
Graph Library Reference

AutoGraph (AG) Functions
Standard (GS) Functions
Label Formats
Parameter Constants

AutoGraph Functions

Function Description

AG3DStyle Sets style of 3D graph
A
AGAmp Transfers amplitude data
AGAmpError Transfers amplitude error data
AGAxisMinorTicks Sets the number of minor ticks for each axis
AGAux Transfers auxiliary information
B
AGBar2DGap Adjusts the gap between bars in 2D bar graphs
C
AGCageStyle Sets 3D cage style
AGClose Terminates AutoGraph
AGClr Transfers color information
AGCurveStyle Sets curve style
D
AGDataLabels Enables and sets text for data labels
VBAGDataLabels Enables and sets text for data labels in Visual Basic
AGDataRange Sets a range of data to be graphed
AGDataZ Transfers Z data

AGDist Transfers distance data
AGDistError Transfers distance error data
E
AGErrorBar Defines error bars for graph
F
AGFFT Performs Fast Fourier Transform on array of data
AGFGColor Sets color of foreground objects
AGFontStyle Sets font style
G
AGGraphBG Sets graph background
AGGridStyle Sets style of grid lines
I
AGInfo Gets AutoGraph drawing information
L
AGLabelFormat Defines a format template for axis and data labels
AGLabelDateTime Defines date/time labels for an axis
AGLabels Defines labels for axis or pie chart
VBAGLabels Defines labels for axis or pie chart in Visual Basic
AGLabelY Defines labels for left or right Y axis
VBAGLabelY Defines labels for left or right Y axis in Visual Basic
AGLabelZ Defines labels for Z axis
VBAGLabelZ Defines labels for Z axis in Visual Basic
AGLegend Defines legend labels for grouped data
VBAGLegend Defines legend labels for grouped data in Visual Basic
AGLegendStyle Sets position and style of legend
AGLimitLines Applies limit lines to a graph
M
AGMissingLineStyle Selects options for bridging gaps caused by missing data
O
AGOpen Initializes AutoGraph
P
AGPatt Transfers pattern information
R
AGRefresh3D Redraws True3D graph
AGReset Resets all AutoGraph functions
S
AGSetPerspective Sets perspective view of True3D graphs
AGShow Shows a graph
AGSurfaceClr Sets colors for True3D surface graph
AGSym Transfers symbol information
T
AGTimeGraph Begins time series graph
AGTimeUpdate Updates time series graph with data
AGTitleBG Sets title style and background color

AGTitleG Defines graph title
AGTitleX Defines bottom title for graph
AGTitleY Defines left title for graph
AGTitleYR Defines right title for graph
AGTrendDataSet Applies trend lines to individual data sets
X
AGXAxisStyle Sets X axis style
Y
AGYAxisStyle Sets Y axis style
AGYRAxisStyle Sets right-hand Y axis style
Z
AGZAxisStyle Sets Z axis style

Standard Functions

Function Description

A
GSArc Draws circular arc
GSArea Draws 2D area graph
GSArea3D Draws 3D area graph
GSAreaLogLin Draws a 2D area graph with semi-log scaling
GSArrow Draws arrow
GSAxis Draws X or Y axis
B
GSBar2D Draws 2D bar graph
GSBar3D Draws 3D bar graph
GSBox2D Draws box and fills with pattern
GSBox3D Draws 3D box and fills with pattern
GSBoxWhisker Draws box-whisker graph
GSBubbleChart Draws bubble graph
C
GSCage3D Draws 3D cage with axes and grids
GSCircle Draws circle
GSClearView Clears view
GSClipRead Reads image from Clipboard

GSClipWrite Writes image to Clipboard
GSCloseServer Closes connection to Graphics Server
GSClosePrn Closes printer
GSCloseView Closes view
GSCloseWin Closes graphing window
GSCurveFit Fits curve to data
D
GSDataAmp Transfers array of amplitude data
GSDataAmpErr Transfers array of amplitude error data
GSDataAux Transfers array of auxiliary data
GSDataClr Transfers array of color data
GSDataDim Sets graph data dimensions
GSDataDist Transfers array of distance data
GSDataDistErr Transfers array of distance error data
GSDataGetAmp Gets amplitude data value
GSDataGetAmpErr Gets amplitude error data value
GSDataGetAux Gets auxiliary data value
GSDataGetClr Gets color data value
GSDataGetDist Gets distance data value
GSDataGetDistErr Gets distance error data value
GSDataGetPatt Gets pattern data value
GSDataGetSym Gets symbol data value
GSDataGetZ Gets Z data value
GSDataLabels Enables and sets text for data labels
VBGSDataLabels Enables and sets text for data labels in Visual Basic
GSDataPatt Transfers array of pattern data
GSDataRange Defines range of data to graph
GSDataReset Resets data arrays
GSDataScale Applies scale factor to data
GSDataStoreAmp Stores amplitude data value
GSDataStoreAmpErr Stores amplitude error value pair
GSDataStoreAux Stores auxiliary data value
GSDataStoreClr Stores color data value
GSDataStoreDist Stores distance data value
GSDataStoreDistErr Stores distance error value pair
GSDataStorePatt Stores pattern data value
GSDataStoreSym Stores symbol data value
GSDataStoreZ Stores Z data value
GSDataSym Transfers array of symbol data
GSDataTrans Transfers data in arrays
GSDataZ Transfers array of Z data
GSDefPatt Defines bit pattern for filling
E
GSEllipse Draws ellipse
GSErrorBar Defines error bars for graph
F
GSFixPos Fixes current position

G
GSGantt Draws Gantt chart
GSGetACos Gets arccosine
GSGetALog10 Gets antilog base 10
GSGetALogE Gets natural antilog base e
GSGetASin Gets arcsine
GSGetATan Gets arctangent
GSGetAXExt Gets anchor space X extent
GSGetAYExt Gets anchor space Y extent
GSGetBG Gets background color
GSGetCC Gets linear correlation coefficient
GSGetCos Gets cosine
GSGetCurveCoeff Gets curve coefficient
GSGetCurX Gets current X position
GSGetCurY Gets current Y position
GSGetE Gets natural exponent
GSGetLog10 Gets log base 10
GSGetLogE Gets natural log
GSGetMax Gets maximum amplitude data value
GSGetMean Gets mean data value of amplitude array
GSGetMF Gets image metafile
GSGetMin Gets minimum amplitude data value
GSGetPI Gets value of pi
GSGetPrnHt Gets printer paper height
GSGetPrnWid Gets printer paper width
GSGetRTextHt Gets raster text height
GSGetRTextWid Gets raster text width
GSGetSD Gets standard deviation of data set
GSGetSFHt Gets height of system font characters
GSGetSFWid Gets width of system font characters
GSGetSin Gets sine
GSGetSXExt Gets screen X extent
GSGetSYExt Gets screen Y extent
GSGetTan Gets tangent
GSGetVer Gets server or DLL version number
GSGetVXExt Gets view X extent
GSGetVYExt Gets view Y extent
GSGetWXExt Gets window X extent
GSGetWYExt Gets window Y extent
GSGrid Draws grid lines
H
GSHLC Draws high-low-close, open-high-low-close, or candlestick graph
GSHotGraph Enables and disables hot graphing
L
GSLabelnPie Draws pie chart numeric labels
GSLabelnX Draws numeric labels along X axis
GSLabelnY Draws numeric labels along Y axis
GSLabelPie Draws pie chart text labels

VBGSLabelPie Draws pie chart text labels in Visual Basic
GSLabelX Draws text labels along X axis
VBGSLabelX Draws text labels along X axis in Visual Basic
GSLabelY Draws text labels along Y axis
VBGSLabelY Draws text labels along Y axis in Visual Basic
GSLegend Draws legend
VBGSLegend Draws legend in Visual Basic
GSLineAbs Draws line using absolute coordinates
GSLineFit Fits straight line to data
GSLineRel Draws line using relative coordinates
GSLinLog Draws lin/log graph
GSLoadRFont Loads raster font
GSLoadVFont Loads vector font
GSLogAxis Draws logarithmic axis
GSLogGrid Draws logarithmic grid
GSLogLin Draws log/lin graph
GSLogLog Draws log/log graph
M
GSMClrRgn Clears mouse hot region
GSMean Draws mean of data set
GSMGetX Gets mouse X position
GSMGetY Gets mouse Y position
GSMinMax Draws minimum and maximum of data set
GSMissingLineStyle Selects options for bridging gaps caused by missing data
GSMMotion Reads mouse motion indicator
GSMNotify Enables and disables notification of mouse events
GSMovePos Moves current position
GSMPtrOff Turns off mouse pointer
GSMPtrOn Turns on mouse pointer
GSMPtrType Defines mouse pointer shape
GSMSetRgn Defines mouse hot region
GSMStatus Reads mouse button status
O
GSOffView Turns off view
GSOnView Turns on view
GSOpenChildWin Opens graphing window as child of another window
GSOpenPrn Opens printer for current window
GSOpenServer Opens connection to Graphics Server
GSOpenView Opens view
GSOpenWin Opens graphing window
P
GSPicRead Reads image from file
GSPicWrite Writes image to file
GSPie2D Draws 2D pie chart
GSPie3D Draws 3D pie chart
GSPolar Draws polar graph
GSPolarAxes Draws set of polar axes

GSPolyFill Draws polygon filled with pattern
GSPolyVec Draws polyline figure
GSPrnOut Prints view or window
GSPrnSetup Sets printing area
R
GSRText Draws raster text
S
GSScatter Draws 2D scatter graph
GSSD Draws standard deviation lines
GSSelectPalette Selects extended palette with 128 entries
GSSetBG Sets background color
GSSetPal Sets palette
GSSetRFontFace Sets typeface used for raster font family
GSSetROP Sets raster operation mode
GSSetVFontFace Sets typeface used for vector font family
GSShade Shades bounded area
GSSizeSymbol Defines size of all symbols
GSStatsArr Defines data for applying statistics
GSStatsWin Defines statistics clipping region
GSSymbol Draws symbol
T
GSTapeGraph Draws tape graph
GSTimeGraph Draws scrolling time series graph
GSTimeUpdate Updates time series graph
U
GSUseView Uses view
V
GSViewClip Applies a clipping window within the current view
GSVText Draws vector text
W
GSWinHandle Returns Windows handle of graphing window
GSWinNotify Enables and disables notification of graphing window events
GSWinPaint Sets graphing window painting mode
GSWriteRegionFile Creates an image map for use in an HTML page
X
GSXDataScale Applies scale factor to distance data
GSXYGraph Draws line graph

AG3DStyle function
Sets style of 3D graph

C/C++ int AG3DStyle(int nMode, int nDepth, int nXGap, int nZGap)

FoxPro r = AG3DStyle(nMode, nDepth, nXGap, nZGap)

Visual Basic r% = AG3DStyle(nMode%, nDepth%, nXGap%, nZGap%)

Parameters nMode Constant Value Meaning
AG3DSETDEPTH 1 Depth parameter is

present
AG3DSETXGAP 2 X gap parameter is

present
AG3DSETZGAP 4 Z gap parameter is

present
nDepth Sets the depth of the graph, projected into the

page, as a percentage of the default.    For 3D pie
charts, values can range from 10 to 200. For all
other 3D graph types, any positive integer is
acceptable. In all cases, a    value of 100 preserves
the default depth.

nXGap and
nZGap

Set the space imposed between bars as a
percentage of the distance between their centers.   
A value of 50 imposes a space equal to the width of
a bar.    The default is 20.

Return values 0
-1

Success
Failure

Description The AG3DStyle function sets the style parameters for a 3D graph.

Topic
AG3DStyle

Related
AGCageStyle
AGGridStyle
AGSetPerspective
AGSurfaceClr
AGXAxisStyle
AGYAxisStyle
AGZAxisStyle

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGRefresh3D
AGClose

AGAmp function
Transfers amplitude data

C/C++ int AGAmp(int nPts, int nGroup, double* fAmp)

FoxPro r = AGAmp(nPts, nGroup, @fAmp(1))

Visual Basic r% = AGAmp(nPts%, nGroup%, fAmp#(0))

Parameters nPts Number of points per data set.    The size of the
amplitude array is the number of data points per
data set multiplied by the number of data sets.

nGroup Number of data sets.    For example, line graphs
have a number of lines equal to nGroup, and
stacked bar graphs have nGroup segments per bar.

fAmp Pointer to array of amplitude data.    Amplitude data
is the principal data represented in a graph.    It
determines the magnitudes of pie slices, lengths of
bar elements, positions of points in a line graph,
and so on.    Amplitude data is used in all graph
types.

Return values 0
-1

Success
Failure

Description The AGAmp function transfers amplitude data to AutoGraph and
defines the number of points in a graph and the number of data
sets.
Certain graph types require a specific number of data sets.    A pie
chart can only represent one data set at a time; a high-low-close
graph always requires three data sets specifying the high, low,
and close values of each point of the graph.

Example The following example shows how to define and pass the
amplitude array to draw a line graph consisting of two lines with
four data points each.    The first line would have points of
amplitude 100, 150, 200, and 250, while the second would have
points of amplitude 400, 300, 200, and 100.
#define NUMPOINTS 4
#define NUMSETS 2
double fAmp [NUMPOINTS] [NUMSETS] = {
 /* Line 1 Line 2 */
/* Point 1 */ 100.0, 400.0,
/* Point 2 */ 150.0, 300.0,
/* Point 3 */ 200.0, 200.0,
/* Point 4 */ 250.0, 100.0
};
AGAmp(NUMPOINTS, NUMSETS, &fAmp[0][0]);

Topic
AGAmp

Related
AGAmpError
AGAux
AGClr
AGDataZ
AGDist
AGDistError
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin

Graph display:
AGOpen
AGShow
AGClose

AGAmpError function
Transfers amplitude error data

C/C++ int AGAmpError(int nPts, int nGroup, double* fAmpErr)

FoxPro r = AGAmpError(nPts, nGroup, @fAmpErr(1))

Visual Basic r% = AGAmpError(nPts%, nGroup%, fAmpErr#(0))

Parameters nPts Number of error values per data set
nGroup Number of data sets
fAmpErr Pointer to array of error data

Return values 0
-1

Success
Failure

Description The AGAmpError function transfers amplitude error data for user-
defined error bars.
Errors are passed as plus and minus error pairs stored
consecutively.      Both values must be passed even though the
display of one or other may be suppressed.
There are two modes in which errors can be passed.    First, where
an error pair is supplied for every point in the graph.    In this
case, nPts is twice the value used in AGAmp (to account for the
pair of values) and nGroup is the same as in AGAmp.    Second,
where an error pair is passed for each group, the same error pair
being applied to each data point in the group.    In this case, nPts
is always 2 and nGroup is the same as in AGAmp.    These modes
are detected automatically from the value of nPts.

Example The following example shows how to define and pass the
amplitude error array for a line graph consisting of two lines with
two data points each.    The first line would have error pairs
(100,200) and (150,300), and the second would have (100,30)
and (50,25).
#define NUMPOINTS 2
#define NUMSETS 2
double fAmpErr [NUMPOINTS * 2] [NUMSETS] = {
 /* L1 Err+ L1 Err- L2 Err+ L2 Err- */
/* Point 1 */ 100.0, 200.0, 100.0, 30.0,
/* Point 2 */ 150.0, 300.0, 50.0, 25.0,
};
AGAmpErr(NUMPOINTS * 2, NUMSETS, &fAmpErr[0][0]);

Topic

AGAmpError

Related
AGAmp
AGAux
AGClr
AGDataZ
AGDist
AGDistError
AGErrorBar
AGPatt
AGSym
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGAxisMinorTicks function
Sets the number of minor ticks for each axis

C/C++ int AGAxisMinorTicks(int nSelect, int nTicks)
FoxPro r = AGAxisMinorTicks(nSelect, nTicks)
Visual Basic r% = AGAxisMinorTicks(nSelect%, nTicks%)
Parameters nSelect Constant Value Meaning

AGXAXIS 0 X axis
AGYAXIS 1 Y axis (with dual axes, left-hand

Y)
AGYRAXIS 2 Right-hand Y axis (dual axes)

nTicks Number of minor ticks

Return values 0
-1

Success
Failure

Description The AGAxisMinorTicks function specifies the number of minor
ticks to be drawn between intervals of major ticks. The nSelect
parameter specifies the axis, nTicks specifies the number.
Before calling AGAxisMinorTicks, you must first call the
appropriate axis style function, passing AGAXISMINORTICK in its
nMode parameter. This turns on minor ticks so that a subsequent
call to AGAxisMinorTicks can set their frequency.

Topic
AGAxisMinorTicks

Related
AGXAxisStyle
AGYAxisStyle
AGYRAxisStyle

AGAux function
Transfers auxiliary information

C/C++ int AGAux(int nSize, int* nAux)

FoxPro r = AGAux(nSize, @nAux(1))

Visual Basic r% = AGAux(nSize%, nAux%(0))

Parameters nSize Size of array
nAux Pointer to array of auxiliary data

Return values 0
-1

Success
Failure

Description The AGAux function transfers auxiliary data to AutoGraph.
Auxiliary data has four uses:    to "explode" pie chart slices, to set
the colors of the sides and tops of bars in 3D bar graphs, to
specify statistical lines for time series graphs, and to specify
"missing" data points in several graph types (line, lin/log, log/lin,
log/log, polar, scatter, and tape).
The use of auxiliary data and the size of the array when used to
set attributes depends on the type of graph, as shown in the
following table.
Graph type Array size Used for
Pie nPts Pie segment explosion indicator. Use 0 for a

normal segment and 1 for an exploded
segment.

Bar nGroup The color of the tops and sides of 3D bars.   
Use normal nClr values; Graphics Server
uses half-tones (shaded versions) of these
colors to draw the bar sides.

Time seriesnGroup Sets statistical lines for each data set.
Value 1 superimposes mean line; value 2
superimposes standard deviation.

Specifying auxiliary data is optional. If you don't specify auxiliary
data for a graph type that uses it, AutoGraph creates a temporary
internal array containing appropriate default values. By default,
pie slices aren't exploded, the sides of 3D bar elements are drawn
in the half-tone colors of the front surfaces, and time series
graphs have no statistical lines.

Specifying points as "missing" in line, logarithmic, polar, 2D
scatter, and tape graphs
If you have incomplete sets of data or sets in which the values of
certain points are unknown, you can use the nAux array to flag

such points as missing.    In this case, the marker for that point--
such as a symbol--isn't drawn.    If the graph uses lines (or tapes)
to connect points, the connecting lines or tapes are omitted both
to and from each missing point.
To flag missing data, you set an nAux value of 256 for that point.   
Points with nAux values of 0 are shown normally.
The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-value
flag.

Topic
AGAux

Related
AGAmp
AGAmpError
AGClr
AGDataZ
AGDist
AGDistError
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin

Graph display:
AGOpen
AGShow
AGClose

AGBar2DGap function
Adjusts the gap between bars in 2D bar graphs

C/C++ int AGBar2DGap(int nGap)

FoxPro r = AGBar2DGap(nGap)

Visual Basic r% = AGBar2DGap(nGap%)

Parameters nGap Gap expressed as a percentage of the space
between bars.

Return values 0 Success
-1 Failure

Description The AGBar2DGap function defines the space between adjacent
bars in a 2D bar graph or Gantt chart. The size of the space is
expressed as a percentage of the maximum possible gap, which
varies according to the size of the graphing window and the
number of bars in the graph. A setting of 0 eliminates the gap
altogether, placing the bars directly next to each other. A setting
of 100 eliminates the bars altogether, making them infinitely thin.
By default a gap of 20 percent is placed between bars.

Topic
AGBar2DGap

Related
AGLabels
AGShow

AGCageStyle function
Sets 3D cage style

C/C++ int AGCageStyle(int nMode, int nClrWall,
 int nClrEdge)

FoxPro r = AGCageStyle(nMode, nClrWall, nClrEdge)

Visual Basic r% = AGCageStyle(nMode%, nClrWall%, nClrEdge%)

Parameters nMode Constant Value Meaning
0 Thick walls (default)

AGCAGETHIN 1 Thin side walls (zero
thickness)

nClrWall Color of faces of walls (see Color constants).
Use a color index of -1 to leave wall faces with their
default colors.

nClrEdge Color of edges of walls (see Color constants).
Use a color index of -1 to leave wall edges with
their default colors.

Return values 0
-1

Success
Failure

Description The AGCageStyle function sets the style of the cage that encloses
a True3D graph.

Topic
AGCageStyle

Related
AG3DStyle
AGSetPerspective
AGGridStyle
AGSurfaceClr
AGXAxisStyle
AGYAxisStyle
AGZAxisStyle

Window initialization:
GSOpenWin
GSOpenChildWin

Graph display:
AGOpen
AGShow
AGRefresh3D
AGClose

AGClose function
Terminates AutoGraph

C/C++ int AGClose()

FoxPro r = AGClose()

Visual Basic r% = AGClose()

Return values 0
-1

Success
Failure

Description The AGClose function terminates AutoGraph, freeing the memory
allocated for AutoGraph data arrays.
After this function is called, no further AutoGraph functions can
be used until AutoGraph is enabled by calling AGOpen.    One
exception is the AGTimeUpdate function, which can be called
after AGClose.
Graphics Server is always able to execute standard functions,
which remain unaffected by AGOpen and AGClose.

Topic
AGClose

Related
AGOpen
AGReset
AGShow

AGClr function
Transfers color information

C/C++ int AGClr(int nSize, int* nClr)

FoxPro r = AGClr(nSize, @nClr(1))

Visual Basic r% = AGClr(nSize%, nClr%)

Parameters nSize Size of array
nClr Pointer to color array (see Color constants)

Return values 0
-1

Success
Failure

Description The AGClr function transfers color data to AutoGraph.
Specifying color data is optional.    If you don't, AutoGraph creates
a temporary internal array containing appropriate default values.
Color data is used in all graph types except surface.    The same
colors are used in the legend if one is present.
The use of color data and the size of the array depends on the
type of graph to be drawn, as shown in the following table.
Graph type Array size Used for
Pie nPts Color of each pie segment
Bar nGroup Color of the bar elements of

each data set
Gantt nGroup Color of the bar elements of

each data set
Line nGroup Color of the line, symbols,

and sticks of each data set
Log/lin, lin/log,
and log/log

nGroup Color of the line, symbols,
and sticks of each data set

Area nGroup Color of the area of each
data set

Scatter nGroup Color of the symbols of each
data set

Polar nGroup Color of the line, symbols,
and sticks of each data set

High-low-close 1 Color of the high-low-close
symbols

Bubble nPts Color of each bubble
Tape nGroup Color of the tape of each

data set
Surface 0 See AGSurfaceClr
Time series nGroup Sets color of each set
Box-whisker nPts Sets color of each symbol

Topic
AGClr

Related
AGAmp
AGAmpError
AGAux
AGDataZ
AGDist
AGDistError
AGPatt
AGSurfaceClr
AGSym
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGCurveStyle function
Sets curve style

C/C++ int AGCurveStyle(int nType, int nOrder, int nSteps)

FoxPro r = AGCurveStyle(nType, nOrder, nSteps)

Visual Basic r% = AGCurveStyle(nType%, nOrder%, nSteps%)

Parameters nType Constant Value Meaning
CFPOLY 0 Variable-order polynomial
CFLOG 1 Logarithmic

y = a + b * ln(x)
CFEXP1 2 Exponential

y = a * exp(b * x)
CFEXP2 3 Exponential   

y = a * x * exp(-b * x)
CFPOWER 4 Power y = a * (x ^ b)
CFINV1 5 Inverse y = a + b / x
CFINV2 6 Inverse y = a / (b + x)
CFINV3 7 Inverse

y = 1 / (a + b * x)
CFINV4 8 Inverse y = x / (a * x + b)
CFINV5 9 Inverse

y = 1 / (a + b * x) ^ 2
CFSPLINE 10 Spline fit through all

points
CFMOVINGAVEMID 11 Moving average plotted

at midpoint of averaged
group

CFMOVINGAVEEND 12 Moving average plotted
at end point of averaged
group

nOrder Curve order.    nOrder is only relevant to the
variable-order polynomial fit and moving averages. 
For moving averages, nOrder defines the number of
points over which the average is taken.

nSteps Number of steps.    nSteps defines the granularity of
the drawn curve; higher nSteps values lead to
smoother curves.

For most curves (nTypes 1-9), an nSteps
setting of 50 generally produces a smooth curve at
a high drawing speed.

For spline curves (nType CFSPLINE), you
generally need a much larger nSteps value--
typically 10 times the number of points in the
graph, or higher for very irregular graphs.

For moving averages (nType
CFMOVINGAVEMID or CFMOVINGAVEEND), nSteps
isn't relevant--the lines drawn between the plotted
averages are always straight.

Return values 0
-1

Success
Failure

Description The AGCurveStyle function specifies the style in which a curve is
fitted to a graph.    It applies only to 2D scatter, line, high-low-
close, open-high-low-close, candlestick, and box-whisker graphs
The nStats parameter in the AGShow function should be set to
AGCURVEFIT.
Moving averages may be plotted either at the midpoint of the
group of averaged data or at the end point.

Topic
AGCurveStyle

Related
AGXAxisStyle
AGYAxisStyle
AGZAxisStyle
GSStatsArr

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGDataLabels function
Enables and sets text for data labels

C/C++ int AGDataLabels(int nMode, int nLabs,
 char* szLabels[])

FoxPro r = AGDataLabels(nMode, nLabs, @szLabels(1))

Visual Basic r% = AGDataLabels(nMode%, nLabs%, szLabels$(1))

Parameters nMode Constant Value Meaning
AGDLTEXT 0 Labels supplied in

array szLabels
AGDLDATA 1 Labels derived from

data
AGDLGROUPCLR 4 Color as data group

nLabs Value Meaning
0 Use if deriving labels from data (nMode

AGDLDATA)
1 or greater Use for number of labels if supplying

text labels (nMode AGDLTEXT)
The label array must be of size nPts   
nGroup to provide text labels for each
data item on display.    The exceptions
are high-low-close, open-high-low-
close, candlestick, and box-whisker
graphs, which require a text array of
size nPts (only one label is
provided for each compound symbol,
of which there are nPts).

szLabels Array of text labels of length nLabs

Return values 0
-1

Success
Failure

Description The AGDataLabels function enables data labels, which are labels--
either numeric or text--attached to each point of a graph.    Data
labels are available for all 2D graph types except pie charts
(which have their own labeling scheme) and time series graphs.   
They aren't available for 3D graphs.
In high-low-close, open-high-low-close, box-whisker, and
candlestick graphs, if you choose to have data labels derived
from data (nMode AGDLDATA), they're derived from the close or

median.

Topic
AGDataLabels

Related
AGFontStyle
AGLabelY
AGLabelZ
AGLegend
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
VBAGDataLabels
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGDataRange function
Sets a range of data to be graphed

C/C++ int AGDataRange(int nRangeMin, int nRangeMax)

FoxPro r = AGDataRange(nRangeMin, nRangeMax)

Visual Basic r% = AGDataRange(nRangeMin%, nRangeMax%)

Parameters nRangeMin Lower index of data to be graphed.
nRangeMax Higher index of data to be graphed.

Return values 0 Success
-1 Failure

Description The AGDataRange function defines a subset of the data to be
graphed. Without changing the composition of the data array
passed by AGAmp, a section of the complete data can be viewed,
with the graph axes adjusting appropriately.
The lower and upper bounds of the data subset are defined by
RangeMin and RangeMax. By default RangeMin is the first
element of the array and RangeMax is the last element.

Topic
AGDataRange

Related
AGAmp
AGShow

AGDataZ function
Transfers Z data

C/C++ int AGDataZ(int nSize, double* fZData)

FoxPro r = AGDataZ(nSize, @fZData(1))

Visual Basic r% = AGDataZ(nSize%, fZData#(0))

Parameters nSize Size of array
fZData Pointer to array of Z data

Return values 0
-1

Success
Failure

Description The AGDataZ function transfers Z data to AutoGraph.
Z data is used in True3D scatter (or point) graphs to specify the
position of each data point on the Z axis projected into the page
or screen.
In a graph of more than one data set, Z data may be supplied on
a per-set basis, or the same Z data can be applied to all the data
sets in the graph.    The size of the Z data array is, accordingly,
the number of points per data set multiplied by the number of
data sets, or simply the number of points per data set.

Topic
AGDataZ

Related
AGAmp
AGAmpError
AGAux
AGClr
AGDist
AGDistError
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen

AGShow
AGClose

AGDist function
Transfers distance data

C/C++ int AGDist(int nSize, double* fDist)

FoxPro r = AGDist(nSize, @fDist(1))

Visual Basic r% = AGDist(nSize%, fDist#(0))

Parameters nSize Size of array
fDist Pointer to array of distance data

Return values 0
-1

Success
Failure

Description The AGDist function transfers distance data to AutoGraph.
Distance data is used in axis-based graphs to specify the position
of each data point on the category (usually the X) axis.
In a graph of more than one data set, distance data may be
supplied on a per-set basis, or the same distance data can be
applied to all the data sets in the graph.    The size of the distance
array is, accordingly, the number of points per data set multiplied
by the number of data sets, or simply the number of points per
data set.
For most graphs, distance data is optional.    If you omit it, points
are drawn at regular intervals (usually 0, 1, 2, and so on) along
the axis.    However, lin/log and log/log graphs must always have
distance data, and scatter graphs generally have it (by definition,
scatter graphs plot points based on independent X and Y
variables).
The bubble graph also requires distance data, but it's unusual
because it requires two-dimensional distance data in every case,
even though the amplitude data is one-dimensional.    In this case,
the size of the distance array is the number of points multiplied
by two and the array contains the (X,Y) coordinates of the centers
of the bubbles.

Topic
AGDist

Related
AGAmp
AGAmpError
AGAux

AGClr
AGDataZ
AGDistError
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGDistError function
Transfers distance error data

C/C++ int AGDistError(int nPts, double* fDistErr)

FoxPro r = AGDistError(nPts, @fDistErr(1))

Visual Basic r% = AGDistError(nPts%, fDistErr#(0))

Parameters nPts Number of error values in array
fDistErr Pointer to array of error data

Return values 0
-1

Success
Failure

Description The AGDistError function transfers distance error data for user-
defined error bars.
Errors are passed as plus and minus error pairs stored
consecutively.    Both values must be passed even though the
display of one or the other may be suppressed.
There are two modes in which errors can be passed.    The first
mode is    where an error pair is supplied for every point in the
graph.    In this case, nPts is twice the value used in AGDist (to
account for the pair of values).    The second mode is where an
error pair is passed for each group, the same error pair being
applied to each data point in the group.    In this case, nPts is (2   
nAmpGroup) where nAmpGroup is the group value passed in
AGAmp.    These modes are detected automatically from the value
of nPts.

Example The following example shows how to define and pass the distance
error array for a scatter graph consisting of groups with two data
points each.    The first graphed set would have error pairs
(100,200) (150,300), the second (100,30) (50,25).
#define NUMPOINTS 2
#define NUMSETS 2
double fDistErr [NUMPOINTS * 2 * NUMSETS] = {
 /* S1 Err+ S1 Err- S2 Err+ S2 Err- */
/* Point 1 */ 100.0, 200.0, 100.0, 30.0,
/* Point 2 */ 150.0, 300.0, 50.0, 25.0,
};
AGDistErr(NUMPOINTS * 2 * NUMSETS,&fDistErr[0][0]);

Topic

AGDistError

Related
AGAmp
AGAmpError
AGAux
AGClr
AGDataZ
AGDist
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGErrorBar function
Defines error bars for graph

C/C++ int AGErrorBar(int nSelect, int nSymbolStyle,
 int nColor, int nErrorSource,
 double fValue)

FoxPro r = AGErrorBar(nSelect, nSymbolStyle, nColor,
 nErrorSource, fValue)

Visual Basic r% = AGErrorBar(nSelect%, nSymbolStyle%, nColor%,
 nErrorSource%, fValue#)

Parameters nSelect Constant Value Meaning
AGEBY 0 Defines error bars for Y

(amplitude) data
AGEBX 1 Defines error bars for

X (distance) data

nSymbolStyle Constant Value Meaning
0 Standard style

AGEBNOPLUS 1 Omits plus bar
AGEBNOMINUS 2 Omits minus bar
AGEBNOSTEM 4 Omits stem
AGEBNOTICK 8 Omits cross tick

nColor Error bar color

nErrorSource Constant Value Meaning
AGEBFIXED 0 Error is fixed value

equal to fValue
AGEBPERCENT 1 Error is fValue (here a

percentage) times the
data value, divided by
100

AGEBSTDDEV 2 Error is standard
deviation times fValue

AGEBSTDERR 3 Error is standard error
AGEBMAXMIN 4 Errors are provided in

arrays

fValue Value modifier.    fValue is used in a variety of
ways, depending on the error source:    as a fixed

value for all data points (AGEBFIXED), as a
modifier when the error is expressed as a
percentage of the data value (AGEBPERCENT),
and finally as a multiplying factor when the error
is expressed as the standard deviation of the data
set (AGEBSTDDEV).

Return values 0
-1

Success
Failure

Description The AGErrorBar function defines the format of error bars to be
added to a graph.
Error bars can be applied to the following 2D graph types:

Horizontal bar graphs (simple and clustered format)
Vertical bar graphs (simple and clustered formats)
Line graphs (line and symbol formats)
Scatter graphs

For scatter graphs, you can specify both horizontal (distance
data) and vertical (amplitude data) error bars.    To use both,
you have to call the function twice--first with nSelect AGEBY,
then with nSelect AGEBX.
With mode AGEBMAXMIN, the error is supplied in the arrays
fAmpErr and fDistErr, as set by the functions AGAmpError and
AGDistError.    Errors are supplied as paired plus and minus
error values, both of which must be positive.

Topic
AGErrorBar

Related
AGAmp
AGAmpError
AGAux
AGClr
AGDataZ
AGDist
AGDistError
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:

AGOpen
AGShow
AGClose

AGFFT function
Performs Fast Fourier Transform on array of data

C/C++ int AGFFT(int nPts, double* fData, int nMode)

FoxPro r = AGFFT(nPts, @fData(1), nMode)

Visual Basic r% = AGFFT(nPts%, fData#(0), nMode%)

Parameters nPts Number of data points in array (must be a power of
2)

fData Pointer to data array
nMode Constant Value Meaning

AGFFTREALIMAG 0 Returns real and
imaginary
coefficients

AGFFTAMPPHASE 1 Returns amplitude
and phase

AGFFTSQAMPPHASE 2 Returns squared
amplitude and phase

AGFFTINTERLEAVE 16 Result vectors are
interleaved

Return values 0
-1

Success
Failure

Description The AGFFT function performs a Fast Fourier Transform on an array
of data, returning the result in the same array and overwriting the
source data.
The data is returned as two linear vectors each of length nPts/2
stored consecutively in the source array.    The returned data may
be in the form of the real and imaginary coefficients, the
amplitude and phase, or the squared amplitude and phase where
phase is in degrees between -180 and 180.    Data is normalized
to be the coefficients of the series a0 + a1Cos(f1) + b1Sin(f1) +,
and so forth.
The AGFFTINTERLEAVE option returns the two result sets
interleaved in the source array such that the real and imaginary
values, or amplitude and phase, are stored in pairs for each data
point.    In the default form, the two resulting vectors can be
drawn in separate graphs by passing the address of the base of
the array and the mid-element of the array.    In the interleaved
form, the vectors can be drawn on the same graph by passing the
address of the base of the array (combined graphs require the
data to be interleaved).

Topic
AGFFT

Related
AGAmp
AGAmpError
AGAux
AGClr
AGDataZ
AGDist
AGDistError
AGPatt
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGFGColor function
Sets color of foreground objects

C/C++ int AGFGColor(int nMode, int nColor)

FoxPro r = AGFGColor(nMode, nColor)

Visual Basic r% = AGFGColor(nMode%, nColor%)

Parameters nMode Constant Value Meaning
AGFGALL 0 All objects
AGFGTITLEG 1 Graph title text
AGFGTITLEYL 2 Left title text
AGFGTITLEYR 3 Right title text
AGFGTITLEX 4 Bottom title text
AGFGLABELS 5 Label text
AGFGLEGEND 6 Legend text
AGFGAXIS 7 Axis
AGFGGRID 8 Grid lines
AGFGMEAN 9 Mean lines
AGFGMINMAX 10 Min and max lines
AGFGSTDDEV 11 Standard deviation

lines
AGFGBESTFIT 12 Best-fit line
AGFGCURVE 13 Curve fit line
AGFGDATALABELS 14 Data labels
AGFGLIMITLINES
Limit lines, shading
and text.

15 Limit lines, shading,
and text.

nColor Color of object

Return values 0
-1

Success
Failure

Description The AGFGColor function sets the color of foreground objects such
as text and axes.

Topic

AGFGColor

Related
AGTitleBG
AGGraphBG
AGLegendStyle
AGShow

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGFontStyle function
Sets font style

C/C++ int AGFontStyle(int nUse, int nFamily, int nAttrib,
 int nSize)

FoxPro r = AGFontStyle(nUse, nFamily, nAttrib, nSize)

Visual Basic r% = AGFontStyle(nUse%, nFamily%, nAttrib%, nSize%)

Parameters nUse Constant Value Meaning
AGFUSETITG 0 Graph title
AGFUSETITXY 1 Other titles (left, right,

bottom)
AGFUSELABS 2 Labels
AGFUSELEG 3 Legend

nFamily Constant Value Meaning
FOROMAN 1 Roman
FOSWISS 2 Swiss
FOMODERN 3 Modern
FOSCRIPT 4 Script
FODECO 5 Decorative

nAttrib Constant Value Meaning
FOITALIC 16 Italic
FOBOLD 32 Bold
FOULINE 64 Underlined

nSize Size as a percentage of the size of the system font. 
For example, an nSize of 400 selects a font four
times the size of the system font.
AutoGraph uses nSize as a guide only.    nSize is the
maximum size allowed, but AutoGraph uses a
smaller size if necessary to ensure good label
fitting.
If nSize is set to 0, AutoGraph uses its default font
size, which varies according to the value of nUse.

Return values 0
-1

Success
Failure

Description The AGFontStyle function specifies the font style to be used by
AutoGraph.    A different set of style options can be applied to
different components of the graph by means of the nUse
parameter.

Topic
AGFontStyle

Related
AGLabels
AGLabelY
AGLabelZ
AGLegend
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGGraphBG function
Sets graph background

C/C++ int AGGraphBG(int nMode, int nClr)

FoxPro r = AGGraphBG(nMode, nClr)

Visual Basic r% = AGGraphBG(nMode%, nClr%)

Parameters nMode Constant Value Meaning
AGGRFRAME 1 Black border

around axes
AGGRFILL 2 Fills background

with nClr
AGGRDROPSHADOW 4 Drop shadow
AGGRRAISED 8 Raised border
AGGRLOWERED 16 Lowered border
Modes 4, 8, and 16 can't be combined.

nClr Background color (see Color constants)

Return values 0
-1

Success
Failure

Description The AGGraphBG function sets the background color and style of
the area on which the graph and axes are drawn.

Topic
AGGraphBG

Related
AGFGColor
AGTitleBG
AGLegendStyle

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow

AGClose

AGGridStyle function
Sets style of grid lines

C/C++ int AGGridStyle(int nSelect, int nStyleMajor,
 int nStyleMinor)

FoxPro r = AGGridStyle(nSelect, nStyleMajor, nStyleMinor)

Visual Basic r% = AGGridStyle(nSelect%, nStyleMajor%, nStyleMinor%)

Parameters nSelect Constant Value Meaning
AGGRIDX 0 Sets X grid
AGGRIDY 1 Sets Y grid
AGGRIDZ 2 Sets Z grid

nStyleMajor Line style for major grids (see Line style constants)

nStyleMinor Line style for minor grids (see Line style constants)

Return values 0
-1

Success
Failure

Description The AGGridStyle function sets the style of grid lines.    It must be
called separately to set the styles of X, Y, and Z grids.    To set the
color of grids, use the AGFGColor function.

Topic
AGGridStyle

Related
AGGraphBG
AGInfo
AGLegendStyle
AGXAxisStyle
AGYAxisStyle
AGZAxisStyle

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen

AGShow
AGClose

AGInfo function
Gets AutoGraph drawing information

C/C++ double AGInfo(int nIndex)

FoxPro r = AGInfo(nIndex)

Visual Basic r% = AGInfo(nIndex%)

Parameter nIndex Value Meaning
0 X axis maximum value
1 X axis minimum value
2 Y axis maximum value
3 Y axis minimum value
4 X axis length in view units
5 Y axis length in view units
6 X origin of graph in view units
7 Y origin of graph in view units
8 Label font height expressed as a

percentage of the system font height
9 Right Y axis maximum value
10 Right Y axis minimum value
11 Z axis maximum value
12 Z axis minimum value
13 Number of ticks on +ve X axis
14 Number of ticks on -ve X axis
15 Number of ticks on +ve Y axis
16 Number of ticks on -ve Y axis
17 Number of ticks on +ve right Y axis
18 Number of ticks on -ve right Y axis
19 Number of ticks on +ve Z axis
20 Number of ticks on -ve Z axis

Note that the number of ticks does not include the tick at the
intersection of two axes (eg. X with Y axis, Y with Z axis). In 3D
graphs and graphs with axes moved from their default positions,
the zero-value origin may not coincide with the intersection of the
axes. In this case the tick at the zero-value is included in the
count of negative ticks.

Return value AutoGraph information on the selected item (-1 if failure)

Description The AGInfo function returns any one of 21 useful items of
information relating to where and how AutoGraph has drawn its
graph and to assist with custom labelling of graphs, using the
SDK functions.
The SDKInfo property in the VBX, OCX, and CGraph provides
similar information. Note that the indices are one greater for
SDKInfo than AGInfo owing to the (array) property being one-
based.

Topic
AGInfo

Related
GSGetVXExt
GSGetVYExt
GSGetCurveCoeff

Window initialization:
GSOpenView
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGLabelFormat function
Defines a template for formatting numerical axis and data labels

C/C++ int AGLabelFormat(int nSelect, char *szFormatString)

FoxPro r = AGLabelFormat(nSelect, szFormatString)

Visual Basic r% = AGLabelFormat(nSelect%, szFormatString$)

Parameters nSelect Indicates which labels are to be formatted.
Constant Value Meaning
AGFORMATX 0 X labels
AGFORMATYL 1 Y left labels
AGFORMATYR 2 Y right labels
AGFORMATZ 3 Z labels
AGFORMATDLABS 4 Data labels

szFormatString A string providing the template for formatting.

Return values 0 Success
-1 Failure

Description The AGLabelFormat function defines a template for formatting
numeric axis and data labels. A template can also be applied to
automatically generated date/time labels along the X axis. For
more information, see numeric formats and date/time formats.

Topic
AGLabelFormat

Related
AGLabelDateTime
AGLabels
AGLabelY
Date/time formats
Numeric formats

AGLabelDateTime function
Defines date/time labels for an axis

C/C++ int AGLabelDateTime(int nSelect, int nMode,
 char *szDTStart, char *szDTInc)

FoxPro r = AGLabelDateTime(nSelect, nMode,
 szDTStart, szDTInc)

Visual Basic r% = AGLabelDateTime(nSelect%, nMode%,
 szDTStart$, szDTInc$)

Parameters nSelect Constant Value Meaning
AGXAXIS 0 Apply to X axis labels

nMode Constant Value Meaning
AGDTOFF 0 Disabled
AGDTDATE 1 Date labels
AGDTTIME 2 Time labels

May be combined with
AGDTDATE.

AGDTSKIPWKEND 4 Date labels, skip
weekends
Applies only when
combined with
AGDTDATE.

szDTStart Starting date and time
The date and time must be passed in a fixed
format:
"yyyy:mm:dd:hh:mm:ss" where

yyyy is the year (1900-2036)
mm is the month (01-12)
dd is the day (01-31)
hh is the hour (00-24)
mm is the minute (00-59)
ss is the second (00-59)
Example
'Start at 9:15 pm on 15 Nov 93
szDTStart$ = "1993:11:15:21:15:00"

szDTInc Increment
The increment must be passed in a fixed format:
"yyyy:mm:dd:hh:mm:ss" where

yyyy is the year increment (0000-0100)
mm is the month increment (00-99)
dd is the day increment (00-99)

hh is the hour increment (00-99)
mm is the minute increment (00-99)
ss is the second increment (00-99)
Example
'Increment 1 year and 6 seconds
szDTInc$ = "0001:00:00:00:00:06"

Return values 0
-1

Success
Failure

Description The AGLabelDateTime function defines a series automatically
generated date/time labels for the X axis.
By default, X axis labels are numeric. If an array of text labels has
been passed to AGLabels() , labels for the axis are text. If
AGLabelDateTime() is called with nMode greater than 0, labels for
the axis are date/time, regardless if an array of text labels is
present. To disable date/time labeling, call the function with
nMode AGDTOFF.
nMode selects the type of date/time labels. For a series of dates,
pass AGDTDATE. If you want dates that skip weekends, pass
AGDTDATE + AGDTSKIPWKEND. For a series of times, pass
AGDTTIME. For labels that combine date and time, pass
AGDTDATE + AGDTTIME.
The szDTStart parameter sets the starting date and/or time for
the series. The increment for intervals along the axis is set by the
szDTInc parameter.
Labels may be formatted by calling the AGLabelFormat    function.
If a label format string is not applied, labels will display in the
default format, "mm/dd/yy" for dates and "hh:mm:ss" for times.

Topic
AGLabelDateTime

Related
AGLabelFormat
AGLabels
AGXAxisStyle
Date/time formats

AGLabels function
Defines labels for axis or pie chart

C/C++ int AGLabels(int nLabs, char* szLabs[])

FoxPro r = AGLabels(nLabs, @szLabs(1))

Visual Basic r% = AGLabels(nLabs%, szLabs$(1))

Parameters nLabs Number of labels
szLabs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The AGLabels function transfers an array of labels for a graph's Y
axis (or X axis in the case of horizontal bar graphs and Gantt
charts) or the slices of a pie chart.

Topic
AGLabels

Related
AGFontStyle
AGLabelY
AGLabelZ
AGLegend
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGLabelY function
Defines labels for left or right Y axis

C/C++ int AGLabelY(int nSelect, int nNLabs, char* szLabs[])

FoxPro r = AGLabelY(nSelect, nNLabs, @szLabs(1))

Visual Basic r% = AGLabelY(nSelect%, nNLabs%, szLabs$(1))

Parameters nSelect Constant Value Meaning
AGLABYLEFT 0 Sets left-hand Y axis

labels
AGLABYRIGHT 1 Sets right-hand Y axis

labels
nNLabs Number of labels
szLabs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The AGLabelY function transfers an array of labels for the Y axis.   
By default, the Y axis is labeled with numeric values according to
the axis scale, which is either calculated automatically or set by
the AGYAxisStyle function.    This function allows arbitrary text
labels to replace the numeric values.
The AGYAxisStyle function must be called to set the number of
ticks on the axis and hence the number of labels to be supplied in
the array.
The nSelect parameter selects between the left- and right-hand Y
axes.    The latter is only of relevance to combination graphs with
a second Y axis drawn to a different scale.
Note that it's possible in graphs with a single Y axis to position
that axis on the right, using the AGYAxisStyle function.    However,
this function still treats the axis as a left axis, and you should use
nSelect = 0.

Topic
AGLabelY

Related
AGFontStyle
AGLabels
AGLabelZ

AGLegend
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
AGYAxisStyle
VBAGLabelY
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGLabelZ function
Defines labels for Z axis

C/C++ int AGLabelZ(int nMode, int nNLabs, char* szLabs[])

FoxPro r = AGLabelZ(nMode, nNLabs, @szLabs(1))

Visual Basic r% = AGLabelZ(nMode%, nNLabs%, szLabs$(1))

Parameters nMode Value Meaning
0 Currently no modes implemented

nNLabs Number of labels
szLabs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The AGLabelZ function transfers an array of labels for the Z axis
in True3D graphs.    By default, this axis either carries no labels
(for all True3D graph types except scatter) or is labeled with
numeric values (for True3D scatter graphs).    AGLabelZ lets you
specify text labels to override these defaults.
The number of labels you need depends on the graph type:

For True3D area (stacked style) and bar (simple, stacked,
or clustered style) graphs, you need only one label.

For True3D area (absolute style), bar (z-clustered style),
surface, and tape graphs, you need one label for each data group.
The groups are always drawn from back to front, and label array
follows that order.

For True3D scatter graphs, Z data values are provided in
the Z data array, with the origin at the front.    In this case, the Z
axis is either drawn to a scale calculated automatically from the
data or as specified in the AGZAxisStyle function.    If you want to
supply text labels, be sure to use AGZAxisStyle to set the number
of ticks (and hence the number of labels) for the axis.

Topic
AGLabelZ

Related
AGFontStyle
AGLabels

AGLabelY
AGLegend
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
AGZAxisStyle
VBAGLabelZ
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGLegend function
Defines legend labels for grouped data

C/C++ int AGLegend(int nLegs, char* szLegs[])

FoxPro r = AGLegend(nLegs, @szLegs(1))

Visual Basic r = AGLegend(nLegs%, szLegs$(1))

Parameters nLegs Number of legend labels
szLegs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The AGLegend function transfers an array of labels for the graph
legend.
.

Topic
AGLegend

Related
AGFontStyle
AGLabels
AGLabelY
AGLabelZ
AGLegendStyle
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGLegendStyle function
Sets position and style of legend

C/C++ int AGLegendStyle(int nVertical, int nHorizontal,
 int nSize, int nClr, int nMode)

FoxPro r = AGLegendStyle(nVertical, nHorizontal, nSize, nClr,
 nMode)

Visual Basic r% = AGLegendStyle(nVertical%, nHorizontal%, nSize%,
 nClr%, nMode%)

Parameters nVertical Constant Value Meaning
AGLEGCENTRE 0 Center
AGLEGBOTTOM 1 Bottom
AGLEGTOP 2 Top

nHorizontal Constant Value Meaning
AGLEGCENTRE 0 Center
AGLEGLEFT 1 Left
AGLEGRIGHT 2 Right

nSize Percentage size relative to default size.    The
default size maximizes the use of the available
space for the legend, expanding the gaps between
adjacent legend entries either horizontally or
vertically according to its placement on the graph.   
The value ranges from 0 to 100.    At 0 the legend is
reduced to the smallest line separation, and at 100
it's expanded to the largest line separation to fit
the legend in the allocated space.

nClr Background color (see Color constants)

nMode Constant Value Meaning
AGLEGFRAME 1 Black border
AGLEGFILL 2 Fill background

with nClr
AGLEGDROPSHADOW 4 Drop shadow
AGLEGRAISED 8 Raised border
AGLEGLOWERED 16 Lowered border

Modes 4, 8, and 16 can't be combined.

Return values 0
-1

Success
Failure

Description The AGLegendStyle function sets the position and style of the
legend. The default position is centered vertically to the right of
the graph. The position parameters are combinational--for
example, "top, left."

Topic
AGLegendStyle

Related
AGFGColor
AGFontStyle
AGGraphBG
AGTitleBG
AGLegend
VBAGLegend

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGLimitLines function
Applies limit lines to a graph

C/C++ int AGLimitLines(int nMode, int nLinePattern,
 int nFillPattern, double fHighValue,
 double fLowValue, char *szHighLabel,
 char *szLowLabel)

FoxPro r = AGLimitLines(nMode, nLinePattern,
 nFillPattern, fHighValue,
 fLowValue, szHighLabel,
 szLowLabel)

Visual Basic r% = AGLimitLines(nMode%, nLinePattern%,
 nFillPattern%, fHighValue#,
 fLowValue#, szHighLabel$,
 szLowLabel$)

Parameters nMode Constant Value Meaning
AGLIMITHIGH 1 High value is

present.
AGLIMITLOW 2 Low value is

present.
AGLIMITOPPSHADE 4 Shade opposite

sides.

nLinePattern Line pattern 0 - 5 (5 is null)

nFillPattern Fill pattern. 0 - Max patterns. 1 (null) means no
shading.

fHighValue High limit line value.

fLowValue Low limit line value.

szHighLabel High limit line label.

szLowLabel Low limit line label.

Return values 0 Success
-1 Failure

Description The AGLimitLines function superimposes lines on graphs to
highlight data that falls outside prescribed limits. Both a high and
low limit line can be shown. Text can be attached to the lines, and
the areas either inside or outside the limits can be shaded with a
pattern. Limit lines are not drawn on pie, polar, time-series, or
any 3D graphs.
If a pattern of 1 (null) is specified, no shading is performed. If any
other pattern index is provided, the areas above the high limit
line and below the low limit line are filled to the extremes of the
axes. If the mode is set to AGLIMITOPPSHADE, the opposite sides
of the lines are shaded: with both limit lines present the area
between is shaded.
Text is printed next to the line if a string is passed. If no text is
required, a NULL string should be placed in the parameter list.
With no shading present, text is printed immediately above the
high line and immediately below the low line. With shading
present, text is placed on the opposite side of the line to the
shading.
The color of the lines and shading is set by AGFGColor.

Topic
AGLimitLines

Related
AGFGColor

AGMissingLineStyle function
Selects options for bridging gaps caused by missing data

C/C++ int AGMissingLineStyle(int nMode, int nSize
 [, int *nPatt, int *nClr])

FoxPro r = AGMissingLineStyle(nMode, nSize [, @nPatt(1),
 @nClr(1)])

Visual Basic r% = AGMissingLineStyle(nMode%, nSize% [, nPatt%(0),
 nClr%(0)])

Parameters nMode Constant Value Meaning
AGMLSOMIT 0 No bridging lines (default)
AGMLSSAMESTYLE 1 Bridge with line style of the

graph
AGMLSPATTERNED 2 Bridge with patterned lines
AGMLSTHICK 3 Bridge with thick lines

nSize If nMode is 2 or 3, size of nPatt and nClr arrays.
Otherwise, zero.

nPatt Line pattern array. Required when nMode is 2 or 3.
nClr Line color array. Required when nMode is 2 or 3.

Return values 0
-1

Success
Failure

Description If you have incomplete sets of data, or sets in which the values of
certain data points are unknown,    you can flag points as missing
by calling the AGAux    function. When the graph type is line, or
any log variant of line, missing points cause a gap in the line. The
AGMissingLineStyle function sets options for bridging gaps left by
missing points.
nMode = 0      No bridging lines. This is the default, and it is what
you get if you do not call AGMissingLineStyle(). However, if you
have called the function and then later want to show gaps, this
option will turn off bridging lines.
Set nSize to 0. Arrays for nPatt and nClr are ignored and can be
omitted from the call.
nMode = 1      Bridge gaps by continuing the data line in the
same style and color.
Set nSize to 0. Arrays for nPatt and nClr are ignored and can be
omitted from the call.
nMode = 2      Bridge gaps with a line in a pattern and color of
your choice. You can use the same pattern and color for all data
sets, or you can select a different pattern and color for each data
set.
To use the same pattern and color for all data sets, set nSize to 1. 

Dimension the nPatt array for one element and store the pattern
number in it. Dimension nClr for one element and store the line
color.
To use different patterns for each data set, nSize must be equal to
the number of data groups for the primary graph plus the number
of groups for overlay graphs. Dimension nPatt and nClr to nSize
elements. Store a pattern number for each group in nPatt and a
line color in nClr.
Six line patterns are available. See line style constants for a list.
Colors are specified as color index numbers. See color constants
for a list. If a color value of -1 is passed, the bridging line is drawn
in the color of the graph line.
nMode = 3      Bridge gaps with a line in a thickness and color of
your choice.    You can use the same thickness and color for all
data sets, or you can select a different thickness and color for
each data set.
The procedure is the same as for nMode 2. Line thickness is
specified in pixels. Values can range from 1 to 5.

Topic
AGMissingLineStyle

Related
AGAmp
AGAux
AGPatt
AGShow

AGOpen function
Initializes AutoGraph

C/C++ int AGOpen()

FoxPro r = AGOpen()

Visual Basic r% = AGOpen()

Return values 0
-1

Success
Failure

Description The AGOpen function initializes the AutoGraph part of Graphics
Server.
This function must be called before any other AutoGraph
functions.    Otherwise, those functions are rejected.
AutoGraph uses extra memory to store graph text and data
arrays.    When you finish using AutoGraph, use the AGClose
function to release the allocated memory.

Topic
AGOpen

Related
AGCageStyle
AGClose
AGReset
AGShow
GSOpenServer
GSUseView

Window initialization:
GSOpenWin
GSOpenChildWin

AGPatt function
Transfers pattern information

C/C++ int AGPatt(int nSize, int* nPatt)

FoxPro r = AGPatt(nSize, @nPatt(1))

Visual Basic r% = AGPatt(nSize%, nPatt%(0))

Parameters nSize Size of array
nPatt Pointer to pattern array (see Pattern constants)

Return values 0
-1

Success
Failure

Description The AGPatt function transfers pattern data to AutoGraph.
The use of pattern data and the size of the array depends on the
type of graph to be drawn, as shown in the following table.
Graph type Array size Used for
Pie nPts Fill pattern of each pie

segment
Bar nGroup Fill pattern of the bar

elements of each data set
Gantt nGroup Fill pattern of the bar

elements of each data set
Line nGroup Line style or thickness of the

line and sticks of each data
set

Log/lin, lin/log,
and log/log

nGroup Line style or thickness of the
line and sticks of each data
set

Area nGroup Fill pattern of the area of
each data set

Polar nGroup Line style or thickness of the
line and sticks of each data
set

Bubble nPts Fill pattern of each bubble
Box-whisker nPts Fill pattern of each box
Time series nGroup Defines the line style of

statistical lines if they are
enabled by the setting of the
Aux array

Pattern data isn't used in the other graph types.

The treatment of the pattern data also depends on the type of
graph, which are divided into two main categories. Treat graphs
with solid surfaces, such as the pie chart and the bar graph, as
the normal nPatt values of the patterns with which to draw the
surfaces; treat line-based graphs as the normal nStyle or
thickness values with which to draw the lines.
For line-based graphs, such as the line graph and the polar graph,
the settings of the THICK and PATT options in the style parameter
of AGShow determine how the pattern data is treated.    For
example, to draw a line graph using styled lines, the pattern array
is initialized with the normal nStyle values and AGShow is called
with the AGLINEPATT style option.    To draw the same graph using
thick lines, the pattern array is initialized with line thickness
values, expressed in pixels, and AGShow is called with the
AGLINETHICK style option.
Specifying pattern data is optional.    If you don't specify pattern
data for a graph type that uses it, AutoGraph creates a temporary
internal array containing appropriate default values.

Topic
AGPatt

Related
AGAmp
AGAmpError
AGAux
AGClr
AGDataZ
AGDist
AGDistError
AGSym

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGRefresh3D function
Redraws True3D graph

C/C++ int AGRefresh3D(int nMode)

FoxPro r = AGRefresh3D(nMode)

Visual Basic r% = AGRefresh3D(nMode%)

Parameter nMode Value Meaning
0 Currently no modes implemented

Return values 0
-1

Success
Failure

Description The AGRefresh3D function redraws a True3D graph without
redrawing the titles and legends or recalculating the scale,
allowing the graph to be viewed from different angles with
minimum delay.
Once AGShow has been called and the graph is displayed,
AGSetPerspective followed by AGRefresh3D can be called
repeatedly to alter the projected view of the graph.

Topic
AGRefresh3D

Related
AGSetPerspective

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGReset function
Resets all AutoGraph functions

C/C++ int AGReset()

FoxPro r = AGReset()

Visual Basic r% = AGReset()

Return values 0
-1

Success
Failure

Description The AGReset function clears the AutoGraph data and resets all
functions in preparation for a new graph.
AGReset is virtually redundant in the current edition of Graphics
Server and is retained for compatibility.

Topic
AGReset

Related
AGOpen
AGClose
AGShow

AGSetPerspective function
Sets perspective view of True3D graphs

C/C++ int AGSetPerspective(int nMode, int nRotation,
 int nElevation,
 int nEyePosition)

FoxPro r = AGSetPerspective(nMode, nRotation, nElevation,
 nEyePosition)

Visual Basic r% = AGSetPerspective(nMode%, nRotation%, nElevation%,
 nEyePosition%)

Parameters nMode Constant Value Meaning
AG3DISO 0 Isometric

projection, from
infinite distance

AG3DPERSPECTIVE 1 Foreshortened
perspective
projection

AG3DFLIPLR 2 Enable original left
wall of cage to
"flip" to opposite
side if data is
obscured

AG3DFLIPFB 4 Enable original
back wall of cage
to "flip" to opposite
side if data is
obscured

nRotation nRotation sets the angle of rotation about the Y
axis.    The valid range is -180 to 180 degrees
(default is 0 degrees).

nElevation For 3D pie charts, nElevation sets the angle of
elevation relative to the default of 30 degrees.
Values can range from -30 to 60. A value of 0
(default) tilts the pie 30 degrees from the
horizontal. A value of -30 tilts the pie      0
degrees, resulting in a 2D view from above. A
value of 60 tilts the pie 90 degrees, resulting in a
2D view of the pie's edge.
Note:    3D pie charts must be drawn with nMode
= AG3DISO. Because they are not True3D, they
must be redrawn with a call to AGShow(), not
AGRefresh3D().
For all other 3D graphs, nElevation sets the angle

of rotation about the X axis.    The valid range is -
90 to 90 degrees (default is 0 degrees).

nEyePosition In perspective mode, nEyePosition sets the
perceived viewing distance in front of the graph.   
The valid range is 0 to 100 in arbitrary units:

0 is the "furthest" viewing position, placing
the viewer at a "distance" about four times the
width of the viewed area.

100 is the "nearest" viewing position,
placing the viewer at a "distance" about equal to
the width of the viewed area.    This distance
produces the maximum distortion because of
foreshortening.
In isometric mode, nEyePosition has no effect.   
The graph is viewed as if from an infinite
distance, so all parallel lines appear parallel in
the projection.

Return values 0
-1

Success
Failure

Description The AGSetPerspective function sets the viewing position and
method of projection of True3D graphs.

Topic
AGSetPerspective

Related
AGRefresh3D

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGShow function
Shows a graph

C/C++ int AGShow(int nGType, int nStyle, int nStats)

FoxPro r = AGShow(nGType, nStyle, nStats)

Visual Basic r% = AGShow(nGType%, nStyle%, nStats%)

Parameters nGType The nGType parameter specifies the type of graph, as
shown in the following table.
Constant Value Meaning
AGPIE2D 1 Pie chart
AGPIE3D 2 3D pie chart
AGBAR2D 3 Bar graph
AGBAR3D 4 3D bar graph
AGGANTT 5 Gantt chart
AGLINE 6 Line graph
AGLOGLIN 7 Log/lin graph
AGAREA 8 Area graph
AGSCATTER 9 Scatter graph
AGPOLAR 10 Polar graph
AGHLC 11 High-low-close graph
AGBUBBLE 12 Bubble graph
AGTAPE 13 Tape graph
AGAREA3D 14 3D area graph
AGLOGLOG 15 Log/log graph
AGLINLOG 16 Lin/log graph
AGBOXWHISKER 17 Box-whisker graph
AGSURFACE 128 True3D surface

graph
AGTRUE3D +128 True3D flag
AGTRUE3D+AGBAR3D 132 True3D bar graph
AGTRUE3D+AGSCATTER 137 True3D scatter graph
AGTRUE3D+AGTAPE 141 True3D tape graph
AGTRUE3D+AGAREA3D 142 True3D area graph
AGCOMBO +256 Flag for overlay

(combination) graph
with shared Y axis

AGDUALYAXIS +512 Flag for overlay

(combination) graph
with second Y axis

nStyle The nStyle parameter determines the style of the
chosen graph.    The options depend on the graph
type, as shown in the following tables.
Constant Value Meaning

Area graph AGAREANOLABELS 1 Doesn't draw labels
on axes

AGAREALEGCLR 2 Legend text same
color as symbol

AGAREAXGRID 4 Draws X grid
AGAREAYGRID 8 Draws y grid
AGAREAMONO 32 Monochrome output

device
AGAREAFORECLR 64 Foreground color in

high-order byte of
nStats

AGAREALOGLIN 4096 Semi-log area graph.
(May be combined
with AGAREAABS.
Excludes
AGAREAPC.)

AGAREAPC 8192 Draw percentile
area. graph

AGAREAABS 16384 Amplitude data is
absolute

Bar graph AGBARNOLABELS 1 Doesn't draw labels
on axes

AGBARLEGCLR 2 Legend text same
color as symbol

AGBARXGRID 4 Draws X grid
AGBARYGRID 8 Draws Y grid
AGBARMONO 32 Monochrome output

device
AGBARFORECLR 64 Foreground color in

high-order byte of
nStats

AGBARLOAT 128 Sets first element of
stacked bar to be
transparent

AGBARPARETO 256 Sets Pareto format
for 2D and 3D bar
graphs

AGBARLASTFIRST 512 Reverses bar order in
horizontal graph

AGBARCLUSTZ 1024 Cluster bars in the Z
axis

AGBARHORIZ 2048 Draws bars
horizontally

AGBARSTACKPC 4096 Draws stacked
percentile bar graph

AGBARSTACK 8192 Draws stacked bar
graph

AGBARCLUSTER 16384 Draws clustered bar
graph

Box-whisker
graph

AGBWNOLABELS 1 Doesn't draw labels
on axes

AGBWXGRID 4 Draws X grid
AGBWYGRID 8 Draws Y grid
AGBWMONO 32 Monochrome output

device
AGBWNOMEDIAN 512 Omits median line
AGBWBLACKBORDER 1024 Draws a black border

around box markers
AGBWNOWHISKER 4096 Omits whisker
AGBWNONOTCH 8192 Omits notch
AGBWPARAMETRIC 16384 Parametric source

data

Bubble
graph

AGBUBNOLABELS 1 Doesn't draw labels
on axes

AGBUBLEGCLR 2 Legend text same
color as bubble

AGBUBXGRID 4 Draws X grid
AGBUBYGRID 8 Draws Y grid
AGBUBMONO 32 Monochrome output

device
AGBUBFORECLR 64 Foreground color in

high-order byte of
nStats

AGBUBDATALABELS 16384 Adds data labels to
points

Gantt chart AGGANTTNOLABELS 1 Doesn't draw labels
on axes

AGGANTTXGRID 4 Draws X grid
AGGANTTYGRID 8 Draws Y grid
AGGANTTMONO 32 Monochrome output

device
AGGANTTFORECLR 64 Foreground color in

high-order byte of
nStats

AGGANTTLASTFIRST 8192 Reverses bar order in
horizontal graph

AGGANTTSPACE 16384 Inserts space
between adjacent
bars

High-low-
close

AGHLCNOLABELS 1 Doesn't draw labels
on axes

AGHLCXGRID 4 Draws X grid
AGHLCYGRID 8 Draws Y grid
AGHLCMONO 32 Monochrome output

device
AGHLCFORECLR 64 Foreground color in

high-order byte of
nStats

AGHLCOPEN 128 Open-high-low-close
AGHLCCANDLESTICK 256 Candlestick format
AGHLCNOCLOSE 16384 Omits close bar
AGHLCNOBARS 8192 Omits high and low

bars
AGHLCTHICK 4096 Uses thick lines to

draw high-low-close
symbol

Line graph AGLINENOLABELS 1 Doesn't draw labels
on axes

AGLINELEGCLR 2 Legend text same
color as symbol

AGLINEXGRID 4 Draws X grid
AGLINEYGRID 8 Draws Y grid
AGLINESYMBOLS 16 Draws symbol at

each point
AGLINEMONO 32 Monochrome output

device
AGLINEFORECLR 64 Foreground color in

high-order byte of

nStats
AGLINESTICK 2048 Draws vertical sticks

to points
AGLINEPATT 4096 Uses patterned lines
AGLINETHICK 8192 Uses thick lines
AGLINESOLID 16384 Joins points with

solid lines

Log/lin,
lin/log, and   
log/log

AGLOGLINNOLABS 1 Doesn't draw labels
on axes

AGLOGLINLEGCLR 2 Legend text same
color as symbol

AGLOGLINXGRID 4 Draws X grid
AGLOGLINYGRID 8 Draws Y grid
AGLOGLINSYMBOLS 16 Draws symbol at

each point
AGLOGLINMONO 32 Monochrome output

device
AGLOGLINFORECLR 64 Foreground color in

high-order byte of
nStats

AGLOGLINSTICK 2048 Draws vertical sticks
to points

AGLOGLINPATT 4096 Uses patterned lines
AGLOGLINTHICK 8192 Uses thick lines
AGLOGLINSOLID 16384 Joins points with

solid lines

Pie chart AGPIENOLABELS 1 Doesn't draw labels
on segments

AGPIELEGCLR 2 Legend text same
color as symbol

AGPIEMONO 32 Monochrome output
device

AGPIEFORECLR 64 Foreground color in
high-order byte of
nStats

AGPIESAMECLR 1024 3D pie sides same
color as top

AGPIEPCCHAR 2048 Append % symbol to
pie labels

AGPIEPERCENT 4096 Labels as % of total

not magnitude
AGPIESEGCLR 8192 Labels take same

color as segments
AGPIENOLINES 16384 Omits lines between

labels and segment
AGPIESMARTLABELS 32768 Auto-arranges labels

to avoid overlap.

Polar graph AGPOLARNOLABELS 1 Don't draw labels on
axes

AGPOLARLEGCLR 2 Legend text same
color as symbol

AGPOLARANGGRID 4 Draws angular grid
AGPOLARRADGRID 8 Draw radial grid
AGPOLARSYMBOL 16 Draws symbols at

points
AGPOLARMONO 32 Monochrome output

device
AGPOLARFORECLR 64 Foreground color in

high-order byte of
nStats

AGPOLARSTICK 2048 Draws radial sticks to
points

AGPOLARPATT 4096 Uses patterned lines
AGPOLARTHICK 8192 Uses thick lines
AGPOLARLINE 16384 Joins points with

lines

Scatter
graph

AGSCATTNOLABELS 1 Doesn't draw labels
on axes

AGSCATTLEGCLR 2 Legend text same
color as symbol

AGSCATTXGRID 4 Draws X grid
AGSCATTYGRID 8 Draws Y grid
AGSCATTSYMBOLS 16 Draws symbol at

each point
AGSCATTMONO 32 Monochrome output

device
AGSCATTFORECLR 64 Foreground color in

high-order byte of
nStats

AGSCATTSTICK 512 Draws vertical sticks
(True3D only)

AGSCATTCURVE 1024 Draws curve through
each plotted data set

AGSCATTPATT 4096 Uses patterned lines
for curves (only if
AGSCATTCURVE also
used)

AGSCATTTHICK 8192 Uses thick lines for
curves (only if
AGSCATTCURVE also
used)

AGSCATTSOLID 16384 Connects points on
3D scatter graph
with solid lines.

Surface
graph

AGSRFCNOLABELS 1 Doesn't draw labels
on axes

AGSRFCXGRID 4 Draws X grid
AGSRFCYGRID 8 Draws Y grid
AGSRFCMONO 32 Monochrome output

device
AGSRFCSIDEWALL 4096 Draws solid side

walls (default none)
AGSRFCBLACKLINES 8192 Draws connecting

lines in black
AGSRFCNET 16384 Connecting lines only

(no solid fill)

Tape graph AGTAPENOLABELS 1 Doesn't draw labels
on axes

AGTAPELEGCLR 2 Legend text same
color as symbol

AGTAPEXGRID 4 Draws X grid
AGTAPEYGRID 8 Draws Y grid
AGTAPEMONO 32 Monochrome output

device
AGTAPEFORECLR 64 Foreground color in

high-order byte of
nStats

nStats The nStats parameter tells AutoGraph to draw
statistics lines, based on the amplitude data,
overlaying the graph as shown in the following table. 
If nStats is zero, no statistics lines are drawn.   
Statistics aren't applicable to some graph types, such
as the pie chart, and any specification is ignored.

Constant Value Meaning
AGMEAN 1 Draws mean line
AGMINMAX 2 Draws maximum and

minimum lines
AGSD 4 Draws standard-

deviation lines
AGLINEFIT 8 Draws best-fit line

(linear regression)
AGCURVEFIT 16 Draws curve through

points. You can use
the AGCurveStyle
function to specify
one of several curve
fitting algorithms.

AGCLIPGRAPH 32 Applies a clipping
region to the interior
of the axes in 2D
graphs

Return values 0
-1

Success
Failure

Description The AGShow function shows a graph or chart of a particular type
and style, with statistical lines if specified.
Area graphs
AGAREALOGLIN in nStyle sets a semi-logarithmic (Y log, X lin)
format for 2D area graphs. The default 2D style is stacked.
AGAREALOGLIN can be combined with AGAREAABS to produce a
semi-logarithmic area graph in absolute (unstacked) style.
However, the semi-logarithmic style cannot be used with
percentile area graphs. AGAREAPC and AGAREALOGLIN are
mutually exclusive.

Bar graphs
The AGBARPARETO style sets Pareto format for 2D and 3D bar
graphs. Bars are sorted in descending order and any attached
user-defined X axis labels are sorted with the data. If there is
more than one data set, bars are sorted in groups such that the
first data set appears in descending order.
AGBARFLOAT in nStyle sets the first element of a stacked bar
graph to be transparent, giving the appearance of the stacked
bars floating in space. It applies only to standard stacked bar
format, and there must be more than one data set.

Box-whisker graphs

The box-whisker graph is used in data analysis to illustrate the
spread of values about a median. Visually each point is
represented by a box with a waisted notch about the median and
vertical lines or whiskers extending from the top and bottom. The
notches delimit the quartiles of data.    The whiskers delimit the
5th and 95th percentiles.    The boxes delimit the 10th and 90th
percentiles.
The data may be supplied either as an array of raw values of size
nPts    nGroup (with group size greater or equal to 7), which is
processed to produce the percentiles across each group. Or it
may be supplied as a preprocessed parametric array with a group
size of 7, each group member representing one of the pre-
calculated percentiles.
The boxes are patterned and colored from the nPatt and nClr
arrays.    Curves can be fitted to data if supplied in parametric
form. By default, curves are fitted to the 50th percentile. You can
select another percentile using the AGTrendDataSet    function.
When you pass parametric data, you arrange groups as
ascending percentiles:
Group % Description
0 5 5th percentile
1 10 10th percentile
2 25 25th percentile
3 50 50th percentile (median)
4 75 75th percentile
5 90 90th percentile
6 95 95th percentile

Clipping 2D graphs
The AGCLIPGRAPH mode in nStats applies a clipping region to the
interior of the axes in 2D graphs. This may be advisable to mask
areas of the graph that extend beyond the axes when the scale is
user-defined.

Foreground colors
You can use the high-order byte of the nStats parameter to
specify the foreground color in which features such as the graph
axes, labels, and titles are drawn.    The color number, which is a
standard nClr parameter value, should be combined with the
statistics options using a logical OR operation. You also have to
set the foreground color option in the nStyle parameter. In the
absence of a foreground color specification, AutoGraph chooses a
color that contrasts with the background color.    For example:
AGShow(AGLINE, AGLINEFORECLR, BLUE << 8 | AGMEAN | AGSD);
This method of setting foreground colors has been superseded by
the AGFGColor function.    It remains supported for users

upgrading from a previous edition of Graphics Server.

High-low-close, open-high-low-close, and candlestick graphs
High-low-close graphs normally take three groups of data, in this
order:    high, low, and close.
The open-high-low-close (HLCOPEN) and candlestick
(HLCCANDLESTICK) forms take four groups of data, in this order:   
open, high, low, and close.
In candlestick format, the symbol is a rectangular box lying
between the open and close values with whiskers extending to
the high and low values.    On ascending values (close higher than
open) the box is filled with white; on descending values, it's filled
with the symbol color.

Overlay graphs
A line graph can be superimposed on several graph types, using
either the same Y scale as the primary graph or with a second Y
axis added on the right.    To draw an overlay graph, you call
AGShow twice in succession.
The first call defines the primary graph.    A bit must be set in the
nGType parameter by adding AGCOMBO to the graph type.    No
graph is drawn until the second call to AGShow, which defines
how the overlay graph is combined.
The primary graph can be one of    the following types:

2D vertical bar graph:    AGBAR2D
2D line graph:    AGLINE
2D area graph:    AGAREA
2D high-low-close graph:    AGHLC
2D scatter graph:    AGSCATTER

The normal styles apply, as set by nStyle.
The overlay graph must be of type AGLINE.    This graph may
either share the same axis and scale as the first one, or be drawn
to its own scale with a separate Y axis on the right.    To specify a
second Y axis, add AGDUALYAXIS to the nGType parameter.    (You
can customize the second axis using the AGYRAxisStyle function.)
Note that the primary graph is dominant in determining the
options for labels, axes, and grids.    Style settings for these
features are ignored in the second call to AGShow.
In creating the two graphs, you supply nGroup sets of data.    The
last group applies to the overlay line graph, and the preceding
groups apply to the primary graph.    For example, if the primary
graph is a high-low-close graph, you supply four data groups:   
the first is the high values, the second the low values, the third
the close values, and the fourth the values for the overlay line
graph.
The second graph takes its symbol, color, and line pattern from

the last element in those attribute arrays (as defined by the
AGSym, AGClr, and AGPatt functions).    Construct the attribute
arrays as if the primary graph was being drawn on its own,
adding a final element for the overlay graph.    If the primary
graph doesn't require one of the attribute arrays, you still have to
supply it, using a single element for the overlay graph.
The following AGShow calls draw a stacked bar graph with an
overlay line graph.    The line graph is drawn to its own scale (with
a separate Y axis on the right), with symbols, and with a best-fit
line superimposed:
AGShow(AGBAR2D+AGCOMBO+AGDUALYAXIS, AGBARSTACK, 0);
AGShow(AGLINE, AGLINESYMBOLS, AGLINEFIT);

Pie charts
AGPIESMARTLABELS in nStyle enables auto-arranging of labels to
avoid overlapping. Note that the algorithm may cause labels to
extend outside the visible area of the graph if too many are
concentrated in a small sector of the pie.
AGPIE3D in nGType draws a 3D pie chart in isometric projection.
The pie's depth may be adjusted with AG3Dstyle(), and the angle
of elevation may be adjusted with AGSetPerspective(). However,
3D pies are not True3D graphs, and so they are always redrawn
with AGShow() and not with AGRefresh3D().

True3D graphs
True3D graphs are 3D graphs capable of being rotated and
viewed from any angle.
Select True3D graphs by adding the constant AGTRUE3D to the
graph type in nGType.    Not all graph types can be viewed in
True3D.    See the table for valid types.
The viewing angle and 3D projection mode is set by
AGSetPerspective.
The function AGRefresh3D is used to redraw the graph with a
different viewing angle without the overhead of recalculating and
redrawing the titles, labels, and legend.
True3D graphs don't support superimposed statistics, curve
fitting, or overlay graphs.
The same arrays are required for True3D graphs as for their
pseudo-3D counterparts, the exception being the scatter graph,
which requires a Z data array created using the same rules as the
Dist array.
The surface graph requires multi-dimensional amplitude data and
no distance or Z data, because it's always plotted at regular
increments in X and Z.

True3D scatter graphs
When you draw a True3D scatter graph, you have to supply Z

data using the AGDataZ function.
Scatter graphs are the only True3D graphs that label the Z axis of
the 3D cage with data values.    You can use the AGZAxisStyle
function to customize the axis.
You can connect points with solid lines in True3D scatter graphs
by using AGSCATTSOLID in nStyle.

Topic
AGShow

Related
AGOpen
AGClose
AGTrendDataSet

Window initialization:
GSOpenWin
GSOpenChildWin

AGSurfaceClr function
Sets colors for True3D surface graph

C/C++ int AGSurfaceClr(int nColorMin, int nColorMax,
 int nColorSide)

FoxPro r = AGSurfaceClr(nColorMin, nColorMax, nColorSide)

Visual Basic r% = AGSurfaceClr(nColorMin%, nColorMax%, nColorSide%)

Parameters nColorMin Color index at minimum data value
nColorMax Color index at maximum data value
nColorSide Color of side wall

Return values 0
-1

Success
Failure

Description The AGSurfaceClr function sets the range of colors used to color
the panels or lines of a surface graph, as well as the color of the
optional side walls.
Surface graphs are colored according to the height of points
above the origin, with nColorMin setting the color at the origin
and nColorMax the color at the maximum height of the Y axis.   
Colors at intermediate heights are interpolated between these
two values.
You should use the GSSelectPalette function to enable a 128-entry
color palette and select a graded range of colors extending from
32 to 127 (0 to 31 are reserved for the standard colors).    To
define your own palette, you can use the GSSetPal function.

Topic
AGSurfaceClr

Related
AG3DStyle
AGCageStyle
AGClr
GSSelectPalette
GSSetPal

Window initialization:
GSOpenWin
GSOpenChildWin

Graph display:
AGOpen
AGShow
AGClose

AGSym function
Transfers symbol information

C/C++ int AGSym(int nSize, int* nSymbol)

FoxPro r = AGSym(nSize, @nSymbol(1))

Visual Basic r% = AGSym(nSize%, nSymbol%(0))

Parameters nSize Size of array
nSymbol Pointer to array of symbol data (see Symbol

constants)

Return values 0
-1

Success
Failure

Description The AGSym function transfers symbol data to AutoGraph.
Symbol data is used only in line, logarithmic, scatter, polar, and
time series graphs, and only when you specify an appropriate
style in the nStyle parameter of the AGShow function.

Graph type Array size Used for

Line nGroup Symbol of the points of each
data set

Log/lin, lin/log,
and log/log

nGroup Symbol of the points of each
data set

Scatter nGroup Symbol of the points of each
data set

Polar nGroup Symbol of the points of each
data set

Time series nGroup Set symbol as other graphs

Specifying symbol data is optional.    If you don't, AutoGraph
creates a temporary internal array containing appropriate default
values.

Example You can modify the size of the symbols from their default of 2.5%
of the height of the view by calling the GSSizeSymbol    function
prior to calling AGShow.    For example, the following code will
double the size of the symbols on the graph by increasing their
size to 5% of the height of the view.
GSSizeSymbol(50);
AGShow(AGLINE, AGLINESYMBOLS, 0);

Topic
AGSym

Related
AGAmp
AGAmpError
AGAux
AGClr
AGDataZ
AGDist
AGDistError
AGPatt

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTimeGraph function
Begins time series graph

C/C++ int AGTimeGraph(int nPts, int nGroup, double fDataMax,
 double fDataMin, int nStyle)

FoxPro r = AGTimeGraph(nPts, nGroup, fDataMax, fDataMin,
 nStyle)

Visual Basic r% = AGTimeGraph(nPts%, nGroup%, fDataMax#, fDataMin#,
 nStyle%)

Parameters nPts Number of points to display
nGroup Number of concurrent sets of data
fDataMax Maximum expected value of data
fDataMin Minimum expected value of data
nStyle Constant Value Meaning

AGTIGNOLABELS 1 No labels
AGTIGLEGCLR 2 Legend text same

color as symbols
AGTIGXGRID 4 X grid
AGTIGYGRID 8 Y grid
AGTIGLINES 16 Continuous line (no

symbols)

nAux Constant Value Meaning
AGTIGMEAN 1 Superimposed mean
AGTIGSTDDEV 2 Superimposed

standard deviation
Return values 0

-1
Success
Failure

Description The AGTimeGraph function initializes a time series graph, drawing
the axes, legend, and titles.
A time series graph comprises nGroup sets of data that are
displayed concurrently.    At first no data is displayed.    As data is
added, using the AGTimeUpdate function, the new points are
drawn at the origin on the right and previous points are scrolled
to the left.    When the number of points on display exceeds nPts,
the earliest point is discarded.    The result is an animated,
scrolling graph that accepts continuous data.
When you use this function, you should not call AGShow.   
Instead, define titles, labels, and legends as usual before calling
AGTimeGraph at the position in the code where AGShow would be

called, followed by the call to AGClose.    AGTimeUpdate can be
called at any time thereafter with the appropriate window
selected.
The positive- and negative-going axes are scaled to show data in
the range fDataMin to fDataMax. You have to specify these values
from the outset, because no data is available for calculating a
scale when the graph is first drawn.
The graph style (as would normally be defined by the AGShow
function) is defined by nStyle. By default, the graph is drawn with
symbols marking data points. These are subject to the AGSym
function. AGTIGLINES in nStyle draws the graph with continuous
lines instead of symbols. No line patterns are available.
Also by default, the graph is drawn with a main title, X and Y
titles, X axis, Y axis, legend, and X and Y labels.    These are
subject to the normal AG text and style functions.
One time series graph can display several sets of data
concurrently.
Symbol, pattern, color, aux, and optionally distance arrays must
be supplied using the AG array calls prior to calling AGTimeGraph.
These arrays are all of dimension nGroup and specify the
attributes of each data set.
The symbol array defines the symbol drawn at each data point.   
The color array defines the color of the symbol and of any
statistical lines.    The pattern array defines the line style of the
mean statistical line.    The standard deviation lines are drawn
with the pattern index + 1.    The distance array defines the
vertical offset of the data set from the origin, enabling sets to be
drawn at different origins.    The Aux array defines which
statistical lines are to be overlaid.
The function uses XORing to produce fast animation.    This has
several side effects:
The color of a symbol is the result of XORing itself with whatever
lies beneath.    The color index must be one of the basic colors, 0-
16.    This color is adjusted such that the result of XORing, with the
current background color, produces the color as specified.    If the
symbols are XORed onto any area not in the background color,
the result is unpredictable.
The metafile must be turned off to prevent the whole animated
history of the graph redisplaying when the window is moved or
uncovered.
To overcome the latter problem, time series graphs are always
drawn using blit mode.    After a time series graph has concluded,
it may be necessary to reset the drawing mode to metafile by
calling GSWinPaint(5)
There can be only one time series graph per window.

Example The following example shows how to create a time series graph
with two concurrent data sets.    Twenty points are to be displayed
in the range -5 to +10 units.    The mean of data is superimposed

on the first graph and the standard-deviation on the second.
#define NUMPOINTS 20 // points on display
#define NUMSETS 2 // concurrent sets
AGOpen(); // open AG
AGTitleG("Time series graph"); // Graph title
//... set bottom and left titles
lpnClr(0) = RED;lpnClr(1) = BLUE;// set graph colors
//... set symbols and patterns for each data set
lpnAux(0) = AGTIGMEAN; // show mean on 1st graph
lpnAux(1) = AGTIGSTDDEV; // show std-dev on 2nd
AGLegend(NUMSETS, lpszLegend); // legend text
AGClr(NUMSETS, lpnClr); // color array
AGSym(NUMSETS, lpnSym); // symbol array
AGPatt(NUMSETS, lpnPatt); // line style array
AGAux(NUMSETS, lpnAux); // aux array
AGTimeGraph(NUMPOINTS, NUMSETS, 10,-5, AGTIGXGRID);
AGClose();
//... at any time later call AGTimeUpdate

Topic
AGTimeGraph

Related
AGAmp
AGAux
AGDataZ
AGDist
AGPatt
AGSym
AGTimeUpdate
GSWinPaint
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTimeUpdate function
Updates time series graph with data

C/C++ int AGTimeUpdate(int nMode, int nGroup, double* fData)

FoxPro r = AGTimeUpdate(nMode, nGroup, @fData(1))

Visual Basic r% = AGTimeUpdate(nMode%, nGroup%, fData#(0))

Parameters nMode Constant Value Meaning
AGTIGUPDATE 0 Loads new data and

redraws graph
AGTIGLOAD 1 Loads new data

without redrawing
graph

AGTIGHIDEDATA 2 Loads no data and
hides graph

AGTIGSHOWDATA 3 Loads no data and
redraws graph

Mode 0 is the normal method of loading new data
and showing it, scrolling the graph to the left.
Modes 1, 2, and 3 let you perform "batch updates"
to add several data points without refreshing the
graph.    To do a batch update, you hide the graph
(mode 2), add new data (repeat mode 1), then
redraw the graph (mode 3).    This gives you faster
updates, but there's some flickering.

nGroup Number of data groups

fData Array of data, one value for each group

Return values 0
-1

Success
Failure

Description The AGTimeUpdate function updates a time series graph as
previously created using the AGTimeGraph function.

Example This example follows the previous example for AGTimeGraph.   
Here we update the graph with new data, passing values for the
two data sets.    Since this operation is executed at some arbitrary
time after the graph is created, we must ensure that the
appropriate target window is re-selected.
double fData [NUMSETS];

fData[0] = fData0; // new data for group 0
fData[1] = fData1; // new data for group 1
GSUseView(nTIGWin, nTIGView); // select our window
AGTimeUpdate(AGTIGUPDATE, NUMSETS, fData); // update

Topic
AGTimeUpdate

Related
AGTimeGraph
GSWinPaint

AGTitleBG function
Sets title style and background color

C/C++ int AGTitleBG(int nMode, int nClr)

FoxPro r = AGTitleBG(nMode, nClr)

Visual Basic r% = AGTitleBG(nMode%, nClr%)

Parameters nMode Constant Value Meaning
AGTTLG 0 Selects graph title
AGTTLX 1 Selects bottom title
AGTTLYLEFT 2 Selects left title
AGTTLYRIGHT 3 Selects right title
AGTTLUP 4 Draws title

upwards (rotated
90 degrees
counterclockwise)

AGTTLDOWN 8 Draws title
downwards
(rotated 90
degrees clockwise)

AGTTLFRAME 16 Black border
AGTTLFILL 32 Fills background

with nClr
AGTTLDROPSHADOW 64 Drop shadow
AGTTLRAISED 128 Raised border
AGTTLLOWERED 256 Lowered border
Modes 64, 128, and 256 can't be combined.

nClr Text color (see Color constants)

Return values 0
-1

Success
Failure

Description The AGTitleBG function sets the background color and style of   
the graph title, left title, right title, and bottom title.      The
function must be called repeatedly to set each title style.   
Rotated (vertical) text is only allowed for left and right titles.

Topic
AGTitleBG

Related
AGFGColor
AGFontStyle
AGLabels
AGLabelY
AGLabelZ
AGLegendStyle
AGTitleG
AGTitleX
AGTitleY
AGTitleYR
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTitleG function
Defines graph title

C/C++ int AGTitleG(char* szTitle)

FoxPro r = AGTitleG(szTitle)

Visual Basic r% = AGTitleG(szTitle$)

Parameters szTitle Title string

Return values 0
-1

Success
Failure

Description The AGTitleG function defines the title to be placed centrally
above the graph.

Topic
AGTitleG

Related
AGFontStyle
AGLabels
AGLabelY
AGLabelZ
AGLegendStyle
AGTitleBG
AGTitleX
AGTitleY
AGTitleYR
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTitleX function
Defines bottom title for graph

C/C++ int AGTitleX(char* szTitle)

FoxPro r = AGTitleX(szTitle)

Visual Basic r% = AGTitleX(szTitle$)

Parameters szTitle Title string

Return values 0
-1

Success
Failure

Description The AGTitleX function defines the graph's bottom title, which is
placed at the bottom of a graphing window.    The bottom title is
frequently used to explain the X axis.

Topic
AGTitleX

Related
AGFontStyle
AGLabels
AGLabelY
AGLabelZ
AGLegendStyle
AGTitleBG
AGTitleG
AGTitleY
AGTitleYR
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTitleY function
Defines left title for graph

C/C++ int AGTitleY(char* szTitle)

FoxPro r = AGTitleY(szTitle)

Visual Basic r% = AGTitleY(szTitle$)

Parameters szTitle Title string

Return values 0
-1

Success
Failure

Description The AGTitleY function defines the graph's left title, which is placed
at the left edge of a graphing window.    The left title is frequently
used to explain the Y axis.

Topic
AGTitleY

Related
AGFontStyle
AGLabels
AGLabelY
AGLabelZ
AGLegendStyle
AGTitleBG
AGTitleG
AGTitleX
AGTitleYR
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTitleYR function
Defines right title for graph

C/C++ int AGTitleYR(char* szTitle)

FoxPro r = AGTitleYR(szTitle)

Visual Basic r% = AGTitleYR(szTitle$)

Parameters szTitle Title string

Return values 0
-1

Success
Failure

Description The AGTitleYR    function defines the graph's right title, which is
placed at the right edge of a graphing window.    The right title is
frequently used to explain the right-hand Y axis used in some
overlay graphs.

Topic
AGTitleYR

Related
AGFontStyle
AGLabels
AGLabelY
AGLabelZ
AGLegendStyle
AGTitleBG
AGTitleG
AGTitleX
AGTitleY
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGTrendDataSet function
Applies trend lines to individual data sets

C/C++ int AGTrendDataSet(int nSize, int *nEnable)
FoxPro r = AGTrendDataSet(nSize, @nEnable(nSize))
Visual Basic r% = AGTrendDataSet(nSize%, nEnable%(nSize%))

Parameters nSize Number of elements in nEnable array. Normally there
will be one element for each set of amplitude data.

nEnable An array of flags indicating which trend lines to draw for
each data set. If an element of the array has a value of
zero, no lines will be drawn for that set.
The flags listed below may be used in combination.
Constant Value Meaning
AGMEAN 1 Draws a mean line
AGMINMAX 2 Draws maximum and minimum

lines
AGSD 4 Draws standard-deviation lines
AGLINEFIT 8 Draws a best-fit line (linear

regression)
AGCURVEFIT 16 Draws a curve through points.

Return values 0
-1

Success
Failure

Description Normally, statistical lines are drawn according to the value
passed in the nStats parameter of AGShow() . The disadvantage
of this method is that the same lines are drawn for all data sets.
AGTrendDataSet lets you enable different lines for each set of
data or enable lines for some sets while omitting them for others.
If AGTrendDataSet() is not called, the value of nStats in AGShow()
determines which trend lines, if any, are drawn.
If AGTrendDataSet() is called, each element of the nEnable array
selects one or more trend lines to be applied to the associated
data set.
If you select AGCURVEFIT, you can use the AGCurveStyle   
function to specify one of several curve fitting algorithms.
However, the selected algorithm is applied to all curves on the
graph; it is not possible to derive curves differently for separate
data sets.

Topic

AGTrendDataSet

Related
AGAmp
AGCurveStyle
AGShow

AGXAxisStyle function
Sets X axis style

C/C++ int AGXAxisStyle(int nMode, int nTicks, int nLabEvery,
 double fMax, double fMin)

FoxPro r = AGXAxisStyle(nMode, nTicks, nLabEvery, fMax, fMin)

Visual Basic r% = AGXAxisStyle(nMode%, nTicks%, nLabEvery%, fMax#, fMin#)

Parameters nMode Constant Value Meaning
AGVARORIGIN 1 Variable origin (not

necessarily 0)
AGNOLABELS 2 No labels displayed
AGUTICKS 4 Number of ticks

value is present
AGUMAX 8 Axis maximum value

is present
AGUMIN 16 Axis minimum value

is present
AGLABEVERY 32 Labels every nth

point value is
present

AGNOTICKS 64 No ticks displayed
AGTICKEVERY 128 Ticks every nth point

value is present
AGAXISTOP 256 Draws the X axis at

the top of the graph
AGAXISBOTTOM 512 Draws the X axis at

the bottom of the
graph

AGAXISMINORTICK 1024 Draws minor ticks
and grids

AGAXISVERTLABELS 2048 Draws X labels
vertically

AGTICKIN 4096 Tick marks drawn
inside the axis
(default is through)

AGTICKOUT 8192 Tick marks drawn
outside the axis
(default is through)

nTicks Number of ticks
nLabEvery Labels every nth point
fMax Axis maximum value

fMin Axis minimum value

Return values 0
-1

Success
Failure

Description The AGXAxisStyle function specifies the style in which the X axis
is scaled, ticked, and labeled.
There's no need to specify all the parameters when you use the
AGXAxisStyle function; they can be left as 0. The AGUTICKS,
AGUMAX, AGUMIN, and AGLABEVERY nMode bits specify whether
the related parameters are to be used.    AutoGraph will use
default values for omitted parameters.
The AGUTICKS and AGTICKEVERY options are mutually exclusive
and share the nTicks parameter as the means of specifying their
respective values.    For example, to specify 10 ticks for an axis,
you set the nMode option AGUTICKS and set the parameter nTicks
to 10.    To specify one tick for every five points on the axis, you
set the nMode option AGTICKEVERY and set nTicks to 5.
By default, tick marks are drawn through the axis. AGTICKIN in
nMode causes tick marks to be drawn inside the axis. AGTICKOUT
in nMode causes them to be drawn outside the axis. AGTICKIN
and AGTICKOUT are mutually exclusive.

Topic
AGXAxisStyle

Related
AGAxisMinorTicks
AGGridStyle
AGYAxisStyle
AGYRAxisStyle
AGZAxisStyle

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGYAxisStyle function
Sets Y axis style

C/C++ int AGYAxisStyle(int nMode, int nTicks, int nLabEvery,
 double fMax, double fMin)

FoxPro r = AGYAxisStyle(nMode, nTicks, nLabEvery, fMax, fMin)

Visual Basic r% = AGYAxisStyle(nMode%, nTicks%, nLabEvery%, fMax#,
 fMin#)

Parameters nMode Constant Value Meaning
AGVARORIGIN 1 Variable origin (not

necessarily 0)
AGNOLABELS 2 No labels displayed
AGUTICKS 4 Number of ticks

required is present
AGUMAX 8 Axis maximum value

is present
AGUMIN 16 Axis minimum value

is present
AGNOTICKS 64 No ticks displayed
AGAXISLEFT 256 Draws the Y axis at

the left of the graph
AGAXISRIGHT 512 Draws the Y axis at

the right of the
graph

AGAXISMINORTICK 1024 Draws minor ticks
and grids

AGTICKIN 4096 Tick marks drawn
inside the axis
(default is through)

AGTICKOUT 8192 Tick marks drawn
outside the axis
(default is through)

nTicks Number of ticks
nLabEvery Label every nth tick (option currently not used)
fMax Axis maximum value
fMin Axis minimum value

Return values 0
-1

Success
Failure

Description The AGYAxisStyle function specifies the style in which the Y axis is
scaled, ticked, and labeled.
There's no need to specify all the parameters when you use the
AGYAxisStyle function; they can be left as 0.    The AGUTICKS,
AGUMAX, and AGUMIN nMode bits specify whether the related
parameters are to be used.    AutoGraph will use default values for
omitted parameters.
By default, tick marks are drawn through the axis. AGTICKIN in
nMode causes tick marks to be drawn inside the axis. AGTICKOUT
in nMode causes them to be drawn outside the axis. AGTICKIN
and AGTICKOUT are mutually exclusive.

Topic
AGYAxisStyle

Related
AGAxisMinorTicks
AGGridStyle
AGXAxisStyle
AGYRAxisStyle
AGZAxisStyle
AGLabelY

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGYRAxisStyle function
Sets right-hand Y axis style

C/C++ int AGYRAxisStyle(int nMode, int nTicks,
 int nLabEvery, double fMax,
 double fMin)

FoxPro r = AGYRAxisStyle(nMode, nTicks, nLabEvery, fMax, fMin)

Visual Basic r% = AGYRAxisStyle(nMode%, nTicks%, nLabEvery%, fMax#, fMin#)

Parameters nMode Constant Value Meaning
AGVARORIGIN 1 Variable origin (not

necessarily 0)
AGNOLABELS 2 No labels displayed
AGUTICKS 4 Number of ticks

required is present
AGUMAX 8 Axis maximum value is

present
AGUMIN 16 Axis minimum value is

present
AGNOTICKS 64 No ticks displayed
AGAXISLEFT 256 Draws the Y axis at the

left of the graph
AGAXISRIGHT 512 Draws the Y axis at the

right of the graph
AGTICKIN 4096 Tick marks drawn

inside the axis (default
is through)

AGTICKOUT 8192 Tick marks drawn
outside the axis
(default is through)

nTicks Number of ticks
nLabEvery Label every nth tick (option currently not used)
fMax Axis maximum value
fMin Axis minimum value

Return values 0
-1

Success
Failure

Description The AGYRAxisStyle function specifies the style in which the right-
hand Y axis is scaled, ticked, and labeled in combination graphs
with a dual axes.

There's no need to specify all the parameters when you use the
AGYRAxisStyle function; they can be left as 0.    The AGUTICKS,
AGUMAX, and AGUMIN nMode bits specify whether the related
parameters are to be used.    AutoGraph will use default values for
omitted parameters.
By default, tick marks are drawn through the axis. AGTICKIN in
nMode causes tick marks to be drawn inside the axis. AGTICKOUT
in nMode causes them to be drawn outside the axis. AGTICKIN
and AGTICKOUT are mutually exclusive.

Topic
AGYRAxisStyle

Related
AGAxisMinorTicks
AGGridStyle
AGXAxisStyle
AGYAxisStyle
AGZAxisStyle
AGLabelY

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

AGZAxisStyle function
Sets Z axis style

C/C++ int AGZAxisStyle(int nMode, int nTicks, int nLabEvery,
 double fMax, double fMin)

FoxPro r = AGZAxisStyle(nMode, nTicks, nLabEvery, fMax, fMin)

Visual Basic r% = AGZAxisStyle(nMode%, nTicks%, nLabEvery%, fMax#, fMin#)

Parameters nMode Constant Value Meaning
AGVARORIGIN 1 Variable origin (not

necessarily 0)
AGNOLABELS 2 No labels displayed
AGUTICKS 4 Number of ticks value

is present
AGUMAX 8 Axis maximum value is

present
AGUMIN 16 Axis minimum value is

present
AGLABEVERY 32 Label every nth point

value is present
AGNOTICKS 64 No ticks displayed
AGTICKEVERY 128 Tick every nth point

value is present
AGTICKIN 4096 Tick marks drawn

inside the axis (default
is through)

AGTICKOUT 8192 Tick marks drawn
outside the axis
(default is through)

nTicks Number of ticks
nLabEvery Label every nth tick
fMax Axis maximum value
fMin Axis minimum value

Return values 0
-1

Success
Failure

Description The AGZAxisStyle function specifies the style in which the Z axis
is scaled, ticked, and labeled in True3D graphs (currently this
function is only of relevance to scatter graphs).
There's no need to specify all the parameters when you use the

AGZAxisStyle function; they can be left as 0.    The AGUTICKS,
AGUMAX, AGUMIN, and AGLABEVERY nMode bits specify whether
the related parameters are to be used.    AutoGraph will use
default values for omitted parameters.
The AGUTICKS and AGTICKEVERY options are mutually exclusive
and share the nTicks parameter as the means of specifying their
respective values.    For example, to specify that the axis will have
10 ticks, you set the nMode option AGUTICKS and set the
parameter nTicks to 10.    To specify that every five points on the
axis will be ticked, you set the nMode option AGTICKEVERY and
set the parameter nTicks to 5.
By default, tick marks are drawn through the axis. AGTICKIN in
nMode causes tick marks to be drawn inside the axis. AGTICKOUT
in nMode causes them to be drawn outside the axis. AGTICKIN
and AGTICKOUT are mutually exclusive.

Topic
AGZAxisStyle

Related
AGAxisMinorTicks
AGCageStyle
AGGridStyle
AGXAxisStyle
AGYAxisStyle
AGLabelZ

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

GSArc function
Draws circular arc

C/C++ GSArc(double fxOrg, double fyOrg, double fRadius, double
fAng1, double fAng2, int nMode, int nStyle, int nClr)

FoxPro r = GSArc(fxOrg, fyOrg, fRadius, fAng1, fAng2, nMode, nStyle,
nClr)

Visual Basic r% = GSArc(fxOrg#, fyOrg#, fRadius#, fAng1#, fAng2#, nMode%,
nStyle%, nClr%)

Parameters fxOrg X center
fyOrg Y center
fRadius Radius
fAng1 Start angle
fAng2 End angle
nMode Constant Value Meaning

AARADIUS 1 Draws connecting radii
at extremes of arc

AAFILL 2 Fills the arc with
pattern; closing radii
are automatically
added to the arc to
define fill area

AATHICK 4 Uses thick line style
Modes AAFILL and AATHICK are exclusive.    If you
enable both of them, only AAFILL is used.

nStyle Line thickness (nMode AATHICK) or fill pattern
(mode AAFILL).    See Line style constants or Pattern
constants.

nClr Color of arc (see Color constants)

Return values 0
-1

Success
Failure

Description The GSArc function draws a circle or circular arc.    The arc is
drawn from a start angle (fAng1) to an end angle (fAng2) in a
counterclockwise direction and in a continuous line.
Optionally, you can add radial lines drawn from the center (were
the arc a complete circle) to the arc's end points.    Also optionally,
you can fill the arc with a pattern defined by nStyle.

Topic
GSArc

Related
GSCircle
GSEllipse
GSPolyFill
GSPolyVec

GSArea function
Draws 2D area graph

C/C++ GSArea(double fxOrg, double fyOrg, double fInc,
 double fHt, int nMode, int nGroup)

FoxPro r = GSArea(fxOrg, fyOrg, fInc, fHt, nMode, nGroup)

Visual Basic r% = GSArea(fxOrg#, fyOrg#, fInc#, fHt#, nMode%,
 nGroup%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fHt Height of graph in percentile mode
nMode Constant Value Meaning

ARABS 1 Data is in absolute units
(default is relative)

ARVARX 2 Uses fD array for X
position

ARPC 4 Percentile mode
nGroup Number of grouped data sets

Return values 0
-1

Success
Failure

Description The GSArea function draws a 2D area graph from one or more
sets of data.
Amplitude data may be relative or absolute.    Absolute data
defines the height of each dividing line above the X axis.   
Relative data defines the height of each line above the preceding
one.
The areas are filled with the patterns and colors defined in the
respective group arrays.
The data may be graphed either at fixed increments in X as
defined by fInc or using the individual X values passed in the fD
array.
In the percentile mode, the graph occupies the height, fHt,
divided into areas on the basis of the individual amplitude values
as a percentage of the sum of the data sets at each point.

GSDataTrans parameters for 2D area graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions)
fD[nPts] Pointer to distance array (X positions)--used

only with nMode ARVARX
nPatt[nGroup] Pointer to array containing fill patterns for

single area plot
nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing color for single

area plot

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions)--used
only with nMode ARVARX

nPatt[nGroup] Pointer to array containing fill patterns for
successive area plots

nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing colors for

successive area plots

* GSDataTrans can't pass two-dimensional fD arrays.    You have
to use the GSDataDist function if you want to specify individual
fD values for each data set.    However, you can use
GSDataTrans if you want to apply the same fD values to points
in all sets.

Topic
GSArea

Related
GSArea3D
GSBar2D
GSTapeGraph

Axis/grid/legend:

GSAxis
GSGrid
GSLegend

Labels:
GSDataLabels
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSArea3D function
Draws 3D area graph

C/C++ GSArea3D(double fxOrg, double fyOrg, double fInc,
 double fHt, double fDepth, double fAng,
 int nMode)

FoxPro r = GSArea3D(fxOrg, fyOrg, fInc, fHt, fDepth, fAng, nMode)

Visual Basic r% = GSArea3D(fxOrg#, fyOrg#, fInc#, fHt#, fDepth#,
 fAng#, nMode%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fHt Height of graph in percentile mode
fDepth Perspective depth of graph
fAng Perspective angle from the horizontal
nMode Constant Value Meaning

ARABS 1 Data is in absolute format
(default is relative)

ARVARX 2 Uses fD array for X
position

ARPC 4 Percentile mode

Return values 0
-1

Success
Failure

Description The GSArea3D function draws a 3D area graph showing one or
more sets of data.    This isn't True3D, but the quasi-3D of
previous editions of Graphics Server.    True3D graphs can be
programmed only through the AutoGraph API.
Amplitude data may be relative or absolute.    Absolute data
defines the height of each dividing line above the X axis.   
Relative data defines the height of each line above the preceding
one.
In relative and percentile mode, the graph is drawn in one plane,
with successive data sets stacked one above the other.    In
absolute mode, the graph acquires Z-axis perspective, with
successive data sets advancing from the back toward the front of
the graph.
The areas are filled using the patterns and colors defined in the
respective arrays.    The side faces of the areas are solid filled in
the half-tone colors of the fronts.

The data may be graphed either at fixed increments in X, as
defined by fInc or using the individual X values passed in the fD
array.
In the percentile mode, the graph occupies the height, fHt,
divided into areas on the basis of the individual amplitude values
as a percentage of the sum of the data sets at each point.

GSDataTrans parameters for 3D area graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions)
fD[nPts] Pointer to distance array (X positions)--used

only with nMode ARVARX
nPatt[nGroup] Pointer to array containing fill patterns for

single area plot
nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing color for single

area plot

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions)--used
only with nMode ARVARX

nPatt[nGroup] Pointer to array containing fill patterns for
successive area plots

nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing colors for

successive area plots

* GSDataTrans can't pass two-dimensional fD arrays.    You have
to use the GSDataDist function if you want to specify individual
fD values for each data set.    However, you can use
GSDataTrans if you want to apply the same fD values to points
in all sets.

Topic
GSArea3D

Related
GSArea
GSBar2D
GSBar3D
GSTapeGraph

Axis/cage/legend:
GSCage3D
GSLegend

Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSAreaLogLin function
Draws a 2D area graph with semi-log scaling

C/C++ int GSAreaLogLin(double fxOrg, double fyOrg,
 double fInc, double fCycleHt,
 double fBaseVal, int nMode)

FoxPro r = GSAreaLogLin(fxOrg, fyOrg, fInc, fCycleHt,
 fBaseVal, nMode)

Visual Basic r% = GSAreaLogLin(fxOrg#, fyOrg#, fInc#, fCycleHt#,
 fBaseVal#, nMode%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fCycleHt Height of one cycle (log base 10)
fBaseVal Base value of graph at y = 0
nMode Constant Value Meaning

ARABS 1 Data is in absolute units
(default is relative)

ARVARX 2 Uses fD array for X positions

Return values 0
-1

Success
Failure

Description The GSAreaLogLin function draws a semi-logarithmic 2D area
graph.
Amplitude data may be relative or absolute. Absolute data
defines the height of each dividing line above the X axis. Relative
data defines the height of each line above the preceding one.
The areas are filled with the patterns and colors defined in the
respective group arrays.
The data may be graphed either at fixed increments in X as
defined by fInc or using the individual X values passed in the fD
array.

GSDataTrans parameters
One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions)
fD[nPts] Pointer to distance array (X positions)--used

only with nMode ARVARX

nPatt[nGroup] Pointer to array containing fill patterns for
single area plot

nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing color for single

area plot

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions)--used
only with nMode ARVARX

nPatt[nGroup] Pointer to array containing fill patterns for
successive area plots

nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing colors for

successive area plots
* GSDataTrans can't pass two-dimensional fD arrays. You have to

use the GSDataDist    function if you want to specify individual
fD values for each data set.    However, you can use
GSDataTrans if you want to apply the same fD values to points
in all sets.

Topic
GSAreaLogLin

Related
GSArea
GSDataTrans
GSLogLin

GSArrow function
Draws arrow

C/C++ int GSArrow(double fxA, double fyA, double fxB,
 double fyB, double fHeadLen, int nMode,
 int nStyle, int nClr)

FoxPro r = GSArrow(fxA, fyA, fxB, fyB, fHeadLen, nMode,
 nStyle, nClr)

Visual Basic r% = GSArrow(fxA#, fyA#, fxB#, fyB#, fHeadLen#, nMode%,
 nStyle%, nClr%)

Parameters fxA X start
fyA Y start
fxB X end
fyB Y end
fHeadLen Length of head
nMode Constant Value Meaning

AWTHIN 1 Thin head
AWMEDIUM 0 Medium-width head
AWTHICK 2 Thick head
AWOPEN 4 Open head
AWCLOSED 0 Closed head

nStyle Line pattern or thickness (see Line style constants)
nClr Color of arrow (see Color constants)

Return values 0
-1

Success
Failure

Description The GSArrow function draws an arrow located by absolute view
coordinates defining its start and end.    The arrowhead can be
drawn in various styles, as set by the nMode parameter.

Topic
GSArrow

Related
GSLineAbs

GSAxis function
Draws X or Y axis

C/C++ int GSAxis(double fxOrg, double fyOrg, double fLen,
 double fTickLen, int nMajDivs,
 int nMinDivs, int nMode, int nStyle,
 int nClr)

FoxPro r = GSAxis(fxOrg, fyOrg, fLen, fTickLen, nMajDivs,
 nMinDivs, nMode, nStyle, nClr)

Visual Basic r% = GSAxis(fxOrg#, fyOrg#, fLen#, fTickLen#,
 nMajDivs%, nMinDivs%, nMode%, nStyle%,
 nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fLen Length of axis
fTickLen Length of major ticks
nMajDivs Number of major ticks (divisions along axis)
nMinDivs Number of minor ticks per major tick
nMode Constant Value Meaning

AXTICKOUT 0 Ticks on outside (left
on Y axis, bottom on X
axis)

AXTICKIN 1 Ticks on inside
AXTICKTHRU 2 Ticks strike through

the axis
AXISX 0 Draws in X direction
AXISY 4 Draws in Y direction

nStyle Line style (see Line style constants)
nClr Color of axis (see Color constants)

Return values 0
-1

Success
Failure

Description The GSAxis function draws an axis with major and minor ticks in
the X or Y direction.
Use a negative length to draw an axis in the negative X or Y
direction.

Topic
GSAxis

Related
GSLogAxis
GSGrid
GSLogGrid
GSPolarAxes
GSCage3D
GSXYGraph

GSBar2D function
Draws 2D bar graph

C/C++ int GSBar2D(double fxOrg, double fyOrg, double fInc,
 double fSpace, double fStackHt, int nMode,
 int nGroup)

FoxPro r = GSBar2D(fxOrg, fyOrg, fInc, fSpace, fStackHt,
 nMode, nGroup)

Visual Basic r% = GSBar2D(fxOrg#, fyOrg#, fInc#, fSpace#, fStackHt#,
 nMode%, nGroup%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X or Y increment (distance in view units between

adjacent data points)
fSpace Fractional gap between bars.    The width of the

space is given by the fSpace parameter, which is
expressed as a fraction of the interval between
points.    For example, an fSpace of 0.1 gives a
space of 10% of the interval.

fStackHt Height of graph in percentile mode
nMode Constant Value Meaning

BARSIMPLE 0 Simple format
(nGroup = 1)

BARSTACK 1 Stacked format
BARCLUST 2 Clustered format
BARSTACKPC 3 Stacked percentile

format
BARFLOAT 5 Sets first element as

transparent
BARHORIZ 8 Horizontal bars
BARVARPOS 16 Takes the X position

from the fD array
BARLASTFIRST 64 In horizontal mode,

draws bars from top to
bottom of Y axis
instead of bottom to
top

nGroup Number of grouped data sets.    With clustered
data, the interval contains nGroup bars plus a
space.

Return values 0
-1

Success
Failure

Description The GSBar2D function draws a 2D bar graph in one of four
formats:    simple, stacked, stacked percentile, or clustered.    The
bars may extend vertically or horizontally.
Stacked percentile bars represent group data as bars of equal
height, fStackHt, divided in proportion to the elements making it
up.    fStackHt is ignored in the other graph formats.
In stacked and clustered format, each data point is represented
by a group of data that is transferred in a two-dimensional array,
fA.
With simple and stacked bars, the interval between data points
consists of a bar and a space.
In simple bar graphs, the number of data sets must be 1.
Optionally, the position of the left-hand corner of the bars relative
to the origin may be taken from the fD array rather than at fixed
intervals.
The BARFLOAT mode sets the first element of a stacked bar graph
to be transparent, giving the appearance of the stacked bars
floating in space. It only applies to standard stacked bar format,
and there must be more than one data set.

GSDataTrans parameters for 2D bar graphs

Simple format
nPts Number of points in data set (no limit)
nGroup Number of data sets (always 1)
fA[nPts] Pointer to amplitude array (Y lengths for

vertical bars, X lengths for horizontal bars)
fD[nPts] Pointer to distance array (X positions for

vertical bars, Y positions for horizontal bars)--
used only with nMode BARVARPOS

nPatt[nPts] Pointer to array containing one fill pattern for
each bar

nSymbol[0] Not used
nAux[0] Not used
nClr[nPts] Pointer to array containing one color for each

bar

Stacked or clustered
format
nPts Number of points per data set (no limit)

nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y lengths for

vertical bars, X lengths for horizontal bars)
 fD[nPts] Pointer to distance array (X positions for

vertical bars, Y positions for horizontal bars)--
used only with nMode BARVARPOS

nPatt[nGroup] Pointer to array containing one fill pattern for
each data set

nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup] Pointer to array containing one color for each

data set

Topic
GSBar2D

Related
GSArea
GSArea3D
GSTapeGraph

Axis/grid/legend:
GSAxis
GSGrid
GSLegend

Labels:
GSDataLabels
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSBar3D function
Draws 3D bar graph

C/C++ int GSBar3D(double fxOrg, double fyOrg, double fInc,
 double fSpace, double fStackHt,
 double fDepth, double fAng, int nMode,
 int nGroup)

FoxPro r = GSBar3D(fxOrg, fyOrg, fInc, fSpace, fStackHt,
 fDepth, fAng, nMode, nGroup)

Visual Basic r% = GSBar3D(fxOrg#, fyOrg#, fInc#, fSpace#, fStackHt#,
 fDepth#, fAng#, nMode%, nGroup%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X or Y increment (distance in view units between

adjacent data points)
fSpace Fractional gap between bars.    The width of the

space is given by the fSpace parameter, which is
expressed as a fraction of the interval between
points.    For example, an fSpace of 0.1 gives a
space of 10% of the interval.

fStackHt Height of graph in percentile mode.    Stacked
percentile bars represent group data as bars of
equal height, fStackHt, divided in proportion to the
elements making it up.    fStackHt is ignored in
other graph formats.

fDepth Perspective depth of 3D bar
fAng Perspective angle to horizontal
nMode Constant Value Meaning

BARSIMPLE 0 Simple format
(nGroup = 1)

BARSTACK 1 Stacked format
BARCLUST 2 Clustered format
BARSTACKPC 3 Stacked percentile

format
BARCLUSTZ 4 Clustered in the Z axis
BARFLOAT 5 Sets first element as

transparent
BARHORIZ 8 Horizontal bars
BARVARPOS 16 Takes the X position

from the fD array
BARHALFTONE 32 Fills side faces of bars

using the half-tones of
the nAux colors

BARLASTFIRST 64 In horizontal mode,
draws bars from top to
bottom of Y axis
instead of bottom to
top

nGroup Number of grouped data sets.    With clustered
data, the interval contains nGroup bars plus a
space.

Return values 0
-1

Success
Failure

Description The GSBar3D function draws a bar graph in one of four formats:   
simple (one data set), stacked, stacked percentile, or clustered
format.    The bars may extend vertically or horizontally.    This
isn't True3D, but the quasi-3D of previous editions of Graphics
Server.    True3D graphs can be programmed only through the
AutoGraph API.
In stacked and clustered format, each data point is represented
by a group of data transferred in the two-dimensional array, fA.
The bars are filled using the patterns and colors defined in the
respective arrays.    The side faces of the bars can also be filled
with a solid in half-tone colors.
Clustered bars can be assembled in the X axis or Z axis, the latter
giving a fuller 3D appearance.
With simple and stacked bars, the interval between data points
consists of a bar and a space.
Optionally, the position of the bars relative to the origin may be
taken from the fD array rather than at fixed intervals.
The BARFLOAT mode sets the first element of a stacked bar graph
to be transparent, giving the appearance of the stacked bars
floating in space. It applies only to standard stacked bar format,
and there must be more than one data set.

Setting colors for the tops and sides of 3D bars
By default, the tops and sides of 3D bars are drawn in half-tone
colors of the front faces of bars (when the front faces are drawn
only in the normal 16-color palette).    However, you can use the
nAux array--through the GSDataAux function--to set specific
colors for the tops and sides of 3D bars.
The size of the nAux array should be either nPts (for simple bar
graphs) or nGroup (for clustered or stacked bar graphs).

GSDataTrans parameters for 3D bar graphs

Simple format
nPts Number of points in data set (no limit)
nGroup Number of data sets (always 1)
fA[nPts] Pointer to amplitude array (Y lengths for

vertical bars, X lengths for horizontal bars)
fD[nPts] Pointer to distance array (X positions for

vertical bars, Y positions for horizontal bars)--
used only with nMode BARVARPOS

nPatt[nPts] Pointer to array containing one fill pattern for
each bar

nSymbol[0] Not used
nAux[nPts] Pointer to array containing color for each bar's

top and sides
nClr[nPts] Pointer to array containing one color for each

bar's front face

Stacked or clustered
format
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y lengths for

vertical bars, X lengths for horizontal bars)
 fD[nPts] Pointer to distance array (X positions for

vertical bars, Y positions for horizontal bars)--
used only with nMode BARVARPOS

nPatt[nGroup] Pointer to array containing one fill pattern for
each data set

nSymbol[0] Not used
nAux[nGroup] Pointer to array containing color for top and

sides of bars (one color per data set)
nClr[nGroup] Pointer to array containing one color for front

faces of bars (one color per data set)

Topic
GSBar3D

Related
GSBar2D
GSArea3D

Axis/cage/legend:
GSCage3D
GSLegend

Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans
GSDataAux

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSBox2D function
Draws box and fills with pattern

C/C++ int GSBox2D(double fxOrg, double fyOrg, double fWid,
 double fHt, int nPatt, int nClr)

FoxPro r = GSBox2D(fxOrg, fyOrg, fWid, fHt, nPatt, nClr)

Visual Basic r% = GSBox2D(fxOrg#, fyOrg#, fWid#, fHt#, nPatt%,
 nClr%)

Parameters fxOrg X origin bottom left
fyOrg Y origin bottom left
fWid Width
fHt Height
nPatt Pattern (see Pattern constants)

The following additional modes (additive with the
usual pattern values) apply for this function:
Constant
BXNOBOX

Value
128

Meaning
No bounding box, just
fill

BXSHADOW 256 Draws black shadow to
right and down

BXBORDER 512 Draws black border
BXRAISED 1024 Sculptured raised
BXLOWERED 2048 Sculptured lowered
Modes 256, 1024, and 2048 can't be combined.   
For best effect with the sculptured modes, use a
background color of 7.

nClr Color of box (see Color constants)

Return values 0
-1

Success
Failure

Description The GSBox2D function draws a rectangular vertical-sided box and
optionally fills it with a pattern.    The origin of the box is the
bottom left-hand corner.

Topic
GSBox2D

Related
GSBox3D
GSPolyFill
GSEllipse
GSLineAbs
GSShade

GSBox3D function
Draws 3D box and fills with pattern

C/C++ int GSBox3D(double fxOrg, double fyOrg, double fWid,
 double fHt, double fDepth, double fAng,
 int nPatt, int nClr1, int nClr2)

FoxPro r = GSBox3D(fxOrg, fyOrg, fWid, fHt, fDepth, fAng,
 nPatt, nClr1, nClr2)

Visual Basic r% = GSBox3D(fxOrg#, fyOrg#, fWid#, fHt#, fDepth#,
 fAng#, nPatt%, nClr1%, nClr2%)

Parameters fxOrg X origin bottom left
fyOrg Y origin bottom left
fWid Width
fHt Height
fDepth Perspective depth of 3D box
fAng Perspective angle to horizontal
nPatt Pattern (see Pattern constants)

The following additional modes (additive with the
usual pattern values) apply for this function:
Constant Value Meaning
BXNOBOX 128 No bounding box, just

fill
BXBORDER 512 Draws black border

nClr1 Front face color (see Color constants)
nClr2 Side face color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSBox3D function draws a rectangular vertical-sided 3D box
and optionally fills it with a pattern.    The origin of the box is in
the bottom left hand corner.
The box drawn isn't True3D, but the quasi-3D of previous editions
of Graphics Server.    True3D graphs can be programmed only
through the AutoGraph API.

Topic

GSBox3D

Related
GSBox2D

GSBoxWhisker function
Draws box-whisker graph

C/C++ int GSBoxWhisker(double fxOrg, double fyOrg,
 double fInc, double fSpace,
 int nMode)

FoxPro r = GSBoxWhisker(fxOrg, fyOrg, fInc, fSpace, nMode)

Visual Basic r% = GSBoxWhisker(fxOrg#, fyOrg#, fInc#, fSpace#, nMode%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment (distance in view units between

adjacent data points)
fSpace Space between bars
nMode Constant Value Meaning

BWPARAMETRIC 1 Data is parametric
(default is raw data)

BWVARX 4 Takes the X position
from the fD array

BWNONOTCH 8 Omits the notch
BWNOWHISKER 16 Omits the whisker
BWNOSAMPLES 32 Omits drawing data

samples (applies only
to raw data, nMode 0)

BWNOMEDIAN 64 Omits median line
BWBLACKBORDER 128 Draws black border

around box markers
Return values 0

-1
Success
Failure

Description The GSBoxWhisker function draws a box-whisker graph.
Optionally, the position of points relative to the origin may be
taken from the fD array rather than at fixed intervals.
This graph is used in data analysis to illustrate the spread of
values about a median.    Visually each point is represented by a
box with a waisted notch about the median and vertical lines
("whiskers") extending from the top and bottom.    The notches
delimit the quartiles of data.    The whiskers delimit the 5th and
95th percentiles.    The boxes delimit the 10th and 90th
percentiles.
The data may be supplied as an array of raw values of size nPts   
nGroup (with group size greater or equal to 7), which is processed

to produce the percentiles across each group.    Or the data may
be supplied as a preprocessed parametric array with a group size
of 7, each group member representing one of the pre-calculated
percentiles.
The boxes are patterned and colored from the nPatt and nClr
arrays.    Curves can be fitted to data if supplied in parametric
form.    The percentile that the curve is fitted to can be selected
using the GSStatsArr function.      Curves can't be fitted to raw
data.
In mode 0 and 1, both notch and whisker are shown by default.   
In mode 0 the raw data samples are superimposed on each box-
whisker as a column of symbols unless suppressed using the
mode switch BWNOSAMPLES.    Percentiles are always calculated
to the nearest data point rounded up.
When you pass parametric data, you arrange groups as
ascending percentiles:
Group % Description
0 5 5th percentile
1 10 10th percentile
2 25 25th percentile
3 50 50th percentile (median)
4 75 75th percentile
5 90 90th percentile
6 95 95th percentile

GSDataTrans parameters for box-whisker graphs
nPts Number of points per data set (no limit)
nGroup Number of data sets (always 7 for parametric

data and 7 or greater for raw data)
fA[nPts][nGroup] Pointer to amplitude array (parametric or raw

data)
fD[nPts] Pointer to distance array (X positions for

symbols)--used only with nMode BWVARX
nPatt[nPts] Pointer to array containing one fill pattern for

each box-whisker symbol
nSymbol[nPts] Pointer to array containing symbols for

sample points if used
nAux[0] Not used
nClr[nPts] Pointer to array containing one color for each

box-whisker symbol

Topic
GSBoxWhisker

Related
GSHLC
GSCurveFit
GSStatsArr

Axis/grid/legend:
GSAxis
GSGrid
GSLegend

Labels:
GSDataLabels
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSBubbleChart function
Draws bubble graph

C/C++ int GSBubbleChart(double fxOrg, double fyOrg, int nMode)

FoxPro r = GSBubbleChart(fxOrg, fyOrg, nMode)

Visual Basic r% = GSBubbleChart(fxOrg#, fyOrg#, nMode%)

Parameters fxOrg X origin
fyOrg Y origin
nMode Function mode (no modes currently implemented)

Return values 0
-1

Success
Failure

Description The GSBubbleChart function draws a bubble graph.
Visually the format is similar to a scatter graph, where the
location of each bubble is determined by an XY pair.    The radius
of each bubble enables a third variable to be represented on the
same graph.
The bubble graph is unlike other graphs in the way the data
arrays are organized.    The amplitude array, which contains the
bubble radius values, is one-dimensional, while the distance
array, which contains the XY coordinate values of the centers of
the bubbles, is two-dimensional.    This means you can't use the
standard GSDataTrans function for passing all the arrays and
must use a combination of the individual array passing functions
instead.    See the example below.
The bubbles may be individually colored and patterned.

GSDataTrans parameters for bubble graphs
nPts Number of points in data set (no limit)
nGroup Number of data sets (always 1)
fA[nPts] Pointer to array containing radius of each

bubble
fD[nPts][2] Pointer to array containing X coordinates (first

set) and Y coordinates (second set) of centers
of bubbles

nPatt[nPts] Pointer to array containing one fill pattern for
each bubble

nSymbol[0] Not used
nAux[0] Not used

nClr[nPts] Pointer to array containing one color for each
bubble

Example The following example illustrates how you should pass the data
arrays before calling the GSBubbleChart function:
#define NUMPTS 4
/* one-dimensional array of bubble radii */
double fAmp [NUMPTS] = { 100.0, 150.0, 200.0, 210.0 };
/* two-dimensional array of bubble centers */
double fDist [NUMPTS] [2] = {
 /* X Y */
 50.0, 50.0,
 100.0, 100.0,
 150.0, 150.0,
 200.0, 150.0
};
int nPatt [NUMPTS] = {
 BRSOLID, BRSOLID, BRSOLID, BRSOLID
};
int nClr [NUMPTS] = { RED, BLUE, GREEN, BROWN };
/* specify the graph dimensions */
GSDataDim(NUMPTS, 1);
/* send the amplitude array */
/* notice that the number of data sets is one */
GSDataAmp(NUMPTS, 1, fAmp);
/* now send the distance array */
/* notice how the second dimension is specified */
GSDataDist(NUMPTS * 2, &fDist[0][0]);
/* now send the other two arrays as normal */
GSDataPatt(NUMPTS, nPatt);
GSDataClr(NUMPTS, nClr);
/* draw the bubble graph at view location 100-100 */
GSBubbleChart(100.0, 100.0, 0);

Topic
GSBubbleChart

Related
GSPie2D
GSXYGraph

Axis/grid/legend:
GSAxis
GSGrid
GSLegend

Labels:

GSDataLabels
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans
GSDataAmp
GSDataDist

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSCage3D function
Draws 3D cage with axes and grids

C/C++ int GSCage3D(double fxOrg, double fyOrg, double fxLen,
 double fyLen, double fzLen, double fAng,
 double fThick, int nxGrids, int nyGrids,
 int nzGrids, int nMode, int nClr1,
 int nClr2)

FoxPro r = GSCage3D(fxOrg, fyOrg, fxLen, fyLen, fzLen, fAng,
 fThick, nxGrids, nyGrids, nzGrids, nMode,
 nClr1, nClr2)

Visual Basic r% = GSCage3D(fxOrg#, fyOrg#, fxLen#, fyLen#, fzLen#,
 fAng#, fThick#, nxGrids%, nyGrids%,
 nzGrids%, nMode%, nClr1%, nClr2%)

Parameters fxOrg X origin bottom left
fyOrg Y origin bottom left
fxLen Length of X axis
fyLen Length of Y axis
fzLen Length of Z axis
fAng Z axis angle to horizontal
fThick Wall thickness
nxGrids Number of X grids
nyGrids Number of Y grids
nzGrids Number of Z grids
nMode Constant Value Meaning

CGGRIDX 1 Draw X axis grids
CGGRIDY 2 Draw Y axis grids
CGGRIDZ 4 Draw Z axis grids

nClr1 Color of exposed cross-section (see Color
constants)

nClr2 Color of internal faces (see Color constants)

Return values 0
-1

Success
Failure

Description The GSCage3D function draws the solid projection of a cage with
axes and grids to accompany a 3D bar graph projected in the Z
direction (BARCLUSTZ).    The origin of the cage is at the front left-
hand corner.

This isn't True3D but the quasi-3D of Graphics Server version 2.5. 
True3D graphs can be programmed only through the AutoGraph
API.
The cage has height fyLen, width fxLen, and depth fzLen.    The
depth is the length of the projected Z axis, which is displayed
obliquely on the screen.
Optionally, you can draw grids intersecting the three axes.    The
nxGrids parameter refers to grids intersecting the X axis in the X-
Z plane, nyGrids to those intersecting the Y axis in the Y-Z plane,
and nzGrids to those intersecting the Z axis in the X-Z plane.
Note that the grid count is essentially the number of divisions on
the axis, including the grid at the furthest extreme of the axis.    A
grid count of 2 results in a single grid line at the center of the
axis.

Topic
GSCage3D

Related
GSAxis
GSBar3D
GSArea3D
GSTapeGraph

GSCircle function
Draws circle

C/C++ int GSCircle(double fxOrg, double fyOrg,
 double fRadius, int nMode, int nStyle,
 int nClr)

FoxPro r = GSCircle(fxOrg, fyOrg, fRadius, nMode, nStyle, nClr)

Visual Basic r% = GSCircle(fxOrg#, fyOrg#, fRadius#, nMode%, nStyle%,
 nClr%)

Parameters fxOrg X center
fyOrg Y center
fRadius Radius
nMode Constant Value Meaning

CCFILL 2 Fills the circle with
pattern

CCTHICK 4 Uses thick line style
These modes are exclusive.    If you enable both of
them, only CCFILL is used.

nStyle Line thickness (nMode CCTHICK) or fill pattern
(nMode CCFILL).    See Line style constants or
Pattern constants.

nClr Color of circle (see Color constants)

Return values 0
-1

Success
Failure

Description The GSCircle functions draws a circle.
Optionally, the circle may be filled with a pattern.    In this case,
nStyle defines the pattern.

Topic
GSCircle

Related
GSEllipse
GSArc
GSPolyFill

GSClearView function
Clears view

C/C++ int GSClearView(int nMode)

FoxPro r = GSClearView(nMode)

Visual Basic r% = GSClearView(nMode%)

Parameter nMode Constant Value Meaning
CLTRANSP 0 Clears the contents of a

view and gives it a
transparent background
so that the contents of
other views continue to
show through.

CLOPAQUE 1 Clears the contents of a
view and gives it an
opaque background in the
current background color,
which obliterates the
contents of other views.   
The background color is
controlled by calling
GSSetBG before
GSClearView.

Return values 0
-1

Success
Failure

Description The GSClearView function clears a view.

Topic
GSClearView

Related
GSSetBG
GSGetBg
GSShade
GSWinPaint
View functions:
GSCloseView
GSGetVXExt
GSGetVYExt
GSOffView
GSOnView

GSOpenView
GSUseView

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSClipRead function
Reads image from Clipboard

C/C++ int GSClipRead(double fxBL, double fyBL, double fWid,
 double fHt, int nFormat, int nMode)

FoxPro r = GSClipRead(fxBL, fyBL, fWid, fHt, nFormat, nMode)

Visual Basic r% = GSClipRead(fxBL#, fyBL#, fWid#, fHt#, nFormat%, nMode%)

Parameters fxBL X bottom left
fyBL Y bottom left
fWid Image width
fHt Image height
nFormat Constant Value Meaning

CBBMP 1 Device-dependent bitmap
format

CBWMF 2 Windows metafile format
CBDIB 4 Windows device-

independent bitmap format

nMode Constant Value Meaning
0 The image is located at the

bottom left corner of the
area and retains its original
dimensions, with free space
or clipping possible at both
the top and right-hand
edges.

CBCENTER 1 The image retains its
original dimensions and the
center of the image is
located at the center of the
area, with free space or
clipping possible at both the
horizontal and vertical
edges.

CBSTRETCH 2 The image is located at the
bottom left corner of the
area and is stretched or
compressed in either
direction to give an exact fit
in the area.

CBTILE 3 The image retains its
original dimensions and is
tiled repetitively from left to
right and bottom to top of

the area.
Return values 0

-1
Success
Failure

Description The GSClipRead function reads an image from the Windows
Clipboard into the current view.
The rectangular area of the image in the view is defined by the
bottom left corner and a width and height, all expressed in the
current view units.    If zero width and height are specified, the
area is presumed to extend from the point of origin to the current
width and height extents of the view.
GSClipRead handles Clipboard images in several formats.    An
application writing to the Clipboard can make an image available
in different formats and let the receiving application decide which
of them to use.    The nFormat parameter specifies the format in
which your application reads the image.
Format options may be combined--for example, CBBMP | CBDIB.   
When you do this, Graphics Server uses the first format specified
in nFormat that matches a format in the Clipboard, taken in the
order of preference of formats specified by the application that
stored the image.    Only one form of the image is actually
imported into the current view.    Once imported, the image from
the Clipboard becomes a permanent part of the view.
The image in the Clipboard may be larger or smaller than the
view area defined by the fxBL, fyBL, fWid, and fHt parameters.   
The nMode parameter specifies how the imported image is to fit
the available area.

Example The following example copies a device-independent bitmap
image from the Clipboard into the current view.    The view is
divided into quadrants and the image is copied into each of the
quadrants using the different modes available.
void OnEditPaste()
{
double fxMid, fyMid;
fxMid = GSGetVXExt() / 2; fyMid = GSGetVYExt() / 2;
GSClipRead(0, 0, fxMid, fyMid, CBDIB, 0);
GSClipRead(fxMid, 0, fxMid, fyMid, CBDIB, CBCENTER);
GSClipRead(0, fyMid, fxMid, fyMid, CBDIB, CBSTRETCH);
GSClipRead(fxMid, fyMid, fxMid, fyMid, CBDIB, CBTILE);
}

Topic
GSClipRead

Related

GSClipWrite
GSGetMF
GSPicRead
GSPicWrite

GSClipWrite function
Writes image to Clipboard

C/C++ int GSClipWrite(double fxBL, double fyBL, double fWid,
 double fHt, int nFormat, int nMode)

FoxPro r = GSClipWrite(fxBL, fyBL, fWid, fHt, nFormat, nMode)

Visual Basic r% = GSClipWrite(fxBL#, fyBL#, fxWid#, fHt#, nFormat%,nMode%)

Parameters fxBL X bottom left
fyBL Y bottom left
fWid Image width
fHt Image height
nFormat Constant Value Meaning

CBBMP 1 Device-dependent
bitmap

CBWMF 2 Windows metafile
CBDIB 4 Windows device-

independent bitmap

nMode Constant Value Meaning
CBMONO 256 Exports the image in

monochrome mode
Return values 0

-1
Success
Failure

Description The GSClipWrite function writes an image of the current graphing
window to the Windows Clipboard.
The rectangular area of the window is defined by the bottom left
corner and a width and height, all expressed in the view units of
view 0, the default view.    If zero width and height are specified,
the area is presumed to extend from the point of origin to the
current extents of width and height of the view.    The option to
specify an area of the window isn't supported in this release.    An
image of the whole window is always exported.
The image may be written in a variety of different formats.    An
application writing to the Clipboard can make an image available
in different formats and let the receiving application decide which
of them it wishes to use.    The nFormat parameter enables your
application to specify a set of formats from which a receiving
application can choose to import the image.
Format options may be combined--for example, CBBMP | CBDIB.   
In this case, Graphics Server writes the image to the Clipboard in
each of the formats specified.    The order in which the format is

written is always as shown in the nFormat table.
You can choose to export the image in monochrome mode by
means of the nMode parameter.

Example The following example copies an image of the current window to
the Clipboard in device-dependent, device-independent, and
Windows metafile formats:
void OnEditCopy()
{
GSClipWrite(0, 0, 0, 0, CBBMP | CBDIB | CBWMF, 0);
}

Topic
GSClipWrite

Related
GSClipRead
GSGetMF
GSPicRead
GSPicWrite

GSCloseServer function
Closes connection to Graphics Server

C/C++ int GSCloseServer()

FoxPro r = GSCloseServer()

Visual Basic r% = GSCloseServer()

Return values 0
-1

Success
Failure

Description The GSCloseServer function closes the connection between your
application and Graphics Server.
All open graphing windows and views belonging to the application
are closed.

Topic
GSCloseServer

Related
GSOpenServer
GSOpenWin
GSOpenChildWin
GSCloseWin
GSOpenView

GSClosePrn function
Closes printer

C/C++ int GSClosePrn()

FoxPro r = GSClosePrn()

Visual Basic r% = GSClosePrn()

Return values 0
-1

Success
Failure

Description The GSClosePrn function closes the printer previously opened
with GSOpenPrn.

Topic
GSClosePrn

Related
GSOpenPrn
GSPrnSetup
GSPrnOut

GSCloseView function
Closes view

C/C++ int GSCloseView(nWin, nView, nMode)

FoxPro r = GSCloseView(nWin, nView, nMode)

Visual Basic r% = GSCloseView(nWin%, nView%, nMode%)

Parameters nWin Window number
nView View number
nMode Constant Value Meaning

CVKEEP 0 Retains view contents
by copying to view 0

CVDISCARD 1 Discards view contents

Return values 0
-1

Success
Failure

Description The GSCloseView function closes a view.
The contents of the view may be kept or discarded.    If kept, the
contents are copied to view 0 and become a permanent part of
that view until cleared.
If you close the active view, view 0 becomes the new active view. 
View 0 can't be closed.

Topic
GSCloseView

Related
GSClearView
GSCloseView
GSGetVXExt
GSGetVYExt
GSOffView
GSOnView
GSOpenView
GSUseView

Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSCloseWin function
Closes graphing window

C/C++ int GSCloseWin(nWin)

FoxPro r = GSCloseWin(nWin)

Visual Basic r% = GSCloseWin(nWin%)

Parameter nWin Window number

Return values 0
-1

Success
Failure

Description The GSCloseWin function closes the window identified by nWin.   
The window number will have been returned by a previous call to
GSOpenWin or GSOpenChildWin.

Topic
GSCloseWin

Related
GSOpenWin
GSOpenChildWin
GSOpenView
Server:
GSCloseServer
GSOpenServer

GSCurveFit function
Fits curve to data

C/C++ int GSCurveFit(int nType, int nOrder, int nSteps,
 int nMode, int nStyle, int nClr)

FoxPro r = GSCurveFit(nType, nOrder, nSteps, nMode, nStyle,
 nClr)

Visual Basic r% = GSCurveFit(nType%, nOrder%, nSteps%, nMode%,
 nStyle%, nClr%)

Parameters nType Constant Value Meaning
CFPOLY 0 Variable-order

polynomial
CFLOG 1 Logarithmic

y = a + b * ln(x)
CFEXP1 2 Exponential

y = a * exp(b * x)
CFEXP2 3 Exponential   

y = a * x * exp(-b *
x)

CFPOWER 4 Power y = a * (x ^ b)
CFINV1 5 Inverse y = a + b / x
CFINV2 6 Inverse y = a / (b +

x)
CFINV3 7 Inverse

y = 1 / (a + b * x)
CFINV4 8 Inverse y = x / (a * x

+ b)
CFINV5 9 Inverse

y = 1 / (a + b * x) ^
2

CFSPLINE 10 Spline fit through all
points

CFMOVINGAVEMID 11 Moving average
plotted at midpoint
of averaged group

CFMOVINGAVEEND 12 Moving average
plotted at end point
of averaged group

nOrder Curve order.    nOrder is relevant only to the

variable-order polynomial fit and moving averages. 
For moving averages, nOrder defines the number of
points over which the average is taken.

nSteps Number of steps.    nSteps defines the granularity of
the drawn curve; higher nSteps values lead to
smoother curves.

For most curves (nTypes 1-9), an nSteps
setting of 50 generally produces a smooth curve at
a high drawing speed.

For spline curves (nType CFSPLINE), you
generally need a much larger nSteps value--
typically 10 times the number of points in the
graph, or higher for very irregular graphs.

For moving averages (nType
CFMOVINGAVEMID or CFMOVINGAVEEND), nSteps
isn't relevant--the lines drawn between the plotted
averages are always straight.

nMode Constant Value
0

Meaning
Draws patterned lines as
specified by nStyle

LATHICK 4 Draws thick lines as
specified by nStyle

nStyle Line pattern or thickness (see Line style constants)
nClr Color of curve (see Color constants)

Return values 0
-1

Success
Failure

Description The GSCurveFit function fits and draws a curve of the specified
type through the most recent graph data.    The curve is clipped
within a window defined by the GSStatsWin function.

Topic
GSCurveFit

Related
GSBoxWhisker
GSGetCC
GSGetCurveCoeff
GSLineFit

GSStatsArr

GSDataAmp function
Transfers array of amplitude data

C/C++ int GSDataAmp(int nPts, int nGroup, double* fAmp)

FoxPro r = GSDataAmp(nPts, nGroup, @fAmp(1))

Visual Basic r% = GSDataAmp(nPts%, nGroup%, fAmp#(0))

Parameters nPts Number of points per data set
nGroup Number of data sets
fAmp Pointer to amplitude data array

Return values 0
-1

Success
Failure

Description The GSDataAmp function transfers amplitude data to Graphics
Server for use in subsequent graphing or drawing functions.
Amplitude data is used in all the graph types of Graphics Server.
The product of nPts and nGroup specifies the number of elements
in the amplitude array you're transferring.    The graphing
functions use the number of points per data set and number of
data sets--taken from the most recent call to GSDataDim or
GSDataTrans--to determine the logical dimensions of the graph.   
You must transfer an array whose number of elements is enough
to meet the logical requirements of the graph you're going to
draw.
This function stores the data in the same array as GSDataTrans
and a call to either one will overwrite the data stored by the
other.

Topic
GSDataAmp

Related
GSDataAmpErr
GSDataGetAmp
GSDataStoreAmp
GSDataTrans

Array modification:
GSDataDim
GSDataRange

GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataAmpErr function
Transfers array of amplitude error data

C/C++ int GSDataAmpErr(int nPts, int nGroup,
 double* fAmpErr)

FoxPro r = GSDataAmpErr(nPts, nGroup, @fAmpErr(1))

Visual Basic r% = GSDataAmpErr(nPts%, nGroup%, fAmpErr#(0))

Parameters nPts Number of error values per data set
nGroup Number of data sets
fAmpErr Pointer to amplitude error array

Return values 0
-1

Success
Failure

Description The GSDataAmpErr function transfers amplitude error data to
Graphics Server for use in subsequent graphing functions that
add user-defined error bars.
Errors are passed as plus and minus error pairs stored
consecutively.    Both values must be passed even though the
display of one or other may later be suppressed.
Errors can be passed in two modes.    First, where an error pair is
supplied for every point in the graph.    In this case, nPts is twice
the value used in GSDataAmp (to account for the pair of values)
and nGroup is the same.    Second, where an error pair is passed
for each group, the same error pair being applied to each data
point in the group. In this case, nPts is always 2, and nGroup is
the same as in GSDataAmp.    These modes are detected
automatically by Graphics Server from the value of nPts.
Error values must be positive.

Topic
GSDataAmpErr

Related
GSDataAmp
GSDataGetAmpErr
GSDataStoreAmpErr
GSErrorBar

Array modification:
GSDataDim

GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataAux function
Transfers array of auxiliary data

C/C++ int GSDataAux(int nElements, int* nAux)

FoxPro r = GSDataAux(nElements, @nAux(1))

Visual Basic r% = GSDataAux(nElements%, nAux%(0))

Parameters nElements Number of elements in auxiliary array
For one-dimensional auxiliary arrays (one

data set), nElements equals nPts
For two-dimensional auxiliary arrays (more

than one data set), nElements equals nPts %
nGroup

nAux Pointer to auxiliary array

Return values 0
-1

Success
Failure

Description The GSDataAux function transfers auxiliary data to Graphics
Server for use in subsequent graphing functions.
Auxiliary data is used for four purposes:    to "explode" pie chart
slices, to set the colors of the sides and tops of bars in 3D bar
graphs, to specify statistical lines for time series graphs, and to
specify "missing" data points in several graph types (line and
logarithmic, polar, 2D scatter, and tape).
The graphing functions use either the number of points or
number of data sets--taken from the most recent call to the
GSDataDim or GSDataTrans function--to determine how many
auxiliary array elements are required.    (See the entry for the
specific graphing function to find out if you need to provide
auxiliary values on a per-point or per-set basis.)    You need
enough elements in the auxiliary array to cover every point or
set.
GSDataAux stores data in the same array as GSDataTrans, and a
call to either function overwrites data stored by the other.

Specifying points as "missing" in line, logarithmic,
polar, 2D scatter, and tape graphs
If you have incomplete sets of data or sets in which the values of
certain points are unknown, you can use the nAux array to flag
such points as missing.    In this case, the marker for that point--
such as a symbol--isn't drawn.    If the graph uses lines (or tapes)
to connect points, the connecting lines or tapes are omitted both

to and from each missing point.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

Topic
GSDataAux

Related
GSDataGetAux
GSDataStoreAux
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataClr function
Transfers array of color data

C/C++ int GSDataClr(int nPts, int* nClr)

FoxPro r = GSDataClr(nPts, @nClr(1))

Visual Basic r% = GSDataClr(nPts%, nClr%(0))

Parameters nPts Number of elements in color array
nClr Pointer to color array (see Color constants)

Return values 0
-1

Success
Failure

Description The GSDataClr function transfers color data to Graphics Server for
use in subsequent graphing functions.
Color data is used in some of the graph types but not in others.   
See the specification of the data arrays of the graphing function
to find out if color data is required.    If the specification shows a
color array dimension of zero (nClr[0]), there's no need to call the
GSDataClr function.
The graphing functions use the number of points per data set or,
alternatively, the number of data sets--taken from the most
recent call to GSDataDim or GSDataTrans--to determine how
many color array elements are required.    See the specification of
the data arrays of the graphing function to find out if you need to
provide color values on a per-point or per-set basis.    You must
transfer an array whose number of elements is enough to meet
the logical requirements of the graph you're going to draw.
GSDataClr stores data in the same array as GSDataTrans, and a
call to either function overwrites data stored by the other.

Topic
GSDataClr

Related
GSDataGetClr
GSDataStoreClr
GSDataTrans

Array modification:
GSDataDim
GSDataRange

GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataDim function
Sets graph data dimensions

C/C++ int GSDataDim(int nPts, int nGroup)

FoxPro r = GSDataDim(nPts, nGroup)

Visual Basic r% = GSDataDim(nPts%, nGroup%)

Parameters nPts Number of points per data set in graph
nGroup Number of data sets in graph

Return values 0
-1

Success
Failure

Description The GSDataDim function deallocates all the current graph data
arrays and sets the logical dimensions of the next graph to be
drawn by one of the graphing functions.
Once you've called GSDataDim, you can transfer your new data
arrays by calling one or more of the array-passing functions--
GSDataAmp, GSDataAux, and so on.
Rather than using GSDataDim and individual array functions, you can use
the GSDataTrans function to transfer all your data arrays in one step.   
GSDataTrans contains an implicit call to GSDataDim, so you don't have to
make a separate call.

Topic
GSDataDim

Related
GSDataTrans
GSDataReset

Array initialization:
GSDataAmp
GSDataAux
GSDataClr
GSDataDist
GSDataPatt
GSDataSym
GSDataZ

GSDataDist function
Transfers array of distance data

C/C++ int GSDataDist(int nElements, double* fDist)

FoxPro r = GSDataDist(nElements, @fDist(1))

Visual Basic r% = GSDataDist(nElements%, fDist#(0))

Parameters nElements Number of elements in distance array
For one-dimensional distance arrays (one

data set), nElements equals nPts
For two-dimensional distance arrays (more

than one data set), nElements equals nPts %
nGroup

fDist Pointer to distance array

Return values 0
-1

Success
Failure

Description The GSDataDist function transfers distance data to Graphics
Server for use in subsequent graphing functions.
Distance data is accepted and used by most of the graph types.   
See the specification of the data arrays of the graphing function
to find out if distance data is accepted.    If the specification shows
a distance array
dimension of zero (fDist[0]), there's no need to call the
GSDataDist function.
The graphing functions normally use the number of points per
data set--taken from the most recent call to GSDataDim or
GSDataTrans--to determine how many distance array elements
are required.    You must transfer an array whose number of
elements is enough to meet the logical requirements of the graph
you're going to draw.
GSDataDist stores data in the same array as GSDataTrans, and a
call to either function overwrites data stored by the other.

Topic
GSDataDist

Related
GSDataGetDist
GSDataGetDistErr

GSDataStoreDist
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataDistErr function
Transfers array of distance error data

C/C++ int GSDataDistErr(int nPts, double* fDistErr)

FoxPro r = GSDataDistErr(nPts, @fDistErr(1))

Visual Basic r% = GSDataDistErr(nPts%, fDistErr#(0))

Parameters nPts Number of elements in distance error array
fDistErr Pointer to distance error array

Return values 0
-1

Success
Failure

Description The GSDataDistErr function transfers distance error data to
Graphics Server for use in subsequent graphing functions that
add user-defined error bars.
Errors are passed as plus and minus error pairs stored
consecutively.    Both values must be passed even though the
display of one or other may later be suppressed.
Errors can be passed in two modes.    First, where an error pair is
supplied for every point in the graph.    In this case, nPts is (2   
nDistPts) where nDistPts is the value used in GSDataDist.   
Second, where an error pair is passed for each group, the same
error pair being applied to each data point in the group.    In this
case, nPts is (2    nAmpGroup) where nAmpGroup is the value
used in GSDataAmp.    These modes are detected automatically
by Graphics Server from the value of nPts.
Error values must be positive.

Topic
GSDataDistErr

Related
GSDataGetDistErr
GSDataStoreDistErr
GSErrorBar

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale

GSTimeUpdate
GSXDataScale

GSDataGetAmp function
Gets amplitude data value

C/C++ int GSDataGetAmp(int nPt, int nGroup)

FoxPro r = GSDataGetAmp(nPt, nGroup)

Visual Basic r# = GSDataGetAmp(nPt%, nGroup%)

Parameters nPt Point index
nGroup Set index

Return values 0
-1

Success
Failure

Description The GSDataGetAmp function gets the value of a single entry in
the Graphics Server amplitude data array.
The dimensions of the array are set by the most recent call to the
GSDataAmp or GSDataTrans function.
nPt and nGroup are the indexes of the entry in the two-
dimensional array.    Array indexes start at zero.    A failure value is
returned if either index is out of range.

Topic
GSDataGetAmp

Related
GSDataAmp
GSDataAmpErr
GSDataStoreAmp
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetAmpErr function
Gets amplitude error data value

C/C++ int GSDataGetAmpErr(int nPt, int nGroup, int nMode)

FoxPro r = GSDataGetAmpErr(nPt, nGroup, nMode)

Visual Basic r# = GSDataGetAmpErr(nPt%, nGroup%, nMode%)

Parameters nPt Point index
nGroup Set index
nMode Constant Value Meaning

ERRPLUS 0 Gets plus error
ERRMINUS 1 Gets minus error

Return values 0
-1

Success
Failure

Description The GSDataGetAmpErr function gets the value of a single entry in
the Graphics Server amplitude error data array.
The dimensions of the array are set by the most recent call to
GSDataAmpErr.
nPt and nGroup are the indexes of the entry in the two-
dimensional array.      Array indexes start at zero.    A failure value
is returned if either index is out of range.

Topic
GSDataGetAmpErr

Related
GSDataAmpErr
GSDataStoreAmpErr
GSDataTrans
GSErrorBar

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetAux function
Gets auxiliary data value

C/C++ int GSDataGetAux(int nPt)

FoxPro r = GSDataGetAux(nPt)

Visual Basic r% = GSDataGetAux(nPt%)

Parameter nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

Return values 0
-1

Success
Failure

Description The GSDataGetAux function gets the value of a single entry in the
Graphics Server auxiliary data array.
The dimension of the array is set by the most recent call to
GSDataAux or GSDataTrans.

Topic
GSDataGetAux

Related
GSDataAux
GSDataStoreAux
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetClr function
Gets color data value

C/C++ int GSDataGetClr(int nPt)

FoxPro r = GSDataGetClr(nPt)

Visual Basic r% = GSDataGetClr(nPt%)

Parameter nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

Return values 0
-1

Success
Failure

Description The GSDataGetClr function gets the value of a single entry in the
Graphics Server color data array.
The dimension of the array is set by the most recent call to
GSDataClr or GSDataTrans.

Topic
GSDataGetClr

Related
GSDataClr
GSDataStoreClr
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetDist function
Gets distance data value

C/C++ int GSDataGetDist(int nPt)

FoxPro r = GSDataGetDist(nPt)

Visual Basic r# = GSDataGetDist(nPt%)

Parameter nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

Return values 0
-1

Success
Failure

Description The GSDataGetDist function gets the value of a single entry in the
Graphics Server distance data array.
The dimension of the array is set by the most recent call to
GSDataDist or GSDataTrans.

Topic
GSDataGetDist

Related
GSDataDist
GSDataStoreDist
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetDistErr function
Gets distance error data value

C/C++ double GSDataGetDistErr(int nPt, int nMode)

FoxPro r = GSGetDataGetDistErr(nPt, nMode)

Visual Basic r# = GSDataGetDistErr(nPt%, nMode%)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

nMode Constant Value Meaning

ERRPLUS 0 Gets plus error
ERRMINUS 1 Gets minus error

Return values 0
-1

Success
Failure

Description The GSDataGetDistErr function gets the value of a single entry in
the Graphics Server distance error data array.    The dimensions of
the array are set by the most recent call to GSDataDistErr.

Topic
GSDataGetDistErr

Related
GSDataDistErr
GSDataStoreDistErr
GSErrorBar

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetPatt function
Gets pattern data value

C/C++ int GSDataGetPatt(int nPt)

FoxPro r = GSDataGetPatt(nPt)

Visual Basic r% = GSDataGetPatt(nPt%)

Parameter nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

Return values 0
-1

Success
Failure

Description The GSDataGetPatt function gets the value of a single entry in the
Graphics Server pattern data array.
The dimension of the array is set by the most recent call to
GSDataPatt or GSDataTrans.

Topic
GSDataGetPatt

Related
GSDataPatt
GSDataStorePatt
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetSym function
Gets symbol data value

C/C++ int GSDataGetSym(int nPt)

FoxPro r = GSDataGetSym(nPt)

Visual Basic r% = GSDataGetSym(nPt%)

Parameter nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

Return values Symbol value (or -1 if failure)

Description The GSDataGetSym function gets the value of a single entry in
the Graphics Server symbol data array.
The dimension of the array is set by the most recent call to
GSDataSym or GSDataTrans.

Topic
GSDataGetSym

Related
GSDataSym
GSDataStoreSym
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataGetZ function
Gets Z data value

C/C++ int GSDataGetZ(int nPt)

FoxPro r = GSDataGetZ(nPt)

Visual Basic r# = GSDataGetZ(nPt%)

Parameter nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

Return values Z data value (or -1 if failure)

Description The GSDataGetZ function gets the value of a single entry in the
Graphics Server Z data array.
The dimensions of the array are set by the most recent call to
GSDataZ.

Topic
GSDataGetZ

Related
GSDataZ
GSDataStoreZ
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataLabels function
Enables and sets text for data labels

C/C++ int GSDataLabels(int nMode, int nPrec, int nCSet,
 int nTMode, int nClr,
 double fDataOffset, int nLabs,
 char* szLabels[])

FoxPro r = GSDataLabels(nMode, nPrec, nCSet, nTMode, nClr,
 fDataOffset, nLabs, @szLabels(1))

Visual Basic Use VBGSDataLabels function

Parameters nMode Constant Value Meaning
DLTEXT 0 Labels supplied in

array szLabels
DLDATA 1 Labels derived from

data
DLGROUPCLR 4 Colored as data group
DLGROUPCLR overrides nClr to set the color of
labels to the color of the associated data group,
except in graph types where the label would
overprint block color and be invisible (such as
bubble graphs and Gantt charts).    In those cases,
the DLGROUPCLR flag is ignored and the label is
always rendered in nClr.

nPrec Value Meaning
0 or greater Specific decimal precision (use 0 if you

supply text labels)
-1 Precision is automatically calculated:

If all values in array are
integers from 0 to 999,999, numbers
are represented in full

If all values in array are
fractional, each number is represented
with three-digit precision

For arrays containing mixed
values, all numbers are scaled to the
closest power of 1000 and represented
with three-digit precision (for example,
3,456,000 is shown as 3.45)

nCSet Character set (see Character set constants)
nTMode Text mode (see Text mode constants)
nClr Color of data labels (see Color constants)

fDataOffset Number to be subtracted from the data values to
compensate for a nonzero origin (numeric labels
only; ignored for text labels)

nLabs Value Meaning
0 Use if deriving labels from data (nMode

DLDATA)
1 or greater Use for number of labels if supplying

text labels (nMode DLTEXT)
The label array must be of size nPts   
nGroup to provide text labels for each
data item on display.    The exceptions
are high-low-close, open-high-low-
close, candlestick, and box-whisker
graphs, which require a text array of
size nPts (only one label is provided for
each compound symbol, of which there
are nPts).

szLabels Array of text labels of length nLabs (or null for
derived labels)

Return values 0
-1

Success
Failure

Description The GSDataLabels function enables data labels, which are labels--
either numeric or text--attached to each point of a graph.    Data
labels are available for all 2D graph types except pie charts
(which have their own labeling scheme) and time series graphs.   
They aren't available for 3D graphs.
In high-low-close, open-high-low-close, box-whisker, and
candlestick graphs, if you choose to have data labels derived
from data (nMode DLDATA), they're derived from the close or
median.
You have to call GSDataLabels before you call the graphing
function, such as GSBar2D, because labels are drawn at the same
time as the graph itself.

Topic
GSDataLabels

Related
VBGSDataLabels

GSDataPatt function
Transfers array of pattern data

C/C++ int GSDataPatt(int nPts, int* nPatt)

FoxPro r = GSDataPatt(nPts, @nPatt(1))

Visual Basic r% = GSDataPatt(nPts%, nPatt%(0))

Parameters nPts Number of pattern values
nPatt Pointer to pattern array (see Pattern constants)

Return values 0
-1

Success
Failure

Description The GSDataPatt function transfers pattern data to Graphics
Server for use in subsequent graphing functions.
Pattern data is used in some of the graph types but not in others. 
See the specification of the data arrays of the graphing function
to find out if pattern data is required.    If the specification shows a
pattern array dimension of zero (nPatt[0]), there's no need to call
the GSDataPatt function.
The graphing functions use the number of points per data set or,
alternatively, the number of data sets--taken from the most
recent call to GSDataDim or GSDataTrans--to determine how
many pattern array elements are required.    See the specification
of the data arrays of the graphing function to find out if you need
to provide pattern values on a per-point or per-set basis.    You
must transfer an array whose number of elements is enough to
meet the logical requirements of the graph you're going to draw.
GSDataPatt stores data in the same array as GSDataTrans, and a
call to either function overwrites data stored by the other.

Topic
GSDataPatt

Related
GSDataGetPatt
GSDataStorePatt
GSDataTrans

Array modification:
GSDataDim
GSDataRange

GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataRange function
Defines range of data to graph

C/C++ int GSDataRange(int nFirst, int nLast)

FoxPro r = GSDataRange(nFirst, nLast)

Visual Basic r% = GSDataRange(nFirst%, nLast%)

Parameters nFirst First point
nLast Last point

Return values 0
-1

Success
Failure

Description The GSDataRange function defines a subset of the current data
set for use in subsequent graphing operations.    Any graphing
functions called after GSDataRange show only the range of data
lying between the first (nFirst) and last (nLast) points you specify.
The range defaults to the complete data set following a new call
to the GSDataTrans function.
Array indexes start at zero.

Topic
GSDataRange

Related
GSDataDim
GSDataScale
GSGetCC
GSGetMax
GSGetMean
GSGetSD

Array initialization:
GSDataAmp
GSDataAux
GSDataClr
GSDataDist
GSDataPatt
GSDataSym
GSDataTrans

GSDataZ

GSDataReset function
Resets data arrays

C/C++ int GSDataReset()

FoxPro r = GSDataReset()

Visual Basic r% = GSDataReset()

Return values 0
-1

Success
Failure

Description The GSDataReset function deallocates the Graphics Server
internal data arrays, setting all data counts and indexes to zero
and restoring defaults.
It can be used to reduce the memory overhead in the server
when the contents of the data arrays are no longer required.
GSDataTrans automatically discards any existing data arrays
before passing the new data to Graphics Server.

Topic
GSDataReset

Related
GSDataTrans
GSDataDim

Array initialization:
GSDataAmp
GSDataAux
GSDataClr
GSDataDist
GSDataPatt
GSDataSym
GSDataZ

GSDataScale function
Applies scale factor to data

C/C++ int GSDataScale(double fScale)

FoxPro r = GSDataScale(fScale)

Visual Basic r% = GSDataScale(fScale#)

Parameter fScale Data scale factor

Return values 0
-1

Success
Failure

Description The GSDataScale function scales data as portrayed in any of the
graph or chart functions.
Amplitude data in the amplitude array is multiplied by this factor
before graphing.
The default factor of unity is reset whenever new data is
transferred.

Topic
GSDataScale

Related
GSDataDim
GSDataRange
GSGetMax
GSGetMean
GSGetSD
GSXDataScale

Array initialization:
GSDataAmp
GSDataAux
GSDataClr
GSDataDist
GSDataPatt
GSDataSym
GSDataTrans
GSDataZ

GSDataStoreAmp function
Stores amplitude data value

C/C++ int GSDataStoreAmp(int nPt, int nGroup, double fAmp)

FoxPro r = GSDataStoreAmp(nPt, nGroup, fAmp)

Visual Basic r% = GSDataStoreAmp(nPt%, nGroup%, fAmp#)

Parameters nPt Point index
nGroup Set index
fAmp Amplitude value

Return values 0
-1

Success
Failure

Description The GSDataStoreAmp function sets the value of a single entry in
the Graphics Server amplitude data array.    The dimensions of the
array are set by the most recent call to GSDataAmp or
GSDataTrans.
nPt and nGroup are the indexes of the entry in the two-
dimensional array. Array indexes start at zero.

Topic
GSDataStoreAmp

Related
GSDataAmp
GSDataAmpErr
GSDataAux
GSDataClr
GSDataDist
GSDataGetAmp
GSDataPatt
GSDataStoreAmpErr
GSDataTrans
GSDataZ

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale

GSTimeUpdate
GSXDataScale

GSDataStoreAmpErr function
Stores amplitude error value pair

C/C++ int GSDataStoreAmpErr(int nPt, int nGroup,
 double fErrPlus,
 double fErrMinus)

FoxPro r = GSDataStoreAmpErr(nPt, nGroup, fErrPlus, fErrMinus)

Visual Basic r% = GSDataStoreAmpErr(nPt%, nGroup%, fErrPlus#,
 fErrMinus#)

Parameters nPt Point index
nGroup Set index
fErrPlus Plus error
fErrMinus Minus error

Return values 0
-1

Success
Failure

Description The GSDataStoreAmpErr function sets the value of a single error
value pair in the Graphics Server amplitude error data array.
The dimensions of the array are set by the most recent call to
GSDataAmpErr.
nPt and nGroup are the indexes of the entry in the two-
dimensional array. Array indexes start at zero.

Topic
GSDataStoreAmpErr

Related
GSDataAmpErr
GSDataGetAmpErr
GSDataTrans
GSErrorBar

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStoreAux function
Stores auxiliary data value

C/C++ int GSDataStoreAux(int nPt, int nAux)

FoxPro r = GSDataStoreAux(nPt, nAux)

Visual Basic r% = GSDataStoreAux(nPt%, nAux%)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

nAux Auxiliary value

Return values 0
-1

Success
Failure

Description The GSDataStoreAux function sets the value of a single entry in
the Graphics Server auxiliary data array.
The dimension of the array is set by the most recent call to
GSDataAux or GSDataTrans.

Topic
GSDataStoreAux

Related
GSDataAux
GSDataGetAux
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStoreClr function
Stores color data value

C/C++ int GSDataStoreClr(int nPt, int nClr)

FoxPro r = GSDataStoreClr(nPt, nClr)

Visual Basic r% = GSDataStoreClr(nPt%, nClr%)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

nClr Color value (see Color constants)

Return values 0
-1

Success
Failure

Description The GSDataStoreClr function sets the value of a single entry in
the Graphics Server color data array.
The dimension of the array is set by the most recent call to
GSDataClr or GSDataTrans.

Topic
GSDataStoreClr

Related
GSDataClr
GSDataGetClr
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStoreDist function
Stores distance data value

C/C++ int GSDataStoreDist(int nPt, double fDist)

FoxPro r = GSDataStoreDist(nPt, fDist)

Visual Basic r% = GSDataStoreDist(nPt%, fDist#)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

fDist Distance value

Return values 0
-1

Success
Failure

Description The GSDataStoreDist function sets the value of a single entry in
the Graphics Server distance data array.
The dimension of the array is set by the most recent call to
GSDataDist or GSDataTrans.

Topic
GSDataStoreDist

Related
GSDataDist
GSDataGetDist
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStoreDistErr function
Stores distance error value pair

C/C++ int GSDataStoreDistErr(int nPt, double fErrPlus,
 double fErrMinus)

FoxPro r = GSDataStoreDistErr(nPt, fErrPlus, fErrMinus)

Visual Basic r% = GSDataStoreDistErr(nPt%, fErrPlus#, fErrMinus#)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

fErrPlus Plus error
fErrMinus Minus error

Return values 0
-1

Success
Failure

Description The GSDataStoreDistErr function sets the value of a single error
value pair in the Graphics Server distance error data array.    The
dimensions of the array are set by the most recent call to the
GSDataDistErr function.

Topic
GSDataStoreDistErr

Related
GSDataDistErr
GSDataGetDistErr
GSDataTrans
GSErrorBar

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStorePatt function
Stores pattern data value

C/C++ int GSDataStorePatt(int nPt, int nPatt)

FoxPro r = GSDataStorePatt(nPt, nPatt)

Visual Basic r% = GSDataStorePatt(nPt%, nPatt%)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

nPatt Pattern (see Pattern constants)

Return values 0
-1

Success
Failure

Description The GSDataStorePatt function sets the value of a single entry in
the Graphics Server pattern data array.
The dimension of the array is set by the most recent call to
GSDataPatt or GSDataTrans.

Topic
GSDataStorePatt

Related
GSDataPatt
GSDataGetPatt
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStoreSym function
Stores symbol data value

C/C++ int GSDataStoreSym(int nPt, int nSymbol)

FoxPro r = GSDataStoreSym(nPt, nSymbol)

Visual Basic r% = GSDataStoreSym(nPt%, nSymbol%)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

nSymbol Symbol value (see Symbol constants)

Return values 0
-1

Success
Failure

Description The GSDataStoreSym function sets the value of a single entry in
the Graphics Server symbol data array.
The dimension of the array is set by the most recent call to the
GSDataSym or GSDataTrans function.

Topic
GSDataStoreSym

Related
GSDataSym
GSDataGetSym
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataStoreZ function
Stores Z data value

C/C++ int GSDataStoreZ(int nPt, double fZ)

FoxPro r = GSDataStoreZ(nPt, fZ)

Visual Basic r% = GSDataStoreZ(nPt%, fZ#)

Parameters nPt Index of array element.    Array indexes start at
zero.    A failure value is returned if the index is out
of range.

fZ Z data value

Return values 0
-1

Success
Failure

Description The GSDataStoreZ function sets the value of a single value in the
Graphics Server Z data array.
The dimensions of the array are set by the most recent call to
GSDataZ.

Topic
GSDataStoreZ

Related
GSDataZ
GSDataGetZ
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataSym function
Transfers array of symbol data

C/C++ int GSDataSym(int nPts, int* nSymbol)

FoxPro r = GSDataSym(nPts, @nSymbol(1))

Visual Basic r% = GSDataSym(nPts%, nSymbol%(0))

Parameters nPts Number of elements in symbol array
nSymbol Pointer to symbol data array (see Symbol

constants)

Return values 0
-1

Success
Failure

Description The GSDataSym function transfers symbol data to Graphics
Server for use in subsequent graphing functions.
Symbol data is used in some of the graph types but not in others. 
See the specification of the data arrays of the graphing function
to find out if symbol data is required.    If the specification shows a
symbol array dimension of zero (nSymbol[0]), there's no need to
call the GSDataSym function.
The graphing functions use the number of points per data set or,
alternatively, the number of data sets--taken from the most
recent call to GSDataDim or GSDataTrans--to determine how
many symbol array elements are required.    See the specification
of the data arrays of the graphing function to find out if you need
to provide symbol values on a per-point or per-set basis.    You
must transfer an array whose number of elements is enough to
meet the logical requirements of the graph you're going to draw.
GSDataSym stores data in the same array as GSDataTrans, and a
call to either function overwrites data stored by the other.

Topic
GSDataSym

Related
GSDataPatt
GSDataGetSym
GSDataStoreSym
GSDataTrans

Array modification:

GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataTrans function
Transfers data in arrays

C/C++ int GSDataTrans(int nPts, int* nGroup, double* fA,
 double* fD, int* nPatt, int* nSymbol,
 int* nAux, int* nClr)

FoxPro r = GSDataTrans(nPts, nGroup, @fA(1), @fD(1),
 @nPatt(1), @nSymbol(1), @nAux(1),
 @nClr(1))

Visual Basic r% = GSDataTrans(nPts%, nGroup%, fA#(0), fD#(0),
 nPatt%(0), nSymbol%(0), nAux%(0),
 nClr%(0))

Parameters nPts Number of data points per data set
nGroup Number of data sets
fA Pointer to amplitude data array
fD Pointer to distance data array.    GSDataTrans can

pass only one-dimensional distance arrays.    To
pass a two-dimensional distance array, follow
GSDataTrans with a call to GSDataDist.

nPatt Pointer to pattern data array (see Pattern
constants)

nSymbol Pointer to symbol data array (see Symbol
constants)

nAux Pointer to auxiliary data array.    GSDataTrans can
pass only one-dimensional auxiliary arrays.    To
pass a two-dimensional auxiliary array, follow
GSDataTrans with a call to GSDataAux.

nClr Pointer to color data array (see Color constants)

Return values 0
-1

Success
Failure

Description The GSDataTrans function transfers a complete set of data arrays
to Graphics Server for graphing.    A single GSDataTrans function
call serves the purpose of seven individual array-transfer
functions (GSDataAmp, GSDataAux, GSDataClr, GSDataDist,
GSDataPatt, GSDataSym, and GSDataZ).

nPts and nGroup
GSDataTrans uses the nPts and nGroup values to set the logical
dimensions of the graph through an implicit call to the
GSDataDim function.

Amplitude data (fA)
Amplitude data is the principal data represented in a graph.    It
determines the magnitudes of pie slices, lengths of bar elements,
Y positions of points in a line graph, and so on.    Amplitude data is
used in all graph types.
The size of the amplitude array is the product of the number of
points per data set (or group) and the number of data sets.    Data
is organized by data set within point.
Certain graph types require a specific number of data sets.    For
example, a pie chart can only represent one data set at a time,
and a high-low-close graph always requires three data sets (high
values, low values, and close values).

Distance data (fD) and auxiliary data (nAux)
GSDataTrans presumes that you're supplying one set of distance
or auxiliary data to be applied equally to all the amplitude data
sets.    The size of the distance data array is thus taken to be nPts
elements.
In some cases, you have to use multiple sets of distance or
amplitude data, creating a two-dimensional fD or nAux array.    For
example, bubble graphs always require two sets of distance data. 
GSDataTrans can't pass two-dimensional distance or auxiliary
arrays, so you need to call the individual array-transfer functions
(GSDataDist or GSDataAmp) in those cases.
If you want to use GSDataTrans along with GSDataDist or
GSDataAmp, be sure to call GSDataTrans first.

Array dimensions
The sizes of the integer data arrays are determined by the type of
graph you want to draw.    Some types of graph use the color,
pattern, auxiliary, and symbol data on a per-point basis, while
others use it on a per-set basis.    Because GSDataTrans isn't
aware of the type of graph you're going to draw from the data, it
treats all the integer data arrays as being dimensioned to the
larger of nPts and nGroup.    Take care to pad your
arrays appropriately or ensure that unpadded arrays aren't
located on a segment high boundary.
If your graph type doesn't use a particular array of data, you can
pass a null pointer instead of pointing to an actual array.
Refer to the entries for the individual GS graph functions (GSArea,
GSPie2D, and so on) to find out which data arrays you need to
transfer and their required dimensions.

Topic

GSDataTrans

Related
GSDataAmp
GSDataAux
GSDataClr
GSDataDist
GSDataPatt
GSDataSym
GSDataZ

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDataZ function
Transfers array of Z data

C/C++ int GSDataZ(int nPts, double* fZ)

FoxPro r = GSDataZ(nPts, @fZ(1))

Visual Basic r% = GSDataZ(nPts%, fZ#(0))

Parameters nPts Number of elements in Z data array
fZ Pointer to Z data array

Return values 0
-1

Success
Failure

Description The GSDataZ function transfers Z data to Graphics Server for use
in subsequent 3D graphing functions.
Z data is used by only a few True3D graph types.    See the
specification of the data arrays for the graph to find out if Z data
is required.    If the specification shows a Z array dimension of
zero (fZ[0]), there's no need to call the GSDataZ function.
The graphing functions normally use the number of points per data set--
taken from the most recent call to GSDataDim or GSDataTrans--to
determine how many Z array elements are required.    You must transfer an
array whose number of elements is enough to meet the logical
requirements of the graph you're going to draw.

Topic
GSDataZ

Related
GSDataGetZ
GSDataStoreZ
GSDataTrans

Array modification:
GSDataDim
GSDataRange
GSDataReset
GSDataScale
GSTimeUpdate
GSXDataScale

GSDefPatt function
Defines bit pattern for filling

C/C++ int GSDefPatt(int nBitmap, WORD wBitmap)

FoxPro r = GSDefPatt(nBitmap, @wBitmap(1)))

Visual Basic r% = GSDefPatt(nBitmap%, wBitmap%(0))

Parameters nBitmap Bitmap index in the range 0 to BRBITMAPMAX-1.   
The array comprises eight words.    The lower eight
bits of each word define the bit pattern, with the
least significant bit on the right as viewed on-
screen and word 0 at the top.

wBitmap Pointer to array defining the bitmap

Return values 0
-1

Success
Failure

Description The GSDefPatt function defines a bitmap pattern that can be used
to fill areas in drawing or graphing operations.    It replaces the
internal default pattern.
Different user-defined bitmaps can be defined for each window.   
Note that bit patterns don't print on vector devices such as
plotters.

Topic
GSDefPatt

Related
GSArc
GSBox2D
GSBox3D
GSCircle
GSEllipse
GSPolyFill
GSShade

GSEllipse function
Draws ellipse

C/C++ int GSEllipse(double fxBL, double fyBL, double fxTR,
 double fyTR, double fxa, double fya,
 double fxb, double fyb, int nMode,
 int nStyle, int nClr)

FoxPro r = GSEllipse(fxBL, fyBL, fxTR, fyTR, fxa, nfya, fxb,
 nfyb, nMode, nStyle, nClr)

Visual Basic r% = GSEllipse(fxBL#, fyBL#, fxTR#, fyTR#, fxa#, fya#,
 fxb#, fyb#, nMode%, nStyle%, nClr%)

Parameters fxBL X bottom left
fyBL Y bottom left
fxTR X top right
fyTR Y top right
fxa X start
fya Y start
fxb X end
fyb Y end
nStyle Line thickness (nMode ELTHICK) or fill pattern

(nMode ELFILL).    See Line style constants or
Pattern constants.

nClr Color of ellipse (see Color constants)
nMode Constant Value Meaning

ELRADIUS 1 Draws connecting radii
at extremes of ellipse

ELFILL 2 Fills interior with
pattern

ELTHICK 4 Uses thick lines
Modes ELFILL and ELTHICK are exclusive.    If you
enable both of them, only ELFILL is used.

Return values 0
-1

Success
Failure

Description The GSEllipse function draws an ellipse within a bounding
rectangle that is defined by the bottom left and top right corners.
Within the bounding rectangle the ellipse is drawn from point
(fxa,fya) to (fxb,fyb).    These points must be on or near the

ellipse.
Optionally, radii may be drawn from the center to the end points.
Optionally, the ellipse may be filled with a pattern.    In this case
nStyle defines the pattern.    The outline is drawn with a
continuous line.

Topic
GSEllipse

Related
GSArc
GSBox2D
GSCircle
GSDefPatt

GSErrorBar function
Defines error bars for graph

C/C++ int GSErrorBar(int nSelect, int nSymbolStyle,
 int nColor, int nErrorSource,
 double fValue, double fOffset)

FoxPro r = GSErrorBar(nSelect, nSymbolStyle, nColor,
 nErrorSource, fValue, fOffset)

Visual Basic r% = GSErrorBar(nSelect%, nSymbolStyle%, nColor%,
 nErrorSource%, fValue#, fOff#)

Parameters nSelect Constant Value Meaning
EBY 0 Defines error bars for Y

(amplitude) data
EBX 1 Defines error bars for

X (distance) data

nSymbolStyle Constant Value Meaning
0 Full symbol

EBNOPLUS 1 Omits plus bar
EBNOMINUS 2 Omits minus bar
EBNOSTEM 4 Omits stem
EBNOTICK 8 Omits cross tick

nColor Error bar color (see Color constants)

nErrorSource Constant Value Meaning
EBFIXED 0 Error is fixed value

equal to fValue
EBPERCENT 1 Error is fValue (here a

percentage) times the
data value, divided by
100

EBSTDDEV 2 Error is standard
deviation times fValue

EBSTDERR 3 Error is standard error
EBMAXMIN 4 Errors are provided in

arrays
fValue Value modifier.    fValue is used in a variety of

ways, depending on the error source:    as a fixed
value for all data points (EBFIXED), as a modifier
when the error is expressed as a percentage of

the data value (EBPERCENT), and as a multiplying
factor when the error is expressed as the
standard deviation of the data set (EBSTDDEV).

fOffset Value to be added to data when using the
EBPERCENT mode.    This is only relevant when
the data has been pre-adjusted for a non-zero
graph origin by subtracting an offset.    fOffset is
used to restore the data to its unadjusted form
before calculating the percentage of data value.

Return values 0
-1

Success
Failure

Description The GSErrorBar function defines the format of error bars to be
added to a graph.    You have to call it before calling the graphing
function for the graph type, such as GSBar2D.
You can specify both horizontal and vertical error bars.    To use
both, you have to call the function twice--first with nSelect EBY,
then with nSelect EBX.
Error bars can be applied to the following 2D graph types:

Horizontal bar graphs (simple and clustered format)
Vertical bar graphs (simple and clustered formats)
Line graphs (line and symbol formats)
Scatter graphs

X (distance data) error bars can be added only to scatter graphs.
You can use error bars along the linear axis in lin/log and log/lin
graphs, but never along the logarithmic axis.
Error bars automatically accommodate a change of scale made
by the function GSDataScale or GSXDataScale.
With mode EBMAXMIN, the error is supplied in the arrays fAmpErr
and fDistErr, as set by the functions GSDataAmpErr and
GSDataDistErr. Errors are supplied as paired    plus and minus
error values, both of which must be positive.

Topic
GSErrorBar

Related
GSDataAmpErr
GSDataDistErr
GSDataScale
GSXDataScale
GSDataGetDistErr
GSDataStoreAmpErr

GSDataStoreDistErr

GSFixPos function
Fixes current position

C/C++ int GSFixPos(double fx, double fy)

FoxPro r = GSFixPos(fx, fy)

Visual Basic r% = GSFixPos(fx#, fy#)

Parameters fx Current X
fy Current Y

Return values 0
-1

Success
Failure

Description The GSFixPos function fixes the current position in terms of (X,Y)
view coordinates.
Certain drawing functions are able to draw relative to the current
position and optionally move the current position to their drawing
end point.    The current position is set to (0,0) when a view is
opened.

Topic
GSFixPos

Related
GSMovePos
GSLineRel
GSGetCurX
GSGetCurY
GSPolyFill
GSPolyVec

GSGantt function
Draws Gantt chart

C/C++ int GSGantt(double fxOrg, double fyOrg, double fInc,
 int nMode, int nGroup)

FoxPro r = GSGantt(fxOrg, fyOrg, fInc, nMode, nGroup)

Visual Basic r% = GSGantt(fxOrg#, fyOrg#, fInc#, nMode%, nGroup%)

Parameters fxOrg X origin
fyOrg Y origin
fInc Y increment (vertical distance in view units

between adjacent data points)
nMode Constant Value Meaning

GAVARY 1 Takes the Y position
from the fD array

GASPACE 2 Inserts a space
between adjacent bars

nGroup Group size

Return values 0
-1

Success
Failure

Description The GSGantt function draws a Gantt chart.    The Gantt chart is
similar in format to a horizontal 2D stacked bar graph, except that
the bars are free to be positioned away from the axis.    The
position and length of the bars is determined by the amplitude
array.
The amplitude array has an additional data set compared to the
pattern and color arrays.    The first data set defines the height of
the base of the bar stack above the axis.    This data set has no
corresponding entries in the pattern and color arrays.
The second and subsequent amplitude data sets define the
height of each bar end above the axis.    The first entries in the
pattern and color data arrays are applied to the second amplitude
data set and so on.
Optionally the Y position of the bars relative to the origin may be
taken from the fD array rather than at fixed intervals.

GSDataTrans parameters for Gantt charts
nPts Number of points per data set (no limit)
nGroup Number of data sets (always at least 2)

fA[nPts][nGroup] Pointer to amplitude array containing X
positions of bars (first set has starting points
of first bars, second set has ending points of
first bars, subsequent sets have ending points
of subsequent bars)

fD[nPts] Pointer to distance array (Y positions of bars)--
used only with nMode GAVARY

nPatt[nGroup-1] Pointer to array containing fill patterns of bar
segments

nSymbol[0] Not used
nAux[0] Not used
nClr[nGroup-1] Pointer to array containing colors of bar

segments

Topic
GSGantt

Related
GSBar2D

Axis/grid/legend:
GSAxis
GSGrid
GSLegend

Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSGetACos function
Gets arccosine

C/C++ double GSGetACos(double fVal)

FoxPro r = GSGetACos(fVal)

Visual Basic r# = GSGetACos(fVal#)

Parameter fVal Angle (in degrees) for which to determine arccosine

Return value Arccosine of angle

Description The GSGetACos function returns the arccosine of the given angle.

Topic
GSGetACos

Related
GSGetCos

GSGetALog10 function
Gets antilog base 10

C/C++ double GSGetALog10(double fVal)

FoxPro r = GSGetALog10(fVal)

Visual Basic r# = GSGetALog10(fVal#)

Parameter fVal Number for which to determine antilog

Return value Antilog base 10 of number

Description The GSGetALog10    function returns the antilog base 10 of the
given number.

Topic
GSGetALog10

Related
GSGetLog10
GSGetALogE
GSGetLogE

GSGetALogE function
Gets natural antilog base e

C/C++ double GSGetALogE(double fVal)

FoxPro r = GSGetALogE(fVal)

Visual Basic r# = GSGetALogE(fVal#)

Parameter fVal Number for which to determine natural antilog

Return value Natural antilog base e of number (-1 if failure)

Description The GSGetALogE function returns the natural antilog of the given
number.

Topic
GSGetALogE

Related
GSGetLogE
GSGetALog10
GSGetLog10

GSGetASin function
Gets arcsine

C/C++ double GSGetASin(double fVal)

FoxPro r = GSGetASin(fVal)

Visual Basic r# = GSGetASin(fVal#)

Parameter fVal Angle (in degrees) for which to determine arcsine

Return value Arcsine of angle

Description The GSGetASin function returns the arcsine of the given angle.

Topic
GSGetASin

Related
GSGetSin

GSGetATan function
Gets arctangent

C/C++ double GSGetATan(double fVal)

FoxPro r = GSGetATan(fVal)

Visual Basic r# = GSGetATan(fVal#)

Parameter fVal Angle (in degrees) for which to determine
arctangent

Return value Arctangent of angle

Description The GSGetATan function returns the arctangent of the given
angle.

Topic
GSGetATan

Related
GSGetTan

GSGetAXExt function
Gets anchor space X extent

C/C++ double GSGetAXExt(HWND hWnd)

FoxPro r = GSGetAXExt(hWnd)

Visual Basic r# = GSGetAXExt(hWnd%)

Parameter hWnd Windows handle of the window to be measured. If
you use an hWnd of zero, the anchor space is
mapped into the whole screen, and the width of the
whole screen in anchor units is returned.    In this
mode, the value returned by GSGetAXExt is the
same as that returned by GSGetSXExt.

Return values 0 or greater
-1

X extent of the anchor space
Failure

Description The GSGetAXExt function maps a local anchor space into the
client area of a window and returns the X extent (width) in anchor
units. Anchor units are device-independent units used to specify
the origin and size of a new graphing window.
GSGetAXExt, together with the complementary GSGetAYExt, is
typically used to measure the client area of a parent window in
anchor units prior to opening a new graphing child window.

Topic
GSGetAXExt

Related
GSGetSXExt
GSGetWXExt
GSGetAYExt
GSOpenChildWin

GSGetAYExt function
Gets anchor space Y extent

C/C++ double GSGetAYExt(HWND hWnd)

FoxPro r = GSGetAYExt(hWnd)

Visual Basic r# = GSGetAYExt(hWnd%)

Parameter hWnd Windows handle of the window to be measured.    If
you use an hWnd of zero, the anchor space is
mapped into the whole screen and the width of the
whole screen in anchor units is returned.    In this
mode, the value returned by GSGetAYExt is the
same as that returned by GSGetSYExt.

Return values 0 or greater
-1

Y extent of the anchor space
Failure

Description The GSGetAYExt function maps a local anchor space into the
client area of a window and returns the Y extent (height) in
anchor units.    Anchor units are device-independent units used to
specify the origin and size of a new graphing window.
GSGetAYExt, together with the complementary GSGetAXExt, is
typically used to measure the client area of a parent window in
anchor units prior to opening a new graphing child window.

Topic
GSGetAYExt

Related
GSGetSYExt
GSGetWYExt
GSGetAXExt
GSOpenChildWin

GSGetBG function
Gets background color

C/C++ int GSGetBG()

FoxPro r = GSGetBG()

Visual Basic r% = GSGetBG()

Return values 0 or greater
-1

Current background color index
Failure

Description The GSGetBG function returns the color index of the current
background color.

Topic
GSGetBG

Related
GSSetBg
GSClearView

GSGetCC function
Gets linear correlation coefficient

C/C++ double GSGetCC()

FoxPro r = GSGetCC()

Visual Basic r# = GSGetCC()

Return value Linear regression correlation coefficient in the range -1.0000 to
1.0000 (-1 if failure)

Description The GSGetCC function returns the correlation coefficient of the
least-squares regression of Y over X of the current data set.
The value is calculated from the complete set of points within the
data array unless modified by GSDataRange, in which case it
applies to the selected subset.
Since the correlation coefficient is dependent on both X and Y, it's
affected by the scale factor applied to X and Y that should be the
same for consistency.
Note that if data is fixed increment, the graphing function must
be called first to establish the X increment.

Topic
GSGetCC

Related
GSLineFit
GSCurveFit
GSDataRange

GSGetCos function
Gets cosine

C/C++ double GSGetCos(double fVal)

FoxPro r = GSGetCos(nVal)

Visual Basic r# = GSGetCos(fVal#)

Parameter fVal Angle (in degrees) for which to determine cosine

Return value Cosine of angle

Description The GSGetCos function returns the cosine of the given angle.

Topic
GSGetCos

Related
GSGetACos

GSGetCurveCoeff function
Gets curve coefficient

C/C++ double GSGetCurveCoeff()

FoxPro r = GSGetCurveCoeff()

Visual Basic r# = GSGetCurveCoeff()

Return value Next curve coefficient in sequence

Description The GSGetCurveCoeff function returns the coefficients of the
equation of the curve most recently drawn by GSCurveFit.
The function is called repeatedly to return all the coefficients.   
For example, in the quadratic y = a + bx + cx2, the first time you
call the function after GSCurveFit, it returns the value of a, the
second time b, and the third time c.    If you call it again, it returns
a again, then b, and so on.    In other words, the function cycles
repeatedly around the coefficients of the selected curve.
You can use GSGetCurveCoeff to get the curve coefficients after
calling AGShow for a scatter graph with a fitted curve.    In this
case, beware that the returned coefficients are expressed in view
units, rather than the natural units of the data you supplied
through AGAmp.    This is due to the automatic scaling of data in
AutoGraph.
Coefficients returned in view units may be converted back into
the units of your data.    y = a + bx + cx2 in view coordinates is
equivalent to yscale * y = a + b(xscale * x) + c(xscale * x)2 or Y
= a / yscale + b(xscale * x) / yscale + c(xscale * x)2 / yscale.
To obtain the scaling factors used to draw the graph from AGInfo,
set yscale = AGInfo(5) / AGInfo(2) - AGInfo(3) and set xscale
= AGInfo(4) / AGInfo(0) - AGInfo(1).    Now you can calculate
your A, B, and C:    A = a / yscale; B = b * xscale / yscale; C = c *
xscale2 / yscale.

Topic
GSGetCurveCoeff

Related
GSCurveFit
AGShow

GSGetCurX function
Gets current X position

C/C++ double GSGetCurX()

FoxPro r = GSGetCurX()

Visual Basic r# = GSGetCurX()

Return value Current X position in view units

Description The GSGetCurX function returns the current X position in the
view.

Topic
GSGetCurX

Related
GSGetCurY
GSFixPos
GSMovePos
GSLineRel
GSPolyFill
GSPolyVec

GSGetCurY function
Gets current Y position

C/C++ double GSGetCurY()

FoxPro r = GSGetCurY()

Visual Basic r# = GSGetCurY()

Return value Current Y position in view units (-1 if failure)

Description The GSGetCurY function returns the current Y position in the view.

Topic
GSGetCurY

Related
GSGetCurX
GSFixPos
GSMovePos
GSLineRel
GSPolyFill
GSPolyVec

GSGetE function
Gets natural exponent

C/C++ double GSGetE()

FoxPro r = GSGetE()

Visual Basic r# = GSGetE()

Return value Natural exponent

Description The GSGetE function returns the natural exponent e.

Topic
GSGetE

Related
GSGetPi

GSGetLog10 function
Gets log base 10

C/C++ double GSGetLog10(double fVal)

FoxPro r = GSGetLog10(fVal)

Visual Basic r# = GSGetLog10(fVal#)

Parameters fVal Number for which to determine base 10 logarithm

Return value Log base 10 of number

Description The GSGetLog10 function returns the base 10 logarithm of the
given number.

Topic
GSGetLog10

Related
GSGetALog10
GSGetALogE
GSGetLogE

GSGetLogE function
Gets natural log

C/C++ double GSGetLogE(double fVal)

FoxPro r = GSGetLogE(fVal)

Visual Basic r# = GSGetLogE(fVal#)

Parameter fVal Number for which to determine natural logarithm

Return value Natural logarithm number (-1 if failure)

Description The GSGetLogE function returns the natural logarithm of the
given number.

Topic
GSGetLogE

Related
GSGetALogE
GSGetLog10
GSGetALogE

GSGetMax function
Gets maximum amplitude data value

C/C++ double GSGetMax()

FoxPro r = GSGetMax()

Visual Basic r# = GSGetMax()

Return value Maximum data value in amplitude array

Description The GSGetMax function returns the maximum data value in the
amplitude array.
In arrays with more than one set of data, the maximum is for all
the sets.
The value is calculated from the complete data set unless
reduced to a subset by the GSDataRange function.    It's also
modified by any prevailing GSDataScale function.

Topic
GSGetMax

Related
GSGetMin
GSDataRange
GSDataScale

GSGetMean function
Gets mean data value of amplitude array

C/C++ double GSGetMean()

FoxPro r = GSGetMean()

Visual Basic r# = GSGetMean()

Return value Mean data value of amplitude array

Description The GSGetMean function returns the mean data value of the
amplitude array.
In arrays with more than one set of data, the mean is for all the
sets.
The value is calculated from the complete data set unless
reduced to a subset by the GSDataRange function.    It's also
modified by any prevailing GSDataScale function.

Topic
GSGetMean

Related
GSGetSD
GSDataRange
GSDataScale
GSMean

GSGetMF function
Gets image metafile

C/C++ HANDLE GSGetMF(nMode)

FoxPro r = GSGetMF(nMode)

Visual Basic r% = GSGetMF(nMode%)

Parameter nMode Function mode

Return values Greater than
0
-1

Windows handle to a memory metafile
Failure

Description The GSGetMF function returns a handle to a memory metafile of
the image in the current window.
All dimensions in the metafile are expressed in units of 0.05 of a
millimeter.    The image is ISOTROPIC, which means that a line of n
units drawn along the X axis will appear on any output device the
same length as a similar line drawn along the Y axis.    The natural
dimensions of the image may be obtained using the GSGetWXExt
and GSGetWYExt functions in the GWWHOLE mode.
Graphics Server uses a traditional Cartesian coordinate system,
which is inverted in the Y (vertical) dimension relative to the
Windows device coordinate system.    In Graphics Server, the
origin (X0,Y0) is at the bottom left, with Y coordinates increasing
toward the top of the page; Windows devices have their origin at
the top left, with Y coordinates increasing toward the bottom.   
Graphics Server transfers coordinates between the two systems
by changing the sign of the logical Y extent, using a call to the
Windows SetWindowExt function in the body of the metafile
returned by GSGetMF.

Example The following example displays a memory metafile obtained from
GSGetMF:
hMF = GSGetMF(0);
SetMapMode(hDC, MM_ISOTROPIC);
SetViewportExt(hDC, ViewportWidth, ViewportHeight);
SetViewportOrg(hDC, ViewportOriginX,
 ViewportOriginY);
PlayMetaFile(hDC, hMF);
The metafile obtained from GSGetMF belongs to your application,
so remember to delete it when you're through with it:
DeleteMetaFile(hMF);

Topic
GSGetMF

Related
GSPicRead
GSPicWrite
GSClipRead
GSClipWrite
GSWinPaint

GSGetMin function
Gets minimum amplitude data value

C/C++ double GSGetMin()

FoxPro r = GSGetMin()

Visual Basic r# = GSGetMin()

Return value Minimum data value in amplitude array

Description The GSGetMin function returns the minimum data value in the
amplitude array.
In arrays with more than one set of data, the minimum is for all
the sets.
The value is calculated from the complete data set unless
reduced to a subset by the GSDataRange function.    It's also
modified by any prevailing GSDataScale function.

Topic
GSGetMin

Related
GSGetMax

GSGetPI function
Gets value of pi

C/C++ double GSGetPI()

FoxPro r = GSGetPI()

Visual Basic r# = GSGetPI()

Return value Pi (or -1 if failure)

Description The GSGetPI function returns the value of pi (3.1416).

Topic
GSGetPI

Related
GSGetE

GSGetPrnHt function
Gets printer paper height

C/C++ double GSGetPrnHt(int nUnits)

FoxPro r = GSGetPrnHt(nUnits)

Visual Basic r# = GSGetPrnHt(nUnits%)

Parameter nUnits Constant Value Meaning
UNMM 1 Millimeters
UNINCH 2 Inches

Return values 0 or greater
-1

Printer paper height in the selected units
Failure

Description The GSGetPrnHt function returns the paper height of the printer
currently selected using the GSOpenPrn function.    The height is
returned in physical units of inches or millimeters.

Topic
GSGetPrnHt

Related
GSGetPrnWid
GSPrnSetup
GSPrnOut
GSOpenPrn

GSGetPrnWid function
Gets printer paper width

C/C++ double GSGetPrnWid(int nUnits)

FoxPro r = GSGetPrnWid(nUnits)

Visual Basic r# = GSGetPrnWid(nUnits%)

Parameter nUnits Constant Value Meaning
UNMM 1 Millimeters
UNINCH 2 Inches

Return values 0 or greater
-1

Printer paper width in the selected units
Failure

Description The GSGetPrnWid function returns the paper width of the printer
currently selected using the GSOpenPrn function.    The width is
returned in physical units of inches or millimeters.

Topic
GSGetPrnWid

Related
GSGetPrnHt
GSPrnSetup
GSPrnOut
GSOpenPrn

GSGetRTextHt function
Gets raster text height

C/C++ double GSGetRTextHt(int nCSet, int nTMode,
 char szString)

FoxPro r = GSGetRTextHt(nCSet, nTMode, szString)

Visual Basic r# = GSGetRTextHt(nCSet%, nTMode%, szString$)

Parameters nCSet Character set (see Character set constants)

nTMode Text mode (see Text mode constants)

szString Text string

Return values 0 or greater
-1

Height of text string in view units
Failure

Description The GSGetRTextHt function returns the height of a text string in
view units.

Topic
GSGetRTextHt

Related
GSGetRTextWid
GSRText
GSGetSFHt

GSGetRTextWid function
Gets raster text width

C/C++ double GSGetRTextWid(int nCSet, int nTMode,
 char szString)

FoxPro r = GSGetRTextWid(nCSet, nTMode, szString)

Visual Basic r# = GSGetRTextWid(nCSet%, nTMode%, szString$)

Parameters nCSet Character set (see Character set constants)

nTMode Text mode (see Text mode constants)

szString Text string

Return values 0 or greater
-1

Width of text string in view units
Failure

Description The GSGetRTextWid function returns the width of a text string in
view units.

Topic
GSGetRTextWid

Related
GSGetRTextHt
GSRText
GSGetSFWid

GSGetSD function
Gets standard deviation of data set

C/C++ double GSGetSD()

FoxPro r = GSGetSD()

Visual Basic r# = GSGetSD()

Return values Standard deviation of data set

Description The GSGetSD function returns the standard deviation of the
current data set.
The value is calculated from the complete data set unless
reduced to a subset by the GSDataRange function.    It's also
modified by any prevailing GSDataScale function.

Topic
GSGetSD

Related
GSGetMean
GSDataRange
GSDataScale
GSSD

GSGetSFHt function
Gets height of system font characters

C/C++ double GSGetSFHt()

FoxPro r = GSGetSFHt()

Visual Basic r# = GSGetSFHt()

Return values 0 or greater
-1

Height of system font characters in view units
Failure

Description The GSGetSFHt function returns the height of the system font
characters in view units.    This height can be used to calculate
line spacing.

Topic
GSGetSFHt

Related
GSGetSFWid
GSGetRTextHt
GSRText

GSGetSFWid function
Gets width of system font characters

C/C++ double GSGetSFWid()

FoxPro GSGetSFWid()

Visual Basic r# = GSGetSFWid()

Return values 0 or greater
-1

Width of system font characters in view units
Failure

Description The GSGetSFWid function returns the width of the system font
characters in view units.    This width can be used to calculate text
lengths.

Topic
GSGetSFWid

Related
GSGetSFHt
GSGetRTextWid
GSRText

GSGetSin function
Gets sine

C/C++ double GSGetSin(fVal)

FoxPro r = GSGetSin(fVal)

Visual Basic r# = GSGetSin(fVal#)

Parameter fVal Angle (in degrees) for which to determine sine

Return value Sine of angle

Description The GSGetSin function returns the sine of the given angle.

Topic
GSGetSin

Related
GSGetASin

GSGetSXExt function
Gets screen X extent

C/C++ double GSGetSXExt()

FoxPro r = GSGetSXExt()

Visual Basic r# = GSGetSXExt()

Return values 0 or greater
-1

X extent of the screen
Failure

Description The GSGetSXExt function maps an anchor space into the whole
screen and returns the X extent in anchor units.
Anchor units are device-independent units used to specify the
origin and size of a new graphing window.    This function,
together with the complementary GSGetSYExt, is typically used
to measure the screen in anchor units prior to opening a new
graphing window.

Topic
GSGetSXExt

Related
GSGetSYExt
GSGetAXExt
GSOpenWin

GSGetSYExt function
Gets screen Y extent

C/C++ double GSGetSYExt()

FoxPro r = GSGetSYExt()

Visual Basic r# = GSGetSYExt()

Return values 0 or greater
-1

Y extent of the screen
Failure

Description TheGSGetSYExt function maps an anchor space into the whole
screen and returns the Y extent in anchor units.
Anchor units are device-independent units used to specify the
origin and size of a new graphing window.    This function,
together with the complementary GSGetSXExt, is typically used
to measure the screen in anchor units prior to opening a new
graphing window.

Topic
GSGetSYExt

Related
GSGetSXExt
GSGetAYExt
GSOpenWin

GSGetTan function
Gets tangent

C/C++ double GSGetTan(double fVal)

FoxPro r = GSGetTan(fVal)

Visual Basic r# = GSGetTan(fVal#)

Parameter fVal Angle (in degrees) for which to determine tangent

Return values Tangent of angle

Description The GSGetTan function returns the tangent of the given angle.

Topic
GSGetTan

Related
GSGetATan

GSGetVer function
Gets server or DLL version number

C/C++ int GSGetVer(nVer)

FoxPro r = GSGetVer(nVer)

Visual Basic r% = GSGetVer(nVer%)

Parameter nVer Constant Value Meaning
GVSERVER 0 Gets Graphics Server

EXE version number
GVDLL 1 Gets Graphics Server

DLL version number

Return values 0 or greater
-1

Version number of the specified component
Failure

Description The GSGetVer function returns the version number of the
Graphics Server EXE or DLL module.
The high-order byte of the return value contains the minor
version number, and the low-order byte contains the major
version number.

GSGetVXExt function
Gets view X extent

C/C++ double GSGetVXExt()

FoxPro r = GSGetVXExt()

Visual Basic r# = GSGetVXExt()

Return values 0 or greater
-1

X extent of the current view in view units
Failure

Description The GSGetVXExt    function returns the X extent of the current
view in view units.

Topic

GSGetVXExt

Related
GSClearView
GSCloseView
GSGetVYExt
GSGetWXExt
GSOffView
GSOnView
GSOpenView
GSUseView

GSGetVYExt function
Gets view Y extent

C/C++ double GSGetVYExt()

FoxPro r = GSGetVYExt()

Visual Basic r# = GSGetVYExt()

Return values 0 or greater
-1

Y extent of the current view in view units
Failure

Description The GSGetVYExt function returns the Y extent of the current view
in view units.

Topic
GSGetVYExt

Related
GSClearView
GSCloseView
GSGetVXExt
GSGetWYExt
GSOffView
GSOnView
GSOpenView
GSUseView

GSGetWXExt function
Gets window X extent

C/C++ double GSGetWXExt(int nMode, int nUnits)

FoxPro r = GSGetWXExt(nMode, nUnits)

Visual Basic r# = GSGetWXExt(nMode%, nUnits%)

Parameters nMode Constant Value Meaning
GWWHOLE 0 Returns the whole

extent
GWCLIPPED 1 Returns visible extent

nUnits Constant Value Meaning
UNLOG 0 Anchor units
UNMM 1 Millimeters
UNINCH 2 Inches
UNDEV 3 Device units (pixels)

Return values 0 or greater
-1

X extent of window
Failure

Description The GSGetWXExt function returns the X extent of the current
window.    You can have it return either the whole extent (including
invisible portions) or just the visible part.

Topic
GSGetWXExt

Related
GSGetWYExt
GSGetVXExt
GSGetAXExt
GSOpenView

GSGetWYExt function
Gets window Y extent

C/C++ double GSGetWYExt(int nMode, int nUnits)

FoxPro r = GSGetWYExt(nMode, nUnits)

Visual Basic r# = GSGetWYExt(nMode%, nUnits%)

Parameters nMode Constant Value Meaning
GWWHOLE 0 Returns the whole

extent
GWCLIPPED 1 Returns visible extent

nUnits Constant Value Meaning
UNLOG 0 Anchor units
UNMM 1 Millimeters
UNINCH 2 Inches
UNDEV 3 Device units (pixels)

Return values 0 or greater
-1

Y extent of window
Failure

Description The GSGetWYExt function returns the Y extent of the current
window.    You can have it return either the whole extent (including
invisible portions) or just the visible part.

Topic
GSGetWYExt

Related
GSGetWXExt
GSGetVYExt
GSGetAYExt
GSOpenView

GSGrid function
Draws grid lines

C/C++ int GSGrid(double fxOrg, double fyOrg,
 double fAxisLen, double fGridLen,
 int nDivs, int nMode, int nStyle,
 int nClr)

FoxPro r = GSGrid(fxOrg, fyOrg, fAxisLen, fGridLen, nDivs,
 nMode, nStyle, nClr)

Visual Basic r% = GSGrid(fxOrg#, fyOrg#, fAxisLen#, fGridLen#,
 nDivs%, nMode%, nStyle%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fAxisLen Length of axis
fGridLen Length of grid
nDivs Number of divisions along length of axis
nMode Constant Value Meaning

GRX 0 Draws X grids (parallel
to Y axis)

GRY 1 Draws Y grids (parallel
to X axis)

GRNOFIRST 2 Omits the first grid line
GRNOLAST 4 Omits the last grid line

nStyle Line style (see Line style constants)
nClr Color of grid lines (see Color constants)

Return values 0
-1

Success
Failure

Description The GSGrid function draws grid lines at regular intervals along the
X axis (grid lines parallel to the Y axis) or along the Y axis (grid
lines parallel to the X axis).
You can omit the first and last grid lines to avoid overdrawing
axes or frames.

Topic

GSGrid

Related
GSAxis
GSLogGrid
GSXYGraph

GSHLC function
Draws high-low-close, open-high-low-close, or candlestick graph

C/C++ int GSHLC(double fxOrg, double fyOrg, double fInc,
 int nMode, int nClr)

FoxPro r = GSHLC(fxOrg, fyOrg, fInc, nMode, nClr)

Visual Basic r% = GSHLC(fxOrg#, fyOrg#, fInc#, nMode%, nClr%)

Parameters fxOrg X origin

fyOrg Y origin

fInc X increment (distance in view units between
adjacent data points).    Optionally, you can take
the position of points relative to the origin from the
fD array rather than placing points at fixed
intervals.

nMode Constant Value Meaning
HLCVARX 1 Takes X position from

the fD array
HLCNOCLOSE 2 Omits close bar
HLCNOBARS 4 Omits high, low, and

close bars, drawing
vertical line only

HLCTHICK 8 Draws symbol with
thick lines

HLCOPEN 16 Open-high-low-close
format

HLCCANDLESTICK 32 Candlestick format
(special version of
open-high-low-close)

nClr Color of symbols (see Color constants)

Return values 0
-1

Success
Failure

Description The GSHLC function draws a high-low-close, open-high-low-close,
or candlestick graph.
Each high-low-close symbol consists of a vertical line intersected

by horizontal high, low, and close bars.    Open-high-low-close
graphs add a fourth bar for the open value.
You can omit horizontal bars from the symbol, leaving just a
vertical line.    You can also omit the close bars (and open bars, if
used) from the symbols, but you still have to provide closing (and
opening) values in the data array.

Candlestick graphs
The candlestick graph is a special case of the open-high-low-close
graph.    It consists of a series of boxes with lines extending up
and down from the ends.    The top and bottom of each box
indicate the open and close values.    If the open value is higher,
the box is filled with a color; if the close value is higher, the box is
filled with white.    The ascending and descending lines indicate
the high and low values for that point.

GSDataTrans parameters for high-low-close, open-high-low-
close, and candlestick graphs
nPts Number of symbols (no limit)
nGroup Number of data sets (always 3 for high-low-

close and 4 for open-high-low-close and
candlestick)

fA[nPts][nGroup] Pointer to amplitude array
For high-low-close, first set is high

values, second set is low values, third set is
close values

For open-high-low-close and
candlestick, first set is open values, second
set is high values, third set is low values,
fourth set is close values

fD[nPts] Pointer to distance array (X positions of
symbols)--used only with nMode HLCVARX

nPatt[0] Not used
nSymbol[0] Not used
nAux[0] Not used
nClr[0] Not used

Topic
GSHLC

Related
GSBoxWhisker
GSStatsArr

Axis/grid/legend:
GSAxis
GSGrid
GSLegend

Labels:
GSDataLabels
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSHotGraph function
Enables and disables hot graphing

C/C++ int GSHotGraph(int nMode)

FoxPro r = GSHotGraph(nMode)

Visual Basic r% = GSHotGraph(nMode%)

Parameter nMode Constant Value Meaning
FALSE 0 Disables hot graphing
TRUE 1 Enables hot graphing

Return values 0
-1

Success
Failure

Description The GSHotGraph function enables and disables the drawing of
"hot graphs" by Graphics Server.    A hot graph is one in which a
mouse click on any of the points of the graph will feed a
notification message--identifying the clicked point and data set
number--to the client application.
Hot graphing is applied on a per-window basis.    One window can
have only one hot graph in it at a time.    However, new hot
graphs can be drawn successively into the same window, with
each new graph automatically canceling the hot regions of the
previous one.    You can have different hot graphs active in
different windows at the same time.
GSHotGraph always acts on the current window.    Use the
GSUseView function to change the current window.
nMode is set non-zero to enable hot graphing and zero to disable
it.      The hot-graph mode is applied to all the graphs drawn
subsequently in the window, both by standard graph functions
and by AutoGraph.    Call it with 1+16 to enable it for the primary
graph when you've created an AutoGraph overlay graph;
otherwise, the hot events will only come from the second
(overlay) graph.
Hot graphs and Graphics Server's mouse event notification
system are closely related. In addition to calling GSHotGraph to
enable the drawing of hot graphs, you must call GSMNotify to
enable the hot-graph event notification to your application.

Example The following example illustrates how to open a graphing window
and enable it for hot-graph operation:
#define WM_HITPOINT (WM_USER + 1)
double ScreenWid, ScreenHt;
int WinNum;

ScreenWid = GSGetSXExt();
ScreenHt = GSGetSYExt();
WinNum = GSOpenWin(0.10 * ScreenWid,
 0.10 * ScreenHt,
 0.50 * ScreenWid,
 0.50 * ScreenHt,
 1000, 0, OWMFIXED,
 "Hot-graph Window");
if (WinNum < 0) {
 /* GSOpenWin failed */
}
/* enable hot graphs and event notification */
GSHotGraph(TRUE);
GSMNotify(hWndHdlr, WM_HITPOINT, MNHITPT);
/* collect some data and eventually draw a graph
this will draw a hot graph */
AGShow(AGBAR2D, 0, 0);

The window procedure for the window hWndHdlr might contain
the following:
LONG WndHdlr_WndProc(HWND hWnd, UINT uMsg, UINT
 wParam, LONG lParam)
{
switch (uMsg) {
case WM_HITPOINT:
/* the user clicked a point in the graph so get the point and
data set number from the message */
PointNum = LOWORD(lParam);
SetNum = HIWORD(lParam);
/* etc. */
}
}

Topic
GSHotGraph

Related
GSMNotify
GSUseView

GSLabelnPie function
Draws pie chart numeric labels

C/C++ int GSLabelnPie(double fxOff, double fRad,
 double fWid, double fHt, int nPrec,
 int nMode, int nCSet, int nTMode,
 int nClr)

FoxPro r = GSLabelnPie(fxOff, fRad, fWid, fHt, nPrec, nMode,
 nCSet, nTMode, nClr)

Visual Basic r% = GSLabelnPie(fxOff#, fRad#, fWid#, fHt#, nPrec%,
 nMode%, nCSet%, nTMode%, nClr%)

Parameters fxOff Horizontal offset

fRad Radius of the arc on which the labels are drawn.   
This radius must be at least 1.1 times greater than
the pie radius (or 1.35 times greater if any
segments are exploded).    The pie radius is taken
from the preceding GSPieChart function call.

fWid Width of labels

fHt Height of labels

nPrec Decimal precision

nMode Constant Value Meaning
LPSEGCLR 1 Colors labels the same

as segments
LPNOLINES 2 Omits pointing lines

from pie to label
LPPC 4 Shows percentage

rather than magnitude
LPPCCHAR 8 Appends percentage

character to each label
LPSMART 16 Auto-arranges labels

to avoid overlapping

nCSet Character set (see Character set constants).    Use
CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)

nClr Color of labels (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLabelnPie function draws a sequence of numeric labels to
complement a pie chart.    The label may be either the value
passed as data or the value expressed as a percentage of the
whole.
The pie chart must be drawn first since this function adopts
certain parameters from the preceding pie chart function call.
The angular position of each label is calculated from the data for
the pie chart.    The labels are drawn in an arc on each side of the
pie, connected to their respective segments by pointing lines.
These lines are drawn from the label horizontally a distance fXOff,
then radially toward the center of the pie, in a direction bisecting
the segment.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.
The color of the labels may either correspond to those of their
respective pie slices or be uniformly the same.
The LPSMART mode enables auto-arranging of labels to avoid
overlapping. The algorithm is not infallible and may cause labels
to extend outside the visible area of the graph if too many are
concentrated in a small sector of the pie.

Topic
GSLabelnPie

Related
GSLabelPie
GSLoadRFont
GSLoadVFont
GSPie2D
GSPie3D

GSLabelnX function
Draws numeric labels along X axis

C/C++ int GSLabelnX(double fxOrg, double fyOrg, double fInc,
 double fWid, double fHt,
 double fBaseVal, double fStepVal,
 int nPrec, int nLabs, int nCSet,
 int nTMode, int nClr)

FoxPro r = GSLabelnX(fxOrg, fyOrg, fInc, fWid, fHt, fBaseVal,
 fStepVal, nPrec, nLabs, nCSet, nTMode,
 nClr)

Visual Basic r% = GSLabelnX(fxOrg#, fyOrg#, fInc#, fWid#, fHt#,
 fBaseVal#, fStepVal#, nPrec%, nLabs%,
 nCSet%, nTMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fWid Width of label
fHt Height of label
fBaseVal Starting value
fStepVal Incrementing value
nPrec Decimal precision
nLabs Number of labels
nCSet Character set (see Character set constants).    Use

CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Color of labels (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLabelnX function draws a horizontal sequence of text
labels on screen starting at fxOrg, fyOrg and at intervals of fInc to
the right of this point.    The labels start with the value fBaseVal
and increase in steps of fStepVal.    nPrec determines the number
of decimals shown.
By default, this function chooses a vector character set and each

label is drawn to fit a rectangle fWid wide and fHt high.

Topic
GSLabelnX

Related
GSLabelX
GSLoadRFont
GSLoadVFont

GSLabelnY function
Draws numeric labels along Y axis

C/C++ int GSLabelnY(double fxOrg, double fyOrg, double fInc,
 double fWid, double fHt,
 double fBaseVal, double fStepVal,
 int nPrec, int nLabs, int nCSet,
 int nTMode, int nClr)

FoxPro r = GSLabelnY(fxOrg, fyOrg, fInc, fWid, fHt, fBaseVal,
 fStepVal, nPrec, nLabs, nCSet, nTMode,
 nClr)

Visual Basic r% = GSLabelnY(fxOrg#, fyOrg#, fInc#, fWid#, fHt#,
 fBaseVal#, fStepVal#, nPrec%, nLabs%,
 nCSet%, nTMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fWid Width of label
fHt Height of label
fBaseVal Starting value
fStepVal Incrementing value
nPrec Decimal precision
nLabs Number of labels
nCSet Character set (see Character set constants).    Use

CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Color of labels (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLabelnY function draws a vertical sequence of text labels
on screen starting at (fxOrg,fyOrg) and at intervals of fInc above
this point.    The labels start with the value fBaseVal and increase
in steps of fStepVal.    nPrec determines the number of decimals
shown.
By default, this function chooses a vector character set and each

label is drawn to fit a rectangle fWid wide and fHt high.

Topic
GSLabelnY

Related
GSLabelY
GSLoadRFont
GSLoadVFont

GSLabelPie function
Draws pie chart text labels

C/C++ int GSLabelPie(double fxOff, double fRad, double fWid,
 double fHt, int nLabs, int nMode,
 int nCSet, int nTMode, int nClr,
 char* szLabs[])

FoxPro r = GSLabelPie(fxOff, fRad, fWid, fHt, nLabs, nMode,
 nCSet, nTMode, nClr, @szLabs(1))

Visual Basic Use VBGSLabelPie function

Parameters fxOff Horizontal offset
fRad Radius of the arc on which the labels are drawn.   

This radius must be at least 1.1 times greater than
the pie radius (or 1.35 times greater if any
segments are exploded).    The pie radius is taken
from the preceding GSPieChart function call.

fWid Width of label
fHt Height of label
nLabs Number of labels in array
nMode Constant Value Meaning

LPSEGCLR 1 Colors labels the same
as segments

LPNOLINES 2 Omits pointing lines
from pie to labels

LPSMART 16 Auto-arranges labels
to avoid overlapping

nCSet Character set (see Character set constants).    Use
CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Color of labels (see Color constants)
szLabs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The GSLabelPie function draws a sequence of text labels to
complement a pie chart.    The pie chart must be drawn first
because this function adopts certain parameters from the

preceding pie chart function call.
There must be the same number of labels as pie slices.    The
angular position of each label is calculated from the data for the
pie chart.
The labels are drawn in an arc on each side of the pie, connected
to their respective segments by pointing lines.    These lines are
drawn from the label horizontally a distance fXOff, then radially
toward the center of the pie in a direction bisecting the segment.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.    Since
vector text is shaped to fit this area, the strings should all be of
the same length to give a uniform character appearance.    This
may require padding of some strings with spaces.
The color of the labels may either correspond to those of their
respective pie slices or be uniformly the same.
The LPSMART mode enables auto-arranging of labels to avoid
overlapping. The algorithm is not infallible, and may cause labels
to extend outside the visible area of the graph if too many are
concentrated in a small sector of the pie.

Topic
GSLabelPie

Related
GSLabelnPie
GSLoadRFont
GSLoadVFont
VBGSLabelPie
GSPie2D
GSPie3D

GSLabelX function
Draws text labels along X axis

C/C++ int GSLabelX(double fxOrg, double fyOrg, double fInc,
 double fWid, double fHt, int nLabs,
 int nCSet, int nTMode, int nClr,
 char* szLabs)

FoxPro r = GSLabelX(fxOrg, fyOrg, fInc, fWid, fHt, nLabs,
 nCSet, nTMode, nClr, @szLabs(1))

Visual Basic Use VBGSLabelX function

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fWid Width of label
fHt Height of label
nLabs Number of labels
nCSet Character set (see Character set constants).    Use

CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Color of labels (see Color constants)
szLabs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The GSLabelX function draws a horizontal sequence of text labels
starting on screen at (fxOrg,fyOrg) and at intervals of fInc to the
right of this point.    The labels must be passed in a string array of
dimension nLabs.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.    Since
vector text is shaped to fit this area, the strings should all be of
the same length to give a uniform character appearance.    This
may require padding of some strings with spaces.

Topic

GSLabelX

Related
GSLabelnX
GSLoadRFont
GSLoadVFont
GSXYGraph
VBGSLabelX

GSLabelY function
Draws text labels along Y axis

C/C++ int GSLabelY(double fxOrg, double fyOrg, double fInc,
 double fWid, double fHt, int nLabs,
 int nCSet, int nMode, int nClr,
 char* szLabs[])

FoxPro r = GSLabelY(fxOrg, fyOrg, fInc, fWid, fHt, nLabs,
 nCSet, nMode, nClr, @szLabs(1))

Visual Basic Use VBGSLabelY function

Parameters fxOrg X origin
fyOrg Y origin
fInc Y increment
fWid Width of label
fHt Height of label
nLabs Number of labels
nCSet Character set (see Character set constants).    Use

CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Color of labels (see Color constants)
szLabs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The GSLabelY function draws a vertical sequence of text labels
starting on screen at (fxOrg,fyOrg) and at intervals of fInc above
this point.    The labels must be passed in a string array of
dimension nLabs.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.    Since
vector text is shaped to fit this area, the strings should all be of
the same length to give a uniform character appearance.    This
may require padding of some strings with spaces.

Topic

GSLabelY

Related
GSLabelnY
GSLoadRFont
GSLoadVFont
GSXYGraph
VBGSLabelY

GSLegend function
Draws legend

C/C++ int GSLegend(double fxOrg, double fyOrg, double fWid,
 double fHt, int nNLeg, int nRows,
 int nMode, int nCSet, int nTMode,
 int nClr, int* nBClr, int* nBPatt,
 char* szLegs[])

FoxPro r = GSLegend(fxOrg, fyOrg, fWid, fHt, nNLeg, nRows,
 nMode, nCSet, nTMode, nClr, @nBClr(1),
 @nBPatt(1), @szLegs(1))

Visual Basic Use VBGSLegend function

Parameters fxOrg X origin
fyOrg Y origin
fWid Width of bounding area
fHt Height of bounding area
nNLeg Number of legend entries
nRows Number of rows in legend
nMode Constant Value Meaning

LGBOX 1 Draws black box
around legend area

LGTXCLR 2 Text takes its color
from the associated
legend box

LGBG 4 Fills the bounding area
with the current
background color

LGLINE 8 Shows line patterns
LGSYMBOL 16 Shows symbols

nCSet Character set (see Character set constants)
nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
nBClr Pointer to array of legend box colors (see Color

constants)
nBPatt Pointer to array of legend box patterns (see Pattern

constants)
szLegs Pointer to array of text labels

Return values 0
-1

Success
Failure

Description The GSLegend function draws a legend to accompany a graph or
chart.
The legend, consisting of a stack or row of patterned and colored
boxes associated with text strings, is drawn within a bounding
rectangle defined by its width and height and located by the
origin at its bottom left.    If you choose, you can have the legend
show line patterns rather than fill patterns (use nMode LGLINE).
Each legend entry is defined by elements in three arrays:    color,
pattern, and text.

Topic
GSLegend

Related
GSLoadRFont
GSLoadVFont
VBGSLegend

GSLineAbs function
Draws line using absolute coordinates

C/C++ int GSLineAbs(double fxA, double fyA, double fxB,
 double fyB, int nMode, int nStyle,
 int nClr)

FoxPro r = GSLineAbs(fxA, fyA, fxB, fyB, nMode, nStyle, nClr)

Visual Basic r% = GSLineAbs(fxA#, fyA#, fxB#, fyB#, nMode%, nStyle%,
 nClr%)

Parameters fxA X start
fyA Y start
fxB X end
fyB Y end
nMode Constant Value Meaning

LAUPDATE 1 Updates the current position
LATHICK 4 Draws a thick line
LACONT 16 Continues from current

position

nStyle Line pattern or thickness (see Line style constants)
nClr Color of line (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLineAbs function draws a straight line from point (fxA,fyA)
to point (fxB,fyB).
Optionally, you can have the current position be updated to the
end point of the line you draw (fxB,fyB).    To do this, include
LACONT in the nMode parameter.

Topic
GSLineAbs

Related
GSArrow
GSBox2D
GSLineRel

GSPolyFill
GSPolyVec

GSLineFit function
Fits straight line to data

C/C++ int GSLineFit(int nStyle, int nClr)

FoxPro r = GSLineFit(nStyle, nClr)

Visual Basic r% = GSLineFit(nStyle%, nClr%)

Parameters nStyle Line style (see Line style constants)
nClr Line color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLineFit function fits a straight line through graphed data
using a least-squares linear regression of Y over X.
The line is clipped within a window defined by the GSStatsWin
function.

Topic
GSLineFit

Related
GSStatsWin
GSStatsArr
GSCurveFit
GSGetCC

GSLineRel function
Draws line using relative coordinates

C/C++ int GSLineRel(double fxr, double fya, int nMode,
 int nStyle, int nClr)

FoxPro r = GSLineRel(fxr, fya, nMode, nStyle, nClr)

Visual Basic r% = GSLineRel(fxr#, fya#, nMode%, nStyle%, nClr%)

Parameters fxr X relative or radius
fya Y relative or angle
nMode Constant Value Meaning

LRNOUPDATE 1 Doesn't update the
current position

LRPOLAR 2 fxr, fya are polar
radius and angle

LRTHICK 4 Draws a thick line

nStyle Line pattern or thickness (see Line style constants)
nClr Line color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLineRel function draws a straight line from the current
position to an end point specified relative to the start.
The relative position may be specified either in Cartesian (X,Y)
coordinates or in polar (radius and angle) notation.
By default the current position is updated to the end point of the
line.    This may be overridden.

Topic
GSLineRel

Related
GSFixPos
GSMovePos
GSGetCurX
GSGetCurY
GSLineAbs

GSLinLog function
Draws lin/log graph

C/C++ int GSLinLog(double fxOrg, double fyOrg,
 double fCycleWid, double fBaseX,
 int nMode, int nClr)

FoxPro r = GSLinLog(fxOrg, fyOrg, fCycleWid, fBaseX, nMode,
 nClr)

Visual Basic r% = GSLinLog(fxOrg#, fyOrg#, fCycleWid, fBase#,
 nMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fCycleWid Width of one cycle (log base 10)
fBaseX Horizontal base of the graph at x = 0
nMode Constant Value Meaning

XYGLINE 1 Connects points with
lines

XYGSYMBOL 2 Draws symbols at
points

XYGSTICK 4 Draws vertical sticks to
points

XYGTHICK 16 Uses thick lines
XYGPATT 32 Uses patterned lines
XYGGROUPED 64 Multiple data-set mode

nClr Color of markers if you're graphing only one data
set.    With multiple data sets, you have to create a
color array. (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSLinLog function draws a lin/log graph.
The Y position of each point is the value in the fA array.    The X
position of each point is the log of the value in the fD array.
The graph may appear as lines, symbols, vertical sticks, or any
combination of these.
In single data-set mode, the values in the appropriate arrays are
applied on a per-point basis.    This means that a single data set
line graph can use a symbol or line style to differentiate each

point.    In multiple data-set mode, the arrays are applied on a per-
set basis to enable you to differentiate the data sets on the
graph.
Lines may be specified as patterned or thickened by means of the
nMode parameter.    In patterned mode the nPatt array is
presumed to contain a series of line style values specified from
the set LSSOLID, LSDOT, and so forth.    In thickened mode, the
values are presumed to specify the approximate thicknesses of
the lines in pixel units.

Specifying missing-data points
You can use the nAux array--through the GSDataAux function--to
flag points of a lin/log graph as "missing."    Missing points aren't
shown, whether or not you've provided values for them.    If you
use lines to connect points (nMode XYGLINE), the connecting
lines are omitted both to and from each missing point.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

GSDataTrans parameters for lin/log graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] Pointer to distance array (X positions of

plotted points)
nPatt[nPts] Pointer to array containing line style or

thickness for each line element--used only
with nMode XYGTHICK or XYGPATT

nSymbol[nPts] Pointer to array containing symbol design
for each point

nAux[nPts] Pointer to array containing missing-data flag
for each point

nClr[0] Not used

Multiple data sets

nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions of
plotted points)

nPatt[nGroup] Pointer to array containing line style or
thickness for each data set--used only with
nMode XYGTHICK or XYGPATT

nSymbol[nGroup] Pointer to array containing symbol design
for each data set

nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSLinLog

Related
GSLogLog
GSLogLin
GSXYGraph
Log functions:
GSGetALog10
GSGetLog10
GSGetALogE
GSGetLogE
Axis/grid/legend:
GSLogAxis
GSLogGrid
GSLegend
Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY

Array initialization:
GSDataTrans
GSDataAux
GSDataDist
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSLoadRFont function
Loads raster font

C/C++ int GSLoadRFont(int nFamily, int nAttrib, int nSize,
 int nPitch)

FoxPro r = GSLoadRFont(nFamily, nAttrib, nSize, nPitch)

Visual Basic r% = GSLoadRFont(nFamily%, nAttrib%, nSize%, nPitch%)

Parameters nFamily Constant Value Meaning
FOROMAN 1 Roman
FOSWISS 2 Swiss (Helvetica)
FOMODERN 3 Modern
FOSCRIPT 4 Script
FODECO 5 Decorative

nAttrib Constant Value Meaning
FOITALIC 16 Italic
FOBOLD 32 Bold
FOULINE 64 Underlined

nSize Size as a percentage of the size of the system font. 
For example, an nSize of 400 selects a font four
times the size of the system font.

nPitch Constant Value Meaning
FOFIXED 128 Fixed pitch (default is

variable)

Return values 0
-1

Success
Failure

Description The GSLoadRFont function loads a new raster character set into
the user buffer.    That set is used for any text whose character set
is specified as CSRASTER + CSUSER.
Windows itself selects the character set that best matches the
specification.    GSLoadRFont has no control over the matching
process.

Topic
GSLoadRFont

Related
GSRText
GSLabelnPie
GSLabelnX
GSLabelnY
GSLabelPie
GSLabelX
GSLabelY
GSLegend
GSSetRFontFace

GSLoadVFont function
Loads vector font

C/C++ int GSLoadVFont(int nFamily, int nAttrib, int nPitch)

FoxPro r = GSLoadVFont(nFamily, nAttrib, nPitch)

Visual Basic r% = GSLoadVFont(nFamily%, nAttrib%, nPitch%)

Parameters nFamily Constant Value Meaning
FOROMAN 1 Roman
FOSWISS 2 Swiss (Helvetica)
FOMODERN 3 Modern
FOSCRIPT 4 Script
FODECO 5 Decorative

nAttrib Constant Value Meaning
FOITALIC 16 Italic
FOBOLD 32 Bold
FOULINE 64 Underlined

nPitch Constant
FOFIXED

Value
128

Meaning
Fixed pitch (default is
variable)

Description The GSLoadVFont function loads a new vector character set into
the User buffer.    It will be used in any text function that specifies
CSUSER as its character set.
Windows itself selects the character set that best matches the
specification.        This function has no control over the matching
process.
Vector fonts are infinitely scalable.    The size of the printed text is
determined by a parameter in the function that draws it, not
when the font is loaded.

Topic
GSLoadVFont

Related
GSVText
GSLabelnPie

GSLabelnX
GSLabelnY
GSLabelPie
GSLabelX
GSLabelY
GSLegend
GSSetVFontFace

GSLogAxis function
Draws logarithmic axis

C/C++ int GSLogAxis(double fxOrg, double fyOrg, double fLen,
 double fTickLen, int nCycles, int nMode,
 int nStyle, int nClr)

FoxPro r = GSLogAxis(fxOrg, fyOrg, fLen, fTickLen, nCycles,
 nMode, nStyle, nClr)

Visual Basic r% = GSLogAxis(fxOrg#, fyOrg#, fLen#, fTickLen#,
 nCycles%, nMode%, nStyle%, nClr%)

Parameters fxOrg X origin

fyOrg Y origin

fLen Length of axis

fTickLen Length of ticks

nCycles Number of log cycles

nMode Constant Value Meaning
AXTICKOUT 0 Ticks on outside (left

on Y axis, bottom on X
axis)

AXTICKIN 1 Ticks strike through
the axis

AXTICKTHRU 2 Ticks on inside (right
on Y axis, top on X
axis)

AXISX 0 Draws in X direction
AXISY 4 Draws in Y direction

nStyle Line style (see Line style constants)

nClr Color of axis (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLogAxis function draws an axis in the X or Y direction with
ticks at logarithmic distances, 9 per cycle.

Topic
GSLogAxis

Related
GSAxis
GSLogGrid
GSGetALog10
GSGetLog10
GSGetALogE
GSGetLogE

GSLogGrid function
Draws logarithmic grid

C/C++ int GSLogGrid(double fxOrg, double fyOrg,
 double fAxisLen, double fGridLen,
 int nCycles, int nMode, int nStyle,
 int nClr)

FoxPro r = GSLogGrid(fxOrg, fyOrg, fAxisLen, fGridLen,
 nCycles, nMode, nStyle, nClr)

Visual Basic r% = GSLogGrid(fxOrg#, fyOrg#, fAxisLen#, fGridLen#,
 nCycles%, nMode%, nStyle%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fAxisLen Length of axis
fGridLen Length of grid
nCycles Number of log cycles
nMode Constant Value Meaning

GRX 0 Draws X grids (parallel
to Y axis)

GRY 1 Draws Y grids (parallel
to X axis)

GRNOFIRST 2 Omits the first grid line
GRNOLAST 3 Omits the last grid line

nStyle Line style (see Line style constants)
nClr Color of grid lines (see Color constants)

Return values 0
-1

Success
Failure

Description The GSLogGrid function draws grid lines at logarithmic intervals
(9 grids per cycle) along the X or Y axes, parallel to the Y or X
axis.
You can omit the first and last grid lines to avoid overdrawing
axes or frames.

Topic

GSLogGrid

Related
GSAxis
GSGrid
GSLogAxis
GSGetALog10
GSGetLog10
GSGetALogE
GSGetLogE

GSLogLin function
Draws log/lin graph

C/C++ int GSLogLin(double fxOrg, double fyOrg, double fInc,
 double fCycleHt, double fBaseVal,
 int nMode, int nClr)

FoxPro r = GSLogLin(fxOrg, fyOrg, fInc, fCycleHt, fBaseVal,
 nMode, nClr)

Visual Basic r% = GSLogLin(fxOrg#, fyOrg#, fInc#, fCycleHt#,
 fBaseVal#, nMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X or Y increment
fCycleHt Height of one cycle (log base 10)
fBaseVal Base value of the graph at y = 0
nMode Constant Value Meaning

XYGLINE 1 Connects points with
lines

XYGSYMBOL 2 Draws symbols at
points

XYGSTICK 4 Draws vertical sticks to
points

XYGVARX 8 Uses fD for X position
XYGTHICK 16 Uses thick lines
XYGPATT 32 Uses patterned lines
XYGGROUPED 64 Multiple data-set mode

nClr Color of markers if you're graphing only one data
set.    With multiple data sets, you have to create a
color array.    (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSLogLin function draws a log/lin graph.
The graph may appear as lines, symbols, vertical sticks, or any
combination of these.
In single data-set mode, the values in the appropriate arrays are
applied on a per-point basis.    This means that a single data set

line graph can use a symbol or line style to differentiate each
point.    In multiple data-set mode, the arrays are applied on a per-
set basis to enable you to differentiate the data sets on the
graph.
Lines may be specified as patterned or thickened by means of the
nMode parameter.    In patterned mode, the nPatt array is
presumed to contain a series of line style values specified from
the set LSSOLID, LSDOT, and so forth.    In thickened mode, the
values are presumed to specify the approximate thicknesses of
the lines in pixel units.
The data may be graphed either at fixed increments in X, as
defined by fInc, or using the individual X values passed in the fD
array.

Specifying missing-data points
You can use the nAux array--through the GSDataAux function--to
flag points of a log/lin graph as "missing."    Missing points aren't
shown, whether or not you've provided values for them.    If you
use lines to connect points (nMode XYGLINE), the connecting
lines are omitted both to and from each missing point.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

GSDataTrans parameters for log/lin graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] Pointer to distance array (X positions of

plotted points)--used only with nMode
XYGVARX

nPatt[nPts] Pointer to array containing line style or
thickness for each line element--used only
with nMode XYGTHICK or XYGPATT

nSymbol[nPts] Pointer to array containing symbol design
for each point

nAux[nPts] Pointer to array containing missing-data flag

for each point
nClr[0] Not used

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions of
plotted points)--used only with nMode
XYGVARX

nPatt[nGroup] Pointer to array containing line style or
thickness for each data set--used only with
nMode XYGTHICK or XYGPATT

nSymbol[nGroup] Pointer to array containing symbol design
for each data set

nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSLogLin

Related
GSLogLog
GSLinLog
GSXYGraph

Log functions:
GSGetALog10
GSGetLog10
GSGetALogE
GSGetLogE
Axis/grid/legend:
GSLogAxis
GSLogGrid

GSLegend
Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
GSDataAux
GSDataDist
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSLogLog function
Draws log/log graph

C/C++ int GSLogLog(double fxOrg, double fyOrg,
 double fCycleHt, double fBaseY,
 double fCycleWid, double fBaseX,
 int nMode, int nClr)

FoxPro r = GSLogLog(fxOrg, fyOrg, fCycleHt, fBaseY, fCycleWid,
 fBaseX, nMode, nClr)

Visual Basic r% = GSLogLog(fxOrg#, fyOrg#, fCycleHt#, fBaseY#,
 fCycleWid#, fBaseX#, nMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fCycleHt Height of one cycle (log base 10)
fBaseY Vertical base value of the graph at y = 0
fCycleWid Width of one cycle (log base 10)
fBaseX Horizontal base value of the graph at x = 0
nMode Constant Value Meaning

XYGLINE 1 Connects points with
lines

XYGSYMBOL 2 Draws symbols at
points

XYGSTICK 4 Draws vertical sticks to
points

XYGTHICK 16 Uses thick lines
XYGPATT 32 Uses patterned lines
XYGGROUPED 64 Multiple data-set mode

nClr Color of markers if you're graphing only one data
set.    With multiple data sets, you have to create a
color array.    (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSLogLog function draws a log/log graph.
The Y position of each point is the log of the value in the fA array. 
The X position of each point is the log of the value in the fD array.
The graph may appear as lines, symbols, vertical sticks, or any

combination of these.
In single data-set mode, the values in the appropriate arrays are
applied on a per-point basis.    This means that a single data set
line graph can use a symbol or line style to differentiate each
point.    In multiple data-set mode, the arrays are applied on a per-
set basis to enable you to differentiate the data sets on the
graph.
Lines may be specified as patterned or thickened by means of the
nMode parameter.    In patterned mode, the nPatt array is
presumed to contain a series of line style values specified from
the set LSSOLID, LSDOT, and so forth.    In thickened mode, the
values are presumed to specify the approximate thicknesses of
the lines in pixel units.
The data may be graphed either at fixed increments in X, as
defined by fInc, or using the individual X values passed in the fD
array.

Specifying missing-data points
You can use the nAux array--through the GSDataAux function--to
flag points of a log/log graph as "missing."    Missing points aren't
shown, whether or not you've provided values for them.    If you
use lines to connect points (nMode XYGLINE), the connecting
lines are omitted both to and from each missing point.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

GSDataTrans parameters for log/log graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions of

points)
fD[nPts] Pointer to distance array (X positions of

points)
nPatt[nPts] Pointer to array containing line style or

thickness for each line element--used only
with nMode XYGTHICK or XYGPATT

nSymbol[nPts] Pointer to array containing symbol design

for each point
nAux[nPts] Pointer to array containing missing-data flag

for each point
nClr[0] Not used

Multiple data sets

nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions of

points)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions of
points)

nPatt[nGroup] Pointer to array containing line style or
thickness for each data set--used only with
nMode XYGTHICK or XYGPATT

nSymbol[nGroup] Pointer to array containing symbol design
for each data set

nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSLogLog

Related
GSLinLog
GSLogLin
GSXYGraph
Log functions:
GSGetALog10
GSGetLog10
GSGetALogE
GSGetLogE
Axis/grid/legend:
GSLogAxis

GSLogGrid
GSLegend
Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
GSDataAux
GSDataDist
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSMClrRgn function
Clears mouse hot region

C/C++ int GSMClrRgn(int nRgn)

FoxPro r = GSMClrRgn(nRgn)

Visual Basic r% = GSMClrRgn(nRgn%)

Parameter nRgn Hot region number

Return values 0
-1

Success
Failure

Description The GSMClrRgn function clears the specified mouse hot region,
previously defined in the current window.
The function doesn't clear any visible representation of the hot
region produced by GSPolyFill.

Topic
GSMClrRgn

Related
GSMSetRgn
GSPolyFill
GSMNotify
GSMStatus

GSMean function
Draws mean of data set

C/C++ int GSMean(int nStyle, int nClr)

FoxPro r = GSMean(nStyle, nClr)

Visual Basic r% = GSMean(nStyle%, nClr%)

Parameters nStyle Line style (see Line style constants)
nClr Line color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSMean function draws a line representing the mean of a
data set.    The mean is drawn relative to the origin of the
immediately preceding graphing function.
The line is clipped within a window defined by the GSStatsWin
function.

Topic
GSMean

Related
GSSD
GSGetMean
GSStatsWin
GSStatsArr
GSMinMax

GSMGetX function
Gets mouse X position

C/C++ double GSMGetX()

FoxPro r = GSMGetX()

Visual Basic r# = GSMGetX()

Return values 0 or greater
-1

X position of the mouse pointer in view units
Failure

Description The GSMGetX function returns the X position of the mouse pointer
as frozen by a preceding GSMStatus call.
The mouse position is returned in the view units of the current
view.    The option of overlapping views means that a single
position of the mouse pointer may relate to a different logical
position in each view.    To obtain the mouse position in the units
of another view, make a preceding GSUseView call to select the
view.    This procedure may be repeated to obtain the position in
as many views as required.
A negative position indicates that the mouse pointer is outside
the logical bounds of the current view.

Topic
GSMGetX

Related
GSMGetY
GSMStatus
GSUseView
GSMNotify

GSMGetY function
Gets mouse Y position

C/C++ double GSMGetY()

FoxPro r = GSMGetY()

Visual Basic r# = GSMGetY()

Return values 0 or greater
-1

Y position of the mouse pointer in view units
Failure

Description TheGSMGetY function returns the Y position of the mouse pointer
as frozen by a preceding GSMStatus call.
The mouse position is returned in the view units of the current
view.    The option of overlapping views means that a single
position of the mouse pointer may relate to a different logical
position in each view.    To obtain the mouse position in the units
of another view, make a preceding GSUseView call to select the
view.    This procedure may be repeated to obtain the position in
as many views as required.
A negative position indicates that the mouse pointer is outside
the logical bounds of the current view.

Topic
GSMGetY

Related
GSMGetX
GSMStatus
GSUseView
GSMNotify

GSMinMax function
Draws minimum and maximum of data set

C/C++ int GSMinMax(int nStyle, int nClr)

FoxPro r = GSMinMax(nStyle, nClr)

Visual Basic r% = GSMinMax(nStyle%, nClr%)

Parameters nStyle Line style (see Line style constants)
nClr Line color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSMinMax function draws lines representing the minimum
and maximum of a data set.    These lines are calculated relative
to the origin of the immediately preceding graphing function.
The lines are clipped within a window defined by the GSStatsWin
function.

Topic
GSMinMax

Related
GSMean
GSSD
GSStatsWin

GSMissingLineStyle function
Selects options for bridging gaps caused by missing data

C/C++ int GSMissingLineStyle(int nMode, int nSize
 [,int *nPatt, int *nClr])

FoxPro r = GSMissingLineStyle(nMode, nSize [, @nPatt(1),
 @nClr(1)])

Visual Basic r% = GSMissingLineStyle(nMode%, nSize% [, nPatt%(0),
 nClr%(0)])

Parameters nMode Constant Value Meaning
MLSOMIT 0 No bridging lines (default)
MLSSAMESTYLE 1 Bridge with line style of the

graph
MLSPATTERNED 2 Bridge with patterned lines
MLSTHICK 3 Bridge with thick lines

nSize If nMode is 2 or 3, size of nPatt and nClr arrays.
Otherwise, zero.

nPatt Line pattern array. Required when nMode is 2 or 3.
nClr Line color array. Required when nMode is 2 or 3.

Return values 0
-1

Success
Failure

Description If you have incomplete sets of data, or sets in which the values of
certain data points are unknown, you can flag points as missing
by calling the GSDataAux    function. When the graph type is line,
or any log variant of line, missing points cause a gap in the line.
The GSMissingLineStyle function sets options for bridging gaps
left by missing points.
nMode = 0      No bridging lines. This is the default, and it is what
you get if you do not call GSMissingLineStyle(). However, if you
have called the function and then later want to show gaps, this
option will turn off bridging lines.
Set nSize to 0. Arrays for nPatt and nClr are ignored and can be
omitted from the call.
nMode = 1      Bridge gaps by continuing the data line in the
same style and color.
Set nSize to 0. Arrays for nPatt and nClr are ignored and can be
omitted from the call.
nMode = 2      Bridge gaps with a line in a pattern and color of
your choice. You can use the same pattern and color for all data
sets, or you can select a different pattern and color for each data
set.
To use the same pattern and color for all data sets, set nSize to 1.

Dimension the nPatt array for one element and store the pattern
number in it. Dimension nClr for one element and store the line
color.
To use different patterns for each data set, nSize must be equal to
the number of data groups for the primary graph plus the number
of groups for overlay graphs. Dimension nPatt and nClr to nSize
elements. Store a pattern number for each group in nPatt and a
line color in nClr.
Six line patterns are available. See line style constants for a list.
Colors are specified as color index numbers. See color constants
for a list. If a color value of -1 is passed, the bridging line is drawn
in the color of the graph line.
nMode = 3      Bridge gaps with a line in a thickness and color of
your choice.    You can use the same thickness and color for all
data sets, or you can select a different thickness and color for
each data set.
The procedure is the same as for nMode 2. Line thickness is
specified in pixels. Values can range from 1 to 5.

Topic
GSMissingLineStyle

Related
GSDataAux
GSDataTrans

GSMMotion function
Reads mouse motion indicator

C/C++ int GSMMotion()

FoxPro r = GSMMotion()

Visual Basic r% = GSMMotion()

Return values 0
nonzero

False--no mouse movement since last call
True--mouse has moved since last call

Description The GSMMotion function returns a non-zero value if the mouse
has moved within the client area of the current window since the
last time it was called.
Movement of the mouse outside the client area of a window can't
be detected.
GSMStatus must be called before reading back actual position
information.
You shouldn't call GSMMotion in a loop waiting for the mouse to
move.    Calling GSMNotify with mode MNTRACK provides the
means of monitoring mouse movement asynchronously through
the application message queue.    GSMStatus must continue to be
called to freeze mouse position information but only in response
to mouse MNTRACK event messages.

Topic
GSMMotion

Related
GSMStatus
GSMNotify

GSMNotify function
Enables and disables notification of mouse events

C/C++ int GSMNotify(HWND hWnd, int nMsg, int nMode)

FoxPro r = GSMNotify(hWnd, nMsg, nMode)

Visual Basic r% = GSMNotify(hWnd%, nMsg%, nMode%)

Parameters hWnd Client notification window handle (in FoxPro, always
a null string)

nMsg Client window message number (in FoxPro, always
a null string)

nMode Constant Value Meaning
MNTRACK 1 Mouse cursor movement
MNPRESS 2 Button press and release
MNHIT 4 Button press in predefined

region
MNHITPT 8 Button press on point in hot

graph

Return values 0
nonzero

False--no mouse present
True--a mouse is present

Description The GSMNotify function enables and disables asynchronous
notification of mouse events for a particular window.    Once you
call this function (assuming a mouse is present), the application is
ready to receive mouse event messages in the window procedure
for that window.
The first two parameters specify the Windows handle of the
window where mouse event messages should be posted and the
unique window-message number.    The message number should
be identified within the window procedure for the notified window.
The nMode settings are additive--for example, MNTRACK |
MNPRESS notifies the window of movement as well as button
actions.    Each call to GSMNotify for a particular window replaces
the modes previously in effect.    To end event notification
completely, call GSMNotify with all three parameters set to zero.
Each graphing window can have different event notifications in
force.    GSMNotify always acts on the current window.    To change
the current window, use the GSUseView function.
A mouse event message is posted in the following form:
ParameterType Meaning
hWnd HWND The Windows handle of the notified window as

originally specified to GSMNotify
uMsg UINT The Windows message number as originally

specified to GSMNotify
wParam UINT The type of window event, which is one of the

nEvents settings originally specified to
GSMNotify.    Note that although events may
be enabled together, they are always notified
individually.

lParam LONG Event qualifying information
Constant Value Meaning
MNTRACK 1 No information is supplied.
MNPRESS 2 The low-order word

contains a numeric value
indicating which mouse
buttons, if any, are
pressed.    Values are the
same as for GSMStatus
and may be combined.   
Zero indicates that all the
buttons are released.   
The high-order word isn't
used.

MNHIT 4 The low-order word
contains a numeric value
indicating which mouse
button was pressed in the
region.    Values are the
same as for GSMStatus
but aren't combined.
The high-order word
contains a number
identifying the region in
which the button was
pressed.    The same
region number will have
been returned in an earlier
GSMSetRgn call.

MNHITPT 8 The low-order word
contains the zero-based
point index number of the
point clicked on the graph.
The high-order word
contains the zero-based
set index number.

Example The following example illustrates how to open a graphing window
and enable it for mouse event notification:
#define WM_MOUSEEVENT (WM_USER + 1)
double ScreenWid, ScreenHt;

int WinNum;
ScreenWid = GSGetSXExt();
ScreenHt = GSGetSYExt();
WinNum = GSOpenWin(0.10 * ScreenWid,
 0.10 * ScreenHt,
 0.50 * ScreenWid,
 0.50 * ScreenHt,
 1000, 0, OWMFIXED,
 "Graphing window");
if (WinNum < 0) {
 /* GSOpenWin failed */
}
/* enable mouse event notification */
GSMNotify(hWndHdlr, WM_MOUSEEVENT, MNTRACK |
 MNPRESS);
The window procedure for the window hWndHdlr might contain
this:
LONG WndHdlr_WndProc(HWND hWnd, UINT uMsg, UINT
 wParam, LONG lParam)
{
switch (uMsg) {
case WM_MOUSEEVENT:
/* the user caused a mouse event so see what type
 it is */
 switch (wParam) {
case MNTRACK:
/* a tracking event etc. */
case MNPRESS:
 /* a button press or release event etc. */
}
}
}

Topic
GSMNotify

Related
GSMStatus
GSMMotion
GSMGetX
GSMGetY
GSMSetRgn
GSMClrRgn
GSUseView
GSHotGraph

GSMovePos function
Moves current position

C/C++ int GSMovePos(double fxr, double fya, int nMode)

FoxPro r = GSMovePos(fxr, fya, nMode)

Visual Basic r% = GSMovePos(fxr#, fya#, nMode%)

Parameters fxr X relative or radius
fya Y relative or angle
nMode Constant Value Meaning

0 fxr, fya are X and Y
distances

MPPOLAR 1 fxr, fya are polar
radius and angle

Return values 0
-1

Success
Failure

Description The GSMovePos function moves the current position by a relative
amount.    You can specify the relative position either in Cartesian
(X,Y) coordinates or in polar (radius and angle) notation.

Topic
GSMovePos

Related
GSFixPos
GSLineRel
GSGetCurX
GSGetCurY
GSPolyFill
GSPolyVec

GSMPtrOff function
Turns off mouse pointer

C/C++ int GSMPtrOff()

FoxPro r = GSMPtrOff()

Visual Basic r% = GSMPtrOff()

Return values 0
-1

Success
Failure

Description The GSMPtrOff function turns off the mouse pointer used for the
client area of the current window.    The pointer can later be
restored using GSMPtrOn.
The status of the mouse pointer used anywhere outside the client
area of a window can't be changed.

Topic
GSMPtrOff

Related
GSMPtrOn
GSMPtrType

GSMPtrOn function
Turns on mouse pointer

C/C++ int GSMPtrOn()

FoxPro r = GSMPtrOn()

Visual Basic r% = GSMPtrOn()

Return values 0
-1

Success
Failure

Description The GSMPtrOn function turns on the mouse pointer used for the
client area of the current window.
The status of the mouse pointer used anywhere outside the client
area of a window can't be changed.
The mouse pointer is always turned on for a new window when
it's opened.

Topic
GSMPtrOn

Related
GSMPtrOff
GSMPtrType

GSMPtrType function
Defines mouse pointer shape

C/C++ int GSMPtrType(int nType)

FoxPro r = GSMPtrType(nType)

Visual Basic r% = GSMPtrType(nType%)

Parameter nType Constant Value Meaning
MCARROW 0 Standard oblique arrow
MCIBEAM 1 Text I-beam
MCWAIT 2 Hourglass
MCCROSS 3 Crosshair
MCUPARROW 4 Vertical arrow
MCSIZE 5 Four-pointed

horizontal/vertical arrow
MCICON 6 Empty icon
MCSIZENWSE 7 Two-pointed oblique

arrow
MCSIZENESW 8 Two-pointed oblique

arrow
MCSIZEWE 9 Two-pointed horizontal

arrow
MCSIZENS 10 Two-pointed vertical

arrow

Return values 0
-1

Success
Failure

Description The GSMPtrType function sets the shape of the mouse pointer
used for the client area of the current window to one of a range of
system pointer shapes.
The shape of the mouse pointer used anywhere outside the client
area of a window can't be changed.
A standard oblique arrow pointer is automatically selected for a
new window when it's opened.

Topic
GSMPtrType

Related
GSMPtrOn
GSMPtrOff

GSMSetRgn function
Defines mouse hot region

C/C++ int GSMSetRgn(double fxr, double fya, int nMode,
 double fAng)

FoxPro r = GSMSetRgn(fxr, fya, nMode, fAng)

Visual Basic r% = GSMSetRgn(fxr#, fya#, nMode%, fAng#)

Parameters fxr X origin or radius
fya Y origin or angle
nMode Function mode
fAng Angle of rotation

Return values 0 or greater
-1

Mouse hot region number
Failure

Description The GSMSetRgn function defines a mouse hot region in the
current window from a number of connected points defined in the
amplitude array, fA.
Frequently, you'll want your application to be aware of mouse
clicks only when they occur in selected regions of a graphing
window.    These mouse-sensitive regions are called "hot regions."
GSMSetRgn defines a region of the current window as a mouse
hot region.    A hot region number is returned that uniquely
identifies the new region in the window.    Once a region is
defined, it's automatically monitored and the application is
notified with an MNHIT mouse event message whenever a mouse
click occurs within the boundary.    To enable mouse notification,
you have to call the GSMNotify function with a mode of MNHIT.
Hot regions can overlap in a window.    When a button is pressed
in an area of overlapping regions, an MNHIT event is notified for
each region.
If you want a hot region to be visible, you can follow the
GSMSetRgn call with a call to the GSPolyFill function, using the
same first four parameters and the same point data.
To clear a hot region, use the GSMClrRgn function.

GSDataTrans parameters for hot regions
nPts Number of points per data set (no limit)
nGroup Number of data sets (always 2)
fA[nPts][nGroup] Pointer to amplitude array (first set contains X

positions of points or vector lengths, second

set contains Y positions of points or vector
angles)

fD[0] Not used
nPatt[0] Not used
nSymbol[0] Not used
nAux[0] Not used
nClr[0] Not used

Topic
GSMSetRgn

Related
GSMClrRgn
GSMNotify
GSPolyFill
GSMStatus

GSMStatus function
Reads mouse button status

C/C++ int GSMStatus()

FoxPro r = GSMStatus()

Visual Basic r% = GSMStatus()

Return values 0
1
2
3

FALSE--no buttons pressed
MBLEFT--left button pressed
MBMIDDLE--middle button pressed
MBRIGHT--right button pressed

Description The GSMStatus function returns a numeric value indicating which
mouse buttons are pressed.    Values may be combined.    For
example, MBLEFT + MBRIGHT means the left and right buttons
are pressed together.
Concurrent with this it freezes the position information returned
using GSMGetX and GSMGetY.    This is to achieve synchronism
between the time a button is pressed and the position that is
recorded.
The status of a mouse button pressed outside the client area of a
window can't be read.
GSMStatus must be called before reading back actual position
information.
You shouldn't call GSMStatus in a loop waiting for button status to
change.    Calling GSMNotify with mode MNPRESS provides the
means of monitoring button status changes asynchronously
through the application message queue.    GSMStatus must
continue to be called to freeze mouse position information but
only in response to mouse MNPRESS event messages.
For the means of monitoring button presses in precise regions of
the client area, refer to GSMNotify with mode MNHIT and
functions GSMSetRgn and GSMClrRgn.

Topic
GSMStatus

Related
GSMNotify
GSMSetRgn
GSMClrRgn
GSMGetX

GSMGetY
GSMMotion

GSOffView function
Turns off view

C/C++ int GSOffView(int nWin, int nView)

FoxPro r = GSOffView(nWin, nView)

Visual Basic r% = GSOffView(nWin%, nView%)

Parameters nWin Window number

nView View number

Return values 0
-1

Success
Failure

Description The GSOffView function temporarily turns off a view, making it
invisible.    It may later be made visible using GSOnView.
Any view may be made invisible.    This may be useful, for
example, when printing a portion of a window on a hard copy
device.

Topic
GSOffView

Related
GSOnView
GSUseView
GSCloseView
GSPrnOut

GSOnView function
Turns on view

C/C++ int GSOnView(int nWin, int nView)

FoxPro r = GSOnView(nWin, nView)

Visual Basic r% = GSOnView(nWin%, nView%)

Parameters nWin Window number

nView View number

Return values 0
-1

Success
Failure

Description The GSOnView function turns on a view that has previously been
turned off using GSOffView.

Topic
GSOnView

Related
GSCloseView
GSOffView
GSUseView

GSOpenChildWin function
Opens graphing window as child of another window

C/C++ int GSOpenChildWin(HWND hWndParent, double fxOrg,
 double fyOrg, double fWid,
 double fHt, double fyExt,
 int nStyle, int nMode,
 char szTitle)

FoxPro r = GSOpenChild(hWndParent, fxOrg, fyOrg, fWid, fHt,
 fyExt, nStyle, nMode, szTitle)

Visual Basic r% = GSOpenChildWin(hWndParent%, fxOrg#, fyOrg#, fWid#,
 fHt#, fyExt#, nStyle%, nMode%,
 szTitle$)

Parameters hWndParent Parent window handle
fxOrg Bottom left X origin
fyOrg Bottom left Y origin
fWid External width of window
fHt External height of window
fyExt Logical Y extent of view 0
nStyle Style of window

Constant Value Meaning
OWSTHICKFRAME 1 Includes a thick sizing

frame around the
window.    By default,
the window has no
sizing frame and can't
be resized by the user. 
Specifying
OWSTHICKFRAME
implies style
OWSBORDER.

OWSBORDER 2 Includes a single-line
black border around
the window

OWSHSCROLL 4 Includes a horizontal
scroll bar

OWSVSCROLL 8 Includes a vertical
scroll bar

OWSMAXIMIZEBOX 16 Includes a maximize
box in the window
caption bar

OWSMINIMIZEBOX 32 Includes a minimize
box in the window

caption bar
OWSSETFOCUS 64 Sets the input focus to

the graphing window
after it has opened.   
By default, the input
focus is left with the
window that currently
has it.

OWSHIDDEN 128 Opens a hidden
window

OWSSYSMENU 256 Includes a system
menu in the window
caption bar

OWSCAPTION 512 Includes the window
caption bar.    Without
this option, the system
menu, minimize box,
and maximize box are
omitted and the user
can't move the
window.

OWSCLIPCHILDREN 1024 When drawing in the
client area of this
graphing window, clips
any output that falls in
an area occupied by a
child window.   
Applicable to a   
window if you
subsequently intend to
make it the parent of
another window.

OWSCLIPSIBLINGS 2048 When drawing in the
client area of this
graphing window, clips
any output that falls in
an area occupied by
another child window.

OWSTRANSPARENT 4096 Opens a transparent
window.    Graphics
Server won't draw a
background in the
window, so any detail
underneath shows
through.

nMode Method for scaling view contents of window when
window size changes
Constant
OWMFIXED

Value
0

Meaning
The view isn't rescaled to
fit the new window area.   

An unused margin, or
clipping, may be apparent
at both the top and right-
hand edges.    Both the
horizontal and vertical
scroll bars, if specified,
may be activated.

OWMFITHORZ 1 The view is rescaled to
give an exact fit to the
new window width.    The
original view aspect ratio
is maintained.    An unused
margin, or clipping, may
appear at the top edge.     
The vertical scroll bar, if
specified, may be
activated.

OWMFITVERT 2 The view is rescaled to
give an exact fit to the
new window height.      The
original view aspect ratio
is maintained.    An unused
margin, or clipping, may
appear at the right-hand
edge.    The horizontal
scroll bar, if specified,
may be activated.

OWMFITBOTH 3 The view is rescaled so all
of it is visible in the new
window area.    The
original view aspect ratio
is maintained.    An unused
margin may appear at
either the top or right-
hand edge.    The view is
never clipped and scroll
bars, if specified, are
never activated.

OWMFITOPT 4 The view is rescaled to the
best fit between the
original view aspect ratio
and new aspect ratio of
the window area.   
Clipping may occur at
either the top or right-
hand edges.    Either the
horizontal or vertical scroll
bar, if specified, may be
activated.

OWMFLEXIBLE 5 The view extents are
adjusted to reflect the
new window area.

OWMCENTRED 256 In situations when an
unused margin is
apparent, the view is
centered so that an equal
margin appears at the top
and bottom or left and
right of the view.    This
mode is additive and may
be applied to any of the
other fitting modes,
although the effect may
not be apparent in all
cases.

szTitle Window name

Return values 0 or greater
-1

Window number of the graphing child window
Failure

Description The GSOpenChildWin function opens a new graphing window as
the child of another window and returns a number by which it
may be referenced.
When a window is first opened, it becomes the current window.
If you have more than one graphing window open, the GSUseView
function is used to select between them.
The first parameter of this function is the Windows handle of the
parent window.
The next four parameters define the position and size of the
rectangular window in the client area of the parent.    The units
these are expressed in are called anchor units.    The anchor
space is a device-independent coordinate system, defined by
Graphics Server to map the whole client area of the parent
window.
The width and height of the parent client area, in anchor units,
may be obtained by calling GSGetAXExt and GSGetAYExt.    The
ratio of these dimensions is called the aspect ratio and depends
on the shape of the parent client area.    A window also has an
aspect ratio that may or may not reflect the aspect ratio of the
parent.    Typically, a graphing child window is positioned and
sized using proportions of the dimensions of the parent anchor
space.
When a graphing child window is opened, view 0 is automatically
opened and is ready for drawing in.    View 0, which is also called
the default view, occupies the entire client area of the graphing
window.    The interior of view 0, and hence the client area of the
window, is mapped by a logical view coordinate system.    The
units of this view coordinate system are the ones you use to
position and size graphical objects.    You choose the height of
your view 0 coordinate space with the fyExt parameter.    Graphics
Server calculates the width of the coordinate space based on the

aspect ratio of the window.

Window fitting options
With most of the nMode fitting options the extents and aspect
ratio of the view coordinate space are fixed on opening the
window and don't reflect subsequent changes in the size and
shape of the window.    The fitting mode OWMFLEXIBLE, however,
ensures that the extents and aspect ratio of your view coordinate
system can be kept consistent with those of the window.    The
initial view extents are based on the aspect ratio of the window at
the time of opening, but are subsequently adjusted whenever the
size and shape of the window is changed.
In many other aspects, the OWMFLEXIBLE fitting mode behaves
the same as OWMFIXED.    Unless you redraw it, your image won't
change size and an unused margin, or clipping, may be apparent
on the new outline of the window.    The scroll bar styles,
OWSHSCROLL and OWSVSCROLL, aren't supported in windows
opened in OWMFLEXIBLE mode.

Example The following example illustrates opening a graphing child
window.
double ClientWid, ClientHt;
int WinNum;
/* hWndParent is the handle of the prospective parent window
*/
ClientWid = GSGetAXExt(hWndParent);
ClientHt = GSGetAYExt(hWndParent);
WinNum = GSOpenChildWin(hWndParent,
 0.10 * ClientWid,
 0.10 * ClientHt,
 0.50 * ClientWid,
 0.50 * ClientHt,
 1000, 0, OWMFIXED,
 "");
if (WinNum < 0) {
 /* GSOpenChildWin failed */
}
This example specifies that the new window is 50% of the parent
client area width wide and 50% of the client area height high.   
The bottom left corner of the window is located 10% of the width
in and 10% of the height up from the bottom left corner of the
parent client area.

Topic
GSOpenChildWin

Related
GSOpenWin
GSCloseWin
GSOpenView
GSUseView
GSGetAXExt
GSGetAYExt
GSWinHandle
GSWinNotify
GSWinPaint
Server:
GSCloseServer
GSOpenServer

GSOpenPrn function
Opens printer for current window

C/C++ int GSOpenPrn(char szDevice, char szFile, int nMode)

FoxPro r = GSOpenPrn(szDevice, szFile, nMode)

Visual Basic r% = GSOpenPrn(szDevice$, szFile$, nMode%)

Parameters szDevice Printer device name.    If szDevice is a null string,
the default printer shown in the [devices] section
of the WIN.INI file is opened.

szFile File name.    If szFile is a null string, output is
directed to the port assigned to the device in the
WIN.INI file.

nMode Constant Value Meaning
PRNSETMODE 1 Shows the print setup

dialog to enable the
user to configure the
device

PRNPORTRAIT 2 Prints in portrait
mode

PRNLANDSCAPE 4 Prints in landscape
mode

PRNSETMODECANCEL 8 Aborts the print setup
dialog if the Cancel
button is pressed

Return values 0
-1

Success
Failure

Description The GSOpenPrn function opens a printer device associated with
the current window and optionally directs output to a named file.
PRNSETMODECANCEL operates as PRNSETMODE, but returns FAIL
if the Cancel button is pressed. This enables printing to be
conditionally aborted.
Note that this feature works in Windows 3.1 but not in Windows
95. In the latter case, both OK and Cancel return FAIL if nothing
has been changed in the dialog. This is in line with its meaning,
which is not an OK/Cancel of print but rather OK/Cancel the
dialog.

Example The following example illustrates how to open the default printer
to print the current window in landscape mode:
if (GSOpenPrn("", "", PRNSETMODE) == SUCCESS){

 /* printer opened successfully so go ahead
 and print the current window */
 GSPrnOut(0, 1, PRNWINDOW | PRNFF);
 GSClosePrn();
{
else {
 /* unable to open the default printer */
}

The following example illustrates how to open a specific printer
and present the user with the print setup dialog so that the
printing options can be chosen at run time:
if (GSOpenPrn("HP LaserJet Series II", "",
 PRNSETMODE) == SUCCESS) {
 /* printer opened successfully so go ahead
 and print the current window */
 GSPrnOut(0, 1, PRNWINDOW | PRNFF);
 GSClosePrn();
{
else {
 /* unable to open the default printer */
}

Topic
GSOpenPrn

Related
GSClosePrn
GSGetPrnWid
GSGetPrnHt
GSPrnSetup
GSPrnOut

GSOpenServer function
Opens connection to Graphics Server

C/C++ int GSOpenServer(char szKey, char szHost)

FoxPro r = GSOpenServer(szKey, szHost)

Visual Basic r% = GSOpenServer(szKey$, szHost$)

Parameters szKey Run-time DLL key (always a null string)
szHost String Meaning

"C" Show Graphics Server icon on desktop
"HC" Don't show Graphics Server icon

Return values 0
-1

Success
Failure

Description The GSOpenServer function opens a connection with Graphics
Server.    You have to call it before executing any graphics
functions.

Topic
GSOpenServer

Related
GSCloseServer
GSCloseWin

GSOpenView function
Opens view

C/C++ int GSOpenView(int nWin, double fxOrg, double fyOrg,
 double fWid, double fHt, double fyExt)

FoxPro r = GSOpenView(nWin, fxOrg, fyOrg, fWid, fHt, fyExt)

Visual Basic r% = GSOpenView(nWin%, fxOrg#, fyOrg#, fWid#, fHt#,
 fyExt#)

Parameters nWin Number of window in which to open the view
fxOrg X bottom left
fyOrg Y bottom left
fWid Width of view
fHt Height of view
fyExt Y extent (height) of view coordinate space.   

Graphics Server calculates the width of the
coordinate space based on the aspect ratio of the
view.    Different views may have quite different
view coordinate spaces.

Return values 1 or greater
-1

View number
Failure

Description The GSOpenView function opens a new view within a window,
returning a view number that identifies it.
When a window is first opened by the GSOpenWin function, view
0 is automatically opened and is ready for drawing.
When a new view is opened, it immediately becomes the current
view. Drawing may proceed immediately.
If other views are open, use the GSUseView function to select the
view you want to be current.
The four parameters after nWin define the position and size of the
rectangular view in the graphing window.    These are expressed in
anchor units.    Anchor space is a device-independent coordinate
system, defined by Graphics Server to map the whole client area
of the graphing window.
The width and height of the graphing window client area, in
anchor units, may be obtained by calling GSGetWXExt and
GSGetWYExt.    The ratio of these dimensions is called the aspect
ratio and depends on the shape of the graphing window client
area.
A view also has an aspect ratio, which may or may not reflect the
aspect ratio of the graphing window.    Typically, a view is

positioned and sized using proportions of the dimensions of the
graphing window anchor space.
The interior of the new view is mapped by a logical view
coordinate system.    The units of this view coordinate system are
the ones you use to position and size graphical objects.   
Within a view, units in X and Y are always the same size (the units
are isotropic).

Topic
GSOpenView

Related
GSClearView
GSCloseView
GSGetVXExt
GSGetVYExt
GSOffView
GSOnView
GSUseView
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin
Server:
GSCloseServer
GSOpenServer

GSOpenWin function
Opens graphing window

C/C++ int GSOpenWin(double fxOrg, double fyOrg, double fWid,
 double fHt, double fyExt, int nStyle,
 int nMode, char szTitle)

FoxPro r = GSOpenWin(fxOrg, fyOrg, fWid, fHt, fyExt, nStyle,
 nMode, szTitle)

Visual Basic r% = GSOpenWin(fxOrg#, fyOrg#, fWid#, fHt#, fyExt#,
 nStyle%, nMode%, szTitle$)

Parameters fxOrg Bottom left X origin
fyOrg Bottom left Y origin
fWid External width of window
fHt External height of window
fyExt Logical Y extent of view 0
nStyle Style of window

Constant Value Meaning
OWSTHICKFRAME 1 Includes a thick sizing

frame around the
window.    By default,
the window has no
sizing frame and can't
be resized by the user. 
Specifying
OWSTHICKFRAME
implies style
OWSBORDER.

OWSBORDER 2 Includes a single-line
black border around
the window

OWSHSCROLL 4 Includes a horizontal
scroll bar

OWSVSCROLL 8 Includes a vertical
scroll bar

OWSMAXIMIZEBOX 16 Excludes the default
maximize box in the
window caption bar

OWSMINIMIZEBOX 32 Excludes the default
minimize box in the
window caption bar

OWSSETFOCUS 64 Sets the input focus to
the graphing window
after it has opened.   

By default, the input
focus is left with the
window that currently
has it.

OWSHIDDEN 128 Opens a hidden
window

OWSSYSMENU 256 Excludes the default
system menu in the
window caption bar

OWSCLIPCHILDREN 1024 When drawing in the
client area of this
graphing window, clips
any output that falls in
an area occupied by a
child window.   
Applicable to a   
window if you
subsequently intend to
make it the parent of
another window.

OWSTRANSPARENT 4096 Open a transparent
window.    Graphics
Server won't draw a
background in the
window, so any detail
underneath shows
through.

nMode Method for scaling view contents of window when
window size changes
Constant Value Meaning
OWMFIXED 0 The view isn't rescaled to

fit the new window area.   
An unused margin, or
clipping, may be apparent
at both the top and right-
hand edges.    Both the
horizontal and vertical
scroll bars, if specified,
may be activated.

OWMFITHORZ 1 The view is rescaled to
give an exact fit to the
new window width.    The
original view aspect ratio
is maintained.    An unused
margin, or clipping, may
be apparent at the top
edge.      The vertical scroll
bar, if specified, may be
activated.

OWMFITVERT 2 The view is rescaled to
give an exact fit to the

new window height.      The
original view aspect ratio
is maintained.    An unused
margin, or clipping, may
be apparent at the right-
hand edge.    The
horizontal scroll bar, if
specified, may be
activated.

OWMFITBOTH 3 The view is rescaled so all
of it is visible in the new
window area.    The
original view aspect ratio
is maintained.    An unused
margin may be apparent
at either the top or right-
hand edge.    The view is
never clipped and scroll
bars, if specified, are
never activated.

OWMFITOPT 4 The view is rescaled to the
best fit between the
original view aspect ratio
and new aspect ratio of
the window area.     
Clipping may be apparent
at either the top or right-
hand edges.    Either the
horizontal or vertical scroll
bar, if specified, may be
activated.

OWMFLEXIBLE 5 The view extents are
adjusted to reflect the
new window area.

OWMCENTERD 256 In situations when an
unused margin is
apparent, the view is
centered so that an equal
margin appears at the top
and bottom or left and
right of the view.    This
mode is additive and may
be applied to any of the
other fitting modes,
although the effect may
not be apparent in all
cases.

szTitle Window name

Return values 0 or greater
-1

Window number of the graphing window
Failure

Description The GSOpenWin function opens a new graphing window and
returns a number by which it may be referenced.
When a window is first opened, it becomes the current window.   
If you have more than one graphing window open, use the
GSUseView function to select between them.
The first four parameters of this function define the position and
size of the rectangular window on the display.    The coordinates
and size are expressed in anchor units.    Anchor space is a
device-independent coordinate system defined by Graphics
Server to enable graphing windows to be opened without
recourse to device units, such as pixels.
The width and height of the display, in anchor units, may be
obtained by calling GSGetSXExt and GSGetSYExt.    The ratio of
these dimensions is called the aspect ratio and depends on the
type of display adapter you're using.    A window also has an
aspect ratio, which may or may not reflect the aspect ratio of the
display.    Typically, a graphing window is positioned and sized
using proportions of the dimensions of the anchor space.
When a graphing window is opened, view 0 is automatically
opened and is ready for drawing in.    View 0, which is also called
the default view, occupies the entire client area of the graphing
window.    The interior of view 0, and hence the client area of the
window, is mapped by a logical view coordinate system.    The
units of this view coordinate system are the ones you use to
position and size graphical objects.    You choose the height of
your view 0 coordinate space with the fyExt parameter.    Graphics
Server calculates the width of the coordinate space based on the
aspect ratio of the window.

Window fitting options
With most of the nMode fitting options, the extents and aspect
ratio of the view coordinate space are fixed on opening the
window and don't reflect subsequent changes in the size and
shape of the window.    The fitting mode OWMFLEXIBLE, however,
ensures that the extents and aspect ratio of your view coordinate
system can be kept consistent with those of the window.    The
initial view extents are based on the aspect ratio of the window at
the time of opening, but are subsequently adjusted whenever the
size and shape of the window is changed.
In many other aspects the OWMFLEXIBLE fitting mode behaves
the same as OWMFIXED.    Unless you redraw it, your image won't
change size and an unused margin, or clipping, may be apparent
on the new outline of the window.    The scroll bar styles,
OWSHSCROLL and OWSVSCROLL, aren't supported in windows
opened in OWMFLEXIBLE mode.

Example The following example illustrates opening a graphing window:
double ScreenWid, ScreenHt;

int WinNum;
ScreenWid = GSGetSXExt();
ScreenHt = GSGetSYExt();
WinNum = GSOpenWin(0.10 * ScreenWid,
 0.10 * ScreenHt,
 0.50 * ScreenWid,
 0.50 * ScreenHt,
 1000, 0, OWMFIXED,
 "Graphing window");
if (WinNum < 0) {
 /* GSOpenWin failed */
}
This example specifies that the new window is 50% of the display
width wide and 50% of the display height high.    The bottom left
corner of the window is located 10% of the width in and 10% of
the height up from the bottom left corner of the display.

Topic
GSOpenWin

Related
GSOpenChildWin
GSCloseWin
GSCloseView
GSUseView
GSGetSXExt
GSGetSYExt
GSOpenView
GSWinHandle
GSWinNotify
GSWinPaint
Server:
GSCloseServer
GSOpenServer

GSPicRead function
Reads image from file

C/C++ int GSPicRead(double fxBL, double fyBL, double fWid,
 double fHt, int nFormat, int nMode,
 char szFile)

FoxPro r = GSPicRead(fxBL, fyBL, fWid, fHt, nFormat, nMode,
 szFile)

Visual Basic r% = GSPicRead(fxBL#, fyBL#, fWid#, fHt#, nFormat%,
 nMode%, szFile$)

Parameters fxBL X bottom left
fyBL Y bottom left
fWid Image width
fHt Image height
nFormat Constant Value Meaning

PXPMF 2 Placeable metafile format
PXDIB 4 Windows device-

independent bitmap
format

nMode Constant Value Meaning
0 The image is located at

the bottom left corner of
the area and retains its
original dimensions, with
free space or clipping
possible at both the top
and right-hand edges.

PXCENTER 1 For a bitmap, the image
retains its original
dimensions and the center
of the image is located at
the center of the area,
with free space or clipping
possible at both the
horizontal and vertical
edges.    This mode isn't
functional for a metafile.

PXSTRETCH 2 The image is located at
the bottom left corner of
the area and is stretched
or compressed in either
direction to give an exact
fit in the area.

PXTILE 3 For a bitmap, the image
retains its original

dimensions and is tiled
repetitively from left to
right and bottom to top of
the area.
For a metafile, this is an
additional stretching
mode.    The image is
located at the bottom left
corner of the area and is
stretched or compressed,
retaining the original
aspect ratio.    Free space
or clipping is possible at
the top or right-hand
edge.

szFile Image filename

Return values 0
-1

Success
Failure

Description The GSPicRead function reads an image from a file into the
current view.
The rectangular area of the image in the view is defined by the
bottom left corner and a width and height, all expressed in the
current view units.    If zero width and height are specified the
area is presumed to extend from the point of origin to the current
extents of width and height of the view.
The image file name may be any valid drive, directory and file
name combination.    Graphics Server doesn't use the image
format to imply a file extension.
The function handles image files in a variety of different formats.   
The nFormat parameter enables your application to specify in
what format the file exists.
The format options are mutually exclusive.    If Graphics Server
detects that the file isn't in the specified format, no image will be
imported.    Once imported, the image from the file becomes a
permanent part of the view.
The image in the file may be larger or smaller than the view area
defined by the fxBL, fyBL, fWid, and fHt parameters.    The nMode
parameter specifies how the imported image is to fit the available
area.    There's a difference in the way some of the modes work,
depending on whether the image is a bitmap or a metafile.

Example The following example copies a device-independent bitmap
image from a file into the current view.    The view is divided into
quadrants and the image is copied into each of the quadrants
using the different modes available.

void OnEditPaste()
{
static char strFile [] = "CAT.BMP";
double fxMid, fyMid;
fxMid = GSGetVXExt() / 2;
fyMid = GSGetVYExt() / 2;
GSPicRead(0, 0, fxMid, fyMid, PXDIB, 0,
 strFile);
GSPicRead(fxMid, 0, fxMid, fyMid, PXDIB,
 PXCENTER, strFile);
GSPicRead(0, fyMid, fxMid, fyMid, PXDIB,
 PXSTRETCH, strFile);
GSPicRead(fxMid, fyMid, fxMid, fyMid, PXDIB,
 PXTILE, strFile);
}

Topic
GSPicRead

Related
GSPicWrite
GSClipRead
GSClipWrite
GSGetMF

GSPicWrite function
Writes image to file

C/C++ int GSPicWrite(double fxBL, double fyBL, double fWid,
 double fHt, int nFormat, nMode,
 char szFile)

FoxPro r = GSPicWrite(fxBL, fyBL, fWid, fHt, nFormat, nMode,
 szFile)

Visual Basic r% = GSPicWrite(fxBL#, fyBL#, fWid#, fHt#, nFormat%,
 nMode%, szFile$)

Parameters fxBL X bottom left
fyBL Y bottom left
fWid Image width
fHt Image height
nFormat Constant Value Meaning

PXPMF 2 Placeable metafile format
PXWMF 3 Windows metafile format
PXDIB 4 Windows device-

independent bitmap
format

PXPCX 5 PCX format
PXJPEG 6 JPEG format
PXGIF 7 GIF format

nMode Constant Value Meaning
CBMONO 256 Exports the image in

monochrome mode
szFile Image filename

Return values 0
-1

Success
Failure

Description The GSPicWrite function writes an image of the current graphing
window to a file.
The rectangular area of the window is defined by the bottom left
corner and a width and height, all expressed in the view units of
view 0, the default view. If zero width and height are specified the
area is presumed to extend from the point of origin to the current
extents of width and height of the view. The option to specify an
area of the window isn't supported in this release.    An image of
the whole window is always exported.

You can choose to export the image in monochrome mode by
means of the nMode parameter.
The image file name may be any valid drive, directory and file
name combination. Graphics Server doesn't use the image format
to imply a file extension. The file is opened in create mode and
any existing version will be overwritten.
The function handles image files in a variety of different formats.   
The nFormat parameter enables your application to specify in
what format you want the file to be written.The format options
are mutually exclusive.
JPEG and GIF formats require an appropriate conversion DLL to be
in the home directory of GSW16/32.EXE. For JPEG, the conversion
DLL is GSJPG16/32.DLL. For GIF, the conversion DLL is
GSGIF16/32.DLL.
If the conversion DLL is not found, the function will fail. In a 32-bit
environment, the function will return an error. In a 16-bit
environment, a message will appear saying that the DLL is not
present and then an error will be returned. In neither case will the
failure affect subsequent operation of the program.
Note:    The JPEG conversion DLLs are on the installation CD.
Because of licensing restrictions, libraries for converting to GIF
are available only from our web site. Before using them, you must
obtain a license from    Unisys, who hold the patent for LZW
compression.
JPEG compression is fixed, with a quality of 90. JPEG always
produces some loss of image quality usually seen as a noise or
streaking. An image quality of 90 has been chosen as a suitable
compromise between quality and compression.

Example The following example copies an image of the current window to
a file in the current directory in Windows metafile format:
void OnEditCopy()
{
GSPicWrite(0, 0, 0, 0, PXWMF, 0,
 "MYWINDOW.WMF");
}

Topic
GSPicWrite

Related
GSPicRead
GSClipRead
GSClipWrite
GSGetMF
GSWriteRegionFile

GSPie2D function
Draws 2D pie chart

C/C++ int GSPie2D(double fxOrg, double fyOrg, double fRad,
 int nMode)

FoxPro r = GSPie2D(fxOrg, fyOrg, fRad, nMode)

Visual Basic r% = GSPie2D(fxOrg#, fyOrg#, fRad#, nMode%)

Parameters fxOrg X origin
fyOrg Y origin
fRad Radius
nMode Function mode (no modes currently implemented)

Return values 0
-1

Success
Failure

Description The GSPie2D function draws a pie chart centered at (fxOrg,fyOrg)
with radius fRad.    The size of each pie "slice" is in proportion to
the total of all values in the data set.

Selecting "exploded" pie slices
You can use the nAux array--through the GSDataAux function--to
"explode" certain pie slices (move them slightly away from the
center of the pie).
nAux setting Constant Value Meaning

PCNOEXPL 0 Slice isn't exploded
PCEXPL 1 Slice is exploded

GSDataTrans parameters for 2D pie charts
nPts Number of points in data set (no limit)
nGroup Number of data sets (always 1)
fA[nPts] Pointer to amplitude array (values for pie

slices)
fD[0] Not used
nPatt[nPts] Pointer to array containing one fill pattern for

each pie slice
nSymbol[0] Not used
nAux[nPts] Pointer to array containing "explode" values

for pie slices

nClr[nPts] Pointer to array containing one color for each
pie slice

Topic
GSPie2D

Related
GSPie3D

Labels:
GSLabelPie
GSLabelnPie
Legend:
GSLegend

Array initialization:
GSDataTrans
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSPie3D function
Draws 3D pie chart

C/C++ int GSPie3D(double fxOrg, double fyOrg, double fRad,
 double fDepth, double fAng, int nMode)

FoxPro r = GSPie3D(fxOrg, fyOrg, fRad, fDepth, fAng, nMode)

Visual Basic r% = GSPie3D(fxOrg#, fyOrg#, fRad#, fDepth#, fAng#,
 nMode%)

Parameters fxOrg X origin
fyOrg Y origin
fRad Radius
fDepth Projected depth of pie
fAng Angle at which pie is tilted to vertical
nMode Constant Value Meaning

PCSAMECLR 2 Sides of slices in same
colors as tops

Return values 0
-1

Success
Failure

Description The GSPie3D function draws a 3D pie chart centered at
(fxOrg,fyOrg) with radius fRad.    The size of each pie "slice" is in
proportion to the total of all values in the data set.
By default, the side of each pie slice is colored with the half-color
(the base color dithered with black) of the top of the slice.    You
can use an nMode of PCSAMECLR to color the sides the same as
the tops.

Selecting "exploded" pie slices
You can use the nAux array--through the GSDataAux function--to
"explode" certain pie slices (move them slightly away from the
center of the pie).
nAux setting Constant Value Meaning

PCNOEXPL 0 Slice isn't exploded
PCEXPL 1 Slice is exploded

GSDataTrans parameters for 2D pie charts
nPts Number of points in data set (no limit)
nGroup Number of data sets (always 1)

fA[nPts] Pointer to amplitude array (values for pie
slices)

fD[0] Not used
nPatt[nPts] Pointer to array containing one fill pattern for

each pie slice
nSymbol[0] Not used
nAux[nPts] Pointer to array containing "explode" values

for pie slices
nClr[nPts] Pointer to array containing one color for each

pie slice

Topic
GSPie3D

Related
GSPie2D

Labels:
GSLabelPie
GSLabelnPie
Array initialization:
GSDataTrans
GSDataAux
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSPolar function
Draws polar graph

C/C++ int GSPolar(double fxOrg, double fyOrg, double fAng,
 int nMode, int nClr)

FoxPro r = GSPolar(fxOrg, fyOrg, fAng, nMode, nClr)

Visual Basic r% = GSPolar(fxOrg#, fyOrg#, fAng#, nMode%, nClr%)

Parameters fxOrg X center
fyOrg Y center
fAng Angular distance between adjacent data points.   

Optionally, the angular position of each point may
be taken from the fD array rather than placing
points at fixed intervals.

nMode Constant Value Meaning
POGLINE 1 Connects points with

lines
POGSYMBOL 2 Draws symbols at

points
POGSTICK 4 Draws vertical sticks to

points
POGVARANG 8 Uses fD for angular

position
POGTHICK 16 Uses thick lines
POGPATT 32 Uses patterned lines
POGGROUPED 64 Multiple data-set mode

nClr Color of markers if you're graphing only one data
set.    With multiple data sets, you have to create a
color array.    (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSPolar function draws a polar graph centered at
(fxOrg,fyOrg).
The graph may be drawn as lines, symbols, sticks radiating from
the center, or a combination of these.    You can assign different
line styles, line thicknesses, or symbol designs to each data set.

Specifying missing-data points

You can use the nAux array--through the GSDataAux function--to
flag points of a polar graph as "missing."    Missing points aren't
shown, whether or not you've provided values for them.    If you
use lines to connect points (nMode POGLINE), the connecting
lines are omitted both to and from each missing point.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

GSDataTrans parameters for polar graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (radial distance

of plotted points from center)
fD[nPts] Pointer to distance array (angular positions

of plotted points)--used only with nMode
POGVARANG

nPatt[nPts] Pointer to array containing line style or
thickness for each point--used only with
nMode POGTHICK or POGPATT

nSymbol[nPts] Pointer to array containing symbol design
for each point

nAux[nPts] Pointer to array containing missing-data flag
for each point

nClr[0] Not used

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (radial distance

of plotted points from center)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (angular positions
of plotted points)--used only with nMode
POGVARANG

nPatt[nGroup] Pointer to array containing line style or
thickness for each data set--used only with
nMode POGTHICK or POGPATT

nSymbol[nGroup] Pointer to array containing symbol design
for each data set

nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSPolar

Related
GSPolarAxes
Array initialization:
GSDataTrans
GSDataDist
GSDataAux
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSPolarAxes function
Draws set of polar axes

C/C++ int GSPolarAxes(double fxOrg, double fyOrg,
 double fRad, int nRadDivs,
 int nAngDivs, int nMode, int nStyle,
 int nClr)

FoxPro r = GSPolarAxes(fxOrg, fyOrg, fRad, nRadDivs, nAngDivs,
 nMode, nStyle, nClr)

Visual Basic r% = GSPolarAxes(fxOrg#, fyOrg#, fRad#, nRadDivs%,
 nAngDivs%, nMode%, nStyle%, nClr%)

Parameters fxOrg X center
fyOrg Y center
fRad Radius
nRadDivs Number of radial divisions
nAngDivs Number of angular divisions.    If angular grids are

specified, lines are drawn radiating from the center
at degree intervals of 90 divided by nAngDivs--that
is, nAngDivs defines the number of angular
divisions per quadrant.

nMode Constant Value Meaning
PARADGRID 1 Draws radial grids
PAANGGRID 2 Draws angular grids
PATHICK 4 Uses thick line style

nStyle Grid line style (see Line style constants)

nClr Color of polar axes (see Color constants)

Return values 0
-1

Success
Failure

Description The GSPolarAxes function draws a set of polar axes and grids.
The axes comprise four arms radiating at 0, 90, 180, and 270
degrees, of length fRad, bounded by a circle at their extremes.
If you specify radial grids, circles are drawn with radii increasing
at uniform intervals of fRad over nRadDivs.
Grids may be patterned or thickened according to the parameter
nStyle.

Topic
GSPolarAxes

Related
GSAxis
GSPolar

GSPolyFill function
Draws polygon filled with pattern

C/C++ int GSPolyFill(double fxr, double fya, int nMode,
 double fAng, int nPatt, int nClr)

FoxPro r = GSPolyFill(fxr, fya, nMode, fAng, nPatt, nClr)

Visual Basic r% = GSPolyFill(fxr#, fya#, nMode%, fAng#, nPatt%,
 nClr%)

Parameters fxr X origin or radius
fya Y origin or angle
nMode Constant Value Meaning

PFXYORG 0 Origin is (X,Y)
PFRAORG 1 Origin is radius and

angle
PFXYDATA 0 Data is (X,Y)
PFRADATA 2 Data is radius and

angle
PFMIRRORV 4 Mirrors around vertical

axis
PFMIRRORH 8 Mirrors around

horizontal axis
fAng Angle of rotation
nPatt Fill pattern (see Pattern constants)
nClr Color of figure (see Color constants)

Return values 0
-1

Success
Failure

Description The GSPolyFill function draws a figure of connected points as
defined in the amplitude array, fA, and fills it with a pattern.    If
you specify an open polygon, Graphics Server adds a closing line
from the last point to the first point.
You can express the position of the origin position as (X,Y)
coordinates or as an angle and radius relative to the current
position.
The values in the array may be expressed as (X,Y) coordinates or
as a vector length and angle relative to the origin of the figure set
by (fxr,fya).
You can have the figure be mirrored around the vertical axis, the
horizontal axis, or both.    Also, you can rotate the entire figure
around the origin in a counterclockwise rotation.    Mirroring is

performed before rotation.
Note that GSPolyFill allows two levels of relativity.    The data
elements defined in fA are relative to the origin of the figure.   
The origin (fxr,fya) defined in the function is relative to the
current position.

GSDataTrans parameters for polygons
nPts Number of points per data set (no limit)
nGroup Number of data sets (always 2)
fA[nPts][nGroup] Pointer to amplitude array (first set contains X

positions of points or vector lengths, second
set contains Y positions of points or vector
angles)

fD[0] Not used
nPatt[0] Not used
nSymbol[0] Not used
nAux[0] Not used
nClr[0] Not used

Topic
GSPolyFill

Related
GSArc
GSBox2D
GSCircle
GSFixPos
GSMovePos
GSGetCurX
GSGetCurY
GSPolyVec
GSLineAbs
GSMClrRgn
GSMSetRgn
GSDefPatt

GSPolyVec function
Draws polyline figure

C/C++ int GSPolyVec(double fxr, double fya, int nMode,
 double fAng, int nStyle, int nClr)

FoxPro r = GSPolyVec(fxr, fya, nMode, fAng, nStyle, nClr)

Visual Basic r% = GSPolyVec(fxr#, fya#, nMode%, fAng#, nStyle%,
 nClr%)

Parameters fxr X origin or radius
fya Y origin or angle
nMode Constant Value Meaning

PVXYORG 0 Origin is (X,Y)
PVRAORG 1 Origin is radius and

angle
PVXYDATA 0 Data is (X,Y)
PVRADATA 2 Data is radius and angle
PVMIRRORV 4 Mirrors around vertical

axis
PVMIRRORH 8 Mirrors around

horizontal axis
PVTHICK 16 Uses thick line style

fAng Angle of rotation
nStyle Line style (see Line style constants)
nClr Color of figure (see Color constants)

Return values 0
-1

Success
Failure

Description The GSPolyVec function draws a figure of connected points as
defined in the amplitude array, fA.
You can express the position of the origin position as (X,Y)
coordinates or as an angle and radius relative to the current
position.
The values in the array may be expressed as (X,Y) coordinates or
as a vector length and angle relative to the origin of the figure set
by (fxr,fya).
You can have the figure be mirrored around the vertical axis, the
horizontal axis, or both.    Also, you can rotate the entire figure
around the origin in a counterclockwise rotation.    Mirroring is
performed before rotation.

Note that GSPolyVec allows two levels of relativity.    The data
elements defined in fA are relative to the origin of the figure.   
The origin (fxr,fya) defined in the function is relative to the
current position.

GSDataTrans parameters for polyline figures
nPts Number of points per data set (no limit)
nGroup Number of data sets (always 2)
fA[nPts][nGroup] Pointer to amplitude array (first set contains X

positions of points or vector lengths, second
set contains Y positions of points or vector
angles)

fD[0] Not used
nPatt[0] Not used
nSymbol[0] Not used
nAux[0] Not used
nClr[0] Not used

Topic
GSPolyVec

Related
GSArc
GSFixPos
GSMovePos
GSGetCurX
GSGetCurY
GSPolyFill
GSLineAbs

GSPrnOut function
Prints view or window

C/C++ int GSPrnOut(int nView, nNcopies, nMode)

FoxPro r = GSPrnOut(nView, nNcopies, nMode)

Visual Basic r% = GSPrnOut(nView%, nNcopies%, nMode%)

Parameters nView View number
nNcopies Number of copies
nMode Constant Value Meaning

PRNWINDOW 0 Prints all views within
a window

PRNVIEW 1 Prints a single view
only

PRNFF 2 Transmits a form feed
after printing

PRNFRAME 4 Prints a border around
the output region

PRNCANCEL 8 Enable Cancel dialog
when printing (default
is no dialog)

Return values 0
-1

Success
Failure

Description The GSPrnOut function prints the contents of a window or a view
on the device selected with the GSOpenPrn function.
The function mode determines whether the entire current
window, or just one view within it are printed.
If the entire window is printed, all views within that window are
printed unless they are turned off by the GSOffView function.   
The nView parameter is ignored.
The printed image will fit completely within the whole page
unless an alternative rectangular area has previously been
defined using the GSPrnSetup function.
By default the "Cancel" dialog is not shown for printing. To enable
this dialog, set the mode to PRNCANCEL.

Topic
GSPrnOut

Related

GSOpenPrn
GSClosePrn
GSPrnSetup
GSOffView
GSGetPrnHt
GSGetPrnWid

GSPrnSetup function
Sets printing area

C/C++ int GSPrnSetup(double fxBL, double fyBL, double fxTR,
 double fyTR, int nUnits, int nMode)

FoxPro r = GSPrnSetup(fxBL, fyBL, fxTR, fyTR, nUnits, nMode)

Visual Basic r% = GSPrnSetup(fxBL#, fyBL#, fxTR#, fyTR#, nUnits%,
 nMode%)

Parameters fxBL X coordinate of bottom left corner
fyBL Y coordinate of bottom left corner
fxTR X coordinate of top right corner
fyTR Y coordinate of top right corner
nUnits Constant Value Meaning

UNMM 1 Millimeters
UNINCH 2 Inches

nMode Constant Value Meaning
PRNFIXED 0 The view isn't re-scaled to

fit the printing area.    An
unused margin, or clipping,
may be apparent at both
the top and right-hand
edges.

PRNFITHORZ 1 The view is re-scaled to give
an exact fit to the printing
area width.    The original
view aspect ratio is
maintained.    An unused
margin, or clipping, may be
apparent at the top edge.

PRNFITVERT 2 The view is re-scaled to give
an exact fit to the printing
area height.    The original
view aspect ratio is
maintained.    An unused
margin, or clipping, may be
apparent at the right-hand
edge.

PRNFITBOTH 3 The view is re-scaled so that
the whole of it is visible in
the printing area.    The
original view aspect ratio is
maintained.    An unused
margin may be apparent at

either the top or right-hand
edge.    The view will never
be clipped.

PRNFITOPT 4 The view is re-scaled to the
best fit between the original
view aspect ratio and
aspect ratio of the printing
area.    Clipping may be
apparent at either the top or
right-hand edges.

PRNCENTERD 256 In situations when an
unused margin is apparent,
the view is centered so that
an equal margin appears
top and bottom, or left and
right of the view, as the
case may be.    This mode is
additive and may be applied
to any of the other fitting
modes, although the effect
may not be apparent in all
cases.

Return values 0
-1

Success
Failure

Description The GSPrnSetup function sets the printing area on the hard-copy
device selected by the GSOpenPrn function.
The rectangular area is defined in terms of the bottom left and
top right corners, relative to the bottom and left side of the page.
You can get the size of the page using the GSGetPrnWid and
GSGetPrnHt functions.    Actual printing is initiated by the
GSPrnOut function.

Example The following function illustrates how an image might be printed
in an area matching the aspect ratio of the original graphing
window and centered horizontally and vertically on the printed
page.
BOOL PrintGraph(void)
{
double fWinWid, fWinHt;
double fPageWid, fPageHt;
double fFrameWid, fFrameHt;
double fXOrg, fYOrg;
if (GSOpenPrn("", "", 0) != SUCCESS) {
return FALSE;
}
/* Get the original size of the graphing window */
fWinWid = GSGetWXExt(GWWHOLE, UNMM);
fWinHt = GSGetWYExt(GWWHOLE, UNMM);

/* Get the paper size */
fPageWid = GSGetPrnWid(UNMM);
fPageHt = GSGetPrnHt(UNMM);
/* Compare the ratios of page height to window height and
page width to window width to establish the best fit */
if (fPageHt / fWinHt < fPageWid / fWinWid) {
 /* The window fits the page height best. Make
 the frame height to 80% of the page height to
 leave a 10% margin top and bottom. Set the
 frame width so as to preserve the aspect ratio
 of the window */
 fFrameHt = 0.80 * fPageHt;
 fFrameWid = fFrameHt * fWinWid / fWinHt;
}
else {
/* The window fits the page width best. Make
 the frame width 80% of the page width to leave
 a 10% margin left and right. Set the frame
 height so as to preserve the aspect ratio of
 the window */
 fFrameWid = 0.80 * fPageWid;
 fFrameHt = fFrameWid * fWinHt / fWinWid;
}
/* center the frame in the page */
fXOrg = (fPageWid - fFrameWid) / 2.0;
fYOrg = (fPageHt - fFrameHt) / 2.0;
GSPrnSetup(fXOrg, fYOrg,
 fXOrg + fFrameWid,
 fYOrg + fFrameHt,
 UNMM, PRNFITOPT);
GSPrnOut(0, 1, PRNWINDOW | PRNFRAME | PRNFF);
GSClosePrn();
return TRUE;
}

Topic
GSPrnSetup

Related
GSOpenPrn
GSClosePrn
GSPrnOut
GSGetPrnWid
GSGetPrnHt

GSRText function
Draws raster text

C/C++ int GSRText(double fxOrg, double fyOrg, int nCSet,
 int nTMode, int nClr, char szString)

FoxPro r = GSRText(fxOrg, fyOrg, nCSet, nTMode, nClr,
 szString)

Visual Basic r% = GSRText(fxOrg#, fyOrg#, nCSet%, nTMode%, nClr%,
 szString$)

Parameters fxOrg X origin
fyOrg Y origin
nCSet Character set--selects between the system font and

a user font loaded with the GSLoadRFont function
(see Character set constants)

nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
szString Text string

Return values 0
-1

Success
Failure

Description The GSRText function draws a line of raster text.
Alignment of the text with the origin (fxOrg,fyOrg) is determined
by the text mode parameter.
Text modes TXUP90 and TXDOWN90 apply only to the user-
defined raster font.    Text mode TXEXACT only applies to vector
fonts.
You can read system font character dimensions using the
functions GSGetSFWid and GSGetSFHt.

Topic
GSRText

Related
GSLoadRFont
GSGetRTextHt
GSGetRTextWid
GSGetSFWid
GSGetSFHt

GSSetRFontFace

GSScatter function
Draws 2D scatter graph

C/C++ int GSScatter(double fxOrg, double fyOrg, int nMode,
 int nClr)

FoxPro r = GSScatter(fxOrg, fyOrg, nMode, nClr)

Visual Basic r% = GSScatter(fxOrg#, fyOrg#, nMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
nMode Function mode (no modes currently implemented)
nClr Color of markers if you're graphing only one data

set.    With multiple data sets, you have to create a
color array. (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSScatter function draws a 2D scatter graph.    The Y position
of each point is taken from the amplitude (fA) array and the X
position from thedistance (fD) array.    When you use the GS
functions, you must provide both amplitude and distance values
for scatter graphs.    Through the AutoGraph functions, you can
provide no distance values and have X positions set automatically
(the first point at 0, the second at 1, and so on).
Note that 3D scatter graphs aren't available through Graphics
Server's standard (GS) functions.    All 3D scatter graphs use
True3D perspective, which is available only through AutoGraph
functions.

Specifying missing-data points
You can use the nAux array--through the GSDataAux function--to
flag points of a 2D scatter graph as "missing."    Missing points
aren't shown, whether or not you've provided values for them.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

GSDataTrans parameters for 2D scatter graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions of

points)
fD[nPts] Pointer to distance array (X positions of

points)
nPatt[0] Not used
nSymbol[nPts] Pointer to array containing symbol design

for each point
nAux[nPts] Pointer to array containing missing-data flag

for each point
nClr[0] Not used

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions of

points)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions of
points)

nPatt[0] Not used
nSymbol[nGroup] Pointer to array containing symbol design

for each point
nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSScatter

Related
GSXYGraph
Axis/grid/legend:
GSAxis
GSGrid
GSLegend
Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
GSDataDist
GSDataAux
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSSD function
Draws standard deviation lines

C/C++ int GSSD(int nStyle, int nClr)

FoxPro r = GSSD(nStyle, nClr)

Visual Basic r% = GSSD(nStyle%, nClr%)

Parameters nStyle Line style (see Line style constants)
nClr Line color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSSD function draws lines representing the standard
deviation of a data set.
The lines are drawn relative to the origin of the immediately
preceding graphing function.    The lines are clipped within a
window defined by the GSStatsWin function.
The formula for standard deviation is as follows:
SD = SQRT(SUM(y2) - n*ymean2)))/(n - 1)

Topic
GSSD

Related
GSMean
GSGetSD
GSStatsWin
GSStatsArr
GSMinMax

GSSelectPalette function
Selects extended palette with 128 entries

C/C++ int GSSelectPalette(int nMode)

FoxPro r = GSSelectPalette(nMode)

Visual Basic r% = GSSelectPalette(nMode%)

Parameters nMode Constant Value Meaning
PALDEFAULT 0 16-entry palette with

standard RGBCMY
PALGREYSCALE 1 32-127 run from

black to white
(grayscales)

PALPASTEL 2 32-127 are six
groups of 16 pastel
colors, RGBCMY,
from fully saturated
to white

PALRGBCMY 3 32-127 are six
groups of 16 colors
in ascending
intensities--R, G, B,
C, M, Y

PALRAINBOW 4 32-127 are two
groups of 48 graded
hues in two
intensities

PALREDSCALE 5 32-127 run from
black to red

PALGREENSCALE 6 32-127 run from
black to green

PALBLUESCALE 7 32-127 run from
black to blue

PALCYANSCALE 8 32-127 run from
black to cyan

PALMAGENTASCALE 9 32-127 run from
black to magenta

PALYELLOWSCALE 10 32-127 run from
black to yellow

PALUSER 11 Realizes an extended
palette with existing
palette values and
any changes made
by GSSetPal().

Return values 0 Success

-1
Failure

Description TheGSSelectPalette function selects a palette with 128 entries.
Before this function is called, or after it's called with a mode of 0,
Graphics Server respects only the 16 basic color selection
indexes, 0-15, in all its functions.    This is the default palette with
low and high intensities of the pure hues red, green, blue, cyan,
magenta, yellow, and white.
When you call GSSelectPalette with a mode other than 0, a
palette containing 128 pure (non-dithered) hues is created for
and used on machines with 256-color capabilities.    With a 128-
entry palette in effect, functions accept a color index in the range
0-127.
The 128-entry palettes are initialized as follows:

Entries 0-15 remain the standard colors
Entries 16-31 are the half-intensities of 0-15, used for

shading
Entries 32-127 are given default values determined by

nMode
You can reprogram any entry in the palette using the GSSetPal
function.      However, you should generally leave entries 0-31
unchanged.
Using the PALUSER mode, the current values in the palette
remain unchanged when the extended palette is realized. Those
values may either be the default values or the values set in the
immediately preceding call to GSSelectPalette plus any values
explicitly set using GSSetPal. This mode can be used to create a
user-defined extended palette.

Example 'Select the child window and make the background white
r = GSUseView(ChWNum, 0)
r = GSSelectPalette(0)
r = GSSetBG(LIGHT + WHITE)
r = GSClearView(CLOPAQUE)

'Select the user defined palette and load it
r = GSSelectPalette(11)
For i = 0 To 127
 'r = GSSetPal(i, 2 * i, 2 * i, 2 * i) 'Grey
 'r = GSSetPal(i, 2 * i, 0, 0) 'Red
 'r = GSSetPal(i, 0, 2 * i, 0) 'Green
 'r = GSSetPal(i, 0, 0, 2 * i) 'Blue
 'r = GSSetPal(i, 2 * i, 2 * i, 0) 'Yellow
 r = GSSetPal(i, 2 * i, 0, 2 * i) 'Magenta
 'r = GSSetPal(i, 0, 2 * i, 2 * i) 'Cyan
Next i
r = GSClearView(CLOPAQUE)

Topic
GSSelectPalette

Related
GSSetPal
GSSetBG

GSSetBG function
Sets background color

C/C++ int GSSetBG(int nClr)

FoxPro r = GSSetBG(nClr)

Visual Basic r% = GSSetBG(nClr%)

Parameters nClr Color index number, referring to an entry in the
current window palette (see Color constants)

Return values 0
-1

Success
Failure

Description The GSSetBG function sets the background color according to the
current palette.    To select a palette, use the GSSelectPalette
function.

Topic
GSSetBG

Related
GSClearView
GSSetPal
GSSelectPalette

GSSetPal function
Sets palette

C/C++ int GSSetPal(int nClr, int nR, int nG, int nB)

FoxPro r = GSSetPal(nClr, nR, nG, nB)

Visual Basic r% = GSSetPal(nClr%, nR%, nG%, nB%)

Parameters nClr Color index (0-127)
nR Red intensity value
nG Green intensity value
nB Blue intensity value

Return values 0
-1

Success
Failure

Description The GSSetPal function sets an entry in the color palette.    A
separate palette is maintained for each window, which contains
either 16 or 128 entries.    The default palette contains 16 entries,
but you can choose an extended palette of 128 entries using the
GSSelectPalette function.
When you create a color, you specify intensities (in the range 0-
255) for red, green, and blue.    As an example, the following table
shows the intensities for the default 16 colors:
Color name nClr index Red Green Blue
BLACK 0 0 0 0
BLUE 1 0 0 128
GREEN 2 0 128 0
CYAN 3 0 128 128
RED 4 128 0 0
MAGENTA 5 128 0 128
BROWN 6 128 128 0
WHITE 7 192 192 192
GRAY 8 128 128 128
LIGHT BLUE 9 0 0 255
LIGHT GREEN 10 0 255 0
LIGHT CYAN 11 0 255 255
LIGHT RED 12 255 0 0
LIGHT MAGENTA 13 255 0 255

YELLOW 14 255 255 0
LIGHT WHITE 15 255 255 255

Topic
GSSetPal

Related
GSSelectPalette
GSSetBG

GSSetRFontFace function
Sets typeface used for raster font family

C/C++ int GSSetRFontFace(int nFamily, char szFaceName)

FoxPro r = GSSetRFontFace(nFamily, szFaceName)

Visual Basic r% = GSSetRFontFace(nFamily%, szFaceName$)

Parameters nFamily Constant Value Meaning Default font
FOROMAN 1 Roman Times New

Roman
FOSWISS 2 Swiss Arial
FOMODERN 3 Modern Courier New
FOSCRIPT 4 Script (None specified)
FODECO 5 Decorative (None specified)

szFaceName Face name for the family

Return values 0
-1

Success
Failure

Description The GSSetRFontFace function sets the name of the typeface used
for a given family of raster fonts.    You can specify a typeface for
each of the five different font families and change the typeface
for a given family any number of times.
The next call to GSLoadRFont for the given family loads a font of
the specified typeface (provided there's one available), ready for
use in all subsequent text operations.
When Windows selects an actual fonts, the typeface specification
has higher priority than generic family characteristics.    You can
even override the generic characteristics of a font family by
specifying a typeface belonging to another family--for example,
by specifying a Times typeface for the Swiss font family.
The parameter table for nFamily shows the default typeface
names for the different font families.

Example The following example sets a typeface for two of the families and
then draws some text in the chosen fonts:
fWidth = GSGetVXExt();
fHeight = GSGetVYExt();
GSSetRFontFace(FOSWISS, "Bookman Old Style");
GSSetRFontFace(FODECO, "Wide Latin");

GSLoadRFont(FOSWISS, 0, 250, 0);
GSRText(fWidth / 2, fHeight * .6, CSUSER | CSRASTER,
 TXMID | TXBOTTOM, BLACK, "Hello");
GSLoadRFont(FODECO, FOITALIC, 250, 0);
GSRText(fWidth / 2, fHeight * .3, CSUSER | CSRASTER,
 TXMID | TXBOTTOM, BLACK, "World");

Topic
GSSetRFontFace

Related
GSRText
GSLoadRFont
GSSetVFontFace

GSSetROP function
Sets raster operation mode

C/C++ int GSSetROP(int nROP)

FoxPro r = GSSetROP(nROP)

Visual Basic r% = GSSetROP(nROP%)

Parameters nROP Constant Value Meaning
ROREPLACE 0 Replace
ROOR 1 Logical OR
ROXOR 2 Logical XOR
RONOT 3 Logical NOT (negate)

Return values 0
-1

Success
Failure

Description The GSSetROP function sets the raster operation mode for the
current view.

GSSetVFontFace function
Sets typeface used for vector font family

C/C++ int GSSetVFontFace(int nFamily, char szFaceName)

FoxPro r = GSSetVFontFace(nFamily, szFaceName)

Visual Basic r% = GSSetVFontFace(nFamily%, szFaceName$)

Parameters nFamily Constant Value Meaning
FOROMAN 1 Roman
FOSWISS 2 Swiss
FOMODERN 3 Modern
FOSCRIPT 4 Script
FODECO 5 Decorative

szFaceName Face name for the family

Return values 0 Success

-1 Failure

Description The GSSetVFontFace function sets the name of the typeface that
is used for a given family of vector fonts.    You can specify a
typeface for each of the five different font families and change
the typeface for a given family any number of times.
The next call to GSLoadVFont for the given family loads a font of
the specified typeface (provided there's one available), ready for
use in all subsequent text operations.
The typeface specification has higher priority than generic family
characteristics when Windows selects an actual font.    This has
the interesting side effect that you can override the generic
characteristics of a font family by specifying a typeface belonging
to another family--for example, by specifying a Times typeface for
the Swiss font family.
A typical Windows system doesn't have many vector fonts, so the
ability of this function to set a typeface is unlikely to be as useful
as GSSetRFontFace, which allows selection from the wide variety
of TrueType fonts available.

Topic
GSSetVFontFace

Related
GSVText
GSLoadVFont
GSSetRFontFace

GSShade function
Shades bounded area

C/C++ int GSShade(double fxOrg, double fyOrg, int nPatt,

 int nClr)

FoxPro r = GSShade(fxOrg, fyOrg, nPatt, nClr)

Visual Basic r% = GSShade(fxOrg#, fyOrg#, nPatt%, nClr%)

Parameters fxOrg X
fyOrg Y
nPatt Pattern (see Pattern constants)
nClr Shade color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSShade function shades the interior of a region bounded by
a continuous line of the same color as the fill pattern.

Topic
GSShade

Related
GSDefPatt
GSClearView
GSBox2D

GSSizeSymbol function
Defines size of all symbols

C/C++ int GSSizeSymbol(double fDiam)

FoxPro r = GSSizeSymbol(fDiam)

Visual Basic r% = GSSizeSymbol(fDiam#)

Parameters fDiam Symbol diameter in view units

Return values 0
-1

Success
Failure

Description The GSSizeSymbol function determines the size of all symbols
used in graphs or symbol functions.    Symbols are sized in terms
of a characteristic dimension that roughly corresponds to its
diameter.
By default, the diameter is 2.5% of the height of the view, or 25
units in a view with the default height of 1000.
When a user resizes a window, symbols are resized in a
corresponding manner.

Topic
GSSizeSymbol

Related
GSSymbol

GSStatsArr function
Defines data for applying statistics

C/C++ int GSStatsArr(int nIndex)

FoxPro r = GSStatsArr(nIndex)

Visual Basic r% = GSStatsArr(nIndex%)

Parameters nIndex Set index in fA array (based on 0)

Return values 0
-1

Success
Failure

Description The GSStatsArr function selects the data set to which statistics
are applied.    It's only used when more than one data set is held
in the fA array.
For example, a high-low-close graph has three data sets--high
(set 0), low (set 1), and close (set 2).    If you call GSStats Arr with
an nIndex of 2, subsequent graph statistics are based on the
close data.

Topic
GSStatsArr

Related
GSMean
GSSD
GSLineFit
GSCurveFit
GSHLC
GSBoxWhisker
GSStatsWin

GSStatsWin function
Defines statistics clipping region

C/C++ int GSStatsWin(double fxBL, double fyBL, double fxTR,
 double fyTR)

FoxPro r = GSStatsWin(fxBL, fyBL, fxTR, fyTR)

Visual Basic r% = GSStatsWin(fxBL#, fyBL#, fxTR#, fyTR#)

Parameters fxBL X bottom left

fyBL Y bottom left

fxTR X top right

fyTR Y top right

Return values 0
-1

Success
Failure

Description The GSStatsWin function defines the window within which
statistical lines are clipped.    The window is defined in terms of
the bottom left and top right in view coordinates.    Typically, the
window coincides with the axes of a graph.

Topic
GSStatsWin

Related
GSStatsArr
GSLineFit
GSMean
GSMinMax
GSSD

GSSymbol function
Draws symbol

C/C++ int GSSymbol(double fxOrg, double fyOrg, int nSymbol,
 int nClr)

FoxPro r = GSSymbol(fxOrg, fyOrg, nSymbol, nClr)

Visual Basic r% = GSSymbol(fxOrg#, fyOrg#, nSymbol%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
nSymbol Symbol number (see Symbol constants)
nClr Symbol color (see Color constants)

Return values 0
-1

Success
Failure

Description The GSSymbol function draws a symbol from Graphics Server's
internal symbol library.
The origin of every symbol is at its center.
Add the value 256 (SYHOLLOWFILL) to nSymbol to fill hollow
symbols with the current window background color.

Topic
GSSymbol

Related
GSSizeSymbol

GSTapeGraph function
Draws tape graph

C/C++ int GSTapeGraph(double fxOrg, double fyOrg,
 double fInc, double fDepth,
 double fAng, int nMode, int nClr)

FoxPro r = GSTapeGraph(fxOrg, fyOrg, fInc, fDepth, fAng,
 nMode, nClr)

Visual Basic r% = GSTapeGraph(fxOrg#, fyOrg#, fInc#, fDepth#, fAng#,
 nMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fDepth Perspective depth of graph
fAng Perspective angle from the horizontal
nMode Constant Value Meaning

TAPEVARX 1 Use fD array for X
position

nClr Colors of top surfaces of tapes (a one-dimensional
array). The bottom surfaces, where visible, are
colored with the half-tones of the colors in the nClr
array.    (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSTapeGraph function draws a tape graph showing one or
more sets of data.
Visually, the tape is similar to a line graph with perspective added
to suggest depth.    The depth and angle of perspective are
governed by the fDepth and fAng parameters.    With fAng 0, the
tape appears to have no depth and becomes like a line again.   
With fAng 90, the tape appears to be face-on to the viewer.    The
best results are obtained with an angle of about 30 degrees.
The data may be graphed either at fixed increments in X, as
defined by fInc, or using the individual X values passed in the fD
array.
If more than one data set is supplied, the graph acquires Z axis
perspective, with successive data sets advancing from the back
toward the front of the graph.

Specifying missing-data points
You can use the nAux array--through the GSDataAux function--to
flag points of a tape graph as "missing."    Missing points aren't
shown, whether or not you've provided values for them.
nAux setting Value Meaning

0 Point shown normally
256 Point is "missing" and not drawn

The size of the nAux array may be nPts or nPts    nGroup.    If you
set the size to nPts and there's more than one group of data, the
same missing points are assumed for all the groups.    If the size is
nPts nGroup, each point in each group has its own missing-data
flag.

GSDataTrans parameters for tape graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] Pointer to distance array (X positions of

plotted points)--used only with nMode
TAPEVARX

nPatt[0] Not used
nSymbol[0] Not used
nAux[nPts] Pointer to array containing missing-data flag

for each point
nClr[0] Not used

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions of
plotted points)--used only with nMode
TAPEVARX

nPatt[0] Not used
nSymbol[0] Not used
nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSTapeGraph

Related
GSArea3D
GSXYGraph
Axis/cage/legend:
GSCage3D
GSLegend
Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
GSDataAux
GSDataDist
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSTimeGraph function
Draws scrolling time series graph

C/C++ int GSTimeGraph(double fxOrg, double fyOrg,
 double fInc, int nPts, int nGroup,
 int nMode)

FoxPro r = GSTimeGraph(fxOrg, fyOrg, fInc, nPts, nGroup,
 nMode)

Visual Basic r% = GSTimeGraph(fxOrg#, fyOrg#, fInc#, nPts%, nGroup%,
 nMode%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment (interval between points).    The total

length of the display is (nPts-1)    fInc
nPts Number of displayed points
nGroup Number of displayed groups
nMode Constant Value Meaning

TIGDEFAULT 0 Symbols
TIGLINES 1 Lines

Return values 0
-1

Success
Failure

Description The GSTimeGraph function defines a time series graph of one or
more sets (groups) of data.    This graph differs fundamentally for
all others in that GSTimeGraph must be called before any data is
stored or displayed.    There can only be one time series graph per
window, although a single graph can show several concurrent
data sets.
Initially no graph is drawn.    The graph is built progressively over
time by adding data points using the function GSTimeUpdate.   
The most recent point is drawn at the origin (fxOrg) and previous
points are scrolled to the left.    When the number of points on
display exceeds the maximum, nPts, the oldest, now at the
extreme left, is discarded.
One time series graph may display several data sets.    The
characteristics of each displayed data set are defined in the
arrays passed using the normal GS functions.    Note that these
functions must be called after the call to GSTimeGraph and
before the first call to GSTimeUpdate.
The symbol array defines the symbol drawn at each data point
when nMode is TIGDEFAULT. The color array defines the color of
the symbol and of any statistical lines.    The pattern array defines
the line style of the mean statistical line; standard-deviation lines

are drawn using the specified pattern index plus 1.    The distance
array (fD) defines the vertical offset of the data set from the Y
origin, enabling sets to be drawn at different vertical positions.
To produce fast animation, GSTimeGraph XORs the color of a
symbol with whatever color lies beneath.    The color index must
be one of the basic colors (0-16).    This color is adjusted such that
the result of XORing with the current background color produces
the color as specified.    If the symbols are XORed onto any area
not in the background color, the result is unpredictable.
Superimposing statistical lines
You can use the nAux array--through the GSDataAux function--to
superimpose the mean and standard deviation of each set.    (The
normal statistics and curve fitting functions don't apply to time
series graphs).    These statistical lines are updated automatically
as the graph develops.
nAux setting Constant Value Meaning

TIGMEAN 1 Superimpose mean
TIGSTDDEV 2 Superimpose standard

deviation

GSDataTrans parameters for time series graphs
nPts Number of points per data set (always 1)
nGroup Number of data sets (no limit)
fA[0] Not used
fD[nGroup] Pointer to distance array (Y offsets from

common graph origin)
nPatt[nGroup] Pointer to array containing line styles or

thicknesses for statistical lines
nSymbol[nGroup] Pointer to array containing symbol design for

each data set
nAux[nGroup] Pointer to array specifying statistical lines to

be drawn for each data set
nClr[nGroup] Pointer to array containing color for each data

set

Topic
GSTimeGraph

Related
GSTimeUpdate
Axis/grid/legend:
GSAxis
GSGrid

GSLegend
Labels:
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
GSDataAux
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

GSTimeUpdate function
Updates time series graph

C/C++ int GSTimeUpdate(int nMode, int nGroup, double fData)

FoxPro r = GSTimeUpdate(nMode, nGroup, fData)

Visual Basic r% = GSTimeUpdate(nMode%, nGroup%, fData#(0))

Parameters nMode Constant Value Meaning
TIGUDPATE 0 Loads new data and

redraws graph
TIGLOAD 1 Loads new data, but doesn't

redraw graph
TIGHIDE 2 Loads no data and hides

graph
TIGSHOW 3 Loads no data, but redraws

graph
nGroup Number of data groups
fData Array of data for all groups

Return values 0
-1

Success
Failure

Description The GSTimeUpdate function updates a time series graph
previously created using the GSTimeGraph function.
Under mode 0, the normal method, Graphics Server loads new
data and scrolls the graph in a single operation.
Modes 1, 2, and 3 let you perform fast batch updates using a
buffer.    To perform a batch update, hide the graph (mode 2), add
new data (mode 1), then redraw the graph (mode 3).
You can draw a time series graph in three different ways:
· Set the recording mode to BitBlit by calling GSWinPaint(4)

before making any calls to draw axes, titles, and so forth.   
Call GSWinPaint(3) after each call to GSTimeUpdate.   
Animation appears smooth because the graph is updated
immediately on screen, but there's a time penalty in the
redraw.    The window is automatically repainted after it's
covered.

· Set the recording mode to none by calling GSWinPaint(2).    If
the window is covered, the graph isn't redrawn when it's
uncovered.    This method produces the fastest animation, but
there's some flickering during updates, and you have to
intervene to repaint the window.

Set the recording mode to metafile by calling the default mode of
GSWinPaint(5) and issue commands to draw the backdrop (axes,
titles, and so forth) of the graph.    Then, set the recording mode
to none by calling GSWinPaint(2) and start the time series graph. 
If the window is uncovered, the backdrop is redrawn
automatically, but the application has to manually repaint the
graph using GSTimeUpdate(2), then set the recording mode to
none by calling GSWinPaint(2).

You should never actually draw the graph using the default
mode, GSWinPaint(5), because all of the drawing commands
are saved in the metafile over the entire time the graph is
active.

Topic
GSTimeUpdate

Related
GSTimeGraph
GSWinPaint
Array initialization:
GSDataTrans

GSUseView function
Uses view

C/C++ int GSUseView(int nWin, int nView)

FoxPro r = GSUseView(nWin, nView)

Visual Basic r% = GSUseView(nWin%, nView%)

Parameters nWin Window number
nView View number

Return values 0
-1

Success
Failure

Description The GSUseView function selects a window and a view to draw in.   
The view remains current until the next GSUseView call or until
the view is closed.
You can use GSUseView at any time to switch between views.

Topic
GSUseView

Related
GSHotGraph
GSMStatus
GSMGetX
GSMGetY
GSMNotify
GSWinNotify
GSWinPaint
View functions:
GSClearView
GSCloseView
GSGetVXExt
GSGetVYExt
GSOffView
GSOnView
GSOpenView

GSViewClip function
Applies a clipping window within the current view

C/C++ int GSViewClip(double fxOrg, double fyOrg,
 double fWidth, double fHt)

FoxPro r = GSViewClip(fxOrg, fyOrg, fWidth, fHt)

Visual Basic r% = GSViewClip(fxOrg#, fyOrg#, fWidth#, fHt#)

Parameters fxOrg X bottom left
fyOrg Y bottom left
fWidth Width of clipping window
fHt Height of clipping window

Return values 0 Success
-1 Failure

Description GSViewClip applies a clipping window within the current view,
defined by the lower left corner and the width and height.

Topic
GSViewClip

Related
GSOpenView
GSUseView

GSVText function
Draws vector text

C/C++ int GSVText(double fxOrg, double fyOrg, double fWid,
 double fHt, double fAng, int nCSet,
 int nTMode, int nClr, char szString)

FoxPro r = GSVText(fxOrg, fyOrg, fWid, fHt, fAng, nCSet,
 nTMode, nClr, szString)

Visual Basic r% = GSVText(fxOrg#, fyOrg#, fWid#, fHt#, fAng#,
 nCSet%, nTMode%, nClr%, szString$)

Parameters fxOrg X origin
fyOrg Y origin
fWid Width of text box
fHt Height of text box
fAng Angle of text in degrees (0 is horizontal; angles

increase counterclockwise)
nCSet Character set--selects between the system font and

a user font loaded with the GSLoadVFont function
(see Character set constants)

nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
szString Text string

Return values 0
-1

Success
Failure

Description The GSVText function draws a line of vector text.    Characters are
scaled so that the line fits in a rectangle of width fWid and height
fHt.
By default, Graphics Server achieves a rough fit using the
average width of characters.    You can get an exact fit by
including TXEXACT in the nTMode parameter, at a slight cost of
drawing speed.
The alignment of the text with the origin (fxOrg,fyOrg) is
determined by the nTMode parameter.

Topic
GSVText

Related
GSLoadVFont
GSSetVFontFace

GSWinHandle function
Returns Windows handle of graphing window

C/C++ HWND GSWinHandle(int nWindow)

FoxPro r = GSWinHandle(nWindow)

Visual Basic r% = GSWinHandle(nWindow%)

Parameters nWindow Graphing window number

Return values 1 or greater
-1

Windows handle of the graphing window
Failure

Description The GSWinHandle function returns the Windows handle of a
graphing window that your application has opened using the
GSOpenWin function.
When you open a new graphing window with GSOpenWin,
Graphics Server returns a logical window number that identifies
the window in the scope of your application.    The logical window
number has no significance in the Windows environment as a
whole.    Your application may find it useful to have the Windows
handle identifying a graphing window so the window can be
operated on globally, using functions in the Windows API.

Topic
GSWinHandle

Related
GSOpenWin
GSOpenChildWin
GSWinNotify

GSWinNotify function
Enables and disables notification of graphing window events

C/C++ int GSWinNotify(HWND hWnd, int nWM, int nEvents)

FoxPro r = GSWinNotify(hWnd, nWM, nEvents

Visual Basic r% = GSWinNotify(hWnd%, nWM%, nEvents%)

Parameters hWnd Client notification window handle
nWM Client window message number
nEvents Constant Value Meaning

WNPAINT 1 Window client area
needs repainting

WNSIZE 2 Window has changed
size

Return values 0
-1

Success
Failure

Description The GSWinNotify function enables or disables asynchronous
notification of graphing window events.    Each graphing window
can have different event notifications in force.
GSWinNotify always acts on the current window.    Use the
GSUseView function to change the current window.
The hWnd parameter specifies the Windows handle of the window
to which event messages should be posted.    The nWM parameter
specifies the window message number to be used.    This number
should be uniquely identified within the window procedure of the
notified window.
A graphing window event message is posted in the following
form:
Parameter Type Meaning
hWnd HWND Windows handle of the notified window

as originally specified to GSWinNotify
uMsg UINT Windows message number as originally

specified to GSWinNotify
wParam UINT The type of window event, which is one

of the nEvents settings originally
specified to GSWinNotify.    Although
events may be enabled together, they
are always notified individually.

lParam LONG Event qualifying information (currently
not used)

Example The following example illustrates how to open a graphing window
and enable it for window event notification.
#define WM_WINDOWEVENT (WM_USER + 1)
double ScreenWid, ScreenHt;
int WinNum;
ScreenWid = GSGetSXExt();
ScreenHt = GSGetSYExt();
WinNum = GSOpenWin(0.10 * ScreenWid,
 0.10 * ScreenHt,
 0.50 * ScreenWid,
 0.50 * ScreenHt,
 1000, 0, OWMFIXED,
 "Graphing window");
if (WinNum < 0) {
 /* GSOpenWin failed */
}
/* enable window event notification */
GSWinNotify(hWndHdlr, WM_WINDOWEVENT,
 WNPAINT | WNSIZE);

The window procedure for the window hWndHdlr might contain
this code:
LONG WndHdlr_WndProc(HWND hWnd, UINT uMsg,
 UINT wParam, LONG lParam)
{
switch (uMsg) {
case WM_WINDOWEVENT:
 /* the user caused a window event so see
 what type it is */
 switch (wParam) {
case WNPAINT:
 /* a repainting event etc. */
case WNSIZE:
 /* a resizing event etc. */
}
}
}

Topic
GSWinNotify

Related
GSOpenWin
GSOpenChildWin
GSWinHandle
GSUseView

GSWinPaint function
Sets graphing window painting mode

C/C++ int GSWinPaint(int nMode)

FoxPro r = GSWinPaint(nMode)

Visual Basic r% = GSWinPaint(nMode%)

Parameter nMode Constant Value Meaning
Recording
modes

WPMETAFILE 5 Graphics Server records all
the drawing functions in
metafile format.    The
graphing window is
automatically updated by
individual drawing
functions.    This is the
default recording mode.

WPBITMAP 4 Graphics Server records all
the drawing functions in a
bitmap.    The graphing
window isn't automatically
updated by individual
drawing functions.

WPNONE 2 Graphics Server sends
output directly to the
graphing window and
doesn't record the drawing
functions.    If the window
needs repainting, your
application must arrange to
do this by recalling the
original drawing functions.

Repainting
modes

WPAUTO 0 Graphics Server
automatically repaints the
graphing window from the
bitmap or metafile.    This is
the default repainting mode.

WPMANUAL 1 Graphics Server doesn't
repaint the graphing
window automatically.    Your
application can repaint the
window by calling
GSWinPaint with mode
WPPAINT for the metafile or
bitmap or, if the recording
mode is WPNONE, by
recalling the original
drawing functions.

Additional WPPAINT 3 Graphics Server

mode immediately repaints the
graphing window from the
metafile or bitmap.    If the
recording mode is WPNONE,
this mode has no effect.

Return values 0
-1

Success
Failure

Description The GSWinPaint function sets the painting mode for a graphing
window. All of the nMode options are exclusive.
Graphics Server normally keeps a record of all the drawing
functions performed in a graphing window so that when the
window is uncovered or resized by the user, Graphics Server can
repaint the contents of the window without requiring your
application to repeat the original drawing functions.
Graphics Server uses two different recording modes to keep track
of drawing functions:    bitmap mode and metafile mode.

In bitmap mode, a physical copy of the display area of the
graphing window is kept in off-screen memory and is used to
record the drawing functions in a device-dependent form.    Calls
to the drawing functions update the bitmap without automatically
updating the window.

At an appropriate time after your application has caused a
complete image to be drawn off-screen, it can request Graphics
Server to copy the whole bitmap into the window in one operation
called a BitBLt.

An advantage of bitmap mode is that it can be used to hide
the stages of drawing from the user and give the impression
of a much more immediate presentation of a new image.    A
disadvantage is that the bitmap isn't re-scalable nor readily
adaptable to other types of output device such as the printer.
Graphics Server currently won't print a window when bitmap
recording mode is set.    Graphics Server uses bitmap
stretching techniques to resize the bitmap to suit a changing
window size, but this doesn't always produce satisfactory
results and considerably slows down the repainting speed.

In metafile mode, Graphics Server keeps a logical record
of the drawing functions in a Windows metafile.    Calls to the
drawing functions simultaneously update the metafile and the
window.    Graphics Server replays the whole metafile into the
window whenever the window needs repainting.

The metafile is a cumulative recording mode, which means
that new drawing functions don't overwrite existing ones, but are
simply added to the end.    You need to call GSClearView at
regular intervals to clear the metafile and prepare it for drawing a
new image.

An advantage of the metafile mode is that the recorded image
is completely rescalable and adaptable to any printer or other
output device.    A slight disadvantage is that the user can

perceive the stages of drawing, making the metafile mode
appear slightly less "immediate" than bitmap mode.    In fact,
drawing takes about the same length of time in either mode.
Metafile recording mode is the default for a newly opened
graphing window.

Each graphing window has its own painting mode.    GSWinPaint
always acts on the current window.    Use GSUseView to change
the current window.

Topic
GSWinPaint

Related
GSOpenWin
GSOpenChildWin
GSGetMF
GSClearView
GSUseView
GSTimeUpdate

GSWriteRegionFile function
Creates an image map for use in an HTML page

C/C++ int GSWriteRegionFile(int nMode,
 char* lpstrFile, char* lpstrTemplate,
 char* lpstrPolySpec, char* lpstrRectSpec,
 int nRefStrs, char *lpstrRefStrs[])

FoxPro r = GSWriteRegionFile(nMode,
 @szFile, @szTemplate,
 @szPolySpec, @szRectSpec,
 nRefStrs, @szRefStrs(1))

Visual Basic r% = GSWriteRegionFile(nMode%,
 szFile$, szTemplate$,
 szPolySpec$, szRectSpec$,
 nRefStrs%, szRefStrs$(0))

Parameters nMode Constant Value Meaning
0 Create szFile

REGIONFILEAPPEND 1 Append szFile
szFile Path (optional), file name and file extension. If you

don't specify a path, the file is written to the
current directory.

szTemplate String specifying the form in which definitions for
hot regions are written.

szPolySpec The term used in the map to specify a polygon. The
default is POLYGON.

szRectSpec The term used in the map to specify a rectangle.
The default is RECT.

nRefStrs The number of elements in the szRefStrs array. If
the array is omitted, pass 0. Otherwise, pass
nGroups * nPoints.

szRefStrs (Optional) Array of reference strings, in URL form,
to be substituted in hot spot definitions. The map
will have one hot region for each data point in
every data set. Include one link for each hot region.

Return values 0
-1

Success
Failure

Description The GSWriteRegionFile function creates a file with hot region
definitions that can be used as an image map referenced in an
HTML document.
GSWriteRegionFile() uses Graphics Server's hot-graphing feature
to map hot regions for each point on the displayed graph. Before
calling the function, you must display a graph and turn hot-
graphing on. To save the image to which the map applies, call

GSPicWrite().
Standard image maps
Server maps.    A server-side image map is stored in a special
text file external to the HTML document that references it. The
convention is to use the same base file name for both the image
and the map. Often the map file's extension is .MAP, though other
extensions are usually acceptable.
All web browsers that support HTML 2.0 or higher support server
maps. The format for the map will depend on your web server.
The two most common formats are NCSA (National Center for
Supercomputing Applications) and CERN    (European Laboratory
for Particle Physics). Each of these uses a slightly different way to
define a hot region:
NCSA image map
shape url x1,y1 x2,y2. . .
. . .

CERN image map
shape (x1,y1) (x2,y2). . . url
. . .
Server maps often require that URLs be fully qualified. Consult
your server documentation.
Client maps.    A client-side image map is stored within the HTML
document that references it. The setting for MapFile should be the
file name and extension of the HTML document.
All web browsers that support HTML 3.0 or higher also support
client maps. The format for the map is defined by the HTML
specification:
<! Client image map >
<MAP NAME=mapname
<AREA SHAPE=shape COORDS=x1,y1 x2,y2. . . HREF=url>
. . .
</MAP>

Client maps can use either partial URLs (bar.htm) or fully qualified
URLs (http://www.foo.com/bar.htm).
Note that GSWriteRegionFile() creates only a list of hot spot
definitions (<AREA . . . >). Your program will need to frame them
with MAP tags.
Constructing a template
The template string (szTemplate) controls the appearance of each
entry GSWriteRegionFile() writes into the image map. It consists
of a framework for the entry plus symbols denoting the places
where the function substitutes variable information for individual
entries.
The items of variable information that can be substituted are

listed below.
Symbol Substitutes
%1 One-based data set number of the region.
%2 One-based point number of the region.
%3 Term for the shape of the region. Taken from szPolySpec

or szRectSpec, whichever is applicable.
%4 List of vertices outlining the region. Each vertex is an

x,y coordinate pair.
%5 Reference string (URL) for this region. Taken from the

element of the szRefStrs array corresponding to the set
and point.

%% Deferred parameter substitution. One percent sign is
written to the file so that your program can post-
process it, substituting whatever text you choose.

For example, the following template, in C string-literal form, might
be used to format the entries for a client-side image map:
<AREA SHAPE=\"%3\" COORDS=\"%4\" HREF=\"P%1-%2.htm\">\r\n

Note that "\" escape sequences are necessary to include
quotation marks within the string and the "\r\n" escape sequence
adds a carriage-return, line-feed at the end of the entry.
If the graph is a bar chart with one data set of five point, this
template could result in the following output:
<AREA SHAPE="RECT" COORDS="209,151 243,220"
HREF="P1-5.htm">
<AREA SHAPE="RECT" COORDS="171,82 205,220"
HREF="P1-4.htm">
<AREA SHAPE="RECT" COORDS="134,123 167,220"
HREF="P1-3.htm">
<AREA SHAPE="RECT" COORDS="96,152 130,220"
HREF="P1-2.htm">
<AREA SHAPE="RECT" COORDS="59,96 92,220"
HREF="P1-1.htm">

In this case reference strings are automatically generated using
parameter substitution:
. . .HREF=\"P%1-%2.htm\". . .
If the szRefStrs array is passed to GSWriteRegionFile(), the strings
could be generated using parameter substitution:
. . .HREF=\"%5\". . .
Or the reference strings can be added by your program by using
deferred substitution.    The template would read:
. . .HREF=\"%%5.htm\". . .

And the output would be:
. . .HREF="%5.htm". . .
Your program could then read the output line and make the
substitution for %5 using the Windows API function
FormatMessage.
You can specify the format of a substitution by immediately
following it with a printf-style format specification in angle
brackets "<>". For example, the following template specification
might be used to output the shape-specifier in a 12-character,
fixed-width field and the vertex list in space-separated, rather
than comma-separated, x, y form:
%3<%12s> P%1-%2.htm %4<%d %d>\r\n

This is an advanced feature you should only use for very specific
formatting requirements. To use it requires that you understand
the C print formatting system.    Also note that you can control the
format but not the underlying type of the substitution variables.
The types and default formats are listed below.
Parameter Substitutes Type Default format
%1 Set integer %d
%2 Point integer %d
%3 Shape string %s
%4 Coordinates integer %d,%d
%5 URL string %s

Examples This example, in Visual Basic, generates an HTML document with
an image of the current graph and a client-side image map.
Private Sub Command1_Click()
'Write an image of the graph
r& = GSPicWrite(0, 0, 0, 0, 7, 0, "clientmap.gif")

'Prepare the HTML document
Open "clientmap.htm" For Output Access Write As #1
Print #1, "<HTML>"
Print #1, "<HEAD>"
Print #1, "<TITLE>Client map</TITLE>"
Print #1, "</HEAD>"
Print #1, "<BODY>"
Print #1, "<IMG SRC=" + _
 Chr$(34) + "clientmap.gif" + Chr$(34) + _
 " USEMAP=" + Chr$(34) + "#graph" + Chr$(34) + ">"
Print #1, "<MAP NAME=" + Chr$(34) + "graph" + _
 Chr$(34) + ">"
Close #1

'Write the hot spot definitions
'Note that nMode = 1 (Append)

r& = GSWriteRegionFile(1, "clientmap.htm", _
 "<AREA SHAPE=" + Chr$(34) + "%3" + Chr$(34) + _
 " COORDS=" + Chr$(34) + "%4" + Chr$(34) + _
 " HREF=" + Chr$(34) + "RGN%1-%2.HTM" + Chr$(34) + _
 ">" + Chr$(13) + Chr$(10), "POLYGON", "RECT")

'Finish the HTML document
Open "clientmap.htm" For Append Access Write As #1
Print #1, "</MAP>"
Print #1, "</BODY>"
Print #1, "</HTML>"
Close #1
End Sub

Depending on the graph, the resulting HTML document could look
like this:
<HTML>
<HEAD>
<TITLE>Client map</TITLE>
</HEAD>
<BODY>

<MAP NAME="graph">
<AREA SHAPE="POLYGON" COORDS="309,46 389,46 389,306
 309,306" HREF="RGN1-3.HTM">
<AREA SHAPE="POLYGON" COORDS="208,306 208,163 288,163
 297,166 297,279 288,306" HREF="RGN1-2.HTM">
<AREA SHAPE="POLYGON" COORDS="107,306 107,195 153,191
 217,191 217,279 188,306" HREF="RGN1-1.HTM">
<AREA SHAPE="POLYGON" COORDS="393,279 393,136 409,126
 490,126 490,306 409,306" HREF="RGN1-4.HTM">
<AREA SHAPE="POLYGON" COORDS="473,279 473,147 510,139
 591,139 591,306 510,306" HREF="RGN1-5.HTM">
</MAP>
</BODY>
</HTML>

The next example shows part of a C++ application preparing a
server-side image map for a JPEG image and creating a small
HTML document that references them.
GSPicWrite(0, 0, 0, 0, PXJPEG, 0, "graph.jpg");
GSWriteRegionFile(0, "graph.map", "%3 RGN%1-%2.HTM %4\r\n",
"POLY", "RECT");

FILE* pFile = fopen("graph.htm", "wt");

if (pFile != NULL) {
 fputs("<HTML>", pFile);
 fputs("<HEAD>", pFile);
 fputs("<TITLE>Server map</TITLE>", pFile);

 fputs("</HEAD>", pFile);
 fputs("<BODY>", pFile);
 fputs("", pFile);
 fputs("", pFile);
 fputs("", pFile);
 fputs("</BODY>", pFile);
 fputs("</HTML>", pFile);

 fclose(pFile);
}

Topic
GSWriteRegionFile

Related
GSHotGraph
GSPicWrite

GSXDataScale function
Applies scale factor to distance data

C/C++ int GSXDataScale(double fScale)

FoxPro r = GSXDataScale(fScale)

Visual Basic r% = GSXDataScale(fScale#)

Parameter fScale Data scale factor

Return values 0
-1

Success
Failure

Description The GSXDataScale function scales distance data used in any of
the graph or chart functions.    Data in the distance (fD) array is
multiplied by fScale before graphing.
The default factor of unity is reset whenever new data is
transferred.

Topic
GSXDataScale

Related
GSDataDist
GSDataGetDist
GSDataGetDistErr
GSDataStoreDist
GSDataScale

Array initialization:
GSDataAmp
GSDataAux
GSDataClr
GSDataPatt
GSDataSym
GSDataTrans
GSDataZ

GSXYGraph function
Draws line graph

C/C++ int GSXYGraph(double fxOrg, double fyOrg, double fInc,
 int nMode, int nClr)

FoxPro r = GSXYGraph(fxOrg, fyOrg, fInc, nMode, nClr)

Visual Basic r% = GSXYGraph(fxOrg#, fyOrg#, fInc#, nMode%, nClr%)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
nMode Constant Value Meaning

XYGLINE 1 Connects points with
lines

XYGSYMBOL 2 Draws symbols at points
XYGSTICK 4 Draws vertical sticks to

points
XYGVARX 8 Uses fD array for X

positions
XYGTHICK 16 Uses thick lines
XYGPATT 32 Uses patterned lines
XYGGROUPED 64 Multiple data-set mode

nClr Color of markers if you're graphing only one data
set.    With multiple data sets, you have to create a
color array.    (See Color constants.)

Return values 0
-1

Success
Failure

Description The GSXYGraph function draws a line graph.    The graph can
include lines, symbols, vertical sticks, or any combination of
these, according to the nMode parameter.
If you use symbols (nMode XYGSYMBOL), you have to load an
array with values for the desired symbols and pass a pointer to
this array in a call to the GSDataTrans function.    A similar
procedure is needed if you use patterned (nMode XYGPATT) or
thick (nMode XYGTHICK) lines--load an array with values for line
patterns or thicknesses, then pass a pointer to the array using
GSDataTrans.
In symbol (XYGSYMBOL) mode, the array is presumed to contain a
series of symbol values in the range 0-11.    In patterned

(XYGPATT) mode, the array is presumed to contain a series of line
style values specified from the set LSSOLID, LSDOT, and so forth. 
In thick-lines (XYGTHICK) mode, the values are presumed to
specify the approximate thicknesses of the lines in pixel units.
The number of elements in an array of symbols, patterns, or
thicknesses will depend on the number of data sets in your graph.
With a single data set, the values in the appropriate arrays are
applied on a per-point basis--you can use a symbol or line style to
differentiate each point.    In that case, the number of elements in
the array must equal the number of points in the graph.    With
multiple data sets, the arrays are applied on a per-set basis so
you can differentiate data sets on the graph.    In that case, the
number of elements in the array must equal the number of sets.
You can graph data either at fixed increments in X as defined by
fInc (the default mode) or using individual X values for points
(nMode XYGVARX).    In the latter case, you use the fD (distance)
array to specify the X positions.

GSDataTrans parameters for XY graphs

One data set
nPts Number of points in data set (no limit)
nGroup Number of data sets (1)
fA[nPts] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] Pointer to distance array (X positions of

plotted points)--used only with nMode
XYGVARX

nPatt[nPts] Pointer to array containing line style or
thickness for each line element--used only
with nMode XYGTHICK or XYGPATT

nSymbol[nPts] Pointer to array containing symbol design
for each point

nAux[nPts] Pointer to array containing missing-data flag
for each point

nClr[0] Not used

Multiple data sets
nPts Number of points per data set (no limit)
nGroup Number of data sets (no limit)
fA[nPts][nGroup] Pointer to amplitude array (Y positions of

plotted points)
fD[nPts] or
fD[nPts][nGroup]*

Pointer to distance array (X positions of
plotted points)--used only with nMode
XYGVARX

nPatt[nGroup] Pointer to array containing line style or
thickness for each data set--used only with
nMode XYGTHICK or XYGPATT

nSymbol[nGroup] Pointer to array containing symbol design
for each data set

nAux[nPts] or
nAux[nPts][nGroup]*

Pointer to array containing missing-data flag
for each point

nClr[nGroup] Pointer to array containing color for each
data set

* GSDataTrans can't pass two-dimensional fD or nAux arrays.   
You have to use the GSDataDist or GSDataAux function if you
want to specify individual fD or nAux values for each data set.   
However, you can use GSDataTrans if you want to apply the
same fD or nAux values to points in all sets.

Topic
GSXYGraph

Related
GSLinLog
GSLogLin
GSLogLog
GSScatter
GSTapeGraph
Axis/grid/legend:
GSAxis
GSGrid
GSLegend
Labels:
GSDataLabels
GSLabelnX
GSLabelX
GSLabelnY
GSLabelY
Array initialization:
GSDataTrans
GSDataDist
GSDataAux
Window initialization:
GSCloseWin
GSOpenWin
GSOpenChildWin

VBAGDataLabels function
Enables and sets text for data labels in Visual Basic

C/C++ Use AGDataLabels function

FoxPro Use AGDataLabels function

Visual Basic r% = VBAGDataLabels(nMode%, nLabs%, sLabelString$)

Parameters nMode Constant Value Meaning
AGDLTEXT 0 Labels supplied in

sLabelString$
AGDLDATA 1 Labels derived

from data
AGDLGROUPCLR 4 Color as data group

nLabs Value Meaning
0 Use if deriving labels from data

(nMode AGDLDATA)
1 or greater Use for number of labels if

supplying text labels (nMode
AGDLTEXT)
The label array must be of size nPts
nGroup to provide text labels for
each data item on display.    The
exceptions are high-low-close,
open-high-low-close, candlestick,
and box-whisker graphs, which
require a text array of size nPts
(only one label is provided for each
compound symbol, of which there
are nPts).

sLabelString String of data labels delimited by tabs, Chr$(9)
Note:    If nMode is AGDLDATA, pass " " as the
label string.

Return values 0
-1

Success
Failure

Description The VBAGDataLabels function, a Visual Basic-specific version of
the AGDataLabels function, enables data labels, which are labels--
either numeric or text--attached to each point of a graph.    Data
labels are available for all 2D graph types except pie charts
(which have their own labeling scheme) and time series graphs.   

They aren't available for 3D graphs.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBAGDataLabels, unlike AGDataLabels, requires you to create a
single string containing the text for all data labels.    You use the
tab character, Chr$(9), to separate label entries within this string.
You can use Visual Basic's Format$ functions to show labels in
currency, percent, date, and scientific forms.
In high-low-close, open-high-low-close, box-whisker, and
candlestick graphs, if you choose to have data labels derived
from data (nMode AGDLDATA), they're derived from the close or
median.

Topic
VBAGDataLabels

Related
AGDataLabels
AGFontStyle
VBAGLabelY
VBAGLabelZ
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

VBAGLabels function
Defines labels for axis or pie chart in Visual Basic

C/C++ Use AGLabels function

FoxPro Use AGLabels function

Visual Basic r% = VBAGLabels(nLabs%, szLabs$)

Parameters nLabs Number of labels
szLabs String of labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBAGLabels function, a Visual Basic-specific version of the
AGLabels function, transfers an array of labels to label the axis of
the independent variable of a graph or the slices of a pie chart.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBAGLabels, unlike AGLabels, requires you to create a single
string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.

Topic
VBAGLabels

Related
AGFontStyle
AGLabels
VBAGDataLabels
VBAGLabelY
VBAGLabelZ
VBAGLegend

Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

VBAGLabelY function
Defines labels for left or right Y axis in Visual Basic

C/C++ Use AGLabelY function

FoxPro Use AGLabelY function

Visual Basic r% = VBAGLabelY(nSelect%, nNLabs%, szString$)

Parameters nSelect Constant Value Meaning
AGLABYLEFT 0 Sets left-hand Y axis

labels
AGLABYRIGHT 1 Sets right-hand Y axis

labels
nNLabs Number of labels

szString String of labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBAGLabelY function, a Visual Basic-specific version of the
AGLabelY function, transfers an array of labels for the Y axis.    By
default, the Y axis is labeled with numeric values according to the
axis scale, which is either calculated automatically or set by the
AGYAxisStyle function.    This function allows arbitrary text labels
to replace the numeric values.
The AGYAxisStyle function must be called to set the number of
ticks on the axis and hence the number of labels to be supplied in
the array.
The nSelect parameter selects between the left- and right-hand Y
axes.    The latter is only of relevance to combination graphs with
a second Y axis drawn to a different scale.
Note that it's possible in graphs with a single Y axis to position
that axis on the right, using the AGYAxisStyle function.    However,
this function still treats the axis as a left axis, and you should use
nSelect = 0.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBAGLabelY, unlike AGLabelY, requires you to create a single
string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.

Topic
VBAGLabelY

Related
AGFontStyle
AGLabelY
VBAGDataLabels
VBAGLabels
VBAGLabelZ
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

VBAGLabelZ function
Defines labels for Z axis in Visual Basic

C/C++ Use AGLabelZ function

FoxPro Use AGLabelZ function

Visual Basic r% = VBAGLabelZ(nMode%, nNLabs%, szString$)

Parameters nMode Value Meaning
0 Currently no modes implemented

nNLabs Number of labels
szString String of labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBAGLabelZ function, a Visual Basic-specific version of the
AGLabelZ function, transfers an array of labels for the Z axis in
True3D graphs.    By default, this axis either carries no labels (for
all True3D graph types except scatter) or is labeled with numeric
values (for True3D scatter graphs).    AGLabelZ lets you specify
text labels to override these defaults.
The number of labels you need depends on the graph type:

For True3D area (stacked style) and bar (simple, stacked,
or clustered style) graphs, you need only one label.

For True3D area (absolute style), bar (z-clustered style),
surface, and tape graphs, you need one label for each data group.
The groups are always drawn from back to front, and label array
follows that order.

For True3D scatter graphs, Z data values are provided in
the Z data array, with the origin at the front.    In this case, the Z
axis is either drawn to a scale calculated automatically from the
data or as specified in the AGZAxisStyle function.    If you want to
supply text labels, be sure to use AGZAxisStyle to set the number
of ticks (and hence the number of labels) for the axis.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBAGLabelZ, unlike AGLabelZ, requires you to create a single
string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.

Topic
VBAGLabelZ

Related
AGFontStyle
AGZAxisStyle
VBAGDataLabels
VBAGLabels
VBAGLabelY
VBAGLegend
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

VBAGLegend function
Defines legend labels for grouped data in Visual Basic

C/C++ Use AGLegend function

FoxPro Use AGLegend function

Visual Basic r% = VBAGLegend(nLegs%, szString$)

Parameters nLegs Number of legend labels
szString String of legend labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBAGLegend function, a Visual Basic-specific version of the
AGLegend function, transfers an array of labels for the graph
legend.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBAGLegend, unlike AGLegend, requires you to create a single
string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.

Topic
VBAGLegend

Related
AGFontStyle
AGLegend
AGLegendStyle
VBAGDataLabels
VBAGLabels
Window initialization:
GSOpenWin
GSOpenChildWin
Graph display:
AGOpen
AGShow
AGClose

VBGSDataLabels function
Enables and sets text for data labels in Visual Basic

C/C++ Use GSDataLabels function

FoxPro Use GSDataLabels function

Visual Basic r% = VBGSDataLabels(nMode%, nPrec%, nCSet%, nTMode%,
 nClr%, fDataOffset#, nLabs%,
 szLabels$)

Parameters nMode Constant Value Meaning
DLTEXT 0 Labels supplied in

array szLabels
DLDATA 1 Labels derived from

data
DLGROUPCLR 4 Colored as data group
DLGROUPCLR overrides nClr to set the color of
labels to the color of the associated data group,
except in graph types where the label would
overprint block color and be invisible (such as
bubble graphs and Gantt charts).    In those cases,
the DLGROUPCLR flag is ignored and the label is
always rendered in nClr.

nPrec Value Meaning
0 or greater Specific decimal precision (use 0 if you

supply text labels)
-1 Precision is automatically calculated:

If all values in array are
integers from 0 to 999,999, numbers
are represented in full

If all values in array are
fractional, each number is represented
with three-digit precision

For arrays containing mixed
values, all numbers are scaled to the
closest power of 1000 and represented
with three-digit precision (for example,
3,456,000 is shown as 3.45)

nCSet Character set (see Character set constants)
nTMode Text mode (see Text mode constants)
nClr Color of data labels (see Color constants)

fDataOffset Number to be subtracted from the data values to
compensate for a nonzero origin (numeric labels
only; ignored for text labels)

nLabs Value Meaning
0 Use if deriving labels from data (nMode

DLDATA)
1 or greater Use for number of labels if supplying

text labels (nMode DLTEXT)
You need a number of labels equal to
nPts    nGroup to provide text labels for
each data item on display.    The
exceptions are high-low-close, open-
high-low-close, candlestick, and box-
whisker graphs, which require a text
array of size nPts (only one label is
provided for each compound symbol,
of which there are nPts).

szLabels String of data labels delimited by tabs, Chr$(9)
Note:    If nMode is DLDATA, pass " " as the label
string.

Return values 0
-1

Success
Failure

Description The VBGSDataLabels function, a Visual Basic-specific version of
the GSDataLabels function, enables data labels, which are labels--
either numeric or text--attached to each point of a graph.    Data
labels are available for all 2D graph types except pie charts
(which have their own labeling scheme) and time series graphs.   
They aren't available for 3D graphs.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBGSDataLabels, unlike GSDataLabels, requires you to create a
single string containing the text for all data labels.    You use the
tab character, Chr$(9), to separate label entries within this string.
You can use Visual Basic's Format$ functions to show labels in
currency, percent, date, and scientific forms.
In high-low-close, open-high-low-close, box-whisker, and
candlestick graphs, if you choose to have data labels derived
from data (nMode DLDATA), they're derived from the close or
median.
You have to call VBGSDataLabels before you call the graphing
function, such as GSBar2D, because labels are drawn at the same
time as the graph itself.

Topic
VBGSDataLabels

Related
GSDataLabels

VBGSLabelPie function
Draws pie chart text labels in Visual Basic

C/C++ Use GSLabelPie function

FoxPro Use GSLabelPie function

Visual Basic r% = VBGSLabelPie(fxOff#, fRad#, fWid#, fHt#, nLabs%,
 nMode%, nCSet%, nTMode%, nClr%,
 szLabs$)

Parameters fxOff Horizontal offset
fRad Radius of the arc on which the labels are drawn.   

This radius must be at least 1.1 times greater than
the pie radius (or 1.35 times greater if any
segments are exploded).    The pie radius is taken
from the preceding GSPieChart function call.

fWid Width of label
fHt Height of label
nLabs Number of labels in array
nMode Constant Value Meaning

LPSEGCLR 1 Colors labels the same
as segments

LPNOLINES 2 Omits pointing lines
from pie to labels

nCSet Character set (see Character set constants).    Use
CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
szLabs String of labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBGSLabelPie function, a Visual Basic-specific version of the
GSLabelPie function, draws a sequence of text labels to
complement a pie chart.    The pie chart must be drawn first
because this function adopts certain parameters from the
preceding pie chart function call.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBGSLabelPie, unlike GSLabelPie, requires you to create a single

string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.
There must be the same number of labels as pie slices.    The
angular position of each label is calculated from the data for the
pie chart.
The labels are drawn in an arc on each side of the pie, connected
to their respective segments by pointing lines.    These lines are
drawn from the label horizontally a distance fXOff, then radially
toward the center of the pie in a direction bisecting the segment.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.    Since
vector text is shaped to fit this area, the string segments for
individual labels should all be of the same length to give a
uniform character appearance.    This may require padding of
some string segments with spaces.
The color of the labels may either correspond to those of their
respective pie slices or be uniformly the same.

Topic
VBGSLabelPie

Related
GSLabelPie
GSLabelnPie
GSLoadRFont
GSLoadVFont
GSPie2D
GSPie3D

VBGSLabelX function
Draws text labels along X axis in Visual Basic

C/C++ Use GSLabelX function

FoxPro Use GSLabelX function

Visual Basic r% = VBGSLabelX(fxOrg#, fyOrg#, fInc#, fWid#, fHt#,
 nLabs%, nCSet%, nTMode%, nClr%,
 szLabs$)

Parameters fxOrg X origin
fyOrg Y origin
fInc X increment
fWid Width of label
fHt Height of label
nLabs Number of labels
nCSet Character set (see Character set constants).    Use

CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
szLabs String of labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBGSLabelX function, a Visual Basic-specific version of the
GSLabelX function, draws a horizontal sequence of text labels
starting on screen at (fxOrg,fyOrg) and at intervals of fInc to the
right of this point.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBGSLabelX, unlike GSLabelX, requires you to create a single
string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.    Since
vector text is shaped to fit this area, the string segments for
individual labels should all be of the same length to give a
uniform character appearance.    This may require padding of
some string segments with spaces.

Topic
VBGSLabelX

Related
GSLabelX
GSLabelnX
GSLoadRFont
GSLoadVFont
GSXYGraph

VBGSLabelY function
Draws text labels along Y axis in Visual Basic

C/C++ Use GSLabelY function

FoxPro Use GSLabelY function

Visual Basic r% = VBGSLabelY(fxOrg#, fyOrg#, fInc#, fWid#, fHt#,
 nLabs%, nCSet%, nMode%, nClr%,
 szLabs$)

Parameters fxOrg X origin
fyOrg Y origin
fInc Y increment
fWid Width of label
fHt Height of label
nLabs Number of labels
nCSet Character set (see Character set constants).    Use

CSRASTER (2) here to select a raster character set;
when you do this, labels aren't sized to fit within
the width and height you specify.

nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
szLabs String of labels delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBGSLabelY function, a Visual Basic-specific version of the
GSLabelY function, draws a vertical sequence of text labels
starting on screen at (fxOrg,fyOrg) and at intervals of fInc above
this point.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBGSLabelY, unlike GSLabelY, requires you to create a single
string containing the text for all labels.    You use the tab
character, Chr$(9), to separate label entries within this string.
By default, this function chooses a vector character set and each
label is drawn to fit a rectangle fWid wide and fHt high.    Since
vector text is shaped to fit this area, the string segments for
individual labels should all be of the same length to give a
uniform character appearance.    This may require padding of
some string segments with spaces.

Topic
VBGSLabelY

Related
GSLabelY
GSLabelnY
GSLoadRFont
GSLoadVFont
GSXYGraph

VBGSLegend function
Draws legend in Visual Basic

C/C++ Use GSLegend function

FoxPro Use GSLegend function

Visual Basic r% = VBGSLegend(fxOrg#, fyOrg#, fWid#, fHt#, nNLeg%,
 nRows%, nMode%, nCSet%, nTMode%, nClr%,
 nBClr%(0), nBPatt%(0), szLegs$)

Parameters fxOrg X origin
fyOrg Y origin
fWid Width of bounding area
fHt Height of bounding area
nNLeg Number of legend entries
nRows Number of rows in legend
nMode Constant Value Meaning

LGBOX 1 Draws black box
around legend area

LGTXCLR 2 Text takes its color
from the associated
legend box

LGBG 4 Fills the bounding area
with the current
background color

LGLINE 8 Shows line patterns
LGSYMBOL 16 Shows symbols

nCSet Character set (see Character set constants)
nTMode Text mode (see Text mode constants)
nClr Text color (see Color constants)
nBClr Pointer to array of legend box colors (see Color

constants)
nBPatt Pointer to array of legend box patterns (see Pattern

constants)
szLegs String of legend entries delimited by tabs, Chr$(9)

Return values 0
-1

Success
Failure

Description The VBGSLegend function, a Visual Basic-specific version of the

GSLegend function, draws a legend to accompany a graph or
chart.
Visual Basic doesn't let you pass arrays of text to API functions, so
VBGSLegend, unlike GSLegend, requires you to create a single
string containing the text for all legend items.    You use the tab
character, Chr$(9), to separate legend entries within this string.
The legend, consisting of a stack or row of patterned and colored
boxes associated with text strings, is drawn within a bounding
rectangle defined by its width and height and located by the
origin at its bottom left.    If you choose, you can have the legend
show line patterns rather than fill patterns (use nMode LGLINE).
Each legend entry is defined by elements in two arrays--color and
pattern--and by a tab-delimited string of text.

Topic
VBGSLegend

Related
GSLegend
GSLoadRFont
GSLoadVFont

Parameter constants

Using parameter constants
Character set constants
Color constants
Line style constants
Pattern constants
Symbol constants
Text mode constants

Using parameter constants

When you pass a numeric parameter to Graphics Server, you can generally use either the
integer value or a symbolic constant.    Symbolic constants are mnemonically named strings
that substitute for a numeric value.    For example, when you call the AGShow function, you
can replace the number 1 in the first parameter with the symbolic constant AGPIE2D.   
Although there's no performance advantage to using a constant over a numeric value, the
constants make your code easier to read and document.

Additive values
Values listed with a prefix of "(+)" are additive.    For example, a color parameter of LIGHT +
GREEN selects light green.

Character set constants

Constant Value Meaning
CSSYSTEM 0 Default vector font
CSUSER 1 Vector font loaded with GSLoadVFont function
(+) CSRASTER 2 Flag for raster font
CSRASTER + CSSYSTEM 2 Default raster font
CSRASTER + CSUSER 3 Raster font loaded with GSLoadRFont function

When you choose a raster font, you can't specify the exact height and width of a block of
text.

Color constants

Graphics Server draws its graphing windows using a default palette of 16 colors.    These
colors are achieved by combining several color constants (BLACK, BLUE, and so on) with an
additive LIGHT flag.
Constant Value
BLACK 0
BLUE 1
GREEN 2
CYAN 3
RED 4
MAGENTA 5
BROWN 6
WHITE 7
(+) LIGHT 8
LIGHT + BLACK 8
(or GRAY)
LIGHT + BLUE 9
LIGHT + GREEN 10
LIGHT + CYAN 11
LIGHT + RED 12
LIGHT + MAGENTA 13
LIGHT + BROWN 14
(or YELLOW)
LIGHT + WHITE 15
You may notice that the names for these constants differ in some cases from how equivalent
colors are described in the Graph control's documentation. The color called WHITE in the
DLL's list of constants is called "light gray" in documentation for the Graph control.    The
color called LIGHT + BLACK here is described as "dark gray" in the manual for the control.
The equivalent of LIGHT + WHITE is described as simply "white."    The differences are only in
terminology. Despite the different names, the actual numeric color values are the same.

Half-tone colors
Graphics Server reserves sixteen additional color values (16-31) for the half-tone colors of
settings 0 through 15.    These colors are automatically used for shaded items such as the
sides of 3D bars and pie slices and the undersides of 3D "tapes."    No symbolic constants are
defined for the half-tone colors.

128-color palettes
In this edition of Graphics Server, you aren't limited to the default color palette.    The
GSSelectPalette function lets you choose from 10 128-color palettes.    In that case, color
settings 0-15 follow the standard palette, settings 16-31 are the standard half-tones, and
settings 32-127 are determined by the palette you select.    No symbolic constants are
defined for settings 32-127.

Line style constants

Windows lets you apply a pattern or thickness--but not both--to lines drawn on the screen.   
Several Graphics Server functions ask you to specify either a line pattern or thickness.

Patterned lines
Six patterns are available, including a "null" (invisible) line.
Constant Value Pattern
LSSOLID 0
LSDASH 1
LSDOT 2
LSDASHDOT 3
LSDASHDD 4
LSNULL 5 Null (invisible) line

Thick lines
The value you specify is the line width in pixels (1 to 5).

Pattern constants

Graphics Server gives you a choice of 24 fill patterns (including solid, null, six hatch
patterns, and 16 bitmap patterns) for drawing such graph markers as pie slices, bars, and
area plots.

Constant Value Pattern
BRSOLID 0
BRNULL 1
BRHATCH 2
BRHATCH + 1 3
BRHATCH + 2 4
BRHATCH + 3 5
BRHATCH + 4 6
BRHATCH + 5 7
(+) BRHATCHMAX 6 Flag for maximum number of hatch patterns

BRBITMAP 16
BRBITMAP + 1 17
BRBITMAP + 2 18
BRBITMAP + 3 19
BRBITMAP + 4 20
BRBITMAP + 5 21
BRBITMAP + 6 22
BRBITMAP + 7 23
BRBITMAP + 8 24
BRBITMAP + 9 25
BRBITMAP + 10 26
BRBITMAP + 11 27
BRBITMAP + 12 28
BRBITMAP + 13 29
BRBITMAP + 14 30
BRBITMAP + 15 31
(+) BRBITMAPMAX 16 Flag for maximum number of bitmap patterns
(+) BRTRANS 64 Flag for transparent mode

The BRHATCHMAX and BRBITMAPMAX flags are included for ease of numbering.    Hatch
patterns start at BRHATCH and increase up to BRHATCH + BRHATCHMAX - 1; bitmap patterns
start at BRBITMAP and increase up to BRBITMAP + BRBITMAPMAX - 1.
When you include the BRTRANS flag (or add 64 to any pattern number), the pattern is
transparent and any underlying image shows through.    By default, patterns are opaque and
underlying images are hidden.

Symbol constants

This edition of Graphics Server offers 14 symbol designs for the graph types that use
symbols, such as scatter and line graphs.
Value Symbol

0
1
2
3
4
5
6
7
8
9
10
11
12
13

Text mode constants

Graphics Server text-handling functions often include a text mode parameter, which
determines how lines of text are drawn. You may pass one of the values--or the sum of
several values--in the table below.
Note:    The values shown in the table are additive.    However, a few are also mutually
exclusive.    For example, text cannot simultaneously be left-aligned, right-aligned and
centered, so do not combine TXLEFT + TXMID + TXRIGHT.
Constant Value Meaning
(+) TXEXACT 1 Text conforms to specified height and width (vector fonts only)
(+) TXLEFT 0 Text aligns at left
(+) TXMID 2 Text aligns at midpoint
(+) TXRIGHT 4 Text aligns at right
(+) TXBOTTOM 0 Text aligns along extreme bottom of characters
(+) TXBASELINE 8 Text aligns along baseline of characters
(+) TXTOP 16 Text aligns along top of characters
(+) TXUP90 32 Rotates text 90 degrees counterclockwise
(+) TXDOWN90 64 Rotates text 90 degrees clockwise
(+) TXTRANS 256 Text background is transparent

When you include the TXTRANS flag, the text background (a normally invisible rectangle
around the text) is transparent and any underlying image shows through.    By default, text
backgrounds are opaque and underlying images are hidden.

Label Formats

Numeric format strings
Date/time format strings

Numeric formats

Axes and data points can be labeled either with text or with numbers. When the labels are
numeric (set, point, or data values) the numbers can be formatted for display by calling
AGLabelFormat. This function accepts a format string similar to those for user-defined
numeric formats in Visual Basic. A sequence of placeholder and control characters defines
how numbers are formatted for display.

Numeric format characters
Character Meaning
0 Digit placeholder

Display a digit or a zero. If the number being formatted has a digit in the
position where the 0 appears, display it. Otherwise display a zero.
If the number has fewer digits than there are zeros in the format expression,
display leading or trailing zeros.

Digit placeholder
Display a digit or nothing. If the number being formatted has a digit in the
position where the # appears, display it. Otherwise display nothing.
This symbol works like the 0 except that leading and trailing zeros aren't
displayed.

. Decimal placeholder
The decimal placeholder determines how many digits are displayed to the left
and right of the decimal separator. If the format expression has nothing to the
left of this symbol, numbers smaller than 1 begin with a decimal separator. If
you want a leading zero always to be displayed with fractional numbers, use 0
as the first digit placeholder to the left of the decimal separator.
The actual character used as a decimal separator in the formatted output
depends on your system settings.

, Thousand separator
The thousand separator separates thousands from hundreds within a number
that has four or more places to the left of the decimal separator. Standard use
of the thousand separator is specified if the format contains a comma
surrounded by digit placeholders (0 or #). Two adjacent commas or a comma
immediately to the left of the decimal separator (whether or not a decimal is
specified) means "scale the number by dividing by a thousand, rounding as
needed". You can scale large numbers using this technique. For example, you
can use the format string "##0,," to represent 100 million as 100.
The actual character used as the thousand separator in the formatted output
depends on your system settings.

% Percentage placeholder
The number is multiplied by 100. The percent character (%) is inserted in the
position where it appears in the format string.

E-E+e-e+ Scientific format
If the format expression contains at least one digit placeholder (0 or #) to the
right of E-, E+, e- or e+ the number is displayed in scientific format. The
character "E" or "e" is inserted between the number and its exponent. The
number of digits in the exponent is determined by the number of digit
placeholders to the right.

Use E- or e- to place a minus sign next to negative exponents. Use E+ or e+ to
place a minus sign next to negative exponents and a plus sign next to positive
exponents.

\ Literal character
Display the character immediately following "\" in the format string.
Literal characters can be inserted before or after the formatted number. For
example "\$##0.0" will insert "$" before the formatted number. "##0.0\D\M"
will insert "DM" after the formatted number.

Examples
Number Format string Displayed
1234 0 1234
1234 00000 01234
1234 #,##0 1,234
1234 #,##0.00 1,234.00
1234 \$#,##0.00 $1,234.00
123456 \$#,##0,\k $123k
12345678 \$#,##0,,\m $12m
12345678 0.0E+00 1.2E+07
0.1234 0.00 0.12
0.1234 0.00000 0.12340
0.1234 0.0E-00 1.2E-01
0.1234 0.00% 12.34%
0.1234 0% 12%

Topic
Numeric formats

Related
AGLabelFormat
Date/time formats

Date/time formats

The X axis can be labeled with text, numbers or an automatically generated series of date
and time labels. To label the axis with a series of dates or times, call the AGLabelDateTime
function. To apply a format to the dates or times, call AGLabelFormat.This function accepts a
label format string similar to those for user-defined date and time formats in Visual Basic. A
sequence of placeholder and control characters defines how dates and times are formatted
for display.

Date format characters
Character Meaning
/ - : . , Delimiters. Any of these characters, as well as a space character, may be used

to separate elements of the displayed date.
c Display the date as ddddd and the time as ttttt in that order.
d Display the day as a number without a leading zero (1-31).
dd Display the day as a number with a leading zero (01-31).
ddd Display the day as an abbreviation (Sun/Sat).
dddd Display the day as a full name (Sunday/Saturday).
ddddd Display the date as a short date (including day, month, and year), formatted

according to your system's short date format setting.    The default short date
format is m/d/yy.

dddddd Display the date as a long date (including day, month, and year) formatted
according to the long date setting recognized by your system.    The default
long date format is mmmm dd, yyyy.   

w Display the day of the week as a number (1 for Sunday through 7 for
Saturday).

ww Display the week of the year as a number (1-53).
m Display the month as a number without a leading zero (1-12).
mm Display the month as a number with a leading zero (01-12).
mmm Display the month as an abbreviation (Jan-Dec).
mmmm Display the month as a full month name (January-December).
q Display the quarter of the year as a number (1-4).
y Display the day of the year as a number (1-366).
yy Display the year as a 2-digit number (00-99).
yyyy Display the year as a 4-digit number (1900-2037).

Examples
yyyy-mm-dd Format string Displayed
1997-03-01 d mmm yy 1 Mar 97
1997-03-01 dddd Saturday
1997-03-01 mmmm March
1997-03-01 dd mmmm yyyy 01 March 1997

1997-03-01 dddd, mmmm d,
yyyy

Saturday, March 1, 1997

1997-03-01 w 7
1997-03-01 q 1
1997-03-01 y 60

Time format characters
Character Meaning
/ - : . , Delimiters. Any of these characters, as well as a space character, may be used

to separate elements of the displayed time.
h Display the hour as a number without leading zeros (1-23).
hh Display the hour as a number with leading zeros (01-23).
n Display the minute as a number without leading zeros (0-59).
nn Display the minute as a number with leading zeros (00-59).
s Display the second as a number without leading zeros (0-59).
ss Display the second as a number with leading zeros (00-59).
t t t t t Display a time as a complete time (including hour, minute, and second),

formatted using the time separator defined by the time format recognized by
your system.    The default time format is h:mm:ss.

AM/PM Use the 12-hour clock and display an uppercase AM with any hour before noon;
display an uppercase PM with any hour between noon and 11:59 P.M.

am/pm Use the 12-hour clock and display a lowercase AM with any hour before noon;
display a lowercase PM with any hour between noon and 11:59 P.M.

A/P Use the 12-hour clock and display an uppercase A with any hour before noon;
display an uppercase P with any hour between noon and 11:59 P.M.

a/p Use the 12-hour clock and display a lowercase A with any hour before noon;
display a lowercase P with any hour between noon and 11:59 P.M.

Examples
hh-mm-ss Format string Displayed
13-30-25 ttttt 13:30:25
13-30-25 h:nn 13:30
13-30-25 nn:ss 30:25
13-30-25 h:nn AM/PM 1:30 PM
13-30-25 hh:nn:ss a/p 01:30:25 p

Topic
Date/time formats

Related
AGLabelFormat
Numeric formats

