
 iTWAIN OCX™ v2.0
32 bit ActiveX Image Acquisition Control

· Fully TWAIN compliant

· Easy to use Automatic Mode

· Full control over TWAIN capabilities

· Royalty FREE runtime distribution

 CompleteControl™

What is iTWAIN

More About iTWAIN

iTWAIN Reference

Properties
Methods
Events

System Requirements

Sample Applications

Examples

Contact Information

How to contact us
Obtaining Technical Support

Obtaining more information about TWAIN

Registration

Registering your purchase

Licensing and Distribution

License Agreement
Distributing iTWAIN
UnInstalling iTWAIN

© 1997, Imagine IT Ltd,

Imagine IT, iTwain.OCX and CompleteControl are trademarks of Imagine IT Ltd. All Rights Reserved

All other trademarks belong to their respective owners and are hereby acknowledged.

More About iTWAIN

iTWAIN is a 32 bit ActiveX Control designed for easy acquisition of high quality images from digital input
devices such as scanners and cameras. As the name suggests iTWAIN is fully TWAIN compliant.

With iTWAIN, you can build image capture functionality into your applications in a matter of minutes using
the Automatic Mode. However, for complete control, Manual Mode gives you access to ALL of the
TWAIN capabilities.

iTWAIN is completely royalty free. You may distribute unlimited copies of your runtime application without
any further license fee or royalty fee payments.

Everything you need to start using this control immediately is here including the TWAIN Source Manager,
TWAIN sample sources, and Visual Basic sample applications.

iTWAIN supports properties, methods and events to enable you to …

Initialize, control and interrogate an input device

Acquire images from the input device as a device independent bitmap (DIB) or any graphics files
supported by your imaging device

Display the acquired images

Transfer the acquired image to other picture controls and applications via the clipboard or the saved
file

Get information about images

Build sophisticated image capture applications with control over any features such as document
feeding, image layout, multiple frames per page, and alternative user interafaces, which are supported
by your imaging device.

Events are also supported that allow you to take appropriate actions before, during and after image
transfer.

iTWAIN is just one of many ActiveX components in our CompleteControl range.

System Requirements

iTWAIN is supported under the following 32 bit Microsoft® Windows operating systems on Intel®
architecture machines.

Windows 95
Windows NT Server and Workstation 4.0
and future versions of these operating systems.

Note:

The current version of iTWAIN is not supported on beta versions of the above operating systems

The current version of iTWAIN is not supported on win32s.

The current version of iTWAIN is not supported on non-Intel® architecture implementations of Microsoft®
Windows.

For information about future versions and updates please register with Imagine IT Ltd

Registration Form

To register your copy of iTWAIN please print out this page and send it to us after completing the details. Alternatively
you can also E-Mail the required information to us at registration@imagineit.co.uk

Registered users automatically receive information about updates, new releases and future products from Imagine IT
and are eligible for technical support.

Product: iTWAIN OCX 2.0

Last Name:

First Name:

Company Name:

Address:

Telephone Number:

Fax Number:

E-Mail Address:

Web URL:

Date of Purchase:

Purchased From:

--
please post to: Imagine IT Limited, 3rd Floor, Hygeia Building, 66 College Road, Harrow HA1 1BE, United Kingdom
or E-Mail to registration@imagineit.co.uk

About Imagine IT

iTWAIN is designed and developed by Imagine IT Limited, United Kingdom.

Imagine IT specialises in object technologies and component software development.

Apart from creating great components we also help customers develop their own line-of-business objects
and applications.

To contact Imagine IT -

Write to us at:
Imagine IT Limited
3rd Floor, Hygeia Building
66 College Road
Harrow, HA1 1BE
United Kingdom

Telephone:
from within the United Kingdom: 0181 324 1240
from other countries: international access code + 44 + 181 324 1240

Fax:
from within the United Kingdom: 0181 324 1752
from other countries: international access code + 44 + 181 324 1752

E-Mail:
for general inquiries: info@imagineit.co.uk
for technical support inquiries: support@imagineit.co.uk
for registration: registration@imagineit.co.uk

World Wide Web:
find us at: http://www.imagineit.co.uk

All our products are available for free evaluation form our web site. Please do visit regularly and
download the latest components.

For the fastest possible response please direct all technical support enquiries by E-Mail to
support@imagineit.co.uk whenever possible. Alternatively fax your enquiry to the above fax number
marked for the attention of “Technical Support”.

If you do not have access to E-Mail or fax then please call us at the above telephone number and ask
for “Technical Support”

NOTE: We can only provide technical support to registered users.

Obtaining more information about TWAIN

Getting information on TWAIN:

HPFirst is a fax reply system at Hewlett-Packard. This system contains two
TWAIN documents. To receive these documents call from a touch tone phone or
fax machine and information will be faxed to you.

 Inside the US or Canada 800 333-1917
 Outside the US or Canada 208 344-4809

Using HPFirst you can receive:

 3130 The TWAIN toolkit order form
 3019 The TWAIN White Paper

The white paper and FAQ guide are also available through CompuServe
and an ftp site.

In CompuServe: GO HPPERIPH and look under TWAIN.

Anonymous ftp: ftp.twain.org(/pub/users/twain)

Find the TWAIN Working Group on the world wide web:
http://www.twain.org/

Information about the TWAIN Developer's Mailing List:

TWAIN developers are invited to join in discussion about TWAIN and problem
exchanges on the TWAIN developer's mailing list.

To be added or removed to the mailing list, please write to:
 twain-request@caere.com

To post questions or other information of interest to TWAIN developers write to:
 twain@caere.com

How to Order the TWAIN Toolkit:

US/Canada
 Call (800) 722-0379 and order the TWAIN Toolkit.

International
 Call (303) 739-4067 and order the TWAIN Toolkit.

All
 Fax:(970) 330-7655

NOTE:
We have provided the above information to you for your guidance only. The information is subject to
change and you should first check with the above mentioned companies and organisations before
downloading files, taking part in on-line discussions and mailing lists and before placing any purchase
orders.

LICENSE AGREEMENT

IMPORTANT
THE USE OF THIS SOFTWARE IS SUBJECT TO THE TERMS OF THE LICENSE AGREEMENT PRINTED BELOW. PLEASE
READ THE LICENSE AGREEMENT CAREFULLY. IF YOU DO NOT AGREE WITH ALL OF THE TERMS, THEN YOU SHOULD
NOT USE THE SOFTWARE IN ANY WAY WHATSOEVER INCLUDING COPYING OR DISTRIBUTING THE SOFTWARE OR ANY
PART OF THE SOFTWARE TO ANY THIRD PARTY. IF YOU USE THE SOFTWARE IN ANY WAY WHATSOEVER IT WILL BE
DEEMED TO INDICATE YOUR ACCEPTANCE OF ALL THE TERMS AND CONDITIONS OF THIS LICENSE AGREEMENT.

THE AGREEMENT
THIS DOCUMENT IS A LEGAL AGREEMENT BETWEEN IMAGINE IT LIMITED, UNITED KINGDOM, HEREAFTER REFERRED
TO AS "IMAGINE IT" AND THE USER OF THE SOFTWARE HEREIN REFERRED TO AS "LICENSEE"

DEFINITIONS
"SOFTWARE" MEANS THE SOFTWARE KNOWN AS "iTWAIN OCX" AND ALL ITS COMPONENTS, PARTS AND
DOCUMENTATION, WHICH HAVE BEEN DEVELOPED BY IMAGINE IT

"END USER APPLICATION" MEANS ANY APPLICATION DEVELOPED WITH THE HELP OF OR BY USING THE SOFTWARE

PURPOSE
THE PURPOSE OF THIS AGREEMENT IS TO DEFINE THE RELATIONSHIP BETWEEN IMAGINE IT AND LICENSEE, THE
TERMS, CONDITIONS, AND LIMITATIONS OF USE, THE RIGHTS OF BOTH PARTIES AND THE LIMITATION OF LIABILITY
ARISING FROM THE USE OF THE SOFTWARE

EFFECTIVE DATE
THIS AGREEMENT IS DEEMED TO HAVE BEEN MADE EFFECTIVE ON THE FIRST DATE AT WHICH LICENSEE OPENS THE
PACKAGE CONTAINING THE SOFTWARE AND ITS ASSOCIATED DOCUMENTATION, OR IF THE SOFTWARE IS
DISTRIBUTED ELECTRONICALLY, THE FIRST DATE ON WHICH THE LICENSEE OBTAINS THE SOFTWARE

GRANT OF LIMITED LICENSE
I. EVALUATION LICENSE
IF THE LICENSEE HAS NOT PURCHASED A FULL PRODUCT KEY FOR THE SOFTWARE THEN IMAGINE IT GRANTS THE
LICENSEE A NON EXCLUSIVE, NON TRANSFERABLE, PERSONAL LICENSE TO USE THE SOFTWARE AND ITS
DOCUMENTATION FOR EVALUATION PURPOSES ONLY AND FOR NO OTHER PURPOSE. THE LICENSE DOES NOT PERMIT
THE DEVELOPMENT AND DISTRIBUTION OF ANY END USER APPLICATIONS USING THE SOFTWARE

II. FULL DEVELOPMENT LICENSE
IF THE LICENSEE HAS PURCHASED A FULL PRODUCT KEY FOR THE SOFTWARE THEN IMAGINE IT GRANTS THE
LICENSEE A NON EXCLUSIVE, NON TRANSFERABLE, PERSONAL LICENSE TO USE THE SOFTWARE AND ITS
DOCUMENTATION FOR THE PURPOSE OF DEVELOPING AND DISTRIBUTING ANY NUMBER OF END USER APPLICATIONS
AND TO COPY AND DISTRIBUTE ANY PARTS OF THE SOFTWARE DEFINED BELOW UNDER REDISTRIBUTABLE
COMPONENTS TOGETHER WITH AND AS PART OF THE END USER APPLICATION, SUBJECT TO ALL THE TERMS AND
CONDITIONS AND RESTRICTIONS IN THIS AGREEMENT.

RESTRICTIONS
A USER OF ANY END USER APPLICATIONS MAY NOT FURTHER USE PARTS OF THE SOFTWARE FOR SOFTWARE
DEVELOPMENT, COPYING OR DISTRIBUTION. THE LICENSEE MUST ENFORCE THIS IN A SEPARATE AGREEMENT WITH
THE USER OF ANY END USER APPLICATIONS.

THE LICENSEE MAY USE ONLY ONE COPY OF THE SOFTWARE AT ANY TIME ON ONE IBM PC OR COMPATIBLE SYSTEM.

ADDITIONAL PRODUCT KEYS FOR THE SOFTWARE MUST BE PURCHASED IF IT IS REQUIRED TO BE USED IN A MULTI
USER NETWORKED ENVIRONMENT IN QUANTITIES OF ONE KEY FOR EACH PERSON HAVING ACCESS TO AND USING
THE SOFTWARE.

THE LICENSEE MAY MAKE A SINGLE BACKUP COPY OF THE SOFTWARE.

THE LICENSEE MAY NOT USE, COPY, MODIFY, REVERSE ENGINEER, DISASSEMBLE, SELL, TRANSFER, HIRE, LEND OR
OTHERWISE DISTRIBUTE THE SOFTWARE OR ANY OF ITS DOCUMENTATION OR COMPONENTS IN WHOLE OR IN PART,
EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS AGREEMENT.

THE END USER APPLICATION MUST NOT BE ANOTHER DEVELOPMENT TOOL DESIGNED TO BE USED FOR CREATING
OTHER END USER APPLICATIONS USING THE SOFTWARE. THE LICENSEE MUST ENFORCE THIS IN A SEPARATE
AGREEMENT WITH THE USER OF THE END USER APPLICATION.

THE LICENSEE HAS NO RIGHTS TO THE ORIGINAL SOURCE CODE OF THE SOFTWARE WHATSOEVER.

THE LICENSEE MUST INFORM IMAGINE IT OF THE NATURE OF EACH AND EVERY NEW END USER APPLICATION IT

DEVELOPS WITH THE USE OF THE SOFTWARE.

THE LICENSEE SHALL COMPLY WITH ALL LOCAL AND INTERNATIONAL LAWS AND EXPORT / IMPORT REGULATIONS
WHEN DISTRIBUTING PARTS OF THIS SOFTWARE AS PROVIDED FOR BELOW ALONG WITH ANY END USER
APPLICATIONS

REDISTRIBUTABLE COMPONENTS
THE SOFTWARE, BY ITS NATURE, INCLUDES COMPONENTS WHICH ARE REQUIRED TO BE DISTRIBUTED WITH ANY END
USER APPLICATIONS IN ORDER FOR THAT END USER APPLICATION TO FUNCTION.

I. EVALUATION LICENSE
IF THE LICENSEE HAS NOT PURCHASED A FULL PRODUCT KEY FOR THE SOFTWARE THEN THERE ARE NO
DISTRIBUTABLE COMPONENTS. THE LICENSEE SHALL NOT DISTRIBUTE ANY COMPONENTS OF THE SOFTWARE

II. FULL DEVELOPMENT LICENSE
IF THE LICENSEE HAS PURCHASED A FULL PRODUCT KEY FOR THE SOFTWARE THENTHE FOLLOWING FILES DEFINE
THE COMPONENTS WHICH THE LICENSEE MAY DISTRIBUTE PROVIDED THAT THEY ARE DISTRIBUTED AS PART OF THE
END USER APPLICATION AND PROVIDED THAT THEY ARE DISTRIBUTED WITHOUT ANY MODIFICATION AND ARE COPIED
FROM THE ORIGINAL DISKS OR CDS. ALL FILES LISTED BELOW MUST BE DISTRIBUTED WITH THE END USER
APPLICATION.

1. iTWAIN.OCX
2. iTWAIN.RTL
NO OTHER FILES SUPPLIED WITH THE SOFTWARE MAY BE DISTRIBUTED WITH THE END USER APPLICATION.

THE SOFTWARE BY ITS NATURE ALSO REQUIRES SOME FILES WHICH ARE DISTRIBUTED BY MICROSOFT(R) TO BE
PRESENT ON THE END USER'S COMPUTER FOR THE END USER APPLICATION TO FUNCTION. THIS LICENSE
AGREEMENT DOES NOT IN ANY WAY PROVIDE FOR LICENSEE TO DISTRIBUTE THESE COMPONENTS WITH THE END
USER AGREEMENT. THE LICENSEE MUST VERIFY THEIR RIGHTS TO DISTRIBUTE THESE COMPONENTS, SEPARATELY
WITH MICROSOFT(R) BEFORE DISTRIBUTING THESE COMPONENTS WITH THE END USER APPLICATION

1. MFC42.DLL
2. OLEPRO32.DLL
3. REGSVR32.EXE
THE SOFTWARE BY ITS NATURE ALSO REQUIRES SOME FILES WHICH ARE DISTRIBUTED BY THE TWAIN WORKING
GROUP TO BE PRESENT ON THE END USER'S COMPUTER FOR THE END USER APPLICATION TO FUNCTION.

THIS LICENSE AGREEMENT DOES NOT IN ANY WAY PROVIDE FOR LICENSEE TO DISTRIBUTE THESE COMPONENTS
WITH THE END USER AGREEMENT. THE LICENSEE MUST VERIFY THEIR RIGHTS TO DISTRIBUTE THESE COMPONENTS,
SEPARATELY WITH THE TWAIN WORKING GROUP BEFORE DISTRIBUTING THESE COMPONENTS WITH THE END USER
APPLICATION

1. TWAIN.DLL
2. TWAIN_32.DLL
3. TWUNK_16.EXE
4. TWUNK_32.DLL
5. TWSRC_16.DS
6. TWSRC_32.DS

TECHNICAL SUPPORT
ONLY THOSE LICENSEES WHO HAVE PURCHASED A FULL PRODUCT KEY AND REGISTERED WITH IMAGINE IT BY FULLY
COMPLETING AND RETURNING ALL THE INFORMATION ASKED FOR IN THE REGISTRATION FORM OR RELEVANT
SECTION IN THE ON-LINE HELP DOCUMENTATION ARE QUALIFIED FOR RECEIVING TECHNICAL SUPPORT HELP ON THE
SOFTWARE.

TECHNICAL SUPPORT IS RESTRICTED TO ANSWERING QUESTIONS ABOUT THE USE OF THE SOFTWARE OR ERRORS IN
THE SOFTWARE IF ANY.

TECHNICAL SUPPORT DOES NOT INCLUDE DEBUGGING AND OTHER PROBLEM SOLVING TASKS ASSOCIATED WITH THE
DEVELOPMENT OF ANY END USER APPLICATIONS.

USERS OF THE END USER APPLICATION ARE NOT ELIGIBLE FOR OBTAINING TECHNICAL SUPPORT FROM IMAGINE IT
UNDER ANY CIRCUMSTANCES.

THIS SERVICE WILL BE PROVIDED ACCORDING TO IMAGINE IT'S TECHNICAL SUPPORT POLICIES FROM TIME TO TIME,
AND IS LIMITED TO SUCH TIME AS IMAGINE IT SUPPORTS THE SOFTWARE OR OWNS THE SOFTWARE.

TECHNICAL SUPPORT MAY BE PROVIDED BY MEANS OF E-MAIL, FAX, BULLETIN BOARDS, ON-LINE SERVICES, WRITTEN
CORRESPONDENCE OR TELEPHONE AT IMAGINE IT'S SOLE DISCRETION.

OWNERSHIP
IMAGINE IT SHALL REMAIN THE OWNERS OF ALL RIGHTS, TITLE AND INTEREST IN THE SOFTWARE

THIS LICENSE DOES NOT CONFER ANY OWNERSHIP RIGHTS TO THE LICENSEE

THE LICENSEE AGREES NOT TO USE IMAGINE IT'S NAME IN ANY WAY OR FORM

THE LICENSEE AGREES NOT TO IMPLY THAT ANY END USER APPLICATIONS IT DEVELOPS ARE EITHER APPROVED OR
OTHERWISE SANCTIONED BY IMAGINE IT

THE LICENSEE AGREES TO CARRY A COPYRIGHT NOTICE IN THE ABOUT BOX OR HELP FILE OF EACH AND EVERY COPY
OF ANY END USER APPLICATIONS IT DEVELOPS WITH THE HELP OF THIS SOFTWARE, WITH THE FOLLOWING WORDS :-

"PORTIONS OF THIS APPLICATION PROVIDED BY IMAGINE IT LIMITED, UNITED KINGDOM, COPYRIGHT (C) 1996-1997
IMAGINE IT LIMITED. ALL RIGHTS RESERVED"

TERMINATION
THIS AGREEMENT SHALL BE TERMINATED IN WRITING BY IMAGINE IT AT ANY TIME IF THE LICENSEE BREACHES ANY
TERMS AND CONDITIONS CONTAINED IN THIS AGREEMENT OR CARRIES OUT ANY ACTIONS EXPRESSLY PROHIBITED IN
THIS AGREEMENT, AND CONTINUES TO BE IN BREACH FOR 30 DAYS AFTER WRITTEN NOTICE IS GIVEN TO THE
LICENSEE BY IMAGINE IT OR ITS REPRESENTATIVES.

UPON TERMINATION LICENSEE SHALL RETURN ALL COPIES OF THE SOFTWARE, ITS COMPONENTS AND
DOCUMENTATION TO IMAGINE IT.

ALL RIGHTS GRANTED TO THE LICENSEE IN THIS AGREEMENT SHALL CEASE UPON TERMINATION OF THIS AGREEMENT
EXCEPT FOR THOSE APPLYING TO ANY COPIES OF ANY END USER APPLICATIONS ALREADY PROPERLY DISTRIBUTED
AND LICENSED WITHIN THE TERMS OF THIS AGREEMENT, PRIOR TO TERMINATION OF THIS AGREEMENT.

CONFIDENTIALITY
THE LICENSEE ACKNOWLEDGES THAT THE SOFTWARE AND ITS DOCUMENTATION AND DESIGN CONSTITUTE
CONFIDENTIAL AND PROPRIETARY INFORMATION BELONGING TO IMAGINE IT.

THE LICENSEE AGREES NOT TO DISCLOSE ANY OF THIS INFORMATION TO OTHER THIRD PARTIES EXCEPT FOR ITS
EMPLOYEES WHO ARE ENGAGED IN USING THE SOFTWARE AND ARE BOUND BY THESE SAME TERMS THROUGH A
SEPARATE WRITTEN AGREEMENT WITH LICENSEE, OR EXCEPT WHERE REQUIRED TO DISCLOSE THE INFORMATION
BY LAW.

WARRANTIES AND DISCLAIMERS
THE SOFTWARE IS PROVIDED "AS IS". IMAGINE IT DOES NOT WARRANT THAT THE SOFTWARE WILL OPERATE WITHOUT
ERRORS, OR THAT IT WILL MEET ALL OF THE LICENSEE'S REQUIREMENTS.

ALL WARRANTIES, EXPRESSED OR IMPLIED, ARE EXCLUDED FROM THIS AGREEMENT INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE BUT NOT
EXCLUDING ANY STATUTARY RIGHTS PROVIDED FOR BY LAW.

IMAGINE IT SHALL NOT BE LIABLE FOR ANY DAMAGES INCLUDING BUT NOT LIMITED TO INCIDENTAL OR
CONSEQUENTIAL LOSS, LOSS OF PROFIT, LOSS OF SALES, INJURY, DEATH, LOSS OF OR DAMAGE TO PROPERTY OR
ANY OTHER LOSS ARISING DIRECTLY OR INDIRECTLY FROM THE USE OF THE SOFTWARE.

IMAGINE IT'S SOLE REMEDY TO THE LICENSEE, AT IMAGINE IT'S SOLE DISCRETION SHALL BE LIMITED TO EITHER THE
REPAIR OR REPLACEMENT OF FAULTY SOFTWARE OR THE REPAYMENT OF THE LICENSE FEE PAID BY THE LICENSEE
UPON RETURN OF ALL COPIES OF THE SOFTWARE. IMAGINE IT'S TOTAL LIABILITY SHALL NOT EXCEED THE AMOUNTS
PAID BY LICENSEE FOR THE PURCHASE OF THIS LICENSE.

COPYRIGHT (C) 1996-1997 IMAGINE IT LIMITED, UNITED KINGDOM, ALL RIGHTS RESERVED.

MICROSOFT IS A REGISTERED TRADEMARK OF MICROSOFT CORPORATION.

IMAGINE IT, THE IMAGINE IT LOGO AND iTWAIN, ARE TRADEMARKS OF IMAGINE IT LIMITED

APPLICABLE LAW
THIS AGREEMENT SHALL BE GOVERNED BY TO THE LAWS OF ENGLAND.
END

 Distributing iTWAIN with your applications

In order to use iTWAIN in your applications you need to distribute the OCX with your application. In
addition you also need to ship some Microsoft® shared libraries which the OCX uses at run-time. If you
also want to supply the TWAIN source manager with your application then you will need to ship some files
which are distributed by the TWAIN Working Group

Before distributing any files which have been shipped with this product please read the license agreement
and ensure that you comply with all its terms and conditions. Note that you do not have a license to
distribute any Microsoft® files or TWAIN Working Group files as part of this license and you should ensure
that you have the appropriate licenses from Microsoft® and the TWAIN Working Group. You should not
distribute these third party components from the disks supplied with this product.

Shipping iTWAIN

To ship iTWAIN to your customers you MUST ship the following two files ONLY - you may NOT ship any
other files belonging to this product under any circumstances.

1. iTWAIN.OCX
2. iTWAIN.RTL

You are advised to install these files on the target system in the Windows System Directory:-

<WindowsDirectory> \ System

After installing these files and the other Microsoft® files identified below, you should register iTWAIN on
the target system,. By running the following command :-

REGSVR32.EXE /s iTWAIN.OCX

Shipping Microsoft® Components

The following files are required on the target system :-

1. MFC42.DLL
2. OLEPRO32.DLL
3. REGSVR32.EXE

These should be installed in the target system’s Windows System Directory but only if these files are
either not already installed or they are a later version than those already on the target system.

When you install and register a control, you should also register OLEPRO32.DLL. Using the following
command :-

REGSCR32.EXE /s OLEPRO32.DLL

Perform this registration step only if you need to install OLEPRO32.DLL. If the DLL is installed already,
you should assume that it has been registered.

You should also register MFC40.DLL. Unlike OLEPRO32.DLL, you should always register this DLL, even
if it is already installed. To register this DLL run the following command :-

REGSVR32.EXE /s MFC40.DLL

Shipping TWAIN files
To install TWAIN on the target system , you will need to install the following TWAIN components:-

1. TWAIN.DLL
2. TWAIN_32.DLL
3. TWUNK_16.EXE
4. TWUNK_32.DLL
5. TWSRC_16.DS
6. TWSRC_32.DS

These should be installed in the target system’s Windows Directory as shown below :-

<Windows Directory> \ TWAIN.DLL
<Windows Directory> \ TWAIN_32.DLL
<Windows Directory> \ TWUNK_16.EXE
<Windows Directory> \ TWUNK_32.EXE
<Windows Directory> \ TWAIN \ TWSRC_16.DS
<Windows Directory> \ TWAIN_32 \ TWSRC_32.DS

You do not have to register any of the TWAIN files.

UnInstalling iTWAIN

To UnInstall iTWAIN from your development system please follow these instructions :-

1. Un-Register the OCX by running the “Unregister iTWAIN OCX” command in the iTWAIN program
group or by running the following command :-

<SystemDir> \ REGSVR32.EXE /u <SystemDir> \ iTWAIN.OCX

where <SystemDir> is your windows system directory.

1. From the Control Panel, select “Add/Remove Programs”, select the iTWAIN entry in the list and press
the Add/Remove button.

iTWAIN Properties

iTWAIN supports the following properties:

Stock Properties

BackColor sets the control’s background color

Visible whether the control is visible or not.
MUST NOT be set to FALSE

Custom Properties

AutoFeeder whether to use an automatic page feeder on the input device (if
available)

EnableTransferCancelledEvent set this property to receive notification when an image transfer
has been canceled by the user

EnableTransferCompleteEvent set this property to receive notification when an image transfer
is completed

EnableTransferReadyEvent set this property to receive notification when image transfer is
ready

EnableSourceClosedEvent set this property to receive notification when the source is
closed

ImageCount the number of images you wish to acquire at once. Useful for
acquiring multiple images or when using an autofeeder

Mode whether to use the control in manual or automatic mode

ShowSourceProgress whether you wish to display the input device’s progress
indicator.

ShowSourceUIF whether you wish to display the input device’s own user
interface to the end user.

TransferMode controls how you wish to transfer images - in Native mode or
through file transfer.

See Also
Methods
Events
Examples

BackColor Property

Use this property to specify the background color of the control.

Syntax

controlname.BackColor [= color]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Color value

Setting

The BackColor property uses the following setting.

Setting Property Sheet Visual Basic
color N/A An integer expression

evaluating to a color value.
Select the required color using
the drop down list in the visual
basic properties window.

Remarks

Use this property to set the background color of the control. This is the color the control will display when
it has no image.

Visible Property

This is a standard stock property for specifying whether the control is visible or not. However due to
nature of the interaction between the TWAIN source manager and the control, this property should never
be set to FALSE. If the control is made invisible, the TWAIN source manager will not be able to interact
with the control.

Syntax

controlname.Visible [= visible]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The Visible property uses the following setting.

Setting Property Sheet Visual Basic
visible N/A A Boolean expression (TRUE

or FALSE) indicating whether
the control is visible or not

Remarks

Although this property is provided, it must not be set to FALSE during a TWAIN session. This is because
TWAIN relies on the controls window handle to display the image.

If you wish to hide the control at run time, you should move its position off screen.

AutoFeeder Property

Use this property to specify whether to use the input device auto-feeder or not.

Syntax

controlname.AutoFeeder [= autofeeder]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The AutoFeeder property uses the following setting.

Setting Property Sheet Visual Basic
autofeeder Check the AutoFeeder box to

use the auto-feeder, un-check
it otherwise.

A Boolean expression (TRUE
or FALSE) indicating whether
to use the auto-feeder or not

Remarks

An auto-feeder, if attached to the input device, allows you to capture many images in one go. Auto-
feeders are normally available with scanners where multiple pages can be scanned automatically.

Only available in Automatic Mode.
Not Guaranteed to succeed - iTWAIN will TRY to negotiate this capability in Automatic Mode

EnableTransferCancelledEvent Property

Set this property if you wish to receive the TransferCancelled Event in your application.

Syntax

controlname.EnableTransferCancelledEvent [= enableTCE]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The EnableTransferCancelledEvent property uses the following setting.

Setting Property Sheet Visual Basic
enableTCE Check the Transfer Canceled

box to receive the transfer
canceled event, un-check it
otherwise.

A Boolean expression (TRUE
or FALSE) indicating whether
your application should
receive the transfer canceled
event or not

Remarks

The TransferCanceled Event is useful especially when the input device’s user interface (Source UIF) is to
be displayed - see the ShowUIF property.

This means that the user could cancel the image transfer from the Source UIF and your application would
wait indefinitely for the image to be acquired. The TransferCanceled Event allows your application to
recognize that an image transfer process was canceled by the user.

EnableTransferCompleteEvent Property

Set this property if you wish to receive the TransferComplete Event in your application.

Syntax

controlname.EnableTransferCompleteEvent [= enableTCE]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The EnableTransferCompleteEvent property uses the following setting.

Setting Property Sheet Visual Basic
enableTCE Check the Transfer Complete

box to receive the transfer
complete event, un-check it
otherwise.

A Boolean expression (TRUE
or FALSE) indicating whether
your application should
receive the transfer complete
event or not

Remarks

The TransferComplete Event tells your application that a single image or frame has been acquired and
the image data is ready. Normally you would save the image data in the handler for this event.

Note that the TransferComplete Event is fired after every image or frame that is acquired - this is
especially important when capturing multiple images.

EnableTransferReadyEvent Property

Set this property if you wish to receive the TransferReady Event in your application.

Syntax

controlname.EnableTransferReadyEvent [= enableTRE]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The EnableTransferReadyEvent property uses the following setting.

Setting Property Sheet Visual Basic
enableTRE Check the Transfer Ready box

to receive the transfer ready
event, un-check it otherwise.

A Boolean expression (TRUE
or FALSE) indicating whether
your application should
receive the Transfer Ready
event or not

Remarks

The TransferReady Event tells your application that the input device is ready to transfer image data.

In the handler for this event, you can interrogate the control for more details about the image about to be
acquired. You can also specify a filename and file type for the image when using the file transfer mode.

EnableSourceClosedEvent Property

Set this property if you wish to receive the SourceClosed Event in your application.

Syntax

controlname.EnableSourceClosedEvent [= enableSCE]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The EnableSourceClosedEvent property uses the following setting.

Setting Property Sheet Visual Basic
enableTRE Check the Source Closed box

to receive the source closed
event, un-check it otherwise.

A Boolean expression (TRUE
or FALSE) indicating whether
your application should
receive the source closed
event or not

Remarks

The SourceClosed Event tells your application that the source was closed automatically or by the
CloseSource method.

ImageCount Property

Allows you to specify the number of images to acquire

Syntax

controlname.ImageCount [= n]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Integer

Setting

The ImageCount property uses the following setting.

Setting Property Sheet Visual Basic
n Enter the number of images to

acquire in the Image Count
Edit Box. Enter
-1 for unlimited images.
1 for single image
>1 for n images
0 Invalid
<-1 Invalid

An integer expression to
specify the number of images
to acquire. Set to
-1 for unlimited images.
1 for single image
>1 for n images
0 Invalid
<-1 Invalid

Remarks

This property is useful for acquiring multiple images. If you know the number of images you wish to
acquire set this property to that number.

If you do not know in advance how many images are to be acquired - for example when using an
automatic sheet feeder - then set this property to -1. Your application will receive the TransferReady
Event before transferring data for each and every image or frame.

Only available in Automatic Mode.
Not Guranteed to succeed - iTWAIN will TRY to negotiate this capability in Automatic Mode

Mode Property

Sets the iTWAIN control to Manual or Automatic Mode.

Syntax

controlname.Mode [= mode]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Integer

Setting

The Mode property uses the following setting.

Setting Property Sheet Visual Basic
mode Select the Manual Radio

Button for Manual Mode.

Select the Automatic Radio
Button for Automatic Mode
(default)

An integer expression
indicating the Mode :

0 - Manual
1 - Automatic (default)

Remarks

The iTWAIN Control can be made to operate in two modes

Manual Mode
Allows you to control the input device at a low level and select and modify the device’s capabilities. See
the Initialization Methods for more information.

Automatic Mode
Allows you to capture images with a minimum of work using the default settings.

ShowSourceProgress Property

Allows you to specify whether the input device’s progress indicator is to be displayed.

Syntax

controlname.ShowSourceProgress [= ShowProgress]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The ShowSourceProgress property uses the following setting.

Setting Property Sheet Visual Basic
ShowProgress Check the Show Source

Progress Box to display the
device progress indicator

A Boolean expression (TRUE
or FALSE) indicating whether
to display the device progress
indicator

Remarks

When the input device is active (transferring an image) you may wish to display a progress indicator.
Use this property to show the indicator

Note that all devices are not guaranteed to implement a progress indicator. If one is not available this
property has no effect.

Only available in Automatic Mode.
Not Guaranteed to succeed - iTWAIN will TRY to negotiate this capability in Automatic Mode

ShowSourceUIF Property

Allows you to specify whether the input device’s User Interface should be displayed.

Syntax

controlname.ShowSourceUIF [= ShowUIF]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Boolean

Setting

The ShowSourceUIF property uses the following setting.

Setting Property Sheet Visual Basic
ShowUIF Check the Show Source UIF

Box to display the device UIF
A Boolean expression (TRUE
or FALSE) indicating whether
to display the device UIF

Remarks

Many manufacturers supply a customised user interface or dialog that can be used for fine tuning the
settings for their input device.

You can choose to display this UIF using this property. This allows the end user to specify image capture
parameters more precisely. Examples of the kind of settings that might be available are image cropping,
image enlargement and reduction, multiple sheet feeders and so forth.

This property is valid in both Automatic Mode and Manual Mode

TransferMode Property

Specifies how you wish to receive the image data.

Syntax

controlname.TransferMode [= TransferMode]

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Type

Integer

Setting

The TransferMode property uses the following setting.

Setting Property Sheet Visual Basic
TransferMode Select the Native Radio Button

for Native Mode Transfers
Select the File Radio Button
for File Transfers

An integer expression
indicating the Transfer Mode:

0 - Native Mode (Default)
1 - File Mode

Remarks

The iTWAIN Control is capable of transferring image data in the following modes :

Native Mode
This mode is the easiest to use. The image is stored in a block of memory that is allocated by the
TWAIN source. The format it is stored in is DIB on Windows and PICT on Macintosh. Native Mode is
ideal for small images. In this mode your application cannot know whether there will be enough memory
until the image transfer starts. The source may then need to clip the image due to lack of memory.

File Mode
This mode transfers data directly to a disk file. This is likely to be the most convenient since most
applications probably want to save the image data once acquired. For this mode you MUST set the
EnableTransferReadyEvent Property to TRUE. See the SetTransferFile Method for further information.

Memory Mode
This TWAIN mode is not supported in this version of iTWAIN.

This property is valid in both Automatic Mode and Manual Mode

Methods (iTWAIN Control)

iTWAIN provides the following methods:

iTWAIN provides a comprehensive range of methods for controlling input devices, acquiring images and
getting image information. There are high level methods for ease of use and lower level methods for
complete control.

iTWAIN methods are broadly classified as:

Initialization Methods for initializing the Source Manager and Sources

Source Selection Methods for selecting an input source and acquiring images
from it

Image Information Methods for getting information about an image to be acquired

Status Information Methods for getting state and status information

High Level Capabilities Methods for getting common capabilities

Capability Negotiation Methods for negotiating capabilities directly with the source
giving complete control

See Also
Properties
Events
Examples

iTWAIN Initialization Methods

InitializeSession Initializes the TWAIN Source Manager and begins a TWAIN
session

ResetSession Resets the TWAIN Session

LoadSourceManager Loads the TWAIN Source Manager

UnloadSourceManager Unloads the TWAIN Source Manager

OpenSourceManager Opens the TWAIN Source Manager

CloseSourceManager Closes the TWAIN Source Manager

OpenSource Opens the selected Source

CloseSource Closes an open Source

EnableSource Enables the Source with negotiated capabilities

DisableSource Disables the Source and resets any negotiated capabilities

See Also
Source Selection

Image Information

Status Information

High Level Capabilities

Capability Negotiation

InitializeSession Method

Begins a session between your application and the TWAIN Source Manager.

Syntax

controlname.InitializeSession ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

Must be called once before starting the TWAIN session. This method loads the Source Manager and
opens it, ready to accept the remaining method calls. If successful, you must call ResetSession
eventually to close the Source Manager.

See Also

SelectSource, Acquire, ResetSession

ResetSession Method

Ends the session between your application and the TWAIN Source Manager

Syntax

controlname.ResetSession ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure -

Note: once the session has been reset, you cannot use GetStatus to get error information

Parameters

None

Remarks

Use this method to finally close the Source Manager.

See Also

InitializeSession

LoadSourceManager Method

Loads the TWAIN Source Manager

Syntax

controlname.LoadSourceManager ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure

Note: You cannot use GetStatus to get error information until the Source manager has been opened by
calling OpenSourceManager()

Parameters

None

Remarks

In Automatic Mode there is no need to call this method. Use InitializeSession instead.

In Manual Mode call this to load the TWAIN Source Manager. You must then call OpenSourceManager
immediately after.

See Also

UnLoadSourceManager, OpenSourceManager

UnloadSourceManager Method

Unloads the TWAIN Source Manager

Syntax

controlname.UnLoadSourceManager ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure

Note: once the Source Manager has been unloaded you cannot use GetStatus to get error information

Parameters

None

Remarks

In Automatic Mode there is no need to call this method. Use ResetSession instead.

In Manual Mode call this to unload the TWAIN Source Manager. You MUST have called
LoadSourceManager earlier.

See Also

LoadSourceManager

OpenSourceManager Method

Opens the Source Manager

Syntax

controlname.OpenSourceManager ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

In Automatic Mode there is no need to call this method. Use InitializeSession instead.

In Manual Mode call this to open the TWAIN Source Manager. You MUST first call LoadSourceManager.

After calling this method you would select the Source using one of the Source Selection Methods

See Also

LoadSourceManager, CloseSourceManager

CloseSourceManager Method

Closes an open connection with the TWAIN Source Manager

Syntax

controlname.CloseSourceManager ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure

Note: after closing the Source Manager you cannot use GetStatus to get error information

Parameters

None

Remarks

In Automatic Mode there is no need to call this method. Use ResetSession instead.

In Manual Mode call this to close the TWAIN Source Manager. You MUST have called
OpenSourceManager first.

See Also

OpenSourceManager

OpenSource Method

Opens the selected Source

Syntax

controlname.OpenSource ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

In Automatic Mode you need not call this method.

In Manual Mode you would call this after selecting a source using one of the Source Selection Methods.
After calling OpenSource you would carry out Capability Negotiation with the source prior to calling
EnableSource.

See Also

CloseSource,

CloseSource Method

Closes an Open Source

Syntax

controlname.CloseSource ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

In Automatic Mode you need not call this method.

In Manual Mode you would not normally need to use this method. The control will automatically Disable
the source and Close the Source after it has completed the acquiring all images or the process has been
canceled by the user. However this method is provided so that you can chose to selectively close down
the source at any time during the image acquisition process. You MUST call the DisableSource() method
first before calling this method.

See Also

OpenSource

EnableSource Method

Prepares a Source with newly negotiated capabilities

Syntax

controlname.EnableSource ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

In Automatic Mode there is no need to call this method.

In Manual Mode you would call this after calling OpenSource and Negotiating Capabilities.

Calling this function triggers off the image acquisition process in both Automatic Mode and Manual Mode.
After all images have been transferred the control automatically calls DisableSource() followed by
CloseSource() and TWAIN is placed back in state 3 ready for selecting another source or for negotiating
properties for the next acquisition process.

See Also

DisableSource

DisableSource Method

Resets any capabilities negotiated with the Source

Syntax

controlname.DisableSource ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

In Automatic Mode there is no need to call this method.

In Manual Mode you would not normally need to use this method. The control will automatically Disable
the source and Close the source after it has completed the acquiring all images or the process has been
canceled by the user. However this method is provided so that you can chose to selectively close down
the source at any time during the image acquisition process. You MUST call the CloseSource() method
after calling this method.

See Also

EnableSource

iTWAIN Source Selection Methods

SelectSource Select a Source from a list of installed TWAIN Sources using
the standard TWAIN select source user interface

SelectSourceUIF Same as SelectSource

SelectSourceDefault Select the default TWAIN Source

SelectSourceFirst Select the first TWAIN Source

SelectSourceNext Select the next TWAIN Source

GetSourceName Get the name of the currently selected Source

SelectSourceByIndex Select the nth TWAIN Source

Acquire Get the image(s)

See Also
Initialization

Image Information

Status Information

High Level Capabilities

Capability Negotiation

SelectSource Method

Select a TWAIN Source from a list of available sources

Syntax

controlname.SelectSource ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

The user is presented with a list of available TWAIN Sources. When the user selects one it becomes the
selected source. This method is synonymous with SelectSourceUIF and is provided for TWAIN
compliance.

See Also

SelectSourceUIF

SelectSourceUIF Method

Select a TWAIN Source from a list of available sources

Syntax

controlname.SelectSourceUIF ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

The user is presented with a list of available TWAIN Sources. When the user selects one it becomes the
selected source. This method is synonymous with SelectSource

See Also

SelectSource

SelectSourceDefault Method

Select the default TWAIN Source without displaying a list of available sources.

Syntax

controlname.SelectSourceDefault ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

Selects the default TWAIN Source. The default source is the first available source or the last selected
source.

See Also

SelectSource

SelectSourceFirst Method

Select the first TWAIN Source without displaying a list of available sources.

Syntax

controlname.SelectSourceFirst ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

Selects the first available TWAIN Source

See Also

SelecteSourceNext

SelectSourceNext Method

Select the next TWAIN Source without displaying a list of available sources.

Syntax

controlname.SelectSourceNext ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

Selects the next available TWAIN Source

See Also

SelectSourceFirst

GetSourceName Method

Get the name of the currently selected source

Syntax

controlname.GetSourceName ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

String containing name of the currently selected source

Parameters

None

Remarks

Returns the name of the currently selected source

See Also

SelectSource

SelectSourceByIndex Method

Selects a source by index value without displaying a list of available sources

Syntax

controlname.SelectSourceByIndex (Short index)

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

index index of the source to select

Remarks

Selects the source identified by the index parameter. For example index = 1 would select the first
source, index = 2 would select the second source and so on.

See Also

SelectSource

Acquire Method

Tells the currently selected source to begin image acquisition

Syntax

controlname.Acquire ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

None

Remarks

This method should be used in Automatic Mode. In this mode, the control opens the source, automatically
negotiates the capabilities specified in the control’s properties and then enables the source to start the
image acquisition process.

You can call this method in manual mode if you do not want to negotiate any capabilities with the source.
However, if you want to set one or more capabilities, you must call OpenSource() to place TWAIN in state
4, then carry out any capability negotiations you want, followed by calling EnableSource() to start the
image acquisition process.

In both modes, as soon as the source has acquired the image but before the image data is transferred to
your application, the TransferReady Event is fired. This event is fired before each and every image or
frame data transfer.

In both modes, as soon as the source completes transferring the image data the TransferComplete Event
is fired. This event is fired after each and every image or frame that is acquired.

See Also

TransferComplete, TransferReady

SetTransferFile Method

Set the filename for saving an image in File Transfer Mode.

Syntax

controlname.SetTransferFile (String filename, Short filetype)

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

1 indicates success
0 indicates failure - use GetStatus to get further error information

Parameters

filename Full file specification including drive, path, filename and extension

filetype Type of image file. One of
0 TWFF_TIFF Tagged Image File Format
1 TWFF_PICT Macintosh PICT Format
2 TWFF_BMP Windows Bitmap Format
3 TWFF_XBM X-Windows Bitmap Format
4 TWFF_JFIF JPEG File Interchange Format

Remarks

This method can only be used from the TransferReady event handler and only when the File transfer
mode has been selected by setting the TransferMode property to 1 (TWSX_FILE).

For each and every image or frame that is about to be acquired, this event gives you the chance to
provide a filename and file type for the image to be saved by the source. You can access the file during
the TransferComplete event which will be fired after the file has been saved.

See Also

x

iTWAIN Image Information Methods

These methods are only available within the TransferReady Event and are used to get detailed
information about the image or frame about to be transferred.

ImageGetFrameTop Get the top (y) coordinate of a frame

ImageGetFrameBottom Get the bottom (y) coordinate of a frame

ImageGetFrameLeft Get the left (x) coordinate of a frame

ImageGetFrameRight Get the right (x) coordinate of a frame

ImageGetDocumentNumber Get the current document number

ImageGetPageNumber Get the current page number

ImageGetFrameNumber Get the current frame number

ImageGetXResolution Get the X resolution of the image in pixels per unit

ImageGetYResolution Get the Y resolution of the image in pixels per unit

ImageGetWidth Get the width of the image in pixels

ImageGetLength Get the length (height) of the image in pixels

ImageGetSamplesPerPixel Gets the number of samples taken for each pixel in the image.
For example, 1 for monochrome images and 3 for RGB color
images.

ImageGetBitsPerPixel Gets the pixel depth for the image’s pixel type. For example if
the image is grey then whether it is 4 bit grey or 8 bit grey

ImageGetBitsPerSample Gets BitsPerPixel divided by Samples PerPixel

ImageGetPixelType Gets the type of pixel data in the image. For example black and
white, grey, RGB, CMYK etc

ImageGetCompression Only applies to memory mode transfers which are not
supported in the current version of the control. Gets the type of
compression to be used during the memory transfer.

ImageIsPlanar Whether the image is planar or chunky. Planar images are
coded with the entire red plane of data first followed by the
green plane data, followed by the entire blue plane. Non planar
(chunky) image data interlaces each pixel from each color
plane.

CopyToClipboard Copies an acquired image to the windows clipboard

See Also
Initialization

Source Selection

Status Information

High Level Capabilities

Capability Negotiation

ImageGetFrameTop Method

Use this method to determine the top co-ordinate of the rectangular frame describing the part of the
image about to be acquired

Syntax

f = controlname.ImageGetFrameTop ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks

Returns the co-ordinate in the current units used by the source.

See Also

ICAP_UNITS capability in the TWAIN documentation

ImageGetFrameBottom Method

Use this method to determine the bottom co-ordinate of the rectangular frame describing the part of the
image about to be acquired

Syntax

f = controlname. ImageGetFrameBottom()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks

Returns the co-ordinate in the current units used by the source.

See Also

ICAP_UNITS capability in the TWAIN documentation

ImageGetFrameLeft Method

Use this method to determine the left co-ordinate of the rectangular frame describing the part of the image
about to be acquired

Syntax

f = controlname. ImageGetFrameLeft ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks

Returns the co-ordinate in the current units used by the source.

See Also

ICAP_UNITS capability in the TWAIN documentation

ImageGetFrameRight Method

Use this method to determine the right co-ordinate of the rectangular frame describing the part of the
image about to be acquired

Syntax

f = controlname. ImageGetFrameRight ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks

Returns the co-ordinate in the current units used by the source.

See Also

ICAP_UNITS capability in the TWAIN documentation

ImageGetDocumentNumber Method

Get the document number of the image to be acquired, if this ability is provided by a device using an auto
feeder.

Syntax

l = controlname.ImageGetDocumentNumber ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Long Integer

Parameters

None

Remarks

Some devices using an autofeeder can group a number of images into a single document. This method
allows you to get the document number.

See Also

x

ImageGetPageNumber Method

Gets the page number of the image to be acquired, if this ability is provided by a device using an auto
feeder.

Syntax

l = controlname. ImageGetPageNumber ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Long Integer

Parameters

None

Remarks

x

See Also

x

ImageGetFrameNumber Method

This method returns the frame number of the frame to be acquired, if this ability is provided by a device.
Some devices are capable of providing multiple rectangular frames on a single page. This method lets
you know which frame is about to be acquired.

Syntax

l = controlname. ImageGetFrameNumber ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Long Integer

Parameters

None

Remarks

x

See Also

x

ImageGetXResolution Method

This method returns the image resolution along the horizontal axis of the image. The resolution is
measured in pixels per unit. For example if the source is using Inch units, then the resolution represents
the number of pixels per inch

Syntax

f = controlname. ImageGetXResolution ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks

See Also

ICAP_XRESOLUTION capability in the TWAIN documentation
ICAP_YRESOLUTION capability in the TWAIN documentation
ICAP_UNITS capability in the TWAIN documentation

ImageGetYResolution Method

This method returns the image resolution along the vertical axis of the image. The resolution is measured
in pixels per unit. For example if the source is using Inch units, then the resolution represents the number
of pixels per inch

Syntax

f = controlname. ImageGetYResolution ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks
x

See Also
ICAP_XRESOLUTION capability in the TWAIN documentation
ICAP_YRESOLUTION capability in the TWAIN documentation
ICAP_UNITS capability in the TWAIN documentation

ImageGetWidth Method

This method returns the number of pixels in the entire width of the image to be acquired.

Syntax

l = controlname. ImageGetWidth ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Long Integer

Parameters

None

Remarks

x

See Also

None

ImageGetLength Method

This method returns the number of pixels in the entire length (height) of the image to be acquired.

Syntax

l = controlname.ImageGetLength ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Long Integer

Parameters

None

Remarks

x

See Also

None

ImageGetSamplesPerPixel Method

Returns the number of samples in each pixel
For example this is 1 for black and white and 3 for RGB images.

Syntax

s = controlname.ImageGetSamplesPerPixel ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer

Parameters

None

Remarks

See Also
ICAP_PIXELTYPE capability in the TWAIN documentation

ImageGetBitsPerPixel Method

Returns the number of bits of data representing one pixel. Applies to the PixelType.

Syntax

s = controlname.ImageGetBitsPerPixel ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer

Parameters

None

Remarks
This represents the bitdepth for the image’s pixel type, see ImageGetSamplesPerPixel() and
ImageGetPixelType()

For example if the PixelType is TWPT_GRAY then this method returns 4 for 4 bit grey and 8 for 8 bit grey
images

See Also
ICAP_BITDEPTH capability in the TWAIN documentation
ICAP_PIXELTYPE capability in the TWAIN documentation

ImageGetBitsPerSample Method

Gets the number of bits per sample for an image.

Syntax

s = controlname.ImageGetSamplesPerSample ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer

Parameters

None

Remarks

This is equivalent to ImageGetBitsperPixel() divided by ImageGetSamplesPerPixel()

See Also
ImageGetBitsPerPixel()
ImageGetSamplesPerPixel
ICAP_BITDEPTH capability in the TWAIN documentation

ImageGetPixelType Method

Gets the type of pixel data in the image to be acquired.

Syntax

s = controlname.ImageGetPixelType ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer

Parameters

None

Remarks

Valid values are:-
0 TWPT_BW Black and White
1 TWPT_GRAY Grey
2 TWPT_RGB RGB color image
3 TWPT_PALETTE Image containing a palette of colours
4 TWPT_CMY CMY color image
5 TWPT_CMYK CMYK color image
6 TWPT_YUV YUV color image
7 TWPT_YUVK YUVK color image
8 TWPT_CIEXYZ CIE color image

See Also
ICAP_PIXELTYPE capability in the TWAIN documentation

ImageGetCompression Method

Gets the type of compression that will be used for transferring the image using memory mode transfer.

Syntax

l = controlname.ImageGetCompression ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Long Integer

Parameters

None

Remarks
Memory mode transfer is not supported in the current version of this control.

Valid return values are

0 TWCP_None
1 TWCP_PACKBITS
2 TWCP_GROUP31D
3 TWCP_GROUP31DEOL
4 TWCP_GROUP32D
5 TWCP_GROUP34
6 TWCP_JPEG
7 TWCP_LZW

See Also
ICAP_COMPRESSION capability in the TWAIN documentation

ImageIsPlanar Method

Checks whether the image is planar or chunky.

Syntax

b = controlname.ImageIsPlanar ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Boolean

Parameters

None

Remarks

Returns TRUE if the image color data is planar and FALSE if it is chunky.

Planar data is presented as an entire plane of data for one color followed by an entire plane for the next
color. For example, if the image is RGB color and planar, then the image data is presented first as the
entire red plane, then the green plane followed by the blue plane. On the other hand if the data is chunky,
each pixel is represented by the red, green and blue values.

Planar data is organized like this:-
RRRRRR, GGGGGGGG, BBBBBBBB

Chunky data is organized like this:-
RGBRGBRGBRGBRGBRGBRGBRGB

Usually single pass scanners generate chunky data and multiple pass scanners generate planar data

See Also
ICAP_PLANARCHUNKY capability in the TWAIN documentation

CopyToClipboard Method

Copies an acquired image to the windows clipboard

Syntax

i = controlname.CopyToClipboard ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer

Parameters

None

Remarks
Use this method to copy image data to the windows clipboard. Your appication can then use clipboard
functions to transfer the bitmap data as required.

Valid return values are

0 Could not copy to clipboard or no image to copy
1 Copied successfully. The clipboard now contains the image data

See Also
None

iTWAIN Status Information Methods

These methods allow you to get the current TWAIN State information and the status of the last operation.

GetTwainState Get the current TWAIN State

GetStatus Get the current Status Code

See Also
Initialization

Source Selection

Image Information

High Level Capabilities

Capability Negotiation

GetTwainState Method

Gets the current TWAIN State

Syntax

s = controlname.GetTwainState ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer current TWAIN State

Parameters

None

Remarks

TWAIN is implemented as a state machine - each operation puts TWAIN into one of seven states:

State 1 Initial state and after calling ResetSession

State 2 After calling LoadSourceManager or CloseSourceManager

State 3 After calling InitializeSession, OpenSourceManager, CloseSource or automatically after all
transfers are completed

State 4 After calling OpenSource or DisableSource

State 5 After calling EnableSource

State 6 Automatically when an image is ready to be transferred

State 7 Automatically during the image transfer process

When using Manual Mode it is useful to always know which state TWAIN is in at any time

See Also

None

GetStatus Method

Get the current TWAIN status code

Syntax

s = controlname.GetStatus ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short Integer current TWAIN Status Code

Parameters

None

Remarks

Gets the status of the latest TWAIN Operation. After every operation this status code is set as follows:

Value Code Description
0 TWCC_SUCCESS It worked !
1 TWCC_BUMMER Failure due to unknown causes
2 TWCC_LOWMEMORY Not enough memory to perform operation
3 TWCC_NODS No Data Source
4 TWCC_MAXCONNECTIONS DS is connected to max possible apps
5 TWCC_OPERATIONERROR DS or DSM reported error, app shouldn't
6 TWCC_BADCAP Unknown capability
9 TWCC_BADPROTOCOL Unrecognized MSG DG DAT combination
10 TWCC_BADVALUE Data parameter out of range
11 TWCC_SEQERROR DG DAT MSG out of expected sequence
12 TWCC_BADDEST Unknown destination App/Src in DSM_Entry

See Also

None

iTWAIN High Level Capabilities Methods

These methods are provided for ease of use - they allow common capabilities to be checked

IsDeviceOnLine Checks to see if device is on-line

IsFeederEnabled Checks to see if an auto-feeder is enabled

IsUIControllable Checks to see if the Source UIF can be controlled

GetCurrentUnits Gets the current unit of measurement of the source

GetPhysicalHeight Gets the physical height of the source

GetPhysicalWidth Gets the physical width of the source

GetTimeDate Gets the current time and date

See Also
Initialization

Source Selection

Image Information

Status Information

Capability Negotiation

IsDeviceOnLine Method

Indicates whether the device is on line and switched on

Syntax

b = controlname.IsDeviceOnLine ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Boolean

Parameters

None

Remarks
Returns TRUE if the device is available
Returns FALSE if the device is not available, or if the source cannot support this inquiry

See Also
CAP_DEVICEONLINE capability in the TWAIN documentation

IsFeederEnabled Method

Indicates whether the auto feeder is enabled

Syntax

b = controlname.IsFeederEnabled ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Boolean

Parameters

None

Remarks

Returns TRUE if the auto feeder is enabled
Returns FALSE if the auto feeder is not enabled, or if the source cannot support this inquiry

See Also
CAP_FEEDERENABLED capability in the TWAIN documentation

IsUIControllable Method

Indicates whether the Source UIF can be disabled or not.

Syntax

b = controlname.IsUIControllable ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Boolean

Parameters

None

Remarks

Returns TRUE if a source supports acquisition with the user interface disabled
Returns FALSE otherwise.

The ShowSourceUIF property will have no effect if this method returns FALSE.

See Also
CAP_UICONTROLLABLE capability in the TWAIN documentation

GetCurrentUnits Method

Gets the current unit of measurement used by the source

Syntax

s = controlname.GetCurrentUnits ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Short s Unit Code. Valid return values are
0 TWUN_INCHES
1 TWUN_CENTIMETERS
2 TWUN_PICAS
3 TWUN_POINTS
4 TWUN_TWIPS
5 TWUN_PIXELS

Parameters

None

Remarks

This tells you unit of measurement being used by the source.

See Also
ICAP_UNITS capability in the TWAIN documentation

GetPhysicalHeight Method

Gets the maximum physical height (y-axis) of an image the source is capable of acquiring.

Syntax

f = controlname.GetPhysicalHeight ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks
Effectively this is the physical dimension of the device and specifies the maximum size of image that can
be acquired.

The value is returned in the current units used by the device.

See Also
ICAP_UNITS capability in the TWAIN documentation

GetPhysicalWidth Method

Gets the maximum physical width (x-axis) of an image the source is capable of acquiring.

Syntax

f = controlname.GetPhysicalWidth ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Float

Parameters

None

Remarks
Effectively this is the physical dimension of the device and specifies the maximum size of image that can
be acquired.

The value is returned in the current units used by the device.

See Also
ICAP_UNITS capability in the TWAIN documentation

GetTimeDate Method

Gets the date and time when the image was acquired

Syntax

s = controlname.GetTimeDate ()

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

String

Parameters

None

Remarks
The string is formatted as follows:-
YYYY/MM/DD HH:MM:ss.sss

where
YYYY is the year
MM is the month
DD is the date
HH is the hour
MM is the number of minutes
SS is the number of seconds and
sss is the number of milliseconds

See Also
CAP_TIMEDATE capability in the TWAIN documentation

iTWAIN Capability Negotiation Methods

GetCapability Get the iTWAIN Capability Object. You MUST get this
capability object first in order to use the following capability
methods

IsSupported Check whether this capability is supported by the Source

SelectCurrent Select the current value of this capability

SelectDefault Select the default value of this capability

SelectAvailable Select available values of this capability

ResetDefault Reset default value of this capability

IsSingle Check if this capability has a single value

IsEnumeration Check if this capability has enumerated values

IsArray Check if this capability has an array of values

IsRange Check if this capability has a range of values

GetValue Get the value of this capability

SetValue Set the value of this capability

GetSingleValue Get a single value

SetSingleValue Set a single value

GetMinValue Get the minimum value of a range

SetMinValue Set the minimum value of a range

GetMaxValue Get the maximum value of a range

SetMaxValue Set the maximum value of a range

GetStepSize Get the step size of a range

GetMultipleCount Get number of values

NegotiateSingle Negotiate a single value

NegotiateEnumeration Negotiate enumerated values

NegotiateArray Negotiate an array of values

NegotiateRange Negotiate a range of values

SetFrame Set frame size

GetFrameLeft Get frame’s left coordinate

GetFrameRight Get frame’s right coordinate

GetFrameTop Get frame’s top coordinate

GetFrameBottom Get frame’s bottom coordinate

See Also
Initialization

Source Selection

Image Information

Status Information

High Level Capabilities

GetCapability Method

Gets a capability object.

Syntax

Declare obj As Object
set obj = controlname.GetCapability (Short capability)

controlname is the name of the iTWAIN Control object, for example, iTWAIN1.

Return Value

Object obj The capability Object

Parameters

Short capability The required TWAIN capability. See TWAIN Capabilities for a list of valid
capabilities

Remarks

TWAIN supports a range of capabilities that may be negotiated with a source. iTWAIN makes it easy to
negotiate any capability by providing a Capability Object.

Use this method to get an iTWAIN capability object. A capability is returned as an OLE object. You can
use this object to negotiate capability values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
None

IsSupported Method

Returns whether the capability is supported by the source.

Syntax

b = obj.IsSupported

obj is the name of a local variable of type Object in Visual Basic

Return Value

Boolean b TRUE if this capability is supported, FALSE otherwise

Parameters

None

Remarks

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
None

SelectCurrent Method

Tells the source that we are about the inquire about the current setting for the specified capability

Syntax

obj.SelectCurrent()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources can return the current value, the preferred default value all the available (or valid) values for a
given capability.

Typically the current settings will be returned as a Single value.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SelectDefault
SelectAvailable
ResetDefault

SelectDefault Method

Tells the source that we are about the inquire about the default setting for the specified capability

Syntax

obj.SelectDefault()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources can return the current value, the preferred default value all the available (or valid) values for a
given capability.

Typically the default settings will be returned as a Single value.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SelectCurrent
SelectAvailable
ResetDefault

SelectAvailable Method

Tells the source that we are about the inquire about the available settings for the specified capability

Syntax

obj.SelectAvailable()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources can return the current value, the preferred default value and all the available (or valid) values for
a given capability.

The available settings will be returned as Single, Enumerations, Arrays or Range depending on how the
source provides those values

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SelectCurrent
ResetDefault
SelectDefault

IsSingle Method

Specifies whether the capability value returned by the source is a single value

Syntax

b = obj.IsSingle

obj is the name of a local variable of type Object in Visual Basic

Return Value

Boolean b TRUE if capability is single type, FALSE otherwise

Parameters

None

Remarks

Capability values can be returned in one of 4 container types, Single, Enumerations, Arrays or a range of
values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
IsEnumeration
IsArray
IsRange
GetSinglevalue
SetSingleValue
NegotiateSingle

IsEnumeration Method

Specifies whether the capability value returned by the source is an enumeration of values

Syntax

b = obj.IsEnumeration

obj is the name of a local variable of type Object in Visual Basic

Return Value

Boolean b TRUE if capability is enumeration type, FALSE otherwise

Parameters

None

Remarks

Capability values can be returned in one of 4 container types, Single, Enumerations, Arrays or a range of
values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
IsSingle
IsArray
IsRange
GetValue
SetValue
NegotiateEnumeration

IsArray Method

Specifies whether the capability value returned by the source is a array of values

Syntax

b = obj.IsArray

obj is the name of a local variable of type Object in Visual Basic

Return Value

Boolean b TRUE if capability is array type, FALSE otherwise

Parameters

None

Remarks

Capability values can be returned in one of 4 container types, Single, Enumerations, Arrays or a range of
values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
IsSingle
IsEnumeration
IsRange
GetValue
SetValue
NegotiateArray

IsRange Method

Specifies whether the capability value returned by the source is a range of value

Syntax

b = obj.IsRange

obj is the name of a local variable of type Object in Visual Basic

Return Value

Boolean b TRUE if capability is range type, FALSE otherwise

Parameters

None

Remarks

Capability values can be returned in one of 4 container types, Single, Enumerations, Arrays or a range of
values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
IsSingle
IsArray
IsEnumeration
GetMinValue
GetMaxValue
GetStepSize
SetMinValue
SetMaxValue
NegotiateRange

GetMaxValue Method

This method is used to retrieve the maximum value of a capability which is provided by the source as a
range of values

Syntax

v = obj.GetMaxValue()

obj is the name of a local variable of type Object in Visual Basic

Return Value

VARIANT v maximum value of the capability

Parameters

None

Remarks

You must allocate a variable for the return value to correspond to the type of the capability
The variant return type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

NOTE: most sources will only use the FIX32 data type in specifying a range of values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetMinValue
GetStepSize
SetMinValue
SetMaxValue
NegotiateRange

GetMinValue Method

This method is used to retrieve the minimum value of a capability which is provided by the source as a
range of values

Syntax

v = obj.GetMinValue()

obj is the name of a local variable of type Object in Visual Basic

Return Value

VARIANT v minimum value of the capability

Parameters

None

Remarks

You must allocate a variable for the return value to correspond to the type of the capability
The variant return type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

NOTE: most sources will only use the FIX32 data type in specifying a range of values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetMaxValue
GetStepSize
SetMinValue
SetMaxValue
NegotiateRange

GetStepSize Method

This method is used to retrieve the step size of a capability which is provided by the source as a range of
values

Syntax

v = obj.StepSize()

obj is the name of a local variable of type Object in Visual Basic

Return Value

VARIANT v step size of the capability range

Parameters

None

Remarks

You must allocate a variable for the return value to correspond to the type of the capability
The variant return type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

NOTE: most sources will only use the FIX32 data type in specifying a range of values.

See Also
GetMinValue
GetMaxValue
SetMinValue
SetMaxValue
NegotiateRange

SetMaxValue Method

This method is used to set the maximum value of a capability which can provided to the source as a
range of values

Syntax

obj.SetMaxValue(VARIANT data)

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

VARIANT data data value to be set

Remarks

You must allocate a variable for the parameter value to correspond to the type of the capability
The variant type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

NOTE: most sources will only use the FIX32 data type in specifying a range of values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetMinValue
GetMaxValue
GetStepSize
SetMinValue
NegotiateRange

SetMinValue Method

This method is used to set the minimum value of a capability which can provided to the source as a range
of values

Syntax

obj.SetMinValue(VARIANT data)

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

VARIANT data data value to be set

Remarks

You must allocate a variable for the parameter value to correspond to the type of the capability
The variant type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

NOTE: most sources will only use the FIX32 data type in specifying a range of values.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetMinValue
GetMaxValue
GetStepSize
SetMaxValue
NegotiateRange

NegotiateRange Method

This method is used to attempt to negotiate the minimum and maximum values provided to the source
using the SetMinValue and SetmaxValue methods

Syntax

obj.NegotiateRange()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources are not required to set the values you have specified. You must verify that the source has indeed
set the values you wanted to set by retrieving the current value.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
NegotiateSingle
NegotiateEnumeration
NegotiateArray

GetMultipleCount Method

This method is used to retrieve the count of the number of values of a capability which is provided by the
source as an Enumeration or Array

Syntax

s = obj.GetMultipleCount()

obj is the name of a local variable of type Object in Visual Basic

Return Value

Short s number of capability values

Parameters

None

Remarks

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
None

GetValue Method

This method is used to retrieve the value of a capability which is provided by the source as an
Enumeration or an Array

Syntax

v = obj.GetValue(Short index)

obj is the name of a local variable of type Object in Visual Basic

Return Value

VARIANT v required data value

Parameters

Short index index into enumeration or array

Remarks

You must allocate a variable for the return value to correspond to the type of the capability
The variant return type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

The index is 1 based and not zero based. The first value is obtained by calling GetValue(1) and so on.
The index must not exceed the count obtained from GetMultipleCount()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SetValue
GetSingleValue
SetSingleValue

SetValue Method

This method is used to set the value of a capability which can be provided to the source as an
enumeration or an Array

Syntax

obj.SetValue(Short index, VARIANT data)

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

Short index index into enumeration or array
VARIANT data data value to be set

Remarks

You must allocate a variable for the parameter value to correspond to the type of the capability
The variant type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

The index is 1 based and not zero based. The first value is set by calling SetValue(1) and so on.
The last index value used will determine how many values will get negotiated when you eventually call
NegotiateEnumeration() or NegotiateArray()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetValue
GetSingleValue
SetSingleValue
NegotiateEnumeration
NegotiateArray

NegotiateEnumeration Method

This method is used to attempt to negotiate the enumeration values provided to the source using the
SetValue method

Syntax

obj.NegotiateEnumeration()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources are not required to set the values you have specified. You must verify that the source has indeed
set the values you wanted to set by retrieving the current value.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
NegotiateSingle
NegotiateArray
NegotiateRange

NegotiateArray Method

This method is used to attempt to negotiate the array of values provided to the source using the SetValue
method

Syntax

obj.NegotiateArray()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources are not required to set the values you have specified. You must verify that the source has indeed
set the values you wanted to set by retrieving the current value.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
NegotiateSingle
NegotiateEnumeration
NegotiateRange

GetSingleValue Method

This method is used to retrieve the value of a capability which is provided by the source as a single value

Syntax

v = obj.GetSingleValue

obj is the name of a local variable of type Object in Visual Basic

Return Value

VARIANT v single capability value

Parameters

None

Remarks

You must allocate a variable for the return value to correspond to the type of the capability
The variant return type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SetSinglevalue
GetValue
SetValue

SetSingleValue Method

This method is used to set the value of a capability which can by provided to the source as a single value

Syntax

obj.SetSingleValue(variant)

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

You must allocate a variable for the parameter value to correspond to the type of the capability
The variant type can be used for any capability type except the FRAME type

Twain capability type C / C++ data type Visual Basic Data type

UINT8 unsigned char Integer
UINT16 unsigned Short Long
INT16 Short Integer
BOOL typedef BOOL Short Boolean
FIX32 Float Single
STR32 char[32+1] String
STR128 char[128+1] String
STR255 char{255+1] String

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetSingleValue
SetValue
GetValue
NegotiateSingle

NegotiateSingle Method

This method is used to attempt to negotiate the Single value provided to the source using the
SetSingleValue method

Syntax

obj.NegotiateSingle()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

Sources are not required to set the values you have specified. You must verify that the source has indeed
set the values you wanted to set by retrieving the current value.

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
NegotiateEnumeration
NegotiateArray
NegotiateRange

ResetDefault Method

Sets the value of a capability back to its default value.
The default value is defined by the source and cannot be changed.

Syntax

obj.ResetDefault()

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

None

Remarks

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
None

SetFrame Method

This method can be used to specify one or more rectangular frames on a given page.

Syntax

obj. SetFrame (Short index, Float left, Float right, Float top, Float bottom)

obj is the name of a local variable of type Object in Visual Basic

Return Value

None

Parameters

Short index index of the frame being set (1 based)
Float left left coordinate of the frame
Float right right coordinate of the frame
Float top top coordinate of the frame
Float bottom bottom coordinate of the frame

Remarks
The index value is 1 based and not zero based. 1 specifies the first frame and so on.

The last index value specified will determine the number of frames which will be set when you eventually
call NegotiateEnumeration() or NegotiateArray()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
GetFrameLeft
GetFrameRight
GetFrameTop
GetFrameBottom
NegotiateEnumeration
NegotiateArray

GetFrameLeft Method

This method retrieves the left co-ordinate of the frame specified

Syntax

f = obj.GetFrameLeft(Short index)

obj is the name of a local variable of type Object in Visual Basic

Return Value

Float f left co-ordinate of the frame

Parameters

Short index index of the frame

Remarks

The index is 1 based and not zero based. The left coordinate of the first frame is obtained by calling
GetFrameLeft(1) and so on. The index must not exceed the count obtained from GetMultipleCount()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SetFrame
GetFrameRight
GetFrameTop
GetFrameBottom
NegotiateEnumeration
NegotiateArray

GetFrameRight Method

This method retrieves the right co-ordinate of the frame specified

Syntax

f = obj.GetFrameRight(Short index)

obj is the name of a local variable of type Object in Visual Basic

Return Value

Float f right co-ordinate of the frame

Parameters

Short index index of the frame

Remarks

The index is 1 based and not zero based. The right coordinate of the first frame is obtained by calling
GetFrameRight(1) and so on. The index must not exceed the count obtained from GetMultipleCount()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SetFrame
GetFrameLeft
GetFrameTop
GetFrameBottom
NegotiateEnumeration
NegotiateArray

GetFrameTop Method

This method retrieves the top co-ordinate of the frame specified

Syntax

f = obj.GetFrameTop(Short index)

obj is the name of a local variable of type Object in Visual Basic

Return Value

Float f Top coordinate of the frame

Parameters

Short index index of the frame

Remarks

The index is 1 based and not zero based. The top coordinate of the first frame is obtained by calling
GetFrameTop(1) and so on. The index must not exceed the count obtained from GetMultipleCount()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SetFrame
GetFrameLeft
GetFrameRight
GetFrameBottom
NegotiateEnumeration
NegotiateArray

GetFrameBottom Method

This method retrieves the bottom co-ordinate of the frame specified

Syntax

f = obj.GetFrameBottom(Short index)

obj is the name of a local variable of type Object in Visual Basic

Return Value

Float f Bottom coordinate of the frame

Parameters

Short index index of the frame

Remarks

The index is 1 based and not zero based. The bottom coordinate of the first frame is obtained by calling
GetFrameLBottom(1) and so on. The index must not exceed the count obtained from GetMultipleCount()

In Visual Basic you MUST set the capability object to “Nothing” after use. (set obj = Nothing)

See Also
SetFrame
GetFrameLeft
GetFrameTop
GetFrameRight
NegotiateEnumeration
NegotiateArray

iTWAIN Events

iTWAIN generates the following events:

TransferReady
TransferComplete
TransferCancelled
SourceClosed

See Also
Properties
Methods
Examples

TransferReady Event

The TransferReady event occurs when the source is ready to transfer some image data.

Syntax

Sub controlname_TransferReady()

The TransferReady event procedure uses the following argument.

Argument Description

controlname The name of the iTWAIN Control object, for example, iTWAIN1.

Remarks

A source can indicate that it has image data ready for your application. The TransferReady event useful
when you need to get information about the image that your application is about to receive. You can also
specify a filename and file type for the image when using the file transfer mode.

This event is fired before each and every image or frame is transferred.

See Also
EnableTransferReadyEvent

TransferComplete Event

The TransferComplete event occurs when the source has finished transferring the image data

Syntax

Sub controlname_TransferComplete()

The TransferComplete event procedure uses the following argument.

Argument Description

controlname The name of the iTWAIN Control object, for example, iTWAIN1.

Remarks

This event occurs once the source has completed transferring the image data to your application.

This event is fired after each and every image or frame is transferred

See Also
EnableTransferCompleteEvent

TransferCancelled Event

The TransferCancelled event occurs when the user cancels or aborts image acquisition

Syntax

Sub controlname_TransferCancelled()

The TransferCancelled event procedure uses the following argument.

Argument Description

controlname The name of the iTWAIN Control object, for example, iTWAIN1.

Remarks

This event is fired if the user cancels or aborts the image acquisition. This is useful when the user
selects Acquire but subsequently cancels the acquisition, for example from the Source UIF.

See Also
EnableTransferCancelledEvent

SourceClosed Event

The SourceClosed event occurs after the source has been closed down.

Syntax

Sub controlname_SourceClosed()

The SourceClosed event procedure uses the following argument.

Argument Description

controlname The name of the iTWAIN Control object, for example, iTWAIN1.

Remarks

This event occurs when a source is closed either automatically (no more sheets left in the auto feeder for
example) or manually via the CloseSource method.

This is useful when acquiring multiple images. Although the TransferComplete event tell you when each
image is transferred it does not tell you that all pending images have been acquired. The SourceClosed
event allows you to check this.

See Also
EnableSourceClosedEvent

iTWAIN Examples

In order to help you get started with using iTWAIN we have included various sample applications with this
product.

Visual Basic and Visual C++ Samples

AutoMode is an example of using the OCX in Automatic mode and shows how it can be used for rapidly
creating a powerful TWAIN compliant image acquisition application in a matter of minutes.

ManualMode is an example of a slightly more complex application which provides control over
interrogating all TWAIN capabilities and negotiating them with the TWAIN source.

These applications are installed in the directory where you chose to install iTWAIN as follows :-

<InstallDirectory>\Samples\VB\Automode\Automode.vbp
<InstallDirectory>\Samples\VB\Manualmode\Manualmode.vbp

<InstallDirectory>\Samples\Mfc\Automode\Automode.mdp
<InstallDirectory>\Samples\Mfc\Manualmode\Manualmode.mdp

Other Samples
Sample applications in Microsoft Word97, Excel97, Access97 and Visual Foxpro 5 are also included
which demonstrate how to embed and use the iTWAIN ocx control in these applications.

These applications are installed in the directory where you chose to install iTWAIN as follows :-

<InstallDirectory>\Samples\Word97
<InstallDirectory>\Samples\Excel97
<InstallDirectory>\Samples\Access97
<InstallDirectory>\Samples\Foxpro5

TWAIN Capabilities

The following table gives details about all TWAIN capabilities which sources may support, including the
data types to be used from C/ C++ and Basic. The table also details which type of containers may be
used for retrieving and setting these capabilities. Note that some capabilities are READ ONLY and cannot
be set. Please refer to the TWAIN documentation for more details about each capability.

key for container types:
S Single Value
E Enumerated Values
A Array of Values
R Range of Values

Capability TWAIN
Data Type

C / C++ Data
Type

Basic Data
Type

Supporte
d
Container
Types for
Reading

Supported
Container
Types for
Writing

CAP_AUTHOR STR128 char String S S
CAP_AUTOFEED BOOL BOOL Boolean S S
CAP_CAPTION STR255 char String S S
CAP_CLEARPAGE BOOL BOOL Boolean S S
CAP_DEVICEONLINE BOOL BOOL Boolean S READ ONLY
CAP_EXTENDEDCAPS UINT16 unsigned short Long A A
CAP_FEEDERENABLED BOOL BOOL Boolean S S
CAP_FEEDERLOADED BOOL BOOL Boolean S READ ONLY
CAP_FEEDERPAGE BOOL BOOL Boolean S S
CAP_INDICATORS BOOL BOOL Boolean S S
CAP_REWINDPAGE BOOL BOOL Boolean S S
CAP_SUPPORTEDCAPS UINT16 unsigned short Long A READ ONLY
CAP_TIMEDATE STR32 char String S READ ONLY
CAP_UICONTROLLABLE BOOL BOOL Boolean S READ ONLY
CAP_XFERCOUNT INT16 short Integer S S

ICAP_AUTOBRIGHT BOOL BOOL Boolean S S
ICAP_BITDEPTH UINT16 unsigned short Long S, E S, E
ICAP_BITDEPTHREDUCTION UINT16 unsigned short Long S, E S, E
ICAP_BITORDER UINT16 unsigned short Long S, E S
ICAP_BITORDERCODES UINT16 unsigned short Long S, E S
ICAP_BRIGHTNESS FIX32 float Single S, E, R S, E, R
ICAP_CCITTKFACTOR UINT16 unsigned short Long S S
ICAP_COMPRESSION UINT16 unsigned short Long S, E S, E
ICAP_CONTRAST FIX32 float Single S, E, R S, E, R
ICAP_CUSTHALFTONE UINT8 char Integer A A
ICAP_EXPOSURETIME FIX32 float Single S, E, R S, E, R
ICAP_FILTER UINT16 S, A S, A
ICAP_FLASHUSED BOOL BOOL Boolean S S
ICAP_FRAMES FRAME S, E S, E
ICAP_GAMMA FIX32 float Single S S
ICAP_HALFTONES STR32 char String S, E, A S, E, A
ICAP_HIGHLIGHT FIX32 float Single S, E, R S, E, R
ICAP_IMAGEFILEFORMAT UINT16 unsigned short Long S, E S, E
ICAP_JPEGPIXELTYPE UINT16 unsigned short Long S, E S, E
ICAP_LAMPSTATE BOOL BOOL Boolean S, E S
ICAP_LIGHTPATH UINT16 unsigned short Long S, E S

ICAP_LIGHTSOURCE UINT16 unsigned short Long S, E S, E
ICAP_MAXFRAMES UINT16 unsigned short Long S S
ICAP_ORIENTATION UINT16 unsigned short Long S, E S, E
ICAP_PHYSICALHEIGHT FIX32 float Single S READ ONLY
ICAP_PHYSICALWIDTH FIX32 float Single S READ ONLY
ICAP_PIXELFLAVOR UINT16 unsigned short Long S, E S
ICAP_PIXELFLAVORCODES UINT16 unsigned short Long S, E S
ICAP_PIXELTYPE UINT16 unsigned short Long S, E S, E
ICAP_PLANARCHUNKY UINT16 unsigned short Long S, E S, E
ICAP_ROTATION FIX32 float Single S, E, R S
ICAP_SHADOW FIX32 float Single S, E, R S, E, R
ICAP_SUPPORTEDSIZES UINT16 unsigned short Long S, E S, E
ICAP_THRESHOLD FIX32 float Single S, E, R S, E, R
ICAP_TILES BOOL BOOL Boolean S S
ICAP_TIMEFILL UINT16 unsigned short Long S, R S
ICAP_UNDEFINEDIMAGESIZE BOOL BOOL Boolean S S
ICAP_UNITS UINT16 unsigned short Long S, E S, E
ICAP_XFERMECH UINT16 unsigned short Long S, E S, E
ICAP_XNATIVERESOLUTION FIX32 float Single S, E READ ONLY
ICAP_XRESOLUTION FIX32 float Single S, E, R S, E, R
ICAP_XSCALING FIX32 float Single S, E, R S, E, R
ICAP_YNATIVERESOLUTION FIX32 float Single S, E READ ONLY
ICAP_XRESOLUTION FIX32 float Single S, E, R S, E, R
ICAP_YSCALING FIX32 float Single S, E, R S, E, R

Select this option for Manual Mode. Click here for more details.

Select this option for Automatic Mode. Click here for more details.

If checked, enables the TransferReady Event. Click here for more details.

If checked, enables the TransferComplete Event. Click here for more details.

If checked, enables the TransferComplete Event. Click here for more details.

If checked, uses an automatic sheet feeder if available. Click here for more details

Specifies the number of images to acquire.
Enter -1 for unlimited, 1 for a single image, 2 or more for that many images. Click here for more details

Select this option to use Native Transfer Mode. Click here for more details

Select this to use File Transfer Mode. Click here for more details

Select this to use Memory Transfer Mode. Click here for more details

Check this to display the source device’s own progress indicator. Click here for more details.

If checked, enables the SourceClosed Event. Click here for more details.

Check this to display the source device’s own user interface. Click here for more details.

