that the user requested to move
Cancel When set to True, cancels this operation

Print Copy Close

The following example creates a fpList control that lets users drag and drop groups to change their position in the control. The
control displays a message when the group moves, telling the user which group moved and its new position.
Sub Form_Load ()

fpList1.Columns = 4
fpList1.Groups = 4
fpList1.AllowGrpDragDrop = LC_ALLOWGRPDRAGDROP_ALLGRPS
fpList1.GroupHeaderShow = True
fpList1.Grp = 0
fpList1.GrpHeaderText = "State"
fpList1.Grp = 1
fpList1.GrpHeaderText = "Flower"
fpList1.GrpWidth = 20
fpList1.Grp = 2
fpList1.GrpHeaderText = "Bird"
fpList1.GrpWidth = 20
fpList1.Grp = 3
fpList1.GrpHeaderText = "Tree"
fpList1.GrpWidth = 20
fpList1.Col = 0

fpList1.ColParentGroup = 0
fpList1.Col = 1
fpList1.ColParentGroup = 1
fpList1.Col = 2
fpList1.ColParentGroup = 2
fpList1.Col = 3
fpList1.ColParentGroup = 3
fpList1.AddItem "Alabama" & Chr(9) & "Camellia" & Chr(9) & "Yellowhammer" &
Chr(9) & "Southern Pine"
fpList1.AddItem "California" & Chr(9) & "Golden Poppy" & Chr(9) & "California
Valley Quail" & Chr(9) & "California Redwood"
fpList1.AddItem "Iowa" & Chr(9) & "Wild Rose" & Chr(9) & "Eastern Goldfinch" &
Chr(9) & "Oak"
fpList1.AddItem "Maine" & Chr(9) & "White Pine Cone and Tassel" & Chr(9) &
"Chickadee" & Chr(9) & "Eastern White Pine"
fpList1.AddItem "Minnesota" & Chr(9) & "Pink and White Lady's Slipper" & Chr(9) &
"Common Loon" & Chr(9) & "Red Pine"
fpList1.AddItem "Missouri" & Chr(9) & "Hawthorn" & Chr(9) & "Bluebird" & Chr(9) &
"Dogwood"
fpList1.AddItem "New Hampshire" & Chr(9) & "Purple Lilac" & Chr(9) & "Purple
Finch" & Chr(9) & "White Birch"
fpList1.AddItem "Wyoming" & Chr(9) & "Indian Paintbrush" & Chr(9) & "Meadowlark"
& Chr(9) & "Cottonwood"

End Sub

Sub fpList1_DragDropGrp (Grp As Integer, NewGrp As Integer, Cancel As Integer)
MsgBox "Group " & Grp+1 & " has been moved to group " & NewGrp +1 & "."

End Sub

See Also
AllowGrpDragDrop property

DropDown Event
See Also

Applies To

fpCombo control

Description

Occurs when the list portion of a fpCombo control is about to drop down.

Syntax

C++ (MFC) afx_msg void OnDropDownfpCombo1(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvDropDown(VBXEVENT far* event);

Visual Basic Sub fpCombo1_DropDown ([Index As Integer,])

Parameters

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array

Remarks

This event does not occur when the Style property is set to 1 (Simple Combo).

See Also
Style property

GrpWidthChange Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the user changes the width of a group using the mouse.

Syntax

C++ (MFC) afx_msg void OnGrpWidthChangecontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvGrpWidthChange(VBXEVENT far* event);

Visual Basic Sub control_GrpWidthChange ([Index As Integer,] Grp As Integer)

Parameters

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array
Grp The group whose width has been changed

Remarks

The GrpWidthChange event occurs when the user releases the mouse button after changing the width of a group.

Print Copy Close

The following example creates a fpList control that lets users resize groups by dragging group or header borders. The example
displays a message after each group width change that tells users which group changed and the new group width in twips.
Sub Form_Load ()

fpList1.Groups = 2
fpList1.Columns = 2
fpList1.AllowGrpResize = LC_ALLOWGRPRESIZE_RESIZEGRPORHEADER
fpList1.GroupHeaderShow = True
fpList1.Grp = 0
fpList1.GrpHeaderText = "Place"
fpList1.Grp = 1
fpList1.GrpHeaderText = "State"
fpList1.Col = 0
fpList1.ColParentGroup = 0
fpList1.Col = 1
fpList1.ColParentGroup = 1
fpList1.AddItem "Ocracoke" & Chr(9) & "North Carolina"
fpList1.AddItem "Cape Cod" & Chr(9) & "Massachusetts"
fpList1.AddItem "Virginia Beach" & Chr(9) & "Virginia"
fpList1.AddItem "Myrtle Beach" & Chr(9) & "South Carolina"
fpList1.AddItem "Saint Simons" & Chr(9) & "Georgia"
fpList1.AddItem "Daytona Beach" & Chr(9) & "Florida"

End Sub

Sub fpList1_GrpWidthChange (Grp As Integer)
fpList1.ColumnWidthScale = LC_COLUMNWIDTHSCALE_TWIPS
fpList1.Grp = Grp
MsgBox "Grp " & Grp + 1 & " has been resized to " & fpList1.GrpWidth & " twips."

End Sub

See Also
AllowGrpResize property

SelChange Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the user changes the selection in a fpCombo or fpList control.

Syntax

C++ (MFC) afx_msg void OnSelChangecontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvSelChange(VBXEVENT far* event);

Visual Basic Sub control_SelChange ([Index As Integer,] ItemIndex As Long)

Parameters

The following parameter is available:
Parameter Description
Index Identifies a control if it is in an array
ItemIndex Returns the index of the item that was just selected

Remarks

The SelChange event occurs when the same item is reselected or another item is selected. The selected item changes when
the user clicks another list item or presses the arrow keys to highlight other items on the list. You can change the selected item
at run time by setting the ListIndex property.

Use a SelChange event to update a list before the user closes the list. For the fpCombo control, the CloseUp event occurs
before SelChange event.

Print Copy Close

The following example moves the current selection to the top of the fpList control.
Sub fpList1_SelChange(ItemIndex)

fpList1.TopIndex = ItemIndex
End Sub

See Also
Col, ListIndex, Row properties

TopChange Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the top row in the list changes, usually as a result of the user scrolling through the list using the mouse or the
keyboard.

Syntax

C++ (MFC) afx_msg void OnTopChangecontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvTopChange(VBXEVENT far* event);

Visual Basic Sub control_TopChange ([Index As Integer,] OldTop As Long,

NewTop As Long)

Parameters

The following parameters are available:
Parameter Description
Index Identifies a control if it is in an array
OldTop Returns the row formerly displayed at the top of the list
NewTop Returns the row currently displayed at the top of the list

Print Copy Close

The following example illustrates two fpList controls that change as the user scrolls through the first fpList control. To try this
example, create a data control on your form and bind it to Visual Basic's BIBLIO.MDB database using the DatabaseName
property. Bind it to the Titles table using the RecordSource property. Create two fpList controls on your form and bind them both
to the data control with the DataSource property. Bind them both to the Title field with the DataField property.
Sub fpList1_TopChange (OldTop As Long, NewTop As Long)

fpList2.TopIndex = NewTop
End Sub

See Also
TopIndex property

VirtualRequest Event
See Also

Applies To

fpCombo, fpList controls

Description

Occurs when the list receives a request, such as when the user wants to scroll through the list, and the list is in virtual mode.

Syntax

C++ (MFC) afx_msg void OnVirtualRequestcontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvVirtualRequest(VBXEVENT far* event);

Visual Basic Sub control_VirtualRequest ([Index As Integer,] ActionRequested As Integer,

RowFirst As Long, RowCount As Long, Pos As Long, Ret As Long)

Parameters

The following parameters are available:
Parameter Description
Index Identifies a control if it is in an

array
ActionRequested Returns information about the

action requested
Action Description
0 - Is Home If the first record is currently in memory,

set the Ret parameter to True or False.
1 - Is End If the last record is currently in memory,

set the Ret parameter to True or False.
2 - Down Fill the list with the next set of records

(The number of records designated by
RowCount are requested, starting at
RowFirst. Set Ret to the number of
records actually loaded.)

3 - Up Fill the list with the previous set of
records
(The number of records designated by
RowCount are requested, starting at
RowFirst. Set Ret to the number of
records actually loaded.)

4 - Home Fill the list, starting with the first record
in the database
(The number of records designated by
RowCount are requested, starting at
RowFirst. Set Ret to the number of
records actually loaded.)

5 - End Fill the list, starting with the last record
in the database
(The number of records designated by
RowCount are requested, starting at
RowFirst. Set Ret to the number of
records actually loaded.)

6 - Refresh Refresh the current records
(The number of records designated by
RowCount are requested, starting at
RowFirst. Set Ret to the number of
records actually loaded.)

7 - Rows Removed Remove from memory the number of
records designated by RowCount,
starting at RowFirst

8 - Pos Move the scroll box to the position
specified by Pos

(The number of records designated by
RowCount are requested, starting at
RowFirst. Set Ret to the number of
records actually loaded.)

RowFirst Designates the first row in the list to fill with data
(When ActionRequested is 3 (Up) or 5 (End), start filling the list
at RowFirst+RowCount-1)

RowCount Designates the number of rows to load into the list
Pos Designates the new position of the scroll box when

ActionRequested is 8 (Pos)
Ret Used to return a value for each action designated by

ActionRequested
(This value should be filled before exiting the event. Action 7
(Rows Removed) is the only action that does not need a return
value.)

Remarks

The request made of the list usually requires the control to load more rows. If the list is bound to a data control, your application
need not respond to this event.

See Also
VirtualSearch event

VirtualMode property

VirtualSearch Event
See Also Example

Applies To

fpCombo, fpList controls

Description

Occurs when the fpCombo or fpList control is in virtual mode and the user requests a search. This property enables the user to
search the entire database.

Syntax

C++ (MFC) afx_msg void OnVirtualSearchcontrol(UINT, int, CWnd*, LPVOID);

C++ (OWL) void EvVirtualSearch(VBXEVENT far* event);

Visual Basic Sub control_VirtualSearch ([Index As Integer,] SearchString As String,

SearchType As Integer, RowFound As Long, Ret As Integer)

Remarks

Because the list in a fpCombo or fpList control only looks at the data in memory, it cannot accurately search the entire data
base. This event allows the user to search the entire database.

The following arguments are provided:
Parameter Description
Index Identifies a control if it is in an

array
SearchString Designates the string for which to

search
(This value can consist of one or
more characters.)

SearchType Designates the type of search
requested
The following two values may be
combined with the Or operator:
Value Description
1 - Search Method Greater The found string may be greater

than or equal to the search string
(If the value does not contain a 1,
the found string must equal the
search string.)

2 - Search Method Partial Requests a partial search
(If the value does not contain a 2,
the found string must exactly
match the search string.)

RowFound Returns the row number of the
found string
(The control attempts to find the
requested string in memory. If
found, this argument contains the
row number of the found text;
otherwise, its value is -1. If you
want the control to select the row
found in memory, return from this
event. If you do not want the
control to select the found row
but rather to search the rest of
the database, set this parameter
to -1 before returning.)

Ret Designates the results of the
search request
(Set this parameter to True if the
request was successful;

otherwise, set it to False.)

Note In Visual Basic, when the fpCombo or fpList control is bound, Visual Basic custom controls cannot directly communicate
to the access engine to perform a search. Therefore, you must request the search at run time in Visual Basic code.
Refer to the example for code you might want to place in the VirtualSearch event.

Print Copy Close

The following example shows code you can place in the VirtualSearch event for a bound fpList control if you want to search the
entire database.
Sub fpList1_VirtualSearch (SearchString As String, SearchType As Integer, RowFound
As Long, Ret As Integer)
 If RowFound = -1 Then
 ' If Greater than
 If SearchType And 2 Then
 Data1.RecordSet.FindFirst "Author >= '" & SearchString & "'"
 ' If Partial match
 ElseIf SearchType And 1 Then
 Data1.RecordSet.FindFirst "Author Like '" & SearchString & "*'"
 ' Search for whole match
 Else
 Data1.RecordSet.FindFirst "Author = '" & SearchString & "'"
 End If
 Ret = Not Data1.RecordSet.NoMatch
 End If
End Sub

See Also
VirtualRequest event

VirtualMode property

Functions and Methods
The following topics describe the available List Pro functions for VBX users and methods for OCX users.

LP_GetCellPos

LP_GetMaxSize

ListPro_GetControlhWnd

LP_GetCellPos Function
See Also Example

Applies To

fpCombo, fpList controls

Description

Returns the cell position of a cell if it is currently visible on the screen.

Syntax

C BOOL LP_GetCellPos(HWND hWnd, short Col, long Row, LPRECT lpRect);

C++ BOOL LP_GetCellPos(LPVOID hWnd, short Col, long Row, LPLONG lpx,

 LPLONG lpy, LPLONG lpWidth, LPLONG lpHeight, short wUnits);
Visual Basic Function LP_GetCellPos(hCtlList As Control, ByVal nCol As Integer,

ByVal lRow As Long, lpx As Long, lpy As Long,

lpWidth As Long, lpHeight As Long, ByVal Units As Integer)

As Integer

Parameters

The following parameters are available:

DLL Parameters
Parameter Description
hWnd Window handle of the List Pro control
Col Column number of cell for which to return rectangle coordinates
Row Row number of cell for which to return rectangle coordinates
lpRect Pointer to variable that receives the rectangle coordinates

C++ Parameters
Parameter Description
hWnd List Pro control handle
Col Column number
Row Row number
lpx Pointer to x-position
lpy Pointer to y-position
lpWidth Pointer to column width
lpHeight Pointer to row height
wUnits Unit of measurement. If 0 is used, the unit is twips.

Use the following:
Value Constant Description
1 FP_CELLPOSUNITS_PIXELS Pixels

ActiveX, VBX Parameters
Parameter Description
hCtlList List Pro control handle
nCol Column number
lRow Row number

lpx x-position
lpy y-position
lpWidth Column width
lpHeight Row height
Units Unit of measurement. If 0 is used, the unit is twips.

Use the following:
Value Constant Description
1 FP_CELLPOSUNITS_PIXELS Pixels

Return Value

DLL: TRUE if the function completes successfully; FALSE otherwise.

Print Copy Close

The following example inserts five rows in to a combo box control. When the user clicks the command button, the x-position, y-
position, width, height, and unit of measurement is printed.

C

LPRECT xy;
Cwnd *ctrl;
HWND hWnd;

ctrl = GetDlgItem(IDC_COMBO); // button1
hwnd = ctrl->m_hWnd;

LP_GetCellPos(hwnd,0,1,xy);
C++

LPRECT xy;
Cwnd *ctrl;
HWND hWnd;

ctrl = GetDlgItem(IDC_COMBO); // button1
hwnd = ctrl->m_hWnd;

LP_GetCellPos(hwnd,0,1,xy);
Visual Basic (OCX)

Private Sub Form_Load()
fpCombo1.Row = -1
fpCombo1.InsertRow = 1 & Chr$(9) & "Raleigh" & Chr$(9) & 919
fpCombo1.InsertRow = 2 & Chr$(9) & "Charlotte" & Chr$(9) & 704
fpCombo1.InsertRow = 3 & Chr$(9) & "Greensboro" & Chr$(9) & 910
fpCombo1.InsertRow = 4 & Chr$(9) & "Louisburg" & Chr$(9) & 919
fpCombo1.InsertRow = 5 & Chr$(9) & "Roseboro" & Chr$(9) & 910

End Sub

Private Sub Command2_Click()
Dim xpos As Long
Dim ypos As Long
Dim w As Long
Dim h As Long
Dim u As Integer

fpCombo1.GetCellPos 1, 1, xpos, ypos, w, h, u

Debug.Print xpos, ypos, w, h, u
End Sub

Visual Basic (VBX)

Private Sub Form_Load()
fpCombo1.Row = -1
fpCombo1.InsertRow = 1 & Chr$(9) & "Raleigh" & Chr$(9) & 919
fpCombo1.InsertRow = 2 & Chr$(9) & "Charlotte" & Chr$(9) & 704
fpCombo1.InsertRow = 3 & Chr$(9) & "Greensboro" & Chr$(9) & 910
fpCombo1.InsertRow = 4 & Chr$(9) & "Louisburg" & Chr$(9) & 919
fpCombo1.InsertRow = 5 & Chr$(9) & "Roseboro" & Chr$(9) & 910

End Sub

Private Sub Command2_Click()
Dim xpos As Long
Dim ypos As Long
Dim w As Long
Dim h As Long
Dim u As Integer

Dim ret As Integer

ret = LP_GetCellPos(fpCombo1, 1, 1, xpos, ypos, w, h, u)

Debug.Print xpos, ypos, w, h, u
End Sub

See Also
Col, ColWidth, Row, RowHeight properties

LP_GetMaxSize Function
See Also Example

Applies To

fpCombo, fpList controls

Description

Returns the maximum column width or row height based on the current text, current picture, or both.

Syntax

C long LP_GetMaxSize(HWND hWnd, short nCol, long lRow,

short wMethod, LPRECT lpRect);
C++ long LP_GetMaxSize(LPVOID hWnd, short nCol, long lRow,

short wMethod, short wUnits);
Visual Basic Function LP_GetMaxSize(hCtlList As Control, ByVal nCol As Integer,

ByVal lRow As Long, ByVal Method As Integer,

ByVal Units As Integer) As Long

Parameters

The following parameters are available:

DLL Parameters
Parameter Description
hWnd List Pro control handle
nCol

To return row height, set to 1.
Otherwise, set to specific column.

lRow

To return column width, set to 1.
Otherwise, set to a specific row.

wMethod Calculation method
Use one of the following values:
Value Description
FP_MAXSIZEMETHOD_BASIC Row height: Returns height of

single line of text
Column width: Returns the
width of the three-dimensional
cell border

FP_MAXSIZEMETHOD_TEXT Row height: Returns height of
text, taking into account multiple
lines, if displayed
Column width: Returns width
of single line of text, ignoring
multiple lines, if displayed

FP_MAXSIZEMETHOD_PICT Returns row height or column
width based on graphic only.

FP_MAXSIZEMETHOD_TEXTPICT Row height: Returns height of
text and graphic, taking into
account multiple lines, if

displayed
Column width: Returns width
of single line of text and
graphic, ignoring multiple lines,
if displayed

lpRect Pointer to variable that receives the rectangle coordinates

C++ Parameters
Parameter Description
hWnd List Pro control handle
nCol

To return row height, set to 1.
Otherwise, set to specific column.

lRow

To return column width, set to 1.
Otherwise, set to a specific row.

wMethod Calculation method
Use one of the following values:
Value Description
FP_MAXSIZEMETHOD_BASIC Row height: Returns height of single line of text

Column width: Returns the width of the three-
dimensional cell border

FP_MAXSIZEMETHOD_TEXT Row height: Returns height of text, taking into
account multiple lines, if displayed
Column width: Returns width of single line of text,
ignoring multiple lines, if displayed

FP_MAXSIZEMETHOD_PICT Returns row height or column width based on
graphic only.

FP_MAXSIZEMETHOD_TEXTPICT Row height: Returns height of text and graphic,
taking into account multiple lines, if displayed
Column width: Returns width of single line of text
and graphic, ignoring multiple lines, if displayed

wUnits Unit of measurement
Using the OR operator, combine the
following values. Note that a value of 0
assumes twips.
Value Constant Description
1 FP_MAXSIZEUNITS_PIXELS Returns value in pixels
2 FP_MAXSIZEUNITS_ROW Returns the row height instead of the column width

ActiveX, VBX Parameters
Parameter Description
hCtrlList List Pro control handle
nCol

To return row height, set to 1.
Otherwise, set to specific column.

lRow

To return column width, set to 1.
Otherwise, set to a specific row.

Method Calculation method
Use one of the following values:
Value Description
FP_MAXSIZEMETHOD_BASIC Row height: Returns height of

single line of text
Column width: Returns the
width of the three-dimensional

cell border
FP_MAXSIZEMETHOD_TEXT Row height: Returns height of

text, taking into account multiple
lines, if displayed
Column width: Returns width
of single line of text, ignoring
multiple lines, if displayed

FP_MAXSIZEMETHOD_PICT Returns row height or column
width based on graphic only.

FP_MAXSIZEMETHOD_TEXTPICT Row height: Returns height of
text and graphic, taking into
account multiple lines, if
displayed
Column width: Returns width
of single line of text and
graphic, ignoring multiple lines,
if displayed

Units Unit of measurement
Using the OR operator, combine the
following values. Note that a value of 0
assumes twips.
Value Constant Description
1 FP_MAXSIZEUNITS_PIXELS Returns value in pixels
2 FP_MAXSIZEUNITS_ROW Returns the row height instead

of the column width

Remarks

You use the LP_GetMaxSize function to return either the maximum height of a specified row or the maximum width of a
specified column, or the maximum width or height of a cell.

Return Type

Integer (Long)

Print Copy Close

The following example returns the column width of a list box control using the basic method. If the maximum column width
returned is 0, the column width is set to the minimum desired width of X pixels.

C++

long ret;
char buffer[20];

ret = LP_GetMaxSize(hwnd,1,-1,FP_MAXSIZEMETHOD_TEXT,1);

if (ret = 0)
{
sprintf(buffer, "%f", ret);
MessageBox(buffer, "Reset ColWidth to 12", MB_OK);
LC_SetCol(hWnd, 1);
LC_SetColWidth(hWnd, 12);

}
C++

long ret;
char buffer[20];

ret = LP_GetMaxSize(hwnd,1,-1,FP_MAXSIZEMETHOD_TEXT,1);

if (ret = 0)
{
sprintf(buffer, "%f", ret);
MessageBox(buffer, "Reset ColWidth to 12", MB_OK);
fpList1->SetCol(hWnd, 1);
fpList1->SetColWidth(hWnd, 12);

}
Visual Basic (OCX)

Dim ret As Long

ret = fpList1.GetMaxSize(1, -1, FP_MAXSIZEMETHOD_TEXT, 1)
Debug.Print ret
If ret = 0 Then

MsgBox "Reset ColWidth to 12"
fpList1.Col = 1
fpList1.ColWidth = 12

End If
Visual Basic (VBX)

Dim ret As Long

ret = LP_GetMaxSize(fpList1, 1, -1, FP_MAXSIZEMETHOD_TEXT, 1)
Debug.Print ret
If ret = 0 Then

MsgBox "Reset ColWidth to 12"
fpList1.Col = 1
fpList1.ColWidth = 12

End If

See Also
ColWidth, RowHeight properties

ListPro_GetControlhWnd Function
See Also Example

Applies To

fpCombo, fpList controls

Description

Determine the window handle of any Visual Basic control. This function is available for VBX controls only.

Syntax

Visual Basic Function ListPro_GetControlhWnd (hCtl As Control) As Integer

Description

Use these functions to determine the window handle of any Visual Basic control. You can use these functions with the
DataSourcehWnd property to bind a List Pro control to a data control on another form. If the data control is on another form, be
sure to specify the form name with the data control name (Form2.Data1).

The ListPro_GetControlhWnd function is defined in your LP.BAS file. Add the file to your project to use the function.

Return Type

The window handle (integer)

Print Copy Close

The following example retrieves the window handle of the data control, Data1, which is located on Form2:
fpList1.DataSourcehWnd = ListPro_GetControlhWnd(Form2.Data1)

See Also
DataSourcehWnd, DataSourcehWndList properties

Structures
LB_KEYDOWN

LB_VIRTUALREQUEST

LB_VIRTUALSEARCH

LB_KEYDOWN Structure

Applies To

fpList control

Definition
typedef struct tagLB_KEYDOWN
{
WORD wKeyCode;
WORD wShiftState;
} LB_KEYDOWN, FAR *LPLB_KEYDOWN;

Fields

The LB_KEYDOWN structure has the following fields:
Field Description
wKeyCode A key code
wShiftState The state of the Shift, Ctrl, and Alt keys at the time of the event

(The Shift parameter is a bit field, with the least-significant bits corresponding
to the Shift key (bit 0), the Ctrl key (bit 1), and the Alt key (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Some, all, or none of the
bits can be set, indicating that some, all, or none of the keys are pressed. For
example, if both Ctrl and Alt are pressed, the value of Shift is 6.)

Remarks

This structure is used with the LBM_KEYDOWN message to inform the application that the user has just pressed a key while
the control has the focus.

LB_VIRTUALREQUEST Structure

Definition
typedef struct tagLB_VIRTUALREQUEST
{
WORD wActionRequested;
long lRowFirst;
long lRowCount;
long lPos;
} LB_VIRTUALREQUEST, FAR *LPLB_VIRTUALREQUEST;

Fields

The LB_VIRTUALREQUEST structure has the following fields:
Field Description
wActionRequested Use one of the following values:

Value Description
LB_VIRTACTION_ISTOP The top row in memory
LB_VIRTACTION_ISEND The last row in memory
LB_VIRTACTION_DOWN The next group of data is needed.
LB_VIRTACTION_UP The previous group of data is needed.
LB_VIRTACTION_HOME The first group of data is needed.
LB_VIRTACTION_END The last group of data is needed.
LB_VIRTACTION_REFRESH Used if the contents of the buffer are

being refreshed.
LB_VIRTACTION_ROWSREMOVED
LB_VIRTACTION_POS

lRowFirst Virtual top row at which reading begins
lRowCount Number of rows requested
lPos Scroll bar position

Remarks

This structure is used with the LBM_VIRTUALREQUEST message to inform the application that the control needs more data
when the control is in virtual mode.

LP_VIRTUALSEARCH Structure

Definition
typedef struct tagLB_VIRTUALSEARCH
{
LPSTR lpszSearchString;
WORD wSearchType;
long lRowFound;
} LB_VIRTUALSEARCH, FAR *LPLB_VIRTUALSEARCH;

Remarks

Fields

The LB_VIRTUALSEARCH structure has the following fields:
Field Description
lpszSearchString Pointer to search string
wSearchType Type of search requested

Value Description
1 - Search Method Greater The found string may be greater than

or equal to the search string
(If the value does not contain a 1, the
found string must equal the search
string.)

2 - Search Method Partial Requests a partial search
(If the value does not contain a 2, the
found string must exactly match the
search string.)

lRowFound Number of row where match
was found

Remarks

This structure is used with the LBM_VIRTUALSEARCH message to inform the application a search request is initiated and the
control is in virtual mode.

Messages
Note For the fpCombo or fpList control, you must include the LBS_NOTIFY style in the RC file to receive all notifications.

Overview

Windows Messages Supported by List Pro Controls

CBM_KEYDOWN

CBM_KEYPRESS

LBM_CLICK

LBM_COLWIDTHCHANGE

LBM_DRAGDROPCOL

LBM_DRAGDROPGRP

LBM_GRPWIDTHCHANGE

LBM_KEYDOWN

LBM_KEYPRESS

LBM_VIRTUALREQUEST

LBM_VIRTUALSEARCH

LBN_TOPITEM

Overview: Messages
Use messages to communicate with the List Pro DLL controls. As in the Windows-supplied messages, data is passed to the
control with the wParam and lParam function parameters. Use the SendMessage API function to send messages to controls.

Note For the fpCombo or fpList control, you must include the LBS_NOTIFY style in the RC file to receive all notifications.

Windows Messages Supported by List Pro Controls
The following lists contain all Windows messages for combo box and list box controls that are supported by List Pro controls.

fpCombo Control
fpList Control

fpCombo Control
The following Windows messages for combo boxes are supported by the fpCombo control. For more information on these
messages, see your Windows documentation.

CB_ADDSTRING

CB_DELETESTRING

CB_FINDSTRING

CB_FINDSTRINGEXACT

CB_GETCOUNT

CB_GETCURSEL

CB_GETDROPPEDSTATE

CB_GETEDITSEL

CB_GETITEMDATA

CB_GETITEMHEIGHT

CB_GETLBTEXT

CB_GETLBTEXTLEN

CB_INSERTSTRING

CB_LIMITTEXT

CB_RESETCONTENT

CB_SELECTSTRING

CB_SETCURSEL

CB_SETEDITSEL

CB_SETITEMDATA

CB_SETITEMHEIGHT

CB_SHOWDROPDOWN

CBN_CLOSEUP

CBN_DROPDOWN

CBN_EDITCHANGE

CBN_ERRSPACE

CBN_KILLFOCUS

CBN_SELCHANGE

CBN_SETFOCUS

fpList Control
The following Windows messages for list boxes are supported by the fpList control. For more information on these messages,
see your Windows documentation.

LB_ADDSTRING

LB_DELETESTRING

LB_FINDSTRING

LB_FINDSTRINGEXACT

LB_GETCARETINDEX

LB_GETCOUNT

LB_GETCURSEL

LB_GETHORIZONTALEXTEN
T

LB_GETITEMDATA

LB_GETITEMHEIGHT

LB_GETITEMRECT

LB_GETSEL

LB_GETSELCOUNT

LB_GETSELITEMS

LB_GETTEXT

LB_GETTEXTLEN

LB_GETTOPINDEX

LB_INSERTSTRING

LB_RESETCONTENT

LB-SELECTSTRING

LB_SETCARETINDEX

LB_SETCOLUMNWIDTH

LB_SETCURSEL

LB_SETHORIZONTALEXTENT

LB_SETITEMDATA

LB_SETITEMHEIGHT

LB_SETITEMRANGE

LB_SETSEL

LB_SETTABSTOPS

LB_SETTOPINDEX

LBN_DBLCLK

LBN_ERRSPACE

LBN_KILLFOCUS

LBN_SELCHANGE

LBN_SETFOCUS

CBM_KEYDOWN Message

Description

Sent to the owner of the fpCombo control when the user presses (KeyDown) a key while the control has the focus.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpCombo control window handle

lParam Pointer to the LB_KEYDOWN structure

Return Value

None

CBM_KEYPRESS Message

Description

Sent to the owner of the fpCombo control when the user releases (KeyUp) a key while the control has the focus.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpCombo control window handle

lParam LPWORD
(Pointer to ASCII character that was pressed)

Return Value

None

LBM_CLICK Message

Description

Sent to the owner of the fpList control each time the user pressed the left mouse button.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList control window handle

lParam Not used

Return Value

None

LBM_COLWIDTHCHANGE Message

Description

Sent to the owner of the fpList or fpCombo control when the width of column changes.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList of fpCombo control window handle

lParam Column number of column whose width has changed

Return Value

None

LBM_DRAGDROPCOL Message

Description

Sent to the owner of the fpList or fpCombo control when the user drags and drops a column.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList or fpCombo control window handle

lParam LOWORD Column number of column being moved

HIWORD New position number of column that was moved

Return Value

A non-zero return value cancels the drag-drop request.

LBM_DRAGDROPGRP Message

Description

Sent to the owner of the fpList or fpCombo control when the user drags and drops a group.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList or fpCombo control window handle

lParam LOWORD Group number of group being moved

 HIWORD New position number of group that was moved

Return Value

A non-zero return value cancels the drag-drop request.

LBM_GRPWIDTHCHANGE Message

Description

Sent to the owner of the fpList or fpCombo control when the width of group changes.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList or fpCombo control window handle

lParam Group number of group whose width has changed

Return Value

None

LBM_KEYDOWN Message

Description

Sent to the owner of the fpList control when the user presses (KeyDown) a key while the control has the focus.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList control window handle

lParam Pointer to the LB_KEYDOWN structure

Return Value

None

LBM_KEYPRESS Message

Description

Sent to the owner of the fpList control when the user releases (KeyUp) a key while the control has the focus.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList control window handle

lParam LPWORD
(Pointer to ASCII character that was pressed)

Return Value

None

LBM_VIRTUALREQUEST Message

Description

Sent to the owner of the fpList control when the control needs more data when the control is in virtual mode.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList control window handle

lParam Pointer to the LB_VIRTUALREQUEST structure

Remarks

Refer to the VirtualRequest event for more information.

Return Value

Number of rows loaded

LBM_VIRTUALSEARCH Message

Description

Sent to the owner of the fpList control when a search request is initiated and the control is in virtual mode.

Parameters

This message has the following parameters:
Parameter Description
wParam The fpList control window handle

lParam Pointer to the LB_VIRTUALSEARCH structure

Remarks

Refer to the VirtualSearch event for more information.

Return Value

Returns True if successful

LBN_TOPITEM Message

Description

Sent to the owner of the fpList control when the user scrolls the list in the vertical direction. The owner receives this notification
through a WM_COMMAND message from the control.

Return Value

None

Styles
Overview

Windows Styles Supported by List Pro Controls

CBS_DESCENDINGORDER

CBS_SEARCHEXACTCASE

CBS_THREEDIN

CBS_THREEDOUT

LBS_DESCENDINGORDER

LBS_SEARCHEXACTCASE

LBS_THREEDIN

LBS_THREEDOUT

Overview: Styles
Styles are settings that DLL users can apply to a control when they create it. You can assign a defined value or a numeric value
for a style. Click one of the listed styles for a brief description and its values.

Windows Styles Supported by List Pro Controls
The following lists contain all Windows styles for combo box and list box controls that are supported by List Pro controls.

fpCombo Control
fpList Control

fpCombo Control
The following Windows styles for combo boxes are supported by the fpCombo control. For more information on these styles,
see your Windows documentation.

CBS_AUTOHSCROLL

CBS_DROPDOWN

CBS_DROPDOWNLIST

CBS_NOINTEGRALHEIGHT

CBS_SIMPLE

CBS_SORT

fpList Control
The following Windows styles for list boxes are supported by the fpList control. For more information on these styles, see your
Windows documentation.

LBS_EXTENDSEL

LBS_MULTICOLUMN

LBS_MULTIPLESEL

LBS_NOINTEGRALHEIGHT

LBS_NOREDRAW

LBS_NOTIFY*
LBS_SORT

LBS_USETABSTOPS

* For the fpList control, you must include the LBS_NOTIFY style in the RC file to receive all notifications.

CBS_DESCENDINGORDER
If sorting is specified, sorts items in an fpCombo control in descending order.

Constant Value
CB_DESCENDINGORDER

CBS_SEARCHEXACTCASE
Searches using exact case in an fpCombo control.

Constant Value
CB_SEARCHEXACTCASE

CBS_THREEDIN
The fpCombo control displays a lowered three-dimensional appearance.

Constant Value
CB_THREEDIN

CBS_THREEDOUT
The fpCombo control displays a raised three-dimensional appearance.

Constant Value
CB_THREEDOUT

LBS_DESCENDINGORDER
If sorting is specified, sorts items in an fpList control in descending order.

Constant Value
LB_DESCENDINGORDER

LBS_SEARCHEXACTCASE
Searches using exact case in an fpList control.

Constant Value
LB_SEARCHEXACTCASE

LBS_THREEDIN
The fpList control displays a lowered three-dimensional appearance.

Constant Value
LB_THREEDIN

LBS_THREEDOUT
The fpList control displays a raised three-dimensional appearance.

Constant Value
LB_THREEDOUT

Introducing List Pro
System Requirements
Upgrading from Aware/VBX

Redistributing List Pro Controls

Important Information for C and C++ Users

Documentation Conventions

Contacting FarPoint Technologies, Inc.

Comment Form

System Requirements
To run List Pro™, you need a computer running Microsoft® Windows® version 3.1 or later or Windows NT version 3.5 or later,
running in standard or enhanced mode. You also need a development environment that supports ActiveX, DLL, or VBX controls.

Upgrading from Aware/VBX
Instructions for upgrading from our Aware/VBX™ product are included in the file UPGRAD.WRI that accompanies this product.
For a list of the files provided in List Pro version 2.0, refer to the file INSTALL.WRI that accompanies this product.

If you have used our Aware/VBX product, review the information provided in the topic Information for Users of Previous
Products.

Redistributing List Pro Controls
Information about redistributing List Pro controls is provided in the file REDIST.WRI that accompanies this product. For a list of
the files provided in List Pro version 2.0, refer to the file INSTALL.WRI that accompanies this product.

Documentation Conventions
List Pro documentation uses the following conventions:
Example Description
Illustrations Illustrations of the Input Pro controls and other screen objects were

created in the Windows 95™ operating environment unless
otherwise noted.

Example Choose this item to display an example window.
Note Pixel values in examples are calculated for a 640 x 480
screen resolution.

ActiveX Text indicates the condition for the subsequent instructions or
explanation. For example, "ActiveX" indicates that the subsequent
information pertains only to the ActiveX control. Possible conditions
include version of the control, programming environment, and run-
time versus design-time interaction.

A:\SETUP Words you need to type appear in this font.
MYFILE.TXT Words in all capital letters indicate file and path names.
value, color Italicized items in programming syntax are placeholders for

information you supply.
short, BOOL In programming syntax, bold, italicized arguments indicate data

types, pointers, and user-defined types.
Class In programming syntax, blue text indicates additional information is

provided in a pop-up window. To access the pop-up window, click
the blue text. (Italicized blue text indicates variable content, as
described in the pop-up window.)

[= value&] In programming syntax, items inside square brackets are optional.
This symbol indicates a reference to the how-to-guides. This symbol
occurs in the tutorial.

In programming syntax, the line continuation character indicates that
code continued from one line to the next in the documentation
should be typed all on one line in the code window.

Important Information for C and C++ Developers
Throughout the online help, discussions of setting properties are intended to cover setting characteristics of the control using
functions. Generally, there is a correspondence between each property of the control and the corresponding functions, as
described in Getting and Setting Property Values. Therefore, if you use the DLL, refer to the appropriate property reference
page in the online Reference Guide for information about performing your task using functions.

You may also find the illustrative examples throughout the online help useful. Where applicable, each example in the online help
provides code showing how to perform a task in C, C++, and Visual Basic.

Contacting FarPoint Technologies, Inc.
If you discover a problem with either the software or the accompanying online help, or if you would like to share your thoughts
about this product with FarPoint Technologies, please send us a completed Comment Form.

Send us the Comment Form using one of the following methods, or if you call, please provide the information requested on the
form to our Technical Support representative. For additional assistance, contact our Technical Support department.

To contact our Technical Support department

Call our Technical Support department by phone at (919) 460-1887.
FarPoint Technologies Technical Support department is available between the hours of 9:00 a.m. and 5:30 p.m. eastern
time.

Fax us at (919) 460-7606.

Visit our World Wide Web site at http://www.fpoint.com.

Send e-mail to us at
- fpsupport@fpoint.com (technical support)

- farpoint@fpoint.com (general mail)

- fpsales@fpoint.com (sales)

Contact the FarPoint forum on CompuServe® (type GO FARPOINT and choose Library 12).

Contact our FTP site (ftp.fpoint.com and change to the directory /fpoint.com)

Write us at:
FarPoint Technologies, Inc.
133 Southcenter Court
Suite 1000
Morrisville, NC 27560

List Pro Version 2.0 Comment Form
If you encounter a problem with this product, or if you would like to share your comments with FarPoint Technologies, please
complete and send this form to FarPoint Technologies using one of the methods described in Contacting FarPoint Technologies, Inc.

If you are reporting a problem, please include a detailed description of the problem along with the steps necessary to reproduce it.
The best way to convey the problem is to send us a sample application that reproduces the problem. If you have a sample, please
upload it to our CompuServe forum or to our Internet address. Be sure to include the name of the ZIP file* that you uploaded.

Today's date: _____________________ Customer name: _____________________

Company name: ___________________ Phone number: (_____)________________

Fax number: (_____)________________ e-mail address: ______________________

*Sample application file name: ________________

Control or controls used in application (circle all that apply):

fpCombo fpList

Version Number: _______________ Control Date: _________________

Control Type (circle one or more): 16-bit DLL 32-bit DLL VBX 32-bit ActiveX

Development environment: ____________________ Version: ______
(for example, Visual Basic, Visual C++, Borland C++)

Description of the problem:

Steps necessary to reproduce the problem:

Comments/Documentation suggestions:

Information for Users of Previous Products
If you have used our Aware/VBX product, you should read the following topics to familiarize yourself with the updates available
in this new product, List Pro. For additional information and instructions on upgrading existing projects, consult the
UPGRAD.WRI file that accompanies this product.

Column Designer

Changes to Existing Properties

New Properties

New Events

Changes to Functions

Column Designer
The Column Designer has been replaced by the FarPoint Property Designer. The FarPoint Property Designer provides a quick
and simple way for you to design an fpCombo or fpList control. You can view the run-time appearance of the control as you
create it.

The List Pro Tutorial shows how to create a list box using the FarPoint Property Designer.

Changes to Existing Properties

Changes to Property Names

OnFocusShadow Property

Column Properties

Header Properties

Line Properties

Row Properties

Selected Item Properties

Changes to Property Names
The properties listed in the following table have been renamed, but operate similarly to the Aware/VBX properties. The original
property names are still supported for backward compatibility. However, the old properties might not be supported in future
versions. It is recommended that you replace them.
Former name New name
ColLock ColLockResize
DropShadowColor BorderDropShadowColor
DropShadowWidth BorderDropShadowWidth
HeaderHeight ColumnHeaderHeight
HeaderShow ColumnHeaderShow
OnFocusInvert3D ThreeDOnFocusInvert
The OnFocusShadow property has been renamed and the new property operates differently than the Aware/VBX property. The
OnFocusShadow property is still supported for backward compatibility.

OnFocusShadow Property
The OnFocusShadow property has been changed to the BorderDropShadow property. The former OnFocusShadow property
was a boolean property; the new BorderDropShadow property is an enumerated property. The settings listed in the following
table are available for the BorderDropShadow property.
Setting Description
0 - None No drop shadow is displayed
1 - Always Drop shadow is always displayed
2 - On Focus Drop shadow is displayed when the control has the

focus
The OnFocusShadow property is still supported for backward compatibility.

Column Properties
The following column properties are now obsolete, but are retained for backward compatibility.
Property Replaced by
ColAlignH ListApplyTo + AlignH
ColBackColor ListApplyTo + BackColor
ColForeColor ListApplyTo + ForeColor
ColHeaderAlignH ListApplyTo + AlignH
ColMultiLine ListApplyTo + MultiLine
ColPicture ListApplyTo + Picture
ColPictureAlignH ListApplyTo + PictureAlignH
ColPictureSel ListApplyTo + PictureSel

Header Properties
The following header properties are now obsolete, but are retained for backward compatibility.
Property Replaced by
Header3DStyle ListApplyTo + LineStyle
Header3DText ListApplyTo + List3DText
Header3DTextHighlightColor ListApplyTo + List3DTextHighlightColor
Header3DTextShadowColor ListApplyTo + List3DTextShadowColor
Header3DWidth ListApplyTo + ListWidth
HeaderBackColor ListApplyTo + BackColor
HeaderFontBold ListApplyTo + FontBold
HeaderFontItalic ListApplyTo + FontItalic
HeaderFontName ListApplyTo + FontName
HeaderFontSize ListApplyTo + FontSize
HeaderFontStrike ListApplyTo + FontStrikethru
HeaderFontUnder ListApplyTo + FontUnderline
HeaderForeColor ListApplyTo + ForeColor

Line Properties
The following line properties are now obsolete, but are retained for backward compatibility.
Property Replaced by
LineHighlightColor LineApplyTo + Line3DLight
LineShadowColor LineApplyTo + Line3DDark
LineSolidColor LineApplyTo + LineColor
LineStyleH LineApplyTo + LineStyle
LineStyleV LineApplyTo + LineStyle

Row Properties
The following row properties are now obsolete, but are retained for backward compatibility.
Property Replaced by
RowBackColor ListApplyTo + BackColor
RowForeColor ListApplyTo + ForeColor
RowPicture ListApplyTo + Picture
RowPictureAlignH ListApplyTo + PictureAlignH
RowPictureCol ListApplyTo + Picture
RowPictureSel ListApplyTo + PictureSel

Selected Item Properties
The following selected item properties are now obsolete, but are retained for backward compatibility.
Property Replaced by
Sel3DStyle ListApplyTo + LineApplyTo
Sel3DWidth ListApplyTo + Line3DWidth

SelBackColor ListApplyTo + BackColor
SelForeColor ListApplyTo + ForeColor
SelHighlightColor ListApplyTo + Line3DLight
SelShadowColor ListApplyTo + Line3DDark

New Properties
The following table lists the new properties that have been added for the List Pro controls.
Property Description
Action (9 - Virtual Refresh) Forces the control to discard the current page of data and re-

request the data currently in the buffer
Action (10 - Insert Group) Inserts a group before the specified group
Action (11 - Delete Group) Deletes a group
Action (12 - Clone Column) Clones (copies all attributes except data, identification number or

name, and data field setting) a specified column and inserts the
duplicate column to the right of the specified column

AlignH Specifies horizontal alignment of text
AlignV Specifies vertical alignment of text
AllowGrpDragDrop Enables the user to move groups by dragging and dropping
AllowGrpResize Enables the user to resize groups by dragging borders
Appearance Specifies a predefined border style for the control
BorderGrayAreaColor Specifies the gray area color of the surrounding border to

distinguish it from the forms background color
ColFromID Specifies the column you want to work with by ID (identifier

number)
ColFromName Specifies the column you want to work with by name
ColID Specifies the column ID (identifier number)
ColLevel Determines the level within a row on which a column is displayed
ColLevelHeight Specifies the height of a column in levels
ColMerge Specifies whether the control merges adjacent cells in a column

that contain the same text
ColName Specifies the column name
ColParentGroup Determines the parent group of a specified column
ColPos Specifies the position number of a column within the control
ColPosInParent Specifies the position number of a column within its parent
ColumnLevels Determines the number of levels in every row of the control
ExtendCol Determines whether columns are displayed beyond the last row

containing data in a multiple-column control
ExtendRow Determines whether rows and row selection are displayed beyond

the last column containing data in a multiple-column control
FontEmpty Clears the existing font properties so that the area chosen can

inherit the font attributes of its hierarchical predecessor
GroupHeaderHeight Specifies the height of the group header
GroupHeaderShow Determines whether the group header is displayed
Groups Specifies the number of groups in the control
Grp Specifies the group you want to work with
GrpFromID Specifies the group you want to work with by ID (identifier

number)
GrpFromName Specifies the group you want to work with by name
GrpHeaderText Determines the text to display in the specified group header
GrpHide Hides a specified group and its children
GrpID Specifies the group ID (identifier number)
GrpLockResize Prevents the user from resizing a specified group
GrpName Specifies the group name
GrpParentGroup Specifies the parent group of a specified group
GrpPos Specifies the position number of a group within the control
GrpPosInParent Specifies the position number of a group within its parent
GrpsFrozen Specifies the number of leftmost groups that do not scroll across

horizontally
GrpWidth Specifies the width of a group
JoinID Specifies the identification number for a joined set of cells

Line3DDark Specifies the shadow color of three-dimensional lines
Line3DLight Specifies the highlight color of three-dimensional lines
Line3DWidth Determines the width of three-dimensional lines in pixels
LineApplyTo Determines whether line properties apply to the lines between

rows, between columns, between columns when multiple levels
exist, or to all lines

LineColor Specifies the color of flat lines between columns and rows
LineStyle Specifies the appearance of lines between ListApplyTo items
ListApplyTo Specifies where to apply designated-list properties
ListGrayAreaColor Determines the color of the gray area between cells
MaxEditLen Specifies the maximum number of characters that can be typed in

the edit field of a combo box
MergeAdjustView Specifies whether the view of cell contents of merged rows or

columns is adjusted as you scroll through the list
MouseOverArea Returns the part of the combo box control over which the mouse

is positioned
MouseOverGrp Returns the number of the group over which the mouse is

positioned
MouseOverGrpHeader Returns the number of the group header over which the mouse is

positioned
MultiLine Property Determines whether list item text displays in a single line or in

multiple lines
NextSel Determines the row number of the next selected row
PictureAlignH Horizontally aligns the graphic
PictureAlignV Vertically aligns the graphic
PictureSel Specifies the graphic displayed when a list item is selected
RowMerge Determines whether the control merges adjacent cells in a row

that contain the same text
TextOrientation Determines whether the text and graphics are rotated 90, 180, or

270 degrees or whether the text is displayed vertically
ThreeDFrameColor Specifies the color of the three-dimensional frame

New Events
The following table lists the new events that have been added for the List Pro controls.
Event Description
DataRowChanged Occurs when the user changes the data in a row
DragDropGroup Occurs when the user has completed dragging a group to a

new location
GrpWidthChange Occurs when the user changes the width of a group using the

mouse

Changes to Functions

Changes to Function Names

New Functions

Changes to Function Names
The AWARELC_GetControlhWnd function has been renamed ListPro_GetControlhWnd. The original function name is still
supported for backward compatibility.

New Functions
The following table lists the new functions that have been added for the List Pro controls.
Function Description
LP_GetCellPos Returns the x- and y-coordinates of the cell position
LP_GetMaxSize Determines the maximum column width of a specific column or

the maximum row height of a specific row

List Pro Controls

Features

Components

List Pro Features
The List Pro controls offer unique capabilities that are described throughout the online help. The following topics describe some
of List Pros most often used features, including features new to List Pro. For more information about using these features,
consult the topics listed.

Overview

DLL Controls

ActiveX Controls

FarPoint Property Designer

List Pro Tutorial

Combo Box Styles

Columns, Rows, and Cells

Groups

Headers

Text and Graphics

Appearance

List Items

Data Binding

Virtual Mode

Overview
The fpCombo and fpList controls display large amounts of data in a scrolling list. Additionally, the fpCombo control can provide
an edit field for data entry. Both controls can display up to two billion list items and can handle more than 64 kilobytes of data,
which is the limit of the Visual Basic combo box and list box. The fpCombo and fpList controls also bind to the Visual Basic Data
control.

fpCombo control (drop-down combo box)

fpList control

DLL Controls
The List Pro fpCombo and fpList controls are available as 16- and 32-bit DLL controls for C and C++ users. For detailed
information about DLL controls and the List Pro DLL controls, see Using DLL Controls.

ActiveX Controls
Our List Pro fpCombo and fpList ActiveX controls offer the benefits of a new generation of controls. For detailed information
about ActiveX controls and the List Pro ActiveX controls, see Using ActiveX Controls.

FarPoint Property Designer
The FarPoint Property Designer provides a quick and simple way for you to design columns in a List Pro ActiveX or VBX control.
The FarPoint Property Designer pages provide access to most design-time and some run-time properties. The following figure
shows the Property Designer pages for the fpList control.

For general information on the FarPoint Property Designer, see Using the FarPoint Property Designer. Instructions for using the
FarPoint Property Designer to create and customize your List Pro control are provided in the How-to-Guides.

List Pro Tutorial
If you are unfamiliar with the FarPoint combo box and list box controls or if you want to see how some of the new List Pro
features work, try the tutorial. The tutorial guides you through creation of a sample project using code or the FarPoint Property
Designer.

Combo Box Styles
An fpCombo control can be set to one of three styles: drop-down combo, simple combo, or drop-down list.

The drop-down combo style includes a drop-down list and an edit field, letting the user select from the list or type in the edit
field.

The simple combo style includes an edit field and a list that is always displayed. The user can select from the list or type in the edit
field.

The drop-down list style contains a drop-down list and a static field, allowing the user to select only from the drop-down list.

For more information on choosing the fpCombo control style, see Choosing the fpCombo Control Style.

Columns, Rows, and Cells
The fpCombo and fpList controls can display data in single- or multiple-column lists. Traditional combo and list boxes display
columns from left to right across the control, creating a row. With List Pro controls, you can stack columns in a row, thereby
creating multiple levels. If you have multiple levels of columns, for each column in a row, you can specify the level number and
the height in levels. The following list box has three columns in each row. Each row has three levels. Columns 0 and 1 are on
the first level. Column 2 is on the second level and is two levels high.

For more information on creating multiple levels, see Creating Levels of Columns Within a Row.
You can duplicate or clone a column in a List Pro control. All attributes of a specified column except for the data, identification
number, name, and data field setting (for bound columns) are duplicated in the cloned column. The cloned column is inserted to the
right of the specified column. For more information, see Cloning Columns.

A List Pro combo box or list box can be thought of as a tabular grid of cells. A cell is the intersection of a column and a row. You
refer to cells using the column reference and row number. The following example shows 12 cells in the list box.

You can merge adjacent cells in a column or row that contain the same text. You can merge columns, rows, or both. For example,
assume you have the following list box.

If you merge the first column, the control appears like this:

For more information, see Merging Columns or Rows.
You can change the row height and column width to accommodate both text and graphics. For more information, see Customizing
Columns.
You can move columns by using the drag-drop method, changing the column level, or defining the position of a column within the
control. You can resize columns by dragging the column or header boundary. For more information, see Moving Columns in the
Control and Resizing Columns. You can lock columns to prevent resizing and you can freeze columns to prevent moving using the
drag-drop method. For more information on locking and freezing columns, see Customizing Columns.

You can reference columns by column index number, column name, or column identifier number. The column index number is
based on the physical position of the column in a row. The column name and identifier number are unique. For more
information, see Referencing a Column.

Groups
Columns in multiple-column fpCombo or fpList controls can be grouped together. These columns are children of the group.
Groups can have groups as children or columns as children, but not a combination of the two. A column can be a child of a
group that is a child of another group.

In the following example, the "Parents" group is a child of the parent group "Airedales." The "Sire" and "Dam" columns are
children of the parent group "Parents."

You can reference groups by group index number, group name, or group identifier number. The group index number is based on the
physical position of the group in a row. The group name and identifier number are unique. For more information, see Referencing a
Group.

For more information on groups, see Working with Groups.

Headers
When you have a multiple-column fpCombo or fpList control, it is useful to display a header for each column. If you create
groups for the control, you can also display group headers. For example, in the following figure "Parents" and "Birth Information"
are group headers. You could specify "Sire", "Dam", "DOB", and "Number in Litter" as group headers or column headers, but
only columns can contain data.

By default, the column header of a bound fpCombo or fpList control displays the name of the associated database field. However,
you can create user-defined column headers for bound fpCombo and fpList controls.

For information on creating column and group headers, see Providing Column Headers and Providing Group Headers.

Text and Graphics
You can display graphics, text, or both as list items in a single- or multiple-column fpCombo or fpList control. You can
horizontally and vertically align list contents. If the list item contains both text and graphics, you can align them in relation to one
another. You can also display text horizontally or vertically and you can rotate text and graphics 90, 180, or 270 degrees from
the horizontal position. For more information, see Aligning Text and Graphics and Orienting Text and Graphics.

You can customize the font and font characteristics of both the list text and the header text. For more information, see Changing
Text Color and Fonts.

You can give list text or header text a three-dimensional appearance by specifying the display, position, and color of the highlight
and shadow text. For more information, see Creating Three-Dimensional Text.

Appearance

Border Appearance

Lines

Drop Shadow

Colors

Scroll Bars

Border Appearance
The fpCombo and fpList controls can display a three-dimensional frame and borders. The inner and outer three-dimensional
borders are made up of highlight and shadow portions. The frame represents the space between the inner and outer borders. In
addition, the control can display an outline border and you can specify its color, width, and style. An fpList control with three-
dimensional borders, a frame, and an outline border is shown in the following figure.

The following examples show some of the border combinations that can be created using the border properties.

You can use one of three predefined appearance styles (flat, three-dimensional, and three-dimensional with a border) or you can
customize the borders. For more information on creating a three-dimensional appearance, see Using Predefined Appearance
Styles. For information on customizing the controls borders, see Specifying the Border Appearance and Creating a Frame.

Lines
Between list items you can display horizontal lines, vertical lines, or both. You can display flat lines, three-dimensional lines, or
both. The following example shows three-dimensional lines with a lowered appearance and horizontal and vertical flat lines.

For more information, see Working with Lines.

Drop Shadow
You can display a drop shadow for the fpCombo or fpList control, as shown in the following figure. You can specify that the drop
shadow is always displayed or you can specify that it is displayed only when the control has the focus. You can customize the
color and width of the drop shadow.

For more information, see Displaying Drop Shadows.

Colors
You can customize the colors of many different areas of the fpCombo and fpList controls.
To change the color of the . . . See . . .
Outline border Specifying the Border Appearance
Three-dimensional inner and outer borders Specifying the Border Appearance
Frame Creating a Frame
Drop shadow Displaying Drop Shadows
Border gray area Displaying Drop Shadows
Background Changing the Background Color
Lines Customizing Lines
Text Changing Text Color and Fonts
Three-dimensional text Creating Three-Dimensional Text
List gray area Changing the List Gray Area Color

Scroll Bars
You can control the display of both the horizontal and vertical scroll bars. For the horizontal scroll bar, you can specify the
increment by which the list scrolls.

You can create a customized vertical scroll bar that lets you browse through the database when the fpCombo or fpList control is
in virtual mode. You can use a conventional scroll bar while using virtual mode, but the scroll box will not accurately reflect the
current position in the database unless you provide the number of records in the database.

The following example shows a drop-down fpCombo control that is bound to a database and displays a customized vertical
scroll bar.

For more information on conventional scroll bars, see Displaying and Customizing Scroll Bars. For more information on the
customized vertical scroll bar, see Using Virtual Mode.

List Items
You can use the fpCombo and fpList controls to display data lists either that you supply or that are read from a database.

By default, the number of items displayed in an fpCombo or fpList control is limited by the size of the control itself. However, for
a drop-down list box, you can specify the number of items displayed. For more information, see Specifying the Number of Rows
Displayed in the Drop-Down List.

For a single-column fpCombo or fpList control, you can specify that the single column is displayed wrapped into side-by-side
columns. For more information, see Wrapping Text in a List Pro Control.

You can add items to a control list by using the List Pro InsertRow property, by binding the control to a database, or by using the
Visual Basic AddItem method. You can remove items from a control list by using the List Pro Action property or the Visual Basic
RemoveItem method. For more information, see Adding List Items and Removing List Items.

At run time, you can select a list item, return the index of a list item, or return the value of a specific or selected list item. For
more information, see Accessing List Items.

In an fpCombo or fpList control, you can search for a specific list item. You can search for list items by typing characters or by
supplying a search string. The search method for an fpCombo control depends on the control style. If the fpCombo or fpList
control has multiple columns, you can specify which column to search. For more information, see Searching for List Items.

You can sort fpCombo or fpList control list items to arrange them in alphabetical or numeric order. You can sort list items in
ascending or descending order. By default, when you add an item to a list, the list is resorted and the item is inserted in the
correct order. You can temporarily suspend sorting when you are adding or removing large numbers of items to help speed the
process. If you have a multiple-column fpCombo or fpList control, you can specify the sequence in which the columns are
sorted. You can also specify the data type of a column to make the results more accurate. For more information, see Sorting List
Items.

When items are selected in a list, they can have a different appearance from the non-selected items. You can also specify that a
different picture be displayed when an item is selected. You can specify that the selected items display a three-dimensional
appearance. If three-dimensional lines are displayed, you can change the width and highlight and shadow colors of the lines.
You can also customize the background and text colors of the selected items, and you can specify that a focus rectangle be
drawn around them. For more information, see Customizing theAppearance of Selected Items.

Data Binding
List Pro controls work with the Visual Basic Data control and support any data access features provided by the Data control. The
fpCombo and fpList controls can be bound to any type of database field except binary fields.

Working through Visual Basics Data control, List Pro controls provide access to more than one database. You can bind the edit
field and the list in an fpCombo control to different Data controls and to different data fields. You can specify which data from the
database bound to the list is displayed in the edit field. You can also specify which data from the database bound to the list is
written to the database field bound to the edit field. In a multiple-column fpCombo or fpList control, you can bind each column to
a separate database field. For more information, see Binding a Control to a Database and Binding Columns to Fields in a
Database.

The fpCombo and fpList controls can be bound to a Data control on another form. For more information, see Binding to a Data
Control on a Different Form.

The fpCombo and fpList controls display values exactly as they are stored in the database. However, you can apply a format
string to list items or to a specific column to format the data.

The list in an fpCombo or fpList control is read-only and is designed for viewing database values. However, if the user changes
the current record through another control, the fpCombo or fpList control reflects the change when the Data control is refreshed.

The selected item in a bound fpCombo or fpList control is the value in the current record. Selecting another item automatically
moves the Data control to another record. Likewise, by default, clicking the Data control to change the current record changes
the item selected in the fpCombo or fpList control. You can customize the synchronization between the fpCombo or fpList control
and the Data control. For more information, see Working with Databases.

Virtual Mode
Virtual mode lets the fpCombo or fpList control read in only the amount of data it needs to fill the displayed list. Therefore, virtual
mode increases responsiveness and conserves system resources.

Without using virtual mode, the fpCombo or fpList control can take a long time to display data when the number of list items is
very large or when the control is bound to a very large database table. The fpCombo or fpList control must read all supplied data
or the entire database into memory before displaying the list. In virtual mode, the fpCombo or fpList control reads ahead only
when the user wants to scroll through the list to display additional values.

For more information on using virtual mode, see Using Virtual Mode.

List Pro Components

Components of the fpCombo DLL Control

Components of the fpCombo ActiveX and VBX Controls

Components of the fpList DLL Control

Components of the fpList ActiveX and VBX Controls

Components of the fpCombo DLL Control
Functions let you set characteristics of the fpCombo control. Throughout the help, discussions of setting characteristics have
been combined: property descriptions are intended to also describe the corresponding DLL functions. Therefore, if you use the
DLL control, refer to the corresponding property topic in the property reference in the online Reference Guide for information
about performing your task using functions.

Messages convey information from the fpCombo control to your application. Styles let you customize the fpCombo control.

The following topics provide complete lists of the functions, messages, and styles available for the fpCombo control.

Functions

Messages

Styles

fpCombo Control Functions
The following list includes all the functions of the fpCombo control. For a complete description of each function, refer to the
corresponding property topic in the online Reference Guide.
GetAbout GetVRowCount
GetAlignH GetVScrollSpecial
GetAlignV GetVScrollSpecialType
GetAllowColDragDrop GetWidth
GetAllowColResize GetWrapList
GetAllowGrpDragDrop GetWrapWidth
GetAllowGrpResize SetAction
GetAppearance SetAlignH
GetApplyTo SetAlignV
GetAutoSearch SetAllowColDragDrop
GetBackColor SetAllowColResize
GetBorderColor SetAllowGrpDragDrop
GetBorderDropShadow SetAllowGrpResize
GetBorderDropShadowColor SetAppearance
GetBorderDropShadowWidth SetApplyTo
GetBorderGrayAreaColor SetAutoSearch
GetBorderStyle SetBackColor
GetBorderWidth SetBorderColor
GetCol SetBorderDropShadow
GetColFromID SetBorderDropShadowColor
GetColFromName SetBorderDropShadowWidth
GetColHeaderText SetBorderGrayAreaColor
GetColHide SetBorderStyle
GetColID SetBorderWidth
GetColLevel SetCol
GetColLevelHeight SetColFromID
GetColList SetColFromName
GetColLockResize SetColHeaderText
GetColMerge SetColHide
GetColName SetColID
GetColParentGroup SetColLevel
GetColPos SetColLevelHeight
GetColPosInParent SetColList
GetColsFrozen SetColLockResize
GetColSortDataType SetColMerge
GetColSorted SetColName
GetColSortSeq SetColParentGroup
GetColText SetColPos
GetColumnEdit SetColPosInParent
GetColumnHeaderHeight SetColsFrozen
GetColumnHeaderShow SetColSortDataType
GetColumnLevels SetColSorted
GetColumns SetColText
GetColumnSearch SetColumnEdit
GetColumnSeparatorChar SetColumnHeaderHeight
GetColumnWidthScale SetColumnHeaderShow
GetColWidth SetColumnLevels
GetComboGap SetColumns
GetDragIcon SetColumnSearch
GetDragMode SetColumnSeparatorChar
GetEditHeight SetColumnWidthScale
GetEnabled SetColWidth
GetEnableKeyEvents SetComboGap
GetEnableMouseEvents SetDragIcon
GetEnableTopChangeEvent SetDragMode
GetExtendCol SetEditHeight

GetExtendRow SetEnabled
GetFontBold SetEnableKeyEvents
GetFontEmpty SetEnableMouseEvents
GetFontItalic SetEnableTopChangeEvent
GetFontName SetExtendCol
GetFontSize SetExtendRow
GetFontStrikethru SetFontBold
GetFontUnderline SetFontEmpty
GetForeColor SetFontItalic
GetGrayAreaColor SetFontName
GetGroupHeaderHeight SetFontSize
GetGroupHeaderShow SetFontStrikethru
GetGroups SetFontUnderline
GetGrp SetGrayAreaColor
GetGrpFromID SetGroupHeaderHeight
GetGrpFromName SetGroupHeaderShow
GetGrpHeaderText SetGroups
GetGrpHide SetGrp
GetGrpID SetGrpFromID
GetGrpLockResize SetGrpFromName
GetGrpName SetGrpHeaderText
GetGrpParentGroup SetGrpHide
GetGrpPos SetGrpID
GetGrpPosInParent SetGrpLockResize
GetGrpsFrozen SetGrpName
GetGrpWidth SetGrpParentGroup
GetHeight SetGrpPos
GetHelpContextID SetGrpPosInParent
GetHighestPrecedence SetGrpsFrozen
GethWnd SetGrpWidth
GetIndex SetHeight
GetItemData SetHelpContextID
GetJoinID SetHighestPrecedence
GetLeft SetInsertRow
GetLine3DDark SetItemData
GetLine3DLight SetJoinID
GetLine3DWidth SetLeft
GetLineApplyTo SetLine3DDark
GetLineColor SetLine3DLight
GetLineStyle SetLine3DWidth
GetLineWidth SetLineApplyTo
GetList SetLineColor
GetList3DText SetLineStyle
GetList3DTextHighlightColor SetLineWidth
GetList3DTextOffset SetList
GetList3DTextShadowColor SetList3DText
GetListApplyTo SetList3DTextHighlightColor
GetListCount SetList3DTextOffset
GetListDown SetList3DTextShadowColor
GetListGrayAreaColor SetListApplyTo
GetListIndex SetListCount
GetListLeftOffset SetListDown
GetListWidth SetListGrayAreaColor
GetMaxDrop SetListIndex
GetMaxEditLen SetListLeftOffset
GetMergeAdjustView SetListWidth
GetMouseOverArea SetMaxDrop
GetMouseOverCol SetMaxEditLen
GetMouseOverColHeader SetMergeAdjustView
GetMouseOverGrp SetMousePointer

GetMouseOverGrpHeader SetMultiLine
GetMouseOverRow SetName
GetMousePointer SetNextSel
GetMultiLine SetNoIntegralHeight
GetName SetPicture
GetNewIndex SetPictureAlignH
GetNextSel SetPictureAlignV
GetNoIntegralHeight SetPictureSel
GetParent SetReadOnly
GetPicture SetRow
GetPictureAlignH SetRowHeight
GetPictureAlignV SetRowMerge
GetPictureSel SetScrollBarH
GetReadOnly SetScrollBarV
GetRow SetScrollHInc
GetRowHeight SetScrollHScale
GetRowMerge SetSearchIgnoreCase
GetScrollBarH SetSearchIndex
GetScrollBarV SetSearchMethod
GetScrollHInc SetSearchText
GetScrollHScale SetSelDrawFocusRect
GetSearchIgnoreCase SetSelLength
GetSearchIndex SetSelStart
GetSearchMethod SetSelText
GetSearchText SetSorted
GetSelDrawFocusRect SetSortState
GetSelLength SetStyle
GetSelStart SetTabIndex
GetSelText SetTabStop
GetSorted SetTag
GetSortState SetText
GetStyle SetTextOrientation
GetTabIndex SetThreeDFrameColor
GetTabStop SetThreeDFrameWidth
GetTag SetThreeDInsideHighlightColor
GetText SetThreeDInsideShadowColor
GetTextOrientation SetThreeDInsideStyle
GetThreeDFrameColor SetThreeDInsideWidth
GetThreeDFrameWidth SetThreeDOnFocusInvert
GetThreeDInsideHighlightColor SetThreeDOutsideHighlightColor
GetThreeDInsideShadowColor SetThreeDOutsideShadowColor
GetThreeDInsideStyle SetThreeDOutsideStyle
GetThreeDInsideWidth SetThreeDOutsideWidth
GetThreeDOnFocusInvert SetTop
GetThreeDOutsideHighlightColor SetTopIndex
GetThreeDOutsideShadowColor SetVirtualMode
GetThreeDOutsideStyle SetVirtualPagesAhead
GetThreeDOutsideWidth SetVirtualPageSize
GetTop SetVisible
GetTopIndex SetVRowCount
GetVirtualMode SetVScrollSpecial
GetVirtualPagesAhead SetVScrollSpecialType
GetVirtualPageSize SetWidth
GetVisible SetWrapList
GetVisibleRows SetWrapWidth

Components of the fpCombo ActiveX and VBX Controls
You can use the FarPoint Property Designer pages, the standard property browser, or code to customize the control. The
FarPoint Property Designer pages provide a familiar notebook interface that organizes properties by task. For example, all the

properties for virtual mode are available on one page. For descriptions of each designer page, see FarPoint Property Designer
Pages.

If you are using code, properties and events let you customize the control for your interface.

The following topics provide complete lists of the properties, events, and functions available for the fpCombo control. Note that if
you are using the ActiveX control, you can access some of these properties on the FarPoint Property Designer pages, but
others may not be available or may be available only through the property browser, depending on your development
environment.

Properties

Events

Functions and Methods

Components of the fpList DLL Control
Functions let you set characteristics of the fpList control. Throughout the help, discussions of setting characteristics have been
combined: property descriptions are intended to also describe the corresponding DLL functions. Therefore, if you use the DLL
control, refer to the corresponding property topic in the property reference in the online Reference Guide for information about
performing your task using functions.

Messages convey information from the fpList control to your application. Styles let you customize the fpList control.

The following topics provide complete lists of the functions, messages, and styles available for the fpList control.

Functions

Messages

Structures

Styles

fpList Control Functions
The following list includes all the functions of the fpList control. For a complete description of each function, refer to the
corresponding property topic in the online Reference Guide.
GetAbout GetVScrollSpecial
GetAlignH GetVScrollSpecialType
GetAlignV GetWidth
GetAllowColDragDrop GetWrapList
GetAllowColResize GetWrapWidth
GetAllowGrpDragDrop SetAction
GetAllowGrpResize SetAlignH
GetAppearance SetAlignV
GetAutoSearch SetAllowColDragDrop
GetBackColor SetAllowColResize
GetBorderColor SetAllowGrpDragDrop
GetBorderDropShadow SetAllowGrpResize
GetBorderDropShadowColor SetAppearance
GetBorderDropShadowWidth SetAutoSearch
GetBorderGrayAreaColor SetBackColor
GetBorderStyle SetBorderColor
GetBorderWidth SetBorderDropShadow
GetCol SetBorderDropShadowColor
GetColFromID SetBorderDropShadowWidth
GetColFromName SetBorderGrayAreaColor
GetColHeaderText SetBorderStyle
GetColHide SetBorderWidth
GetColID SetCol
GetColLevel SetColFromID
GetColLevelHeight SetColFromName
GetColList SetColHeaderText
GetColLockResize SetColHide
GetColMerge SetColID
GetColName SetColLevel
GetColParentGroup SetColLevelHeight
GetColPos SetColList
GetColPosInParent SetColLockResize
GetColsFrozen SetColMerge
GetColSortDataType SetColName
GetColSorted SetColParentGroup
GetColSortSeq SetColPos
GetColText SetColPosInParent
GetColumnHeaderHeight SetColsFrozen
GetColumnHeaderShow SetColSortDataType
GetColumnLevels SetColSorted
GetColumns SetColSortSeq
GetColumnSearch SetColText
GetColumnSeparatorChar SetColumnHeaderHeight
GetColumnWidthScale SetColumnHeaderShow
GetColWidth SetColumnLevels
GetDragIcon SetColumns
GetDragMode SetColumnSearch
GetEnabled SetColumnSeparatorChar
GetEnableKeyEvents SetColumnWidthScale
GetEnableMouseEvents SetColWidth
GetEnableTopChangeEvent SetDragIcon
GetExtendCol SetDragMode
GetExtendRow SetEnabled
GetFontBold SetEnableKeyEvents
GetFontEmpty SetEnableMouseEvents
GetFontItalic SetEnableTopChangeEvent

GetFontName SetExtendCol
GetFontSize SetExtendRow
GetFontStrikethru SetFontBold
GetFontUnderline SetFontEmpty
GetForeColor SetFontItalic
GetGroupHeaderHeight SetFontName
GetGroupHeaderShow SetFontSize
GetGroups SetFontStrikethru
GetGrp SetFontUnderline
GetGrpFromID SetForeColor
GetGrpFromName SetGroupHeaderHeight
GetGrpHeaderText SetGroupHeaderShow
GetGrpHide SetGroups
GetGrpID SetGrp
GetGrpLockResize SetGrpFromID
GetGrpName SetGrpFromName
GetGrpParentGroup SetGrpHeaderText
GetGrpPos SetGrpHide
GetGrpPosInParent SetGrpLockResize
GetGrpsFrozen SetGrpName
GetGrpWidth SetGrpParentGroup
GetHeight SetGrpPos
GetHelpContextID SetGrpPosInParent
GetHighestPrecedence SetGrpsFrozen
GethWnd SetGrpWidth
GetIndex SetHeight
GetItemData SetHelpContextID
GetJoinID SetHighestPrecedence
GetLeft SetInsertRow
GetLine3DDark SetItemData
GetLine3DLight SetJoinID
GetLine3DWidth SetLeft
GetLineApplyTo SetLine3DDark
GetLineColor SetLine3DLight
GetLineStyle SetLine3DWidth
GetLineWidth SetLineApplyTo
GetList SetLineColor
GetList3DText SetLineStyle
GetList3DTextHighlightColor SetLineWidth
GetList3DTextOffset SetList
GetList3DTextShadowColor SetList3DText
GetListApplyTo SetList3DTextHighlightColor
GetListCount SetList3DTextOffset
GetListGrayAreaColor SetList3DTextShadowColor
GetListIndex SetListApplyTo
GetMergeAdjustView SetListCount
GetMouseOverCol SetListGrayAreaColor
GetMouseOverColHeader SetListIndex
GetMouseOverGrp SetMergeAdjustView
GetMouseOverGrpHeader SetMousePointer
GetMouseOverRow SetMultiLine
GetMousePointer SetMultiSelect
GetMultiLine SetName
GetMultiSelect SetNextSel
GetName SetNoIntegralHeight
GetNewIndex SetPicture
GetNextSel SetPictureAlignH
GetNoIntegralHeight SetPictureAlignV
GetParent SetPictureSel
GetPicture SetReadOnly

GetPictureAlignH SetRow
GetPictureAlignV SetRowHeight
GetPictureSel SetRowMerge
GetReadOnly SetScrollBarH
GetRow SetScrollBarV
GetRowHeight SetScrollHInc
GetRowMerge SetScrollHScale
GetScrollBarH SetSearchIgnoreCase
GetScrollBarV SetSearchIndex
GetScrollHInc SetSearchMethod
GetScrollHScale SetSearchText
GetSearchIgnoreCase SetSelDrawFocusRect
GetSearchIndex SetSelected
GetSearchMethod SetSelMax
GetSearchText SetSorted
GetSelCount SetSortState
GetSelDrawFocusRect SetTabIndex
GetSelected SetTabStop
GetSelMax SetTag
GetSorted SetText
GetSortState SetTextOrientation
GetTabIndex SetThreeDFrameColor
GetTabStop SetThreeDFrameWidth
GetTag SetThreeDInsideHighlightColor
GetText SetThreeDInsideShadowColor
GetTextOrientation SetThreeDInsideStyle
GetThreeDFrameColor SetThreeDInsideWidth
GetThreeDFrameWidth SetThreeDOnFocusInvert
GetThreeDInsideHighlightColor SetThreeDOutsideHighlightColor
GetThreeDInsideShadowColor SetThreeDOutsideShadowColor
GetThreeDInsideStyle SetThreeDOutsideStyle
GetThreeDInsideWidth SetThreeDOutsideWidth
GetThreeDOnFocusInvert SetTop
GetThreeDOutsideHighlightColor SetTopIndex
GetThreeDOutsideShadowColor SetVirtualMode
GetThreeDOutsideStyle SetVirtualPagesAhead
GetThreeDOutsideWidth SetVirtualPageSize
GetTop SetVisible
GetTopIndex SetVRowCount
GetVirtualMode SetVScrollSpecial
GetVirtualPagesAhead SetVScrollSpecialType
GetVirtualPageSize SetWidth
GetVisible SetWrapList
GetVisibleRows SetWrapWidth
GetVRowCount

Components of the fpList ActiveX and VBX Controls
You can use the FarPoint Property Designer pages, the standard property browser, or code to customize the control. The
FarPoint Property Designer pages provide a familiar notebook interface that organizes properties by task. For example, all the
properties for virtual mode are available on one page. For descriptions of each designer page, see FarPoint Property Designer
Pages.

If you are using code, properties and events let you customize the control for your interface.

The following topics provide complete lists of the properties, events, and functions available for the fpList control. Note that if
you are using the ActiveX control, you can access some of these properties on the FarPoint Property Designer pages, but
others may not be available or may be available only through the property browser, depending on your development
environment.

Properties

Events

Functions and Methods

List Pro Tutorial

Tutorial Example Project

Step 1: Plan the Control Layout

Step 2: Create the Data Control

Step 3: Create the List Box and Bind It to the Database

Step 4: Bind Columns in the Control

Step 5: Customize the Control

Tutorial Example Project
Note Before starting this tutorial, you should be familiar with the List Pro control features described in List Pro Features, and

with the FarPoint Property Designer features described in Using the FarPoint Property Designer.

Project Assumptions

Format

Database Information
Using this tutorial, you will design a relatively simple list box. This tutorial does not illustrate every List Pro property, but it does
illustrate new features such as groups, parent-child relationships, multiple levels, appearance, and applying properties to
specific portions of the control.

Starting with Step 1, the tutorial provides step-by-step instructions to:

Plan the controls layout

Build the database front end

Create the list box and link it to the database

Bind columns in the control to specific fields in the database using code or using the FarPoint
Property Designer

Customize the control using code or using the FarPoint Property Designer
In the tutorial, this symbol indicates a cross-reference to topics in the How-
to Guides. Read these topics to find out more information about the task
you are performing.

Project Assumptions
Assume a local kennel club wants you to create an application that displays information from a database containing the
following data fields:

Owner Name
Address
Phone
Breed
Dog Name
Color
Sire
Dam

Format
For this project, categorize the data into three groups: owner information, registrant information, and lineage. The owner
information group includes the owner name, complete address, and phone number. The registrant information group includes
the breed, dog name, and color. The lineage group includes the sire and dam information.

You will create a list box that displays the information in the format shown in the following figure. Each row contains eight
columns, and each row corresponds to a record in the database. Each row has three levels.

You will make the columns children of the three groups and position these columns within the groups.

Database Information
If you are using the ActiveX or VBX control, you can bind the fpList control to a database (TUTOR.MDB) that contains the
kennel records. If you are using the DLL control, you can create and design the list box, but you cannot bind it to a database.

Note TUTOR.MDB is included on the List Pro installation disks. If you did a complete default installation of List Pro, the
database is in your LSTPRO20\SAMPLES\VBX\VB\TUTOR directory.

TUTOR.MDB contains the table KENNEL CLUB. The table contains ten records and each record has eight fields, as listed in the
following table:
Field
number

Field name

1 Owner Name
2 Address
3 Phone
4 Breed
5 Dog Name
6 Color
7 Sire
8 Dam

Step 1: Plan the Control Layout
You will probably find it helpful to sketch a preliminary layout of your groups and columns. These sketches give you an idea of
the order in which you should assign columns to groups and position columns within those groups. Remember that columns and
groups are numbered from left to right and top to bottom, within their parent group, if any. With that in mind, the following figures
explain how to plan your list box based on the finished format shown in Format.

Look at the Owner Info group.

The Address column starts on level 1 and is two levels high. Notice how the columns are numbered from left to right and top to
bottom within the group.
Look at the Registrant and Lineage groups.

In the Registrant group, the Breed column starts on level 0 and is two levels high. Notice again that the columns are numbered from
left to right and top to bottom within each group.
With this plan in mind, you are ready to create the Data control to which you will link your list box. If you are ready to continue, go to
Step 2: Create the Data Control.

Step 2: Create the Data Control
Browser Instructions

Overview

Note If you are using the DLL control, skip to Step 5: Customize the Control. You cannot bind to the sample database for this
example, but you can follow the steps to design the list box.

In this part of the tutorial, you will create the Data control and open the sample database.

Print Copy Close

To create the Data control and open the sample database

Browser

1. Start Visual Basic.

2. Select the Data control icon on the toolbar.

3. Draw a Data control on the form.

4. Click the Data control to select it.

5. Set the Name property of the Data control to TUTORIAL.

6. Set the DatabaseName property to C:\LSTPRO20\SAMPLES\VBX\VB\TUTOR\TUTOR.MDB.

7. Set the RecordSource property to Kennel Club.

The next step is to create the list box control and bind it to the database. If you are ready to continue, go to Step 3: Create the
List Box and Bind It to the Database.

Step 3: Create the List Box and Bind It to the Database
Browser Instructions

Overview

Notes

If you are using the DLL control, create the control as described in Step 1 in the browser instructions,
then skip to Step 5: Customize the Control. You cannot bind to the sample database for this example, but you can follow the steps to
design the list box.

You must have the List Pro ActiveX or VBX control installed and, in the case of the ActiveX control,
registered on your system.

In this part of the tutorial you will create the list box and bind it to the sample database.

Print Copy Close

Browser

To create the control and bind it to the database

1. To create the list box,

a. If you are using Visual Basic 3.0,

i. Choose Add File from the File menu.

ii. In the Add File dialog box, choose the directory or set the path to the directory that contains the List Pro VBX
control, select the .VBX file, and choose OK.

The List Pro icons (list box) and

 (combo box) appear on the toolbar. The FLPVBX20.VBX file appears in the Project window.

iii. Add the LP.BAS constants file following steps 1.a.i 1.a.ii selecting the LP.BAS file instead of
the .VBX file.

If you chose the default installation, this file is located in LSTPRO20\INCLUDE\ directory. The LP.BAS file
appears in the Project window.

b. If you are using Visual Basic 4.0,

i. Choose Custom Controls from the Tools menu.

ii. Choose FarPoint List Pro Controls from the Custom Controls dialog box.

iii. Choose OK.

The List Pro icons (list box) and

 (combo box) appear on the toolbar.
iv. Add the LP.BAS constants file following step 1.a.iii.

If you chose the default installation, this file is located in LSTPRO20\INCLUDE\ directory.

c. Select the fpList icon on the toolbar.

d. Draw an fpList control on your form.

Draw the control about 6 inches wide. You can resize it later to fit the data.

2. To bind the fpList control to the database,

a. Click the fpList control to select it.

b. Set the DataSource property to TUTORIAL.

3. Press F5 or click the Visual Basic run button.

The list box displays all eight columns of database data. You can use the list box scroll bars or the Data controls slide
buttons to move through the data.

The next step is to bind the columns in the control. If you are ready to continue, go to Step 4: Bind Columns in the Control

Step 4: Bind Columns in the Control
FarPoint Property Designer Instructions
Code Instructions

Overvi

ew

To correctly display the required database fields, you must bind each column in the control to a specific field.

Print Copy Close

To bind columns to specific database fields

Code

1. Set the Columns property as follows to display the eight columns for this tutorial.
Property Setting
Columns 8

Creating Multiple Columns

2. Bind columns to specific database fields by setting the Col and ColDataField properties as follows.
Property Setting What this means
Col
ColDataField

0
"#1"

Bind the first column to field 1
(Owner Name) in the database

Col
ColDataField

1
"#2"

Bind the second column to field 2
(Address) in the database

Col
ColDataField

2
"#3"

Bind the third column to field 3
(Phone) in the database

Col
ColDataField

3
"#4"

Bind the fourth column to field 4
(Breed) in the database

Col
ColDataField

4
"#5"

Bind the fifth column to field 5 (Dog
Name) in the database

Col
ColDataField

5
"#6"

Bind the sixth column to field 6
(Color) in the database

Col
ColDataField

6
"#7"

Bind the seventh column to field 7
(Sire) in the database

Col
ColDataField

7
"#8"

Bind the eighth column to field 8
(Dam) in the database

Binding Columns to Fields in a Database

The next step is to cutomize the control. If you are ready to continue, go to Step 5: Customize the Control.

Print Copy Close

To bind columns to specific database fields

Property Designer

1. Start the property designer.

For more information, see Starting the FarPoint Property Designer.

2. Display the eight columns for this tutorial by setting the Columns property.

On the Specific subtab of the Columns designer page,

a. Select the Columns property from the properties list box.

b. Type 8 in the box under Columns in the property value area.

Creating Multiple Columns

3. Bind columns to specific database fields by setting the Col and ColDataField properties.

On the Specific subtab of the Columns designer page,

a. Select column 0 from the Col drop-down list box under Individual.

b. Select the ColDataField property from the properties list box.

c. Choose Owner Name from the drop-down list box under ColDataField in the property value area.

d. Repeat step 3.a 3.c for columns 1

7, binding the columns to the following data fields:
Column Data Field
1 Address
2 Phone
3 Breed
4 Dog Name
5 Color
6 Sire
7 Dam

Binding Columns to Fields in a Database

The next step is to cutomize the control. If you are ready to continue, go to Step 5: Customize the Control.

Step 5: Customize the Control
FarPoint Property Designer Instructions
Code Instructions

Overview

In this step you will create groups, display headers, and move the columns into groups. Because List Pro resizes columns when
you move them, you will need to adjust their size. You will need to allow column and group resizing.

You will also customize the parts of the control as shown in the following table.
Part of the control Customization
Owner Info group Width
Registrant group Width
Lineage group Width
Address column Display text in multiple lines
Breed column Display text in multiple lines
Entire control Light gray background color
List items Lowered three-dimensional appearance
Column headers

Black background
color

White text color
Group headers Green background color
Selected rows

Red background color

White text color
Line between rows Green

Print Copy Close

To customize the list box

Code

1. Allow resizing of the columns and groups by setting the AllowColResize and AllowGrpResize properties as follows.
Property Setting (Constant)
AllowColResize 2 (LC_ALLOWCOLRESIZE_RESIZECOLORHEADER)
AllowGrpResize 2 (LC_ALLOWGRPRESIZE_RESIZEGRPORHEADER)

Using the Mouse to Resize Columns
Using the Mouse to Resize Groups

2. Change the background color of the list box by setting the BackColor property as follows.
Property Setting
BackColor RGB (192, 192, 192) 00C0C0C0

Changing the Background Color

3. Create a lowered, three-dimensional appearance for lines by setting the LineStyle property as follows.
Property Setting (Constant)
LineStyle 3 (LC_LINESTYLE_LOWERED)

Customizing Lines

4. Display the column headers and create three column levels by setting the ColumnHeaderShow and ColumnLevels
properties as follows.
Property Setting
ColumnHeaderShow True
ColumnLevels 3

Creating Multiple Columns
Creating Column Headers
Creating Levels of Columns Within a Row

5. Create the three groups and display the group headers by setting the Groups and GroupHeaderShow properties as
follows.
Property Setting
Groups 3
GroupHeaderShow True

Creating Groups
Creating Group Headers

6. Specify pixels as the unit of measurement for the group widths by setting the ColumnWidthScale property as follows.
Property Setting (Constant)
ColumnWidthScale 1 (LC_COLUMNWIDTHSCALE_PIXELS)

Specifying the Group Width

7. Define the name, width, and header text for each group by setting the Grp, GrpName, GrpHeaderText, and GrpWidth
properties as follows.
Property Setting What this means
Grp
GrpName
GrpHeaderText
GrpWidth

0
"OI"
"Owner Info"
170

Assign the name OI to the first group, specify
the header text, set the width to 170 pixels

Grp
GrpName
GrpHeaderText
GrpWidth

1
"RG"
"Registrant"
225

Assign the name RG to the second group,
specify the header text, set the width to 225
pixels

Grp
GrpName
GrpHeaderText
GrpWidth

2
"LN"
"Lineage"
125

Assign the name LN to the third group, specify
the header text, set the width to 125 pixels

Referencing a Group
Creating Group Headers
Specifying the Group Width

8. Define the column names and custom header text by setting the DataAutoHeadings, DataAutoSizeCols, Col, ColName,
and ColHeaderText properties as follows.
Property Setting (Constant) What this means
DataAutoHeadings False Use custom header text

DataAutoSizeCols 0 (LC_DATAAUTOSIZECOLS_OFF) Do not use database field
widths

Col
ColName
ColHeaderText

0
"ON"
"Owner Name"

Assign the name ON to the
first column and specify the
header text

Col
ColName
ColHeaderText

1
"AD"
"Address"

Assign the name AD to the
second column and specify
the header text

Col
ColName
ColHeaderText

2
"PH"
"Phone"

Assign the name PH to the
third column and specify
the header text

Col
ColName
ColHeaderText

3
"BR"
"Breed"

Assign the name BR to the
fourth column and specify
the header text

Col
ColName
ColHeaderText

4
"DN"
"Name"

Assign the name DN to the
fifth column and specify the
header text

Col
ColName
ColHeaderText

5
"CL"
"Color"

Assign the name CL to the
sixth column and specify
the header text

Col
ColName
ColHeaderText

6
"SI"
"Sire"

Assign the name SI to the
seventh column and
specify the header text

Col
ColName
ColHeaderText

7
"DA"
"Dam"

Assign the name DA to the
eighth column and specify
the header text

Referencing a Column
Creating Column Headers
Binding Columns to Fields in a Database

9. Make the columns children of groups and position the columns within the groups by setting the ColParentGroup,
ColPosInParent, ColLevel, and ColLevelHeight properties as follows. Use the ColFromName property to reference the
columns.
Property Setting What this means
ColFromName
ColParentGroup
ColPosInParent

"ON"
0
0

Make the Owner column a child of the first
group (Owner Info) and position the column in
the group.

ColFromName
ColParentGroup
ColPosInParent
ColLevel
ColLevelHeight

"AD"
0
1
1
2

Make the Address column a child of the first
group (Owner Info) and position the column in
the group. Start the column on level 1 and
make it two levels high.

ColFromName
ColParentGroup
ColPosInParent
ColLevel

"PH"
0
2
0

Make the Phone column a child of the first
group (Owner Info) and position the column in
the group. Display the column on level 0.

ColFromName
ColParentGroup
ColPosInParent
ColLevelHeight

"BR"
1
0
2

Make the Breed column a child of the second
group (Registrant) and position the column in
the group. Make the column two levels high.

ColFromName
ColParentGroup
ColPosInParent
ColLevel

"DN"
1
1
0

Make the Name column a child of the second
group (Registrant) and position the column in
the group. Display the column on level 0.

ColFromName
ColParentGroup
ColPosInParent
ColLevel

"CL"
1
2
1

Make the Color column a child of the second
group (Registrant) and position the column in
the group. Display the column on level 1.

ColFromName
ColParentGroup
ColPosInParent

"SI"
2
0

Make the Sire column a child of the third group
(Lineage) and position the column in the group.

ColFromName
ColParentGroup
ColPosInParent
ColLevel

"DA"
2
1
1

Make the Dam column a child of the third group
(Lineage) and position the column in the group.
Display the column on level 1.

Referencing a Column
Making a Column a Child of a Group
Defining the Position of a Column Within the Control
Creating Levels of Columns Within a Row

10. Display text in multiple lines in the Address and Breed columns by setting the ListApplyTo and MultiLine properties as
follows. Use the ColFromName property to reference the columns.
Property Setting (Constant) What this means
ListApplyTo
ColFromName
MultiLine

12 (LC_LISTAPPLYTO_SINGLE_ITEM)
"AD"
2 (LC_MULTILINE_MULTI_LINE)

Apply the multiple line
property setting to the
Address column

ListApplyTo
ColFromName
MultiLine

12 (LC_LISTAPPLYTO_SINGLE_ITEM)
"BR"
2 (LC_MULTILINE_MULTI_LINE)

Apply the multiple line
property setting to the Breed
column

Applying Properties to Specific Parts of the Control
Referencing a Column
Wrapping Text in a List Pro Control

11. Define the background and text colors for the column headers, group headers, and selected rows by setting the
ListApplyTo, BackColor, and ForeColor properties as follows.
Property Setting (Constant) What this means
ListApplyTo
BackColor
ForeColor

7 (LC_LISTAPPLYTO_COL_HEADERS)
RGB (0, 0, 0) 00000000
RGB (255, 255, 255) 00FFFFFF

Display black background
and white text colors in the
column headers

ListApplyTo
BackColor

8 (LC_LISTAPPLYTO_GROUP_HEADERS)
RGB (0, 255, 0) 0000FF00

Display green background
color in the group headers

ListApplyTo
BackColor
ForeColor

4 (LC_LISTAPPLYTO_SEL_ROWS)
RGB (255, 0, 0) 000000FF
RGB(255, 255, 255) 00FFFFFF

Display red background
and white text color to
selected rows

Applying Properties to Specific Parts of the Control
Changing Text Color and Fonts
Changing the Background Color

12. Display a flat, green line between the rows by setting the ListApplyTo, LineApplyTo, LineStyle, and LineColor properties as
follows.
Property Setting (Constant) What this means
ListApplyTo
LineApplyTo
LineStyle
LineColor

1 (LC_LISTAPPLYTO_ALL_ROWS)
1 (LC_LINEAPPLYTO_ROWS)
2 (LC_LINESTYLE_FLAT)
RGB (0, 255, 0) 0000FF00

Display green, flat lines
between all rows

ListApplyTo 0 (LC_LISTAPPLYTO_DEFAULT) Reset ListApplyTo
property

Applying Properties to Specific Parts of the Control
Adding Lines
Customizing Lines

13. Run the project.

The list box should look similar to the following figure, depending on the size of your list box. Notice that the Phone, Name
(Registrant), and Color columns are too small.

14. If necessary, resize your control to display all groups and columns as shown in step 14 and rerun the project.

15. Resize the Phone, Name (Registrant), and Color columns by completing the following steps:

a. Move the mouse pointer over the column header border between the Name (Owner Info) and Phone columns until the
pointer changes to a resize icon. Drag this border to the left until the entire phone number is displayed in the Phone
column.

b. Move the mouse pointer over the right column header border of the Breed column until the pointer changes to a resize
icon. Drag this border to the left until the entire Name is displayed in the Name column.

Because this is a common border with the Color column header, the Color column also resizes.

The list box should appear similar to the following figure:

Step 15 illustrates how to change column widths using the mouse. To permanently change the column widths, you would
have to set the column widths in code at run time.

Print Copy Close

To customize the list box

Property Designer

1. Allow resizing of the columns and groups by setting the AllowColResize and AllowGrpResize properties.

a. On the General subtab of the Columns designer page,

i. Select the AllowColResize property from the properties list box.

ii. Select the 2 - Resize Col or Header option button under AllowColResize in the property value area.

b. On the General subtab of the Groups designer page,

i. Select the AllowGrpResize property from the properties list box.

ii. Select the 2 - Resize Grp or Header option button under AllowGrpResize in the property value area.

Using the Mouse to Resize Columns
Using the Mouse to Resize Groups

2. Change the background color of the list box by setting the BackColor property.

On the List subtab of the ApplyTo designer page,

a. Select 0 - Default (All) from the List Apply To drop-down list box.

b. Select the BackColor property from the properties list box.

c. Choose the Color button under BackColor in the property value area to display the BackColor dialog box.

d. Select the light gray color on the color chart.

e. Choose the OK button.

Changing the Background Color

3. Create a lowered, three-dimensional appearance for lines by setting the LineStyle property.

On the Line subtab of the ApplyTo designer page,

a. Select 0 - Default (All) from the List Apply To drop-down list box.

b. Select 0 - Default from the Line Apply To drop-down list box.

c. Select the LineStyle property from the properties list box.

d. Select the 3 - Lowered option button under LineStyle in the property value area.

Customizing Lines

4. Display the column headers and create three column levels by setting the ColumnHeaderShow and ColumnLevels
properties.

On the General subtab of the Columns designer page,

a. Select the ColumnHeaderShow property from the properties list box.

b. Select the True option button under ColumnHeaderShow in the property value area.

c. Select the ColumnLevels property from the properties list box.

d. Type 3 in the box under ColumnLevels in the property value area.

Creating Multiple Columns
Creating Column Headers
Creating Levels of Columns Within a Row

5. Create the three groups and display the group headers by setting the Groups and GroupHeaderShow properties.

a. On the Specific subtab of the Groups designer page,

i. Select the Groups property from the properties list box.

ii. Type 3 in the box under Groups in the property value area.

b. On the General subtab of the Groups designer page,

i. Select the GroupHeaderShow property from the properties list box.

ii. Select the True option button under GroupHeaderShow in the property value area.

Creating Groups
Creating Group Headers

6. Specify pixels as the unit of measurement for the group widths by setting the ColumnWidthScale property.

On the General subtab of the Columns designer page,

a. Select the ColumnWidthScale property from the properties list box.

b. Select the 1 - Pixels option button under ColumnWidthScale in the property value area.

Specifying the Group Width

7. Define the name, width, and header text for each group by setting the Grp, GrpName, GrpHeaderText, and GrpWidth
properties.

On the Specific subtab of the Groups designer page,

a. Either select 0 from the Grp drop-down list box under Individual or click the first group in the preview area.

b. Select the GrpName property from the properties list box.

c. Type OI in the box under GrpName in the property value area.

d. Select the GrpHeaderText property from the properties list box.

e. Type Owner Info in the box under GrpHeaderText in the property value area.

f. Select the GrpWidth property from the properties list box.

g. Type 170 in the box under GrpWidth in the property value area.

h. Repeat steps 7.a 7.g for the remaining two groups using the following data.
Group number Group name Header text Group Width
1 RG Registrant 225
2 LN Lineage 125

Referencing a Group
Creating Group Headers
Specifying the Group Width

8. Define the column names and custom header text by setting the DataAutoHeadings, DataAutoSizeCols, Col, ColName,
and ColHeaderText properties.

a. On the General subtab of the Data Binding designer page,

i. Select the DataAutoHeadings property from the properties list box.

ii. Select the False option button under DataAutoHeadings in the property value area.

iii. Select the DataAutoSizeCols property from the properties list box.

iv. Select the 0 - Off option button under DataAutoSizeCols in the property value area.

b. On the Specific subtab of the Columns designer page,

i. Either select 0 from the Col drop-down list box under Individual or click the first column in the preview area.

ii. Select the ColName property from the properties list box.

iii. Type ON in the box under ColName in the property value area.

iv. Select the ColHeaderText property in the properties list box.

v. Type Owner Name in the box under ColHeaderText in the property value area.

vi. Repeat step 8.b.i 8.b.v for the remaining seven columns using the following data.
Column number Column name Header text
1 AD Address
2 PH Phone
3 BR Breed
4 DN Name
5 CL Color
6 SI Sire
7 DA Dam

Referencing a Column
Creating Column Headers
Binding Columns to Fields in a Database

9. Make the columns children of groups and position the columns within the groups by setting the ColParentGroup,
ColPosInParent, ColLevel, and ColLevelHeight properties. Use the column name to reference the columns.

On the Specific subtab of the Columns designer page,

a. Make the Owner Name column a child of the first group (Owner Info) and position the column in the group.

i. Either select ON from the Col Name drop-down list box or click the Owner Name column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 0 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 0 in the box under ColPosInParent in the properties value area.

b. Make the Address column a child of the first group (Owner Info) and position the column in the group. Start the
column on level 1 and make it two levels high.

i. Either select AD from the Col Name drop-down list box or click the Address column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 0 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 1 in the box under ColPosInParent in the properties value area.

vi. Select the ColLevel property from the properties list box.

vii. Type 1 in the box under ColLevel in the property value area.

viii. Select the ColLevelHeight property from the properties list box.

ix. Type 2 in the box under ColLevelHeight in the property value area.

c. Make the Phone column a child of the first group (Owner Info) and position the column in the group. Display the
column on level 0.

i. Either select PH from the Col Name drop-down list box or click the Phone column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 0 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 2 in the box under ColPosInParent in the properties value area.

vi. Select the ColLevel property from the properties list box.

vii. Type 0 in the box under ColLevel in the property value area.

d. Make the Breed column a child of the second group (Registrant) and position the column in the group. Make the
column two levels high.

i. Either select BR from the Col Name drop-down list box or click the Breed column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 1 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 0 in the box under ColPosInParent in the properties value area.

vi. Select the ColLevelHeight property from the properties list box.

vii. Type 2 in the box under ColLevelHeight in the property value area.

e. Make the Name column a child of the second group (Registrant) and position the column in the group. Display the
column on level 0.

i. Either select DN from the Col Name drop-down list box or click the Name column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 1 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 1 in the box under ColPosInParent in the properties value area.

vi. Select the ColLevel property from the properties list box.

vii. Type 0 in the box under ColLevel in the property value area.

f. Make the Color column a child of the second group (Registrant) and position the column in the group. Display the
column on level 1.

i. Either select CL from the Col Name drop-down list box or click the Color column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 1 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 2 in the box under ColPosInParent in the properties value area.

vi. Select the ColLevel property from the properties list box.

vii. Type 1 in the box under ColLevel in the property value area.

g. Make the Sire column a child of the third group (Lineage) and position the column in the group.

i. Either select SI from the Col Name drop-down list box or click the Sire column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 2 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 0 in the box under ColPosInParent in the properties value area.

h. Make the Dam column a child of the third group (Lineage) and position the column in the group. Display the column
on level 1.

i. Either select DA from the Col Name drop-down list box or click the Dam column in the preview area.

ii. Select the ColParentGroup property from the properties list box.

iii. Type 2 in the box under ColParentGroup in the property value area.

iv. Select the ColPosInParent property from the properties list box.

v. Type 1 in the box under ColPosInParent in the properties value area.

vi. Select the ColLevel property from the properties list box.

vii. Type 1 in the box under ColLevel in the property value area.

Referencing a Column
Making a Column a Child of a Group
Defining the Position of a Column Within the Control
Creating Levels of Columns Within a Row

10. Display text in multiple lines in the Address and Breed columns by setting the ListApplyTo and MultiLine properties. Use the
column name to reference the columns.

On the List subtab of the ApplyTo designer page,

a. Select 12 - Single Item from the List Apply To drop-down list box.

b. Select AD from the Col Name drop-down list box.

c. Select the MultiLine property from the properties list box.

d. Select the 2 - Multiple Line option button under MultiLine in the property value area.

e. Select 12 - Single Item from the List Apply To drop-down list box.

f. Select BR from the Col Name drop-down list box.

g. Select the MultiLine property from the properties list box.

h. Select the 2 - Multiple Line option button under MultiLine in the property value area.

Applying Properties to Specific Parts of the Control
Referencing a Column
Wrapping Text in a List Pro Control

11. Define the background and text colors for the column headers, group headers, and selected rows by setting the
ListApplyTo, BackColor, and ForeColor properties.

a. Display black background and white text colors in the column headers.

On the List subtab of the ApplyTo designer page,

i. Select 7 - Col Headers from the List Apply To drop-down list box.

ii. Select the BackColor property from the properties list box.

iii. Choose the Color button under BackColor in the property value area to display the BackColor dialog box.

iv. Select the black color on the color chart.

v. Choose the OK button.

vi. Select the ForeColor property from the properties list box.

vii. Choose the Color button under ForeColor in the property value area to display the ForeColor dialog box.

viii. Select the white color on the color chart.

ix. Choose the OK button.

b. Display green background color in the group headers.

i. Select 8 - Group Headers from the List Apply To drop-down list box.

ii. Select the BackColor property.

iii. Choose the Color button under BackColor in the property value area to display the BackColor dialog box.

iv. Select the green color on the color chart.

v. Choose the OK button.

c. Display red background and white text color to selected rows.

i. Select 4 - Sel Rows from the List Apply To drop-down list box.

ii. Select the BackColor property from the properties list box.

iii. Choose the Color button under BackColor in the property value area to display the BackColor dialog box.

iv. Select the red color on the color chart.

v. Choose the OK button.

vi. Select the ForeColor property from the properties list box.

vii. Choose the Color button under ForeColor in the property value area to display the ForeColor dialog box.

viii. Select the white color on the color chart.

ix. Choose the OK button.

Applying Properties to Specific Parts of the Control
Changing Text Color and Fonts
Changing the Background Color

12. Display a flat, green line between the rows by setting the ListApplyTo, LineApplyTo, LineStyle, and LineColor properties.

On the Line subtab of the ApplyTo designer page,

a. Select 1 - All Rows from the List Apply To drop-down list box.

b. Select 1 - Rows from the Line Apply To drop-down list box.

c. Select the LineStyle property from the properties list box.

d. Select the 2 - Flat option button under LineStyle in the property value area.

e. Select the LineColor property from the properties list box.

f. Choose the Color button under LineColor in the property value area to display the LineColor dialog box.

g. Select the green color on the color chart.

h. Choose the OK button.

Applying Properties to Specific Parts of the Control
Adding Lines
Customizing Lines

13. Choose the OK button to close the FarPoint Property Designer and apply the changes to the control on your form.

14. Run the project.

The list box should look similar to the following figure, depending on the size of your list box. Notice that the Phone, Name
(Registrant), and Color columns are too small.

15. If necessary, resize your control to display all groups and columns as shown in step 14 and rerun the project.

16. Resize the Phone, Name (Registrant), and Color columns by completing the following steps:

a. Move the mouse pointer over the column header border between the Name (Owner Info) and Phone columns until the
pointer changes to a resize icon. Drag this border to the left until the entire phone number is displayed in the Phone
column.

b. Move the mouse pointer over the right column header border of the Breed column until the pointer changes to a resize
icon. Drag this border to the left until the entire Name is displayed in the Name column.

Because this is a common border with the Color column header, the Color column also resizes.

The list box should appear similar to the following figure:

Step 16 illustrates how to change column widths using the mouse. To permanently change the column widths, you would
have to set the column widths in code at run time.

Using ActiveX Controls
ActiveX controls are OLE 2 custom controls. You can use the fpCombo and fpList ActiveX controls in most development
environments that support ActiveX controls.

ActiveX controls are designed to function more independently than VBX and DLL controls. That is, they are designed to be
independent objects that you can easily use in many different types of containers and environments. Designed to present a
consistent interface, ActiveX controls and their containers provide a unique means for interaction.

The following topics provide an overview of some ActiveX-specific concepts and features. Throughout the help, ActiveX-specific
information has been included to further acquaint you with the fpCombo and fpList ActiveX controls and to provide instructions
for their use.

Types of ActiveX Properties

Setting Properties

Using Events

Summary of ActiveX Control Features

Types of ActiveX Properties
ActiveX controls can support four types of properties: stock, standard extender, custom, and ambient.

Stock properties are always provided by containers that support ActiveX controls. Examples of stock properties are the
BackColor and Enabled properties.

Standard extender properties can be, but are not necessarily, provided by containers that support ActiveX controls. Examples of
standard extender properties include the Height and DataChanged properties.

Custom properties are properties added by the controls designer to enhance certain characteristics of the ActiveX control. For
example, the Appearance and ThreeDFrameColor properties are custom properties.

Ambient properties are properties that let the ActiveX control respond to characteristics of its container. For example, the
AmbientScaleUnit property lets the ActiveX control use the same scale unit as its container. Note that containers need not
support ambient properties.

The property topics in the property reference provide information about the ActiveX type for the fpCombo and fpList controls
properties. Each property that is an ActiveX stock or standard extender property is noted as such. If no information is provided
for a given property, that property is a custom property.

Setting Properties
ActiveX controls provide multiple avenues for viewing and setting control properties. You can view and set properties in the
FarPoint Property Designer pages, which are organized by control characteristics. For more information on the designer pages,
see Using the FarPoint Property Designer.

You can also view all the design-time properties available for the control in an alphabetical list called a property browser. For
example, in Visual Basic the Properties window provides a list that lets you view and set properties. In addition, you can view
the available settings for enumerated properties. However, different containers provide different browser interfaces.

Finally, you can set properties in code at run time. The type of code you use and the syntax depends on your container.

Using Events
ActiveX controls can support three types of events: stock, standard extender, and custom.

Stock events are provided by all ActiveX containers. Examples of stock events include the Click event, the DblClick event, and
the KeyPress event.

Standard extender events are events that ActiveX containers can, but do not necessarily, provide. Examples of standard
extender events include the DragDrop event and the GotFocus event.

Custom events are created by the controls designer to support certain actions users perform on that control. For example, the
fpCombo control includes the ColWidthChange event, which occurs when the user resizes the column width with the mouse.

Summary of ActiveX Control Features

List Pro ActiveX controls are supported by most OLE-compliant containers that support ActiveX
controls.

ActiveX controls can have four types of properties: stock, standard extender, ambient, and custom.

ActiveX controls provide several methods of interaction: the FarPoint Property Designer, the standard
property browser, and run-time settings.

ActiveX controls can have three types of events: stock, standard extender, and custom.

Using DLL Controls

Working with Libraries

Creating the fpCombo and fpList Controls
Getting and Setting Property Value s

Working with String Data

Receiving Notifications

Working with Libraries
You can use the List Pro DLL controls in the C programming language using the provided dynamic-link library (.DLL) files. You
can also use the .DLL files in the C++ programming language.

The following topics describe how to load and unload DLL libraries.

Loading the Library

Unloading the Library

Loading the Library
To use the List Pro controls with C, you must first load the .DLL files for these controls. To load a library, you must declare a
variable of type HINSTANCE and then use a Windows API call. The Windows API call loads the controls .DLL files into memory
and returns the handle.

The following code loads the List Pro DLL:
HINSTANCE hInstLPro;
hInstLPro = LoadLibrary("listpro_filename.DLL");
You must also link the static link library (.LIB) with your application.

Unloading the Library
Before you exit your application, you should unload the DLL library. Unload .DLL files using the FreeLibrary command, which is
a Windows API call. Specify the .DLL file by using the assigned identifier from the LoadLibrary function. In the previous code
example, the variable used for the .DLL file is hInstLPro.

The following code frees the DLL from memory:
FreeLibrary(hInstLPro);

Creating the fpCombo and fpList Controls

Creating Controls With a CreateWIndow Function

Creating Controls With a CONTROL Statement

Creating Controls in MFC Using the Create Member Function

Creating Controls in OWL Using the New Operator

Creating Controls with the CreateWindow Function
In C or C++, you can use the Windows CreateWindow function to create the control. The CreateWindow function specifies the
window class, the window title, the window style, the initial position and size of the window, the windows parent, and the menu.

The following code creates an fpCombo control:
HWND hWndCombo;
hWndCombo = CreateWindow(

FPCLASS_COMBO, // window class name
"", // window caption
WS_CHILD | WS_VISIBLE // window style
Rect.left, // initial x position
Rect.top, // initial y position
Rect.right - Rect.left, // initial x size
Rect.bottom - Rect.top, // initial y size
hWnd, // parent window handle
IDC_COMBO, // window ID
hInstance, // program instance handle
NULL // creation parameter
);

The CreateWindow function creates controls one at a time. Use the AppStudio™ in Visual C++™ or the Resource Workshop in
Borland® C++ to create a control that you can bring up on a dialog.

Creating Controls with a CONTROL Statement
In C or C++, you can create List Pro controls using a CONTROL statement in a resource file in a dialog box. The CONTROL
statement defines a control by using arguments separated by commas. These arguments specify the class of the control, give
the control an identifier, define the control style, and define the position and dimensions of the control within the parent dialog.

The following statement creates an fpList control:
CONTROL "", IDC_LIST, FPCLASS_LIST, WS_CHILD | WS_VISIBLE |

 WS_TABSTOP, 5, 35, 165, 60
To create an fpCombo control, you would specify the window class name for the fpCombo control, FPCLASS_COMBO, and
specify a window identifier, IDC_COMBO, for example.

Creating Controls in MFC Using the Create Member Function
If you are using MFC, you can create controls in code using the Create member function of the class for the control you are
creating. To do so, declare an object or pointer variable, then call the Create member function. The following code illustrates
how you might create an fpList control. For this example, it is assumed that the control is created in a parent window class.
#define ID_LIST 1000

RECT rect = {0, 0, 100, 100};

CfpList Lst;
Lst.Create(WS_VISIBLE|WS_CHILD, &rect, this, ID_LIST);
The parameters of the Create member function let you specify the styles for the control, the coordinates for the control, the
parent of the control, and a unique identifier.

Creating Controls in OWL Using the New Operator
If you are using OWL, you can create controls in code using a constructor. To do so, declare a pointer variable, then use the
New operator to call the constructor. The following code illustrates how you might create an fpList control. For this example, it is
assumed that the control is created in a parent window class.
#define ID_LIST 1000

short left = 0;
short top = 0;
short width = 100;
short height = 100;

CfpList* Lst;
Lst = new CfpList(this, ID_LIST, left, top, width, height);
The parameters of the constructor let you specify the parent of the control, a unique identifier, the left coordinate, the top
coordinate, and the width and height of the control.

Getting and Setting Property Values

Overview

Get Function

Set Function

Overview
Once you have loaded the .DLL file and created a control, you can use the specific Get and Set functions for each property to
retrieve and set property values in your application.

Use the Get function to retrieve property values in your application. For example, to set the value of a variable equal to the value
of the BorderStyle property for an fpCombo control, you must return the value of the BorderStyle property. The following C code
assigns the value of the parameter lpvalue to the variable Bstyle.
BStyle = LC_GetBorderStyle(hWnd, lpvalue);
Use the Set function to set property values in your application. For example, to set the value of the BorderStyle property for an
fpCombo control to rounded, use the following code:
LC_SetBorderStyle(hWnd, LC_BORDERSTYLE_ROUNDED);
Note Write-only properties do not have corresponding Get functions, and read-only properties do not have corresponding Set

functions. Data-aware properties, such as the DataField and DataSync properties, are not available for the DLL controls.

The DLL Get and Set functions are declared in the header files that accompany this product. The header files are installed when
you install List Pro using the installation program. The following topics describe the DLL functions, including the function
declarations and function calls. The declarations are included for descriptive purposes; you do not need to declare the functions
in your application if you have included the correct header files.

The following topics explain the components of the Get and Set functions in detail.

Get Function

Set Function

Get Function
The Get function retrieves the current value of a specified property. Each Get function uses the same pattern in code. The
parameters are the controls window handle and a pointer to the variable that contains the resulting value.

The following example is for an fpCombo Get function declaration; the fpList control uses the same pattern.
int LC_GetListIndex (HWND hWnd, long FAR *lpvalue);

Return Value
The Get functions return a value of 0 if the function is successful or nonzero if an error has occurred.

Function Name
Most properties that can be read in the List Pro controls have their own Get functions in C and C++. Function names that are
unique for each control begin with "Cbx" or "Lbx", followed by the word "Get" and the property name. Therefore, the Get function
for the MaxDrop property is named the "CbxGetMaxDrop" function, while the Get function for the MultiSelect property is named
the "LbxGetMultiSelect" function. Functions that are common to both controls begin with "LC_", followed by the word "Get" and
the property name. Therefore the Get function for the NoIntegralHeight property is named the "LC_GetNoIntegralHeight"
function.

The following code declares the Get function for the BorderWidth property:
int LC_GetBorderWidth(HWND hWnd, int FAR *lpvalue);
In the example, "LC_GetBorderWidth" is the name of the function. The BorderWidth property is an Integer data type, which is
indicated by "int" before the *lpValue parameter.

Data Type
The Visual Basic data type for each property is listed in the online Reference Guide. The following table lists the Visual Basic
data types and the corresponding DLL data types.
Visual Basic data type Corresponding DLL data type
Color COLORREF
Integer int
Integer (Boolean) BOOL
Integer (Enumerated) int
Long Integer long
Picture FP_PICTITEM
Single int, float

Note Single data types that are used as coordinates are computed
in pixels in the DLL version, so the data type is an integer
value.

String LPSTR
Note Parameters of this data type are actually pointers to buffers.

See Working with String Data for more information.
The following Get function declaration describes the data type of the return value and the parameters required by the fpCombo
GetListDown function:
int CbxGetListDown(HWND hWnd, BOOL FAR *lpvalue);
The following function call illustrates how you might use the fpCombo GetListDown function in code, assigning the return value
of the function to the variable isldown:
int iRet;
BOOL isldown;
iRet = CbxGetListDown(hWnd, &isldown);
The function declaration lets you know to define the isldown variable as a boolean data type and to pass the fpCombo controls
window handle to the function.

Set Function
The Set function call sets a new value for a specific property. Each Set function uses the same pattern in code. This code
pattern specifies the data type of the return value, the case-sensitive name of the function, and two function parameters: the
window handle of the control and the new value for the property.

The following example is for an fpCombo Set function call; the fpList control uses the same pattern.
int LC_SetListIndex (HWND hWnd, long value);

Return Value
The Set functions return a value of 0 if the function is successful or nonzero if an invalid parameter is passed to the Set function.

Function Name
Most List Pro properties that can be written have their own Set function in C or C++. Function names that are unique for each
control begin with "Cbx" or "Lbx", followed by the word "Set" and the property name. Therefore, the Set function for the Style
property is named the "CbxSetStyle" function, while the Set function for the SelMax property is named the "LbxSetSelMax"
function. Functions that are common to both controls begin with "LC_", followed by the word "Set" and the property name.
Therefore, the Set function for the NoIntegralHeight property is named the "LC_SetNoIntegralHeight" function.

The following code declares the SetLineWidth function:
int LC_SetLineWidth(HWND hWnd, int value);
In the example, "LC_SetLineWidth" is the name of the function. The SetLineWidth function requires an Integer data type, which
is indicated by "int" before the value parameter.

Data Value
You must indicate the new value for each Set function as a parameter of the function. The new value must correspond to the
appropriate data type for the function.

The following code declares the SetSearchText function. The declaration indicates that the new value must be a string.
int LC_SetSearchText(HWND hWnd, LPCSTR value);
When you are setting the value for the SetSearchText function, you must pass the appropriate string value. The following
function call sets the value of the SetSearchText function to "Cancel":
LC_SetSearchText(hWnd, "Cancel");

Working with String Data
When you use the Get or Set function for a string value, you must supply a buffer to indicate the array of available characters for
the string, as in the following code:
char szbuffer[#]
Replace the # character with the number of characters available in the array. For example, the SearchText function for the
fpCombo control requires a string value. The first statement in the following example indicates the buffer can contain up to 39
characters (with an additional character for the Null terminator).
char szBuffer[40];
LC_GetSearchText(hWnd, szBuffer, 39);
LC_SetSearchText(hWnd, "I am the caption");
If you do not know the exact length of the string, use code similar to the following example.
HANDLE hBuffer;
int nLen;
int rCode;
rCode = LC_GetTextLength(hWnd, &nLen);
If (hBuffer = GlobalAlloc(GHND, nLen + 1))

{
LPSTR lpszBuffer = GlobalLock (hBuffer);
LC_GetSearchText(hWnd, lpszBuffer, nLen);

.

.
(your code)

.
GlobalUnlock(hBuffer);
GlobalFree(hBuffer);
}

Receiving Notifications
For the fpCombo or fpList control, you must include the LBS_NOTIFY style in the RC file to receive all notifications.

Getting Started

Parts of a List Pro Control

Applying Properties to Specific Parts of the Control

Setting Up the Control

Choosing the fpCombo Control Style

Parts of a List Pro Control
The following figure shows the basic parts of a List Pro control, illustrated using a drop-down combo box.

Different control types might not have some of these features. For example, a simple combo style combo box does not have a drop-
down button.

Applying Properties to Specific Parts of the Control
You can customize the appearance of any of the following parts of a List Pro control:
All rows All columns All groups
Single row Single column Single group
Odd-numbered rows All column headers All group headers
Even-numbered rows Single column header Single group header
Selected rows Single cell
The properties you can apply to these different parts of the control are called designated-list properties. Use the ListApplyTo
property to specify where the following designated-list properties apply:
AlignH ForeColor List3DTextHighlightColor
AlignV Line3DDark List3DTextOffset
BackColor Line3DLight List3DTextShadowColor
Font Line3DWidth MultiLine
FontBold LineApplyTo Picture
FontItalic LineStyle PictureAlignH
FontName LineWidth PictureAlignV
FontSize List3DText PictureSel
FontStrikethru LineColor TextOrientation
FontUnderline
For many properties, you should specify to which part of the control you want the property applied. If you do not, the property is
applied to the whole control.

Note that parts of the control by default inherit the property settings of other parts of the control. That is, if parts of the control do
not have a specific setting, they look to the next highest level (hierarchical predecessor) to see what their settings should be.
The hierarchy that determines this can be found in Appendix C, "Hierarchy of Property Settings" of the printed List Pro User's
Guide.

For example, assume you have an fpList control with multiple columns and column headers and you have not set any properties
for the column headers. If you set the MultiLine property for Column 1 to 2 (Multiple Line), all list items in Column 1 and the
column header display text on multiple lines (individual column header is below an individual column in the hierarchical structure
and therefore inherits the property setting for an individual column).

Setting Up the Control
A logical order for setting up a List Pro control is:

1. Choose the type of control (fpCombo or fpList).

2. If you want to link the control to a database, bind the control to the database.

For more information, see Binding a Control to a Database

3. If you chose an fpCombo control, choose the control style.

For more information, see Choosing the fpCombo Control Style.

4. Set up your columns.

For more information, see Working with Columns.

5. If you want groups, set up your groups.

For more information, see Working with Groups.

6. Add list items and work with them.

For more information, see Working with List Items.

7. Customize the appearance of the control or each individual part.

For more information, see Customizing the Controls Appearance.

Choosing the fpCombo Control Style

Designer Page Instructions

Browser/Code Instructions

Overview

An fpCombo control can have one of three styles: drop-down combo, simple combo, or drop-down list.

You can specify the offset of the list from the left side of the combo box. If the combo box has a drop-down combo or drop-down
list style, you can specify the size of the gap between the edit field and the drop-down arrow. If the combo box has a drop-down
combo or simple combo style, you can specify the maximum number of characters the user can enter in the edit field, and you
can specify the color of the gray area surrounding the control.

For more information on each of the three combo box styles, see Combo Box Styles.

Print Copy Close

To choose and customize an fpCombo control style

Designer Page

1. Specify the combo box style.

a. On the Misc subtab of the Appearance designer page, select the Style property from the properties list box.

b. Select the appropriate option button under Style in the property value area.

2. Specify the offset of the list from the left side of the combo box.

a. Select the ListLeftOffset property from the properties list box.

b. Type the offset in the box under ListLeftOffset in the property value area.

3. If you specified 0 (Drop-Down Combo) or 2 (Drop-Down List) in step 1, define the gap size in pixels.

a. Select the ComboGap property from the properties list box.

b. Type the gap size in pixels in the box under ComboGap in the property value area.

4. If you specified 0 (Drop-Down Combo) or 1 (Simple Combo) in step 1, specify the maximum text length and the color of the
gray area surrounding the control.

a. Select the MaxEditLen property from the properties list box.

b. Type the maximum text length in the box under MaxEditLen in the property value area.

c. On the Color subtab of the Appearance designer page, select the GrayAreaColor property from the properties list box.

d. Choose the button under GrayAreaColor in the property value area to display the Gray Area Color dialog box.

e. Select a basic color or define your own custom color.

f. Choose the OK button.

Print Copy Close

To choose and customize an fpCombo control style

Browser/Code

1. Specify the combo box style with the Style property.

2. Specify the offset of the list from the left side of the combo box with the ListLeftOffset property.

3. If you specified 0 (Drop-Down Combo) or 2 (Drop-Down List) in step 1, define the gap size in pixels with the ComboGap
property.

4. If you specified 0 (Drop-Down Combo) or 1 (Simple Combo) in step 1,

a. Specify the maximum text length with the MaxEditLen property.

b. Specify the color of the gray area surrounding the control with the GrayAreaColor property.

Working with List Items
For an overview on working with list items, see List Items, Data Binding, and Virtual Mode.

Adding List Items

Removing List Items

Accessing List Items

Sorting List Items

Searching for List Items

Customizing the Appearance of Selected Items

Hiding the Focus Rectangle Around Selected Items

Wrapping List Items in a Single-Column Control

Working with Databases

Using Virtual Mode

Adding List Items

To add items with the InsertRow property

Designer Page Instructions

Code Instructions

To add a items to a single-column control with the List property

Designer Page Instructions

Code Instructions

To add an item to a cell in a multiple-column control with the ColList property

Designer Page Instructions

Code Instructions

Overview

You can add items (single-column) or rows of items (multiple-column) to the list in an fpCombo or fpList control in any of the
following five ways:

Use the InsertRow property to add an item to a single-column control or to add a row of items to a
multiple-column control.

Use the List property to add data to a specific row in a single-column control.
You must specify the row for the list item.

Use the ColList property to add data to a specific cell in a multiple-column control.
You must specify the row and column for the list item.

Use the controls data binding capabilities to add items stored in a database table.
To bind the fpCombo or fpList control, see Binding a Control to a Database and Binding Columns to Fields in a Database.

Use the AddItem method.
For information on the AddItem method, refer to the Visual Basic documentation.

Print Copy Close

To add items with the InsertRow property

Designer Page

1. Specify the row number at which the items or row of items should be inserted. On the Add Data designer page, if you want

to insert rows at the end of the list, type 1 in the Row box; otherwise, either type the row number in
the Row box or click the row in the preview area.

2. Add the items.

a. Select the InsertRow property in the properties list box.

b. Type the list item in the InsertRow box in the property value area.

If you are adding rows to a multiple-column fpCombo or fpList control, separate the column data with a vertical bar
(|).

3. Repeat steps 1 and 2 until you have added all the items you want.

Print Copy Close

To add items with the InsertRow property

Code

1. Set the Row property to 1 if you want to insert rows at the end of the list; otherwise, designate where
the new item or row of items is inserted with the Row property.

2. In an event procedure such as Form_Load, set the InsertRow property to the string you want to add.

If you are adding rows to a multiple-column fpCombo or fpList control, specify multiple items in the same row by joining
them with a separator character. Use the ColumnSeparatorChar property to specify the separator character. The default
separator character is a tab character (\t or ASCII value 9).

3. Continue adding items by setting the InsertRow property.

Print Copy Close

To add items to a single-column control with the List property

Designer Page

1. Specify the row number at which the items or row of items should be inserted. On the Add Data designer page, type

1 in the Row box if you want to insert rows at the end of the list; otherwise, either type the row
number in the Row box or click the row in the preview area.

2. Add the item.

a. Select the List property in the properties list box.

b. Type the list item in the List box in the property value area.

Print Copy Close

To add items to a single-column control with the List property

Code

1. Set the Row property to 1 if you want to insert rows at the end of the list; otherwise, designate where
the new item or row of items is inserted with the Row property.

2. Specify the list item with the List property.

Print Copy Close

To add an item to a cell in a multiple-column control with the ColList property

Designer Page

1. Specify the column and row location. On the Add Data designer page, either click the cell in the preview area or perform
the following actions:

a. Select the column from either the Col, Col Name, or Col ID drop-down list box.

b. Type the row number in the Row box.

2. Add the list item.

a. Select the ColList property in the properties list box.

b. Type the list item in the ColList box in the property value area.

Print Copy Close

To add an item to a cell in a multiple-column control with the ColList property

Code

1. Specify the column and row location with either the Col, ColFromID, or ColFromName property and the Row property.

2. Specify the list item with the ColList property.

Removing List Items

Code Instructions

Overview

You can remove items (in a single-column control) or rows (in a multiple-column control) from the list in an fpCombo or fpList
control in either of the following ways:

Use the Action property.
You must use this property if the control has more than 32,768 items.

Use the RemoveItem method.
For information on the RemoveItem method, refer to the Visual Basic documentation.

Print Copy Close

To remove list items using the Action property

Code

1. If you want to remove all items from the list, set the Action property to 3 (Clear).

2. If you want to delete a specific item or row of items,

a. Set the Row property to specify the row to remove.

b. Set the Action property to 4 (Delete Row).

Accessing List Items

To select an item

Code Instructions

To return the index of the selected item

Code Instructions

To return the value of a specific item

Designer Page Instructions

Code Instructions

To return the value of the selected item

Code Instructions

Overview

After the fpCombo or fpList control has been filled, you can work with the items in the list using various run-time properties.
These properties let you

Select an item at run time.

Return the index or value of a specific list item.

Return the value of the selected item.
The index reflects the position of list items. The index of the first item is zero.

Notes

With the fpList control, you can allow the user to select multiple items by setting the MultiSelect
property to a value other than 0 (Single Only). The SelCount property returns the number of items selected, and the SelMax
property sets a limit for the number of items the user can select.

In an fpList control, when multiple items are selected, the index or value of the item that has the focus
is returned.

Print Copy Close

To select an item

Code

1. If you are selecting an item in an fpCombo control, set the ListIndex property to the index of the item you want to select.

2. If you are selecting an item in an fpList control, you can perform either of the following actions:

Set the ListIndex property to the index of the item you want to select.

Set the Row property to the row number of the item and then set the Selected property to True.

Print Copy Close

To return the index of the selected item

Code

Return the index of the currently selected item with the ListIndex property.

Note The TopIndex property returns the index of the item currently displayed at the top of the list.

Print Copy Close

To return the value of a specific item

Designer Page

1. If you want to return the value of an item in a single-column list,

a. Specify the row. On the Add Data designer page, either type the row number in the Row box or click the row in the
preview area.

b. Select the List property in the properties list box.

The value is displayed in the box under List in the property value area.

2. If you want to return the value of a cell in a multiple-column control,

a. Specify the cell. On the Add Data designer page, either click the cell in the preview area or perform the following
actions:

i. Select the column from the Col, Col Name, or Col ID drop-down list box.

ii. Type the row number in the Row box.

b. Select the ColList property in the properties list box.

The value is displayed in the box under ColList in the property value area.

Print Copy Close

To return the value of a specific item

Code

1. If you want to return the value of an item in a single-column list,

a. Set the value of the Row property.

b. Set the value of a variable to the value of the List property.

Note The List property in List Pro is not an array property as it is in Visual Basic.

2. If you want to return the value of a cell in a multiple-column list,

a. Specify the column with the Col, ColFromID, or ColFromName property.

b. Specify the row with the Row property.

c. Read the value of the ColList property.

Print Copy Close

To return the value of the selected item

Code

1. If you want to return the value of the selected item in a single-column list, set the value of a variable to the value of the Text
property.

Notes

You do not have to set the Row property. The Text property automatically retrieves the row value for
the selected item.

For the fpCombo control, when the Style property is set to 0 (Drop-Down Combo) or 1 (Simple
Combo), the Text property returns the text contained in the edit (or static) field. When the Style property is set to 2 (Drop-Down List),
the Text property returns the value of the selected item.

2. If you want to return the value of a cell in the selected row in a multiple-column list,

a. Specify the column with the Col, ColFromID, or ColFromName property.

Note You do not have to set the Row property. The ColText property automatically retrieves the row value for the
selected row.

b. Read the value of the ColText property.

Sorting List Items

To sort a single-column list

Designer Page Instructions

Code Instructions

To sort a multiple-column list

Designer Page Instructions

Code Instructions

Overview

While a List Pro control is being filled or after a List Pro control has been filled, you can sort list items to arrange them in
alphabetic or numeric order. You can sort single- or multiple-column fpCombo or fpList controls. In multiple-column controls you
can specify the sequence in which columns are sorted and the data type to help sort faster.

When you sort list items, the fpCombo or fpList control updates its index numbers. Adding an item to a sorted list might disrupt
the sort order if you do not resort the items, depending upon where you add it.

You can temporarily suspend sorting by setting the SortState property. When you add numerous items to a list, for example,
10,000 records from a database, the fpCombo or fpList control sorts items after each addition. Setting the SortState property to
2 (Suspend) prevents the control from sorting items until the SortState property is set to 0 (Active) or 1 (Active (Re-Sort)).
Temporarily suspending sorting at run time saves a significant amount of time if you are adding numerous items.

Print Copy Close

To sort a single-column list

Designer Page

1. Specify how you want to sort the list items.

a. On the Sort designer page, select the Sorted property in the properties list box.

b. Select either the 1 - Ascending or 2 - Descending option button in the property value area.

2. Add items to your list, if needed.

For more information, see Adding List Items.

Print Copy Close

To sort a single-column list

Code

1. If you are adding numerous items to your list, set the SortState property to 2 (Suspend) to suspend sorting until after you
have added the items.

2. Set the Sorted property to 1 (Ascending) or 2 (Descending).

3. Add items to your list, if needed.

For more information, see Adding List Items.

4. If you suspended sorting in step 1, set the SortState property to 1 (Active (Re-Sort)) to re-sort your items.

Print Copy Close

To sort a multiple-column list

Designer Page

1. Specify the column you want to sort. On the Sort designer page, either select the column from the Col, Col Name, or Col ID
drop-down list box or click the column in the preview area.

2. Specify how you want to sort the list items.

a. Select the ColSorted property from the properties list box.

b. Select either the 1 - Ascending or 2 - Descending option button under ColSorted in the property value area.

3. If you know the type of data in a particular column and want to improve sorting,

a. Select the ColSortDataType property in the properties list box.

b. Select the appropriate option button under ColSortDataType in the property value area.

4. Specify the sort sequence.

a. Select the ColSortSeq property from the properties list box.

b. If you are performing a sort on one column or if you are performing a sort on more than one column and this is the first
column you want to sort by, type 0 in the box under ColSortSeq in the property value area. Otherwise, if you are
performing a sort on more than one column, type the appropriate sequence number in the box under ColSortSeq in
the property value area.

5. Repeat steps 1 4 for each additional column.

Print Copy Close

To sort a multiple-column list

Code

1. If you are adding numerous items to your list, set the SortState property to 2 (Suspend) to suspend sorting until after you
have added the items.

2. Specify the column you want to sort with the Col, ColFromID, or ColFromName property.

3. Set the ColSorted property to 1 (Ascending) or 2 (Descending).

4. If you know the type of data in a particular column and want to improve sorting, set the ColSortDataType property.

5. If you are performing a sort on one column or if you are performing a sort on more than one column and this is the first
column you want to sort by, set the ColSortSeq property to 0. Otherwise, if you are performing a sort on more than one
column, set the ColSortSeq property to the appropriate sequence number.

6. Repeat steps 2 5 for each additional column.

For example, the following statements specify that the list is sorted first by the values in the third column and then by the
values in the second column:
' second column
fpList1.Col = 1
' sort in ascending order
fpList1.ColSorted = 1
fpList1.ColSortDataType = LC_COLSORTDATATYPE_FLOAT
' sort second
fpList1.ColSortSeq = 2
' third column
fpList1.Col = 2
' sort in descending order
fpList1.ColSorted = 2
fpList1.ColSortDataType = LC_COLSORTDATATYPE_INTEGER
' sort first
fpList1.ColSortSeq = 1

7. If you previously suspended sorting, set the SortState property to 1 (Active (Re-Sort)) to re-sort your items.

Searching for List Items

To search for list items by typing characters

Designer Page Instructions

Browser/Code Instructions

To search for list items by supplying a search string

Designer Page Instructions

Browser/Code Instructions

Overview

You can search for a specific list item in an fpCombo or fpList control. By default, only the first column is searched. For multiple-
column fpCombo or fpList controls, you can specify which column to search.

The search method for an fpCombo control depends on whether it operates as a simple combo box, drop-down combo box, or
drop-down list box. For more information on combo box styles, see Combo Box Styles.

There are two search mechanisms:

By typing a character or characters, for a list box or a drop-down list box, you can choose whether to
search based on a single character or multiple characters. The control scrolls to the first item that begins with that character or
characters.

For drop-down and simple combo boxes, no choice is necessary. Drop-down and simple combo boxes always perform a
multiple-character search.

By supplying a search string, you can perform the search at run time.

Print Copy Close

To search for list items by typing characters

Designer Page

1. If you are searching a multiple-column fpCombo or fpList control, designate which column to search.

a. On the Search designer page, select the ColumnSearch property from the properties list box.

b. Type the number of the column in the box under ColumnSearch in the property value area.

2. For a drop-down list box or a list box, specify the type of search.

a. On the Search designer page, select the AutoSearch property from the properties list box.

b. Select any option button other than 0 - None under AutoSearch in the property value area.

3. At run time,

a. If you want to scroll the list to the first matching list item, set the fpCombo or fpList controls TopIndex property to the
value of the SearchIndex property.

If you want to scroll to the first matching list item and select it, set the ListIndex property to the value of the
SearchIndex property.

b. Set the Action property to 0 (Search) to perform the search.

Print Copy Close

To search for list items by typing characters

Browser/Code

1. If you are searching a multiple-column fpCombo or fpList control, set the ColumnSearch property to designate which
column to search.

2. For a drop-down list box or a list box, set the AutoSearch property to a value other than 0 (None).

3. At run time,

a. If you want to scroll the list to the first matching list item, set the fpCombo or fpList controls TopIndex property to the
value of the SearchIndex property.

If you want to scroll to the first matching list item and select it, set the ListIndex property to the value of the
SearchIndex property.

b. Set the Action property to 0 (Search) to perform the search.

Print Copy Close

To search for list items by supplying a search string

Designer Page

1. If you want to consider case when searching,

a. On the Search designer page, select the SearchIgnoreCase property from the property list box.

b. Select the False option button under SearchIgnoreCase in the property value area.

2. If you are searching a multiple-column fpCombo or fpList control, designate which column to search.

a. On the Search designer page, select the ColumnSearch property from the properties list box.

b. Type the number of the column in the box under ColumnSearch in the property value area.

3. Specify whether the search must find an exact match.

a. Select the SearchMethod property from the properties list box.

b. Select the appropriate option button to specify whether the search must find an exact match under SearchMethod in
the property value area.

4. Specify the search text.

a. Select the SearchText property from the properties list box.

b. Type the search string in the box under SearchText in the property value area.

5. At run time,

a. Set the Action property to 0 (Search) to perform the search.

b. If you want to scroll the list to the first matching list item, set the fpCombo or fpList controls TopIndex property to the
value of the SearchIndex property.

If you want to scroll to the first matching list item and select it, set the ListIndex property to the value of the
SearchIndex property.

Print Copy Close

To search for list items by supplying a search string

Browser/Code

1. If you want to consider case when searching, set the SearchIgnoreCase property to False.

2. If you are using a multiple-column fpCombo or fpList control, designate which column to search with the ColumnSearch
property.

3. Specify whether the search must find an exact match with the SearchMethod property.

4. At run time,

a. Specify the search string with the SearchText property.

b. Set the Action property to 0 (Search) to perform the search.

c. If you want to scroll the list to the first matching list item, set the fpCombo or fpList controls TopIndex property to the
value of the SearchIndex property.

If you want to scroll to the first matching list item and select it, set the ListIndex property to the value of the
SearchIndex property.

Customizing the Appearance of Selected Items

Designer Page Instructions

Browser/Code Instructions

Overview

You can customize the way the control displays selected items in the list. You can specify the background color; pictures and
picture alignment; text color, three-dimensional appearance, and alignment; and appearance of lines in the control.

Print Copy Close

To customize the appearance of selected items

Designer Page

1. On the List or Line subtab of the ApplyTo designer page, from the List Apply To drop-down list box, select 4 - Sel Rows.

2. Follow the instructions in the appropriate topic listed in the following table.
For more information on . . . See . . .
Text color, appearance, and alignment Working with Text and Graphics
Pictures and picture alignment Working with Text and Graphics
Lines Customizing Lines
Background color Changing the Background Color

Print Copy Close

To customize the appearance of selected items

Browser/Code

1. Set the ListApplyTo property to 4 (Sel Rows).

2. Follow the instructions in the appropriate topic listed in the following table.
For more information on . . . See . . .
Text color, appearance, and alignment Working with Text and Graphics
Pictures and picture alignment Working with Text and Graphics
Lines Customizing Lines
Background color Changing the Background Color

Hiding the Focus Rectangle Around Selected Items

Designer Page Instructions

Browser/Code Instructions

Overview

By default, a focus rectangle is drawn around the selected item. You can choose to have the control not display the focus
rectangle.

Tip If you choose to display a three-dimensional appearance for list items, the list item might be more distinct if the focus
rectangle is not displayed.

Print Copy Close

To not display the focus rectangle around selected items

Designer Page

1. On the Miscellaneous designer page, select the SelDrawFocusRect property from the property list box.

2. Select the False option button under SelDrawFocusRect in the property value area.

Print Copy Close

To not display the focus rectangle around selected items

Browser/Code

Set the SelDrawFocusRect property to False.

Wrapping List Items in a Single-Column Control

Designer Page Instructions

Browser/Code Instructions

Overview

In a single-column fpCombo or fpList control, you can arrange list items in wrapping columns, filling the first column, then the
second, and so on. The number of columns depends on the number of items, the width of the control, and the width of each
wrapping column. The wrapped list cannot extend beyond the height of the control. The control displays vertical scroll bars to
extend the data beyond the width of the control.

Caution When you set the WrapList property to True to arrange list items in wrapping columns, all multiple-column support is
disabled and the designated-column property settings are ignored.

The following examples show the same list. This first list box shows the default single-column list.

This second list box shows the same list with three wrapping columns.

Print Copy Close

To wrap list items in a single-column control

Designer Page

1. Define the width of the wrapped columns.

a. On the Misc subtab of the Appearance designer page, select the WrapWidth property from the properties list box.

b. Type the width of the wrapping columns in the box under WrapWidth in the property value area.

If you do not specify a width, the default column width applies.

2. Specify that you want the list to wrap in columns.

a. Select the WrapList property from the properties list box.

b. Select the True option button under WrapList in the property value area.

When you set the WrapList property to True, all multiple-column support is disabled and the designated-column
property settings are ignored.

Print Copy Close

To wrap list items in a single-column control

Browser/Code

1. Specify the width of the wrapping columns with the WrapWidth property.

If you do not specify a width, the default column width applies.

2. Set the WrapList property to True.

When you set the WrapList property to True, all multiple-column support is disabled and the designated-column property
settings are ignored.

Working with Databases
Notes

These instructions are for Visual Basic users only. If you want to perform data binding in a different
development environment, please consult the documentation for that environment.

The list portions of fpCombo and fpList controls are designed for viewing data. They are read-only
and cannot change values in the database table. However, information in the edit field of the fpCombo control can change values in
the database table.

Binding a Control to a Database

Binding Columns to Fields in a Database

Adding Data to Nonbound Columns

Binding to a Data Control on a Different Form

Binding a Control to a Database

Browser Instructions

Overview

Using Visual Basic, you can bind ActiveX and VBX List Pro controls to databases and display the database records.

When you bind a List Pro control to a database using the default settings, the control displays all the available fields. The control
automatically determines the number of columns to display and displays the fields in columns. The field headers are displayed
as the column headers. In the fpCombo control, the edit field displays the fields run together with a column separator character
between fields.

This topic describes how to bind a List Pro control to a database (or databases) and display either all fields in the list or one field
in the list. Binding Columns to Fields in a Database, describes how to bind specific columns in multiple-column controls to
specific fields in the database table.

You can bind the edit field and the list in a combo box to different databases and different fields. In addition, you can
synchronize the Data control and the selected item in the List Pro control.

You can customize a multiple column fpCombo or fpList control to display specific fields. For more information about creating
multiple-column fpCombo and fpList controls, see Creating Multiple Columns. For more information about binding columns to
specific fields, see Binding Columns to Fields in a Database.

The List Pro controls can be bound to any field type except binary. For more information, see Data Binding.

Print Copy Close

To bind an fpCombo or fpList control to a database

Browser(VB only)

1. Create one or more Data controls on your form.

2. Bind the Data controls to databases with the DatabaseName property.

3. Bind the Data controls to specific database tables with the RecordSource property.

4. Create an fpCombo or fpList control on your form.

Note If you are binding your fpCombo or fpList control to a Data control on a different form, steps 5 and 6 are different. For
instructions, see Binding to a Data Control on a Different Form.

5. Set the DataSource property to the name of a Data control.

This step binds the database to the edit field of the combo box.

6. To bind the combo box list to a Data control, set the DataSourceList property to the name of a Data control.

7. If the database contains more than one data field and you want to designate one field for the control (creating a single-
column control),

a. For a list box, set the DataField property to determine which field is displayed in the list.

b. For a combo box,

i. Set the DataField property to determine which field in the database bound to the edit field receives data from the
control.

ii. If you bound the combo box list to a Data control in step 6, set the DataFieldList property to determine which field
in the database bound to the list field receives data from the control.

If you do not set the DataField or DataFieldList property, the fpCombo or fpList control is bound to all the fields for
each record.

8. Set the method for synchronizing the Data control and the selected item in the fpCombo or fpList control with the DataSync
property.

Binding Columns to Fields in a Database

Designer Page Instructions

Browser Instructions

Overview

This topic describes how to bind specific columns in multiple-column controls to specific fields in the database table.

With a multiple-column fpCombo or fpList control, you can bind each column to a separate database field. The resulting list
shows one record per row, with each column displaying the value stored in the field to which it is bound. You do not have to
display all fields in the database.

By default, columns are automatically sized based on the length of the largest string in the corresponding bound database field.
You can change how this occurs.

You can add data to bound fpCombo and fpList controls that is displayed in columns that are not bound to the database. For
more information, see Adding Data to Nonbound Columns.

Print Copy Close

To bind columns to separate fields

Designer Page

1. Create and bind the Data and List Pro controls.

a. Using the property browser, create one or more Data controls on your form.

b. Bind the Data controls to databases with the DatabaseName property.

c. Bind the Data controls to specific database tables with the RecordSource property.

d. Create an fpCombo or fpList control on your form.

Note If you are binding your fpCombo or fpList control to a Data control on a different form, steps 1.e and 1.f are
different. For instructions, see Binding to a Data Control on a Different Form.

e. Set the DataSource property to the name of a Data control.

This step binds the database to the edit field of the combo box.

f. To bind the combo box list to a Data control, set the DataSourceList property to the name of a Data control.

2. Create a multiple-column control.

a. On the Specific subtab of the Columns designer page, select the Columns property from the properties list box.

b. Type the number of columns in the box under Columns in the property data area.

3. Set the method for synchronizing the Data control and the selected item.

a. On the General subtab of the Data Binding designer page, select the DataSync property from the properties list box.

b. Select the appropriate option button under DataSync in the property value area.

4. Assign each column a field.

a. On the Column subtab of the Data Binding designer page, either select the column from the Col, Col Name, or Col ID
drop-down list box or click the column in the preview area to specify the column to be bound.

b. Select the ColDataField property from the properties list box.

c. Type the database field name or number whose values you want to display in the column in the box under
ColDataField in the property value area.

d. Repeat steps 4.a 4.c for all columns to be bound.

5. For a combo box, specify the fields to be bound to the edit field and determine which columns value from the list is written
to the database.

a. On the Column subtab of the Data Binding designer page, select the ColumnEdit property in the properties list box.

b. Type the number of the column that you want to appear in the edit field in the box under ColumnEdit in the property
value area.

c. Select the ColumnBound property in the properties value area.

d. Type the number of the column whose values are written to the database in the box under ColumnBound in the
property value area.

e. In the property browser, set the DataField property to determine which field in the database bound to the edit field
receives the value designated by the ColumnBound property.

6. Customize the columns.

For example, create headers or change the column widths (after setting the DataAutoSizeCols property to 0 (Off)). For
more information about customizing headers, see Providing Column Headers. For more information about changing
column width, see Specifying the Column Width.

Print Copy Close

To bind columns to separate fields

Browser(VB only)

1. Create one or more Data controls on your form.

2. Bind the Data controls to databases with the DatabaseName property.

3. Bind the Data controls to specific database tables with the RecordSource property.

4. Create an fpCombo or fpList control on your form.

Note If you are binding your fpCombo or fpList control to a Data control on a different form, steps 5 and 6 are different. For
instructions, see Binding to a Data Control on a Different Form.

5. Set the DataSource property to the name of a Data control.

This step binds the database to the edit field of the combo box.

6. To bind the combo box list to a Data control, set the DataSourceList property to the name of a Data control.

7. Create a multiple-column control by specifying the number of columns with the Columns property.

8. Set the method for synchronizing the Data control and the selected item in the fpCombo or fpList control with the DataSync
property.

9. At run time,

a. Specify the column to be bound with the Col property.

b. Designate the database field whose values you want to display in the column with the ColDataField property.

Note You must set the Col and ColDataField properties in an event procedure that occurs after the Columns
property is set. You can set all these properties in the Form_Load procedure.

c. Repeat steps 9.a and 9.b for all columns to be bound.

10. For a combo box, specify the fields to be bound to the edit field and determine which columns value from the list is written
to the database.

a. To display values in the edit field for a specific column in the list, set the ColumnEdit property.

b. To determine which columns value from the list is written to the database, set the ColumnBound property.

c. To determine which field in the database bound to the edit field receives the value designated by the ColumnBound
property, set the DataField property.

11. Customize the columns.

For example, create headers with the ColumnHeaderShow property or change the column widths with the ColWidth
property (after setting the DataAutoSizeCols property to 0 (Off)). For more information about customizing headers, see
Providing Column Headers. For more information about changing the column width, see Specifying the Column Width.

Adding Data to Nonbound Columns

Designer Page Instructions

Browser Instructions

Overview

You can insert columns of nonbound data into an fpCombo or fpList control. That is, you can customize the control to display
data along with the data displayed from a bound database.

Print Copy Close

To add data to nonbound columns in a bound fpCombo or fpList control

Designer Page

1. Create and bind the Data and List Pro controls.

a. Using the property browser, create one or more Data controls on your form.

b. Bind the Data controls to databases with the DatabaseName property.

c. Bind the Data controls to specific database tables with the RecordSource property.

d. Create an fpCombo or fpList control on your form.

e. Set the DataSource property to the name of a Data control.

This step binds the database to the edit field of the combo box.

f. To bind the combo box list to a Data control, set the DataSourceList property to the name of a Data control.

2. Create a multiple-column control.

a. On the Specific subtab of the Columns designer page, select the Columns property from the properties list box.

b. Type the number of columns in the box under Columns in the property data area.

3. Set the method for synchronizing the Data control and the selected item.

a. On the General subtab of the Data Binding designer page, select the DataSync property from the properties list box.

b. Select the appropriate option button under DataSync in the property value area.

4. Assign each column a field.

a. On the Column subtab of the Data Binding designer page, either select the column from the Col, Col Name, or Col ID
drop-down list box or click the column in the preview area to specify the column.

b. Select the ColDataField property from the properties list box.

c. Type the database field name or number in the box under ColDataField in the property value area.

d. Repeat steps 4.a 4.c for all columns to be bound.

5. Add data to nonbound columns.

a. At run time, in the DataLoaded event for the control, specify the column to contain the nonbound data with the Col
property.

b. Fill in each row of the column by setting the Row and ColList properties for each data item.

Print Copy Close

To add data to nonbound columns in a bound fpCombo or fpList control

Browser (VB only)

1. Create one or more Data controls on your form.

2. Bind the Data control to a database with the DatabaseName property.

3. Bind the Data control to a specific database table with the RecordSource property.

4. Create an fpCombo or fpList control on your form.

5. Set the DataSource property to the name of the Data control.

This step bind the database to the edit field of a combo box.

6. To bind the combo box list to a Data control, set the DataSourceList property to the name of a Data control.

7. Create a multiple-column control by specifying the number of columns with the Columns property.

8. Set the method for synchronizing the Data control and the selected item in the fpCombo or fpList control with the DataSync
property.

9. At run time,

a. Specify the column to be bound with the Col property.

b. Designate the database field whose values you want to display in the list with the ColDataField property.

Note You must set the Col and ColDataField properties in an event procedure that occurs after the Columns
property is set. You can set all these properties in the Form_Load procedure.

c. Repeat steps 9.a and 9.b for all columns to be bound.

10. Add data to nonbound columns.

a. At run time, in the DataLoaded event for the control, specify the column to contain the nonbound data with the Col
property.

b. Fill in each row of the column by setting the Row and ColList properties for each data item.

Binding to a Data Control on a Different Form

Browser Instructions

Overview

Note This procedure is valid for the VBX controls only.

You can bind an fpCombo or fpList control to a Data control on a different form by using the ListPro_GetControlhWnd function.
For combo boxes, you can bind the edit field separately from the list, and you can bind each to a Data control on different forms.

Print Copy Close

To bind to a Data control on a different form

Browser (VBX only)

1. Include the LP.BAS file in your project.

2. Create a Data control on a form.

3. Bind the Data control to a database with the DatabaseName property.

4. Bind the Data control to a specific database table with the RecordSource property.

5. On a different form, create an fpCombo or fpList control.

6. At run time, define the DataSourcehWnd property for the control as the value of the ListPro_GetControlhWnd function for
the Data control on the other form.

This step binds the database to the edit field of the combo box.

The following line defines the data source for the fpList control as the Data1 control on Form2.

fpList1.DataSourcehWnd = ListPro_GetControlhWnd(Form2.Data1)
7. To bind the list portion of a combo box to a Data control on a different form, define the DataSourcehWndList property at run

time as the value of the ListPro_GetControlhWnd function for the Data control on the other form.

The following line defines the data source for the list portion of a combo box as the Data1 control on Form2.

fpCombo1.DataSourcehWndList = ListPro_GetControlhWnd(Form2.Data1)
8. If you have a single-column control, to designate the database fields for the control,

a. For a list box, set the DataField property to determine which field is displayed in the list.

b. For a combo box, set the DataField property to determine which field in the database bound to the edit field receives
data from the control.

If you bound the combo box list to a Data control in step 7, set the DataFieldList property to determine which field in
the database bound to the list field receives data from the control.

If you do not set the DataField or DataFieldList property, the fpCombo or fpList control is bound to all the fields for
each record. For more information, see Binding a Control to a Database.

9. If you have a multiple-column control, to designate the database fields for the control,

a. Specify the number of columns for the fpCombo or fpList control with the Columns property.

b. At run time,

i. Specify the column to be bound with the Col property.

ii. Designate the database field whose values you want to display in the column with the ColDataField property.

Note You must set the Col and ColDataField properties in an event procedure that occurs after the Columns
property is set. You can set all these properties in the Form_Load procedure.

iii. Repeat steps 9.b.i and 9.b.ii for all columns to be bound.

If you do not set the ColDataField property, the fpCombo or fpList control is bound to all the fields for each record. For
more information, see Binding Columns to Fields in a Database.

Using Virtual Mode

Designer Page Instructions

Browser/Code Instructions

Overview

If the list has a large number of items (for example, if the control is bound to a large database), the control must read all items
into memory before displaying the list. Virtual mode speeds up the performance of the fpCombo or fpList control because the
control reads only the number of items necessary to fill the portion of the list that is displayed. For more information, see Virtual
Mode.

You can specify how many rows are read into memory and how many rows are read into the buffer area at a time. In addition,
you can display a customized vertical scroll bar to use with virtual mode.

Print Copy Close

To use virtual mode

Designer Page

1. Turn on virtual mode.

a. On the Virtual Mode designer page, select the VirtualMode property from the properties list box.

b. Select the True option button under VirtualMode in the property value area.

2. Specify the number of items to be read into memory (the size of the "page").

a. Select the VirtualPageSize property from the properties list box.

b. Type the number of items to be read into memory in the box under VirtualPageSize in the property value area.

3. Specify the number of virtual pages to be read into the buffer area at one time.

a. Select the VirtualPagesAhead property from the properties list box.

b. Type the number of virtual pages in the box under VirtualPagesAhead in the property value area.

4. If you want to use the default scroll bar,

a. Select the VRowCount property from the properties list box.

b. Type the total number of database records in the box under VRowCount in the property value area.

Providing the number of records enables the scroll box to reflect the position of the current record without reading
ahead to the end of the table.

If you do not know the exact number of database records, type a value that approximates the number of records in the
box under VRowCount in the property value area.

5. If you want to use a custom scroll bar,

a. Select the VScrollSpecial property in the properties list box.

b. Select the True option button under VScrollSpecial in the property value area.

c. If you want to remove some or all of the default scroll arrows,

i. Select the VScrollSpecialType property in the properties list box.

ii. Type the appropriate value in the box under VScrollSpecialType in the property value area.

Print Copy Close

To use virtual mode

Browser/Code

1. Set the VirtualMode property to True to turn on virtual mode.

2. Specify the number of items to be read into memory (the size of the "page") with the VirtualPageSize property.

3. Specify the number of virtual pages to be read into the buffer area at one time with the VirtualPagesAhead property.

4. If you want to use the default scroll bar, set the VRowCount property to the total number of database records.

Providing the number of records enables the scroll box to reflect the position of the current record without reading ahead to
the end of the table.

If you do not know the exact number of database records, set the VRowCount property to a value that approximates the
number of records.

5. If you want to use a custom scroll bar,

a. Set the VScrollSpecial property to True.

b. If you want to remove some or all of the default scroll arrows, set the VScrollSpecialType property.

Using the FarPoint Property Designer

Overview

Starting the FarPoint Property Designer

Using the FarPoint Property Designer Pages

FarPoint Property Designer Pages

Overview
Note The FarPoint Property Designer can be used only with the List Pro ActiveX or VBX controls.

You can use the FarPoint Property Designer to design the look of the fpCombo or fpList control. You can set most design-time
and some run-time properties using the designer. By setting properties at design time instead of run time, you can view the run-
time appearance of the control and your application will run faster because less code is being executed during the Form_Load
event.

Specific instructions for using the FarPoint Property Designer to create and customize List Pro controls are included in the How-
to Guides. Follow the instructions marked "Designer Page."

The FarPoint Property Designer pages are collections of tabs that present most design-time and some run-time properties for
the List Pro controls. The FarPoint Property Designer pages are organized by control characteristics. Each page contains one or
more properties that let you set characteristics of the List Pro controls.

The FarPoint Property Designer creates a "preview" of the List Pro control and displays it at the bottom of each page. You can
populate the control with "sample" data or with "live" data. When you click the OK button, all changes made in the designer pages
are applied to the selected List Pro control on your form or dialog.

Notes

You will not see the effect of most property changes unless the "preview" control is populated with
data.

If you add data using the FarPoint Property Designer and you are displaying the sample data, you will
not see the "live" data. If you add data and you are not displaying the sample data, you will see the "live" data.

Initially two rows of sample data are provided. Use the ListCount property on the Add Data designer
page to add more sample data rows to the preview area.

Often, the designer page will have subtabs. As shown in the preceding figure, the Columns page has two subtabs, Specific and
General.

If you are required to specify a cell, column, group, or row before setting a property, a box is provided for the choice or you can
click the cell, column, group, or row in the preview area. When you click a cell, column, or group in the preview area, it will not
be highlighted. However, the boxes in the column, row, or group selection area will reflect where you clicked. For example, if you
click on the cell (2, 3), the Col box will show the value "2" and the Row box will show the value "3".

Each designer page contains standard buttons: OK, Cancel, Apply, and Help. Choose the OK button to close the designer page
window and to apply any changes you have made. Choose the Cancel button to close the window without applying any
changes. Choose the Apply button to apply your changes without closing the window. Choose the Help button to access
context-sensitive help about the current designer page. Note that any time you change the active designer page, the changes
you have made on that page are applied to the control.

Notes for ActiveX users

The FarPoint Property Designer pages replace the ActiveX property pages.

Stock properties such as Enabled and BackColor are often provided on designer pages. Most design-
time custom properties are provided as well.

Standard extender properties are not provided on FarPoint Property Designer pages because they
are not necessarily supported by all containers.

Both the fpCombo and fpList controls provide 12 designer pages: Custom, Columns, Groups, ApplyTo, Add Data, Appearance,
Data Binding, Virtual Mode, Merge/Join, Sort, Search, and Miscellaneous. For detailed information on each page, see FarPoint
Property Designer Pages.

Starting the FarPoint Property Designer
Before you use the FarPoint Property Designer, you should be familiar with the List Pro control features described in List Pro
Features.

To start the FarPoint Property Designer

1. If you are using the List Pro ActiveX control, display the pop-up menu by clicking the List Pro control with the right mouse
button and then choose Property Designer.

2. If you are using the List Pro VBX control, place a List Pro control on the form or dialog and perform one of the following:

Double-click the fpPropertyDesigner property in the Properties window or dialog box.

Select a List Pro control and press F4 twice.
The FarPoint Property Designer pages appear.

Using the FarPoint Property Designer Pages
Refer to the following figure for identification of specific areas of the designer page.

To use the FarPoint Property Designer pages

1. Select a tab.

2. Click a property in the properties list box.

3. If you chose the ApplyTo designer page and either the List or Line subtab, select the area to which the property applies
from the Applies To drop-down list box.

4. If you need to set the column or group, select the column or group by number, name, or identification number.

You can also click the group or column in the preview area.

5. If you need to set the row, enter the number in the Row box.

You can also click the row in the preview area.

6. If you need to specify a cell, select the column by number, name, or identification number and enter the row number in the
Row box.

You can also click the cell in the preview area.

7. Enter a value or select an option in the property value area.

FarPoint Property Designer Pages
The fpCombo and fpList controls provide 12 designer pages for customizing your interface.

Custom

Columns

Groups

ApplyTo

Add Data

Appearance

Data Binding

Virtual Mode

Merge/Join

Sort

Search

Miscellaneous

Custom Designer Page
The Custom designer page contains an alphabetical list of all properties that you can set using the FarPoint Property Designer.
You set properties on this page much like you set properties with the property browser.

The following items are available on the Custom designer page:

The designer page referenced in the previous paragraph is unique to the fpList control. If you want to view the Custom
designer page for the fpCombo control, click here.

Custom Designer Page
Item on designer page Description Corresponding property
Properties list box N/A Most FarPoint custom properties
Property value Displays option buttons, boxes,

color charts, or preview areas
depending on the property
chosen

N/A

Columns Designer Page
The Columns designer page lets you set most column-related properties. The Columns designer page contains two subtabs,
Specific and General.

Specific

General

Columns Designer Page Specific Subtab
The following items are available on the Columns designer page and the Specific subtab:

Columns Designer Page Specific Subtab
Item on designer page Description Corresponding property
Properties list box Displays properties needed to set up

columns in the List Pro control
ColFormat
ColHeaderText
ColHide
ColID
ColLevel
ColLevelHeight
ColLockResize
ColName
ColParentGroup
ColPos
ColPosInParent
Columns
ColWidth

Property value Displays option buttons and boxes
depending on the property chosen

N/A

Insert Column button Inserts a column to the left of the
currently selected column

Action - Insert Column

Delete Column button Deletes the currently selected
column

Action - Delete Column

Add Column button Adds a column to the right of the last
column

Action - Add Column

Clone Column button Copies the property settings of the
currently selected column and
inserts the clone column to the right
of the currently selected column
Note: No data is copied.

Action - Clone Column

Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by
identification number

ColFromID

Columns Designer Page General Subtab
The following items are available on the Columns designer page and the General subtab:

The subtab referenced in the previous paragraph is unique to the fpList control. If you want to view the General subtab for
the fpCombo control, click here.

Columns Designer Page General Subtab
Item on designer page Description Corresponding property
Properties list box Displays miscellaneous column

properties
AllowColDragDrop
AllowColResize
ColsFrozen
ColumnEdit (fpCombo only)
ColumnHeaderHeight
ColumnHeaderShow
ColumnLevels
ColumnSeparatorChar
ColumnWidthScale

Property value Displays option buttons or boxes
depending on the property chosen

N/A

Groups Designer Page
The Groups designer page lets you set all group-related properties. The Groups designer page contains two subtabs, Specific

and General.

Specific

General

Groups Designer Page Specific Subtab
The following items are available on the Groups designer page and the Specific subtab:

Groups Designer Page Specific Subtab
Item on designer page Description Corresponding property
Properties list box Displays properties needed to set

up groups in the List Pro control
Groups
GrpHeaderText
GrpHide
GrpID
GrpLockResize
GrpName
GrpParentGroup
GrpPos
GrpPosInParent
GrpWidth

Property value Displays option buttons or boxes
depending on the property chosen

N/A

Insert Group button Inserts a group to the right of the
currently selected group

Action - Insert Group

Delete Group button Deletes the currently selected
group

Action - Delete Group

Add Group button Adds a group to the right of the last
column

Action - Add Group

Individual
Grp drop-down list box

Specifies the group number Grp

Individual
Grp Name drop-down list box

Specifies the group by name GrpFromName

Individual
Grp ID drop-down list box

Specifies the group by identification
number

GrpFromID

Groups Designer Page General Subtab
The following items are available on the Groups designer page and the General subtab:

Groups Designer Page General Subtab
Item on designer page Description Corresponding property
Properties list box Displays miscellaneous group

properties
AllowGrpDragDrop
AllowGrpResize
GroupHeaderHeight
GroupHeaderShow
GrpsFrozen

Property value Displays option buttons or boxes
depending on the property chosen

N/A

ApplyTo Designer Page
The ApplyTo designer page lets you apply designated-list and designated-line properties to different parts of the control. The
ApplyTo designer page contains two subtabs, List and Line.

List

Line

ApplyTo Designer Page List Subtab
The following items are available on the ApplyTo designer page and the List subtab:

ApplyTo Designer Page List Subtab
Item on designer page Description Corresponding property
Properties list box N/A AlignH

AlignV
BackColor
Font
FontEmpty
ForeColor
List3DText
List3DTextHighlightColor
List3DTextOffset
List3DTextShadowColor
MultiLine
Picture
PictureAlignH
PictureAlignV
PictureSel
TextOrientation

Property value Displays option buttons, boxes, color
charts, or preview areas depending
on the property chosen

N/A

List Apply To drop-down list
box

Specifies the part of the control to
which the property is applied

ListApplyTo

The following items are displayed as appropriate when List Apply To is set to 9 - Single Col
Header, 10 - Single Group Header, 11 - Single Group, or 12 - Single Item:
Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by identification
number

ColFromID

Individual
Grp drop-down list box

Specifies the group number Grp

Individual
Grp Name drop-down list box

Specifies the group by name GrpFromName

Individual
Grp ID drop-down list box

Specifies the group by identification
number

GrpFromID

Row box Specifies the row Row

ApplyTo Designer Page Line Subtab
The following items are available on the ApplyTo designer page and the Line subtab:

ApplyTo Designer Page Line Subtab
Item on designer page Description Corresponding property
Properties list box N/A Line3DDark

Line3DLight
Line3DWidth
LineColor
LineStyle

LineWidth
Property value Displays option buttons, boxes, or

color charts, depending on the
property chosen

N/A

List Apply To drop-down list
box

Specifies the part of the control to
which the property is applied

ListApplyTo

Line Apply To drop-down list
box

Specifies the line to which the
property is applied

LineApplyTo

The following items are displayed as appropriate when List Apply To is set to 9 - Single Col
Header, 10 - Single Group Header, 11 - Single Group, or 12 - Single Item:
Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by
identification number

ColFromID

Individual
Grp drop-down list box

Specifies the group number Grp

Individual
Grp Name drop-down list box

Specifies the group by name GrpFromName

Individual
Grp ID drop-down list box

Specifies the group by
identification number

GrpFromID

Row box Specifies the row Row

Add Data Designer Page
The Add Data designer page lets you add data to the List Pro control.

The following items are available on the Add Data designer page:

The designer page referenced in the previous paragraph is unique to the fpList control. If you want to
view the Add Data designer pagefor the fpCombo control, click here.

Add Data Designer Page
Item on designer page Description Corresponding property
Properties list box N/A ColList

InsertRow
List
ListCount
Text (fpCombo only)

Property value Displays option buttons or boxes
depending on the property chosen

N/A

The following items are displayed when necessary:
Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by
identification number

ColFromID

Row box Specifies the row Row
Delete Row button Deletes the currently selected row Action

Appearance Designer Page
The Appearance designer page lets you customize the appearance of the List Pro control. The Appearance designer page
contains four subtabs, Border, Scroll, Color, and Misc.

Border

Scroll

Color

Misc

Appearance Designer Page Border Subtab
The following items are available on the Appearance designer page and the Border subtab:

The subtab referenced in the previous paragraph is unique to the fpList control. If you want to view
the Border subtab for the fpCombo control, click here.

Appearance Designer Page Border Subtab
Item on designer page Description Corresponding property
Properties list box N/A Appearance

BorderDropShadow
BorderDropShadowWidth
BorderStyle
BorderWidth
ThreeDFrameWidth
ThreeDInsideStyle
ThreeDInsideWidth
ThreeDOnFocusInvert
ThreeDOutsideStyle
ThreeDOutsideWidth

Property value Displays option buttons or boxes
depending on the property chosen

N/A

Appearance Designer Page Scroll Subtab
The following items are available on the Appearance designer page and the Scroll subtab:

Appearance Designer Page Scroll Subtab
Item on designer page Description Corresponding property
Properties list box N/A ScrollBarH

ScrollBarV
ScrollHInc
ScrollHScale

Property value Displays option buttons or boxes
depending on the property chosen

N/A

Appearance Designer Page Color Subtab
The following items are available on the Appearance designer page and the Color subtab:

The subtab referenced in the previous paragraph is unique to the fpList control. If you want to view
the Color subtab for the fpCombo control, click here.

Appearance Designer Page Color Subtab
Item on designer page Description Corresponding property
Properties list box N/A BorderColor

BorderDropShadowColor

BorderGrayAreaColor
GrayAreaColor (fpCombo only)
ListGrayAreaColor
ThreeDFrameColor
ThreeDInsideHighlightColor
ThreeDInsideShadowColor
ThreeDOutsideHighlightColor
ThreeDOutsideShadowColor

Property value Displays color charts N/A

Appearance Designer Page Misc Subtab
The following items are available on the Appearance designer page and the Misc subtab:

The subtab referenced in the previous paragraph is unique to the fpList control. If you want to view
the Miscellaneous subtab for the fpCombo control, click here.

Appearance Designer Page Misc Subtab
Item on designer page Description Corresponding property
Properties list box N/A ComboGap (fpCombo only)

EditHeight (fpCombo only)
ExtendCol
ExtendRow
HighestPrecedence
ListLeftOffset (fpCombo only)
ListWidth (fpCombo only)
MaxDrop (fpCombo only)
MaxEditLen (fpCombo only)
NoIntegralHeight
RowHeight
Style (fpCombo only)
WrapList
WrapWidth

Property value Displays option buttons or boxes
depending on the property chosen

N/A

The following item is displayed when necessary:
Row box Specifies the row Row

Data Binding Designer Page
The Data Binding designer page lets you set data binding properties. The Data Binding designer page contains two subtabs,
Columns and General.

Columns

General

Data Binding Designer Page Columns Subtab
The following items are available on the Data Binding designer page and the Columns subtab:

The subtab referenced in the previous paragraph is unique to the fpList control. If you want to view
the Columns subtab for the fpCombo control, click here.

Data Binding Designer Page Columns Subtab
Item on designer page Description Corresponding property
Properties list box N/A ColDataField

ColFormat
ColumnBound (fpCombo only)
ColumnEdit (fpCombo only)

Property value Displays option buttons or boxes
depending on the property
chosen

N/A

The following items are displayed when necessary:
Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by
identification number

ColFromID

Data Binding Designer Page General Subtab
The following items are available on the Data Binding designer page and the General subtab:

The subtab referenced in the previous paragraph is unique to the fpList control. If you want to view
the General subtab for the fpCombo control, click here.

Data Binding Designer Page General Subtab
Item on designer page Description Corresponding property
Properties list box N/A DataAutoHeadings

DataAutoSizeCols
DataFieldList (fpCombo only)
DataSync

Property value Displays option buttons or boxes
depending on the property chosen

N/A

Virtual Mode Designer Page
The Virtual Mode designer page lets you specify whether virtual mode is on or off and defines how the control looks during
virtual mode.

The following items are available on the Virtual Mode designer page:

Virtual Mode Designer Page
Item on designer page Description Corresponding property
Properties list box N/A VirtualMode

VirtualPagesAhead

VirtualPageSize
VRowCount
VScrollSpecial
VScrollSpecialType

Property value Displays option buttons or boxes
depending on the property chosen

N/A

Merge/Join Designer Page
The Merge/Join designer page lets you specify which columns or rows are merged and which cells are joined.

The following items are available on the Merge/Join designer page:

Merge/Join Designer Page
Item on designer page Description Corresponding property
Properties list box N/A ColMerge

JoinID
MergeAdjustView
RowMerge

Property value Displays option buttons or boxes
depending on the property chosen

N/A

The following items are enabled when necessary:
Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by
identification number

ColFromID

Row box Specifies the row number Row

Sort Designer Page
The Sort designer page lets you specify the parameters necessary to perform a sort on the list items in the control.

The following items are available on the Sort designer page:

Sort Designer Page
Item on designer page Description Corresponding property
Properties list box N/A ColSortDataType

ColSorted
ColSortSeq
Sorted
SortState

Property value Displays option buttons or boxes
depending on the property chosen

N/A

The following items are enabled when necessary:
Individual
Col drop-down list box

Specifies the column number Col

Individual
Col Name drop-down list box

Specifies the column by name ColFromName

Individual
Col ID drop-down list box

Specifies the column by
identification number

ColFromID

Search Designer Page
The Search designer page lets you specify the parameters necessary to perform a search of the list items in the control.

The following items are available on the Search designer page:

Search Designer Page
Item on designer page Description Corresponding property
Properties list box N/A AutoSearch

ColumnSearch
SearchIgnoreCase
SearchMethod

Property value Displays option buttons or boxes,
depending on the property chosen

N/A

Miscellaneous Designer Page
The Miscellaneous designer page lets you set properties that enable certain List Pro events, that make the control a read-only
control, specify whether a focus rectangle is drawn around selected items, and specify the maximum number of items that can
be selected in an fpList control.

The following items are available on the Miscellaneous designer page:

The designer page referenced in the previous paragraph is unique to the fpList control. If you want to
view the Miscellaneous designer page for the fpCombo control, click here.

Miscellaneous Designer Page
Item on designer page Description Corresponding property
Properties list box N/A EnableKeyEvents

EnableMouseEvents
EnableTopChangeEvent
MultiSelect (fpList only)
ReadOnly
SelDrawFocusRect
SelMax (fpList only)

Property value Displays option buttons or boxes,
depending on the property chosen

N/A

Custom

Custom fpCombo Control

Columns Specific Subtab

Columns General Subtab

Columns General Subtab

fpCombo Control

Groups Specific Subtab

Groups General Subtab

ApplyTo List Subtab

ApplyTo Line Subtab

Add Data

Add Data fpCombo Control

Appearance Border Subtab

Appearance Border Subtab

fpCombo Control

Appearance Scroll Subtab

Appearance Color Subtab

Appearance Color Subtab

fpCombo Control

Appearance Misc Subtab

Appearance Misc Subtab

fpCombo Control

Data Binding Column Subtab

Data Binding Column Subtab

fpCombo Control

Data Binding General Subtab

Data Binding General Subtab

fpCombo Control

Virtual Mode

Merge/Join

Sort

Search

Miscellaneous

Miscellaneous fpCombo Control

Working with Columns
For an overview about columns and how they work, see Columns, Rows, and Cells.

Creating Multiple Columns

Referencing a Column

Applying Properties to a Specific Column

Creating Levels of Columns Within a Row

Making a Column a Child of a Group

Providing Column Headers

Resizing Columns

Customizing Columns

Moving Columns in the Control

Cloning Columns

Joining Cells

Merging Columns or Rows

Creating Multiple Columns

Designer Page Instructions

Browser/Code Instructions

Overview

A multiple column fpCombo or fpList control has a list that contains one or more columns.

The edit field of a multiple-column fpCombo control displays all the values in the selected row, separated by the column
separator character (the default is a tab character). For best readability, display one column in the edit field.

If you have multiple columns, you can display those columns on different levels within a row. A column can also occupy more
than one level in a row. For more information on creating multiple levels in a row, see Creating Levels of Columns Within a Row.

Print Copy Close

To create a multiple-column fpCombo or fpList control

Designer Page

1. Specify the number of columns in the control.

a. On the Specific subtab of the Columns designer page, select the Columns property from the properties list box.

b. Type the number of columns in the box under Columns in the property value area.

2. If you want to display only one column in the edit field,

a. On the Custom designer page, select the ColumnEdit property from the properties list box.

b. Type the column number in the box under ColumnEdit in the property value area.

Print Copy Close

To create a multiple-column fpCombo or fpList control

Browser/Code

1. Set the Columns property to the number of columns you want to create.

2. If you want to display only one column in the edit field, specify the column with the ColumnEdit property.

Referencing a Column

Designer Page Instructions

Code Instructions

Overview

List Pro controls have three methods to reference a specific column: index number, name, and identifier number.

Column index numbers are assigned by the control and are based on the physical position of the column in the control. These
numbers are zero-based, and columns are numbered from left to right and top to bottom within their parent group, if any, and
then within the control. If you move or insert a column, the control changes the index numbers. Use the Col property to
reference columns by their index numbers.

You can also define a unique name or identifier number for each column. If you use a column name or identifier number to
specify a column, the properties you set for a particular column are applied to that column, regardless of its position in the
control. Use the ColName property to define column names or the ColID property to define column identifier numbers. Typically,
you should use either the name or the identifier number, but not both.

For example, assume you define four columns in your control as follows.
Col ColID ColName
0 1 Monday
1 2 Tuesday
2 3 Wednesday
3 4 Thursday
The control appears as shown below.

bmc 5colref1.mrb}

As the first example, assume you move the third column (Col = 2) to the far left side of the control. The control now appears as
shown below.

Note that the column index numbers changed but the column identifier numbers and column names did not change.
As the second example, assume you create two parent groups and you make the first, second, and fourth columns children of the
first group. You make the third column a child of the second group. Also assume the fourth column is put on the second level. The
control appears as shown below.

Note that the column index numbers changed and are numbered from left to right and top to bottom within their parent group.
Once you have specified the number of columns in the control and created identifier numbers or names, you can specify custom
features for each column individually. For more information on setting properties for specified columns, see Applying Properties to a
Specific Column.

Print Copy Close

To reference a column

Designer Page

1. Specify the column. On the Specific subtab of the Columns designer page, under Individual, select the column number
from the Col drop-down list box.

2. If you want to define a column identifier number,

a. Select the ColID property from the properties list box.

b. Type the identification number in the box under ColID in the property value area.

3. If you want to define a column name,

a. Select the ColName property from the properties list box.

b. Type the name in the box under ColName in the property value area.

4. Repeat steps 1 3 until all columns have been defined.
5. To specify the column to which an action or property applies, either select the column from the Col, Col Name, or Col ID
drop-down list box or click the column in the preview area.

Print Copy Close

To reference a column

Code

1. Specify the column with the Col property.

2. If you want to define a column identifier number, set the ColID property.

3. If you want to define a column name, set the ColName property.

4. Repeat steps 1 3 until all columns have been defined.
5. Specify the column to which an action or property applies with the Col, ColFromID, or ColFromName property.

Applying Properties to a Specific Column
Once you have specified the number of columns in the control and defined the column identifier number or name, you can use
the designated-column properties to perform an action on a specific column. Designated-column properties require that the Col,
ColFromID, or ColFromName property be set before using them.

The following table contains designated-column properties for the List Pro controls.
ColDataField ColList ColSortDataType
ColFormat ColLockResize ColSorted
ColHeaderText ColMerge ColSortSeq
ColHide ColParentGroup ColText
ColLevel ColPos ColWidth
ColLevelHeight ColPosInParent
If you want to use the designated-column properties in a List Pro control with only one column, you must set the Columns
property to 1 and the Col property to 0.

Creating Levels of Columns Within a Row

Designer Page Instructions

Browser/Code Instructions

Overview

Rows in a List Pro control can have multiple levels of columns. The number of levels you set applies to every row in the control.
For example, if you want two levels in one row in an fpList control, every row in the control has to have two levels.

For each column in a row, you can specify the level number and the height in levels. The height cannot exceed the total number of
levels in a row. The height of the column in levels applies to the same column in every row. For example, if you define column 1 to
be two levels high, column 1 is two levels high in every row. In the preceding example, each column is one level high.

The height of each level is equal to the row height. For example, if the control has three levels and the row height is set to 100
twips. Each level within the row is 100 twips high.

If you display column headers and you have multiple levels in the control, the column headers also appear on multiple levels.

To summarize, creating levels of columns is a three step process:
1. Set the number of levels in rows.

2. Set up which columns are on which levels.

3. Specify the height of each column in levels.

Notes

Create and define all columns and column references (using the Col, ColID, and ColName properties)
in the control before moving columns with the ColLevel property.

Because column index numbers are based on the physical position of the column in the control, if you
plan on changing column levels, you should use one of the unique column identifiers (ColID or ColName property) to reference a
column rather than the Col property.

Print Copy Close

To create levels of columns within a row

Designer Page

1. Specify the number of levels in every row of the control.

a. On the General subtab of the Columns designer page, select the ColumnLevels property from the property list box.

b. Type the number of levels in the box under ColumnLevels in the property value area.

2. Specify the column. On the Specific subtab of the Columns designer page, either select the column from the Col, Col
Name, or Col ID drop-down list box or click the column in the preview area.

3. Specify the level of the column.

a. Select the ColLevel property from the properties list box.

b. Type the level number in the box under ColLevel in the property value area.

4. Specify the level height for the column.

a. Select the ColLevelHeight property from the properties list box.

b. Type the level height in the box under ColLevelHeight in the property value area.

5. Repeat steps 2 4 until all column levels are defined.

Print Copy Close

To create levels of columns within a row

Browser/Code

1. Specify the number of levels in every row of the control with the ColumnLevels property.

2. At run time, specify the column with the Col, ColFromID, or ColFromName property.

3. At run time, specify the level of the column with the ColLevel property.

4. At run time, specify the height of the column with the ColLevelHeight property.

5. Repeat steps 2 4 until all column levels are defined.

Making a Column a Child of a Group
You can make a column a child of a group. For example, you might want to make all the address columns, such as street
information, city, state, and zip code, children of an address group.

Children of groups exhibit the following characteristics:

If you move a group, the groups children move with it. For more specific information, see Moving
Groups in the Control.

When you hide a group, the groups children are also hidden.

Children are automatically sized to fit the group width. This can result in text not being fully displayed
in a column. For more information, see Calculating the Width of Group Children.

Groups can have other groups as children or columns as children, but not a combination of the two.

For information on how to make a column a child of a group, see Creating Children of Groups.

Providing Column Headers

Creating Column Headers

Customizing Column Headers

Creating Column Headers

Designer Page Instructions

Browser/Code Instructions

Overview

You can provide and customize column headers for the list in List Pro controls. A header contains static text that does not scroll
vertically with the list. Headers can be useful for labeling multiple-column lists.

Group headers can also serve as column headers. You can display both column and group headers.

Note By default, when each column of a multiple-column fpCombo or fpList control is bound to a database, the header
displays the name of the associated database field. You can display other header text by following this procedure.

Print Copy Close

To create column headers

Designer Page

1. If you are working with a single-column fpCombo or fpList control,

a. On the Specific subtab of the Columns designer page, select the Columns property in the properties list box.

b. Type 1 in the box under Columns in the property value area.

2. Specify the column. Either select the column from the Col, Col Name, or Col ID drop-down list box or click the column in
the preview area.

3. Specify the header text for each column.

a. Select the ColHeaderText property from the properties list box.

b. Type the header text in the box under ColHeaderText in the property value area.

4. Repeat steps 2 and 3 until you have specified the header text for all the column headers.

5. Display the column headers.

a. On the General subtab of the Columns designer page, select the ColumnHeaderShow property in the properties list.

b. Select the True option button under ColumnHeaderShow in the property value area.

6. Specify the column header height.

a. Select the ColumnHeaderHeight property in the properties list.

b. Type the header height in twips in the box under ColumnHeaderHeight.

If the header text is long, you can wrap the text to multiple lines. For more information, see Wrapping Text in a List Pro
Control.

7. If you are working with a bound fpCombo or fpList control, turn off automatic headers.

a. On the General subtab of the Data Binding designer page, select the DataAutoHeadings property in the properties list.

b. Select the False option button under DataAutoHeadings in the property value area.

Note If you are working with a bound control with one column, do not set the DataField property for the single
column. Make sure the Columns property is set to 1 and specify the field to bind to the column using the
ColDataField property.

Print Copy Close

To create column headers

Browser/Code

1. If you are working with a single-column fpCombo or fpList control, set the Columns property to 1.

2. Set the ColumnHeaderShow property to True.

3. Specify the column header height in twips with the ColumnHeaderHeight property.

If the header text is long, you can wrap the text to multiple lines. For more information, see Wrapping Text in a List Pro
Control.

4. If you are working with a bound fpCombo or fpList control, set the DataAutoHeadings property to False.

Note If you are working with a bound control with one column, do not set the DataField property for the single
column. Make sure the Columns property is set to 1 and specify the field to bind to the column using the
ColDataField property.

5. At run time, specify the header text for each column by performing the following actions:

a. Specify the column for which to set the header text with the Col, ColFromID, or ColFromName property.

For single-column fpCombo and fpList controls, set the Col property to 0.

b. Specify the header text with the ColHeaderText property.

c. Repeat steps 5.a 5.b until you have specified the header text for all the columns.

Customizing Column Headers

Designer Page Instructions

Code Instructions

Overview

You can customize the way column headers are displayed in an fpCombo or fpList control. You can customize characteristics
such as displaying and aligning pictures, changing text color and appearance, displaying lines, and changing the background
color.

Print Copy Close

To customize column headers

Designer Page

1. Specify which header or headers to customize.

a. On the List subtab of the ApplyTo designer page, choose either 7 - Col Headers or 9 - Single Col Header from the List
Apply To drop-down list box.

b. If you are customizing an individual column header, specify the column. Either select the column from either the Col,
Col Name, or Col ID drop-down list box or click the column in the preview area.

2. Follow the instructions in the appropriate topic listed in the following table.
For more information on . . . See . . .
Pictures and picture alignment Working with Text and Graphics
Text color, appearance, and
alignment

Working with Text and Graphics

Lines Customizing Lines
Background color Changing the Background Color

Print Copy Close

To customize column headers

Code

1. Set the ListApplyTo property to 7 (Col Headers) or 9 (Single Col Header).

2. If you are customizing an individual column header, specify the column with the Col, ColFromID, or ColFromName
property.

3. Follow the instructions in the appropriate topic listed in the following table.
For more information on . . . See . . .
Pictures and picture alignment Working with Text and Graphics
Text color, appearance, and
alignment

Working with Text and Graphics

Lines Customizing Lines
Background color Changing the Background Color

Resizing Columns
You can use either of the following methods to change the width of a column:

Use the mouse

Specify a column width

Using the Mouse to Resize Columns

Designer Page Instructions

Browser/Code Instructions

Overview

By default, you cannot resize columns using the mouse. With the AllowColResize property, you can resize any unlocked column

by dragging the column or header boundary to a new position with the resize pointer . For more information about locking
specific columns against resizing, see Customizing Columns.

Print Copy Close

To resize columns using the mouse

Designer Page

1. Specify how columns are resized.

a. On the General subtab of the Columns designer page, select the AllowColResize property from the properties list box.

b. Select either the 1 - Resize Header or 2 - Resize Col or Header option button in the property value area.

2. In the preview area,

a. Position the mouse pointer over the column boundary (if you chose option button 2 -Resize Col or Header) or header
boundary of the column you want to move.

b. When the mouse pointer changes to the resize pointer, press the left mouse button and drag the boundary to resize
the column.

Print Copy Close

To resize columns using the mouse

Browser/Code

1. Set the AllowColResize property to either 1 (Resize Header) or 2 (Resize Col or Header).

2. At run time,

a. Position the mouse pointer over the column boundary (if you set the AllowColResize property to 2 (Resize Col or
Header)) or header boundary of the column you want to move.

b. When the mouse pointer changes to the resize pointer, press the left mouse button and drag the boundary to resize
the column.

Specifying the Column Width

Designer Page Instructions

Browser/Code Instructions

Overview

You can set the width of a column in a List Pro control to a specific value. The default unit of measurement for column width is
the average character width of the current font. However, you can specify the width in twips, pixels, or the maximum character
width of the current font.

Note When columns are grouped, the column width is determined by the width of the group and other group children (see
Calculating the Width of Group Children). If you want to set the width of a column that is a child of a group, use the
following procedure after making the column a child of the group.

Print Copy Close

To specify the column width

Designer Page

1. If you want to specify a different unit of measurement,

a. On the General subtab of the Columns designer page, select the ColumnWidthScale property from the properties list
box.

b. Select the appropriate option button under ColumnWidthScale in the property value area.

2. Specify the column. On the Specific subtab of the Columns designer page, either select the column from the Col, Col
Name, or Col ID drop-down list box or click the column in the preview area.

3. Specify the column width.

a. Select the ColWidth property from the properties list box.

b. Type the width in the box under ColWidth in the property value area.

Print Copy Close

To specify the column width

Browser/Code

1. If you want to specify a different unit of measurement, set the ColumnWidthScale property.

2. At run time,

a. Specify the column with the Col, ColFromID, or ColFromName property.

b. Set the ColWidth property.

Customizing Columns

Designer Page Instructions

Browser/Code Instructions

Overview

You can customize the columns of a List Pro control. You can:

Hide a column in the list

Freeze a specific number of leftmost columns from scrolling horizontally, creating row headers

Prevent a specific column from being resized using the mouse

Specify a format string for displaying bound data
You can also customize column attributes as listed in the following table.
For more information on . . . See . . .
Pictures and picture alignment Working with Text and Graphics
Text color, appearance, and alignment Working with Text and Graphics
Lines Customizing Lines
Background color Changing the Background Color

Print Copy Close

To customize columns

Designer Page

1. If you want to hide a column in the list,

a. Specify the column. On the Specific subtab of the Columns designer page, either select the column from the Col, Col
Name, or Col ID drop-down list box or click the column in the preview area.

b. Hide the column.

i. Select the ColHide property from the properties list.

ii. Select the True option button under ColHide in the property value area.

2. If you want to prevent a set number of leftmost columns from scrolling horizontally,

a. On the General subtab of the Columns designer page, select the ColsFrozen property from the properties list box.

b. Type the number of leftmost columns to remain frozen in the box under ColsFrozen in the property value area.

3. If you want to prevent a specific column from being resized using the mouse,

a. Specify the column. On the Specific subtab of the Columns designer page, either select the column from the Col, Col
Name, or Col ID drop-down list box or click the column in the preview area.

b. Lock the column against resizing.

i. Select the ColLockResize property from the properties list box.

ii. Select the True option button from the property value area.

4. If you want to specify a format string for bound data,

a. Specify the column. On the Specific subtab of the Columns designer page or the Data Binding designer page, either
select the column from the Col, Col Name, or Col ID drop-down list box or click the column in the preview area.

b. Define the format string.

i. Select the ColFormat property from the properties list box.

ii. Type the format string in the box under ColFormat in the property value area.

Print Copy Close

To customize columns

Browser/Code

1. If you want to hide a column in the list, at run time,

a. Specify the column with the Col, ColFromID, or ColFromName property.

b. Set the ColHide property to True.

2. If you want to prevent a set number of leftmost columns from scrolling horizontally, set the ColsFrozen property to the
number of leftmost columns to remain frozen.

3. If you want to prevent a specific column from being resized using the mouse, at run time,

a. Specify the column you want to prevent from being resized with the Col, ColFromID, or ColFromName property.

b. Set the ColLockResize property to True.

4. If you want to specify a format string for bound data, at run time,

a. Specify the column with the Col, ColFromID, or ColFromName property.

b. Set the ColFormat property.

Moving Columns in the Control
The position of a column is determined by its location in the control, including its location with respect to other columns, its
location in a group, and its level within a row. You can use any of the following methods to move or position columns in a control:

Use the drag-and-drop method (to change location with respect to other columns or in a group)

Specify the position of a column using the ColPos or ColPosInParent property (to change location
with respect to other columns or in a group)

Change the column level

Using the Drag-and-Drop Method to Move Columns

Designer Page Instructions

Browser/Code Instructions

Overview

You can allow movement of any nonfrozen column using the drag-and-drop method, assuming the control displays column
headers. For more information on freezing columns, see Customizing Columns. For more information on displaying column and
group headers, see Creating Column Headers.

When you move a column to the left of its current position, all columns to the right of the destination column up to the original
position of the moved column will shift to the right. When you move a column to the right of its current position, all columns
between the original position of the moved column and its destination position will shift to the left. When you move a column, the
index number of any column affected by the move will change.

Notes

You must display column or group headers to move columns using the drag-and-drop method.

Because column index numbers are based on the physical position of the column in the control, if you
allow columns to be moved, use one of the unique column identifiers (ColID or ColName property) to reference a column rather than
the Col property.

For example, assume you have the following list box.

If you move Col 4 to the left of Col 2, both Col 2 and Col 3 are shifted to the right as shown in the following figure.

Starting with the original layout, if you move Col 1 to the right of Col 3, both Col 2 and Col 3 are shifted to the left as shown in the
following figure.

If columns are in groups and you move a column from one group to another, the following occurs:

Columns in the destination group shift within the group to left or right as appropriate

Columns in the original group are resized to fit the group width
Note You may want to resize the columns in the original and destination group after moving a column from one group to

another group. For more information, see Specifying the Column Width.

For example, assume you have the following list box.

If you move Col 3 into Group 1 to the left of Col 1, Col 1 and Col 2 are shifted to the right in the destination group and Col 4 is
resized to the width of Group 2.

You can also move grouped columns by moving their parent group. For more information, see Moving Groups in the Control.

Print Copy Close

To drag and drop columns

Designer Page

1. Specify which columns you can drag and drop.

a. On the General subtab of the Columns property page, select the AllowColDragDrop property from the properties list
box.

b. Select either the 1- All Cols or the 2 -Non Frozen Cols option button under AllowColDragDrop in the property value
area.

2. In the preview area, position the mouse pointer over the header of the column you want to move.

3. When the mouse pointer changes to the drag-drop pointer (a hand), press the left mouse button and drag and drop the
column in its new location.

Print Copy Close

To drag and drop columns

Browser/Code

1. Set the AllowColDragDrop property to either 1 (All Cols) or 2 (Non Frozen Cols).

2. At run time,

a. Position the mouse pointer over the header of the column you want to move.

b. When the mouse pointer changes to the drag-drop pointer (a hand), press the left mouse button and drag and drop
the column in its new location.

Defining the Position of a Column Within the Control

Designer Page Instructions

Code Instructions

Overview

You can move columns by defining their position within a List Pro control. If columns are grouped, you can also define the
position of a column within a group.

Position numbers are zero-based and are numbered from left to right and top to bottom within a parent group, if any, and then
within the control.

Notes

Because column index numbers are based on the physical position of the column in the control, if you
plan on moving columns, use one of the unique column identifiers (ColID or ColName property) to reference a column rather than
the Col property.

Define all columns (Col, ColID, and ColName properties) in the control before moving columns with
the ColLevel, ColPos, or ColPosInParent property.

If you have groups, you should use only the ColPosInParent property to position columns within
groups. If you use the ColPos property and the ColPosInParent property at the same time, you might get unpredictable results.

Print Copy Close

To position a column in the control

Designer Page

1. Specify the column. On the Specific subtab of the Columns designer page, either select the column from the Col, Col
Name, or Col ID drop-down list box or click the column in the preview area.

2. If you want to specify the position of the column in the control,

a. Select the ColPos property in the properties list box.

b. Type the position number in the box under ColPos in the property value area.

3. If you want to specify the position of the column in its parent group,

a. Select the ColPosInParent property in the properties list box.

b. Type the position number in the box under ColPosInParent in the property value area.

Print Copy Close

To position a column in the control

Code

1. Specify the column with the Col, ColFromID, or ColFromName property.

2. If you want to specify the position of the column in the control, set the ColPos property.

3. If you want to specify the position of the column in its parent group, set the ColPosInParent property.

Cloning Columns

Designer Page Instructions

Code Instructions

Overview

If you create a column that you would like to duplicate elsewhere in your control you can clone that column. All attributes of the
original column except for data, column identification number (ColID property) or name (ColName property), and data field
setting (ColDataField or DataField properties) are copied to the cloned column.

When you clone a column, the control inserts the cloned column to the right of the original column.

Print Copy Close

To clone a column

Designer Page

1. Specify the column you want to clone. On the Specific subtab of the Columns designer page, either select the column from
the Col, Col Name, or Col ID drop-down list box or click the column in the preview area.

2. Click the Clone Column button.

The cloned column is inserted to the right of the original column.

Print Copy Close

To clone a column

Code

At run time,

1. Specify the column you want to clone with either the Col, ColFromID, or ColFromName property.

2. Set the Action property to 12 (Clone Col).

The cloned column is inserted to the right of the original column.

Joining Cells

Designer Page Instructions

Code Instructions

Overview

You can create a set of cells that are identical in content and appearance. The property characteristics of the first cell you assign
to the joined set are applied to the other cells in the joined set. The advantages of joined cells are:

Joined cells look and function as one cell.

A property set for one joined cell is applied to all joined cells.
To create joined cells, you assign the cells a joined identification number, therefore all cells within one control with the same
joined identification number are in the same joined set. Joined identification numbers must be greater than zero.

Joined cells do not have to be adjacent to one another. However, if adjacent cells in a row are joined, the control merges the
cells unless the rows have multiple levels. Adjacent cells in rows with multiple levels have the same content and appearance but
the control does not merge them. For more information about merging cells, see Merging Columns or Rows.

In the following figure, cells (0, 0), (0, 1), (1, 1), and (2, 2) are joined. Notice that cells (0, 1) and (1, 1) are adjacent and are
merged.

Print Copy Close

To join cells

Designer Page

1. Select the cell that you want to join.

On the Merge/Join designer page, perform one of the following actions

Select the column from either the Col, Col Name, or Col ID drop-down list box and type the row
number in the Row box.

Click the cell in the preview area.
2. Define the joined identification number.

a. Select the JoinID property in the properties list box.

b. Type the joined identification number in the box under JoinID in the property value area.

3. Repeat steps 1 and 2 until you have identified all joined cells.

Print Copy Close

To join cells

Code

1. Specify the cell you want to join with either the Col, ColFromID, or ColFromName property and the Row property.

2. Set the JoinID property.

3. Repeat steps 1 and 2 until you have identified all joined cells.

Merging Columns or Rows

Designer Page Instructions

Browser/Code Instructions

Overview

You can merge cells in a column or row that contain the same text. You can specify that cells are always merged or that cells
are merged only when adjacent cells to the left are also merged.

For example, an unmerged list box displays as shown in the following figure.

If you set the RowMerge property to 1 (Always) for columns 0, 1, and 2, the list box displays like this.

Notice how the second product cell (Rice) merges across days to its left and lines to its right. You might not want these cells to
merge that way.

If you set the RowMerge property to 2 (Restricted) for column 1, the list box displays like this.

Notice how the Rice product cells no longer merge across days.
When you merge cells, cell characteristics (text appearance and background color, for example) from the upper-left cell in the
merged block are applied to all merged cells within that block.
You can also specify that the cell contents of merged rows or columns are automatically centered in the portion of the cell that is
displayed, vertically in the case of merged rows or horizontally in the case of merged columns. However, the cell contents do not
scroll out of the viewing area until the entire row or column is out of the viewing area.

Print Copy Close

To merge columns or rows

Designer Page

1. If you want to merge cells in a column,

a. Specify the column. On the Merge/Join designer page, either select the column from the Col, Col Name, or Col ID
drop-down list box or click the column in the preview area.

b. Define how the column is merged.

i. Select the ColMerge property in the properties list box.

ii. Select either the 1 - Always or the 2 - Restricted option button under ColMerge in the property value area.

2. If you want to merge cells in a row,

a. Specify the row. On the Merge/Join designer page, either type the row number in the Row box or click the row.

b. Define how the row is merged.

i. Select the RowMerge property in the properties list box.

ii. Select either the 1 - Always or the 2 - Restricted option button under RowMerge in the property value area.

3. If you want to automatically center the text horizontally and vertically in the merged cells,

a. Select the MergeAdjustView property in the properties list box.

b. Select the True option button under MergeAdjustView in the property value area.

Print Copy Close

To merge columns or rows

Browser/Code

1. If you want to merge cells in a column, at run time,

a. Specify the column with the Col, ColFromID, or ColFromName property.

b. Set the ColMerge property to either 1 (Always) or 2 (Restricted).

2. If you want to merge cells in a row, at run time,

a. Specify the row with the Row property.

b. Set the RowMerge property to either 1 (Always) or 2 (Restricted).

3. If you want to automatically center the text horizontally and vertically in the merged cells, set the MergeAdjustView property
to True.

Working with Groups
For an overview about groups and how they work, see Groups.

Creating Groups

Referencing a Group

Applying Properties to a Specific Group

Creating Children of Groups

Calculating the Width of Group Children

Providing Group Headers

Resizing Groups

Customizing Groups

Moving Groups in the Control

Creating Groups

Designer Page Instructions

Browser/Code Instructions

Overview

You can group columns in a multiple-column fpCombo or fpList control. You can create any number of groups. Groups are zero-
based and are numbered from left to right and top to bottom. Once you have created groups, you can reference specific groups
and customize them, as explained in the following topics.
Tip If you are using groups, for best results assign all columns to groups.
Groups can be children of other groups. For information on how to make a group a child of another group, see CreatingChildren
of Groups.

Print Copy Close

To create groups

Designer Page

1. On the Specific subtab of the Groups designer page, select the Groups property from the properties list.

2. Type the number of groups in the box under Groups in the property value area.

Print Copy Close

To create groups

Browser/Code

Specify the number of groups with the Groups property.

Referencing a Group

Designer Page Instructions

Code Instructions

Overview

List Pro controls have three methods to reference a specific group: index number, name, and identifier number.

Group index numbers are assigned by the control and based on the physical position of the group in the control. These numbers
are zero-based, and groups are numbered from left to right and top to bottom within their parent group, if any, and then within
the control. If you move or insert a group, the control changes the index numbers. Use the Grp property to reference groups by
their index numbers.

You can also define a unique name or identifier number for each group. If you use a group name or identifier number to specify
a group, the properties you set for a particular group are applied to that group, regardless of its position in the control. Use the
GrpName property to define group names and the GrpID property to define group identifier numbers. Typically, you should use
either the name or the identifier number, but not both.

For example, assume you define four groups in your control as follows.
Grp GrpID GrpName
0 1 Monday
1 2 Tuesday
2 3 Wednesday
3 4 Thursday
The control would appear as shown below.

As the first example, assume you move the third group (Grp = 2) to the far left side of the control. The control now appears as
shown below.

Note that the group index numbers changed but the group identification numbers and group names did not change.
As the second example, assume you make the third and fourth groups children of the first group (Grp = 0). The control now appears
as shown below.

Note that the group index numbers changed and are numbered from left to right and top to bottom within their parent group.

Once you have specified the number of groups in the control and created identifier numbers or names, you can specify custom
features for each group individually. For more information on setting properties for specified groups, see Applying Properties to a
Specific Group.

Print Copy Close

To reference a group

Designer Page

1. Specify the group. On the Specific subtab of the Groups designer page, under Individual, select the group number from the
Grp drop-down list box.

2. If you want to define a group identifier number,

a. Select the GrpID property from the properties list box.

b. Type the identifier number in the box under GrpID in the property value area.

3. If you want to define a group name,

a. Select the GrpName property from the properties list box.

b. Type the name in the box under GrpName in the property value area.

4. Repeat steps 1 3 until all groups have been defined.
5. To specify the group to which an action or property applies, either select the group from the Grp, Grp Name, or Grp ID
drop-down list box or click the group in the preview area.

Print Copy Close

To reference a group

Code

1. Specify the group with the Grp property.

2. If you want to define a group identification number, set the GrpID property.

3. If you want to define a group name, set the GrpName property.

4. Specify the group to which an action or property applies with the Grp, GrpFromID, or GrpFromName property.

Applying Properties to a Specific Group
Once you have specified the number of groups in the control and defined the group identifier number or name, you can use the
designated-group properties to perform an action on a specific group. Designated-group properties require that the Grp,
GrpFromID, or GrpFromName properties be set before using them.

The following table contains designated-group properties for the List Pro controls.
GrpHeaderText GrpPos
GrpHide GrpPosInParent
GrpLockResize GrpWidth
GrpParentGroup
If you want to use the designated-group properties in a List Pro control with only one group, you must set the Groups property to
1 and the Grp property to 0.

Creating Children of Groups

Designer Page Instructions

Code Instructions

Overview

You can group columns or other groups together. For example, you might want to make all the columns related to a clients
address, such as street information, city, state, and zip code, children of an address group.

A child of a group can be another group or a column, but not a combination of the two. For example, if Group 2 has two children,
those children can be either two other groups or two columns; they cannot be one group and one column.

Children of groups exhibit the following characteristics:

If you move a group, the groups children move with it. For more specific information, see Moving
Groups in the Control.

When you hide a group, the groups children are also hidden.

Children are automatically sized to fit the group width. This can result in text not being fully displayed
in a column. For more information, see Calculating the Width of Group Children.

You can create children of groups by either

Using the ColParentGroup or GrpParentGroup properties

Dragging and dropping columns or groups under their new parent group
For more information on moving columns and groups, see Using the Drag-and-Drop Method to Move Columns and Using
the Drag-and-Drop Method to Move Groups.

Print Copy Close

To create children of groups

Designer Page

1. If you want to make a column a child of a group,

a. Specify the column. On the Specific subtab of the Columns designer page, either select the column from the Col, Col
Name, or Col ID drop-down list box or click the column in the preview area.

b. Specify the parent group.

i. Select the ColParentGroup property from the properties list box.

ii. Type the parent groups index number in the ColParentGroup box in the property value area.

2. If you want to make another group the child of a group,

a. Specify the group. On the Specific subtab of the Groups designer page, either select the group from the Grp, Grp
Name, or Grp ID drop-down list box or click the group in the preview area.

b. Specify the parent group.

i. Select the GrpParentGroup property from the properties list box.

ii. Type the parent groups index number in the GrpParentGroup box in the property value area.

Print Copy Close

To create children of groups

Code

1. If you want to make a column a child of a group,

a. Specify the column with the Col, ColFromID, or ColFromName property.

b. Specify the parent group of the column with the ColParentGroup property.

2. If you want to make another group the child of a group,

a. Specify the group with the Grp, GrpFromID, or GrpFromName property.

b. Specify the parent group of the group with the GrpParentGroup property.

Calculating the Width of Group Children
If children of groups exist, widths for group children on any given level are adjusted to fit within the parent group width. If you
have one child in one group, the child width is set equal to the group width, regardless of the ColWidth property setting. As you
add additional children to the group, the child widths are adjusted proportionally to their current widths.

For example, assume you define two columns and one group.

When you make the first column (C0) a child of the group (G0), its column width is set to the width of the group (40).

When you make the second column (C1) a child of the group, the width of each column is recalculated according to the following
formula.

The new width of column C0 is 32 [40/(40+10) 40]. The new width of column C1 is 8 [10/(40+10) 40]. The control now appears as
follows.

After columns are assigned to groups, you can resize them with the mouse or by specifying the column width. For more information,
see Resizing Columns.

Providing Group Headers

Creating Group Headers

Customizing Group Headers

Creating Group Headers

Designer Page Instructions

Browser/Code Instructions

Overview

By default, group headers are not displayed. You can display group headers for List Pro controls. The header contains static text
that does not scroll vertically with the list. Headers can be useful for labeling multiple-group lists.

Also by default, the group header height is automatically sized to fit the text. You can define a specific header height.

You can specify the text that appears in the group headers. You can also customize the text. For more information about
customizing the text, see Working with Text and Graphics.

Print Copy Close

To create group headers

Designer Page

1. Specify the group. On the Specific subtab of the Groups designer page, either select the group from the Grp, Grp Name, or
Grp ID drop-down list box or click the group in the preview area.

2. Specify the header text for each group.

a. Select the GrpHeaderText property from the properties list box.

b. Type the header text in the box under GrpHeaderText in the property value area.

3. Repeat steps 1 and 2 until you have specified the header text for all the group headers.

4. Display the group headers.

a. On the General subtab of the Groups designer page, select the GroupHeaderShow property in the properties list.

b. Select the True option button under GroupHeaderShow in the property value area.

5. Specify the group header height.

a. Select the GroupHeaderHeight property in the properties list.

b. Type the header height in twips in the box under GroupHeaderHeight.

If the header text is long, you can wrap the text to multiple lines. For more information, see Wrapping Text in aList Pro
Control.

Print Copy Close

To create group headers

Browser/Code

1. To specify the group header text, at run time,

a. Specify the group with the Grp, GrpFromID, or GrpFromName property.

b. Specify the group header text with the GrpHeaderText property.

c. Repeat steps 2.a 2.b until all header text is satisfied.

2. Set the GroupHeaderShow property to True to display the headers.

3. To specify the group header height, set the GroupHeaderHeight property.

If the header text is long, you can wrap the text to multiple lines. For more information, see Wrapping Text in a List Pro
Control.

Customizing Group Headers

Designer Page Instructions

Code Instructions

Overview

You can customize the way group headers are displayed in an fpCombo or fpList control. You can customize characteristics
such as displaying and aligning pictures, changing text color and appearance, displaying lines, and changing the background
color.

Print Copy Close

To customize group headers

Designer Page

1. Specify which header or headers to customize.

a. On the List subtab of the ApplyTo designer page, choose either 8 - Grp Headers or 10 - Single Grp Header from the
List Apply To drop-down list box.

b. If you are customizing an individual group header, either select the group from the Grp, Grp Name, or Grp ID drop-
down list box or click the group in the preview area to specify the group.

2. Follow the instructions in the appropriate topic listed in the following table.
For more information on . . . See . . .
Pictures and picture alignment Working with Text and Graphics
Text color, appearance, and
alignment

Working with Text and Graphics

Lines Customizing Lines
Background color Changing the Background Color

Print Copy Close

To customize group headers

Code

1. Set the ListApplyTo property to 8 (Group Headers) or 10 (Individual Group Header).

2. If you are customizing an individual group header, specify the group with the Grp, GrpFromID, or GrpFromName property.

3. Follow the instructions in the appropriate topic listed in the following table.
For more information on . . . See . . .
Pictures and picture alignment Working with Text and Graphics
Text color, appearance, and
alignment

Working with Text and Graphics

Lines Customizing Lines
Background color Changing the Background Color

Resizing Groups
You can use either of the following methods to change the width of a group:

Use the mouse

Specify a group width

Using the Mouse to Resize Groups

Designer Page Instructions

Browser/Code Instructions

Overview

By default, you cannot resize groups using the mouse. Using the AllowGrpResize property, you can resize any unlocked group

by dragging the group or header boundary to a new position with the resize pointer . For more information
about locking groups against resizing, see Customizing Groups.

Print Copy Close

To resize groups using the mouse

Designer Page

1. Specify how groups are resized.

a. On the General subtab of the Groups designer page, select the AllowGrpResize property from the properties list box.

b. Select either the 1 - Resize Header or 2 - Resize Grp or Header option button in the property value area.

2. In the preview area, position the mouse pointer over the group boundary (if you chose option button 2 - Resize Grp or
Header) or header boundary of the group you want to move.

3. When the mouse pointer changes to the resize pointer, press the left mouse button and drag the boundary to resize the
group.

Print Copy Close

To resize groups using the mouse

Browser/Code

1. Set the AllowGrpResize property to either 1 (Resize Header) or 2 (Resize Grp or Header).

2. At run time,

a. Position the mouse pointer over the group boundary (if you set the AllowGrpResize property to 2 (Resize Grp or
Header)) or header boundary of the group you want to move.

b. When the mouse pointer changes to the resize pointer, press the left mouse button and drag the boundary to resize
the group.

Specifying the Group Width

Designer Page Instructions

Browser/Code Instructions

Overview

You can set the width of a group in a List Pro control to a specific value. The default unit of measurement for group width is the
average character width of the current font. However, you can specify the width in twips, pixels, or the maximum character width
of the current font.

Note If groups are children of other groups, the child group width is determined by the width of the parent group and other
group children. For more information, see Calculating the Width of Group Children. If you want to set the width of a
group that is a child of another group, use the following procedure after making the group a child of another group.

Print Copy Close

To specify the group width

Designer Page

1. If you want to specify a different unit of measurement,

a. On the General subtab of the Columns designer page, select the ColumnWidthScale property from the properties list
box.

b. Select the appropriate option button under ColumnWidthScale in the property value area.

2. Specify the group. On the Specific subtab of the Groups designer page, either select the group from the Grp, Grp Name, or
Grp ID drop-down list box or click the group in the preview area.

3. Specify the group width.

a. Select the GrpWidth property from the properties list box.

b. Type the width in the box under GrpWidth in the property value area.

Print Copy Close

To specify the group width

Browser/Code

1. If you want to specify a different unit of measurement, set the ColumnWidthScale property.

2. At run time,

a. Specify the group with the Grp, GrpFromID, or GrpFromName property.

b. Set the GrpWidth property.

Customizing Groups

Designer Page Instructions

Browser/Code Instructions

Overview

You can customize the groups of a List Pro control. You can

Hide a group in the list

Freeze a specific number of leftmost groups from scrolling horizontally

Prevent a specific group from being resized using the mouse
You can also customize the following group attributes.
For more information on . . . See . . .
Pictures and picture alignment Working with Text and Graphics
Text color, appearance, and alignment Working with Text and Graphics
Lines Customizing Lines
Background color Changing the Background Color

Print Copy Close

To customize groups

Designer Page

1. If you want to hide a group in the list,

a. Specify the group. On the Specific subtab of the Groups designer page, either select the group from the Grp, Grp
Name, or Grp ID drop-down list box or click the group in the preview area.

b. Hide the group.

i. Select the GrpHide property from the properties list.

ii. Select the True option button under GrpHide in the property value area.

Note When you hide a group, the children of the group are also hidden.
2. If you want to prevent a set number of leftmost groups from scrolling horizontally,

a. On the General subtab of the Groups designer page, select the GrpsFrozen property from the properties list box.

b. Type the number of leftmost groups to remain frozen in the box under GrpsFrozen in the property value area.

3. If you want to prevent a group from being resized using the mouse,

a. Specify the group. On the Specific subtab of the Groups designer page, either select the group from the Grp, Grp
Name, or Grp ID drop-down list box or click the group in the preview area.

b. Lock the group against resizing.

i. Select the GrpLockResize property from the properties list box.

ii. Select the True option button from the property value area.

Print Copy Close

To customize groups

Browser/Code

1. If you want to hide a group, at run time,

a. Specify the group you want to hide with the Grp, GrpFromID, or GrpFromName property.

b. Set the GrpHide property to True.

Note When you hide a group, the children of the group are also hidden.

2. If you want to prevent a set number of leftmost groups from scrolling horizontally, set the GrpsFrozen property to the
number of leftmost groups to remain frozen.

3. If you want to prevent a specific group from being resized using the mouse, at run time,

a. Specify the group you want to prevent from being resized with the Grp, GrpFromID, or GrpFromName property.

b. Set the GrpLockResize property to True.

Moving Groups in the Control
You can use either of the following methods to move or position groups in a control:

Use the drag-and-drop method

Specify the position of the group using the GrpPos or GrpPosInParent property

Using the Drag-and-Drop Method to Move Groups

Designer Page Instructions

Browser/Code Instructions

Overview

You can allow movement of any group or any nonfrozen group using the drag-and-drop method, assuming the control displays
group headers. For more information on freezing groups, see Resizing Groups. For more information on displaying group
headers, see Creating Group Headers.

When you move a group to the left of its current position, all groups to the right of the destination group up to the original
position of the moved group will shift to the right. When you move a group to the right of its current position, all groups between
the original position of the moved group and its destination position will shift to the left. When you move a group, the index
number of any group affected by the move will change.

Notes

Because group index numbers are based on the physical position of the group in the control, if you
plan on moving groups, use one of the unique group identifiers (GrpID or GrpName property) to reference a group rather than the
Grp property.

You must display group headers to move groups using the drag-and-drop method.

If you move a group, the groups children move with it.
For example, assume you have the following list box.

As the first example, if you move Group 3 to the left of Group 1, both Group 1 and Group 2 are shifted to the right as shown in the
following figure.

Starting with the original layout, if you move Group 0 to the right of Group 2, both Group 1 and Group 2 are shifted to the left as
shown in the following figure.

You can make a group a child of another group by dragging and dropping the group under another group. The moved groups
children move with the group and are displayed to the left of the destination groups children. The destination groups children

become children of the child group.
For example, assume you have the following list box.

If you move Group 2 under Group 1, Col 2 (child of Group 2) is displayed to the left of Col 1 (child of Group 1). Col 1 is now a child
of Group 2.

Suppose you also want to make Group 3 a child of Group 1. If you move Group 3 under Group 1, Group 3 and its child (Col 3) are
displayed to the left of Group 2 (child of Group 1).

Instead, suppose you want to make Group 3 a child of Group 2. If you move Group 3 under Group 2, Col 3 (child of Group 3) is
displayed to the left of Col 1 and Col 2 (children of Group 1). Col 1 and Col 2 are now children of Group 3.

Note You may want to resize the columns and groups after moving a group under another group. For instructions, see
Resizing Groups.

Print Copy Close

To drag and drop groups

Designer Page

1. Specify which groups you want to drag and drop.

a. On the General subtab of the Groups property page, select the AllowGrpDragDrop property from the properties list
box.

b. Select either the 1- All Grps or 2 -Non Frozen Grps option button under AllowGrpDragDrop in the property value area.

2. In the preview area, position the mouse pointer over the header of the group you want to move.

3. When the mouse pointer changes to the drag-drop pointer (a hand), press the left mouse button and drag and drop the
group in its new location.

Print Copy Close

To drag and drop groups

Browser/Code

1. Set the AllowGrpDragDrop property to either 1 (All Grps) or 2 (Non Frozen Grps).

2. At run time,

a. Move the mouse pointer over the header of the group you want to move.

b. When the mouse pointer changes to the drag-drop pointer (a hand), press the left mouse button and drag and drop
the group in its new location.

Defining the Position of Groups in the Control

Designer Page Instructions

Code Instructions

Overview

You can move groups by defining their position within a List Pro control. If a group is a child of a parent group, you can also
define the position of that group within its parent group.

Position numbers are zero-based and are numbered from left to right and top to bottom within a parent group, if any, and then
within the control.

Notes

Because group index numbers are based on the physical position of the group in the control, if you
plan on moving groups, use one of the unique group identifiers (GrpID or GrpName property) to reference a group rather than the
Grp property.

Define all groups (Grp, GrpID, and GrpName properties) in the control before moving groups with the
GrpPos or GrpPosInParent property.

If you have groups, you should use only the GrpPosInParent property to position groups within other
groups. If you use the GrpPos property and the GrpPosInParent property at the same time, you might get unpredictable results.

Print Copy Close

To position a group in the control

Designer Page

1. Specify the group. On the Specific subtab of the Groups designer page, either select the group from the Grp, Grp Name, or
Grp ID drop-down list box or click the group in the preview area.

2. If you want to specify the position of the group in the control,

a. Select the GrpPos property in the properties list box.

b. Type the position number in the box under GrpPos in the property value area.

3. If you want to specify the position of the group in its parent group,

a. Select the GrpPosInParent property in the properties list box.

b. Type the position number in the box under GrpPosInParent in the property value area.

Print Copy Close

To position a group in the control

Code

1. Specify the group with the Grp, GrpFromID, or GrpFromName property.

2. If you want to specify the position of the group in the control, set the GrpPos property.

3. If you want to specify the position of the group in its parent group, set the GrpPosInParent property.

Customizing the Controls Appearance
For an overview about the controls appearance, see Text and Graphics and Appearance.

Working with Text and Graphics

Working with Lines

Changing the Background Color

Changing the List Gray Area Color

Displaying and Customizing Scroll Bars

Specifying the Number of Rows Displayed in the Drop-Down List

Displaying Drop Shadows

Customizing the Controls Borders

Creating a Frame

Displaying Focus on the Control

Working with Text and Graphics

Overvew

Displaying Graphics

Aligning Text and Graphics

Orienting Text and Graphics

Wrapping Text in a List Pro Control

Changing Text Color and Fonts

Creating Three-Dimnesional Text

Overview
A List Pro control can contain text, graphics, or both. You can align text horizontally or vertically within cells, rows, columns, and
headers. If the control contains both text and graphics, they can be aligned separately or in relation to one another.

If you have text in a List Pro control, you can specify whether the text displays on one line or wraps and displays on multiple
lines. Text can be displayed horizontally or vertically. Text and graphics can be rotated 90, 180, or 270 degrees from the
horizontal position.

You can change the look of text by creating a three-dimensional effect. You can also change the text color.

Displaying Graphics

Designer Page Instructions

Code Instructions

Overview

An fpCombo or fpList control can contain text, graphics, or both. You can also display a different graphic when an item or row of
items is selected.

If the control contains both text and graphics, they can be aligned separately or in relation to one another. For more information
on aligning graphics, see Aligning Text and Graphics. Text and graphics can also be rotated 90, 180, or 270 degrees from the
horizontal position. For more information, see Orienting Text and Graphics.

Use the ListApplyTo property to specify where graphics are displayed. For more information on using the ListApplyTo property,
see Applying Properties to Specific Parts of the Control.

Print Copy Close

To display graphics

Designer Page

1. Select where you want to display the graphics.

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to display graphics in a specific cell, column, column header, or
row, either select the column from either the Col, Col Name, or Col ID drop-down list box and type the row in the Row
box as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to display graphics in a specific group or group header,
either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the preview area.

2. Specify the graphic to be displayed.

a. Select the Picture property from the properties list box.

b. Choose the Picture button under Picture in the property value area to display the file selection dialog box.

c. Specify the path and filename and choose the OK button.

The selected graphics file is displayed in the picture preview area.

3. If you want a different graphic displayed when a list item is selected, repeat step 2 but select the PictureSel property in step
2.a.

Print Copy Close

To display graphics

Code

1. Specify where you want to display the graphics.

a. Set the ListApplyTo property.

b. If you want to display the graphics in a specific cell, column, column header, or row, set the Col, ColFromID, or
ColFromName property and the Row property as appropriate.

c. If you want to display the graphics in a specific group or group header, set the Grp, GrpFromID, or GrpFromName
property.

2. Specify the graphic to be displayed with the Picture property.

3. If you want a different graphic displayed when a list item is selected, specify the graphic with the PictureSel property.

Aligning Text and Graphics

Designer Page Instructions

Browser/Code Instructions

Overview

You can set the horizontal alignment of the controls contents to display either to the left, center, or right within a cell or header.
You can set the vertical alignment of the controls contents to display either to the top, center, or bottom within a cell or header.

In the following figure, the text and graphic are horizontally centered in the cell. The graphic is vertically aligned below the text.

Use the ListApplyTo property to specify where to apply the alignment. Alignment can be applied to any of the areas described in
Applying Properties to Specific Parts of the Control.

Print Copy Close

To align text and graphics

Designer Page

1. If you want to specify where the alignment is applied,

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to align text and graphics in a specific cell, column, column
header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list box and type the row
in the Row box as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to align text and graphics in a specific group or group
header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the preview
area.

2. If you want to specify how the text should be horizontally or vertically aligned,

a. On the List subtab of the ApplyTo designer page, select the AlignH or AlignV property from the properties list box.

b. Select the appropriate option button under AlignH or AlignV in the property value area.

3. If you want to specify how the graphic should be horizontally or vertically aligned,

a. On the List subtab of the ApplyTo designer page, select the PictureAlignH or PictureAlignV property from the
properties list box.

b. Select the appropriate list item from the drop-down combo box under PictureAlignH or PictureAlignV in the property
value area.

Note If you are displaying text and graphics within the fpCombo or fpList control, set the PictureAlignH property to 4
(Left of Text) or 5 (Right of Text) and the PictureAlignV property to 4 (Top of Text) or 5 (Bottom of Text) for best
results.

Print Copy Close

To align text and graphics

Browser/Code

1. If you want to specify where the alignment is applied, at run time,

a. Set the ListApplyTo property.

b. If you want to apply the alignment to a specific cell, column, column header, or row, set the Col, ColFromID, or
ColFromName property and the Row property as appropriate.

c. If you want to apply the alignment to a group or group header, set the Grp, GrpFromID, or GrpFromName property.

Note If you specified where the alignment is applied in step 1, you should also perform steps 2 and 3 at run time.

2. If you want to specify how the text should be horizontally and vertically aligned, set the AlignH and AlignV properties,
respectively.

3. If you want to specify how the graphic should be horizontally and vertically aligned, set the PictureAlignH and PictureAlignV
properties, respectively.

Note If you are displaying text and graphics within the fpCombo or fpList control, set the PictureAlignH property to 4
(Left of Text) or 5 (Right of Text) and the PictureAlignV property to 4 (Top of Text) or 5 (Bottom of Text) for best
results.

Orienting Text and Graphics

Designer Page Instructions

Browser/Code Instructions

Overview

You can display text in a List Pro control horizontally or vertically. You can also rotate text and graphics 90, 180, or 270 degrees
from the horizontal position.

In the following figure the text and graphics are rotated 270 degrees from the horizontal position.

Notes

If the text orientation is vertical, you can specify that text wraps from right to left or left to right.

If the font you choose cannot be rotated, List Pro substitutes a similar, TrueType® font that can be
rotated.

Use the ListApplyTo property to specify where to apply text and graphic orientation. Text and graphic orientation can be applied
to any of the areas described in Applying Properties to Specific Parts of the Control.

Print Copy Close

To set text and graphic orientation

Designer Page

1. If you want to specify where the orientation is applied,

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to orient text and graphics in a specific cell, column, column
header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list box and type the row
in the Row box as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to orient text and graphics in a specific group or group
header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the preview
area.

2. Specify the text orientation.

a. On the List subtab of the ApplyTo designer page, select the TextOrientation property from the properties list box.

b. Select the appropriate list item from the drop-down combo box under TextOrientation in the property value area.

Print Copy Close

To set text and graphic orientation

Browser/Code

1. If you want to specify where the orientation is applied, at run time,

a. Set the ListApplyTo property.

b. If you want to apply the orientation to a specific cell, column, column header, or row, set the Col, ColFromID, or
ColFromName property and the Row property as appropriate.

c. If you want to apply the orientation to a group or group header, set the Grp, GrpFromID, or GrpFromName property.

Note If you specified where the orientation is applied in step 1, you should also perform step 2 at run time.

2. Set the TextOrientation property.

Wrapping Text in a List Pro Control

Designer Page Instructions

Browser/Code Instructions

Overview

By default,text displays on a single line. If the column or group width does not allow the text to fit on one line, you can specify
that the text wrap to the next line. You can adjust the row height to accommodate multiple lines of text.

You can specify the maximum width of a column or group in a List Pro control. For information on changing the width of a
column, see Customizing Columns. For information on changing the width of a group, see Resizing Groups.

Use the ListApplyTo property to specify where to apply text wrap. Text can wrap in any of the areas described in Applying
Properties to Specific Parts of the Control.

Print Copy Close

To let text wrap

Designer Page

1. If you want to specify where text wraps,

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to wrap text in a specific cell, column, column header, or row,
either select the column from either the Col, Col Name, or Col ID drop-down list box and type the row in the Row box
as appropriate, or click the cell, column, or header in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to wrap text in a specific group or group header, either
select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the preview area.

2. Turn on text wrapping.

a. On the List subtab of the ApplyTo designer page, select the MultiLine property from the properties list box.

b. Select the 2 - Multiple Line option button under MultiLine in the property value area.

3. If you need to adjust the row height,

a. On the Misc subtab of the Appearance designer page, type the row number in the Row box.

b. Select the RowHeight property in the properties list box.

c. Type the row height in twips in the box under RowHeight in the property value area.

4. If you need to adjust the column header height,

a. On the General subtab of the Columns designer page, select the ColumnHeaderHeight property in the properties list
box.

b. Type the column header height in twips in the box under ColumnHeaderHeight in the property value area.

Print Copy Close

To let text wrap

Browser/Code

1. If you want to specify where text wraps, at run time,

a. Set the ListApplyTo property.

b. If you want to apply the text wrap to a specific cell, column, column header, or row, set the Col, ColFromID, or
ColFromName property and the Row property as appropriate.

c. If you want to apply the text wrap to a specific group or group header, set the Grp, GrpFromID, or GrpFromName
property.

Note If you specified where text wrap is applied in step 1, you should also perform step 2 at run time.

2. To turn on text wrapping, set the MultiLine property to 2 (Multiple Line).

3. If you need to adjust the row height, specify the row height in twips with the RowHeight property.

4. If you need to adjust the column header height, set the column header height in twips with the ColumnHeaderHeight
property.

Changing Text Color and Fonts

Designer Page Instructions

Browser/Code Instructions

Overview

You can change the color and font characteristics of text in a List Pro control.

If you create three-dimensional text, you can specify highlight and shadow colors. For more information on three-dimensional
text, see Creating Three-Dimensional Text.

Use the ListApplyTo property to specify where to apply text color and fonts. Text color and fonts can be applied to any of the
areas described in Applying Properties to Specific Parts of the Control.

Print Copy Close

To change text color and fonts

Designer Page

1. If you want to specify where the text color or font characteristics are applied,

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to apply the color or font characteristics in a specific cell,
column, column header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list box
and type the row in the Row box as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to apply the color or font characteristics in a specific
group or group header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the
group in the preview area.

2. If you want to change the text color,

a. On the List subtab of the ApplyTo designer page, select the ForeColor property from the properties list box.

b. Choose the Color button under ForeColor in the property value area to display the ForeColor dialog box.

c. Select a basic color or define your own custom color.

d. Choose the OK button.

3. If you want to customize the font characteristics,

a. On the List subtab of the ApplyTo designer page, select the Font property from the properties list box.

b. Choose the Font button under Font in the property value area to display the Font dialog box.

c. Select the font characteristics, and then choose the OK button.

4. If you want to clear the font characteristics for the area and inherit the characteristics of the areas hierarchical predecessor
(see Appendix C, "Hierarchy of Property Settings" in the printed List Pro User's Guide),

a. On the List subtab of the ApplyTo designer page, select the FontEmpty property from the properties list box.

b. Select the True option button under FontEmpty in the property value area.

Print Copy Close

To change text color and fonts

Browser/Code

1. If you want to specify where the text color or font characteristics are applied, at run time,

a. Set the ListApplyTo property.

b. If you want to apply the color or font characteristics to a specific cell, column, column header, or row, set the Col,
ColFromID, or ColFromName property and the Row property as appropriate.

c. If you want to apply the color or font characteristics to a group or group header, set the Grp, GrpFromID, or
GrpFromName property.

Note If you specified where the text color or font characteristics are applied in step 1, you should also perform steps 2

4 at run time.

2. If you want to change the text color, set the ForeColor property.

3. If you want to customize the font characteristics, specify the characteristics with the Font property or specific font properties
such as FontBold, FontName, or FontSize.

4. If you want to clear the font characteristics for the area and inherit the characteristics of the areas hierarchical predecessor,
set the FontEmpty property to True.

For more information on hierarchical predecessors, see Appendix C, "Hierarchy of Property Settings" in the printed List Pro
User's Guide.

Creating Three-Dimensional Text

Designer Page Instructions

Browser/Code Instructions

Overview

You can apply three-dimensional effects to a List Pro controls text. You can also specify the text offset (the distance between the
text and the highlight and shadow colors).

Use the ListApplyTo property to specify where to apply three-dimensional text effects. Three-dimensional text can be displayed
in any of the areas described in Applying Properties to Specific Parts of the Control.

Print Copy Close

To create three-dimensional text

Designer Page

1. If you want to specify where three-dimensional effects are applied,

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to apply the three-dimensional text characteristics in a specific
cell, column, column header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list
box and type the row in the Row box as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to apply the three-dimensional text characteristics in a
specific group or group header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click
the group in the preview area.

2. Turn on three-dimensional text effects.

a. On the List subtab of the ApplyTo designer page, select the List3DText property from the properties list box.

b. Select an item other than 0 - None from the drop-down combo box under List3DText in the property value area.

3. If you want to customize the text offset,

a. Select the List3DTextOffset property from the properties list box.

b. Type the offset in pixels in the box under List3DTextOffset in the property value area.

4. If you want to customize the highlight or shadow color,

a. Select the List3DTextHighlightColor or List3DTextShadowColor property from the properties list box.

b. Choose the Color button under List3DTextHighlightColor or List3DTextShadowColor in the property value area to
display the List3DTextHighlightColor or List3DTextShadowColor dialog box.

c. Select a basic color or define your own custom color.

d. Choose the OK button.

Print Copy Close

To create three-dimensional text

Browser/Code

1. If you want to specify where three-dimensional effects are applied,

a. Specify where you want the three-dimensional effects applied with the ListApplyTo property.

b. If you want to apply the three-dimensional effects to a specific cell, column, column header, or row, set the Col,
ColFromID, or ColFromName property and the Row property as appropriate.

c. If you want to apply the three-dimensional effects to a specific group or group header, set the Grp, GrpFromID, or
GrpFromName property.

Note If you specified where the three-dimensional effects are applied in step 1, you should also perform steps 2

4 at run time.

2. Set the List3DText property to a value other than 0 (None) to turn on three-dimensional effects.

3. Specify the text offset in pixels with the List3DTextOffset property.

4. Specify the highlight and shadow colors with the List3DTextHighlightColor and List3DTextShadowColor properties.

Working with Lines

Overview

Applying Properties to Specific Lines

Adding Lines

Customizing Lines

Overview
You can display lines in the control and these lines can be flat, three-dimensional, or both. The following combo box displays
both flat and three-dimensional lines.

You can specify where lines are displayed with the ListApplyTo property, the LineApplyTo property, or both. Lines can be displayed
in any of the areas described in Applying Properties to Specific Parts of the Control and Applying Properties to Specific Lines.

You can specify how the lines look, first, by specifying which lines are affected (see Applying Properties to Specific Lines), and
second, by specifying what characteristics to change (see Customizing Lines).

Applying Properties to Specific Lines
You can use the following designated-line properties to customize the appearance of lines in a List Pro control:
Line3DDark LineColor
Line3DLight LineStyle
Line3DWidth LineWidth
As described in the Overview, you can use the ListApplyTo property, the LineApplyTo property, or both to specify where the
designated-line properties apply. You can use the LineApplyTo property to apply these properties to all lines, the lines between
rows, the lines between columns, or the vertical lines between columns when multiple levels exist. By default, designated-line
properties apply to all lines.

Adding Lines

Designer Page Instructions

Browser/Code Instructions

Overview

By default, neither horizontal nor vertical lines are displayed in a List Pro control. You can display flat lines, three-dimensional
lines, or both. These lines can be displayed between rows, between columns, between columns when multiple levels exist, or
between all these areas together.

The following figures illustrate the lines and their appearance:

Flat lines

Lines with a lowered three-dimensional appearance

Lines with a raised three-dimensional appearance

Lines with a lowered three-dimensional appearance and a flat line

Lines with a raised three-dimensional appearance and a flat line

Use the ListApplyTo and LineApplyTo properties to specify where the lines are displayed. For more information on using the
ListApplyTo and LineApplyTo properties, see Applying Properties to Specific Parts of the Control and Applying Properties to
Specific Lines.

Print Copy Close

To add lines to a list

Designer Page

1. If you want to specify where lines are added,

a. On the Line subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to add lines to a specific cell, column, column header, or row,
either select the column from either the Col, Col Name, or Col ID drop-down list box and type the row in the Row box
as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to add lines to a specific group or group header, either
select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the preview area.

2. If you do not want the line style applied to all lines, on the Line subtab of the ApplyTo designer page, select where you want
the line style applied from the Line Apply To drop-down list box.

3. Add lines by choosing the line style.

a. On the Line subtab of the ApplyTo designer page, select the LineStyle property from the properties list box.

b. Select an item other than 1 - None from the drop-down combo box under LineStyle in the property value area.

Print Copy Close

To add lines to a list

Browser/Code

1. If you want to specify where lines are added, at run time,

a. Set the ListApplyTo property.

b. If you want to display the lines in a specific cell, column, column header, or row, set the Col, ColFromID, or
ColFromName property and the Row property as appropriate.

c. If you want to display the lines in a specific group or group header, set the Grp, GrpFromID, or GrpFromName
property.

Note If you specified where the lines are added in step 1, you should also perform steps 2 and 3 at run time.

2. Add lines by specifying where you want the line style applied with the LineApplyTo property.

3. Set the LineStyle property to a value other than 1 (None) to add lines.

Customizing Lines

Designer Page Instructions

Browser/Code Instructions

Overview

You can customize the width and color of flat lines. You can specify the width and the highlight and shadow colors of three-
dimensional lines.

If you have a multiple-column fpCombo or fpList control, you can also specify whether vertical or horizontal lines are displayed
to fit the control, displayed only through the part of the list that contains items, or displayed through the complete list.

Use the ListApplyTo and LineApplyTo properties to specify which lines are customized. For more information on using the
ListApplyTo and LineApplyTo properties, see Applying Properties to Specific Parts of the Control and Applying Properties to
Specific Lines.

Print Copy Close

To customize lines

Designer Page

1. If you want to customize flat lines,

a. Display flat lines in the control (the LineStyle property must be set to either 2 - Flat, 5 - Lowered w/ Line, or 6 - Raised
w/ Line).

For instructions, see Adding Lines.

b. If you want to specify where to customize the lines,

i. On the Line subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

ii. If you chose 9 - Single Col Header or 12 - Single Item to customize flat lines in a specific cell, column, column
header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list box and type the
row in the Row box as appropriate, or click the cell, column, or row in the preview area.

iii. If you chose 10 - Single Group Header or 11 - Single Group to customize flat lines in a specific group or group
header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the
preview area.

c. On the Line subtab of the ApplyTo designer page, select an item from the Line Apply To drop-down list box to specify
which lines you want to customize.

d. If you want to change the line width,

i. Select the LineWidth property from the properties list box.

ii. Type the width in pixels in the box under LineWidth in the property value area.

e. If you want to change the line color,

i. Select the LineColor property from the properties list box.

ii. Choose the Color button under LineColor in the property value area to display the LineColor dialog box.

iii. Select a basic color or define your own custom color.

iv. Choose the OK button.

2. If you want to customize three-dimensional lines,

a. Display three-dimensional lines in the control (the LineStyle property must be set to either 3 - Lowered, 4 - Raised, 5 -
Lowered w/ Line, or 6 - Raised w/ Line).

For instructions, see Adding Lines.

b. If you want to specify where to customize the three-dimensional lines,

i. On the Line subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

ii. If you chose 9 - Single Col Header or 12 - Single Item to customize three-dimensional lines in a specific cell,
column, column header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list
box and type the row in the Row box as appropriate, or click the cell, column, or row in the preview area.

iii. If you chose 10 - Single Group Header or 11 - Single Group to customize three-dimensional lines in a specific
group or group header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the
group in the preview area.

c. On the Line subtab of the ApplyTo designer page, select an item from the Line Apply To drop-down list box to specify
which lines you want to customize.

d. If you want to change the lines three-dimensional line width,

i. Select the Line3DWidth property from the properties list box.

ii. Type the width in pixels in the box under Line3DWidth in the property value area.

e. If you want to change the lines three-dimensional highlight or shadow color,

i. Select the Line3DLight or Line3DDark property from the properties list box.

ii. Choose the Color button under Line3DLight or Line3DDark in the property value area to display the Line3DLight
or Line3DDark dialog box.

iii. Select a basic color or define your own custom color.

iv. Choose the OK button.

3. If you want to specify how vertical lines are displayed in a multiple-column control,

a. On the Misc subtab of the Appearance designer page, select the ExtendRow or ExtendCol property from the
properties list box.

b. Select the appropriate option button under ExtendCol or ExtendRow in the property value area.

Print Copy Close

To customize lines

Browser/Code

1. To customize flat lines,

a. Display flat lines in the control (the LineStyle property must be set to either 2 (Flat), 5 (Lowered w/ Line), or 6 (Raised
w/ Line)).

For instructions, see Adding Lines.

b. If you want to specify where to customize the flat lines, at run time,

i. Set the ListApplyTo property.

ii. If you want to apply the line customization to a specific cell, column, column header, or row, set the Col,
ColFromID, or ColFromName property and the Row property as appropriate.

iii. If you want to apply the line customization to a group or group header, set the Grp, GrpFromID, or
GrpFromName property.

Note If you specified where the lines are added in steps 1.a and 1.b, you should also perform steps 1.c

1.e at run time.

c. Specify which lines you want to customize with the LineApplyTo property.

d. Set the LineWidth property to determine the line width in pixels.

e. Set the LineColor property to change the line color.

2. To customize three-dimensional lines,

a. Display three-dimensional lines in the control (the LineStyle property must be set to either 3 (Lowered), 4 (Raised), 5
(Lowered w/ Line), or 6 (Raised w/ Line)).

For instructions, see Adding Lines.

b. If you want to specify where to customize the three-dimensional lines, at run time,

i. Set the ListApplyTo property.

ii. If you want to apply the line customization to a specific cell, column, column header, or row, set the Col,
ColFromID, or ColFromName property and the Row property as appropriate.

iii. If you want to apply the line customization to a group or group header, set the Grp, GrpFromID, or
GrpFromName property.

Note If you specified where the lines are added in steps 2.a and 2.b, you should also perform steps 2.c

2.e at run time.

c. Specify which lines you want to customize with the LineApplyTo property.

d. Set the Line3DWidth property to specify the line width in pixels.

e. Set the Line3DLight and Line3DDark properties to change the highlight and shadow colors.

3. Set the ExtendRow or ExtendCol property to specify how vertical lines are displayed in a multiple-column control.

Changing the Background Color

Designer Page Instructions

Browser/Code Instructions

Overview

You can change the background color of different parts of a List Pro control.

Use the ListApplyTo property to specify where the background color is applied. For more information on using the ListApplyTo
property, see Applying Properties to Specific Parts of the Control.

Print Copy Close

To change the background color

Designer Page

1. If you want to specify where the background color is applied,

a. On the List subtab of the ApplyTo designer page, select an item from the List Apply To drop-down list box.

b. If you chose 9 - Single Col Header or 12 - Single Item to apply the background color to a specific cell, column, column
header, or row, either select the column from either the Col, Col Name, or Col ID drop-down list box and type the row
in the Row box as appropriate, or click the cell, column, or row in the preview area.

c. If you chose 10 - Single Group Header or 11 - Single Group to apply the background color to a specific group or group
header, either select the group from the Grp, Grp Name, or Grp ID drop-down list box or click the group in the preview
area.

2. Specify the background color.

a. On the List subtab of the ApplyTo designer page, select the BackColor property from the properties list.

b. Choose the Color button under BackColor in the property value area to display the BackColor dialog box.

c. Select a basic color or define your own custom color.

d. Choose the OK button.

Print Copy Close

To change the background color

Browser/Code

1. If you want to specify where the background color is applied, at run time,

a. Set the ListApplyTo property.

b. If you want to apply the background color to a specific cell, column, column header, or row, set the Col, ColFromID, or
ColFromName property and the Row property as appropriate.

c. If you want to apply the background color to a specific group or group header, set the Grp, GrpFromID, or
GrpFromName property.

Note If you specified where the background color is applied in step 1, you should also perform step 2 at run time.

2. Specify the background color with the BackColor property.

Changing the List Gray Area Color

Designer Page Instructions

Browser/Code Instructions

Overview

You can specify the color of the area between the cells and the control border, or the list gray area color. The list gray area
appears when the list items do not cover the entire control area.

Print Copy Close

To change the list gray area color

Designer Page

1. On the Color subtab of the Appearance designer page, select the ListGrayAreaColor property.

2. Choose the Color button under ListGrayAreaColor in the property value area to display the ListGrayAreaColor dialog box.

3. Select a basic color or define your own custom color.

4. Choose the OK button.

Print Copy Close

To change the list gray area color

Browser/Code

Specify the list gray area color with the ListGrayAreaColor property.

Displaying and Customizing Scroll Bars

Designer Page Instructions

Browser/Code Instructions

Overview

By default, the horizontal and vertical scroll bars are shown only if needed. You can customize either the horizontal or vertical
scroll bar, or both, to be

displayed at all times

never displayed

displayed at all times, but displayed as unavailable when not needed
You can also control the amount by which the list box scrolls when you click the left or right scroll arrow on the horizontal scroll
bar. You can specify the amount in twips, pixels, number of characters, or the number of columns (if the Columns property is set
to a value greater than 0).

If you are working in virtual mode, you might want to use a customized scroll bar. For more information, see Using Virtual Mode.

Print Copy Close

To display and customize scroll bars

Designer Page

1. Specify when and how the scroll bars are displayed.

a. On the Scroll subtab of the Appearance designer page, select the ScrollBarH or ScrollBarV property from the
properties list box.

b. Select the appropriate option button under ScrollBarH or ScrollBarV in the property value area.

2. If you want to specify how far the list box scrolls when you click the left or right scroll arrows on the horizontal scroll bar,

a. To specify the unit of measure,

i. Select the ScrollHScale property from the properties list box.

ii. Select the appropriate list item from the drop-down combo box under ScrollHScale in the property value area.

b. To specify the number of units by which the list box scrolls,

i. Select the ScrollHInc property from the properties list box.

ii. Type the appropriate value in the box under ScrollHInc in the property value area.

Print Copy Close

To display and customize scroll bars

Browser/Code

1. Specify when and how the scroll bars are displayed with the ScrollBarH and ScrollBarV properties.

2. If you want to specify how far the list box scrolls when you click the left or right scroll arrows on the horizontal scroll bar,

a. Specify the unit of measure with the ScrollHScale property.

b. Specify the number of units by which the list box scrolls with the ScrollHInc property.

Specifying the Number of Rows Displayed in the Drop-Down List

Designer Page Instructions

Browser/Code Instructions

Overview

By default, eight rows are displayed in the drop-down list of a drop-down combo box or drop-down list box. You can specify any
number of rows to display.

Print Copy Close

To specify the maximum number of rows to display

Designer Page

1. On the Misc subtab of the Appearance designer page, select the MaxDrop property from the properties list box.

2. Type the number of rows in the box under MaxDrop in the property value area.

Print Copy Close

To specify the maximum number of rows to display

Browser/Code

Specify the number of rows with the MaxDrop property.

Displaying Drop Shadows

Designer Page Instructions

Browser/Code Instructions

Overview

List Pro controls can display drop shadows that make the controls appear raised above the window, as shown in the following
figure.

Controls can display drop shadows all the time or only when they receive the focus. If the control displays a drop shadow only when
it receives the focus, the area behind the control where the drop shadow appears can display a different color. The area behind the
control is also visible if you set the BorderStyle property to a value other than 0 (No Border) or 1 (Single Line).

Note Remember to keep in mind the size of the drop shadow when sizing the control. The drop shadow is part of the control
whether the control has the focus or not.

Print Copy Close

To display and customize a drop shadow

Designer Page

1. Specify when and how to display the drop shadow.

a. On the Border subtab of the Appearance designer page, select the BorderDropShadow property from the properties
list.

b. Select either the 1 - Always or 2 - On Focus option button under BorderDropShadow in the property value area.

2. Set the width of the drop shadow.

a. Select the BorderDropShadowWidth property from the properties list.

b. Type the width in pixels in the box under BorderDropShadowWidth in the property value area.

3. Specify the color of the drop shadow.

a. On the Color subtab of the Appearance designer page, select the BorderDropShadowColor property from the
properties list.

b. Choose the Color button under BorderDropShadowColor in the property value area to display the
BorderDropShadowColor dialog box.

c. Select a basic color or define your own custom color.

d. Choose the OK button.

4. Specify the color of the area around and behind the control.

a. On the Color subtab of the Appearance designer page, select the BorderGrayAreaColor property from the properties
list.

b. Choose the Color button under BorderGrayAreaColor in the property value area to display the BorderGrayAreaColor
dialog box.

c. Select a basic color or define your own custom color.

d. Choose the OK button.

Print Copy Close

To display and customize a drop shadow

Browser/Code

1. Set the BorderDropShadow property to 1 (Always) or 2 (On Focus) to specify when and how to display the drop shadow.

2. Specify the width of the drop shadow in pixels by setting the BorderDropShadowWidth property.

3. Specify the color of the drop shadow by setting the BorderDropShadowColor property.

4. Specify the color of the area around and behind the control by setting the BorderGrayAreaColor property.

Customizing the Controls Borders

Overview

Using Predefined Appearance Styles

Specifying the Border Appearance

Overview
List Pro controls provide three borders that can create a three-dimensional appearance. You can set the color and width of each
border to create border effects similar to most operating environment interfaces. List Pro controls provide an outline border,
anouter border, and an inner border to create a three-dimensional effect. Your control can display any or all of these borders.

The outline border is displayed surrounding the control as shown in the following figure. You can specify the border width and
color.

The outer border is displayed inside the outline border. The outer border consists of two portions, a highlight portion and a shadow
portion. Using different colors for the highlight and shadow portions creates a three-dimensional effect, as shown in the following
figure.

The inner border is displayed inside the outer border. Like the outer border, it consists of two portions, a highlight portion and a
shadow portion. The two portions create a three-dimensional effect, as shown in the following figure.

You can use some or all of these borders to create a custom appearance for your control, or you can use one of the three
predefined appearance styles List Pro provides, as described in Using Predefined Appearance Styles.
In addition, using the inner and outer borders, you can create a frame effect for the control. For more information about creating a
frame, see Creating a Frame.

Using Predefined Appearance Styles
List Pro provides three predefined appearance styles specified by the Appearance property.

The flat appearance style provides only an outline border for the control. This appearance is similar to controls displayed in
Windows 3.1 or Windows NT 3.5. An fpList control with the flat appearance style is shown in the following figure.

The three-dimensional appearance (3-D) style displays the inner and outer borders, with no outline border. The default highlight and
shadow colors create the three-dimensional appearance. This appearance style is similar to controls displayed in Windows 95. An
fpList control with the three-dimensional appearance style is shown in the following figure.

The three-dimensional with border appearance (3-D with Border) style displays inner, outer, and outline borders. The default
highlight and shadow colors create the three-dimensional appearance. An fpList control with the three-dimensional with border
appearance style is shown in the following figure.

The three predefined appearance styles are created by changing the settings for six properties. If you select one of the predefined
appearance styles, the property settings for those properties are changed to create the style. The following table summarizes the
properties and the settings used for each predefined style.

Caution If you have previously set any of these properties and then choose one of the predefined appearance styles, your
settings will be lost.

Appearance
Property Flat 3-D 3-D with Border
ThreeDInsideStyle 0 (None) 1 (Lowered) 1 (Lowered)
ThreeDInsideWidth N/A 1 1
ThreeDOutsideStyle 0 (None) 1 (Lowered) 1 (Lowered)
ThreeDOutsideWidth N/A 1 1
BorderStyle 1 (Single Line) 0 (No Border) 1 (Single Line)
ThreeDFrameWidth 0 0 0
If you choose a predefined appearance, you can further customize the appearance using the following instructions. However,
once you change one of the six properties listed in the preceding table, the Appearance property setting changes to 0 (Custom)
as the control no longer displays one of the predefined appearance styles.

Specifying the Border Appearance

Designer Page Instructions

Browser/Code Instructions

Overview

The following instructions explain how to specify the appearance of the controls borders, either by choosing a predefined
appearance style or by customizing the borders.

Print Copy Close

To customize the borders

Designer Page

1. If you want to use one of the predefined appearance styles,

a. On the Border subtab of the Appearance designer page, select the Appearance property in the properties list box.

b. Select either the 1 - Flat, 2 - 3-D, or 3 - 3-D with Border option button under Appearance in the property value area.

If you prefer, you can further customize a predefined appearance using the following instructions.

2. If you want to display and customize the outline border,

a. On the Border subtab of the Appearance designer page, select the BorderStyle property from the properties list box.

b. Select an item other than 0 - No Border from the drop-down combo box under BorderStyle in the property value area.

c. To specify the border width,

i. Select the BorderWidth property from the properties list box.

ii. Type the width in pixels in the box under BorderWidth in the property value area.

d. To specify the border color,

i. On the Color subtab of the Appearance designer page, select the BorderColor property from the properties list
box.

ii. Choose the Color button under BorderColor in the property value area to display the BorderColor dialog box.

iii. Select a basic color or define your own custom color.

iv. Choose the OK button.

3. If you want to display and customize the outer border,

a. To display the outer border,

i. On the Border subtab of the Appearance designer page, select the ThreeDOutsideStyle property from the
properties list box.

ii. Select an option button other than 0 - None under ThreeDOutsideStyle in the property value area.

b. To specify the width of the outer border,

i. Select the ThreeDOutsideWidth property from the properties list box.

ii. Type the width in pixels in the box under ThreeDOutsideWidth in the property value area.

c. To specify the color of the highlight or shadow portions of the outer border,

i. On the Color subtab of the Appearance designer page, select the ThreeDOutsideHighlightColor or
ThreeDOutsideShadowColor property from the properties list box.

ii. Choose the Color button under ThreeDOutsideHighlightColor or ThreeDOutsideShadowColor in the property
value area to display the ThreeDOutsideHighlightColor or ThreeDOutsideShadowColor dialog box.

iii. Select a basic color or define your own custom color.

iv. Choose the OK button.

Tip For best results, the highlight color should be a shade lighter than the background color of the form, and the
shadow color should be a shade darker than the background color of the form.

4. If you want to display and customize the inner border,

a. To display the inner border,

i. On the Border subtab of the Appearance designer page, select the ThreeDInsideStyle property from the
properties list box.

ii. Select an option button other than 0 - None under ThreeDInsideStyle in the property value area.

b. To specify the width of the inner border,

i. Select the ThreeDInsideWidth property from the properties list box.

ii. Type the width in pixels in the box under ThreeDInsideWidth in the property value area.

c. To specify the color of the highlight or shadow portion of the inner border,

i. On the Color subtab of the Appearance designer page, select the ThreeDInsideHighlightColor or

ThreeDInsideShadowColor property from the properties list box.

ii. Choose the Color button under ThreeDInsideHighlightColor or ThreeDInsideShadowColor in the property value
area to display the ThreeDInsideHighlightColor or ThreeDInsideShadowColor dialog box.

iii. Select a basic color or define your own custom color.

iv. Choose the OK button.

Print Copy Close

To customize the borders

Browser/Code

1. If you want to use one of the predefined appearance styles, set the Appearance property to 1 (Flat), 2 (3-D), or 3 (3-D with
Border).

If you prefer, you can further customize a predefined appearance using the following instructions.

2. If you want to display and customize the outline border,

a. Set the BorderStyle property to a value other than 0 (No Border).

b. Specify the border color with the BorderColor property.

c. Specify the border width in pixels with the BorderWidth property.

3. If you want to display and customize the outer border,

a. Set the ThreeDOutsideStyle property to a value other than 0 (None).

b. Specify the width of the outer border in pixels by setting the ThreeDOutsideWidth property.

c. Specify the colors of the highlight and shadow portions of the outer border using the ThreeDOutsideHighlightColor
and ThreeDOutsideShadowColor properties.

Tip For best results, the highlight color should be a shade lighter than the background color of the form, and the
shadow color should be a shade darker than the background color of the form.

4. If you want to display and customize the inner border,

a. Set the ThreeDInsideStyle property to a value other than 0 (None).

b. Specify the width of the inner border in pixels by setting the ThreeDInsideWidth property.
c. Specify the colors of the highlight and shadow portions of the inner border by setting the ThreeDInsideHighlightColor

and ThreeDInsideShadowColor properties.

Creating a Frame

Designer Page Instructions

Browser/Code Instructions

Overview

If your control displays the inner and outer borders, it can display a frame. The frame is created by displaying space between
the inner and outer borders, as shown in the following figure. You can specify the size and color of the space between the
borders.

For more information on displaying inner and outer borders, see Specifying the Border Appearance.

Print Copy Close

To create a frame

Designer Page

1. Display inner and outer borders for your control.

For instructions, see Specifying the Border Appearance.

2. To create the frame, specify the width of the frame as a value greater than zero.

a. On the Border subtab of the Appearance designer page, select the ThreeDFrameWidth property in the properties list
box.

b. Type the width in pixels in the box under ThreeDFrameWidth in the property value area.

3. To specify the frame color,

a. On the Color subtab of the Appearance designer page, select the ThreeDFrameColor property from the properties list
box.

b. Choose the Color button under ThreeDFrameColor in the property value area to display the ThreeDFrameColor dialog
box.

c. Select a basic color or define your own custom color.

d. Choose the OK button.

Print Copy Close

To create a frame

Browser/Code

1. Display inner and outer borders for your control.

For instructions, see Specifying the Border Appearance.

2. Set the ThreeDFrameWidth property to a value greater than zero to specify the width of the frame in pixels, thereby
creating the frame.

3. Specify the color of the frame with the ThreeDFrameColor property.

Displaying Focus on the Control

Designer Page Instructions

Browser/Code Instructions

Overview

When a control has the focus, it can receive input from the user. You can show the user when a control has the focus by
changing the controls three-dimensional appearance or by displaying a drop shadow. For instructions on displaying a drop
shadow when the control receives the focus, see Displaying Drop Shadows.

Controls that display a three-dimensional appearance can reverse the highlight and shadow colors when they receive the focus,
as shown in the following figure.

Note The control must have a three-dimensional appearance to use this feature. For more information on creating a three-
dimensional appearance, see Customizing the Controls Borders.

Print Copy Close

To display focus on the control by changing its three-dimensional appearance

Designer Page

1. On the Border subtab of the Appearance designer page, select the ThreeDOnFocusInvert property from the properties list.

2. Select the True option button under ThreeDOnFocusInvert in the property value area.

Print Copy Close

To display focus on the control by changing its three-dimensional appearance

Browser/Code

Set the ThreeDOnFocusInvert property to True to invert the colors used for three-dimensional effects.

