
See Also
How the DataGrid handles data validation & error checking

(About) Applies To
SSDBCombo
SSDBCommand
SSDBDropDown
SSDBData
SSDBGrid
SSDBOptSet

(About) Property
Applies To
Description

Displays version information about the control.
Usage

Click on the ellipses ('...') button next to the property text to activate the about dialog box.
Remarks

This property is available only at design time.    At runtime, it is available as a method
called AboutBox.

(Custom) Property
Applies To

SSDBCombo, SSDBCommand, SSDBData, SSDBDropDown, SSDBGrid, SSDBOptSet
Description

Displays the property pages for the control.
Usage

Right-click on the object and choose ‘Properties...’ from the pop-up menu, or click on the
ellipses ('...') button next to the property text to activate the property pages.

Remarks
This property is available only at design time.

With this release of Data Widgets also comes the transition from accessing and
manipulating grid rows by row number to using bookmarks.    Row numbers are still used in
Data Widgets 2.0, but their meaning has been redefined.    There are now two types of row
numbers, Display    row numbers which indicate the row number as it appears in the
current view, and Absolute    row numbers which indicate the row number relative to the
entire grid.    Absolute row numbers are only used in AddItem mode, while display row
numbers are used in bound, unbound, and AddItem modes of the grid.

About SelBookmarks

The SelBookmarks collection represents a set of selected bookmark objects. Bookmarks
are added to this collection whenever a user selects a row in the grid. If Multiselect is True,
then each row selected will be added to the collection in the order in which the selection
occured. Order is never based on the displayed order. When a row is unselected, that row
is then removed from the SelBookmarks collection. It is dangerous and not recommended
to ever store the ordinal position of a row within this collection.
You can also add bookmarks to the SelBookmarks collection through code. The following
example will add the first five rows to the collection:

Dim i as integer

SSDBGrid1.MoveFirst ' Position at the first row
For i = 0 to 4

SSDBGrid1.SelBookmarks.Add SSDBGrid1.Bookmark
SSDBGrid1.MoveNext

Next i

It is also easy to access the rows in the SelBookmarks collection without moving the
current row position. For example, if there was a column in the grid called Amount and you
wanted to add up all the rows that were selected to get a total, you could use the following
code:

Dim nTotal as long
Dim nTotalSelRows as integer
Dim i as integer
Dim bkmrk as Variant ' Bookmarks are always defined as variants

nTotalSelRows = SSDBGrid1.SelBookmarks.Count

' In the following, get the bookmark of the selected rows

For i = 0 to nTotalSelRows
bkmrk = SSDBGrid1.SelBookmarks(i)
nTotal = nTotal + SSDBGrid1.Columns("Amount").CellValue(bkmrk)

Next i

Debug.Print "The total amount = " & Format(nTotal, "Currency")

About StyleSets
To understand StyleSet objects and the StyleSets collection, you should become familiar
with the concept of collections.   
A StyleSet is an object that contains a set of visual properties.    In Data Widgets, the Data
Grid, Data Combo, and Data DropDown all make use of StyleSet objects.

Creating StyleSets
It is possible to create style sets through the Grid Editor.    It is also possible, and
sometimes more appropriate, to create StyleSets through code.
In the case of the Data Grid, different StyleSets can be created and applied to specific
columns, groups, and headers.    Each of these Stylesets can in-turn be given
characteristics which make one stand out from the other.    For example, a "Loss" column of
a grid containing financial data can have its BackColor property set to ‘red’, while a
"Profit" column of a grid can have its BackColor property set to "green".

The following is an example of how a StyleSet may be set up:
1. The StyleSet is first added to the StyleSets Collection as follows:

SSDBGrid1.StyleSets.Add "Houston"

2. Once added, the properties of a StyleSet may be set as follows:
SSDBGrid1.StyleSets("Houston").BackColor = RGB(255,255,0)

Applying StyleSets
Once the StyleSet is created, it can be applied to an object that has a StyleSet Property.
The following code applies the ‘Houston’ StyleSet to the Column object of a Data Grid
control:

SSDBGrid1.Columns(1).StyleSet = "Houston"

Note If a change is made to a StyleSet, it does not have to be reapplied to an object to
take effect.    However, the control may need to be redrawn by invoking the Refresh
method.

Achieving a 3D Look with the Data Combo
By setting just a few properties, you can quickly make your Data Combo have a 3D look to
it.    The following settings allow for a 3D look:

SSDBCombo1.BackColorEven = &H00C0C0C0&‘ Gray
SSDBCombo1.BackColorOdd = &H00C0C0C0&‘ Gray
SSDBCombo1.ForeColorEven = &H00000000& ‘ Black
SSDBCombo1.ForeColorOdd = &H00000000& ‘ Black
SSDBCombo1.DividerStyle = 3 ‘ Inset
SSDBCombo1.DividerType = 3 ‘ Both

ActiveCell Applies To
SSDBGrid

ActiveCell Method
See Also Applies To
Description

Returns the active cell object.
Syntax

object . ActiveCell

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
The ActiveCell object is singular and not a member of a collection.

ActiveCell Method See Also
ActiveCell Object

ActiveCell Object
See Also Applies To
Description

An ActiveCell object represents the active cell in the grid.

Properties

Height SelText Value
Left StyleSet Width
SelLength Text
SelStart Top

Remarks
The ActiveCell is not a member of any collection, and is a singular object.    The Left, Top,
Width, and Height properties are read-only for this object.    The numbers exposed on this
object are in screen coordinates.

ActiveCell Object See Also
ActiveCell Method

ActiveRowStyleSet Property
See Also Applies To
Description

Returns or sets the name of the ActiveRowStyleSet in the StyleSets collection.    The
ActiveRowStyleSet determines the style of the active row.

Syntax
object . ActiveRowStyleSet[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the name of the ActiveRowStyleSet
.

Remarks
This property determines the StyleSet to be used for the active row of the control.    Note
that the StyleSet specified must be in the StyleSets collection. StyleSets will override
each other based on the following hierarchy:
Data Area:

ActiveCell.StyleSet (overrides all below)
Control.ActiveRowStyleSet (overrides all below)
Column.CellStyleSet (overrides all below)
Column.StyleSet (overrides all below)
Group.StyleSet (overrides all below)
Control.StyleSet

Properties

BackColor Font ForeColor

ActiveRowStyleSet Property See Also
HeadStyleSet property
StyleSet property
StyleSet object
StyleSets collection

ActiveRowStyleSet Applies To
SSDBGrid

Add Method
See Also Applies To Example
Description

Adds objects to a collection.

Syntax (SSDBData: Bookmarks)
object . Add(bookmark As Variant, bookstring As String)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

bookmark A variant specifying the bookmark number to add.
bookstring A string specifying the text displayed when the bookmark is referenced.

Syntax (SSDBGrid: Columns/Groups)
object . Add(Index    As Integer)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

index An integer specifying where the column or group is inserted in a collection.

Syntax (SSDBGrid: SelBookmarks)
object . Add(bookmark As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

bookmark A variant specifying the bookmark number to add.

Syntax (SSDBOptSet:Buttons)
object . Add([ButtonsToAdd    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

ButtonsToAdd Total number of objects to add.

Syntax (StyleSets)
object . Add(name    As String)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

name A string expression specifying the name of the StyleSet to add.

Remarks
For the Buttons collection, if you do not specify a value for ButtonsToAdd, only one button
will be added.
For the Columns and Groups collections, you can insert either between two existing
collections.
For example, if you have three columns and you want to add a column between the second
and third (Columns(1) and Columns(2)), your code would look like:

SSDBGrid1.Columns.Add(2)

Add Method Applies To
Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

Add Method See Also
Bookmarks collection
Buttons collection
Columns collection
Groups collection
StyleSets collection
Count property
Remove method
RemoveAll method

AddItem Method
See Also Applies To Example
Description

Adds a string to an AddItem grid.

Syntax
object . AddItem(Item    As String, [index    As Integer])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

item A string expression specifying the data to add.
index An integer expression specifying the row to add the string to.

Remarks
When no index is specified, the string is added at the end of the grid.

AddItem Method (Column Object)
See Also Applies To: Example
Description

Adds a string to the column’s combo box.

Syntax
object . AddItem(Item    As String, [index    As Integer])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

item A string expression specifying the data to add.
index An integer expression specifying the position in the combo box to add the

data.

Remarks
This method is only valid for columns with the style set to combo box.    If you do not
specify an index, the string is appended to the list.

AddItem Method (Column Object) Applies To
Column Object

AddItem Method (Column Object) See Also
Style
Columns collection

AddItem Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

AddItem Method See Also
DataMode
FieldDelimiter
FieldSeparator
RemoveItem method

AddItemBookmark Method
See Also Applies To
Description

Returns the AddItem bookmark for a given absolute row number.

Syntax
object . AddItemBookmark(RowIndex    As Long)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

RowIndex A numeric expression specifying the absolute row number.

Remarks
In bound mode, you are able to access bookmarks through the data control.    This method
gives the programmer access to the bookmarks for AddItem mode.

AddItemBookmark Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

AddItemBookmark Method See Also
AddItemRowIndex

AddItemRowIndex Method
See Also Applies To
Description

Returns the AddItem row number for a given bookmark.

Syntax
object . AddItemRowIndex(Bookmark    As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Bookmark A variant expression specifying the bookmark.

Remarks
In bound mode, you are able to access bookmarks through the data control.    This method
gives the programmer access to the row number based on a bookmark for AddItem mode.

AddItemRowIndex Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

AddItemRowIndex Method See Also
AddItemBookmark

Adding An AddItem Grid See Also
Performance Tuning

Adding An Unbound Data Combo See Also
Adding An Unbound Data DropDown
Adding An Unbound Data Grid
Performance Tuning

Adding An Unbound Data DropDown See Also
Adding An Unbound Data Combo
Adding An Unbound Data Grid
Performance Tuning

Adding An Unbound Data Grid See Also
Adding An Unbound Data DropDown
Adding An Unbound Data Combo
Performance Tuning

Adding Pictures to Cells

How do you want to apply the pictures to the cells?

Apply pictures based on the contents of a cell
Apply the same picture to every cell in a column

Adding a Bound Data Combo
The Data Combo relies on the host environment’s standard data control to access
database information.

To use the Data Control with your application in Visual Basic:
1. Place two standard data controls on your form. One is used for the edit portion, the

other is used for the list portion.
2. For both data controls, set the DatabaseName and RecordSource properties to

point to a database and the table within the database.
3. Place a Data Combo control on your form.
4. Set the DataSource property of the Data Combo to point to the data control used for

the edit portion.    Set the DataField property to point to the field used.
5. Set the DataSourceList property of the Data Combo to point to the data control

used for the list portion.    Set the DataFieldList property to point to the field used.

Adding a Bound Data DropDown
Much like a Data Combo, the field in the cell is related to the list in the Data DropDown.   

To use the Data DropDown in a Data Grid:
1. Place two standard data controls on your form. One is used for the data grid, the

other is used for the data combo.
2. For both data controls, set the DatabaseName and RecordSource properties to

point to a database and the table within the database.
3. Place a Data Grid control on the form and bind it to the first data control.
4. Place a Data DropDown control on the form. The location of the Data DropDown is

unimportant since it is invisible at runtime.
5. Set the DataSource property of the Data DropDown to the second data control.
6. Set the DataFieldList property of the Data DropDown to the field you want used for

the list.
7. Link the Data DropDown to the Data Grid by adding the following code in the

InitColumnProps procedure of the Data Grid:
SSDBGrid1.Columns(n).DropDownhWnd = SSDBDropDown1.hWnd

Note The instructions above assume that the Data Grid is also bound to a data control.   
It is possible to have a bound Data DropDown work in conjunction with an unbound Data
Grid.    If the Data Grid is unbound, you will only need one data control, the one used for
the Data DropDown.

Adding a Bound Data Grid to your application
The Data Grid makes use of the host environment’s standard data control.   

To create a functional grid for your application in Visual Basic:
1. Add a Visual Basic Data Control to your form.
2. Set the DatabaseName and RecordSource properties in the data control.
3. Add a SSDBGrid Control to your form.
4. Set the DataSource property in the SSDBGrid control to the data control (i.e.,

Data1).
Your grid is now aware of the database associated with the data control.    At this point, you
can use the Grid Editor to design a grid format.

Adding a Data Command Button
The Data Command button only works when bound to a data control.

To use the Data Command button with your application in Visual Basic:
1. Place a standard data control on your form.
2. Set the DatabaseName and RecordSource properties to point to a database and

the table within the database.
3. Place the Data Command button on your form.
4. Set the DataSource property of the Data Command button to point to the data

control you created in Step 1.
5. Set the DatabaseAction property of the Data Command button to perform the

action you want.

Adding a computed column to the DataGrid
There may be cases in which you have a series of values in a record and you want to display a computed value in
an unbound column. An example of this would be an Orders database where you have Quantity and Unit Price
columns, and you wish to display a Total Price that is the product of Quantity and Unit Price. Such a value does
not need to be stored in the database; it can be computed and displayed "on the fly."
Take the following steps to display computed values in an unbound column:

1. Add an unbound column to the grid.

Click here to see how to do this.

2. In the RowLoaded event, perform the desired calculation and assign it to the curent cell in the unbound
column.

Click here to see how to do this.

Adding an AddItem Grid to Your Application
See Also

In AddItem mode, you can add as many rows of data as you want, at any time during
operation.    This data is accessible as if the grid was bound (i.e., when you scroll, the next
row of data is displayed automatically).    Instead of a data control managing the flow of
data, the grid does.   
This mode operates similarly to the Visual Basic list box, but has all the features and power
of the SSDBGrid.    You can use the Grid Editor to help create the AddItem grid, or you can
manually specify the properties.
Wherever possible, the grid in AddItem mode has the same functionality as a grid in bound
mode, and most programmatic statements are the same.
The uses of this mode are virtually endless.    One of its most useful features is being able
to fill the grid with information without the need for a database.    The AddItem mode is
much better on system resources because it does not require the overhead of a Data
Control.    AddItem mode is best used for small lists that are easily maintained.

To create a an AddItem grid for your application:
1. Add a SSDBGrid control to your form.
2. Set the DataMode property to 2 (AddItem mode).
3. Specify the number of columns to use by setting the Cols property.
4. If you want to change the FieldDelimiter or FieldSeperator properties from their

defaults, specify them now.
5. Specify code in the InitColumnProps event of the grid so that items are added when

the grid first appears.

The following example demonstrates how InitColumnProps can be used to fill an AddItem
grid:

Sub SSDBGrid1_InitColumnProps
Dim I As Integer

For I = 0 to 32
SSDBGrid1.AddItem "Hello" + CHR$(9) + "World"

Next I
End Sub

Adding an Unbound Data Combo
See Also

the Data Combo has two portions that it retrieves data for, with the ability to bind each
part to different data sources.    You can also configure the Data Combo to have either or
both portions unbound, in which case, you will need to supply the data yourself.
When the edit portion of the Data Combo is unbound, you need to initially supply the field
value yourself via the Text property which contains the value of the data in the edit
portion of the Data Combo.    When the user clicks on the dropdown button, the list portion
will automatically update the Text property and the contents of the edit portion if the user
selects a value, much like a standard combo box.    The functionality of the Data Combo in
unbound mode is identical to the Data Grid in unbound mode.
You can also set the Data Combo to AddItem mode, following the same guidelines used for
the Data Grid in AddItem mode.

Adding an Unbound Data DropDown
See Also

The functionality of the Data DropDown in unbound mode is identical to the Data Grid in
unbound mode.
You can also set the Data DropDown to AddItem mode, following the same guidelines used
for the Data Grid when in this mode.

Adding an Unbound Data Grid to your application
See Also

The primary use of the Data Grid is to manage the display and entry of data into a record
set of the bound data control.    Because a database may contain an unlimited amount of
data, the Data Grid has to manage the data in a virtual fashion, meaning that it only reads
in as much data as it needs to display information on the screen.
Another important feature of the Data Grid is its ability to perform as an unbound control.
Unbound mode is most useful when you need to handle data that the host environment’s
standard data control cannot.    The only difference between bound and unbound mode is
how the data is handled coming into the grid and going out of the grid.   
The unbound grid sends cues in the form of events notifying you when it needs a response.
When it needs more data, it fires the UnboundReadData event, likewise, when it needs
to save data, it fires the UnboundWriteData event.    Your primary responsibility in
unbound mode is to supply the grid with data when it requests it, and to store data when it
sends it.

To create an unbound grid for your application in Visual Basic:
1. Add a SSDBGrid Control to your form.
2. Set the DataMode to ‘1 - Unbound’.
3. Place code in the UnboundReadData event of the Data Grid that extracts data from

your data source.
4. Place code in the UnboundWriteData event of the Data Grid that writes modified

data back to your data source.
5. Place code in the UnboundAddData event of the Data Grid that appends a new row

to your data source.
6. Place code in the UnboundDeleteRow event of the Data Grid that deletes a row

from your data source.
Your unbound data grid is now ready for use.

Adding an unbound column to a grid through code
Adding unbound columns to a grid control is accomplished using the Add method of the
Columns collection. You must specify the index of the new column when invoking the
method. Once you have added the new column, you can immediately begin setting
properties, such as Caption and DataType.
If you want the unbound column to be part of the grid as soon as it appears, add the code
to the InitColumnProps event. Alternatively, you could add the column in response to
some other event, such as the user clicking a command button.
The following code adds a new column to the right side or a DataGrid, based on the
number of columns already in the grid.

(General)(declarations)
Dim iNewCol As Integer

Private Sub SSDBGrid1_InitColumnProps()
iNewCol = SSDBGrid1.Columns.Count
SSDBGrid1.Columns.Add iNewCol
SSDBGrid1.Columns(iNewCol).Caption = "Total Price"
SSDBGrid1.Columns(iNewCol).DataType = 4

End Sub

Often, you want to add an unbound column to display some value computed from other
columns in the grid. The following code shows an example of how to perform such a
calculation. For the purposes of this example, Columns(2) contains a Unit Price, and
Columns(3) contatians a Quatity. The code multiplies the two values to produce a total
price, whcih is then displayed in the unbound column:

Private Sub SSDBGrid1_RowLoaded(ByVal Bookmark As Variant)
Dim nTotal As Single

nTotal = (SSDBGrid1.Columns(2).CellValue(Bookmark) *
SSDBGrid1.Columns(3).CellValue(Bookmark))

SSDBGrid1.Columns(iNewCol).DataType = 3
SSDBGrid1.Columns(iNewCol).Value = Format(nTotal, "Currency")

End Sub

Adding an unbound column using the Grid Editor
Take the following steps to use the Grid Editor at design time to set up a Data Grid, Data Combo or Data
DropDown with one or more unbound columns.

1. Place the control on the form and specify a valid data source for it.

2. Right-click on the control to bring up the context menu. Select "Properties..." from the menu. The property
pages will appear.

3. Click on the Columns tab of the property pages. This displays the Grid Editor.

4. Click on the "Fields..." button. A dialog will appear with the available fields from the data source you
specified. Select the fields you want to appear in the crid, using the CTRL key and the mouse to select /
deselect individual fields. Click OK when finished selecting fields.

5. The Grid Editor will now display a preview of the grid with the fields you have selected. So far all the columns
are bound columns.

6. Click the "Add Column" button. A dialog will appear for you to specify the name of the new column. Enter the
name you wish to use for your unbound column and click OK.

7. The new, unbound column will appear with the name you specified in the caption. New columns appear to
the right of the existing columns in the grid. You can then change any of the column's attributes using the
Grid Editor controls, or move it to a different position within the grid by dragging it with the mouse.

Adding the DataOptionSet
Option buttons for the DataOptionSet can be created at either design or runtime.    Once
you have placed the control on the form, all you need to do is set properties that define
the values for your DataOptionSet.

To use the DataOptionSet with your application in Visual Basic:
1. Place a standard data control on your form.
2. Set the DatabaseName and RecordSource properties to point to a database and

the table within the database.
3. Place the DataOptionSet on your form.
4. Set the DataSource property of the DataOptionSet to point to the data control you

created in Step 1.
5. Set the DataField property of the DataOptionSet so that it points to the field to work

with.
The DataOptionSet has been added to your form, but you must create buttons at design
time or create buttons at run time in order for the control to be useful.

Adding the Enhanced Data Control
Adding the Enhanced Data Control to your form is quite simple.    Remember that the EDC
works in conjunction with the standard data control, not without it.

To use the Enhanced Data Control with your application:
1. Place a standard data control on your form.
2. Set the DatabaseName and RecordSource properties to point to a database and

the table within the database.
3. Place the Enhanced Data Control on your form.
4. Set the DataSource property of the EDC to point to the data control you created in

Step 1.
5. Set the DataField property of the EDC to point to the database field you want the

EDC bound to.

Additional Visual Basic 4.0 Samples
Applying Pictures to Cells
Totalling Values in a Grid Column
Creating a Total Query
Adding an Unbound Column to a Grid Through Code

AfterClick Event
Applies To Example
Description

Occurs immediately after the user has clicked the button and the database action has
been performed.

Syntax
SSDBCommand:
Sub control_AfterClick ()

SSDBData:
Sub control_AfterClick (ByVal nPosition As Integer)

The event parameters are:
Parameter Description

nPosition Integer indicating the area of the control being pointed to.

Remarks
AfterClick gives the user an opportunity to perform an action after a database action has
been performed.
The following values for nPosition apply to the Enhanced Data Control

Integer Area being pointed to

1 Caption Area
2 Bevel Area
3 "First" Button
4 "Last" Button
5 "Previous Page" Button
6 "Next Page" Button
7 "Previous Record" Button
8 "Next Record" Button
9 "Add" Button
10 "Cancel" Button
11 "Update" Button
12 "Delete" Button
13 "Find Next" Button
14 "Find Previous" Button
15 "Find" Button
16 "Add Bookmark" Button
17 "Clear Bookmark" Button
18 "Goto Bookmark" Button

There are constants available for the settings of this parameter.

AfterClick Event Applies To
SSDBCommand
SSDBData

AfterColUpdate Event
See Also Applies To
Description

Occurs after data is moved from a cell in the grid to the control’s copy buffer.

Syntax
Sub control_AfterColUpdate (ColIndex As Integer)

The event parameters are:

Parameter Description

ColIndex An integer expression that specifies the index of the column in which the
data is moved from.

Remarks The AfterColUpdate event occurs only if the Cancel    argument in the
BeforeColUpdate event is not set to True.

AfterColUpdate Event Applies To
SSDBGrid

AfterColUpdate Event See Also
AfterInsert event
AfterUpdate event
BeforeColUpdate event
BeforeDelete event
BeforeInsert event
BeforeUpdate event

AfterDelete Event
See Also Applies To Example
Description

Occurs after the user deletes a row.

Syntax
Sub control_AfterDelete (RtnDispErrMsg    As Integer)

The event parameters are:
Parameter Description

RtnDispErrMsg An integer expression that indicates if an error message box should be
displayed.

AfterDelete Event Applies To
SSDBGrid

AfterDelete Event See Also
AfterColUpdate event
AfterInsert event
AfterUpdate event
BeforeColUpdate event
BeforeDelete event
BeforeInsert event
BeforeUpdate event

AfterInsert Event
See Also Applies To Example
Description

Occurs after the user inserts a new row.

Syntax
Sub control_AfterInsert (RtnDispErrMsg    As Integer)

The event parameters are:
Parameter Description

RtnDispErrMsg An integer expression that indicates if an error message box should be
displayed.

AfterInsert Event Applies To
SSDBGrid

AfterInsert Event See Also
AfterColUpdate event
AfterDelete event
AfterUpdate event
BeforeColUpdate event
BeforeDelete event
BeforeInsert event
BeforeUpdate event

AfterPosChanged Event
See Also Applies To
Description

Occurs just after a grid column changes position due to movement or swapping.

Syntax
Sub control_AfterPosChanged (ByValWhatChanged    As Integer, ByVal NewIndex    As
Integer)

The event parameters are:
Parameter Description

WhatChanged An integer value that specifies the action that was taken to trigger the
event.

NewIndex The index of the current column after the change has occurred.

Settings
The settings for WhatChanged    are:
Setting Description

0 Column was moved individually.
1 Column was moved as part of a group movement.
2 Column was moved as a result of being individually swapped.
3 Column was moved as a result of its group being swapped.

There are constants available for the settings of this parameter.

Remarks
Other events triggered by column movement are triggered before the move occurs.
The value of the column index returned by NewIndex    will usually be the same as it was
before the event occurred. It will only change when moving or swapping columns between
groups.

AfterPosChanged Event Applies To
SSDBGrid

AfterPosChanged Event See Also
ColMove event
ColSwap event
GrpMove event
GrpSwap event

AfterUpdate Event
See Also Applies To Example
Description

Occurs after the user updates the current row.

Syntax
Sub control_AfterUpdate (RtnDispErrMsg    As Integer)

The event parameters are:
Parameter Description

RtnDispErrMsg An integer expression that indicates if an error message box should be
displayed.

Remarks
You can use this event to perform any processing required to respond to the occurrence of
the update. This event also provide a way to trap errors associated with updating the data
in the database with data from the control.
For more information on how to handle data-related errors, see "How the Data Grid
handles data validation and error checking."

AfterUpdate Event Applies To
SSDBGrid

AfterUpdate Event See Also
AfterColUpdate event
AfterDelete event
AfterInsert event
BeforeColUpdate event
BeforeDelete event
BeforeInsert event
BeforeUpdate event
How the Data Grid handles data validation and error checking

Alignment Property
See Also Applies To
Description

For SSDBData, Determines how the text will be aligned within the caption area.
For SSDBOptSet, Determines how the button will be displayed with respect to the text.

Syntax
object . Alignment[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the alignment position to take as
described in Settings.

Settings (SSDBData)
Setting Description

0 Left Justify - Top
1 Left Justify - Middle
2 Left Justify - Bottom
3 Right Justify - Top
4 Right Justify - Middle
5 Right Justify - Bottom
6 Center - Top
7 (Default) Center - Middle
8 Center - Bottom

There are constants available for the settings of this property.

Settings (SSDBOptSet)
Setting Description

0 (Default) Left Justify
1 Right Justify

There are constants available for the settings of this property.

Alignment Property (Column Object)
Applies To
Description

Determines how the text will be aligned within the column.

Syntax
object . Alignment[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the alignment position to take as
described in Settings.

Settings
Setting Description

0 Left Justify
1 Right Justify
2 Center Justify

There are constants available for the settings of this property.

Remarks
The default setting is determined by the control based on the data type.

Alignment Property (Column Object) Applies To
Column Object

Alignment Property Applies To
SSDBData
SSDBOptSet

Alignment Property See Also
CaptionAlignment property

AlignmentPicture Property
See Also Applies To
Description

Determines the alignment of the graphic specified in the Picture property.

Syntax
object . AlignmentPicture[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the alignment of the picture as described
in Settings.

Settings
Setting Description

0 (Default) Left of text
1 Right of text
2 Fit to Caption
3 Tile

There are constants available for the settings of this property.

AlignmentPicture Property Applies To
StyleSet Object

AlignmentPicture Property See Also
AlignmentText

AlignmentText Property
See Also Applies To
Description

Determines how the text will be aligned.

Syntax
object . AlignmentText[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the alignment position to take as
described in Settings.

Settings
Setting Description

0 Left Justify
1 Right Justify
2 Center Justify

There are constants available for the settings of this property.

AlignmentText Property Applies To
StyleSet Object

AlignmentText Property See Also
AlignmentPicture

AllowAddNew Property Applies To
SSDBGrid

AllowAddNew Property
See Also Applies To
Description

Determines if new records are allowed to be added to the data grid by the user.

Syntax
object . AllowAddNew[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether new records can be added to the
grid, as described in Settings.

Settings
Setting Description

True The user can add new records to the grid.
False (Default) The user can not add new records to the grid.

Remarks
When enabled, new records can be appended at the bottom of the grid in the row denoted
by an asterisk (*).

AllowAddNew Property See Also
AllowDelete
AllowUpdate

AllowColumnMoving Property Applies To
SSDBGrid

AllowColumnMoving Property
See Also Applies To
Description

Determines if columns can be moved by the user, and if so, the scope of the move.

Syntax
object . AllowColumnMoving[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the position to take as described in
Settings.

Settings
Setting Description

0 Column moving is not allowed.
1 (Default)    Columns can be moved only within a group.
2 Columns can be moved anywhere including between groups.

There are constants available for the settings of this property.

Remarks
Columns can be moved by clicking on the header of the column to move, and dragging it
to the new location.
When columns are moved from one group to another, the column is removed from the
source group and inserted in the destination group.

Swapping or moving columns does not change the name or number of the column, that is
column number 2 is still column number 2 despite being moved.

AllowColumnMoving Property See Also
AllowColumnSizing
AllowColumnSwapping

AllowColumnShrinking Property Applies To
SSDBGrid

AllowColumnShrinking Property
See Also Applies To
Description

Determines if columns can be shrunk to their minimum width by the user clicking the right
mouse button on the header.

Syntax
object . AllowColumnShrinking[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the column can be shrunk to its
minimum size, as described in Settings.

Settings
Setting Description

True (Default)    The user can shrink the group.
False The user can not shrink the group.

Remarks
Shrinking columns is useful to bring scrolled columns into view quickly.

AllowColumnShrinking Property See Also
AllowGroupShrinking

AllowColumnSizing Property
See Also Applies To
Description

Determines if columns in the grid can be resized by the user or are fixed in width.

Syntax
object . AllowColumnSizing[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether columns can be resized, as
described in Settings.

Settings
Setting Description

True (Default) Columns can be resized by the user.
False Columns can not be resized by the user.

Remarks
Columns can be resized by dragging the right edge of the column    left for smaller or right
for larger.

AllowColumnSizing Property Applies To
SSDBGrid

AllowColumnSizing Property See Also
AllowColumnMoving
AllowColumnSwapping

AllowColumnSwapping Property
See Also Applies To
Description

Determines if the position of two columns can be swapped by the user, and if so, the scope
of the swap.

Syntax
object . AllowColumnSwapping[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the alignment position as described in
Settings.

Settings
Setting Description

0 Column swapping is not allowed.
1 (Default) Columns can be swapped only within a group.
2 Columns can be swapped anywhere.

There are constants available for the settings of this property.

Remarks
Swapping columns is accomplished by first clicking the header of one of the columns you
wish to swap, then clicking on the dropdown list that appears, and finally selecting the
name of the column you wish to swap with.
When columns are moved from one group to another, the column is removed from the
source group and inserted in the destination group.

Swapping or moving columns does not change the name or number of the column, that is
column number 2 is still column number 2 despite being moved.

The following example screens show how the fields "Company Name" and "Address" are swapped:

Before Swap

After Swap

AllowColumnSwapping Property Applies To
SSDBGrid

AllowColumnSwapping Property See Also
AllowColumnMoving
AllowColumnSizing

AllowDelete Property
See Also Applies To
Description

Determines if rows in the grid can be deleted by the user.

Syntax
object . AllowDelete[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether rows can be deleted, as
described in Settings.

Settings
Setting Description

True Rows can be deleted by the user.
False (Default) Rows can not be deleted by the user.

Remarks
Rows can be deleted by selecting the row and then pressing the "Delete" key.    Multiple
rows can be deleted by selecting them using either the Ctrl or Shift key and then pressing
the Delete key (provided MultiSelect or MultiSelectRange is specified for the
SelectTypeRow property.

AllowDelete Property Applies To
SSDBGrid

AllowDelete Property See Also
AllowAddNew
AllowUpdate

AllowDragDrop Property
Applies To
Description

Determines if drag and drop of cell data can be used.

Syntax
object . AllowDragDrop[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether drag and drop of cell data is
available, as described in Settings.

Settings
Setting Description

True (Default) Cell data can be moved by drag and drop.
False Cell data can not be moved by drag and drop.

Remarks
Drag and drop of cell data allows you to drag data from a cell to another cell or another
application that supports OLE drag and drop.
To copy data without moving it from the source, hold down the Ctrl key when selecting.

AllowDragDrop Property Applies To
SSDBGrid

AllowGroupMoving Property
See Also Applies To
Description

Determines if groups can be moved by the user.

Syntax
object . AllowGroupMoving[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether groups can be moved, as
described in Settings.

Settings
Setting Description

True (Default) Groups can be moved by the user.
False Groups can not be moved by the user.

Remarks
Groups can be moved by clicking on the header of the group to move, and dropping it on
the new location.

Swapping or moving groups does not change the name or number of the group, that is
group number 2 is still group number 2 despite being moved.

AllowGroupMoving Property Applies To
SSDBGrid

AllowGroupMoving Property See Also
AllowGroupSizing
AllowGroupSwapping

AllowGroupShrinking Property
See Also Applies To
Description

Determines if groups can be shrunk to their minimum width by the user clicking the right
mouse button on the header.

Syntax
object . AllowGroupShrinking[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the group can be shrunk, as
described in Settings.

Settings
Setting Description

True (Default)    The user can shrink the group.
False The user can not shrink the group.

Remarks
Shrinking groups is useful to bring scrolled groups into view quickly.

AllowGroupShrinking Property Applies To
SSDBGrid

AllowGroupShrinking Property See Also
AllowColumnShrinking

AllowGroupSizing Property
See Also Applies To
Description

Determines if groups in the grid can be resized by the user or are fixed-in width.

Syntax
object . AllowGroupSizing[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether groups can be resized, as
described in Settings.

Settings
Setting Description

True (Default) Groups can be resized by the user.
False Groups can not be resized by the user.

Remarks
Groups can be resized by dragging the right edge of the group in the direction to resize,
either left for smaller or right for larger.

AllowGroupSizing Property Applies To
SSDBGrid

AllowGroupSizing Property See Also
AllowGroupMoving
AllowGroupSwapping

AllowGroupSwapping Property
See Also Applies To
Description

Determines if the position of two groups can be swapped by the user.

Syntax
object . AllowGroupSwapping[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether groups can be swapped, as
described in Settings.

Settings
Setting Description

True (Default) Groups can be swapped by the user.
False Groups can not be swapped by the user.

Remarks
Swapping groups is accomplished by first clicking the header of one of the groups you wish
to swap, then clicking on the dropdown list that appears, and finally selecting the name of
the group you wish to swap with.

Swapping or moving groups does not change the name or number of the group, that is
group number 2 is still group number 2 despite being moved.

The following example screens show how the groups "Company Info" and "Address Info" are swapped:

Before Swap

After Swap

AllowGroupSwapping Property Applies To
SSDBGrid

AllowGroupSwapping Property See Also
AllowGroupMoving
AllowGroupSizing

AllowInput Property
See Also Applies To
Description

Determines if the user can make changes to data in the control.

Syntax
object . AllowInput[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the user can make changes to
data in the control, as described in Settings.

Settings
Setting Description

True (Default) The user can make changes to the data.
False The user can not make changes to the data.

Remarks
Text can be changed by typing in the edit portion of the control.

AllowInput Property Applies To
SSDBCombo

AllowInput Property See Also
AllowNull

AllowNull Property
Applies To
Description

Determines if the edit portion of the SSDBCombo control permits the entry of a null value.

Syntax
object . AllowNull[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the entry of a null value is
permitted, as described in Settings.

Settings
Setting Description

True (Default) SSDBCombo will allow a null value to be entered into the edit
portion.

False SSDBCombo will not allow a null value to be entered into the edit portion.

Remarks
If AllowNull is set to True and no text is entered in the control, an empty string ("") will be
saved to the database.

AllowNull Property Applies To
SSDBCombo

AllowRowSizing Property
Applies To
Description

Determines if row heights in the grid can be resized by the user.

Syntax
object . AllowRowSizing[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether rows can be resized, as described
in Settings.

Settings
Setting Description

True (Default) Row height can be resized by the user.
False Row height can not be resized by the user.

Remarks
Changes to row height apply to all rows in the grid.
If RowHeight = 0, the grid defaults to a sizing based on the font metrics of the grid text.   
The RowHeight setting can not be smaller than the size of the grid text.
Rows can be resized by dragging the bottom edge of the row’s selection column in the
direction to resize, either up for smaller or down for larger.

AllowRowSizing Property Applies To
SSDBGrid

AllowSizing Property
See Also Applies To
Description

Determines if the specified object can be resized by the user.

Syntax
object . AllowSizing[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the specified object can be
resized by the user, as described in Settings.

Settings
Setting Description

True (Default) The object can be resized by the user.
False The object can not be resized by the user.

Remarks
Objects can be resized by dragging the right edge of the column in the direction to resize,
either left for smaller or right for larger.
This property differs from AllowColumnSizing in that AllowSizing only affects an
individual object, whereas AllowColumnSizing is a control-level property.
Individual column settings with AllowSizing overrides global settings made with
AllowColumnSizing.
Groups can be resized by dragging the right edge of the group in the direction to resize,
either left for smaller or right for larger.

AllowSizing Property Applies To
Column object
Group object

AllowSizing Property See Also
AllowColumnSizing

AllowUpdate Property
See Also Applies To
Description

Determines if grid data can be modified by the user.

Syntax
object . AllowUpdate[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether data can be modified in the grid,
as described in Settings.

Settings
Setting Description

True (Default) Data can be modified by the user.
False Data is read-only and can not be modified by the user.

Remarks
To edit a cell, click on it with the mouse and enter a new value for the cell.    Changes will
be accepted automatically when you leave the row.    To cancel changes while in the cell,
press the ESC key.

AllowUpdate Property Applies To
SSDBGrid

AllowUpdate Property See Also
AllowAddNew
AllowDelete

Anatomy of a Data Combo
Although there are major fundamental differences, the Data Combo control looks and
behaves much like a standard Windows combo box.    The major difference is that the Data
Combo can be bound to a data control.
The Data Combo is made up of two portions:
· The Edit portion of the Data Combo displays the selected field and allows entry.
· The List portion drops down when the user clicks the dropdown button.
Typically, a combo box is used to allow entry of a particular field while allowing the user to
select a value for that field via the dropdown list.    With the Data Combo, you can bind the
edit portion to a field in one database while the list portion can dropdown a list of values
from another.
A classic example is to link the edit portion of the Data Combo to a field in a record set of a
data control such as StateCode.    Then, link the list portion of the Data Combo to a data
control that manages a table having all state codes and translations.    The results would
look similar to:

Anatomy of a Data Grid

Click on an area of the Data Grid to learn more about it:

Anatomy of the Enhanced Data Control

First Record
Jumps to the first record in the database.    This
button is displayed/hidden by the
ShowFirstLastButtons property.
Previous Page
Jumps to the previous page in the database.    A
page is determined by the setting of PageValue.   
This button is displayed/hidden by the
ShowPageButtons property.
Previous Record
Jumps to the previous record in the database.    This
button is displayed/hidden by the
ShowPrevNextButtons property.
Add Record
Adds a new record to the end of the database.   
This button is displayed/hidden by the
ShowAddButton property.
Cancel Add
Cancels the adding of a new record to the
database.    This button is displayed/hidden by the
ShowCancelButton property.
Delete Record
Deletes a record from the database.    This button is
displayed/hidden by the ShowDeleteButton
property.
Update Record
Updates the selected record in the database. This
button is displayed/hidden by the
ShowUpdateButton property.
Add Bookmark
Adds a bookmark for the current record.    This
button is displayed/hidden by the
ShowBookmarksButton property.
Clear All Bookmarks
Clears all stored bookmarks.    This button is
displayed/hidden by the ShowBookmarksButton
property.
Current Record
When    the DataField property is set, the active
record is displayed.    When DataField is left blank,
the Caption is displayed.

Goto Bookmark
Presents a list of all stored bookmarks (up to a
user-definable limit of 100).    This button is
displayed/hidden by the ShowBookmarksButton
property.
Find Record
Invokes the Find dialog, allowing the user to search
the database.
Find Previous Record
Searches backwards in the database for the next
occurrence of data specified in the Find dialog.
Find Next Record
Searches forwards in the database for the next
occurrence of data specified in the Find dialog.   
Next Record
Jumps to the next record in the database.    This
button is displayed/hidden by the
ShowPrevNextButtons property.
Next Page
Jumps to the next page in the database.    A page is
determined by the setting of PageValue.    This
button is displayed/hidden by the
ShowPageButtons property.
Last Record
Jumps to the last record in the database.    This
button is displayed/hidden by the
ShowFirstLastButtons property.

Applying pictures based on cell contents
To apply pictures to individual cells, you must first create a StyleSet that contains the picture. The StyleSet can
also contain other related attributes (such as font and color) that you wish to apply.
Then you use the RowLoaded event to apply the StyleSet to an individual cell based on its contents.

1. Create a StyleSet object in code. This code creates a new StyleSet named CellStyle:
SSDBGrid1.StyleSets.Add "CellStyle"

2. Assign the picture you wish to use to the StyleSet. This code uses a picture called TEST.BMP
SSDBGrid1.StyleSets("CellStyle").Picture = "TEST.BMP"

3. In the RowLoaded event, check the value of individual cells baesd on the column that corresponds to the
cell. RowLoaded occurs once for each row. To apply the picture to a cell in the first column that contains the
string "Test Value" you would use the following code:
SSDBGrid1_RowLoaded(ByVal Bookmark As Variant)
If SSDBGrid1.Columns(0).CellText(Bookmark) = "Test Value" Then

SSDBGrid1.Columns(0).CellStyleSet "CellStyle"
End If
End Sub
To see another example of this procedure, click here.

Applying pictures to all cells in a column
To apply pictures to individual cells, you must use the RowLoaded event. In this event, apply a StyleSet to each
cell that conatins the picture you wish to display. The procedure is similar to the one covered in Applying
pictures based on cell contents but does not require you to check the contents of the cell for a value.
If you want to apply the pictures in response to an event, such as the user clicking on a command button, you
must create a flag that determines whether or not the StyleSet will be applied, then check the state of that flag in
the RowLoaded event. The trigger event (i.e. clicking the button) will set the state of the flag, then perform a
Refresh on the grid.

Show me how to do this

Attaching a DataGrid to a memory array
A DataGrid can retrieve data from and store data to a memory array. You must create an array to hold the data, set
up and unbound DataGrid to present the data, then add code to the DataGrid's events to store and retrieve data to
and from the array.

1. In code, declare a memory array to hold the data you want to manage.You can create the array globally or in
the Form_Load event of the form that will contain the DataGrid.

    You can optionally include code to populate the array with data.

2. Create a DataGrid that corresponds to the dimensions of the array. The DataGrid is best suited to handling
data in a two-dimensional array since this corresponds to the rows and columns of the grid. For example, if
you have decalred an 10 X 50 array, you should create a grid with ten columns. The grid would then have
fifty rows.

3. Set the DataMode property of the grid to unbound.

4. Add code to the UnboundAddData event of the grid to store new data in the array.
 Click here to see an example of the code required for this event.

    You may want to include code to re-dimension the array "on the fly" as the user adds new data. The
example code uses this technique.

5. Add code to the UnboundReadData event of the grid to retrieve data from the array as it is needed.
Click here to see an example of the code required for this event.

6. Add code to the UnboundDeleteRow event of the grid to remove data from the array as rows in the grid are
deleted    You may also want to add code to the AfterDelete event to synchronize the scrollbars with the size
of the record set.
Click here to see an example of the code required for this event.

7. Add code to the UnboundPositionData event of the grid to position the grid correctly. This will ensure that
data is correctly accessed from the array when the user scrolls through the grid.
Click here to see an example of the code required for this event.

8. Add code to the UnboundWriteData event of the grid to store information modified by the user back into
the array.
Click here to see an example of the code for this event.

AutoRestore Property
Applies To
Description

Determines whether text should be restored to previous database value when the ESC key
is pressed.

Syntax
object . AutoRestore[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether text should automatically be
restored to its saved value, as described in Settings.

Settings
Setting Description

True (Default) Text will be restored.
False Text will not be restored.

Remarks
This property also determines if invalid text will be automatically restored to the last valid
text.
In the TextError event, the default value of RtnRestore is based on this property.

AutoRestore Property Applies To
SSDBCombo

AutoSize Property
Applies To
Description

Determines whether the control should automatically be sized to fit the picture specified in
the Picture property.

Syntax
object . AutoSize[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the control should be
automatically sized, as described in Settings.

Settings
Setting Description

True Control is sized to the size of the picture assigned in the Picture property.
False (Default) The control will not automatically resize to a picture.

AutoSize Property Applies To
SSDBCommand

BIBLIO File Structure
Visual Basic ships with a sample database file called BIBLIO.MDB, which is in Access 2.0
format.    Due to the implementation of OCX compatibility by many development tools, it is
very possible that users of Data Widgets may not be using Visual Basic as their host
development environment.
In light of this fact, the following table describes the structure of the BIBLIO database so
that those users can create a database for use with the examples given in this manual.
The BIBLIO database is made up of the following tables:

· Authors
· Publishers
· Title Author
· Titles

Authors
Au_ID Unique key

identifier
Counter (long
integer)

Author Author’s name Text
Year born Author’s birthdate Integer

Publishers
PubID Unique key

identifier
Counter (long
integer)

Name Short name Text
Company Name Full business name Text
Address Publisher’s address Text
City Publisher’s city Text
State Publisher’s state Text
Zip Publisher’s zip

code
Text

Telephone Publisher’s phone
number

Text

Fax Publisher’s fax
number

Text

Comments General comments Memo

Title Author
ISBN Foreign key into Titles

table
Text

Au_ID Foreign key into Authors
table

Long
Integer

Titles

Title Book title Text
Year Publisher Publication date Integer
ISBN Unique key Text
PubID Foreign key into publishers

table
Long
Integer

Description Reference info Text
Notes General notes Text
Subject Keywords Text
Comments Description of book

contents
Memo

BackColor Property
Applies To Example
Description

For SSDBOptSet, determines the background color for all buttons within the control.

Syntax
object . BackColor[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the background color.

BackColor Property Applies To
Column object
SSDBCombo
SSDBDropDown
SSDBData
SSDBGrid
SSDBOptSet

BackColorEven Property
See Also Applies To
Description

Determines the row’s background color for even-numbered rows.

Syntax
object . BackColorEven[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the color.

BackColorEven Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

BackColorEven Property See Also
BackColor
BackColorOdd

BackColorOdd Property
See Also Applies To
Description

Determines the row’s background color for odd-numbered rows.

Syntax
object . BackColorOdd[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the color.

BackColorOdd Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

BackColorOdd Property See Also
BackColor
BackColorEven

BalloonHelp Property
Applies To
Description

Determines whether balloon help will be displayed.

Syntax
object . BalloonHelp[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether balloon help will be displayed, as
described in Settings.

Settings
Setting Description

True (Default) Balloon Help will be displayed.
False Balloon Help will not be displayed

Remarks
In the Enhanced Data Control, Balloon Help is displayed when the mouse is held over a
button.    Balloon help will display, identifying the button’s function.
In the Data Grid, Balloon Help is displayed when the mouse is held over a cell.    If the text
scrolls past the width, the balloon help will display the entire contents of the cell.

BalloonHelp Property Applies To
SSDBData
SSDBGrid

BeforeColUpdate Event
See Also Applies To Example
Description

Occurs before data is moved from a cell to the control’s copy buffer.

Syntax
Sub control_BeforeColUpdate ([ColIndex As Integer] [OldValue    As Variant] [Cancel   
As Integer])

The event parameters are:
Parameter Description

ColIndex An integer expression that specifies the column to be updated.
OldValue A variant that contains the cell value before the update.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
This event is triggered when the user completes editing a row and before the update is
written to the control’s copy buffer.
By setting Cancel = 1, focus from the control can’t be moved until the application
determines that data can be moved back to the copy buffer.

BeforeColUpdate Event Applies To
SSDBGrid

BeforeColUpdate Event See Also
AfterColUpdate
AfterDelete
AfterInsert
AfterUpdate
BeforeDelete
BeforeInsert
BeforeUpdate

BeforeDelete Event
See Also Applies To
Description

Occurs after a user attempts to delete a row, but just prior to the row actually being
deleted by the control.

Syntax
Sub control_BeforeDelete (Cancel    As Integer, DispPromptMsg    As Integer)

The event parameters are:
Parameter Description

Cancel An integer expression that specifies whether the operation occurs.
DispPromptMsg An integer expression specifying whether a dialog is displayed asking the

user to confirm the deletion.

Remarks
This event is triggered when the user attempts to delete a row, prior to the actual deletion
taking place.    Once deleted, the AfterDelete event is triggered.    The selected row is
available in the collection provided by the SelBookmarks property.
Setting Cancel = 1 causes the deletion to not take place.

BeforeDelete Event Applies To
SSDBGrid

BeforeDelete Event See Also
AfterColUpdate
AfterDelete
AfterInsert
AfterUpdate
BeforeColUpdate
BeforeInsert
BeforeUpdate

BeforeInsert Event
See Also Applies To
Description

Occurs when a user attempts to insert a row, just before the row is actually inserted by the
control.

Syntax
Sub control_BeforeInsert ([Cancel    As Integer])

The event parameters are:
Parameter Description

Cancel An integer expression that specifies whether the operation occurs.

Remarks
The event is triggered when the user inserts a new row by clicking on the * next to the last
row. The BeforeUpdate event immediately follows this event.
Setting Cancel = 1 causes the insertion to not take place and clears any data the user
entered.
At the time the BeforeInsert event is triggered, the data has not been committed to the
database, and resides in the copy buffer.    Only when the AfterInsert event takes place is
the data moved from the buffer to the database.

BeforeInsert Event Applies To
SSDBGrid

BeforeInsert Event See Also
AfterColUpdate
AfterDelete
AfterInsert
AfterUpdate
BeforeColUpdate
BeforeDelete
BeforeUpdate

BeforeRowColChange Event
See Also Applies To
Description

Occurs before the user changes the current row or column.

Syntax
Sub control_BeforeRowColChange (Cancel    As Integer])

The event parameters are:
Parameter Description

Cancel An integer expression specifying whether the row and/or column change
will occur.

Remarks
This event is triggered just after the current column or row changes.    If both the column
and row change, the event will only be fired once. Unless canceled, the RowColChange
event is triggered once the focus has moved to the new cell.
Setting Cancel    = 1 prevents the focus from changing, and halts execution of the
RowColChange event.

BeforeRowColChange Event Applies To
SSDBGrid

BeforeRowColChange Event See Also
RowColChange
RowLoaded

BeforeUpdate Event
See Also Applies To
Description

Occurs before changes a user has made are committed to the database.

Syntax
Sub control_BeforeUpdate ([Cancel    As Integer])

The event parameters are:
Parameter Description

Cancel An integer expression that specifies whether the operation occurs.

Remarks
When the user moves to another row, data is moved from the control’s copy buffer to the
database.    Prior to moving the data from the copy buffer to the database, this event is
triggered.    Unless canceled, the AfterUpdate event is triggered once the data has been
written to the database.
Setting Cancel = 1 causes the update to not be written to the database, and halts
execution of the AfterUpdate event.

BeforeUpdate Event Applies To
SSDBGrid

BeforeUpdate Event See Also
AfterColUpdate
AfterDelete
AfterInsert
AfterUpdate
BeforeColUpdate
BeforeDelete
BeforeInsert

BevelColorFace, BevelColorFrame, BevelColorHighlight,
BevelColorShadow Properties
Applies To
Description

Determines the colors used to draw respective parts of the control.

Syntax
object . BevelColorFace[= color]
object . BevelColorFrame[= color]
object . BevelColorHighlight[= color]
object . BevelColorShadow[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the 3D effect color.

Remarks
When the control needs to draw a bevel, it uses the colors specified in these properties.   
These properties refer to the different parts of the bevels as shown in the diagram.

BevelColorFace, BevelColorFrame, BevelColorHighlight,
BevelColorShadow Properties Applies To

SSDBCombo
SSDBCommand
SSDBData
SSDBDropDown
SSDBGrid
SSDBOptSet

BevelColorScheme Property
See Also Applies To
Description

Determines the color scheme for the parts of the control.

Syntax
object . BevelColorScheme[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the color scheme for the 3D bevels, as
described in Settings.

Settings
Setting Description

0 Gray Colors - uses white, black, light gray and dark gray from the standard
Windows VGA palette.

1 System Colors - uses the system color values specified in the Windows
Control Panel.

2 (Default) Custom Colors - uses the color values specified in the
BevelColorFace, BevelColorHighlight, BevelColorFrame and
BevelColorShadow properties.

There are constants available for the settings of this property.

Remarks
This is how the preset color schemes are applied:

Gray Colors:
Frame = Black
Face = Light Gray
Shadow = Dark Gray
Highlight = White

System Colors:
Frame = Window Frame
Face = Button Face
Shadow = Button Shadow
Highlight = Button Highlight

Custom Colors:
Uses the colors set in the BevelColor properties.

BevelColorScheme Property Applies To
SSDBCombo
SSDBCommand
SSDBData
SSDBDropDown
SSDBGrid
SSDBOptSet

BevelColorScheme Property See Also
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorShadow

BevelInner Property
See Also Applies To
Description

Determines the type of inside beveling for the control.

Syntax
object . BevelInner[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the type of inner bevel to use as
described in Settings.

Settings
Setting Description

0 (Default) None.    No inner bevel is drawn.
1 Inset.    The inner bevel appears as if it is inset into the screen.
2 Raised.    The inner bevel appears as if it is raised from the screen.

There are constants available for the settings of this property.

Remarks
This property is Windows 95-sensitive.

BevelInner Property Applies To
SSDBData

BevelInner Property See Also
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow

BevelOuter Property
See Also Applies To
Description

Determines the type of outside beveling for the control.

Syntax
object . BevelOuter[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the type of inner bevel to use as
described in Settings.

Settings
Setting Description

0 None.    No outer bevel is drawn.
1 Inset.    The outer bevel appears as if it is inset into the screen.
2 (Default) Raised.    The outer bevel appears as if it is raised from the

screen.

There are constants available for the settings of this property.

BevelOuter Property Applies To
SSDBData

BevelOuter Property See Also
BevelInner
BevelColorHighlight
BevelColorScheme
BevelColorShadow

BevelType Property
Applies To
Description

Sets the type of bevel to be used around the control.

Syntax
object . BevelType[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the type of bevel to use, as described in
Settings.

Settings
Setting Description

0 None
1 (Default) Inset
2 Raised

There are constants available for the settings of this property.

BevelType Property Applies To
SSDBCombo
SSDBDropDown

BevelWidth Property
See Also Applies To
Description

Determines the width of bevels which determines the amount of the 3D shadow effect.

Syntax
object . BevelWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the width of the bevel, which determines
the amount of the 3D shadow effect.

Remarks

Valid range is 0 to 10.    The default value is 1.

BevelWidth Property Applies To
SSDBCombo
SSDBCommand
SSDBData

BevelWidth Property See Also
BevelInner
BevelOuter

Binding a Data Command to a Data Control Across Forms
Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy
task.    In the past, the only way to accomplish this task was to set a DataSourceHwnd
property to point to the hWnd of a data control.    You are now able to set the data controls
to look at one another.

To bind o a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the database table you want to use.
2. On Form2, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the same database table as Step 1.
3. In the Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!
Data1.Recordset.
4. On Form 2, create a Data Command button, setting the DataSource property to
Data1.

The data controls are now bound across forms, that is, actions to the data control on either
form are automatically reflected by one another.

Binding a Data DropDown to a Data Control Across Forms
Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy
task.    In the past, the only way to accomplish this task was to set a DataSourceHwnd
property to point to the hWnd of a data control.    You are now able to set the data controls
to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the database table you want to use.
2. On Form2, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the same database table as Step 1.
3. In the Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!
Data1.Recordset.
4. On Form 2, create a Data DropDown, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either
form are automatically reflected by one another.

Binding a DataOptionSet to a Data Control Across Forms
Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy
task.    In the past, the only way to accomplish this task was to set a DataSourceHwnd
property to point to the hWnd of a data control.    You are now able to set the data controls
to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the database table you want to use.
2. On Form2, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the same database table as Step 1.
3. In the Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!
Data1.Recordset.
4. On Form 2, create an Enhanced Data Control, setting the DataSource property to
Data1.

The data controls are now bound across forms, that is, actions to the data control on either
form are automatically reflected by one another.

Binding an EDC to a Data Control Across Forms
Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy
task.    In the past, the only way to accomplish this task was to set a DataSourceHwnd
property to point to the hWnd of a data control.    You are now able to set the data controls
to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the database table you want to use.
2. On Form2, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the same database table as Step 1.
3. In the Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!
Data1.Recordset.
4. On Form 2, create an Enhanced Data Control, setting the DataSource property to
Data1.

The data controls are now bound across forms, that is, actions to the data control on either
form are automatically reflected by one another.

Binding the Data Combo to a Data Control Across Forms
Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy
task.    In the past, the only way to accomplish this task was to set a DataSourceHwnd
property to point to the hWnd of a data control.    You are now able to set the data controls
to look at one another.    This functionality is useful for the edit portion of the Data Combo.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the database table you want to use.
2. On Form2, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the same database table as Step 1.
3. In the Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!
Data1.Recordset.
4. On Form 2, create a Data Combo, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either
form are automatically reflected by one another.

Binding to a Data Control Across Forms
Starting with Visual Basic 4.0, binding to a data control across forms is a relatively easy
task.    In the past, the only way to accomplish this task was to set a DataSourceHwnd
property to point to the hWnd of a data control.    You are now able to set the data controls
to look at one another.

To bind to a data control across forms:

1. On Form1, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the database table you want to use.
2. On Form2, create a standard Data Control (Data1), setting the Database and
RecordSource properties to point to the same database table as Step 1.
3. In the Form_Load() section of Form2, add the code Set Data1.Recordset = Form1!
Data1.Recordset.
4. On Form 2, create a Data Grid Control, setting the DataSource property to Data1.

The data controls are now bound across forms, that is, actions to the data control on either
form are automatically reflected by one another.

Bold Property
Applies To Example
Description

Returns or sets the font style of the specified Font or Headfont object to either bold or
non-bold.

Syntax
object . Bold[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the font style, as described in Settings.

Settings
Setting Description

True Turns on bold formatting.
False (Default) Turns off bold formatting.

Remarks
The Font and Headfont objects are not directly available at design time.    At design time,
you set the Bold property through the control’s Font or Headfont property.    At runtime,
you can set Bold directly by specifying its settings for the appropriate Font/Headfont
object.

Bold Property Applies To
Font object
Headfont object

Bookmark Object
Applies To
Description

A bookmark object contains information that uniquely specifies a record in the database. It
is used to remember positions of individual records and to return the recordset to those
positions.

Properties

String Value

Remarks
Bookmark objects are used to populate the dropdown list of marked records in the
Enhanced Data Control.
The Bookmark object provides a way for the programmer to easily examine and act on the
database bookmarks stored in the Enhanced Data Control's dropdown list.
Each bookmark contains a value and a string. Also see the note on the Bookmark
property.

Bookmark Object Applies To
Bookmarks collection

Bookmark Property (ssRowBuffer only)
See Also Applies To Example
Description

Sets or returns the bookmark value of the selected object.

Syntax
object . Bookmark(index   )[= variant   ]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

index The row in the ssRowBuffer object to which the bookmark refers.
variant A variant expression specifying the bookmark value.

Remarks
The Bookmark property of the ssRowBuffer object is similar in function to the standard
Bookmark property, although its implementation is slightly different. Because you supply
the bookmark to the row buffer through code, it can be any type of value. You are
responsible for ensuring the uniqueness and consistency of your bookmarks.
The Bookmark property of the ssRowBuffer is a property array.    The row in the row buffer
to which the bookmark corresponds is determined by the index, which is always a value
from 0 to 9.
Also see the note on the Bookmark property .

BookmarksToKeep Property Applies To
ssRowBuffer object

Bookmark Property See Also
ReadType property
ssRowBuffer object
UnboundReadData event

BookmarkDisplay Property
See Also Applies To
Description

Determines the method in which bookmarks are displayed in the dropdown bookmark list.

Syntax
object . BookmarkDisplay[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the bookmark display method as
described in Settings.

Settings
Setting Description

0 (Default) Displays bookmarks in historical order.
1 Displays bookmarks in most recently added order.
2 Displays bookmarks in sorted order, sorted by string property.

There are constants available for the settings of this property.

BookmarkDisplay Property Applies To
SSDBData

BookmarkDisplay Property See Also
BookmarksToKeep

Bookmarks Collection
See Also Applies To
Description

The bookmark collection represents a group of bookmark objects.

Properties

Count Item

Methods

Add Remove RemoveAll

Remarks
There can be from 0 to 99 Bookmark objects in this collection. There is only one
Bookmarks collection per Enhanced Data Control.

Bookmarks Collection Applies To
SSDBData

Bookmarks Collection See Also
Bookmark Object

BookmarksToKeep Property
See Also Applies To
Description

Sets or returns the maximum number of bookmarks to keep.

Syntax
object . BookmarksToKeep[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the maximum number of bookmarks to
keep.

Remarks
The valid range for this property is 1-100 with a default value of 10.

BookmarksToKeep Property Applies To
SSDBData

BookmarksToKeep Property See Also
BookmarkDisplay

BorderStyle Property
Applies To
Description

Sets or returns the border style of the control.

Syntax
object . BorderStyle[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the border style as described in Settings.

Settings
Setting Description

0 No border will be displayed.
1 (Default) A fixed single border will be displayed.

There are constants available for the settings of this property.

Remarks
For SSDBCombo and SSDBDropDown, this property affects the dropdown portion only.

BorderStyle Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

BorderWidth Property
See Also Applies To
Description

Sets or returns the width of the space between the outer and inner bevels.

Syntax
object . BorderWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the width of the control’s border.

Remarks
The valid range for this property is 0 to 10 with a default value of 3.

BorderWidth Property Applies To
SSDBData

BorderWidth Property See Also
BevelInner
BevelOuter
BevelColorFace

BtnClick Event
Applies To
Description

Fired when a user clicks on a button within a cell.

Syntax
Sub control_BtnClick ()

Remarks
This event will only fire when the column’s Style property is set to 1 (Edit Button) or 4
(Button) and the button is clicked.

BtnClick Event Applies To
SSDBGrid

Button Object
Applies To
Description

The button object represents a button in the DataOptionSet.

Properties

Caption Picture Value
ColOffSet PictureMetaHeight Visible
Enabled PictureMetaWidth
OptionValue RowOffSet

Remarks
Within each button collection, there can be 1 to 100 buttons.

An example of a DataOptionSet with four buttons:

Button Object Applies To
Buttons collection

ButtonEnabled Property
Applies To Example
Description

Determines if an option button can respond to user-generated events.

Syntax
object . ButtonEnabled[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the option button can respond to
user-generated events, as described in Settings.

Settings
Setting Description

True (Default) The option button will be enabled.
False The option button will not be enabled

Remarks
This property allows the option buttons to be enabled or disabled at runtime.    For
example, you can disable option buttons that don’t apply to the current state of the
application.
At runtime, you can use a shorthand form to refer to a button, such as:

SSDBOptSet1.Buttons(0).Enabled = True

ButtonEnabled Property Applies To
SSDBOptSet

ButtonFromCaption Method
See Also Applies To Example
Description

Returns a button with the specified caption.

Syntax
object . ButtonFromCaption(Caption    As String)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Caption The string expression specifying the button caption to search for.

ButtonFromCaption Method Applies To
SSDBOptSet

ButtonFromCaption Method See Also
ButtonFromPos

ButtonFromPos Method
See Also Applies To Example
Description

Returns the button which resides at a particular location.

Syntax
object . ButtonFromPos(X    As Single, Y    As Single, [Scale    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

X Determines the X coordinate.
Y Determines the Y coordinate.
scale (Optional)    Determines the scale that will be used, as described in

Settings.

Settings
The settings for scale    are:
Setting Description

0 Twips (Default)
1 Pixels
2 Container Coordinates
3 HiMetric

There are constants available for the settings of this parameter.

ButtonFromPos Method Applies To
SSDBOptSet

ButtonFromPos Method See Also
ButtonFromCaption method
WhereIs method

ButtonSize Property
Applies To
Description

Sets or returns the size of each button.

Syntax
object . ButtonSize[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the size of each button.

Remarks
If the control is displayed horizontally, this property determines the button width.    If the
control is displayed vertically, this property determines the button height.
The valid range for this property is 5-100 with a default value of 19.

ButtonSize Property Applies To
SSDBData

ButtonVisible Property
See Also Applies To Example
Description

Determines whether the selected option button is visible or hidden.

Syntax
object . ButtonVisible[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the object is visible or hidden, as
described in Settings.

Settings
Setting Description

True (Default) Object is visible.
False Object is hidden.

Remarks
This is a button-specific property. The button affected by this property is the currently
selected button, as determined by the IndexSelected property.

ButtonVisible Property Applies To
SSDBOptSet

ButtonVisible Property See Also
IndexSelected
Visible

Buttons Collection
See Also Applies To Example
Description

The button collection represents a group of button objects that you can place on your
form.

Properties

Count Item

Methods

Add Remove RemoveAll

Buttons Collection Applies To
SSDBOptSet

Buttons Collection See Also
Button Object

ButtonsAlways Property
See Also Applies To
Description

Determines whether cells with a button style should be shown at all times, or only when
selected.

Syntax
object . ButtonsAlways[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display status of buttons, as described
in Settings.

Settings
Setting Description

True Buttons will be shown at all times for cells that have a button style
property.

False (Default) Buttons will only be displayed when the cell is selected.

Remarks
This property only applies to columns with a Style property of 1 or 3.

ButtonsAlways Property Applies To
Column object

ButtonsAlways Property See Also
Style

Caption Property
See Also Applies To Example
Description

Determines the caption for the selected object/control.

Syntax
object . Caption[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the text displayed as the caption.

Remarks
The appearance of the caption is based on the Font and Font3D properties.    In the case
of the Column and Group objects, the HeadFont property determines font settings.

Caption Property Applies To
Button object
Column object
Group object
SSDBCommand
SSDBData
SSDBOptSet

Caption Property See Also
CaptionAlignment
Picture
PictureAlignment

CaptionAlignment Property
See Also Applies To
Description

For the SSDBData and SSDBOptSet controls, determines how the caption will be aligned
on each button.
For all others, determines how the caption will be aligned on the object/control.

Syntax
object . CaptionAlignment[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying which display state to use, as described
in Settings.

Settings (SSDBData, SSDBGrid, SSDBDropDown, Group Object)
Setting Description

0 Left Justify
1 Right Justify
2 (Default) Center

There are constants available for the settings of this property.

Settings (Column Object)
Setting Description

0 (Default) Left Justify
1 Right Justify
2 Center
3 Follow the alignment specified for the cells.

There are constants available for the settings of this property.

Settings (SSDBOptSet)
Setting Description

0 Right justify
1 (Default) Left justify

There are constants available for the settings of this property.

Settings (SSDBCommand)

Setting Description

0 Left Justify - Top
1 Left Justify - Middle
2 Left Justify - Bottom
3 Right Justify - Top
4 Right Justify - Middle
5 Right Justify - Bottom
6 Center - Top
7 Center - Middle
8 (Default) Center - Bottom

There are constants available for the settings of this property.

CaptionAlignment Property Applies To
Column object
Group object
SSDBData
SSDBGrid
SSDBOptSet

CaptionAlignment Property See Also
PictureAlignment

Case Property
Applies To
Description

Sets or returns the case to use for column text.

Syntax
object . Case[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying which case to use, as described in
Settings.

Settings
Setting Description

0 (Default) Unchanged
1 lowercase
2 UPPERCASE

There are constants availbel for the settings of this property.

Case Property Applies To
Column object

CellNavigation Property
See Also Applies To
Description

Determines how the grid responds to the arrow keys being used when first entering the
cell.

Syntax
object . CellNavigation[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying how arrow keys work when first entering
a cell, as described in Settings.

Settings
Setting Description

0 (Default) Arrow keys change cells on entry.
1 Arrow keys move within cell on entry.

There are constants available for the settings of this property.

Remarks
This property only affects the usage of the arrow keys prior to entering edit mode.    Once
you begin to edit the value of a cell, the arrow keys automatically operate only within the
cell.

CellNavigation Property Applies To
SSDBGrid

CellNavigation Property See Also
RowNavigation

CellStyleSet Method
See Also Applies To
Description

Sets the StyleSet for the specified cell.

Syntax
object . CellStyleSet(StyleSet    As String, [RowNum    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

StyleSet A string expression specifying the name of the StyleSet to use.
RowNum A variant expression specifying the display row number to apply the

StyleSet to.

Remarks
As scrolling occurs, the StyleSet will scroll with the cell until the cell moves out of the
display area.
Within the RowLoaded event, the row number is ignored because the StyleSet can only
be applied to the row being loaded.
Note that the value passed to RowNum    must be the number of a row in the grid (integer
or long) not a bookmark.

CellStyleSet Method Applies To
Column Object

CellStyleSet Method See Also
ActiveRowStyleSet
StyleSet
StyleSets collection

CellText Method
See Also Applies To Example
Description

Returns the text for a specified row in the grid.

Syntax
object . CellText(Bookmark    As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Bookmark A variant expression evaluating to a row in the grid.

Remarks
This method returns the value of the cell specified at the row represented by the bookmark
as a string.

CellText Method Applies To
Column Object

CellText Method See Also
CellValue method

CellValue Method
See Also Applies To Example
Description

Returns the underlying data for the specified cell.

Syntax
object . CellValue(Bookmark    As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Bookmark A variant expression evaluating to a row in the grid.

Remarks
This property is read-only at run time.
This method returns the value of the cell as a variant from the row indicated by the
bookmark.

CellValue Method Applies To
Column object

CellValue Method See Also
CellText method

Change Event
See Also Applies To
Description

Occurs when any data within the control is changed by the user.

Syntax
Sub control_Change ()

Remarks
In the case of SSDBGrid, this refers to cell data.    In the case of SSDBCombo, it refers to
the edit portion.

Change Event Applies To
SSDBCombo
SSDBGrid

Change Event See Also
For SSDBGrid

AfterUpdate
BeforeColUpdate
BeforeUpdate
BtnClick

CheckBox Column Style
The CheckBox column style can be set using the Style property

CheckBox3D Property
Applies To
Description

Determines whether check boxes on the grid should be displayed with 3D appearance.

Syntax
object . CheckBox3D[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether checkboxes should be displayed
with 3D appearance, as described in Settings.

Settings
Setting Description

True (Default) Checkboxes are displayed with 3D appearance.
False Checkboxes are displayed with 2D appearance.

CheckBox3D Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Clearing formatting and selection information from a grid
There are two methods you can use to reset the attributes of a DataGrid, DataCombo, or DataDropDown.
The Refresh method will retrieve a fresh copy of the data underlying the control, effectively removing any data
selection attributes, such as selected rows or bookmarks.
The Reset method will completely clear any layout or formatting information from the grid. This includes
removing any columns that have been created. Any application of StyleSets to grid objects is also destroyed,
although the StyleSets themselves remain and can be re-applied.
To completely return a grid to its intial state, use these two methods in conjunction:

SSDBGrid1.Refresh
SSDBGrid1.Reset

After executing this code, you would need to recreate the grid layout by adding columns through code.

Click Event
Applies To
Description

Occurs when the user clicks the left mouse button over any part of the control.

Syntax
Sub control_Click (nPosition    As Integer)

The event parameters are:
Parameter Description

nPosition Integer indicating the area of the control being pointed to.

Remarks
The following values for nPosition apply to the Enhanced Data Control

Integer Area being pointed to

1 Caption Area
2 Bevel Area
3 "First" Button
4 "Last" Button
5 "Previous Page" Button
6 "Next Page" Button
7 "Previous Record" Button
8 "Next Record" Button
9 "Add" Button
10 "Cancel" Button
11 "Update" Button
12 "Delete" Button
13 "Find Next" Button
14 "Find Previous" Button
15 "Find" Button
16 "Add Bookmark" Button
17 "Clear Bookmark" Button
18 "Goto Bookmark" Button

There are constants available for the settings of this parameter.

Click Event Applies To
SSDBData

CloseBookmarkDropDown Event
See Also Applies To
Description

Occurs immediately before the dropdown bookmark list is closed.

Syntax
Sub control_CloseBookmarkDropDown(vBookmark    As Variant)

Part Description

vBookmarks A variant containing the value of the selected bookmark.    If none were
selected, it will be empty.

CloseBookmarkDropDown Event Applies To
SSDBData

CloseBookmarkDropDown Event See Also
ShowBookmarkDropDown event

CloseFindDialog Event
Applies To Example
Description

Occurs when the Find dialog is told to close, immediately prior to closing.

Syntax
Sub control_CloseFindDialog(FindString    as Variant, Criteria      As Variant, Direction    
As Variant, ColToSearch    As Variant, Cancel    As Integer)

The event parameters are:
Parameter Description

FindString A Variant expression specifying the string to find.
Criteria A Variant expression specifying the criteria to search for.
ColToSearch A Variant expression specifying which column in the database to search.
Cancel An integer expression that specifies whether the operation occurs.

Settings
The settings for Criteria    are:
Setting Description

1 Less Than
2 Less Than or Equal To
3 Equal To
4 Greater Than
5 Greater Than or Equal To
6 Partial Match

There are constants available for the settings of this parameter.

The settings for Direction    are:
Setting Description

1 Down (Next)
2 Up (Previous)

There are constants available for the settings of this parameter.

Remarks
This event is provided so that you may implement your own lookup routines if necessary.
By setting Cancel    to True, you can interrupt the default search action and implement your
own algorithm.
The parameters passed to the CloseFindDialog event are equivalent to those used with
the Find method.

CloseFindDialog Event Applies To
SSDBData

CloseUp Event
See Also Applies To
Description

Occurs when a dropdown closes up.

Syntax
Sub control_ComboCloseUp ()

CloseUp Event Applies To
SSDBCombo
SSDBDropDown

CloseUp Event See Also
ComboDropDown event

Col Property
See Also Applies To
Description

Sets or returns the current column.

Syntax
object . Col[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the current column.

Remarks
Valid range is from 0 to the maximum number of columns created.

Col Property Applies To
SSDBGrid

Col Property See Also
Grp
Row

ColChanged Property
Applies To Example
Description

Returns whether the field in that column for the current row has been modified.

Syntax
object . ColChanged[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the field has been modified, as
described in Settings.

Settings
Setting Description

True (Default) The field has been modified.
False The field has not been modified.

Remarks
This property is read-only.

ColChanged Property Applies To
Column object

ColContaining Method
Applies To
Description

Returns the index of the column under an x-coordinate.

Syntax
object . ColContaining(X    As Single, [Y    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

X Numeric expression specifying a horizontal coordinate.
Y Optional.    Numeric expression specifying a vertical coordinate for grids

with groups.

Remarks
If the specified coordinate is out of range, an error occurs.

ColContaining Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ColMove Event
See Also Applies To
Description

Occurs before a column is moved.

Syntax
Sub control_ColMove (ColIndex    As Integer, NewPos    As Integer, Cancel    As Integer)

The event parameters are:

Parameter Description

ColIndex The column number being moved.
NewPos An integer expression that specifies the visual position the column is being

moved to.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
The ColMove event is fired after a user moves a column, but before the move is redrawn.   
You can cancel this event from occurring by setting Cancel to true.
Swapping or moving columns does not change the name or number of the column, that is
column number 2 is still column number 2 despite being moved.

ColMove Event Applies To
SSDBGrid

ColMove Event See Also
AfterPosChanged event
ColSwap event
GrpMove event
GrpSwap event

ColOffSet Property
See Also Applies To Example
Description

Determines the horizontal offset used to draw the button.

Syntax
object . ColOffSet[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the column offset.

Remarks
The value range for this property is -32767 to 32767 with a default value of 0.

ColOffSet Property Applies To
Button object
SSDBOptSet

ColOffSet Property See Also
RowOffSet

ColPosition Method
See Also Applies To Example
Description

Returns the index of the column relative to the collection.

Syntax
object . ColPosition(ColPos    As Integer)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

ColPos An integer expression specifying the column as it appears visually.

Remarks
Remember that columns can be moved, swapped, or made invisible, so the order they
appear in is not always their order in the collection.

ColPosition Method Applies To
Group object
SSDBGrid

ColPosition Method See Also
Position
GrpPosition method

ColResize Event
See Also Applies To
Description

Occurs before a column is resized.

Syntax
Sub control_ColResize ([ColIndex    As Integer] [Cancel    As Integer])

The event parameters are:

Parameter Description

ColIndex An integer expression specifying the column being resized.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
When the user resizes a column, this event is triggered prior to the column being redrawn.
By setting Cancel = 1, the original column width is restored and the redraw does not occur.

ColResize Event Applies To
SSDBGrid

ColResize Event See Also
GrpResize
RowResize
SplitterMove

ColSwap Event
See Also Applies To
Description

Occurs before a column is swapped.

Syntax
Sub control_ColSwap (ColIndex    As Integer, NewPos    As Integer, Cancel As Integer)

The event parameters are:

Parameter Description

ColIndex The group number being moved.
NewPos An integer expression that specifies the visual position the column is being

swapped to.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
The ColSwap event is fired after a user swaps a column, but before the swap is redrawn.   
You can cancel this event from occurring by setting Cancel to true.
Swapping or moving columns does not change the name or number of the column, that is
column number 2 is still column number 2 despite being moved.

ColSwap Event Applies To
SSDBGrid

ColSwap Event See Also
AfterPosChanged event
ColMove event
GrpMove event
GrpSwap event

ColWidth Property
Applies To
Description

Sets or returns the width of the column containing the currently selected button.   

Syntax
object . ColWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number A real number specifying the column width.

Remarks
Valid range is 0 to 32767 with a default value of 0.    Setting the value to 0 causes
automatic computation based on the minimum column width.
This property affects all buttons in the column.
The unit of measurement is dictated by the form's ScaleMode property.

ColWidth Property Applies To
DataOptSet

Collection Summary
Bookmarks
Buttons
Columns
Groups
SelBookmarks
StyleSets

ColorMask Property
See Also Applies To
Description

Sets or returns the color of the PictureButtons bitmap, which will be interpreted as the
background color.

Syntax
object . ColorMask[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the color of the
PictureButtons bitmap.

Remarks
The ColorMask property represents the color of the segmented button bitmap which will
be interpreted as the background color.    Each pixel of this color will be converted to the
BevelColorFace color.
This property has no effect on the standard bitmap supplied with the control (when
PictureButtons = None).
ColorMaskEnabled must be activated for this property to affect the control.

ColorMask Property Applies To
SSDBData

ColorMask Property See Also
ColorMaskEnabled

ColorMaskEnabled Property
See Also Applies To
Description

Determines whether the ColorMask property will affect the active control.

Syntax
object . ColorMaskEnabled[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the ColorMask property is
enabled, as described in Settings.

Settings
Setting Description

True The ColorMask property will affect the control.
False (Default) The ColorMask property will have no effect on the control.

Remarks
This property has no effect on the standard bitmap supplied with the control (when
PictureButtons = None).

ColorMaskEnabled Property Applies To
SSDBData

ColorMaskEnabled Property See Also
ColorMask

Cols Property
See Also Applies To
Description

Sets or returns the number of columns in the control.

Syntax
object . Cols[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of columns in the control.

Remarks (SSDBCombo/SSDBDropDown/SSDBGrid)
At runtime, Cols is read-only.   
At design time, this property determines the amount of columns to display in Unbound or
AddItem modes.    When working in bound mode, this property is automatically set,
deriving the information from the database.
Remember that columns begin numbering at 0 (i.e., Columns(0) would actually be the first
column).

Remarks (SSDBOptSet)
For the SSDBOptSet control, the valid range is 1 to 10 with a default value of 1.

Cols Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid
SSDBOptSet

Cols Property See Also
Col
Row
Rows

Column Header

Column Object
See Also Applies To
Description

The column object represents a column that is in a grid.

Properties

Alignment HasBackColor Nullable
AllowSizing HasForeColor NumberFormat
BackColor HasHeadBackColor Position
ButtonsAlways HasHeadForeColor Selected
Caption HeadBackColor Style
CaptionAlignment HeadForeColor StyleSet
Case HeadStyleSet TagVariant
ColChanged ItemData * Text
DataField Left Top
DataType Level Value
DropDownhWnd List VertScrollBar
FieldLen ListCount Visible
ForeColor Locked Width
Group Name

* The ItemData property applies only to column objects that have their Style property
set to '3 - Combo Box.'

Methods

AddItem CellValue RemoveItem
CellStyleSet IsCellValid
CellText RemoveAll

Column Object Applies To
Columns collection

Column Object See Also
Columns collection

ColumnHeaders Property
See Also Applies To
Description

Determines whether column headers will be displayed.

Syntax
object . ColumnHeaders[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether column headers will be
displayed, as described in Settings.

Settings
Setting Description

True (Default) Column headers will be displayed.
False Column headers will not be displayed.

ColumnHeaders Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ColumnHeaders Property See Also
GroupHeaders

Columns Collection
See Also Applies To Example
Description

The columns collection represents a group of column objects that comprise a grid.

Properties

Count Item

Methods

Add Remove RemoveAll

Columns Collection Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Columns Collection See Also
Column object

Columns Method
Applies To
Description

Returns column object at specified index.

Syntax
object . Columns([Index    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Index A variant expression that can be either the column index number or string
specifying the column name (i.e., "Employee Name").

Remarks
When no index is specified the column object is returned.

Columns Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Combo Box Column Style
This is different than the SSDBCombo control.    Setting the Style property allows for a
combo box in the grid.    You can populate this box through the Grid Editor or through code.

ComboCloseUp Event
See Also Applies To
Description

Occurs when a combo box is closed up.

Syntax
Sub control_ComboCloseUp ()

ComboCloseUp Event Applies To
SSDBGrid

ComboCloseUp Event See Also
ComboDropDown event

ComboDropDown Event
See Also Applies To
Description

Occurs when a combo box is dropped down.

Syntax
Sub control_ComboDropDown ()

ComboDropDown Event Applies To
SSDBGrid

ComboDropDown Event See Also
ComboCloseUp event

ComboDroppedDown Property
Applies To
Description

Sets or returns the combo box’s dropdown state.

Syntax
object . ComboDroppedDown[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the combo box is dropped down,
as described in Settings.

Settings
Setting Description

True Combo box is dropped down.
False (Default) Combo box is not dropped down.

Remarks
Setting this property to False in an event will cause the combo box not to drop down.

ComboDroppedDown Property Applies To
SSDBGrid

Data Widgets Constants

Alignment Constants
Constant Value Description

ssAlignToRight 0 Right justify
ssAlignToLeft 1 Left justify

AlignmentButtonPicture Constants
Constant Value Description

ssAlignPictureLeftofText 0 Left of text
ssAlignPictureRightofText 1 Right of text
ssAlignPictureFitToCaption 2 Fit to caption
ssAlignPictureTile 3 Tile

AlignmentCaption Constants
Constant Value Description

ssAlignmentCaptionLeftTop 0 Left justify - Top
ssAlignmentCaptionLeftMiddle1 Left justify - Middle
ssAlignmentCaptionLeftBottom 2 Left justify - Bottom
ssAlignmentCaptionRightTop 3 Right justify - Top
ssAlignmentCaptionRightMiddle 4 Right justify - Middle
ssAlignmentCaptionRightBottom 5 Right justify - Bottom
ssAlignmentCaptionCenterTop 6 Centered - Top
ssAlignmentCaptionCenterMiddle 7 Centered - Middle
ssAlignmentCaptionCenterBottom 8 Centered - Bottom

AlignmentPictureCommand Constants
Constant Value Description

ssAlignmentPictureLeftTop 0 Left justify - Top
ssAlignmentPictureLeftMiddle 1 Left justify - Middle
ssAlignmentPictureLeftBottom2 Left justify - Bottom
ssAlignmentPictureRightTop 3 Right justify - Top
ssAlignmentPictureRightMiddle 4 Right justify - Middle
ssAlignmentPictureRightBottom 5 Right justify - Bottom
ssAlignmentPictureCenterTop 6 Centered - Top
ssAlignmentPictureCenterMiddle 7 Centered - Middle
ssAlignmentPictureCenterBottom 8 Centered - Bottom
ssAlignmentPictureLeftOfText 9 Left of caption text
ssAlignmentPictureRightOfText 10 Right of caption text

ssAlignmentPictureAboveText 11 Above caption text
ssAlignmentPictureBelowText 12 Below caption text
ssAlignmentPictureStretch 13 Stretch to fill
ssAlignmentPictureTile 14 Tile to fill

BevelColorScheme Constants
Constant Value Description

ssBevelColorSchemeGray 0 Uses shades of gray color scheme
ssBevelColorSchemeSystem 1 Uses system colors
ssBevelColorSchemeCustom 2 Uses custom color scheme

BevelType Constants
Constant Value Description

ssBevelTypeNone 0 No beveling
ssBevelTypeInset 1 Bevel appears inset
ssBevelTypeRaised 2 Bevel appears raised

BookmarkDisplayStyle Constants
Constant Value Description

ssBookmarkDisplayLRA 0 Least Recently Added
ssBookmarkDisplayMRA 1 Most recently added
ssBookmarkDisplaySorted 2 Sorted

BookmarkShowStyle Constants
Constant Value Description

ssBookmarkShowNone 0 No bookmark buttons shown
ssBookmarkShowAdd 1 Show Add button only
ssBookmarkShowClear 2 Show ClearAll button only
ssBookmarkShowGoto 3 Show Goto button only
ssBookmarkShowAddClear 4 Show Add and ClearAll buttons
ssBookmarkShowAddGoto 5 Show Add and Goto buttons
ssBookmarkShowClearGoto 6 Show ClearAll and Goto buttons
ssBookmarkShowAll 7 Show all bookmark buttons

BorderStyle Constants
Constant Value Description

ssBorderStyleNone 0 No border
ssBorderStyleFixedSingle 1 Fixed single-pixel border

CaptionAlignment Constants
Constant Value Description

ssCaptionAlignmentLeft 0 Left justify
ssCaptionAlignmentRight 1 Right justify
ssCaptionAlignmentCenter 2 Center

CaptionAlignmentEx Constants
Constant Value Description

ssCapAlignLeftTop 0 Left justify - Top
ssCapAlignLeftMiddle 1 Left justify - Middle
ssCapAlignLeftBottom 2 Left justify - Bottom
ssCapAlignRightTop 3 Right justify - Top
ssCapAlignRightMiddle 4 Right justify - Middle
ssCapAlignRightBottom 5 Right justify - Bottom
ssCapAlignCenterTop 6 Centered - Top
ssCapAlignCenterMiddle 7 Centered - Middle
ssCapAlignCenterBottom 8 Centered - Bottom

CaptionAlignmentPicture Constants
Constant Value Description

ssCaptionAlignmentPictureLeftTop 0 Left justify - Top
ssCaptionAlignmentPictureLeftMiddle 1 Left justify - Middle
ssCaptionAlignmentPictureLeftBottom 2 Left justify - Bottom
ssCaptionAlignmentPictureRightTop 3 Right justify - Top
ssCaptionAlignmentPictureRightMiddle 4 Right justify - Middle
ssCaptionAlignmentPictureRightBottom5 Right justify - Bottom
ssCaptionAlignmentPictureCenterTop 6 Centered - Top
ssCaptionAlignmentPictureCenterMiddle 7 Centered - Middle
ssCaptionAlignmentPictureCenterBottom 8 Centered - Bottom
ssCaptionAlignmentPictureLeftOfCaption 9 Left of caption text
ssCaptionAlignmentPictureRightOfCaption 10 Right of caption text
ssCaptionAlignmentPictureAboveCaption 11 Above caption text
ssCaptionAlignmentPictureBelowCaption 12 Below caption text
ssCaptionAlignmentPictureFitToCaption 13 Stretch to fill
ssCaptionAlignmentPictureTile 14 Tile to fill

Case Constants

Constant Value Description

ssCaseUnchanged 0 Text case will not change
ssCaseLower 1 Text will be in lowercase
ssCaseUpper 2 Text will be in UPPERCASE

CellNavigation Constants
Constant Value Description

ssCellNavigationCell 0 Arrow keys used to change cells
ssCellNavigationEdit 1 Arrow keys used to edit current cell

ColumnCaptionAlignment Constants
Constant Value Description

ssColCapAlignLeftJustify 0 Left justify
ssColCapAlignRightJustify 1 Right justify
ssColCapAlignCenter 2 Center
ssColCapAlignUseColumnAlignment3 Use alignment specified for Column cells

Criteria Constants
Constant Value Description

ssCriteriaSoundex -1 Soundex
ssCriteriaLT 1 Less Than
ssCriteriaLE 2 Less than or equal
ssCriteriaEQ 3 Equal
ssCriteriaGE 4 Greater than or equal
ssCriteriaGT 5 Greater than
ssCriteriaPartial 6 Partial

Database Action Constants
Constant Value Description

ssFirst 0 Go to first record
ssPreviousPage 1 Goto record <page> records before
ssPrevious 2 Goto previous record
ssNext 3 Goto next record
ssNextPage 4 Goto record <page> records after
ssLast 5 Goto last record
ssSaveBookmark 6 Save current bookmark
ssGotoBookmark 7 Goto specified bookmark
ssRefresh 8 Refresh datasource

DataMode Constants
Constant Value Description

ssDataModeBound 0 Control is in data bound mode
ssDataModeUnbound 1 Control is in unbound mode
ssDataModeAddItem 2 Control is in AddItem mode

Direction Constants
Constant Value Description

ssDirectionUp 1 Search towards the first record
ssDirectionDown 2 Search towards the last record

DividerStyle Constants
Constant Value Description

ssDividerStyleBlackline 0 Black line
ssDividerStyleDarkGrayline 1 Dark gray line
ssDividerStyleRaised 2 Raised
ssDividerStyleInset 3 Inset
ssDividerStyleForeColor 4 Use control's ForeColor

DividerType Constants
Constant Value Description

ssDividerTypeNone 0 No divider
ssDividerTypeVertical 1 Vertical dividers
ssDividerTypeHorizontal 2 Horizontal dividers
ssDividerTypeBoth 3 Horizontal and vertical dividers

FindShowStyle Constants
Constant Value Description

ssFindShowNone 0 No search buttons shown
ssFindShowFind 1 Show Find button
ssFindShowFindNext 2 Show Find and Find Next button.
ssFindShowAll 3 Show Find, Find Next and Find Previous buttons.

Font3D Constants
Constant Value Description

ssFont3DNone 0 No 3-D font effect

ssFont3DRaisedLight 1 Raised letters w/light shading
ssFont3DRaisedHeavy 2 Raised letters w/heavy shading
ssFont3DInsetLight 3 Inset letters w/light shading
ssFont3DInsetHeavy 4 Inset letters w/heavy shading

MousePointer Constants
Constant Value Description

ssMousePointerDefault 0 Default cursor
ssMousePointerArrow 1 Arrow cursor
ssMousePointerCross 2 Cross cursor
ssMousePointerIBeam 3 I-Beam cursor
ssMousePointerIcon 4 Icon cursor
ssMousePointerSize 5 Size cursor
ssMousePointerSizeNESW 6 Size NE-SW cursor
ssMousePointerSizeNS 7 Size N-S cursor
ssMousePointerSizeNWSE 8 Size NW-SE cursor
ssMousePointerSizeWE 9 Size W-E cursor
ssMousePointerUpArrow 10 Up Arrow (Alternate Select)
ssMousePointerHourglass 11 Hourglass
ssMousePointerNoDrop 12 No drop
ssMousePointerArrowAndHourGlass 13 Arrow & Hourglass
ssMousePointerArrowAndQuestion 14 Arrow & Question
ssMousePointerSizeAll 15 Size All
ssMousePointerCustom 99 Custom

Nullable Constants
Constant Value Description

ssColumnNullableAutomatic 0 Control will determine how to store null values
ssColumnNullableNull 1 Null values will be stored as nulls
ssColumnNullableEmptyString2 Null values will be stored as empty strings.

OrientationStyle Constants
Constant Value Description

ssOrientationHorizontal 0 Control will be horizontal
ssOrientationVertical 1 Control will be vertical

ReadType Constants
Constant Value Description

ssReadTypeAllData 0 Read all data from record source
ssReadTypeBookmarkOnly 1 Read bookmarks only from recordsource
ssReadTypeBookmarkAndBoundColumn 2 Read bookmarks and contents of bound

column from recordsource
ssReadTypeBookmarkAndDisplayColumn 3 Read bookmarks and contents of

displayed column from recordsource

Relocate Constants
Constant Value Description

ssRelocateNotAllowed 0 Columns cannot be moved
ssRelocateWithinGroup 1 Columns may be re-arranged within a group
ssRelocateAnywhere 2 Columns may be moved anywhere in the control

RowNavigation Constants
Constant Value Description

ssRowNavigationFull 0 Full movment using arrow keys
ssRowNavigationLRLock 1 Left/Right movement only within row
ssRowNavigationUDLock 2 Up/Down movement only within row
ssRowNavigationAllLock 3 All movment locked by row

RowSelectionStyle Constants
Constant Value Description

ssRowSelectionStyleListBox 0 Listbox style
ssRowSelectionStyleInvert 1 Invert colors
ssRowSelectionStyle3D 2 3-D effect

Scale Constants
Constant Value Description

ssScaleTwips 0 Twips
ssScalePixels 1 Pixels
ssScaleHiMetric 2 HiMetric
ssScaleContainer 3 Container

ScrollBarsStyle Constants
Constant Value Description

ssScrollBarsNone 0 No scroll bars
ssScrollBarsHorizontal 1 Horizontal scroll bar only
ssScrollBarsVertical 2 Vertical scroll bar only

ssScrollBarsBoth 3 Horizontal and vertical scroll bars
ssScrollBarsAutomatic 4 Scroll bars appear as needed

SelectionType Constants
Constant Value Description

ssSelectionTypeNone 0 No selection allowed
ssSelectionTypeSingleSelect 1 Select single item only
ssSelectionTypeMultiSelect 2 Select multiple items individually
ssSelectionTypeMultiSelectRange 3 Select multiple items in a range

SelType Constants
Constant Value Description

ssSelTypeGroup 0 Select by group
ssSelTypeColumn 1 Select by column
ssSelTypeRow 2 Select by row

Style Constants
Constant Value Description

ssStyleEdit 0 Edit type cell
ssStyleEditButton 1 Edit type cell with button (ellipsis)
ssStyleCheckBox 2 Check box type cell
ssStyleComboBox 3 Combo box type cell
ssStyleButton 4 Button type cell

TabNavigation Constants
Constant Value Description

ssMoveToNextCell 0 Tab key moves focus to next cell
ssMoveToNextControl 1 Tab key moves focus to next control

WhatChanged Constants
Constant Value Description

ssWhatChangedColMoved 0 Column was moved
ssWhatChangedGrpMoved 1 Group was moved
ssWhatChangedColSwapped 2 Column was swapped
ssWhatChangedGrpSwapped 3 Group was swapped

WhereIs Constants

ssWhereIsNothing 0 Cursor points at nothing
ssWhereIsGridHeading 1 Cursor points at grid heading
ssWhereIsGroupHeading 2 Cursor points at group header
ssWhereIsColumnHeading 3 Cursor points at column header
ssWhereIsGridSelector 4 Cursor points at grid selector

(left of group & column headers)
ssWhereIsRecordSelectors 5 Cursor points at a record selector
ssWhereIsBackground 6 Cursor points at background area
ssWhereIsData 7 Cursor points at grid cells

WhereIsDataOptSet Constants
Constant Value Description

ssWhereIsNothing 0 Cursor points at nothing
ssWhereIsButton 1 Cursor points at a button
ssWhereIsCaption 2 Cursor points at a caption

WhereIsEnhancedDataControl Constants
ssWhereIsNothing 0 Cursor points at nothing
ssWhereIsCaption 1 Cursor points at caption
ssWhereIsBevel 2 Cursor points at bevel
ssWhereIsButtonFirst 3 Cursor points at First Record button
ssWhereIsButtonLast 4 Cursor points at Last Record button
ssWhereIsButtonPrevPage 5 Cursor points at Previous Page button
ssWhereIsButtonNextPage 6 Cursor points at Next Page button
ssWhereIsButtonPrev 7 Cursor points at Previous Record button
ssWhereIsButtonNext 8 Cursor points at Next Record button
ssWhereIsButtonAdd 9 Cursor points at Add Record button
ssWhereIsButtonCancel 10 Cursor points at Cancel Edits button
ssWhereIsButtonUpdate 11 Cursor points at Update Edits button
ssWhereIsButtonDelete 12 Cursor points at Delete Record button
ssWhereIsButtonFindNext 13 Cursor points at Find Next button
ssWhereIsButtonFindPrev 14 Cursor points at Find Previous button
ssWhereIsButtonFind 15 Cursor points at Find button
ssWhereIsButtonBookmarkAdd 16 Cursor points at Add Bookmark button
ssWhereIsButtonBookmarkClear 17 Cursor points at Clear All Bookmarks

button
ssWhereIsButtonBookmarkGoto 18 Cursor points at Goto Bookmark button

Copyright Notice
     

What's New?
A look at what's new in Data Widgets 2.0.    Includes
information on Version 1.0 to 2.0 conversion issues.

Guided Tours
Designed to get you up and running quickly by walking
you through Data Widgets.

Frequently Asked Questions
Concise answers to the questions most often asked about
how to use Data Widgets.

How-To Help Contents
Task-based, step by step guidance on how to perform
common tasks using Data Widgets.

Control Descriptions
Explains what Data Widgets is, and describes each of the
Data Widgets custom controls, giving detailed infomation
on each.

Control Reference
An alphabetical listing of all programming language topics

Properties Collections
Events Errors
Methods Constants
Objects Extra Samples

Technical Information / Distribution
Notes
Specifications such as system requirements, included
files, files needed for distribution, and error messages.,
plus performance tuning information

Technical Support
Getting technical and product support for Sheridan
products.

Control Caption Area

Control Descriptions

What is Data Widgets?
Background on the product and its features as well as
information on how to use Data Widgets with your
applications.

Data Grid
A fully editable bound grid that allows you to edit an
entire record set, regardless of size, on screen without
writing any code.    Also supports Unbound and AddItem
modes.

Data Combo
A bound combo box you can include in your application.

Data DropDown
A control used for attaching a Data Grid column to a
dropdown list of values from another source of data.

DataOptionSet
Option buttons that can be used to represent field values
by binding the control to a data source.

Enhanced Data Control
A front end to the Visual Basic data control adding new
functionality such as bookmark navigation and page
movement.

Data Command Button
Command buttons that perform database functions.

Copyright © 1993-1997 Sheridan Software Systems, Inc.    All rights reserved.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Sheridan Software Systems.    The software described in this
document is furnished under a license agreement or nondisclosure agreement.    The
software may be used or copied only in accordance with the terms of the agreement.    It is
against the law to copy the software on any medium except as specifically allowed in the
license or nondisclosure agreement.    No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Sheridan
Software Systems, Inc.

Data Widgets, DataGrid, and the Sheridan logo are trademarks of Sheridan Software Systems, Inc.
Microsoft, Visual Basic and Windows are registered trademarks of Microsoft Corporation.
All other trademarks and registered trademarks are the property of their respective owners.

Count Property
See Also Applies To Example
Description

Returns the total number of objects in the specified collection.

Syntax
object . Count

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
The Count property is used only to return the number of objects in a collection.    To set the
number of objects, use the Add and Remove methods.

Count Property Applies To
Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

Count Property See Also
Bookmarks collection
Buttons collection
Columns collection
Groups collection
StyleSets collection
Add method
Remove method
RemoveAll method

Creating Buttons at Design Time
To create DataOptionSet buttons at runtime:

1. Select the total number of buttons by setting the NumberOfButtons property.
The control will immediately redraw to reflect the new setting.
2. Set the IndexSelected property to the button number you want to modify.
All changes made to button-specific properties will affect the button selected with this
property.
3. Set the OptionValue property for this button.
This is the value that will be compared against the database value.
4. Set any additional properties you wish to alter.
5. Repeat Steps 2-4 as needed.

Creating Buttons at Runtime
Creating buttons at runtime is a much simpler task thanks to the Button Object and its
related Buttons Collection.    The Button Object makes it possible to directly access a
button without the need for selecting the IndexSelected property first.    Additionally, you
do not need to set the NumberOfButtons property since adding or deleting a button
object within the collection automatically updates this value.   
For example, to modify the fifth button’s caption, you only need to write the code:
SSDBOptSet1.Buttons(4).Caption = "Fifth Button".

Creating a Total Query
This example makes use of the Count and Sum statements of SQL. This example can be
used with any data source that accepts SQL query statements as a valid recordsource.
This example uses a database that contains information about products and orders. The
totals provided by the query include the total quantity of orders placed and the total dollar
amount of all orders. The query also returns the total number of records.
To set up the application, you need two data sources (such as the Visual Basic Data
Control.) The first data source should should connect directly to the Order Details table in
the database. Order Details contains data about individual orders, including the unique ID
that identifies the order (Order ID), the ID code of the product ordered (Product ID), the
quantity of products ordered (Quantity), and the unit price of the product (Unit Price).
In Visual Basic, you can simply choose the table name from the list of available
RecordSources in the database. Or you could specify an SQL statement for the
recordsource (The query must appear as one line of text; line continuation [underscore]
characters are used here for readablity but should be omitted from the actual query
statement.):

SELECT [Order ID], [Product ID], [Quantity],_
[Unit Price] FROM [Order Details];

This is the recordsource that will be used to populate the DataGrid.
The Total Query

To create the second recordsource, specify the following SQL query (Again, underscore
characters should be omitted from the actual query statement.):

SELECT Count([Order ID]) as [Total Orders],_
Sum([Unit Price]) As [Total Price],_
Sum([Quantity]) as [Total Quantity] FROM [Order Details];

The controls displaying the totals would then be bound to the fields in the second
recordsource that are created by the total query. The control diplaying the total number of
records will be bound to the "Total Orders" field. The control displaying the total price will
be bound to the "Total Price" field, and the control displaying the total quantity will be
bound to the "Total Quantity" field.
A separate control can be used to display the product of the "Total Quantity" and the "Total
Price" field to display the total dollar amount of all orders.

Customizing the Bound Data Combo
When you select a data combo, all fields in the associated database are displayed by
default.    Sometimes, this is not a convenient way of displaying your data.    Using the
Visible property on individual columns allows you to display only the field you want listed.
For example, the following code displays only the first and third columns of a database
with four fields:

Sub SSDBCombo1_InitColumnProps()
SSDBCombo1.Columns(1).Visible = False
SSDBCombo1.Columns(3).Visible = False
End Sub

For simplicity, you could use the Grid Editor to make the changes.

Customizing the Bound Data DropDown
When you select a Data DropDown, all fields in the associated database are displayed by
default.    Sometimes, this is not a convenient way of displaying your data.    Using the
Visible property on individual columns allows you to display only the field you want listed. 
Refer to the Properties listing for a complete listing of properties used with the Data
DropDown control.

For example, the following code displays only the first and third columns of a database
with four fields:

Sub SSDBDropDown1_InitColumnProps()
      SSDBDropDown1.Columns(1).Visible = False
      SSDBDropDown1.Columns(3).Visible = False
End Sub

For simplicity, you could use the Grid Editor to make the changes.

Data Combo Collections
Columns
Groups
SelBookmarks
StyleSets

 Data Combo Control Filenames ObjectType
Properties Events Methods Collections Objects

Anatomy of a Data Combo

The Data Combo custom control is a combo box that can be used to display/edit a field
value from one record set while providing a dropdown list of field values from another set.   
The Data Combo functions in bound, unbound and AddItem modes.
For bound mode operation, you simply need to set four properties; two for the edit portion
and two for the list portion.    When you dropdown the list, it will automatically be filled with
the rows and columns of the record sets you chose.   

Keyboard Interface
Adding a Bound Data Combo
Customizing the Bound Data Combo
Adding an Unbound Data Combo
Achieving a 3D Look with the Data Combo
Binding to a Data Control Across Forms

Data Combo Events
Change
Click
CloseUp
DblClick
DragDrop
DragOver
DropDown
GotFocus
InitColumnProps
KeyDown
KeyPress
KeyUp
LostFocus
MouseDown
MouseMove
MouseUp
PositionList
RowLoaded
Scroll
ScrollAfter
TextError
UnboundPositionData
UnboundReadData
ValidateList

Data Combo Features

The Data Combo is a bound combo box you can include in your application.   

The following is a list of the features found in this control:

Variable edit area height similar to that    used in Microsoft Access
Multiline edit area
User is not limited to the width of the edit area for entering/displaying data
Same formatting capabilities as the SSDBGrid control
Full design time capabilities

Data Combo Methods
AddItem
AddItemBookmark
AddItemRowIndex
ColContaining
Columns
DoClick
Drag
GetBookmark
Groups
GrpContaining
IsItemInList
IsTextValid
MoveFirst
MoveLast
MoveNext
MovePrevious
MoveRecords
ReBind
Refresh
RemoveAll
RemoveItem
Reset
RowBookmark
RowContaining
RowTop
Scroll
SelBookmarks
StyleSets

Data Combo Objects
Column
Font
Group
HeadFont
ssRowBuffer
StyleSet

Data Combo Properties
(About)
(Custom)
Align
AllowInput
AllowNull
AutoRestore
BackColor
BackColorEven
BackColorOdd
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow
BevelType
BevelWidth
Bookmark
BorderStyle
CheckBox3D
Cols
ColumnHeaders
DataChanged
DataField
DataFieldList
DataFieldToDisplay
DataMode
DataSource
DataSourceList
DefColWidth
DividerStyle
DividerType
DragIcon
DragMode
DroppedDown
Enabled
FieldDelimiter
FieldSeperator
FirstRow
Font
Font3D

ForeColor
ForeColorEven
ForeColorOdd
GroupHeaders
GroupHeadlines
HeadFont
HeadFont3D
Headlines
HeadStyleSet
Height
HelpContextID
hWnd
Index
Left
LeftCol
LeftGrp
LevelCount
ListAutoPosition
ListAutoValidate
ListWidth
ListWidthAutoSize
MaxDropDownItems
MinDropDownItems
MouseIcon
MousePointer
MultiLine
Name
Negotiate
PictureDropDown
Redraw
Row
RowHeight
Rows
RowSelectionStyle
Scrollbars
SelLength
SelStart
SelText
StyleSet
TabIndex
TabStop
Tag

TagVariant
Text
TextFormat
Top
UseExactRowCount
Visible
VisibleCols
VisibleGrps
VisibleRows
WhatsThisHelpID
Width

Data Combo: Exercise 1
This section guides you through the creation of a sample program using the Data Combo
control.    For a complete description of this control, refer to the Data Combo Control
For the exercises in this section, it is assumed that you have already launched your
development application (Visual Basic), and that the control has been added to your
toolbox.    For more information on how to do this, refer to Using Data Widgets.

In this exercise, you will create a data entry program that makes use of the Data Combo
control.

1. Place a Visual Basic data control on the form.
2. Set the DatabaseName property to BIBLIO.MDB. Be sure to qualify the filename with

the path of where the file is located, if needed.
3. Set the RecordSource property to ‘Titles’.
4. Place four text boxes on the form. Your form should look like this:

5. Create five text labels on the form. Your form should look like:

6. For each text box, set the DataSource field to Data1 and the DataField as follows:
Text1.DataField = ‘Title’
Text2.DataField = ‘Year Published’
Text3.DataField = ‘ISBN’
Text4.DataField = ‘Description’

7. Add a SSDBCombo control to the form. Your form should now look like this:

8. Place a second Visual Basic data control on the form.
9. Set the data control’s DatabaseName property to BIBLIO.MDB.
10. Set the data control’s RecordSource property to ‘Publishers’.
11. Set the data control’s Visible property to ‘False’.
12. Set the data combo’s DataSource property to ‘Data1’. This binds the edit portion of

the data combo to the ‘Titles’ table.
13. Set the data combo’s DataField property to ‘PubID’. This determines the field used in

the edit portion of the data combo.
14. Set the data combo’s DataSourceList property to ‘Data2’. This binds the list portion

of the data combo to the ‘Publishers’ table.
15. Set the data combo’s DataFieldList property to ‘PubID’. This determines the field used

in the list portion of the data combo.

Try running your application at this point, using the data control to navigate through the
records.    Click on the Data DropDown and you’ll see how the record in the edit field is
automatically selected in the list portion.    Try changing the field value by selecting
another record from the list.   
This is a quick example of how the Data Combo can be used in your applications.    Save
this project, as we’ll be using it in the next exercise.

Data Combo: Exercise 2
This exercise demonstrates how you can customize the Data Combo to suit your specific
needs.    This exercise makes use of objects and collections. If you are not familiar with
object and collections, you should refer to the Introduction to OCX Controls section before
proceeding.    The project used in the last exercise should be running at this point.
As you saw in the last exercise, when you click on the data combo, the entire table in the
list portion displays.    Sometimes this is fine, but there are times when you want to limit
what is displayed and how it is displayed.    The Data Combo allows you to make use of the
objects that the Data Grid uses.

Let’s make it so that the Data Combo only displays the fields "PubID", "Name", and
"Company Name".    In the SSDBCombo1_DropDown event, add the following code:
SSDBCombo1.Columns(3).Visible = False
SSDBCombo1.Columns(4).Visible = False
SSDBCombo1.Columns(5).Visible = False
SSDBCombo1.Columns(6).Visible = False
SSDBCombo1.Columns(7).Visible = False
SSDBCombo1.Columns(8).Visible = False
SSDBCombo1.Columns(9).Visible = False

Run your application, and drop down the Data Combo.    You will now see that only the
PubID, Name, and Company Name fields appear.
Altering properties is a simple task when dealing with objects.    If we wanted to make
the first column a different color, all we need to add in the SSDBCombo1_DropDown
event is the following:
SSDBCombo1.Columns(0).Backcolor=RGB(200,200,200)

Try experimenting with setting different properties on the control, as well as on the
columns themselves.    Remember that you can also use the Grid Editor to customize the
Data DropDown properties.

 Data Command Button Control Filenames ObjectType
Properties Events Methods
The Data Command custom control is a 3D command button that can be bound to a data
control.    This button can be configured to automatically perform database actions as
designated by you when clicked.    The control also contains a speed button feature,
allowing the user to hold the button in the down state to repeat a function.
A full set of appearance properties, including the capability of placing pictures on the
buttons, are available with the Data Command control.    The command button can be set
to perform one of the following database actions:

Goto first record
Goto previous record
Goto next record
Goto last record
Goto previous page (pages are defined by you)
Goto next page (pages are defined by you)
Create bookmark
Goto bookmark
Refresh display

Adding a Data Command Button
Speed Buttons
Binding to a Data Control Across Forms

Data Command Button Events
AfterClick
Click
DragDrop
DragOver
GotFocus
KeyDown
KeyPress
KeyUp
LostFocus
MouseDown
MouseMove
MouseUp

Data Command Button Features

The Data Command Button allows you to create command buttons that perform database
functions.   

The following is a list of the features for this control:

Add, Delete, Refresh, Bookmark, and Auto-Positioning functions
Click and After Click events
Auto-Repeat functionality
3D font capability
Multiline captions
Custom color options
Auto-sizing capability

Data Command Button Methods
DoClick
Drag
Refresh

Data Command Button Properties
(About)
(Custom)
AutoSize
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow
BevelWidth
Cancel
Caption
CaptionAlignment
DatabaseAction
DataSource
Default
DelayInitial
DelaySubsequent
DragIcon
DragMode
Enabled
Font
Font3D
ForeColor
Height
HelpContextID
hWnd
Index
Left
MouseIcon
MousePointer
Name
PageValue
Picture
PictureAlignment
PictureMetaHeight
PictureMetaWidth
RoundedCorners
SavedBookmark
TabIndex
TabStop

Tag
TagVariant
Top
Visible
WhatsThisHelpID
Width
WordWrap

Data Command: Exercise 1
This guides you through the creation of a sample program using the Data Command
control.    For a complete description of this control, refer to the Data Command section.
For this exercise, it is assumed that you have already launched your development
application (Visual Basic), and that the control has been added to your toolbox.    For more
information on how to do this, refer to Using Data Widgets.
You will create an application that makes use of the Data Command control. The database
used will be the BIBLIO.MDB that ships with Visual Basic and is located in the Visual Basic
home directory. If you are using an environment other than Visual Basic, and do not have
the BIBLIO.MDB database, consult BIBLIO File Structure for details on the file layout.

1. Place a standard data control on the form.
2. Set the DatabaseName property to BIBLIO.MDB and set the RecordSource property

to ‘Publishers’.    Set the Visible property to ‘False’.
This example will demonstrate how the Data Command buttons can replace navigation
functions of the data control.    We can set the data control to invisible since we will use
the buttons for navigation.

3. Add four standard labels and four standard text boxes as shown below.    Set the
DataSource property to ‘Data1’ for all text boxes.   

4. Set the DataField for the first text box to ‘Name’, set the second one to ‘Company
Name’, the third to ‘Telephone’, and the fourth to ‘Fax’.

5. Add six Data Command buttons to the form setting the DataSource property for each
one to ‘Data1’ and changing the Caption property for each one so that they look like
this:

6. For each button, set the DatabaseAction property so it corresponds to the caption.
7. The Save Bookmark button requires one line of code to make it functional.    To add it,

double click on the Save Bookmark button and add the following:

Private Sub SSDBCommand3_AfterClick()
SSDBCommand6.SavedBookmark = SSDBCommand3.SavedBookmark

End Sub

8. Run the application.

And there you have it!    This is just a sampling of what the Data Command buttons are
capable of.    Try using this application to get a feel for how the buttons work.    To see how
the bookmarks work, click the Save Bookmark button, and then move to another record.   
Clicking on the Goto Bookmark button will take you back to the record you saved.

Data DropDown Collections
Columns
Groups
SelBookmarks
StyleSets

 Data DropDown Control Filenames ObjectType
Properties Events Methods Collections Objects

The Data DropDown custom control is a grid that can be linked to the cells in the Data Grid
(SSDBGrid) for use as a value selection list.    The Data DropDown, when used in
conjunction with a cell in a Data Grid, functions very similar to the Data Combo, with the
exception that it does not contain an edit portion.    The field that would normally be in the
edit portion of a Data Combo is in the cell of the Data Grid.    You can display as few or as
many fields in the dropdown list as you want.
One of the advantages of the Data DropDown is that it allows you to cross-reference data
to a value.    Let’s say you have a field (EmployeeID) that stores the identification number
of your employees.    Instead of a person needing to memorize each employee’s number,
you can create a Data DropDown in the EmployeeID field that lists the employee’s full
name next to their identification number in a scrollable list for easy selection.    You could
do the same for customers, parts, or just about any other information that you want to
access from a list.

Keyboard Interface
Adding a Bound Data DropDown
Customizing the Bound Data DropDown
Adding an Unbound Data DropDown
Binding to a Data Control Across Forms

Data DropDown Events
Click
CloseUp
DragDrop
DragOver
DropDown
InitColumnProps
PositionList
RowLoaded
Scroll
ScrollAfter
TextError
UnboundPositionData
UnboundReadData
ValidateList

Data DropDown Features

The Data DropDown control is used for attaching a Data Grid column to a dropdown list of
values from another source of data.   

The following is a list of the features for this control:

Used in conjunction with the Data Grid
Supports multiple data modes including bound, unbound, and AddItem
User is not limited to the width of the edit area for entering/displaying data
Same formatting capabilities as the SSDBGrid control
Full design time capabilities

Data DropDown Methods
AddItem
AddItemBookmark
AddItemRowIndex
ColContaining
Columns
DoClick
Drag
GetBookmark
Groups
GrpContaining
MoveFirst
MoveLast
MoveNext
MovePrevious
MoveRecords
ReBind
Refresh
RemoveAll
RemoveItem
Reset
RowBookmark
RowContaining
RowTop
Scroll
SelBookmarks
StyleSets

Data DropDown Objects
Bookmark
Column
Font
Group
HeadFont
ssRowBuffer
StyleSet

Data DropDown Properties
(About)
(Custom)
BackColor
BackColorEven
BackColorOdd
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow
Bookmark
BorderStyle
CheckBox3D
Cols
ColumnHeaders
DataFieldList
DataFieldToDisplay
DataMode
DataSource
DefColWidth
DividerStyle
DividerType
DragIcon
DragMode
DroppedDown
Enabled
FieldDelimiter
FieldSeperator
FirstRow
Font
Font3D
ForeColor
ForeColorEven
ForeColorOdd
GroupHeaders
GroupHeadlines
HeadFont
HeadFont3D
Headlines
HeadStyleSet

Height
HelpContextID
hWnd
Index
Left
LeftCol
LeftGrp
LevelCount
ListAutoPosition
ListAutoValidate
ListWidth
ListWidthAutoSize
MaxDropDownItems
MinDropDownItems
Name
Redraw
Row
RowHeight
Rows
RowSelectionStyle
Scrollbars
StyleSet
TabIndex
Tag
TagVariant
Top
UseExactRowCount
Visible
VisibleCols
VisibleGrps
VisibleRows
WhatsThisHelpID
Width

Data DropDown: Exercise 1
This section guides you through the creation of a sample program using the Data
DropDown control.    For a complete description of this control, refer to the Data DropDown
control.’
For the exercises in this section, it is assumed that you have already launched your
development application (Visual Basic), and that the control has been added to your
toolbox.    For more information on how to do this, refer to Using Data Widgets.
In this exercise, you will create a simple program that makes use of the Data DropDown
control.

1. Place a Visual Basic data control on the form.
2. Set the Visible property to False. This hides the data control when your program runs.
3. Set the DatabaseName property to BIBLIO.MDB. Be sure to qualify the filename with

the path of where the file is located, if needed.
4. Set the RecordSource property to ‘Titles’
5. Place a SSDBGrid control directly on the form by double clicking on the tool in the

Visual Basic toolbox.    Resize the grid to a size that is suitable for your form.
6. For the SSDBGrid control, set the DataSource property to Data1. This points the Data

Grid to the data control you created in Step 1.
7. For the SSDBGrid control, set the AllowAddNew and AllowDelete properties to True.
8. Place a second Visual Basic data control on the form.
9. For the data control, set the Visible property to False.
10. For the data control, set the DatabaseName property to BIBLIO.MDB. Be sure to

qualify the filename with the path of where the file is located, if needed.
11. For the data control, set the RecordSource property to ‘Publishers’
12. Place a Data DropDown control on the form. The location of the Data DropDown is

unimportant since it is invisible at runtime.
13. For the SSDBDropDown control, set the DataSource property of the Data DropDown to

the second data control.
14. For the SSDBDropDown control, set the DataFieldList property of the Data DropDown

to ‘PubID’.
15. Link the Data DropDown to the Data Grid by adding the following code in the

InitColumnProps procedure of the Data Grid:
SSDBGrid1.Columns(3).DropDownhWnd = SSDBDropDown1.hWnd

Try running your application at this point.    Click on the PubID column, and it will drop down
the ‘Publisher’s table.    Try changing the field value by selecting another record from the
list.   
By default, all fields in the table display.    You can selectively hide fields by adding code in
the DropDown event of the Data DropDown.

Data Grid Collections
Columns
Groups
SelBookmarks
StyleSets

    Data Grid Control Filenames ObjectType
Properties Events Methods Collections Objects

Anatomy of a Data Grid
The Data Grid custom control is an editable grid that can be used to display and edit data. 
In just a few steps, you can have a fully functional program that allows users to view, edit,
add, and delete rows in a database without a single line of code!    The Data Grid can
operate in bound, unbound, or AddItem mode.    When working in bound mode, the Data
Grid communicates with the host environment’s data control, which allows your grid to
interact with any database the data control is capable of using.
In AddItem mode, the Data Grid can be used as a multi-column list box, in which case, it is
not linked to a database.    Since the Data Grid uses virtual data management techniques,
meaning it can handle any amount of data without using up all of Windows memory, you
can use it to handle large lists of data.    When being used in add item mode, the Data Grid
stores all data in memory, which is in contrast to bound and unbound modes where only
the amount of data needed to display is kept in memory.
The Data Grid is fully-customizable and can contain multiple groups and columns with the
ability to specify attributes such as colors, fonts, and user permissions to individual
columns and groups.   
The SSDBGrid control is zero-based, which means that numbering for all rows, columns,
levels, etc. start at 0.    For example, the command ?SSDBGrid1.Columns(1).Caption returns
the caption of the second column in the grid.
When using the grid in bound mode, by default, each column represents a field in the
database with each column header being named after the respective database field.
Note In Data Widgets 1.0, you could not see any groups, columns or special attributes
when in design mode.    Version 2.0 now allows you to view the grid at design time the way
it will appear at runtime.
A note about bookmarks
Adding a Bound Data Grid to your application
Adding an Unbound Data Grid to your application
Adding an AddItem Grid to Your Application
Grid Editor
Keyboard Interface
About SelBookmarks
Using the Data Grid as a List Box
Using the Cell Button Feature of the Data Grid
Using a Data DropDown in a Data Grid Column
Binding to a Data Control Across Forms
Updating Rows from a Modal Form
How the Data Grid handles data validation and error checking
How the DataGrid handles null values

Data Grid Events
AfterColUpdate
AfterDelete
AfterInsert
AfterPosChanged
AfterUpdate
BeforeColUpdate
BeforeDelete
BeforeInsert
BeforeRowColChange
BeforeUpdate
BtnClick
Change
Click
ColMove
ColResize
ColSwap
ComboCloseUp
ComboDropDown
DblClick
DragDrop
DragOver
Error
GotFocus
GrpHeadClick
GrpMove
GrpResize
GrpSwap
HeadClick
InitColumnProps
KeyDown
KeyPress
KeyUp
LostFocus
MouseDown
MouseMove
MouseUp
RowColChange
RowLoaded
RowResize
Scroll

ScrollAfter
SelChange
SplitterMove
UnboundAddData
UnboundDeleteRow
UnboundPositionData
UnboundReadData
UnboundWriteData
UpdateError

Data Grid Exercise 1 - Part I: Adding the grid
1. Place a Visual Basic data control on the form.
2. Set the Visible property to False. This hides the data control when your program runs.
3. Set the DatabaseName property to BIBLIO.MDB. Be sure to qualify the filename with

the path of where the file is located, if needed.
4. Set the RecordSource property to ‘Publishers’
5. Place a SSDBGrid control directly on the form by double clicking on the tool in the

Visual Basic toolbox.    Resize the grid to a size that is suitable for your form.
6. Set the DataSource property to Data1. This points the Data Grid to the data control

you created in Step 1.
7. Set the AllowAddNew and AllowDelete properties to True.

Believe it or not, you just created a fully functional database grid in seven steps!    You can
view and edit the entire table, as well as add new rows and delete existing rows.
To see for yourself, try running the application at this point (select Start from the Run
menu of Visual Basic).    The results should look something like:

Data Grid Exercise 1 - Part II: Creating groups and columns
While the grid displays all your data, wouldn’t it be nice to spice it up a little?    In this next
part, we’re going to make use of a powerful tool called the Grid Editor.    With the Grid
Editor, we’ll be able to create groups and columns, as well as easily specify a variety of
display attributes.
With the application we created in Part I open, let’s do the following:

· In Design mode, select the grid and then select "(Custom)" from the Properties list.   
The Grid Editor appears.

The first thing we want to do is divide the various fields into organizational groups:

1. Select the "Groups" tab. The Groups tab allows us to create and delete group
definitions.

2. Click the Add button and type "Company Information"
3. Click the Add button and type "Address Information"
4. Click the Add button and type "Other"

You have just created three groups.    Now, it’s time to add some fields (herein referred to
as "Columns") to the groups.

1. Select the "Columns" tab. The Columns tab allows us to create and delete column
definitions.

2. Click on the group header labeled "Company Information".
3. Click the Fields button. The Fields button allows us to automatically create columns

from a bound database.
4. Select the fields "Name" and "Company Name" from the Fields Selection list.
5. Click the OK button. You have just added these two fields to the "Company

Information" group.
6. Click on the group header labeled "Address Information".
7. Click the Fields button.
8. Select the fields "Address", "City", "State", and "Zip" from the Fields Selection list.
9. Click the OK button. You have just added these four fields to the "Address Information"

group.
10. Click on the group header labeled "Other".
11. Select the fields "Telephone", "Fax", and "Comments" from the Fields Selection list.
12. Click the OK button. You have just added these four fields to the "Other" group.

You have just created a grid layout making use of groups and columns.    Resize the groups
to your liking by clicking on the right edge of the group headers and dragging them to
either the left for smaller, or right for larger.    You can do the same for the columns by
clicking on the column headers and dragging.      You’ll notice that we left two fields out of
our grid, "PubID" and "Comments".    The Grid Editor allows you to selectively use fields in
your grid.
Once you have specified your layout, it’s a good idea to actually Apply it to the grid by
clicking the Apply button.    This updates the SSDBGrid control with the layout you just

designed.    You’ll then want to close the Grid Editor for now by clicking the OK button.
Note You can apply your changes and close the Grid Editor simply by clicking the OK
button.    If your changes have not yet been applied, you will be prompted to apply them
prior to closing.
If you want, try running the application at this point (select Start from the Run menu of
Visual Basic).    The results should look something like:

Data Grid Exercise 1 - Part III: Customizing the Data Grid
The Data Grid is quite versatile when it comes to customizing both look and functionality.   
The Grid Editor allows you to work with a number of properties at design time.    In this next
section, we’re going to customize our grid so that you can begin to see the wide-range of
possibilities the grid offers.
At this point, we want to go back into the grid editor so that we can customize our grid.    If
you don’t remember, we can launch the grid editor by selecting the grid control then select
"(Custom)" from the Properties    list.   
Changes made in the Grid Editor will not take affect in the real grid until we click the
Apply button in the Grid Editor.
Let’s begin to customize our grid:

Customizing General tab options
The General tab is a tree-structure representing the various properties that can be set for
the Data Grid.    The General tab is the first tab to appear when you launch the Grid Editor. 
When you select a property for modification, options for that property appear to the right.   
The two exceptions to this are the (Add Items...) and StyleSets options, which are both fully
explained in ‘Chapter 11 - The Data Grid Control’.

Set the following properties as shown:

Property Value What It Does
Caption "Publisher

Database"
Specifies the caption
title for the Data Grid

CaptionAlignment "0 - Left Justify" Left justifies the
caption

AllowAddNew True Allows users to add
new records to the
Data Grid

AllowDelete True Allows users to delete
records from the Data
Grid

Font "Arial" for Name
8 for Point Size

Specifies the font name
and size to be used for
the grid text.

HeadFont3D "Inset w/light
shading"

Gives the text of your
grid headers a 3D
appearance.

HeadFont "Arial" for Name
12 for Point Size

Specifies the font name
and size to be used for
the grid headers,
including caption.

AllowColumnMovi
ng

"2 - Anywhere" Allows users to move
columns anywhere on
the grid

AllowColumnSwap
ping

"2 - Anywhere" Allows users to swap
columns anywhere on

the grid
DividerType "Horizontal" Determines what type

of row divider is used.
SelectByCell True Allows the selection of

an entire row if the
user clicks on a cell.

GroupHeadLines 2 Allows the Group
Headers to occupy two
rows.

LevelCount 2 Allows each record to
occupy two rows.    You
will need to decide
what columns you want
on each level.

Customizing Group options
1. Select the "Groups" tab.
2. Select the group "Other" from the Name list.
3. Set the AllowSizing property to False. This prevents users from changing the width of

the "Other" group.
4. Select the group "Company Information" from the Name list.
5. Set the HeadBackColor property to the color that you want to use. The color you

choose can either be from the palette shown, a custom color you define by clicking on
the Custom Color list, or a pre-defined system color from the System Color list that
corresponds to your Windows color scheme.

6. Repeat Step 5 for as many groups as you want to define colors for.
7. Move the "Company Name", "City", "State", and "Zip" columns so that they appear on

the second level.
To move a column from one level to another, select the column header and drag it to
the appropriate level.    The results will look something like:

Customizing Column options
1. Select the "Columns" tab.
2. Select the column "Name" from the Name list.
3. Set the Case property to ‘2 - UPPER’. This causes all fields in the "Name" column to

appear in uppercase.

4. Select the column "State" from the Name list.
5. Set the Style property to ‘3 - Combo Box’. This causes the State field to appear as a

combo box, allowing the user to choose from a list of entries.    When you select
Combo Box, the Setup button appears, allowing you to modify the contents of the
combo box.

6. Click the Setup button. The Manage Combo Items dialog appears:

7. Add the names of states listed in the graphic above by clicking the Add button and
then typing the name in the Add List Item edit box.

8. Select Sorted by clicking in the check box. This will sort your entries in ascending or
descending order based on your preference.    You can manually sort the list by
selecting fields individually and clicking the Up or Down buttons.

9. Click the OK button.

You’ve just completed modifying the grid layout!    Remember, in order for the changes we
specify in the Grid Editor to take affect on the actual grid, you must click the Apply button
to activate the changes.    We’re done with the Grid Editor, so you can click the OK button
to go back to the form.

Data Grid Exercise 1 - Part IV: Running the application
You can now run your application to see how the changes have affected your grid.    Some
items to note about the grid are:

· Notice how the Company Name field displays all entries in uppercase.
· Try clicking on the State column.    A combo box should appear listing the states you

entered.
· Try resizing groups and columns by selecting the right side of the column or group

header and dragging left or right.    Try doing this for the "Other" group.    Remember
that you disabled the resizing for this group.

The Grid Editor can be run again at anytime in the future, that is, you can make further
changes to your grid whenever you’re in design mode.
The exercise just completed is just a taste of what’s possible with the Data Grid.    The best
way to learn about the grid is to experiment with different settings.    The Grid Editor
provides context-sensitive help throughout should you have any questions about a specific
property.    You should also refer to Chapter 11 for an in-depth view of the Data Grid control.

Data Grid Features
The Data Grid is a fully editable bound grid that allows you to edit an entire record set,
regardless of size, on screen without writing any code.   

The following is a list of the features found in the Data Grid control:

Functionally and visually consistent with data grids in Microsoft Access and Visual Basic
4.0
Support for movable groups and columns
Optional dropdowns in headings allow users to select from a list of available fields and/or
groups at runtime
Additional cell types include checkbox, button, label, and combo box
Multiline row formats
Pictures and text in cells and headings
Use of fonts and colors by column, row, and cell
Drag and Drop of cells
Supports multiple data modes including bound, unbound, and AddItem.
AddItem at design time
Supports Sheridan Style Sets

Data Grid Methods
ActiveCell
AddItem
AddItemBookmark
AddItemRowIndex
AddNew
CancelUpdate
ColContaining
ColPosition
Columns
DeleteSelected
DoClick
Drag
GetBookmark
Groups
GrpContaining
GrpPosition
IsAddrow
IsItemInList
MoveFirst
MoveLast
MoveNext
MovePrevious
MoveRecords
ReBind
Refresh
RemoveAll
RemoveItem
Reset
RowBookmark
RowContaining
RowTop
Scroll
SelBookmarks
StyleSets
Update
WhereIs

Data Grid Objects
ActiveCell
Column
Font
Group
HeadFont
ssRowBuffer
StyleSet

Data Grid Properties
(About)
(Custom)
ActiveRowStyleSet
Align
AllowAddNew
AllowColumnMoving
AllowColumnShrinking
AllowColumnSizing
AllowColumnSwapping
AllowDelete
AllowDragDrop
AllowGroupMoving
AllowGroupSizing
AllowGroupSwapping
AllowGroupShrinking
AllowRowSizing
AllowUpdate
BackColor
BackColorEven
BackColorOdd
BalloonHelp
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow
Bookmark
BorderStyle
Caption
CaptionAlignment
CellNavigation
CheckBox3D
Col
ColChanged
Cols
ColumnHeaders
ComboDroppedDown
DataChanged
DataMode
DataSource

DefColWidth
DividerStyle
DividerType
DragIcon
DragMode
Enabled
FieldDelimiter
FieldSeparator
FirstRow
Font
Font3D
ForeColor
ForeColorEven
ForeColorOdd
GroupHeaders
GroupHeadlines
Grp
HeadFont
HeadFont3D
Headlines
HeadStyleSet
Height
HelpContextID
hWnd
hWndEdit
Index
Left
LeftCol
LeftGrp
LevelCount
MaxSelectedRows
MultiLine
Name
Negotiate
PictureButton
PictureComboButton
PictureRecordSelectors
RecordSelectors
Redraw
ResizeHeight
ResizeWidth
Row

RowChanged
RowHeight
RowNavigation
Rows
RowSelectionStyle
Scrollbars
SelectByCell
SelectTypeCol
SelectTypeRow
SplitterPos
SplitterVisible
StyleSet
TabIndex
TabNavigation
TabStop
Tag
TagVariant
Top
UseDefaults
UseExactRowCount
Visible
VisibleCols
VisibleGrps
VisibleRows
WhatsThisHelpID
Width

See Also
How the DataGrid handles null values

Data Grid: Exercise 1 (Bound Mode)
This section guides you through the creation of some sample programs using the Data Grid
control.    For a complete description of this control, refer to the Data Grid Control.
For this exercise, it is assumed that you have already launched your development
application (Visual Basic), and that the control has been added to your toolbox.    For more
information on how to do this, refer to Using Data Widgets.
In this exercise, you will create an application that makes use of the Data Grid control.   
The database used will be the BIBLIO.MDB that ships with Visual Basic and is located in the
Visual Basic home directory. If you are using an environment other than Visual Basic, and
do not have the BIBLIO.MDB database, consult BIBLIO File Structure for details on the file
layout.

Part I: Adding the grid
Part II: Creating groups and columns
Part III: Customizing the Data Grid
Part IV: Running the application

Data Grid: Exercise 2 (Unbound Mode)
In this exercise, you will create a fully functional unbound Data Grid control. The database
used will be the UNBOUND.MDB that resides in the \SAMPLES\CHAP5 directory of Data
Widgets 2.0.    The reason this is an unbound data grid is because we are not using the
Visual Basic data control, and are using our own routines to deal with data.

Note This exercise makes use of the Microsoft DAO 2.5 Object Library by using Visual
Basic commands such as OpenDatabase and OpenRecordset.    If you do not have this
library available, VB may generate a "User-defined type not defined" message when
running this application.    If you encounter this situation, simply enable this library through
the "References..." dialog under Visual Basic's Tools    menu.
1. Place a SSDBGrid control directly on the form by double clicking on the tool in the

Visual Basic toolbox.    Resize the grid to a size that is suitable for your form.
2. Set the DataMode property to’1 - Unbound’.
3. Set the AllowAddNew and AllowDelete properties to 'True'
4. Add the following code to the (declarations) section of your form:

Dim db As Database
Dim rs As Recordset
Dim ct As Integer

' DB represents the database to be used
' RS represents the recordset to be used
' CT represents the count of fields in the table

5. Add the following code to the Form_Load procedure:

Dim i As Integer
Set db = OpenDatabase("unbound.mdb")
Set rs = db.OpenRecordset("Titles")
ct = rs.Fields.Count

SSDBGrid1.Columns.RemoveAll

For i = 0 To ct - 1
SSDBGrid1.Columns.Add i
SSDBGrid1.Columns(i).Visible = True
SSDBGrid1.Columns(i).Caption = rs.Fields(i).Name

Next i

In this section, the database is assigned, a table selected, and the number of fields in
the table is given to CT.    The RemoveAll is issued to ensure that there are no existing
columns when the grid goes to add columns from the database.    In the For i = 0 To
ct - 1 loop, columns are created based on the number of fields in the database, and
headers are assigned based on the field name.

6. Add the following code to the SSDBGrid1_UnboundReadData event:

Dim r, i, j As Integer

If rs.RecordCount = 0 Then Exit Sub
If IsNull (StartLocation) Then
If ReadPriorRows Then

rs.MoveLast
Else

rs.MoveFirst
End If

Else
rs.Bookmark = StartLocation
If ReadPriorRows Then

rs.MovePrevious
Else

rs.MoveNext
End If

End If

For i = 0 to Rowbuf.RowCount - 1
if rs.BOF or rs.EOF Then Exit For

For j = 0 to ct - 1
Rowbuf.Value(i,j) = rs(j)

Next j

Rowbuf.Bookmark(i) = rs.Bookmark

If ReadPriorRows Then
rs.MovePrevious

Else
rs.MoveNext

EndIf

r = r + 1

Next i

Rowbuf.RowCount = r

The UnboundReadData event reads data into the grid.    In this section, the program
first checks to see if it's dealing with an empty recordset so it can exit before
attempting the read. It then looks to see if it’s dealing with an empty grid or not by
checking StartLocation.    If the grid is empty, then the code moves to the first or last
record based on the ReadPriorRows    value (which indicates if scrolling should occur
forwards or backwards). If the grid is not empty, the database bookmark is set to the
start location and we move backwards or forwards based on ReadPriorRows.
We then read in the data, only stopping when we reach the beginning or end the file or
when we reach RowCount    - 1.    As we add each row, we keep track of a counter r,
which we set RowBuf.RowCount    to when we finish.

7. Add the following code to the SSDBGrid1_UnboundAddData event:
Dim i As Integer

rs.AddNew

For i = 0 to (ct-1)
If Not IsNull (Rowbuf.Value (0,i)) Then

rs(i) = Rowbuf.Value(0,i)

End If
Next i

rs.Update
rs.MoveLast
NewRowBookmark = rs.Bookmark

The UnboundAddData event adds a new row. In this section, the database is
prepared for a row addition, and the field values are passed from the ssRowBuffer to
the database for each field.    The database is then updated.    Finally, we move to the
last row in the database, and point the NewRowBookmark.

8. Add the following code to the SSDBGrid1_UnboundDeleteRow event:

rs.Bookmark = Bookmark
rs.Delete

The UnboundDeleteRow event deletes a row.    In this section, the database is
pointed to the row being deleted, and then actually deletes it.

9. Add the following code to the SSDBGrid1_UnboundWriteData event:

Dim I As Integer

rs.Bookmark = WriteLocation

rs.Edit

For i = 0 To (ct-1)
If Not IsNull(RowBuf.Value(0,i)) Then

rs(i) = RowBuf.Value(0,i)
End If

Next i

rs.Update

The UnboundWriteData event writes a row that has been changed.    In this section,
the database is pointed to the row being written, and then put into edit mode.    The
data is then passed from the grid to the database for each field, and then issued an
update command.

10. Run your application.

Data Grid: Exercise 3 (AddItem Mode)
In this exercise, you will create a fully functional AddItem Data Grid control.   
1. Place a SSDBGrid control directly on the form by double clicking on the tool in the

Visual Basic toolbox.    Resize the grid to a size that is suitable for your form.
2. Set the DataMode property to ‘2 - AddItem’.
3. Set the Cols property to 3. This tells the grid that we will use three columns.
4. Set the FieldDelimiter property to ! (exclamation mark). This property determines
the character that represents the start and end of a field.

5. Set the FieldSeparator property to , (comma). This property determines the character
that represents a separation between fields.

6. Add the following code to the SSDBGrid1_InitColumnProps event:

Dim I As Integer
For I = 0 to 20

SSDBGrid1.AddItem "!Hello!,!There!,!World!"
Next I

Run your program.    You’ll see that it functions just like an Unbound or Bound grid.

Select a Data Widget control:

Data Grid
Data Combo
Data DropDown
DataOptionSet
Enhanced Data
Data Command Button

DataField Property
See Also Applies To
Description

Determines a field to bind to in the current database.

Syntax
object . DataField[= value]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Value A string expression that evaluates to the name of the field in the object
specified in the DataSource property.

Remarks
You must first specify a source in the DataSource property.

DataField Property Applies To
Column object
SSDBCombo
SSDBCommand
SSDBData
SSDBOptSet

DataField Property See Also
DataSource

DataFieldList Property
See Also Applies To
Description

Returns or sets a value that determines the data field to be used for the dropdown portion
of the control.

Syntax
object . DataFieldList[= string]
Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

string A string expression that evaluates to the name of one of the fields in the
Recordset object specified by a Data control's RecordSource and
DatabaseName properties.

Remarks
The DataField List property determines which field will be used to return the data to the
edit portion of the control when an item is selected from the list.
The DataSourceList property of the SSDBCombo control specifies a valid Data control
name, and the DataFieldList property specifies a valid field name in the Recordset object
created by the Data control.

Important! The DataFieldList property must be set in order for the combo to drop
down. This is true in any mode of the control (bound, unbound or AddItem.) If this
property is not set, the combo will not drop down.

DataFieldList Property Applies To
SSDBCombo
SSDBDropDown

DataFieldList Property See Also
DataMode
DataSource
DataSourceList

DataFieldToDisplay Property
See Also Applies To
Description

Determines the field to display in the edit portion of the control.

Syntax
object . DataFieldToDisplay[= value]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

value A string expression that evaluates to the name of the field (in the object
specified in the DataSourceList property) that will be displayed in the
edit portion of the control.

Remarks
DataFieldToDisplay is used when you wish to display one value to the user while storing a
different value in the database field attached to the control. The classic example is a State
field, where you want to display the name of the state, such as "Pennsylvania", but store
only a code, such as "PA" in the database. DataFieldToDisplay determines the field that
will be displayed, the DataFieldList property will determine the field that is stored in the
database.
If DataFieldToDisplay is left blank, then the field displayed in the edit portion of the
control is the same field stored in the database, as determined byDataFieldList and
DataField.
For best performance in bound mode, the DataFieldList column (which determines the
value to be stored) should be included in the dropdown. If you do not want the values of
this column displayed to the user, you can hide it by setting its Visible property to False. If
the DataFieldList column is not included in the grid's layout, references to the field will
have to be resolved at run time, adversely affecting performance.
If the control is not in bound mode, the the field specified by DataFieldList must be
included as a column in the displayed grid.
To support DataFieldToDisplay in unbound mode, there is a corresponding setting for the
ReadType property of the ssRowBuffer object. By setting ReadType to 3, you can
optimize the retrieval of data from an unbound source.
Note A DataDropDown with a value specified for DataFieldToDisplay can only service a
single column in the DataGrid to which it is attached. If you have a DataDropDown that
services multiple columns in a DataGrid, you will not be able to use DataFieldToDisplay.
To use DataFieldToDisplay, you must have only one DataDropDown per column.

DataFieldToDisplay Property Applies To
SSDBCombo
SSDBDropDown

DataFieldToDisplay Property See Also
DataField property
DataFieldList property
ReadType property

DataMode Property
Applies To
Description

Sets/Returns the mode used by control for data access.

Syntax
object . DataMode[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the data access mode used, as described
in Settings.

Settings
Setting Description

0 (Default) Bound mode
1 Unbound mode
2 AddItem mode

There are constants available for the settings of this property.

Remarks
Bound mode indicates that control will receive information from a database.
Unbound mode indicates that control will receive the data from another source, such as an
array or unstructured source.
AddItem mode indicates that control will receive data from the programmer.

DataMode Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

DataOptionSet Collections
Buttons

 DataOptionSet Control Filenames ObjectType
Properties Events Methods Collections Objects

The DataOptionSet custom control allows you to use 3D options buttons that can be bound
to a database field.    Using the DataOptionSet control, you can easily incorporate option
buttons for use in your database application.    Instead of entering data which can lead to
typographical errors, users may simply click on an option button to select a pre-defined
value for a field.    For example, using one DataOptionSet, you could have four option
buttons to represent various credit-card payment methods.
If the value of the active field equals the value set for the control, the option button will be
automatically clicked.    If another DataOptionSet button matches a value in the field or
there is no match, the button will automatically be clicked off.
One control can contain multiple option buttons, which can be added (up to 100 total) or
deleted, as specified by you at either design or runtime.    Appearance of the buttons are
user-controllable through the use of layout properties.    The DataOptionSet is zero based,
meaning that numbering of buttons starts at zero.
The DataOptionSet makes use of objects and collections.

Keyboard Interface
Adding the DataOptionSet
Creating Buttons at Design Time
Creating Buttons at Runtime
Binding to a Data Control Across Forms

DataOptionSet Events
Click
DblClick
DragDrop
DragOver
GotFocus
KeyDown
KeyPress
KeyUp
LostFocus
MouseDown
MouseMove
MouseUp

DataOptionSet Features

The DataOptionSet control allows the binding of data fields to option buttons for
representation of field values.    For example, if you were writing a point-of-sale system,
you could have four option buttons, each representing various credit cards ("Visa",
"MasterCard", "American Express", and "Discover").    Clicking on the appropriate option
button automatically changes the value in the database and allows you to store the type of
payment that was used.   

The following is a list of the features for this control:

Multiline captions
One control creates unlimited option buttons that are bound to the same data field
Saves Windows resources
Automatic and manual row/column positioning
Each individual button can have a caption with optional picture
Custom color options
3D capability

DataOptionSet Methods
ButtonFromCaption
ButtonFromPos
Drag
Refresh
WhereIs

DataOptionSet Objects
Button

DataOptionSet Properties
(About)
(Custom)
Alignment
BackColor
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow
ButtonEnabled
ButtonVisible
Caption
ColOffset
Cols
ColWidth
DataField
DataSource
DragIcon
DragMode
Enabled
Font
Font3D
ForeColor
Height
HeightGap
HelpContextID
hWnd
Index
IndexSelected
MaintainBtnHeight
MinColWidth
MinHeight
MouseIcon
MousePointer
Name
NumberOfButtons
OptionValue
Picture
PictureAlignment
PictureMetaHeight

PictureMetaWidth
RowOffset
TabIndex
TabStop
Tag
Top
Visible
WhatsThisHelpID
Width
WidthGap
WordWrap

DataOptionSet: Exercise 1
This section guides you through the creation of a sample program using the DataOptionSet
control.    For a complete description of this control, refer to the DataOptionSet.
For this exercise, it is assumed that you have already launched your development
application (Visual Basic), and that the control has been added to your toolbox.    For more
information on how to do this, refer to Using Data Widgets.
In this exercise, you will create an application that makes use of the DataOptionSet control.
The database used will be the BIBLIO.MDB that ships with Visual Basic and is located in the
Visual Basic home directory. If you are using an environment other than Visual Basic, and
do not have the BIBLIO.MDB database, consult BIBLIO File Structure for details on the file
layout.

1. Place a standard data control on the form.
2. Set the DatabaseName property to BIBLIO.MDB and set the RecordSource property

to ‘Titles’.
3. Add three standard labels, three standard text boxes and a standard frame as shown

below.    Set the DataSource property to ‘Data1’ for all three text boxes.    Set the
DataField for the first text box to ‘Title’, set the second one to ‘Subject’, and the third
to ‘ISBN’.

4. Add a DataOptionSet control to the form, within the frame captioned ‘Year
Published’.

5. For the SSDBOptSet control, set the DataSource property to Data1 and the
DataField property to ‘Year Published’. This binds the control to the ‘Year Published’ field of
the database specified in Data1.
6. Also for the SSDBOptSet control, set the NumberOfButtons property to 10 and the
Cols property to 2.    This creates ten option set buttons on the form, divided into two
columns.

7. Set the Caption property to "1986". This changes the caption for the first button to
1986.

8. Set the IndexSelected property to 1. This changes the selected button from the first
(0) to the second (1).    The DataOptionSet is zero-based.    When you first create a
DataOptionSet, the first button is automatically selected.

9. Repeat Steps 7 and 8 until you have renamed all 10 buttons to look like:

10. For each button, set the OptionValue property to match its caption.    Remember, you
must first set the IndexSelected property to specify the button you want to work with.
The OptionValue property compares against the value in the database.

11. Run your application.

Try moving through some of the records using the data control.    Notice how the option
buttons change as you move.    You’ll notice that some records cause the DataOptionSet to
not select any button, this is because the date does not match any of the option values
specified.    Remember, you didn’t need to write a single line of code!    However, it is
possible to accomplish what we just did through code.    The following procedure can be
used in place of Steps 6 through 10:

Private Sub Form_Load()

Dim iC as Integer
Dim iYear as Integer

SSDBOptSet1.NumberOfButtons = 10
SSDBOptSet1.Cols = 2

For iC = 0 to 9

iYear = 1986 + iC
SSDBOptSet1.Buttons(iC).Caption = Str(iYear)
SSDBOptSet1.Buttons(iC).OptionValue = iYear

Next iC

End Sub

You can begin to see how easy it is to work with DataOptionSet buttons through code.

DataSourceList Property
See Also Applies To
Description

Sets a value that specifies the Data control through which the list portion of the
SSDBCombo control is bound to a database.    Not available at run time.

Remarks
To bind the list portion of an SSDBCombo control to a field in a database at run time, you
must specify the name of a Data control in the DataSourceList property at design time
using the Properties window.   
The DataSourceList property of the SSDBCombo control specifies a valid Data control
name, and the DataFieldList property specifies a valid field name in the Recordset object
created by the Data control.
To complete the connection with a field in the Recordset managed by the Data control, you
must also provide the name of a Field object in the DataFieldList property.    Unlike the
DataFieldList    property, the DataSourceList property setting isn't available at run time.

DataSourceList Property Applies To
SSDBCombo

DataSourceList Property See Also
DataFieldList
DataMode
DataSource

DataType Property
Applies To
Description

Returns the column's underlying data type.

Syntax
object . DataType[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the underlying data type, as described in
Settings.

Settings
Value Description

2 Integer
3 Long
4 Single
5 Double
6 Currency
7 Date
8 (Default) Text
11 Boolean
17 Byte

There are constants available for the settings of this property.

Remarks
This property can be set only if working in unbound mode.

The values for this property correspond to the the standard Visual Basic data type
constants (vbInteger, vbLong, vbSingle, vbDouble, vbCurrency, vbDate, vbString,
vbBoolean and vbByte)

DataType Property Applies To
Column object

DatabaseAction Property
Applies To
Description

Determines the action taken when the Data Command button is pressed.

Syntax
object . DatabaseAction[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the action taken when the Data
Command control is activated, as described in Settings.

Settings
Setting Description

0 Go to the first record in the table.
1 Go to the previous page of the table.    The number of rows in a page is

determined by the PageValue property.
2 Go to the previous record in the table.
3 Go to the next record in the table.
4 Go to the next page of the table. The number of rows in a page is

determined by the PageValue property.
5 Go to the last record in the table.
6 Save a bookmark.    Once saved, it is stored in the SavedBookmark

property.
7 Goto a saved bookmark.
8 Refresh the record set.

There are constants available for the settings of this property.

Remarks
In order for the GotoBookmark action to work, the bookmark must be set in the
SavedBookmark property.
Create two SSDBCommand buttons; one captioned "Save Bookmark"    with
DatabaseAction = 6, and the other captioned "Goto Bookmark" with DatabaseAction =
7.    In the AfterClick event for the Save Bookmark button, add the following code:

SSDBCommand2.SavedBookmark = SSDBCommand1.SavedBookmark

Note: This code asumes that the Save Bookmark button is SSDBCommand1 and the Goto
Bookmark button is SSDBCommand2.

After scrolling through the database, you can click the "Goto Bookmark" button to return to
the record whose bookmark you saved.

DatabaseAction Property Applies To
SSDBCommand

DefColWidth Property
Applies To
Description

Sets or returns the default width used to initially display the column.

Syntax
object . DefColWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the width used to initially display the
column.

DefColWidth Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

DelayInitial Property
See Also Applies To
Description

Determines the amount of time (in milliseconds) before a repeatable button repeats the
second click when the mouse button is held down.

Syntax
object . DelayInitial[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the amount of time (in milliseconds) to
wait.

Remarks
This is the amount of time between the mouse click and the moment repeating begins.
Valid range for this property is 1 - 5000 with a default value of 500.

DelayInitial Property Applies To
SSDBCommand
SSDBData

DelayInitial Property See Also
DelaySubsequent

DelaySubsequent Property
See Also Applies To
Description

Determines the amount of time (in milliseconds) to wait until the third and subsequent
clicks are repeated when the mouse button is held down on a repeatable button.

Syntax
object . DelaySubsequent[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the amount of time (in milliseconds) to
wait.

Remarks
Valid range for this property is 1 - 5000 with a default value of 100.

DelaySubsequent Property Applies To
SSDBCommand
SSDBData

DelaySubsequent Property See Also
DelayInitial

DeleteSelected Method
Applies To
Description

Deletes all selected rows.

Syntax
object . DeleteSelected

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
This method will turn off the draw functions, delete the rows, and then turn the draw back
on so that there is no flicker.

DeleteSelected Method Applies To
SSDBGrid

Displaying column totals from a DataGrid
There are two approaches to obtaining totals from data in a DataGrid. The simpler method is to step through each
row in the grid and add the value of the cells in the column to be totaled. While easy to implement, this approach
may run into serious performance problems on large data sets.
The second approach is to construct a total query that pulls the totals directly from the recordsource. The
DataGrid is not involved in this procedure. This approach uses the underlying data engine, and may produce
better performance. However, if the values in the data grid are changed, both the recordsource for the data and
the recordsource for the totals must both be refreshed, and the controls updated, for the new data to be reflected
in the totals.

Which would you like to do?
Display totals by adding the values from the DataGrid
Display totals by performing a total query

Displaying one value and storing another
You can use a DataDropDown or a DataCombo to display the value of one field to the user, while storing the value
from a different field "behind the scenes."    The most common use of this technique is to present the user with a
list of descriptive names to choose from, while storing only coded values for the list items in the database.
The following example uses the DBCombo to illustrate this process, but will work equally well with the
DBDropDown

1. Place two Data controls on a form. Set the RecordSource of the first (Data1) to the table that contains the list
of codes and their descriptions. Set the RecordSource of the second (Data2) to the table that will store the
codes.

2. Place an SSDBCombo on the form. Change the DataSource property to 'Data2." This will link the edit portion
of the control to the table that will store the coded values.

3. Set the DataSourceList property of the control to "Data1." This will link the list portion of the control to the
table that supplies the codes and their descriptions.

4. Set the DataField property of the combo to the field in Data2 that will store the code.

5. Set the DataFieldList property of the combo to the field in Data1 that contains the coded values.

6. Set the DataFieldToDisplay property of the combo to the field in Data1 that contains the descriptions of the
codes.

You may also want to format the drop-down portion of the combo using the Grid Editor.

When you drop down the combo and select a value from the displayed grid, the edit portion of the combo will
display the value stored in the field indicated by DataFieldToDisplay. However, the value actually stored in the
database will be the value taken from the field indicated by DataFieldList.

Distributing Your Application
Once you have created a program using Data Widgets controls, you must distribute the
OCX files with your application. There are no separate design time and runtime versions of
the controls, therefore, the same OCX files you develop with can be shipped with your
application.

Filename Description

SSDATA16.OCX 16-Bit OCX containing SSDBData, SSDBOptSet, SSDBCommand
SSDATA32.OCX 32-Bit OCX containing SSDBData, SSDBOptSet, SSDBCommand

SSDATB16.OCX 16-Bit OCX containing SSDBGrid, SSDBDropDown, SSDBCombo
SSDATB32.OCX 32-Bit OCX containing SSDBGrid, SSDBDropDown, SSDBCombo

Support files needed for distribution - 16 Bit
Support files needed for distribution - 32 Bit

DividerStyle Property
See Also Applies To
Description

Sets or returns the style of row divider used.

Syntax
object . DividerStyle[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the divider style, as described in Settings.

Settings Setting Description

0 Black line
1 (Default) Dark gray line
2 Raised
3 Inset
4 ForeColor

There are constants available for the settings of this property.

DividerStyle Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

DividerStyle Property See Also
DividerType

DividerType Property
See Also Applies To
Description

Sets or returns the type of row divider used.

Syntax
object . DividerType[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the divider type, as described in Settings.

Settings Setting Description

0 None
1 Vertical
2 Horizontal
3 (Default) Both

There are constants available for the settings of this property.

DividerType Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

DividerType Property See Also
DividerStyle

DoClick Method
Applies To
Description

Fires the Click event.

Syntax
object . DoClick

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
The DoClick method simulates the user clicking the mouse.

DoClick Method Applies To
SSDBCombo
SSDBCommand
SSDBDropDown
SSDBGrid

DropDown Event
See Also Applies To
Description

Occurs when a dropdown drops down.

Syntax
Sub control_DropDown ()

DropDown Event Applies To
SSDBCombo
SSDBDropDown

DropDown Event See Also
CloseUp event

DropDownHwnd Property
Applies To Example
Description

Specifies the handle of the Data DropDown (Hwnd property) to be linked with the Data
Grid.

Syntax
object . DropDownHwnd[= hwnd]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

hwnd A variant expression specifying the handle of the DataDropDown to be
linked.

Remarks
Set this property to the Hwnd property of a Data DropDown to enable a link between the
grid and Data DropDown.    The Data Grid will automatically display the dropdown button in
a cell when it is active.
This property is only available at runtime.
The DropDownHwnd property can only be used with the Data DropDown control.    It will
not work with other controls.

DropDownHwnd Property Applies To
Column object

DroppedDown Property
See Also Applies To
Description

For SSDBData, Determines whether the ShowBookmarkDropdown event will be fired.
For SSDBCombo and SSDBDropDown, used in the DropDown event to cancel a dropdown
from occurring.
For SSDBCombo and SSDBGrid, causes the combo box to drop or close.

Syntax
object . DroppedDown[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the dropdown state, as described in
Settings.

Settings (SSDBData)
Setting Description

True ShowBookmarkDropdown event is fired.
False CloseBookmarkDropdown event is fired.

Settings (SSDBCombo/SSDBDropDown)
Setting Description

True When used in the DropDown event, cancels the dropdown.
False No effect.

Settings (SSDBCombo/SSDBGrid)
Setting Description

True Causes the combo box to drop.
False Causes the combo box to close.

Remarks
If you want to process the bookmark dropdown, set this value to False when you receive
the ShowBookmarkDropdown event, otherwise, the control will display a bookmark
dropdown list.

DroppedDown Property Applies To
SSDBCombo
SSDBData
SSDBDropDown
SSDBGrid

DroppedDown Property See Also
CloseBookmarkDropdown event
ShowBookmarkDropdown event

 Enhanced Data Control Filenames ObjectType
Properties Events Methods Collections Objects

The Enhanced Data Control (EDC) is an enhanced version of the Data Control that ships
with Visual Basic.    The EDC is used in conjunction with the data control rather than taking
its place.    The EDC can be oriented either horizontally or vertically, and can be sized to
your liking at design time.
Some of the enhancements that the EDC provides include bookmark storage allowing you
to return to a particular row at a later time, next page and previous page buttons, the
ability to selectively enable/disable features of the EDC, and a speed button feature
allowing the user to hold down a button to repeat its function.

Adding the Enhanced Data Control
Anatomy of the Enhanced Data Control
Finding Information with the Enhanced Data Control
What are Bookmarks?
Speed Buttons
Binding to a Data Control Across Forms

Enhanced Data Control Collections
Bookmarks

Enhanced Data Control Events
AfterClick
Click
CloseBookmarkDropdown
CloseFindDialog
DblClick
DragDrop
DragOver
Error
FindResult
MouseDown
MouseMove
MouseUp
ShowBookmarkDropdown
ShowFindDialog

Enhanced Data Control Methods
Drag
Find
WhereIs

Enhanced Data Control Objects
Bookmark

Enhanced Data Control Properties
(About)
(Custom)
Align
Alignment
BackColor
BalloonHelp
BevelColorFace
BevelColorFrame
BevelColorHighlight
BevelColorScheme
BevelColorShadow
BevelInner
BevelOuter
BevelWidth
BookmarkDisplay
BookmarksToKeep
BorderWidth
ButtonSize
Caption
CaptionAlignment
ColorMask
ColorMaskEnabled
DataField
DataSource
DelayInitial
DelaySubsequent
DragIcon
DragMode
DroppedDown
Enabled
FieldValue
FindBufferSize
FindDialog
FindFieldExclude
FindFieldInclude
Font
Font3D
ForeColor
Height
Index

Left
MouseIcon
MousePointer
Name
Negotiate
Orientation
PageValue
PictureButtons
PictureCaption
PictureCaptionAlignment
PictureCaptionMetaHeight
PictureCaptionMetaWidth
RotateText
RoundedCorners
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton
TabIndex
Tag
Top
Visible
WhatsThisHelpID
Width
WordWrap

Enhanced Data Control: Exercise 1
This section guides you through the creation of a sample program using the Enhanced
Data control.    For a complete description of this control, refer to the Enhanced Data
Control section.
For these exercises, it is assumed that you have already launched your development
application (Visual Basic), and that the control has been added to your toolbox.    For more
information on how to do this, refer to Using Data Widgets.
You will create an application that makes use of the Enhanced Data control. The database
used will be the BIBLIO.MDB that ships with Visual Basic and is located in the Visual Basic
home directory. If you are using an environment other than Visual Basic, and do not have
the BIBLIO.MDB database, consult BIBLIO File Structure for details on the file layout.

1. Place a standard data control on the form.
2. Set the DatabaseName property to ‘BIBLIO.MDB’ and set the RecordSource property

to ‘All Titles’.    Set the Visible property to ‘False’.
This example will demonstrate how the Enhanced Data control supplements the
standard data control by adding new navigational features.    The standard Data Control
is required for access to the database, but is not required for navigation.

3. Place a SSDBGrid control directly on the form by double clicking on the tool in the
Visual Basic toolbox.   
Resize the grid to a size that is suitable for your form.

4. Set the grid’s DataSource property to ‘Data1’
5. Place an Enhanced Data Control (EDC) directly on the form by double clicking on the

 tool in the Visual Basic toolbox.    Resize the EDC so that it fits the width of the form.

6. Set the EDC’s DataSource property to ‘Data1’ and the DataField property to ‘Author’.

This binds the EDC to the database.    Remember that the EDC relies on the standard
data control for access to the database.    However, you can make the standard data
control invisible so that your users do not see it at runtime.

7. Set the grid’s AllowAddNew and AllowDelete properties to True. This allows you to
add and delete records within the database by clicking the corresponding buttons on
the EDC.

8. Run the application.

Try scrolling through the application. Use the following navigational buttons to help you:

First Record
Jumps to the first record in the database.

Previous Page
Jumps to the previous page in the database.    A page
is determined by the setting of PageValue.

Previous Record
Jumps to the previous record in the database.   

Next Record
Jumps to the next record in the database.   

Next Page
Jumps to the next page in the database.    A page is
determined by the setting of PageValue.   

Last Record
Jumps to the last record in the database.   

Try adding and deleting records (you might want to make a backup copy of the database
before you do this).   
Use the following buttons to help you:

Add Record
Adds a new record to the end of the database.   

Delete Record
Deletes the selected record from the database.   

Update Record
Updates the selected record in the database.

Don’t delete this project, we’ll need it in the next exercise.

Enhanced Data Control: Exercise 2
One of the many useful features of the Enhanced Data Control is its searching capabilities. 
This exercise demonstrates some of the capabilities of the EDC’s search routine.    The
project used in the last exercise should be running at this point.
1. To activate the Find dialog, click the button. The Find dialog appears:

2. In the Find box, type ‘John Wiley & Sons Inc.’.
3. Select ‘Equal (=)’ for the type of match.
4. Select ‘Company Name’ for the search column.
5. Click Find Next. The first occurrence of this text will be found.
6. To find the next occurrence of this text, click the Find Next button.

7. To find the last occurrence of this text, click the Find Previous button.

The Find dialog can be a very powerful tool for locating information in large databases.    It
also has advanced searching capabilities that include Soundex searching and Partial String
searching.    To try Soundex searching, replace the text in Step 2 with "Jon".    To try Partial
String searching, replace the text in Step 2 with "John"

Note The user can press the ESC key during an extensive search to exit.

Enhanced Data Control: Exercise 3
Bookmarks are a powerful tool that allow you to "flag" a record in a database and later go
back to it at the click of the mouse.    This exercise demonstrates how you can use
bookmarks to better manage your database. The project used in the last exercise should
be running at this point.
Before we start, it is important to understand that using bookmarks is a two-step process.   
The first step is to Add the bookmark, the second step is to Goto the bookmark.    You can
only go to a bookmark that you have added.

1. Scroll though the database and select the first record you want to add a bookmark for.
2. Click the Add Bookmark button. You will notice that two buttons (the Delete

Bookmark and Goto Bookmark buttons) just became un-grayed and available for
selection.

3. Scroll though the database and select another record you want to add a bookmark
for.
4. Click the Add Bookmark button.
5. Scroll through the database some more, and click the Goto Bookmark button.

6. Select the bookmark you want to go to from the dropdown. Notice how the bookmark is
represented by the field you are bound to.    This is because bookmarks are binary and
can not be displayed, so a text string must be associated with it.    If you use the Add
method to add bookmarks in code, you need to include the second parameter which is
the display string.

7. Click the Clear All Bookmarks button. All bookmarks that you created have just
been deleted.

Now you can begin to see the power of the Enhanced Data Control.    The three exercises
we performed are a sampling of what you can do.    The EDC also allows you to customize
its button interface including the bitmap itself as well as selectively toggle buttons on or
off.

Enhanced Data Control Features

The Enhanced Data Control behaves as a front end to the Visual Basic data control adding
new functionality such as bookmark navigation and page movement.   

The following is a list of the features for this control:

Re-position recordset by selecting from a dropdown list of up to 100 previously marked
rows
Buttons that perform database actions such as add, delete, update, plus bi-directional
nth record paging
Store and sort multiple bookmarks in the bookmark dropdown list
Conditional and Soundex searching
Optional user-defined pictures for each button
Auto-repeat movement keys (forward, backward) plus bidirectional nth record paging
3D Font capability
Caption text rotation
Display/Hide any button
Custom events give full programmatic control over button clicks and navigation.

Error Event
See Also Applies To
Description

Occurs when there is an error updating the database with data from the control.

Syntax
Sub control_Error (ByVal DataError As Integer, Response    As Integer)

The event parameters are:
Parameter Description

DataError The error number.
Response A number corresponding to the response you want to take, as described in

Settings.

The settings for Response are:
Value Description

0 Continue.
1 (Default) Display the error message.

Remarks
The Error event is fired whenever an error occurs while updating the database with data
from the control.
You usually provide error-handling functionality for run-time errors in your code.    However,
run-time errors can occur when none of your code is running, as when:
· The Data control automatically opens a database and loads a Recordset object after

the Form_Load event.
· A control performs an operation such as the MoveNext method, the AddNew method,

or the Delete method.
For more information on how to handle data-related errors, see "How the Data Grid
handles data validation and error checking."

Error Event Applies To
SSDBGrid

Error Event See Also
AfterUpdate event
UpdateError event
How the Data Grid handles data validation and error checking

Error Messages
The following is a list of trappable errors that could occur at runtime when using the Data
Widgets custom controls.

Error Number Constant / Error Text / Description

30402 ssItemNotInList
"Item is not in list"
Validation determined that the current edit text is
not in the associated dropdown list.

30403 ssItemNotInList
"Item is not in list"
Validation determined that the current edit text is
not in the associated dropdown list.

30422 ssItemNotInList
"Item is not in list"
Validation determined that the current edit text is
not in the associated dropdown list.

30423 ssNullEdit
"A null value is not allowed for this field"
Validation determined that the current edit text is
null, but nulls are not allowed.

30424 ssBadTypeEdit
"The value is not of the correct type for this
field"
Validation determined that the data type of the
value currently in edit text does not match the
data type of the associated list.

30425 ssBitMap
"PictureDropDown must be a bitmap"
You tried setting the PictureDropDown property to
something other than a bitmap

30426 ssDropItemsRange
"Value must be from 1 to 100"
You tried setting the MaxDropDownItems or
MinDropDownItems outside the allowed range.

30427 ssMaxLessMinDropItem
"MaxDropDownItems cannot be less than
MinDropDownItems"
You tried setting MaxDropDownItems to a number
smaller than the MinDropDownItems value.

30428 ssdatbMinMoreMaxDropItem
"MinDropDownItems cannot be greater than
MaxDropDownItems"

You tried setting the MinDropDownItems to a
value greater than the MaxDropDownItems.

30430 ssdatbValue0to10
"Value must be from 0 to 10"
You tried setting a property outside the allowed
range.

30433 ssdatbBadHost
"Host environment does not support
formatting"
You tried setting the BevelWidth property outside
the allowed range.

30434 ssdatbBadParam
"Invalid parameter"
You tried passing an invalid parameter to a
method.

30435 ssdatbLevelCount
"LevelCount must be from 1 to 10"
You tried setting a property outside the allowed
range.

30436 ssdatbFieldDelim
"FieldDelimiter can be any one character or
the word 'None'"
You tried setting FieldDelimeter to something
other than that allowed.

30437 ssdatbFieldSep
"FieldSeparator can be any one character,
the word 'Tab', or 'Space'"
You tried setting FieldSeperator to something
other than that allowed.

30438 ssdatbLevelnoGroup
"The level count cannot be greater than
zero if there are no groups"
You tried setting the property to something other
than that allowed.

30439 ssdatbReadOnlyRuntime
"Property is read-only at runtime"
Property is read-only at run time. Its value cannot
be set.

30440 ssdatbInvalidWindowHandle
"Invalid window handle"
You tried to set the DropDownhWnd property of a
column in the DataGrid to something other than
the window handle of a Data DropDown..

30441 ssdatbWrongComboStyle
"The combo style is of the wrong type (ie:

simple, dropdown, droplist)"
You attempted to perform a combo box operation
(add item, delete item, etc.) on a DataGrid
column that was not set to a combo style.

30443 ssdatbDataConversion
"Data type conversion error"
A field type was specified for a Grid column in
Unbound or AddItem mode, and data of an
incorrect type was entered in that column.

30447 ssdatbNameMustBeUnique
"Column name must be unique"
The Name property of each column in a grid must
be a unique value.

30448 ssdatbCannotSetColsWithLay
"Cannot set Cols property when a layout is
defined"
Once you have used the Grid Editor to design a
layout for the columns in a DataGrid, you cannot
change the number of columns. Remove any
layouts before attempting to change the number
of columns in the grid.

32033 ssEDCBevelInner
"BevelInner must be from 0 to 2"
You tried setting the property to something
outside the allowed range.

32034 ssEDCBevelOuter
"BevelOuter must be from 0 to 2"
You tried setting the property to something
outside the allowed range.

32035 ssEDCBevelWidth
"BevelWidth must be from 0 to 10"
You tried setting the property to something
outside the allowed range.

32036 ssEDCBorderStyle
"BorderStyle must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32037 ssEDCBorderWidth
"BorderWidth must be from 0 to 10"
You tried setting the property to something
outside the allowed range.

32038 ssEDCRoundedCorners
"RoundedCorners must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32039 ssEDCBevelColorScheme

"BevelColorScheme must be from 0 to 2"
You tried setting the property to something
outside the allowed range.

32040 ssButtonSize
"ButtonSize must be from 5 to 100"
You tried setting the property to something
outside the allowed range.

32041 ssPictureButtons
"PictureButtons must be of type Bitmap"
You tried specifying a type other than Bitmap for
PictureButtons.

32042 ssShowBookmarkButtons
"ShowBookmarkButtons must be from 0 to
7"
You tried setting the property to something
outside the allowed range.

32043 ssShowFirstLastButtons
"ShowFirstLastButtons must be either 0 or
1"
You tried setting the property to something
outside the allowed range.

32044 ssShowPageButtons
"ShowPageButtons must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32045 ssShowPrevNextButtons
"ShowPrevNextButtons must be either 0 or
1"
You tried setting the property to something
outside the allowed range.

32046 ssShowAddButton
"ShowAddButton must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32047 ssShowCancelButton
"ShowCancelButton must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32048 ssShowDeleteButton
"ShowDeleteButton must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32049 ssShowUpdateButton
"ShowUpdateButton must be either 0 or 1"

You tried setting the property to something
outside the allowed range.

32050 ssShowFindButtons
"ShowFindButtons must be from 0 to 3"
You tried setting the property to something
outside the allowed range.

32051 ssEDCAlignment
"Alignment must be from 0 to 8"
You tried setting the property to something
outside the allowed range.

32052 ssBookmarkDisplay
"BookmarkDisplay must be from 0 to 2"
You tried setting the property to something
outside the allowed range.

32053 ssBookmarksToKeep
"BookmarksToKeep must be from 1 to 100"
You tried setting the property to something
outside the allowed range.

32054 ssEDCCaptionAlignment
"CaptionAlignment must be from 0 to 2"
You tried setting the property to something
outside the allowed range.

32055 ssColorMaskEnabled
"ColorMastEnabled must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32056 ssPageValue
"PageValue must be from 2 to 1000"
You tried setting the property to something
outside the allowed range.

32057 ssPictureCaptionAlignment
"PictureCaptionAlignment must be from 0
to 14"
You tried setting the property to something
outside the allowed range.

32058 ssPictureCaptionMetaHeight
"PictureCaptionMetaHeight must be a
positive integer"
You tried setting the property to something
outside the allowed range.

32059 ssPictureCaptionMetaWidth
"PictureCaptionMetaWidth must be a
positive integer"
You tried setting the property to something
outside the allowed range.

32060 ssFindBufferSize
"FindBufferSize must be from 1 to 1000"
You tried setting the property to something
outside the allowed range.

32061 ssOrientation
"Orientation must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32062 ssEDCBalloonHelp
"BalloonHelp must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32065 ssNoBookmarksLeft
"There are no more bookmarks to remove"
You tried removing a bookmark when there are
none.

32066 ssCantMove
"Illegal Move"
You tried moving to a location where there is no
record.

32067 ssNoCurrentRecord
"No Current Record"
There is no current record in the database to
which the control is bound. This may be caused
by the database being at the beginning of the file
before the first record, at the end of the file after
the last record, or on a deleted record.

32068 ssNoFindFieldsLeft
"No fields remaining for find"
Your FindFieldExclude/FindFieldInclude properties
have reduced the field count to zero. No fields
are left to search.

32072 ssDataChanged
"Delete failed. Data in the underlying row
has changed since the current row was
fetched"
You attempted to delete a record using the
Enhanced Data Control, but the record you are
attempting to delete has changed in the
underlying recordset.

32073 ssUpdateInProgress
"Delete failed. Update in progress"
You attempted to delete a record using the
Enhanced Data Control while the record was
being updated.

32074 ssDeleteFailed

"Delete failed with error code <error code
>"
You attempted to delete a record using the
Enhanced Data Control, and a non-specific data
error occurred.

32080 ssRemoveLastButton
"Cannot remove last button"
You’ve attempted to remove the last button.

32081 ssOptionNotUnique
"Option value must be unique"
You’ve tried setting the option value to
something that is already an option value for
another button.

32082 ssAlignment
"Alignment must be either 0 or 1"
You tried setting the property to something
outside the allowed range.

32083 ssPictureAlignment
"PictureAlignment must be from 0 to 3"
You tried setting the property to something
outside the allowed range.

32084 ssBevelColorScheme
"BevelColorScheme must be from 0 to 2"
You tried setting the property to something
outside the allowed range.

32085 ssCols
"Cols must be from 1 to 10, but not greater
than the total number of buttons."
You tried setting the property to something
outside the allowed range.

32086 ssColWidth
"ColWidth must be a positive integer"
You tried setting the property to something
outside the allowed range.

32087 ssFont3D
"Font3D must be from 0 to 4"
You tried setting the property to something
outside the allowed range.

32088 ssHeightGap
"HeightGap must be from 1 to 1000"
You tried setting the property to something
outside the allowed range.

32089 ssIndexSelected
"IndexSelected must be from 0 to the total
number of buttons - 1"

You tried setting the property to something
outside the allowed range.

32090 ssMinColWidth
"MinColWidth must be a positive integer
equal to or greater than 30"
You tried setting the property to something
outside the allowed range.

32091 ssMinheight
"MinHeight must be a positive integer equal
to or greater than 15"
You tried setting the property to something
outside the allowed range.

32092 ssNumberOfButtons
"NumberOfButtons must be from 0 to 99"
You tried setting the property to something
outside the allowed range.

32093 ssPictureMetaHeight
"PictureMetaHeight must be a positive
integer"
You tried setting the property to something
outside the allowed range.

32094 ssPictureMetaWidth
"PictureMetaWidth must be a positive
integer"
You tried setting the property to something
outside the allowed range.

32095 ssWidthGap
"WidthGap must be a positive integer"
You tried setting the property to something
outside the allowed range.

32096 ssDCBBevelWidth
"BevelWidth must be from 0 to 10"
You tried setting the property to something
outside the allowed range.

32097 ssDCBDelayValue
"Delay Value must be from 1 to 5000"
You tried setting the property to something
outside the allowed range.

32098 ssDCBPageValue
"PageValue must be from 2 to 1000"
You tried setting the property to something
outside the allowed range.

32099 ssDCBBorderStyle
"BorderStyle must be either 0 or 1"
You tried setting the property to something

outside the allowed range.
32100 ssDCBCaptionAlignment

"CaptionAlignment must be from 0 to 8"
You tried setting the property to something
outside the allowed range.

32101 ssDCBPictureAlignment
"PictureAlignment must be from 0 to 14"
You tried setting the property to something
outside the allowed range.

32102 ssDCBDatabaseAction
"DatabaseAction must be from 0 to 8"
You tried setting the property to something
outside the allowed range.

32104 ssDCBCantMove
"Illegal Move"
You tried moving to a location where there is no
record.

Even Row (Row 0)

Event Summary

A
AfterClick
AfterColUpdate
AfterDelete
AfterInsert
AfterPosChanged
AfterUpdate

B
BeforeColUpdate
BeforeDelete
BeforeInsert
BeforeRowColChange
BeforeUpdate
BtnClick

C
Change
Click

CloseBookmarkDropDown
CloseFindDialog
CloseUp
ColMove
ColResize
ColSwap
ComboCloseUp
ComboDropDown

D
DropDown

E
Error

F
FindResult

G
GrpHeadClick
GrpMove
GrpResize
GrpSwap

H
HeadClick

I
InitColumnProps

P
PositionList

R
RowColChange
RowLoaded
RowResize

S
Scroll
ScrollAfter

SelChange
ShowBookmarkDropDown
ShowFindDialog
SplitterMove

T
TextError

U
UnboundAddData
UnboundDeleteRow
UnboundPositionData
UnboundReadData
UnboundWriteData
UpdateError

V
ValidateList

Extra Samples
The following samples illustrate how to implement commonly used features of Data
Widgets 2.0. The samples are divided into groups by host environment.

Visual Basic 4.0
Sample projects that illustrate more ways to use Data Widgets 2.0 in
Visual Basic 4.0.

Visual C++ 4.0
Information and samples showing how to use Data Widgets in Visual
C++ using "wrapper" classes and the Microsoft Remote Data Control
(MSRDC.)

FieldDelimiter Property
See Also Applies To Example
Description

Sets or returns the field delimiter used for an AddItem grid.

Syntax
object . FieldDelimiter[=string]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

String A string expression that evaluates to the field delimiter used in an AddItem
grid.

Remarks
The field delimiter is used to notify SSDBGrid of the start and end of a field.    It is needed if
your field contains the FieldSeparator character.    At design time, a list of pre-defined
delimiters is supplied, but you can enter your own.    The default field delimiter is "none".

FieldDelimiter Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

FieldDelimiter Property See Also
FieldSeparator

FieldLen Property
Applies To
Description

Sets or returns the maximum column field length for editing.

Syntax
object . FieldLen[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the maximum column field length.

Remarks
This property will determine the maximum amount of characters the user can type when
editing a cell.

FieldLen Property Applies To
Column object

FieldSeparator Property
See Also Applies To
Description

Sets or returns the field separator used for an AddItem grid.

Syntax
object . FieldSeparator[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the field separator used in an
AddItem grid.

Remarks
The field separator is used to notify SSDBGrid of the separation of two fields.    At design
time, a list of pre-defined separator is supplied, but you can enter your own.    The default
field separator is "tab".

FieldSeparator Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

FieldSeparator Property See Also
FieldDelimiter

FieldValue Property
Applies To Example
Description

Returns the field value for the active record.

Syntax
object . FieldValue[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the field value.

Remarks
FieldValue contains the value of the field specified in DataField for the active record.

FieldValue Property Applies To
SSDBData

Find Method
See Also Applies To Example
Description

Finds a specified string in the database.

Syntax
object . Find(FindString    as Variant, Criteria      As Variant, Direction     As Variant,
ColToSearch    As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

FindString Specifies the string to search for..
Criteria Determines the criteria to use for the search, as described in Settings.
Direction Determines the direction to search the database, as described in Settings.
ColToSearch The index of the database column to search.

Settings
The settings for Criteria    are:
Setting Description

1 Less Than
2 Less Than or Equal To
3 Equal To
4 Greater Than
5 Greater Than or Equal To
6 Partial Match

There are constants available for the settings of this parameter.

The settings for Direction    are:
Setting Description

1 Down (Next)
2 Up (Previous)

There are constants available for the settings of this parameter.

Find Method Applies To
SSDBData

Find Method See Also
CloseFindDialog event

FindBufferSize Property
See Also Applies To
Description

Sets or returns the number of records read into the buffer for find operations.

Syntax
object . FindBufferSize[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of records to be read into the
buffer for find operations.

Remarks
When you initiate a search for information, the Enhanced Data Control reads number
records into memory, and searches for the information.    If it does not find the information,
it reads in another number records, repeating this process until it either finds the data or
reaches the end.
Generally speaking, when searching a large database, it is best to keep number set to a
number that decreases the amount of disk accesses, such as 1000.

FindBufferSize Property Applies To
SSDBData

FindBufferSize Property See Also
FindDialog
ShowFindButtons

FindDialog Property
See Also Applies To
Description

Determines whether the Find dialog is displayed.

Syntax
object . FindDialog[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the Find dialog is displayed, as
described in Settings.

Settings Setting Description

True The Find dialog is displayed.
False Has no effect.

Remarks
Provides the ability to fire the ShowFindDialog and CloseFindDialog events.    By setting
this property to True, you will, in effect, activate ShowFindDialog.    When processing is
complete, you should set this to False to activate CloseFindDialog.    This is only
available at runtime.

FindDialog Property Applies To
SSDBData

FindDialog Property See Also
FindBufferSize
ShowFindButtons

FindFieldExclude Property
See Also Applies To
Description

Determines which fields will not be displayed in the Find dialog box.

Syntax
object . FindFieldExclude = fieldname    [;fieldname][;fieldname][...]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

fieldname A string expression that evaluates to the name of a field in the recordset
that is bound to the control.

Remarks
This property gives you the ability to specify which fields will not be available for the user
to select in the Find dialog box. By default, all searchable fields are available. By specifying
the name of one or more fields for this property, you can prevent interactive searches from
using those fields.
This property will accept the name of a single field or a list of field names delimited by
semicolons or commas. Field names will be parsed by the control, and any field that is
unavailable or spelled incorrectly will generate an error. If the property is passed multiple
field names and only some of them are incorrect, the correct ones will still be unavailable
in the Find dialog.
This property works in conjunction with the FindFieldInclude property to determine
which fields will be available for searching. The control will take the following steps to
determine which fields to include in the dialog:
1. If the FindFieldInclude property is blank, then all fields are included in the list of

possible search fields. If FindFieldInclude is not blank, then only those fields in the
FindFieldInclude list are included in the list of possible search fields.

2. If the FindFieldExclude property is blank, then no further field processing occurs. If
FindFieldExclude is not blank, then all the fields in the string are excluded from the
list of possible search fields. Therefore, fields passed to the FindFieldExclude
property will be unavailable for searching, even if they are specified in the
FindFieldInclude property.

FindFieldExclude Property Applies To
SSDBData

FindFieldInclude Property See Also
FindFieldInclude

FindFieldInclude Property
See Also Applies To
Description

Determines which fields will be displayed in the Find dialog box.

Syntax
object . FindFieldInclude = fieldname    [;fieldname][;fieldname][...]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

fieldname A string expression that evaluates to the name of a field in the recordset
that is bound to the control.

Remarks
This property gives you the ability to specify which fields will be available for the user to
select in the Find dialog box. By default, all searchable fields are available. By specifying
the name of one or more fields for this property, you can restrict interactive searches to
just those fields.
This property will accept the name of a single field or a list of field names delimited by
semicolons or commas. Field names will be parsed by the control, and any field that is
unavailable or spelled incorrectly will generate an error. If the property is passed multiple
field names and only some of them are incorrect, the correct ones will still appear in the
dialog.
This property works in conjunction with the FindFieldExclude property to determine
which fields will be available for searching. The control will take the following steps to
determine which fields to include in the dialog:
1. If the FindFieldInclude property is blank, then all fields are included in the list of

possible search fields. If FindFieldInclude is not blank, then only those fields in the
FindFieldInclude list are included in the list of possible search fields.

2. If the FindFieldExclude property is blank, then no further field processing occurs. If
FindFieldExclude is not blank, then all the fields in the string are excluded from the
list of possible search fields. Therefore, fields passed to the FindFieldExclude
property will be unavailable for searching, even if they are specified in the
FindFieldInclude property.

FindFieldInclude Property Applies To
SSDBData

FindFieldInclude Property See Also
FindFieldExclude

FindResult Event
Applies To
Description

Occurs after a search has been completed.

Syntax
Sub control_FindResult(vBookmark As Variant, RtnDispErrMsg As Integer)

The event parameters are:

Parameter Description

vBookmark A variant expression containing the bookmark associated with the row
which contains the text found.

RtnDispErrMsg An integer expression that indicates if an error message box should be
displayed.

Remarks
If there was no match, vBookmark will be empty.    The EDC will then display a messagebox
indicating that no match was found, unless it is overriden by setting RtnDispErrMsg to
False.

FindResult Event Applies To
SSDBData

Finding Information with the Enhanced Data Control
Finding information in a database field is a snap with the Enhanced Data Control.   
To activate the Find dialog, click the button.    You can use the

 and
 buttons to continue searching once you’ve found a match.

Find Specify the data to search for.    A list of recent
searches is available by clicking the button.

Directio
n

Specifies the direction in which to search.   
Selecting Down will search from the current point
to the end of the database.    Selecting Up will
search from the current point to the start of the
database.

Less
Than

Match only if the text entered in the Find dialog is
less than the value in the database.    Examples of
this are 1 < 2 and APPLE < BEAR

Less
Than or
Equal To

Match only if the text entered in the Find dialog is
less than or equal the value in the database.   
Examples of this are 2 <= 2 and APPLE <= BEAR

Equal To Match only if the text entered in the Find dialog
equals the value in the database.    Examples of
this are 5 = 5 and DOG = DOG

Greater
Than or
Equal

Match only if the text entered in the Find dialog
equals or exceeds the value in the database.   
Examples of this are 7 >= 2 and DOT >= DOS

Greater
Than

Match only if the text entered in the Find dialog
exceeds the value in the database.    Examples of
this are 10 > 9 and TREE > BARK.

Partial Match only if a portion of the string specified in the

Match Find dialog matches a portion in the database.    An
example of this is specifying "Eng" in the Find
dialog and returning "Engine" and "England".    This
works for strings only.

Soundex Match only if the string sounds like one in the
database.    An example of this is specifying "Skool"
and returning "School".    This works for strings
only.

Note: The user can press the ESC key during an extensive search to exit.

FirstRow Property
Applies To
Description

Sets or returns the bookmark for the first visible row.

Syntax
object . FirstRow[= variant]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

variant A variant expression containing the bookmark of the first visible row.

Remarks
This property is not available at design time.    Setting this property makes the specified
row the first visible row in the grid.

FirstRow Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Font Object
See Also Applies To Example
Description

The Font object contains information needed to format text on the control.

Properties

Bold Size
Italic Strikethrough
Name (Default) Underline

Remarks
You frequently identify a Font object using the Font property of an object that displays
text.

Font Object Applies To
SSDBCombo
SSDBCommand
SSDBData
SSDBDropDown
SSDBGrid
SSDBOptSet

Font Object See Also
Bold
Font3D
Italic
Name
Size
Strikethrough
Underline

Font3D Property
See Also Applies To Example
Description

Determines the 3D style of the caption text for the control.

Syntax
object . Font3D[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the 3D font style, as described in
Settings.

Settings Description

0 (Default) None.    Caption is displayed flat (not three-dimensional).    This is
the default setting.

1 Raised with light shading.    Caption appears as if it is raised slightly off the
screen.

2 Raised with heavy shading.    Caption appears even more raised.
3 Inset with light shading.    Caption appears as if it is inset slightly into the

screen.
4 Inset with heavy shading.    Caption appears even more inset.

There are constants available for the settings of this property.

Remarks
The Font3D works in conjunction with the Font property.    Settings 2 and 4 (heavy
shading) look best with larger, bolder fonts.    Dramatic effects can be created by
combining the different Font3D settings with other Font properties.

Font3D Property Applies To
SSDBCombo
SSDBCommand
SSDBData
SSDBDropDown
SSDBGrid
SSDBOptSet

Font3D Property See Also
Caption

Fonts
Fonts are supported through the Font object.    At design time fonts are set through one of
the font properties (For example: Font). Depending on the development environment you
are using, a dialog box containing font information may be available so that you can set
properties of the Font object. If not, you can set the font properties through the Property
Pages.    The following properties are supported by the Font object:

Properties
Bold Size Underline
Italic StrikeThrough
Name

Fonts can be set either through the font dialog at design time or by setting properties of
the Font object at runtime.

ForeColorEven Property
See Also Applies To
Description

Determines the row’s foreground (text) color for even-numbered rows.

Syntax
object . ForeColorEven[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the color.

ForeColorEven Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ForeColorEven Property See Also
ForeColor
ForeColorOdd

ForeColorOdd Property
See Also Applies To
Description

Determines the row’s foreground (text) color for odd-numbered rows.

Syntax
object . ForeColorOdd[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the color.

ForeColorOdd Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ForeColorOdd Property See Also
ForeColor
ForeColorEven

GetBookmark Method
Applies To Example
Description

Returns a bookmark of a row relative to the current row.

Syntax
object . GetBookmark([Row    As Long])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Row A long value specifying the row offset of the bookmark to get.

GetBookmark Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Grid Editor
The grid editor is used to easily customize the appearance of the Data Grid, Data Combo,
and Data DropDown controls.    Through a tabbed dialog, you can define the number of
columns and groups as well as their appearance and associated properties.
The Grid Editor uses a work area called the Design Grid that simulates how your Data Grid
will appear.    The Design Grid works in much the same way as the Data Grid with the
ability to move, resize, and swap columns and groups.

Accessing the Grid Editor
General Tab
Groups Tab
Columns Tab
StyleSets tab

Grid Editor: Accessing
The Grid Editor is activated by selecting the (Custom) property from the properties list, or
by selecting "Properties" from the right-click menu of Visual Basic. You can use the Grid
Editor at any time in design time to make changes to your grid.    The Grid Editor simulates
layout by displaying a grid known as the Design Grid.
As a demonstration, the Grid Editor (GRIDEDIT.EXE) can be executed as a standalone
program.    In this case, you will be able to select Open from the File menu and select a
database to use.    All functions of the grid can be explored.

Clicking the OK button applies the changes you have made and exits the Grid Editor. 
Clicking the Apply button applies the changes you have made and remains in the

Grid Editor.   
Clicking Cancel aborts the changes you have made and exits the Grid Editor.

Grid Editor: Columns tab
The Columns Tab allows you to define the columns that apepar in your grid.    Columns
appear in the Design Grid, allowing you to visualize how your grid will look at runtime.

Resizing
The width of the grid or the selected column can be changed by entering a value (in twips)
in the text boxes labeled "Grid Width" and "Column Width".   
Alternatively, you can resize the width of the grid by dragging the splitter, and you can
resize the width of a column by clicking on the right-edge of its header and dragging the
column to the desired size.

Adding a column to the Design Grid
1. Click the Add button.
2. Specify the name for the column in the "Add Column" dialog.
The column will be added to the grid.

Removing a column from the Design Grid
1. In the Design Grid, click the header of the column to remove.
2. Click the Remove button.

Note: It is possible to remove multiple columns at once.    Simply click on each header
corresponding to the column you want removed.

Adding columns to the Design Grid from a bound datasource
It is possible to automatically create columns based on the field structure of a database
that the grid is bound to.It is possible to automatically create columns based on the field
structure of a database that the grid is bound to.      To add columns from a bound
datasource:

1. Click the Fields button.
The "Field Selection" dialog appears listing all fields in the database.

2. Select the fields you want to appear as columns.
To select all fields in the database, click the Select All button.
3. Click the OK button.
The selected fields appear as columns in the Design Grid.

Grid Editor: General tab
The General tab has the appearance of a standard Sheridan Property Page.    Through a
tree structure, you are able to select and modify properties that apply to the grid as a
whole.    To modify a property, simply select it from the tree and make the desired changes
from the options presented on the right.

There are two items on the General Tab that need special explanation; (Add Items...) and
StyleSets.

Adding items to an AddItem grid
If DataMode is set to AddItem, the (Add Items...) option appears on the top of the tree.   
Selecting this option allows you to manually fill an AddItem grid with data.   
Click the Add Items button to add data.    The "Add Items To List" dialog appears:

Fill in the data as needed, clicking the OK button when you are finished.    Clicking the
Cancel button allows you to exit without saving your changes.

Working with StyleSets

The Grid Editor allows you to easily maintain and apply StyleSets.    If you are not familiar
with StyleSets, you should first read about StyleSets.      Before you can apply a StyleSet,
you must first define it.    You can have an unlimited amount of StyleSets for any given grid,
however, StyleSets are not interchangable between grids.
When you first access the Grid Editor’s General Tab, the StyleSets Collection will be
collapsed by default.    To expand the collection, double-click it.    This will display any
StyleSets that have already been created:

To see the individual properties applicable to the StyleSet, double-click that StyleSet:

To modify a property within a StyleSet, simply select it from the tree and make the desired
changes from the options presented on the right.

Adding StyleSets
1. Select StyleSets from the tree structure.
2. Click the Add button that appears to the right.
3. Specify a name in the "Add StyleSet" dialog.
4. The StyleSet now appears in the tree:

Removing (Deleting) StyleSets
1. Select the StyleSet to remove from the tree structure.
2. Click the Remove button that appears to the right.
The selected StyleSet is deleted.

Applying StyleSets takes place in the StyleSets tab .

Grid Editor: Groups tab
The Groups Tab allows you to define the groups that appear in your grid.    Groups allow
you to logically arrange fields that are associated with one another.    For example, you
could have a group called "Address Information" that contains the Address, City, State, and
Zip Code fields from a database.    Groups appear in the Design Grid, allowing you to
visualize how your grid will look at runtime.

Resizing
The width of the grid or the selected group can be changed by entering a value (in twips)
in the text boxes labeled "Grid Width" and "Group Width".   
Alternatively, you can resize the width of the grid by dragging the splitter, and you can
resize the width of a group by clicking on the right-edge of its header and dragging the
group to the desired size.

Adding a group to the Design Grid
1. Click the Add button.
2. Specify the name for the group in the "Add Group" dialog.
The group will be added to the grid.

Removing a group from the Design Grid
1. Select the group from the Name drop-down list.

2. Click the Remove button.

Working with group properties
There are certain properties that are group-specific.    These properties can be easily
changed through the Grid Editor.   

To set group specific properties:

1. Select the group from the Name drop-down list.
2. Select the property to modify from the tree and make the desired changes from the
options presented on the right.

Grid Editor: StyleSets tab
With the StyleSets Tab, you are able to apply the StyleSets you have created.    Select the
StyleSet you want to use from the list, and drag it to the part of the Design Grid you want
it applied to.    For more information on StyleSets, refer to the StyleSet Property.
When you select a StyleSet, a sample of the attributes it has will appear to the right.   
Similarly, when you apply a StyleSet, you will see it in the Design Grid.

Grid Selector

Group Header

Group Object
Applies To
Description

The group object represents a group within a grid.

Properties

AllowSizing HeadForeColor Top
Caption HeadStyleSet Visible
CaptionAlignment Left Width
ColPosition Position
HasHeadBackColor Selected
HasHeadForeColor StyleSet
HeadBackColor TagVariant

Objects

Column

Remarks
The Column object is available via the Group object as well as directly.    The value of the
index changes when accessing Groups through the Column object.

In the example grid above, the following is true when accessing the Column object directly:

? SSDBGrid1.Columns(5).Caption
Zip

Accessing the Column object through the Group object yields:

? SSDBGrid1.Groups(1).Columns(3).Caption
Zip

In the top example, the sixth column is requested whereas in the bottom example, the
third column in the second group is requested.

In the top example, you are requesting the sixth item of the entire grid. In the bottom
example, you are requesting the fourth item from the second group.

Group Object Applies To
Groups collection

Group Property
See Also Applies To
Description

Returns the current group.

Syntax
object . Group[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the current group.

Group Property Applies To
SSDBGrid

Group Property See Also
Col
Grp
Row

GroupHeadLines Property
See Also Applies To
Description

Sets or returns the number of lines to display for group headers.

Syntax
object . GroupHeadLines[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of lines to display for group
headers.

Remarks
The following examples demonstrate the use of the GroupHeadLines property:

This is an example of GroupHeadLines = 1.    The group header "Company Info" is
displayed in 1 row.

This is an example of GroupHeadLines = 2.    The group header "Company Info" is
displayed in 2 rows.

GroupHeadLines Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

GroupHeadLines Property See Also
HeadLines

GroupHeaders Property
See Also Applies To
Description

Determines whether group headers will be displayed.

Syntax
object . GroupHeaders[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether group headers will be displayed,
as described in Settings.

Settings
Setting Description

True (Default) Group headers will be displayed.
False Group headers will not be displayed

GroupHeaders Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

GroupHeaders Property See Also
ColumnHeaders

Groups Collection
See Also Applies To Example
Description

The groups collection represents a set of data grid group objects.

Properties

Count Item

Methods
Add Remove RemoveAll

Groups Collection Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Groups Collection See Also
Group object

Groups Method
Applies To
Description

Returns group object at specified index.

Syntax
object . Groups([Index    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Index A variant specifying the group number.

Remarks
When no index is specified the group object is returned.

Groups Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Grp Property
See Also Applies To
Description

Sets or returns the current group.

Syntax
object . Grp[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the group that the column belongs to.

Remarks
The Grp property is useful for returning the group number that the column is a member of. 
It can also be used to set the group number that the column belongs to.

Grp Property Applies To
Column object

Grp Property See Also
Col
Group
Row

GrpContaining Method
Applies To
Description

Returns the group number located at the specified x-coordinate.

Syntax
object . GrpContaining(X    As Single)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

X A floating point value specifying the X-coordinate

GrpContaining Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

GrpHeadClick Event
See Also Applies To Example
Description

Occurs when a group heading is clicked on.

Syntax
Sub control_GrpHeadClick ([GrpIndex    As Integer])

The event parameters are:
Parameter Description

GrpIndex The group number being clicked on.

GrpHeadClick Event Applies To
SSDBGrid

GrpHeadClick Event See Also
GrpResize event
HeadClick event

GrpMove Event
See Also Applies To
Description

Occurs before a group is moved.

Syntax
Sub control_GrpMove (GrpIndex    As Integer, NewPos    As Integer, Cancel    As
Integer)

The event parameters are:
Parameter Description

GrpIndex The group number being moved.
NewPos An integer expression that specifies the visual position the group is being

moved to.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
The GrpMove event is fired after a user moves a group, but before the move is redrawn.   
You can cancel this event from occurring by setting Cancel to true.
Swapping or moving groups does not change the name or number of the group, that is
group number 2 is still group number 2 despite being moved.

GrpMove Event Applies To
SSDBGrid

GrpMove Event See Also
AfterPosChanged event
ColMove event
ColSwap event
GrpSwap event

GrpPosition Method
See Also Applies To Example
Description

Returns the index of the group relative to the collection.

Syntax
object . GrpPosition(grppos    As Integer)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

grppos An integer expression specifying the position of the group as it appears
visually.

Remarks
Remember that groups can be moved, swapped, or made invisible, so the order they
appear in is not always their order in the collection.

GrpPosition Method Applies To
SSDBGrid

GrpPosition Method See Also
ColPosition method
Position property

GrpResize Event
See Also Applies To
Description

Occurs before a group is resized.

Syntax
Sub control_GrpResize (GrpIndex    As Integer, Cancel    As Integer)

The event parameters are:
Parameter Description

GrpIndex The group number being resized.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
The GrpResize event is fired after a user resizes a group, but before the resize is redrawn.

GrpResize Event Applies To
SSDBGrid

GrpResize Event See Also
GrpHeadClick
HeadClick
ResizeWidth

GrpSwap Event
See Also Applies To
Description

Occurs before a group is swapped.

Syntax
Sub control_GrpSwap (GrpIndex    As Integer, NewPos    As Integer, Cancel    As
Integer)

The event parameters are:
Parameter Description

GrpIndex The group number being moved.
NewPos An integer expression that specifies the visual position the group is being

swapped to.
Cancel An integer expression that specifies whether the operation occurs.

Remarks
The GrpSwap event is fired after a user swaps a group, but before the swap is redrawn.   
You can cancel this event from occurring by setting Cancel to true.
Swapping or moving groups does not change the name or number of the group, that is
group number 2 is still group number 2 despite being moved.

GrpSwap Event Applies To
SSDBGrid

GrpSwap Event See Also
AfterPosChanged event
ColMove event
ColSwap event
GrpMove event

    Guided Tours

Data Grid control
Sample programs using the Data Grid (Chapter 5)

Exercise 1: Creating a Bound Data Grid
Exercise 2: Creating an Unbound Data Grid
Exercise 3: Creating an AddItem data Grid
Data Combo Control
Sample programs using the Data Combo (Chapter 6)

Exercise 1: Creating an application using the Data
Combo
Exercise 2: Customizing the Data Combo
Data DropDown Control
Sample program using the Data DropDown (Chapter 7)

Exercise 1: Creating an application using the Data
DropDown
DataOptionSet Control
Sample program using the Data DropDown (Chapter 8)

Exercise 1: Creating an application using the
DataOptionSet

Enhanced Data Control Control
Sample programs using the Enhanced Data Control (Chapter 9)

Exercise 1: Creating an application using the EDC
Exercise 2: Using the Find feature of the EDC
Exercise 3: Using Bookmarks in the Enhanced Data
Control
Data Command Control
Sample program using the Data Command Button (Chapter 10)

Exercise 1: Creating an application using the Data
Command

Biblio File Structure

HasBackColor Property
See Also Applies To
Description

Returns or sets whether the column has a background color.

Syntax
object . HasBackColor[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the column has its own
background color, as described in Settings.

Settings
Setting Description

True Column has its own background color.
False Column does not have its own background color.

Remarks
The background color can be set on a control level (control.BackColor = color) that
applies to all columns in the grid or on an object level (control.object(number).BackColor
= color) that affects only the specified column.    When the column object has its own,
HasBackColor will be set to true.
Setting HasBackColor to false causes the column’s backcolor to revert back to that
defined for the control.
The HasBackColor property is needed because setting BackColor to 0 will cause the
color to be black, and not disabled as is the case with most other properties.

HasBackColor Property Applies To
Column object

HasBackColor Property See Also
HasForeColor

HasForeColor Property
See Also Applies To
Description

Returns or sets whether the column has its own foreground color.

Syntax
object . HasForeColor[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the column has its own
foreground color, as described in Settings.

Settings
Setting Description

True Column has its own foreground color
False Column does not have its own foreground color.

Remarks
The foreground color can be set on a control level (control.ForeColor = color) that applies
to all columns in the grid or on an object level (control.object(number).ForeColor = color)
that affects only the specified column.    When the colulmn object has its own,
HasForeColor will be set to true.   
Setting HasForeColor to false causes the column’s forecolor to revert back to that defined
for the control.
The HasForeColor property is needed because setting ForeColor to 0 will cause the color
to be black, and not disabled as is the case with most other properties.

HasForeColor Property Applies To
Column object

HasForeColor Property See Also
HasBackColor

HasHeadBackColor Property
See Also Applies To
Description

Returns or sets whether the header has a background color specified.

Syntax
object . HasHeadBackColor[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the header has its own
background color, as described in Settings.

Settings
Setting Description

True Header has a background color specified.
False Header does not have a background color specified.

Remarks
Setting HasHeadBackColor to false causes the object’s HeadBackColor to revert back
to the default setting.

HasHeadBackColor Property Applies To
Column object
Group object

HasHeadBackColor Property See Also
HasHeadForeColor
HeadBackColor
HeadForeColor

HasHeadForeColor Property
See Also Applies To
Description

Returns or sets whether the header has a foreground color specified.

Syntax
object . HasHeadForeColor[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the header has a foreground
color specified, as described in Settings.

Settings
Setting Description

True Header has a foreground color specified.
False Header does not have a foreground color specified.

Remarks
Setting HasHeadForeColor to false causes the object’s HeadForeColor to revert back to
the default setting.

HasHeadForeColor Property Applies To
Column object
Group object

HasHeadForeColor Property See Also
HasHeadForeColor
HeadBackColor

HeadBackColor Property
See Also Applies To
Description

Determines the header’s background color.

Syntax
object . HeadBackColor[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the background color of
the header.

HeadBackColor Property Applies To
Column object
Group object

HeadBackColor Property See Also
HasHeadBackColor
HasHeadForeColor
HeadForeColor

HeadClick Event
See Also Applies To Example
Description

Occurs when a column heading is clicked on.

Syntax
Sub control_HeadClick ([ColIndex    As Integer])

The event parameters are:
Parameter Description

ColIndex The column number being clicked on.

HeadClick Event Applies To
SSDBGrid

HeadClick Event See Also
GrpResize event
HeadClick event

HeadFont Object
See Also Applies To Example
Description

The HeadFont object contains information needed to format header and caption text on a
grid.

Properties

Bold Size
Italic Strikethrough
Name (Default) Underline

Remarks
You frequently identify a HeadFont object using the HeadFont property of an object that
displays text.    At design time, HeadFont is shown in the properties list and acts as a
property, allowing you to select the font name to be used.

HeadFont Object Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

HeadFont Object See Also
Bold
Font3D
Italic
Name
Size
Strikethrough
Underline

HeadFont3D Property
Applies To
Description

Determines the 3D style of the caption and header text for the control.   

Syntax
object . HeadFont3D[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the 3D font style, as described in
Settings.

Settings
Setting Description

0 (Default) None.    Text is displayed flat (not three-dimensional).
1 Raised with light shading.    Caption appears as if it is raised slightly off the

screen.
2 Raised with heavy shading.    Caption appears even more raised.
3 Inset with light shading.    Caption appears as if it is inset slightly into the

screen.
4 Inset with heavy shading.    Caption appears even more inset.

There are constants available for the settings of this property.

Remarks
The HeadFont3D property works in conjunction with the HeadFont property.    Settings 2
and 4 (heavy shading) look best with larger, bolder fonts.    Dramatic effects can be created
by combining the different HeadFont3D settings with other HeadFont properties.

HeadFont3D Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

HeadForeColor Property
See Also Applies To
Description

Determines the column header foreground (text) color.

Syntax
object . HeadForeColor[= color]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

color A long integer value or constant that determines the foreground color of
the column header.

HeadForeColor Property Applies To
Column object
Group object

HeadForeColor Property See Also
HasHeadBackColor
HasHeadForeColor
HeadBackColor

HeadLines Property
See Also Applies To
Description

Sets or returns the number of lines to display for column headers.

Syntax
object . HeadLines[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of lines to display for column
headers.

Remarks
This example demonstrates the use of the HeadLines property:

This is an example of HeadLines = 1.    The column headers (Name, Company Name,
Address, City) each span one row.

This is an example of HeadLines = 2. The column headers (Name, Company Name,
Address, City) each span two rows.

HeadLines Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

HeadLines Property See Also
GroupHeadLines

HeadStyleSet Property
See Also Applies To
Description

Returns or sets the name of a HeadStyleSet in the StyleSets collection.

Syntax
object . HeadStyleSet[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the name of a HeadStyleSet.

Remarks
This property determines the HeadStyleSet to be used for the controls and objects listed in
the Applies To list.    Note that the HeadStyleSet specified must be in the StyleSets
collection and its properties must be set before it can be used.    If a change is made to a
HeadStyleSet, the control must be refreshed.

HeadStyleSets will override each other based on the following hierarchy:

Group Area:
Group.HeadStyleSet (overrides all below)
Control.HeadStyleSet

Column Area:
Column.HeadStyleSet (overrides all below)
Group.HeadStyleSet (overrides all below)
Control.HeadStyleSet

The following is a list of properties used in the various HeadStyleSets.

Properties Used by SSDBCombo, SSDBDropDown, SSDBGrid
For Group Heading Area, Record Selectors, Column Heading Area, and Caption Area:

BackColor Font ForeColor

For Caption Area:

Picture PictureMetaHeight PictureMetaWidth

Properties Used by the Group Object:

For Group Heading Area and Column Heading Area:

BackColor Font ForeColor

For Group Heading Area:

Picture PictureMetaHeight PictureMetaWidth

Properties Used by the Column Object:
For Column Heading Area:

ForeColor Font PictureMetaHeight
BackColor Picture PictureMetaWidth

HeadStyleSet Property Applies To
Column object
Group object
SSDBCombo
SSDBDropDown
SSDBGrid

HeadStyleSet Property See Also
HeadStyleSet
StyleSet object
StyleSets collection

HeightGap Property
Applies To
Description

Determines the amount of vertical distance between option buttons.

Syntax
object . HeightGap[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the amount of vertical distance between
option buttons.

Remarks
Valid range is 0 to 32767 with a default value of 2.    Setting the value to 0 causes the
option buttons to have no vertical gap between each other.

HeightGap Property Applies To
SSDBOptSet

How To Apply Pictures To Cells
This procedure demonstrates how to apply pictures to all the cells in a column, based on a
user or program initiated event. You could also apply the pictures by defualt by using only
the code in theForm_Load and the RowLoaded events, and using only the True condition
from the IF statement in RowLoaded.
1. First, you must create a flag that will be used to determine whether to apply the picture

to the cells:
(General)(declarations)
Dim bFlag As Boolean

2. Then create a StyleSet that includes the picture you wish to apply. You should also set
the flag to its intial state:
Private Sub Form_Load()

SSDBGrid1.StyleSets.Add "Picture"
SSDBGrid1.StyleSets("Picture").Picture = LoadPicture("ARROW.BMP")
bFlag = False

End Sub

3. In the RowLoaded event, apply the StyleSet to the individual cell, or clear the cell's
StyleSet, based on the value of the flag:
Private Sub SSDBGrid1_RowLoaded(ByVal Bookmark As Variant)

If bFlag = True Then
SSDBGrid1.Columns(1).CellStyleSet "Picture"

Else
SSDBGrid1.Columns(1).CellStyleSet ""

End If
End Sub

4. Finally, set the flag to the desired state, then perform a Refresh on the grid to initiate
the change.
Private Sub Command1_Click()

bFlag = Not bFlag
SSDBGrid1.Refresh

End Sub

Data Widgets How-To Help

Which task would you like to accomplish?

Attach a DataGrid to a memory array
Add pictures to cells
Perorm calculations (such as totals) on the values in a DataGrid
Include an unbound column in a bound DataGrid
Have a drop-down store a different value than the one displayed
Clear all formatting and selection information from a grid

How the Data Grid Handles Data Validation and Error Checking
See Also
Whenever data has been modified in a row of the data grid and the user takes an action to
update the row, error checking is performed. This error checking validates the data to
ensure it is valid for insertion into the database based on database rules and field type.
You can also take advantage of this feature to implement your own data validation and
error handling code. If a data error occurs and you do not provide code to handle it, the
error message will be passed to the end user, which may not be desirable.
When a record of grid data is updated, the grid first checks each column one at a time to
see if the data is valid according to the rules and field types of the underlying database. If
data for any field is invalid, the UpdateError event will be fired. You can use this event to
try and correct the data entry problem, based on the error value returned.
How you manage an error that occurs in UpdateError determines the sequence of events
that will follow. If you modify the value of the column that caused the error, no error
condition will exist and the control will continue to check the remaining columns. If you do
not modify the value of the offending column, an error condition will be created, and the
control will not verify any remaining columns.
Note If you cancel the UpdateError event, no further processing will take place.    None
of the events described beyond this point will occur.
Note that at this point, the data is still held in the control's buffer; nothing has been written
to the database. What happens next depends on whether an error condition exists. If there
is no error condition, the control will attempt to update the database. If there has been a
column-level error that was not corrected, the control will not attempt to update the
database.
Next the control will fire the AfterUpdate event. AfterUpdate will be fired if:

· The database was successfully updated
· The database update failed
· The UpdateError event completed with errors and no update was attempted.

AfterUpdate receives a True or False parameter (RtnDispErrorMsg) to indicate whether
the update of the database succeeded.    A value of True indicates the update failed.
This is the first place you may implement specific error-handling code to prevent the end
user from seeing an error message. (While the UpdateError event returns error codes for
the programmer, it will not display an end-user error message or halt processing without
programmer intervention.) Any database-specific errors, such as trying to update a locked
record, can be trapped in the AfterUpdate event. In general, you should implement code
to handle column-level errors in the UpdateError event, and deal with database-level
errors in the AfterUpdate event.
If any kind of an error occurs while updating the database, the Error event is also fired.
The Error event is similar to the one found in the grid control that ships with Visual Basic
4, and returns the same type of error code.    The Error event is the final place for you to
trap any update errors and prevent the error message from being passed to the end user.
Note that the Error event is general and is also fired by other controls under different
circumstances.
If the error is not trapped in either the AfterUpdate or Error events, an error message is
displayed to the end user.

How the DataGrid Handles Null Values
See Also
If you delete all the text from a cell, the cell contains no value. Different database systems
handle this situation in different ways. Some databases allow null values (nulls) to be
stored in the database. Other DBMSes cannot accept null values and will return an error or
refuse to update the record if a null value is attempted for a field.
To deal with these situations, the DataGrid takes special action when you update a row
that contains an empty cell. The grid will first query the back-end database to see if it can
accept a null value. If it can, the null will be stored in the database. If the back-end
databse cannot accept null values, the DataGrid will store an empty sting ("") in the
database.
Note that this applies only to String type fields.

HwndEdit Property Applies To
SSDBCombo
SSDBGrid

Important Note on Using VC++ Examples
If you are using Data Widgets 2.0B or have Internet Explorer 4.0, there are some changes
that need to be made to your existing Visual C++ code. The method names in the wrapper
classes now have an _ (underscore) character inserted at the beginning. You will need to
change the uses of the method accordingly. One approach is to simply remove the
underscore from the beginning of the method name in the wrapper class automatically
generated for you, and then refer to the method by the original name.
Also, MFC puts up an unnecessary assertion in it’s COleControl::InitiazlizeIID’s function if
the original classid is not found in the typelib. The problem does not affect release versions
and you can ignore the assertion in debug builds. You can get rid of the assertion by
editing the .mak and .rc files changing the old GUID entries to the new ones.

Included Files
The Setup program will place OCX files in the directories you have specified.    Sample
applications from the manual are located in the \SAMPLES subdirectory of the Data
Widgets home directory.
The following table gives a brief description of the files that may have been installed on
your hard disk during the Setup process.    Data Widgets selectively installs support files
based on the version numbers of files already installed on your system.

Filename(s) Description
COMDLG16.OCX 16-Bit Common Dialog OCX (used for demo

programs)
COMPOBJ.DLL Support DLL
DAO2516.DLL Support DLL
DATW1TO2.HLP Version 1.0 to 2.0 Conversion help file.
DATWFAQ.HLP Frequently Asked Questions help file.
MFC40.DLL Support DLL (Microsoft Foundation Class DLL)
MFC42.DLL Support DLL (Microsoft Foundation Class DLL)
MFCO40.DLL Support DLL (Microsoft Foundation Class DLL)
MFCANS32.DLL Support DLL (Microsoft Foundation Class DLL)
MSAJT200.DLL Support DLL (compatibility layer DLL)
MSJETERR.DLL Support DLL (compatibility layer DLL)
MSJETINT.DLL Support DLL (compatibility layer DLL)
MSOUTL16.OCX 16-Bit Outline Control OCX (used for demo

programs)
MSVC40.DLL Support DLL (Microsoft VC DLL)
MSVCRT.DLL Support DLL (Microsoft VC DLL)
MSVCRT40.DLL Support DLL (Microsoft VC DLL)
OC30.DLL Support DLL (32-Bit data binding DLL)
OLE2.DLL Support DLL (OLE DLL)
OLE2DISP.DLL Support DLL (OLE DLL)
OLE2NLS.DLL Support DLL (OLE DLL)
OLEPRO32.DLL Support DLL (OLE DLL)
OLE2PROX.DLL Support DLL (OLE DLL)
OLE2CONV.DLL Support DLL (OLE DLL)
OLE2.REG Support file (OLE registration file)
README.WRI Data Widgets late-breaking information
SCP.DLL Support DLL
SELECT.BMP SSDBGrid row selector bitmap
SSCMD16.EXE 16-Bit SSDBCommand custom property pages
SSCMD32.EXE 32-Bit SSDBCommand custom property pages
SSDATA16.OCX 16-Bit OCX containing SSDBData, SSDBOptSet,

SSDBCommand
SSDATA32.OCX 32-Bit OCX containing SSDBData, SSDBOptSet,

SSDBCommand
SSDATB16.OCX 16-Bit OCX containing SSDBGrid,

SSDBDropDown, SSDBCombo
SSDATB32.OCX 32-Bit OCX containing SSDBGrid,

SSDBDropDown, SSDBCombo
SSDATWD2.HLP Data Widgets Online Help
SSDBHPIC.BMP SSDBData button bitmap
SSDBHPC2.BMP SSDBData button bitmap
SSDODEMO.EXE DataOptionSet demo
SSDOS16.EXE 16-Bit SSDBOptSet custom property pages
SSDOS32.EXE 32-Bit SSDBOptSet custom property pages
SSEDC16.EXE 16-Bit SSDBData custom property pages
SSEDC32.EXE 32-Bit SSDBData custom property pages
SSGRID16.EXE 16-Bit SSDBGrid Layout Editor
SSGRID32.EXE 32-Bit SSDBGrid Layout Editor
SSPP16.DLL 16-Bit Property Pages DLL
SSPP32.DLL 32-Bit Property Pages DLL
STDOLE.TLB Support File
STORAGE.DLL Support DLL (System DLL)
TABCTL16.OCX 16-Bit Tab Control OCX (used for demo

programs)
THREED16.OCX 16-Bit 3D Control OCX (used for demo

programs)
TYPELIB.DLL Support DLL (type library DLL)
UNBOUND.MDB Unbound grid sample database file
UNINSTALL.EXE Data Widgets 2.0 uninstall program
VAEN2.DLL Support DLL
VAEN21.OLB Support DLL
VBAJET.DLL Support DLL (compatibility layer DLL)
VBEN16.DLL Support DLL
VB40016.DLL 16-Bit Visual Basic Runtime DLL
VB40032.DLL 32-Bit Visual Basic Runtime DLL
VBDB16.DLL Support DLL (Visual Basic database DLL)
\SAMPLES Directory containing projects demonstrated in

Chapters 5 - 10

Including an unbound column in a bound DataGrid
You can easily add unbound columns to a bound Data Grid (or other grid-like control) using the Grid Editor of the
property pages, or through code.

I want to add the column at design time using the Grid Editor
Show me how to add an unbound column in code

IndexSelected Property
Applies To
Description

Sets or returns the selected option button.    Valid range is 0 to n    where n    is the index of
the    last button.    Once a button is selected, button-specific property settings will affect
only that button.

Syntax
object . IndexSelected[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the button number in a SSDBOptSet
control.

Remarks
This property can be used at Design time to set properties for any of the buttons in a
DataOptionSet.
Index numbering of option buttons begins at 0.    If there is no button selected, or if no
buttons exist, the value will be -1.
IndexSelected allows you to easily determine the selected button.

IndexSelected Property Applies To
SSDBOptSet

InitColumnProps Event
Applies To Example
Description

Occurs when the grid is initially loaded, allowing the setting of group and column
properties.

Syntax
Sub control_InitColumnProps ()

InitColumnProps Event Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Inserting controls into your VC++ project
To insert the control into your project initially use the Component Gallery. Click on the OLE
Control tab, and you will see a list of the OLE controls available on your system. Select the
icon for the control you want to include. A dialog should appear offering to add the
neccesary wrapper classes. Click OK to generate these classes.
Depending on the version of VC++ you are using, the Generate Wrapper Classes dialog
may not appear. You then need to generate the additional wrapper classes manually. To do
this, open Class Wizard and go to the Class Info tab. Click the Add Class button and select
"From An OLE TypeLib". Change the filter in the Open File dialog to All files (*.*)then locate
the OCX control that you are using,select it, and click OK. For example, to use the
SSDBGrid, you would choose SSDATB32.OCX. When you select this file, ClassWizard will
retrieve the necessary wrapper classes for use in your project.
In working with OLE controls you need to work extensively with Variants. Microsoft has a
class called COleVariant, which makes working with variants easier. You can either use a
COleVariant or work with the VARIANT structure.

//If you are not going to use COleVariant you need to initialize
//the variant type to VT_EMPTY
//VARIANT va;
//va.vt = VT_EMPTY;

COleVariant va;
LPDISPATCH lpdisp;

//Use empty variant to get dispatch to Columns Collection
lpdisp = m_grid.Columns(va);

//Use ISSColumns constructor, pass it the dispatch pointer
ISSColumns cols(lpdisp);

//Initialize a Variant using m_grid.GetCol() to return
//the current column. VARIANT vacol;
vacol.vt = VT_I2;
vacol.iVal = m_grid.GetCol();
//Use the columns collection you created to get a dispatch
//pointer to a single column
lpdisp = cols.Item(vacol);
//use that dispatch pointer to create the single column
ISSColumn col(lpdisp);
//now you can access the member functions of ISSColumn
AfxMessageBox(col.GetText());

Select a related topic:

Object Concepts
Property Pages
Fonts

Introduction to OCX controls
Related Topics

What is an OCX control?
An OCX control is a specific type of program that makes use of Object Linking and
Embedding    (OLE) to provide functions to other programs. Because it gives programs
something they did not originally have, an OCX control is known as an OLE server, and the
program that uses its services is an OLE client.    OCX controls can provide a nearly
unlimited range of functions to their clients.

How is an OCX control different from a VBX control?
The VBX control specification was designed exclusively for use with Visual Basic. Although
some other languages offer limited VBX support, the majority of VBX controls function only
in Visual Basic. VBX controls are also limited in other ways. Their 16-bit architecture
restricts their ability to use memory and to function in a 32-bit operating system, such as
Windows 95 or Windows NT.
The difference between OCX and VBX controls may not even be apparent to you if you
program exclusively in Visual Basic. You access the properties of an OCX control at design
time and through code just as you do the properties of a VBX. The process of including
both types of controls in your project and distributing them is very similar. The similarities
end when you move outside of the Visual Basic programming environment.
OCX controls are supported by a much wider range of platforms, including other
languages, database management systems, and productivity applications. OCX controls
can be used as the building blocks in a modular software environment, where a complete
project might include your own code, custom controls and commercial applications all
working together. OCX controls also have the ability to make full use of the newest 32-bit
operating systems, taking advantage of improved memory access, better multi-tasking
and increased performance.

When should I use OCX controls?
OCX controls come in two varieties: 16-bit and 32-bit. 16-bit controls offer compatibility
with Windows and Windows for Workgroups 3.1 and 3.11. 32-bit controls work with
systems running Windows NT and Windows 95. In general, you should use the most
advanced version of the control that is available and is supported by your host
environment.
 If you are using a 32-bit programming system to develop an application that will run
exclusively on a 32-bit platform, use the 32-bit OCX. If you are developing an application
that must run on a mixed platform, you can use a 16-bit OCX, although you will obtain
better performance if you develop separate 16-bit and 32-bit versions of your program,
using the appropriate OCX controls. If you are developing exclusively for a 16-bit platform,
use the 16-bit OCX.

IsAddRow Method
Applies To
Description

Returns whether the current row is the add row at the bottom of the grid.

Syntax
object . IsAddRow

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the current row is the add row at
the bottom of the grid..

Remarks
This method returns a Boolean value specifying whether the current row is the add row at
the bottom of the grid. This method is useful for determining if the current record is
actually a new record being added.

IsAddRow Method Applies To
SSDBGrid

IsCellValid Method
See Also Applies To
Description

Returns whether or not the text satisfies data type validation checking.

Syntax
object . IsCellValid

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
This method returns a boolean value specifying whether or not the cell could be validated.
This method can be used in the BeforeColUpdate event to make sure that the text/value
entered can be coerced to the DataType of the column.    It can also be used anywhere to
validate an entire row prior to an application's call to Update.    This would be particularly
helpful in the LostFocus event.

IsCellValid Method Applies To
Column object

IsCellValid See Also
IsTextValid method

IsItemInList Method
See Also Applies To Example
Description

Returns whether the current text in the edit portion of the combo or cell of the grid is in the
dropdown list.

Syntax
object . IsItemInList

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
This method returns a boolean value that specifies whether the text in the edit portion
exists in the dropdown list. IsItemInList causes validation of whether the text in the edit
portion of the combo exists in the dropdown list.
If ListAutoValidate = False, the ValidateList event is fired and you can determine the
validity.

IsItemInList Method Applies To
SSDBCombo
SSDBGrid

IsItemInList Method See Also
IsTextValid method
ListAutoValidate property
ValidateList event

IsTextValid Method
See Also Applies To Example
Description

Returns whether or not the text satisfies validation checking.

Syntax
object . IsTextValid(ErrCode    As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

ErrCode An optional parameter that will return an error code describing the error if
text is invalid.

Remarks
This method returns a Boolen value specifying whether or not the text could be validated.

IsTextValid Method Applies To
SSDBCombo

IsTextValid Method See Also
IsCellValid
IsItemInList

Italic Property
Applies To Example
Description

Returns or sets the font style of the specified Font or Headfont object to either italic or
non-italic.

Syntax
object . Italic[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the font style, as described in Settings.

Settings
Setting Description

True Turns on italic formatting.
False (Default) Turns off italic formatting.

Remarks
The Font and Headfont objects are not directly available at design time.    At design time,
you set the Italic property through the control’s Font or Headfont property.    At runtime,
you can set Italic directly by specifying its settings for the appropriate Font/Headfont
object.

Italic Property Applies To
Font object
Headfont object

Keyboard Interface

The following describes the keyboard interface for each of the Data Widgets controls that
support keyboard use.   

SSDBGrid
Press To Comments
F4 Toggles dropdown Only works in cells

with a dropdown.
ALT + UP ARROW Toggles dropdown Only works in cells

with a dropdown.
ALT + DOWN
ARROW

Toggles dropdown Only works in cells
with a dropdown.

UP ARROW Moves up a row in
the grid

DOWN ARROW Moves down a row in
the grid

PAGE UP Moves up a page in
the grid

PAGE DOWN Moves down a page
in the grid

LEFT ARROW Moves one cell to
the left.
When in edit mode,
moves one character
to the left.

RIGHT ARROW Moves one cell to
the right
When in edit mode,
moves one character
to the right.

HOME When in edit mode,
moves to the
beginning of the cell

END When in edit mode,
moves to the end of
the cell

ESC Restores the cell
value to what it was
prior to entering the
cell.

SPACE BAR Selects the entire
grid row

Only works when grid
does not allow
updates

TAB Moves one cell
forward

SHIFT + TAB Moves one cell
backward

CTRL + X Deletes the selected
row

In the case of multiple
rows being selected,
they will all be

deleted.
AllowDelete must be
set to True.

DEL Deletes the selected
row

In the case of multiple
rows being selected,
they will all be
deleted.
AllowDelete must be
set to True.

SSDBCombo
Press To Comments
F4 Toggles the Data

Combo’s dropdown.
If the dropdown is
open, it will be closed. 
If it is closed, it will be
opened.

ALT + UP ARROW Toggles the Data
Combo’s dropdown.

If the dropdown is
open, it will be closed. 
If it is closed, it will be
opened.

ALT + DOWN
ARROW

Toggles the Data
Combo’s dropdown.

If the dropdown is
open, it will be closed. 
If it is closed, it will be
opened.

UP ARROW Moves up a row Only works in the
dropdown portion.

DOWN ARROW Moves down a row Only works in the
dropdown portion.

PAGE UP Moves up a page Only works in the
dropdown portion.

PAGE DOWN Moves down a page Only works in the
dropdown portion.   

LEFT ARROW Moves one character
to the left

Works in the edit
portion only.

RIGHT ARROW Moves one character
to the right

Works in the edit
portion only.

HOME Moves to the
beginning of the cell

Works in the edit
portion only.

END Moves to the end of
the cell

Works in the edit
portion only.

ESC When dropped
down, closes the
dropdown and
restores the value to
what it was before
dropping down.
When not dropped
down, restores the
text to the previous
database value.

ENTER When dropped Works only on the

down, selects the
current row and
closes the
dropdown.

dropdown portion.

SSDBDropDown
Press To Comments
F4 Toggles the   

dropdown.
Causes the dropdown
to close up.

ALT + UP ARROW Toggles the
dropdown.

Causes the dropdown
to close up.

ALT + DOWN
ARROW

Toggles the
dropdown.

Causes the dropdown
to close up.

UP ARROW Moves up a row
DOWN ARROW Moves down a row
PAGE UP Moves up a page
PAGE DOWN Moves down a page
ESC Closes the dropdown

and restores the
value to what it was
before dropping
down.

ENTER Selects the current
row and closes up
the dropdown.

SSDBOptSet
Press To Comments
UP ARROW Moves up a button
DOWN ARROW Moves down a

button
LEFT ARROW Moves up a button
RIGHT ARROW Moves down a

button
HOME Moves to the first

button in the set
END Moves to the last

button in the set

LeftCol Property
See Also Applies To
Description

Sets or returns the left-most column in the display area of the grid.

Syntax
object . LeftCol[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the left-most column.

Note To ensure that your data displays accurately, LeftCol should only be used when
you do not have groups defined in your grid.    When you do have groups, use the LeftGrp
property. This is due to the fact that the control bases its calculation on the column for this
property; if you have groups, the resulting number will be invalid.

Remarks
The following example demonstrates LeftCol with different settings:

This is LeftCol set to 0

This is LeftCol set to 2

LeftCol Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

LeftCol Property See Also
LeftGrp

LeftGrp Property
See Also Applies To
Description

Sets or returns the left-most group in the display area of the grid.

Syntax
object . LeftGrp[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the left-most group.

Remarks
To ensure that your data displays accurately, LeftGrp should only be used when you have
groups defined in your grid.    When you do not have groups, use the LeftCol property.   
This is due to the fact that the control bases its calculation on the group for this property; if
you do not have groups, the resulting number will be invalid.

The following example demonstrates LeftGrp with different settings:

This is LeftGrp set to 0

This is LeftGrp set to 1

LeftGrp Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

LeftGrp Property See Also
LeftCol

Level 0 (Multi-Level Row)

Level 1 (Multi-Level Row)

Level Property
Applies To
Description

Sets or returns the column’s level within a multi-level grid.

Syntax
object . Level[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the column’s level in a multi-level grid.

Level Property Applies To
Column object

LevelCount Property
Applies To
Description

Sets or returns the number of levels in a multi-level grid.

Syntax
object . LevelCount[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of levels in a multi-level grid.

Remarks
The following example demonstrates LevelCount with various settings:

In this first example, LevelCount = 2.    You will notice that each record is displaying on
two rows, specifically the Name and Company Name fields.

In this first example, LevelCount = 1.    You will notice that each record is displaying on
one row.

LevelCount Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

List Property
Applies To Example
Description

Returns or sets the items contained in a combo box portion of a column with a combo box
style.

Syntax
object . List (Index As Integer)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Index An integer expression that specifies the index number.

Remarks
You must first add an item using the AddItem method; this creates a position in the
combo box.    Once you have added an item, you can use the List property to either
display or edit the value.

List Property Applies To
Column object

ListAutoPosition Property
See Also Applies To
Description

Determines whether the dropdown portion of the control will automatically position itself to
the row when it is dropped down to match the value in the edit portion.

Syntax
object . ListAutoPosition[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the control should automatically
position itself, as described in Settings.

Settings
Setting Description

True (Default) Causes the control to automatically adjust the position of the
selected row in the dropdown list when it is in its dropped state based on
the current entry.

False Disables this feature.

Remarks
In cases where there is a large amount of rows in the list, you may want to consider setting
this property to False.    You can manually position the row in the list during the
PositionList event.

ListAutoPosition Property Applies To
SSDBCombo
SSDBDropDown

ListAutoPosition Property See Also
Performance Tuning

ListAutoValidate Property
Applies To
Description

Determines whether the control will automatically check if the text entered in the edit
portion is in the list.

Syntax
object . ListAutoValidate[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the text will automatically be
validated, as described in Settings.

Settings
Setting Description

True (Default) Causes the control to automatically search the list of values in
the dropdown after the user has entered a value in the edit portion.

False Disables this feature.

Remarks
In cases where there is a large amount of rows in the list, you may want to consider setting
this property to False.    You can manually validate the row in the list during the
ValidateList event.

ListAutoValidate Property Applies To
SSDBCombo
SSDBDropDown

ListWidth Property
See Also Applies To
Description

Specifies the width of the control’s entire list portion.

Syntax
object . ListWidth[= single]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

single A number evaluating to the width of the control’s list portion.

Remarks
This width can be overridden by the ListWidthAutoSize property being set to True.

ListWidth Property Applies To
SSDBCombo
SSDBDropDown

ListWidth Property See Also
ListWidthAutoSize

ListWidthAutoSize Property
Applies To
Description

Determines whether the control should automatically size the dropdown based on the
number of columns in the list.

Syntax
object . ListWidthAutoSize[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the control should automatically
size itself, as described in Settings.

Settings
Setting Description

True (Default) Causes the control to automatically size the dropdown based on
the number of columns in the list.

False Disables this feature.

Remarks
The width calculated will not exceed the total width of the screen.

ListWidthAutoSize Property Applies To
SSDBCombo

Locked Property
Applies To Example
Description

Determines whether the column is locked from user-input.

Syntax
object . Locked[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the status of user-input in the column, as
described in Settings.

Settings
Setting Description

True User input into the column is not allowed.
False (Default) User input into the column is allowed.

Locked Property Applies To
Column object

MaintainBtnHeight Property
Applies To
Description

Determines whether to keep all option buttons the same height by synchronizing the
height of all buttons to the tallest one.

Syntax
object . MaintainBtnHeight[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether button height should be kept the
same, as described in Settings.

Settings
Setting Description

True (Default) Buttons will automatically have the same height.
False Buttons will not automatically have the same height.

MaintainBtnHeight Property Applies To
SSDBOptSet

MaxDropDownItems Property
See Also Applies To
Description

Sets or returns the maximum number of items visible in a dropdown at once.

Syntax
object . MaxDropDownItems[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the maximum number of items visible in
a dropdown at once.

MaxDropDownItems Property Applies To
SSDBCombo
SSDBDropDown

MaxDropDownItems Property See Also
MinDropDownItems

MaxSelectedRows Applies To
SSDBGrid

MaxSelectedRows Property
See Also Applies To
Description

Sets or returns the maximum number of rows that can be selected at any one time.

Syntax
object . MaxSelectedRows[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number A long integer expression specifying the maximum number of rows that
can be selected at any one time.

Remarks

If set to 0, then there is no maximum number of rows that can be selected. The default
value for this property is 100.
This property only applies when the SelectTypeRow property is set to "2 - Multiselect
Individual" or "3 - Multiselect Range"
If the maximum number is exceeded, an error is fired in the SelChange event if the
selection is not cancelled by the programmer.

MaxSelectedRows See Also
SelChange event
SelectTypeRow property

Method Summary

A
ActiveCell
Add
AddItem
AddItem (Columns)
AddItemBookmark
AddItemRowIndex

B
ButtonFromCaption
ButtonFromPos

C
CellStyleSet
CellText
CellValue
ColContaining
ColPosition
Columns

D
DeleteSelected
DoClick

F
Find

G
GetBookmark
Groups
GrpContaining
GrpPosition

I
IsAddRow

IsCellValid
IsItemInList
IsTextValid

M
MoveFirst
MoveLast
MoveNext
MovePrevious
MoveRecords

R
ReBind
Remove
RemoveAll    (Collections)
RemoveAll    (Column Object)
RemoveAll    (AddItem Mode)
RemoveItem    (Column Object)
RemoveItem    (AddItem Mode)
RowBookmark
RowContaining
RowTop

S
Scroll
Soundex

U
Update

W
WhereIs

MinColWidth Property
Applies To Example
Description

Sets or returns the minimum column width for the column containing the selected button.

Syntax
object . MinColWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number A real number specifying the minimum column width.

Remarks
The default and minimum value is 0.    The maximum value is 32767.
The unit of measurement is dictated by the form's ScaleMode property.

MinColWidth Property Applies To
SSDBOptSet

MinDropDownItems Property
See Also Applies To
Description

Sets or returns the minimum number of items visible in a dropdown at once.

Syntax
object . MinDropDownItems[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the minimum number of items visible in a
dropdown at once.

MinDropDownItems Property Applies To
SSDBCombo
SSDBDropDown

MinDropDownItems Property See Also
MaxDropDownItems

MinHeight Property
Applies To Example
Description

Sets or returns the minimum height of the control.

Syntax
object . MinHeight[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number A real number specifying the minimum height.

Remarks
The default and minimum value is 15.    The maximum value is 32767.
The unit of measurement is dictated by the form's ScaleMode property.

MinHeight Property Applies To
SSDBOptSet

MouseIcon Property
See Also Applies To
Description

Sets the custom icon to be used when the mouse passes over the control.   

Syntax
object . MouseIcon[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Icon) Determines a graphic to be used.

Remarks
The MousePointer property must be set to ’99’ (Custom) in order to have the
MouseIcon image display.

MouseIcon Property Applies To
SSDBCombo
SSDBCommand
SSDBData
SSDBOptSet

MouseIcon Property See Also
MousePointer

MousePointer Property
See Also Applies To Example
Description

Determines the icon displayed when the mouse passes over the control.

Syntax
object . MousePointer[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying what image to use, as described in
Settings.

Settings
Setting Description

0 (Default) Default value
1 Arrow
2 Cross
3 I-Beam
4 Icon
5 Size
6 Size NE SW
7 Size N S
8 Size NW SE
9 Size W E
10 Up Arrow
11 Hourglass
12 NoDrop
13 Arrow and Hourglass
14 Arrow and Question
15 Size All
99 Custom

There are constants available for the settings of this property.

MousePointer Property Applies To
SSDBCombo
SSDBCommand
SSDBData
SSDBOptSet

MousePointer Property See Also
MouseIcon

MoveFirst Method
See Also Applies To
Description

Moves to the first record in the grid.

Syntax
object . MoveFirst

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

MoveFirst Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

MoveFirst Method See Also
MoveLast
MoveNext
MovePrevious
MoveRecords

MoveLast Method
See Also Applies To
Description

Moves to the last record in the grid.

Syntax
object . MoveLast

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

MoveLast Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

MoveLast Method See Also
MoveFirst
MoveNext
MovePrevious
MoveRecords

MoveNext Method
See Also Applies To
Description

Moves to the next record in the grid.

Syntax
object . MoveNext

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

MoveNext Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

MoveNext Method See Also
MoveFirst
MoveLast
MovePrevious
MoveRecords

MovePrevious Method
See Also Applies To
Description

Moves to the previous record in the grid.

Syntax
object . MovePrevious

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

MovePrevious Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

MovePrevious Method See Also
MoveFirst
MoveLast
MoveNext
MoveRecords

MoveRecords Method
See Also Applies To Example
Description

Moves a specified number of records in the grid.

Syntax
object . MoveRecords(Records    As Long)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Records A long integer specifying the number of records in the grid to move.

Remarks
To move forward in the grid, specify a positive number of records.    If the number of
records to move exceeds the actual length of the grid, the last record will be selected.
To move backwards in the grid, specify a negative number of records.    If the number of
records to move exceeds the actual length of the grid, the first record will be selected.

MoveRecords Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

MoveRecords Method See Also
MoveFirst
MoveLast
MoveNext
MovePrevious

MultiLine Property Applies To
SSDBCombo
SSDBGrid

MultiLine Property See Also
WordWrap

MultiLine Property
See Also Applies To
Description

Determines whether the contol will display multiple lines of text.

Syntax
object . MultiLine[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression how text will be displayed, as described in Settings.

Settings
Setting Description

True (Default) The object will display multiple lines of text.
False Text for the object will be displayed on a single line.

Remarks
When applied to the DataGrid, the MultiLine property determines whether multiple lines of
text will be displayed in the cells of the grid.
When Applied to the DataCombo, MultiLine determines whether multiple lines will be
displayed in the edit portion of the combo.

Name Property
Applies To
Description

For the Font and HeadFont objects, returns or sets the font name.
For the StyleSet object, returns or sets the name of the StyleSet.
For the Column object, returns or sets the column name.

Syntax
object . Name[= font   ]
object . Name[= styleset   ]
object    .Name[= string   ]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

font A string expression specifying the name of the font to use.
styleset A string expression specifying the name of the styleset to use.
string A string    expression sepcifying the name of the column.

Remarks
The Font and Headfont objects are not directly available at design time.    At design time,
set the Name property through the control’s Font or Headfont property.    At runtime, you
can set Name directly by specifying its setting for the appropriate Font/Headfont object.
The Column object uses the name property as a unique identifier. The DataGrid control
will prevent the creation of duplicate names for column objects. The Name property is
independent of the Caption property for the object, but when referencing an object using
a string value, the control will first search through the column captions for a matching
string before searching the column names.
The Name property of the Column object primarily provides you with a way to create
columns with duplicate captions in a DataGrid that is in Unbound or AddItem mode.

Name Property Applies To
Font object
Headfont object
StyleSet object

Note on the control-level Bookmark property
This does not apply to the Bookmark property of the ssRowBuffer object.
The Bookmark property at the control level is a standard property that is returned as a
byte array. Some environments may treat the returned value as an integer, but that
behavior is not standard and should not be relied upon.
Note that when using a control in AddItem mode, the value returned by Bookmark is not
equivalent to the absolute row number. To obtain the row number, use the
AddItemRowIndex method.

Nullable Property
Applies To
Description

Determines how the control stores null or empty data in the database.

Syntax
object . Nullable[= number   ]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that specifies how null values will be stored, as
described in Settings.

Settings
Setting Description

0 Automatic. If a field contains a null value or an empty string, the control
will first check the data source to see if null values are allowed. If nulls are
allowed, a null value will be stored in the database. Otherwise an empty
string will be stored.

1 (Default) Null. The data will be stored as a null value.
2 Empty String. The data will be stored as an empty string value ("").

Remarks
Different databases deal with null values in different ways. Since the Data Widgets controls
are designed to work with a variety of data sources, the controls have the ability to query
the back end and find out which way to store null values. Depending on the type of
connection to the database, this can have a significant impact on performance.
Note If the database does not support null values, and you attempt to store nulls by
setting Nullable to 1, an error will result.
If you know how the database handles the storage of null values, you can improve
performance by setting the Nullable property to either 1 or 2. Setting this value to0 will
provide a greater range of compatibility, but performance will suffer.
If you encounter problems when you attempt to save a record that contains a null value,
you can change the setting of Nullable, which should fix the problem. In any case, you
should implement error-checking code to insure that the storage operation succeeded.
Note The setting of this property controls how the Data Widgets control will attempt to
store the null value. In some cases, the data control or the database back end may change
the null value before actually committing it to the database.
There are constants available for the settings of this property.

Nullable Property Applies To
Column object

NumberFormat Property
See Also Applies To Example
Description

Sets or returns the display format for the object.

Syntax
object . NumberFormat[= format]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

format A string expression that evaluates to the format string for the object.

Remarks
The NumberFormat property makes use of the same formatting strings as Visual Basic’s
Format function. These may be named format strings or user-defined format strings.

The following is a list of the named format strings that can be used with NumberFormat:
Format name Description

General Number Display number as is, with no thousand separators.
Currency Display number with thousand separator, if appropriate; display two

digits to the right of the decimal separator.    Note that output is based
on system locale settings.

Fixed Display at least one digit to the left and two digits to the right of the
decimal separator.   

Standard Display number with thousands separator, at least one digit to the left
and two digits to the right of the decimal separator.

Percent Display number multiplied by 100 with a percent sign (%) appended to
the right; always display two digits to the right of the decimal
separator.

Scientific Use standard scientific notation.
Yes/No Display No if number is 0; otherwise, display Yes.
True/False Display False if number is 0; otherwise, display True.
On/Off Display Off if number is 0; otherwise, display On.

Use the following as a guide to creating user-defined format strings for use with the
NumberFormat property:
Character Description

None No formatting. Display the number with no formatting.

0 Digit placeholder. Display a digit or a zero.    If the expression has a
digit in the position where the 0 appears in the format string, display it;
otherwise, display a zero in that position.

If the number has fewer digits than there are zeros (on either side of
the decimal) in the format expression, display leading or trailing zeros. 
If the number has more digits to the right of the decimal separator
than there are zeros to the right of the decimal separator in the format
expression, round the number to as many decimal places as there are
zeros.    If the number has more digits to the left of the decimal
separator than there are zeros to the left of the decimal separator in
the format expression, display the extra digits without modification.

Digit placeholder. Display a digit or nothing.    If the expression has a
digit in the position where the # appears in the format string, display
it; otherwise, display nothing in that position.
This symbol works like the 0 digit placeholder, except that leading and
trailing zeros aren't displayed if the number has the same or fewer
digits than there are # characters on either side of the decimal
separator in the format expression.

. Decimal placeholder. In some locales, a comma is used as the
decimal separator.    The decimal placeholder determines how many
digits are displayed to the left and right of the decimal separator.    If
the format expression contains only number signs to the left of this
symbol, numbers smaller than 1 begin with a decimal separator.    If
you always want a leading zero displayed with fractional numbers, use
0 as the first digit placeholder to the left of the decimal separator
instead.    The actual character used as a decimal placeholder in the
formatted output depends on the Number Format recognized by your
system.

% Percentage placeholder. The expression is multiplied by 100.    The
percent character (%) is inserted in the position where it appears in the
format string.

, Thousand separator. In some locales, a period is used as a thousand
separator.    The thousand separator separates thousands from
hundreds within a number that has four or more places to the left of
the decimal separator.    Standard use of the thousand separator is
specified if the format contains a thousand separator surrounded by
digit placeholders (0 or #).    Two adjacent thousand separators or a
thousand separator immediately to the left of the decimal separator
(whether or not a decimal is specified) means "scale the number by
dividing it by 1000, rounding as needed."
You can scale large numbers using this technique.    For example, you
can use the format string "##0,," to represent 100 million as 100.   
Numbers smaller than 1 million are displayed as 0.    Two adjacent
thousand separators in any position other than immediately to the left
of the decimal separator are treated simply as specifying the use of a
thousand separator.    The actual character used as the thousand
separator in the formatted output depends on the Number Format
recognized by your system.

: Time separator. In some locales, other characters may be used to

represent the time separator.    The time separator separates hours,
minutes, and seconds when time values are formatted.    The actual
character used as the time separator in formatted output is determined
by your system settings.

/ Date separator. In some locales, other characters may be used to
represent the date separator.    The date separator separates the day,
month, and year when date values are formatted.    The actual
character used as the date separator in formatted output is determined
by your system settings.

E- E+ e- e+ Scientific format. If the format expression contains at least one digit
placeholder (0 or #) to the right of E-, E+, e-, or e+, the number is
displayed in scientific format and E or e is inserted between the
number and its exponent.    The number of digit placeholders to the
right determines the number of digits in the exponent.    Use E- or e- to
place a minus sign next to negative exponents.    Use E+ or e+ to place
a minus sign next to negative exponents and a plus sign next to
positive exponents.

- + $ () space Literal character. Displays the character specified. To display a
character other than one of those listed, precede it with a backslash (\)
or enclose it in double quotation marks (" ").

\ Display the next character in the format string as a literal character.
Many characters in the format expression have a special meaning and
can't be displayed as literal characters unless they are preceded by a
backslash.    The backslash itself isn't displayed.    Using a backslash is
the same as enclosing the next character in double quotation marks.   
To display a backslash, use two backslashes (\\).
Examples of characters that can't be displayed as literal characters are
the date- and time-formatting characters (a, c, d, h, m, n, p, q, s, t, w,
y, and /:), the numeric-formatting characters (#, 0, %, E, e, comma,
and period), and the string-formatting characters (@, &, <, >, and !).

"ABC" Display the string inside the double quotation marks. To include a
string in format from within code, you must use Chr(34) to enclose the
text (34 is the character code for a double quotation mark).

NumberFormat Property Applies To
Column object

NumberFormat Property See Also
Visual Basic’s Format Function

NumberOfButtons Property
See Also Applies To Example
Description

Sets or returns the number of option buttons in the DataOptionSet.   

Syntax
object . NumberOfButtons[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of buttons in the
DataOptionSet.

Remarks
Valid range is 1 to 100 with 1 as the default at design time and 0 at runtime.

NumberOfButtons Property Applies To
SSDBOptSet

NumberOfButtons Property See Also
IndexSelected

Object Concepts
This section will be of special interest to programmers who have worked with earlier
versions of our custom controls. It highlights the major differences between the older
controls you may be familiar with and the newer controls you now have.
Object-oriented programming offers you greater power than before, with less work on your
part. However, because this is a new technology, there are some new concepts with which
you should be familiar. This section provides a brief introduction to some of the new
concepts you will encounter while using Sheridan custom controls.

Sub-objects and Collections
Data Widgets provides an object-oriented approach to programming through the use of
sub-objects    and collections. An object    refers to a single unit or entity within your
application which contains both code and data. Objects can contain other objects, which
have properties and methods of their own that can be examined and changed. Objects
may also contain collection    objects. A collection is a special type of object that contains
sub-objects that are all of the same type, or class.

You are probably familiar with the concept of sub-objects if you have used the Visual Basic
data control. The Recordset object is a sub-object of the Visual Basic Data Control. The
Recordset contains a collection sub-object called the Fields object, which contains
information that relates to all the fields in the Recordset collectively. The Fields collection
also contains the Field objects themselves, which store data and also information
pertaining to that data.

Objects within collections often have this type of "paired" arrangement; a single collection
object (Fields) which describes and contains the collection as a whole, and multiple
member objects (Field) which make up the collection. In addition, there is usually a
corresponding property of the same name as the object that returns information about the
object.
Collections have replaced property arrays as the preferred method for accessing sets of
controls at runtime. This means you no longer have to specify an array for each property
you wish to access, and there are fewer special property names. For example, previously
to set the alignment of the fifth column in a DataGrid control, you would have used the
following code:

SSDBGrid1.ColAlignment(4) = 0 'Left aligned
Now, you would use the standard Alignment property, specifying instead the object in the
collection to which it will apply:
SSDBGrid1.Columns(4).Alignment = 0 'Left Aligned
This makes it especially easy to apply multiple properties to an object using the new With.. End With statements
in Visual Basic 4.0:

With SSDBGrid1.Columns(4)
.Alignment = 0
.BackColor = vbRed
.ForeColor = vbWhite
.Caption = "Column 5"

EndWith

This control's object type is:
SSDBCombo

This control's object type is:
SSDBCommand

This control's object type is:
SSDBDropDown

This control's object type is:
SSDBGrid

This control's object type is:
SSDBOptSet

This control's object type is:
SSDBData

Object Summary
ActiveCell
Bookmark
Button
Column
Font
Group
HeadFont
ssRowBuffer
StyleSet

Odd Row (Row 1)

Optimizing Data Widgets

Improving Load Time
By default, the Data Grid, Data Combo, and Data DropDown custom controls each go
to the last record in a record set to determine the exact number of rows.    The
controls do this to give an accurate number of rows in the Rows property.    However,
with large databases, this could cause a decrease in performance.
To turn this option off, set the UseExactRowCount property to False.    This will
cause the control to estimate the number of rows in the record set.    If this property is
set to False, do not rely on the Rows property for an accurate number of rows.    If
you do a MoveLast on the data control’s record set, the Rows property will be
accurate.

Optimizing the Data Combo and Data DropDown
The Data Combo and Data DropDown can be optimized when performing certain
functions.    There are two functions that the controls perform automatically which can
be overridden.

Auto List Validation
The Data Combo and Data DropDown automatically perform validation of the
value in the edit portion of the Data Combo or the cell of a Data Grid against
the values in the list portion to find a match.    in some circumstances, this
validation can be very slow, since the control must sequentially search the
entire database.    With large databases, this operation can be quite slow.    To
turn this feature off and perform you own validation of the field, set the
ListAutoValidate property to False.    This will cause the control to skip the
validation process and trigger the ValidateList event.

Auto Positioning
Another specific way of optimizing the performance of the Data Combo or
Data DropDown controls is to set the ListAutoPosition property to False.   
This turns off the automatic positioning of the list based on the contents of the
edit portion of the Data Combo or cell of the Data Grid.    Instead, the
PositionList event will be triggered.   
Similar to the validation of data against the list, the positioning requires the
control to search the list sequentially which can cause a performance penalty
with large databases.

OptionValue Property
See Also Applies To Example
Description

The value that is compared against or given to the bound field.    When reading from a
database, if the two values are equal, then the button is selected.    When writing to the
database, the field will receive the value indicated in the OptionValue property.

Syntax
object . OptionValue[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Text A string expression that evaluates to the value of a field.

Remarks
Each button must have unique option values.

OptionValue Property Applies To
Button object
SSDBOptSet

OptionValue Property See Also
DataField
DataSource

Orientation Property
Applies To
Description

Sets or returns the control’s display orientation, either horizontal or vertical.

Syntax
object . Orientation[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the display orientation of the control, as
described in Settings.

Settings
Setting Description

0 (Default) The control will be displayed horizontally.
1 The control will be displayed vertically.

There are constants available for the settings of this property.

Remarks
The Align property will automatically change the state of the Orientation property as
needed if these properties do not coincide.

Orientation Property Applies To
SSDBData

Visual C++ Examples
ActiveCell Object example
Create StyleSet example
Create StyleSet with Wrapper class example
Get SelBookmarks with Wrapper

See Also: Answers to Common Questions

PageValue Property
Applies To Example
Description

Determines the number of rows the control will move forward or backward in the record
set when the user moves to the next or previous page.

Syntax
object . PageValue[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of rows.   

Remarks
SSDBCommand: Valid range is 2-1000.    The default value is 20.
SSDBData: Valid range is 1-300.    The default value is 20.

PageValue Property Applies To
SSDBCommand
SSDBData

Performance Tuning
Data Widgets 2.0 provides a number of ways for you to improve the performance of your
applications. In addition to the following suggestions, you may also be able to increase the
performance of controls operating in Bound mode by changing the settings of your
database engine. Consult the documentation for your development environment for
information on how to do this.

Bound Mode Performance Tuning
When using the Data Combo, Data DropDown or DataGrid in Bound mode, you can set the
UseExactRowCount property to False to increase performance. However, doing so will
reduce the accuracy of the control in estimating the true size of the record set. This
primarily effects the scroll bar; the size and placement of the "thumb" will be less accurate
when UseExactRowCount is set to False.
When using the Data Combo or Data DropDown, setting ListAutoPosition to False will
further speed up the operation of the control, as it will not have to perform a search until
the full text string is entered. When ListAutoPosition is True, the control will perform a
search as each keystroke is entered. See below for more information on using
ListAutoPosition in Unbound mode.
Some data sources, particularly remote data sources, may respond slowly when queried
for information. The Data Widgets controls sometimes request information from the data
source "behind the scenes" in order to perform routine functions. Disabling requests for
default information can further improve performance. You may want to try different
settings for the Nullable and UseDefaults properties to see if you can gain an
improvement when using remote data sources.

Unbound Mode Performance Tuning
Performance can be enhanced in Unbound mode through use of the ReadType property of
the ssRowBuffer object. You can check the value of this property during an
UnboundReadData event and use it to optimize the code you are using to perform the
read. Refer to the example code for the ReadType property for a complete illustration of
this concept.
Often, a control in Unbound mode does not require all the information from your data
source. For example, when you are repositioning the data in a DataGrid by dragging the
thumb on the scroll bar, the control does not need to read each column of data for the
records you are passing through. A bookmark alone is sufficient to tell the control whether
it has reached the correct position in the data set. If your code is returning the information
from each field during this operation, that information is read and discarded, seriously
degrading performance. By checking the value of ReadType, you can determine what
type of operation the control is performing, and return only the data required, in this case
the bookmark for each row.
Another situation in which correct use of the ReadType property can really speed up your
application is when using the DataCombo or the DataDropdown in Unbound mode with the
ListAutoPosition property set to True. In this mode, the control will attempt to position
itself according to what the user types in the edit portion of the control, effectively
executing a new search with each keystroke. Again, if your code returns the values for
every column in the control's data source, your application will spend extra time retrieving
unneeded data. The only data required in this case is the bookmark of each row and the
value of the single column to which the control is bound. This is the only field used in the
search, so other data would be superfluous. By examining the setting of ReadType before
performing the read, your UnboundReadData code will spend its time retrieving only the

required data.
To optimize scrolling performance of controls in Unbound mode, use the
UnboundPositionData event. This event allows you to specify a particular location in the
data set to begin the display of records. This eliminates the need to read through all the
rows between the current row and the new position. For example, if the grid is currently at
row 5, and the user scrolls to row 7000, you can use the UnboundPositionData event to
bypass reading rows 6 to 6999, thus eliminating approximately 700 calls to the
UnboundReadData event.
If you know the size of the record set you are using in Unbound mode, you can set the
Rows property of the control to the number of records. This allows the control to optimize
the number of rows that must be read at one time.

AddItem Mode Performance Tuning
To improve the performance of a control functioning in AddItem mode, be sure to set the
Redraw property to False before adding a block of items. You must then set Redraw to
True once you have finished adding the data. This provides two performance benefits. First,
it disables repainting of the control while new items are being added, eliminating the
graphics overhead of drawing each entry (and display flicker which might distract the
user.) Second, setting the Redraw property sets a flag inside the control which determines
how data caching is handled. With Redraw set to False, data caching is optimized for
block additions, further enhancing control performance.

Performing calculations on the values in a DataGrid

How would you like the totals to be displayed?

Display column totals in a separate control (i.e. a text box)
Display computed values from a row in their own column

Picture Property
See Also Applies To Example
Description

Determines a picture object for display.

Syntax
object . Picture[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap, Icon, Metafile) Determines a graphic.    You can load the graphic from the

properties window at design time.    At runtime, you can set this
property using the LoadPicture function on a bitmap, icon, or
metafile.

Remarks
This property will set the picture for the specified object.    If the picture is a Windows
metafile, you must also set the height and width used to display the picture via the
appropriate PictureMetaHeight and PictureMetaWidth properties for this object.

Picture Property Applies To
Button object
SSDBCommand
SSDBOptSet

Picture Property See Also
AutoSize
PictureMetaHeight
PictureMetaWidth
PictureAlignment

PictureAlignment Property
See Also Applies To
Description

Determines the alignment of the graphic specified in the Picture property.

Syntax
object . PictureAlignment[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the alignment of the picture as described
in Settings.

Settings (SSDBCommand)

Setting Description

0 (Default) Left justify - Top
1 Left justify - Middle
2 Left justify - Bottom
3 Right justify - Top
4 Right justify - Middle
5 Right justify - Bottom
6 Centered - Top
7 Centered - Middle
8 Centered - Bottom
9 Left of caption
10 Right of caption
11 Above caption
12 Below caption
13 Stretch
14 Tile

There are constants available for the settings of this property.

Settings (SSDBOptSet)

Setting Description

0 Left of text
1 (Default) Right of text
2 Fit to caption
3 Tile

There are constants available for the settings of this property.

Remarks
For the SSDBOptSet control, this property determines placement of the picture relative to
the option button.    This property is control-specific, and affects all buttons within the
SSDBOptSet control.

The following examples demonstrate the various alignment positions as it applies to the SSDBOptSet
control:

This is left of text This is right of text

This is fit to caption This is tiled

PictureAlignment Property Applies To
SSDBCommand
SSDBOptSet

PictureAlignment Property See Also
CaptionAlignment

PictureButton Property
See Also Applies To
Description

Determines the picture to be used for the default button.

Syntax
object . PictureButton[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap) Determines a graphic.    You can load the graphic from the properties

window at design time.    At runtime, you can set this property using the
LoadPicture function on a bitmap.

Remarks
This property will set the picture for the button (an ellipsis by default).

PictureButton Property Applies To
SSDBGrid

PictureButton Property See Also
PictureComboButton
PictureRecordSelectors

PictureButtons Property
See Also Applies To Example
Description

Determines the file containing the pictures to be used for each button in the control.

Syntax
object . PictureButtons[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap) Determines a graphic containing the pictures to be used for each button in

the control.

Remarks
The default bitmaps used for the picture buttons are built into the control.    A bitmap file is
supplied to use as a guide when creating custom bitmaps.
Bitmaps for all buttons must be included in the file even if the button will be turned off.   
Buttons can be any size, divided into equal parts.
SSDBData requires a bitmap be used.    When this property is set to "None", the default
bitmap built into the control will be used.    If you have selected an external bitmap,
"Bitmap" will appear in the properties list.

PictureButtons Property Applies To
SSDBData

PictureButtons Property See Also
PictureCaption
PictureCaptionAlignment

PictureCaption Property
See Also Applies To
Description

Determines the picture to be drawn in the caption section of the control.

Syntax
object . PictureCaption[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap, Icon, Metafile) Determines a graphic for the caption area of the control.

Remarks
If you wish to set this property at runtime, you must use the syntax:

PictureCaption = LoadPicture("filename")

PictureCaption Property Applies To
SSDBData

PictureCaption Property See Also
PictureButtons
PictureCaptionAlignment

PictureCaptionAlignment Property
See Also Applies To
Description

Determines how the caption picture will be aligned within the caption section of the control
relative to the caption text.

Syntax
object . PictureCaptionAlignment[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying which display state to use, as described
in Settings.

Settings
Setting Description

0 Left - Top
1 Left - Middle
2 Left - Bottom
3 Right - Top
4 (Default) Right - Middle
5 Right - Bottom
6 Center - Top
7 Center - Middle
8 Center - Bottom
9 Left of Caption
10 Right of Caption
11 Above Caption
12 Below Caption
13 Fit to Caption
14 Tile

There are constants available for the settings of this property.

PictureCaptionAlignment Property Applies To
SSDBData

PictureCaptionAlignment Property See Also
PictureButtons
PictureCaption

PictureCaptionMetaHeight
Applies To
Description

Sets or returns the height of a picture if it is a metafile.

Syntax
object . PictureCaptionMetaHeight[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that evaluates to the height of a metafile selected
as a picture.

Remarks
This property affects the PictureCaption of the Enhanced Data Control.

PictureCaptionMetaHeight Applies To
SSDBData

PictureCaptionMetaWidth
Applies To
Description

Sets or returns the width of a picture if it is a metafile.

Syntax
object . PictureCaptionMetaWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that evaluates to the width of a metafile selected as
a picture.

Remarks
This property affects the PictureCaption of the Enhanced Data Control.

PictureCaptionMetaWidth Applies To
SSDBData

PictureComboButton Property
See Also Applies To
Description

Determines the picture to be used for the dropdown button.

Syntax
object . PictureComboButton[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap) Determines a graphic.    You can load the graphic from the properties

window at design time.    At runtime, you can set this property using the
LoadPicture function on a bitmap.

PictureComboButton Property Applies To
SSDBGrid

PictureComboButton Property See Also
PictureButton
PictureRecordSelectors

PictureDropDown Property
Applies To
Description

Returns or sets a Picture object for the picture that will appear on the dropdown button in
place of the down arrow.

Syntax
object . PictureDropDown[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture An expression specifying a graphic, as described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap) Determines a graphic.    You can load the graphic from the properties

window at design time.    At runtime, you can set this property using the
LoadPicture function.

PictureDropDown Property Applies To
SSDBCombo

PictureMetaHeight Property
See Also Applies To
Description

Sets or returns the height of a picture if it is a metafile.

Syntax
object . PictureMetaHeight[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that evaluates to the height of a metafile selected
as a picture.

PictureMetaHeight Property Applies To
Button object
SSDBCommand
SSDBOptSet

PictureMetaHeight Property See Also
Picture
PictureMetaWidth

PictureMetaWidth Property
See Also Applies To
Description

Sets or returns the width of a picture if it is a metafile.

Syntax
object . PictureMetaWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that evaluates to the width of a metafile selected as
a picture.

PictureMetaWidth Property Applies To
Button object
SSDBCommand
SSDBOptSet

PictureMetaWidth Property See Also
Picture
PictureMetaHeight

PictureRecordSelectors Property
See Also Applies To
Description

Determines the segmented bitmap for the record selectors graphic.

Syntax
object . PictureRecordSelectors[= picture]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

picture A string expression specifying the name of a file containing a graphic, as
described in Settings.

Settings
Setting Description

(None) (Default) No Picture.
(Bitmap) Determines a graphic.    You can load the graphic from the properties

window at design time.    At runtime, you can set this property using the
LoadPicture function on a bitmap.

Remarks
By default, the record selectors are shown as an arrow, pencil, or an asterisk.    This
property allows you to specify your own segmented bitmap showing all three states (active
record, dirty record, new record).
The control will automaticallly split the graphic in thirds, therefore all three images must
be equal in size, and in the order of the state you wish to use (active, dirty, and new).

PictureRecordSelectors Property Applies To
SSDBGrid

PictureRecordSelectors Property See Also
PictureButton
PictureComboButton

Position Property
See Also Applies To
Description

Sets or returns the visible position of the column or group within the grid.

Syntax
object . Position[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the position of the object.

Remarks
The position number is relative to the entire grid. The Position of a given column does not
reflect group assignments.
Position is a 1-based property. The leftmost column that is visible in the grid has a
Position value of one. The next column to the right has a Position of two, regardless of
whether it is in the same group as the first column.
When the grid is scrolled horizontally, Position is updated dynamically as columns and
groups move across the visible area of the control. Also, if columns are re-arranged within
the grid, either through code or via drag-and-drop, their Position changes accordingly.

Position Property Applies To
Column object
Group object

Position Property See Also
ColPosition method
GrpPosition method

PositionList Event
See Also Applies To
Description

Occurs when the control needs to position the dropdown list to match the contents of the
edit portion or for SSDBDropDown, the cell value in the Data Grid.

Syntax
Sub control_PositionList (Text    As String)

Part Description

Text The text to match in the list of values

Remarks
If the control has the ListAutoPosition property set to False, the control will trigger this
event when it needs to position the list so that the current edit text appears in the visible
portion of the list.
When this event occurs, the Text parameter will contain the value to search for in the list.
You should set the ListAutoPosition property to False and process this event to optimize
list positioning in large sets.    Since the control cannot position a data control using index
fields due to a Visual Basic limitation, using the data control ‘Find’ methods in this event
can significantly improve positioning time.

PositionList Event Applies To
SSDBCombo
SSDBDropDown

PositionList Event See Also
ListAutoPosition

Property Summary

 (About)
(Custom)

A
ActiveRowStyleSet
Alignment    (Column Object)
Alignment    (SSDBData)
AlignmentPicture
AlignmentText
AllowAddNew
AllowColumnMoving
AllowColumnShrinking
AllowColumnSizing
AllowColumnSwapping
AllowDelete
AllowDragDrop
AllowGroupMoving
AllowGroupShrinking
AllowGroupSizing
AllowGroupSwapping
AllowInput
AllowNull
AllowRowSizing
AllowSizing
AllowUpdate
AutoRestore
AutoSize

B
BackColor
BackColorEven
BackColorOdd
BalloonHelp
BevelColorFace
BevelColorFrame
BevelColorHighlight

BevelColorScheme
BevelColorShadow
BevelInner
BevelOuter
BevelType
BevelWidth
Bold
Bookmark (ssRowBuffer)
BookmarkDisplay
BookmarksToKeep
BorderStyle
BorderWidth
ButtonEnabled
ButtonsAlways
ButtonSize
ButtonVisible

C
Caption
CaptionAlignment
Case
CellNavigation
CheckBox3D
Col
ColChanged
ColOffSet
ColorMask
ColorMaskEnabled
Cols
ColumnHeaders
ColWidth
ComboDroppedDown
Count

D
DatabaseAction
DataField
DataFieldList
DataFieldToDisplay
DataMode
DataSourceList

DataType
DefColWidth
DelayInitial
DelaySubsequent
DividerStyle
DividerType
DroppedDown

F
FieldDelimiter
FieldLen
FieldSeparator
FindBufferSize
FindDialog
FindFieldExclude
FindFieldInclude
FirstRow
Font3D
ForeColorEven
ForeColorOdd

G
GroupHeaders
GroupHeadLines

H
HasBackColor
HasForeColor
HasHeadBackColor
HasHeadForeColor
HeadBackColor
HeadFont3D
HeadForeColor
HeadLines
HeadStyleSet
HeightGap
hWndEdit

I
IndexSelected
Italic

L
LeftCol
LeftGrp
Level
LevelCount
List
ListAutoPosition
ListAutoValidate
ListWidth
ListWidthAutoSize
Locked

M
MaintainBtnHeight
MaxDropDownItems
MaxSelectedRows
MinColWidth
MinDropDownItems
MinHeight
MouseIcon
MousePointer
MultiLine

N
Name
Nullable
NumberFormat
NumberOfButtons

O
OptionValue
Orientation

P
PageValue
Picture
PictureAlignment
PictureButton
PictureButtons
PictureCaption

PictureCaptionAlignment
PictureCaptionMetaHeight
PictureCaptionMetaWidth
PictureComboButton
PictureDropDown
PictureMetaHeight
PictureMetaWidth
PictureRecordSelectors
Position

R
ReadType
RecordSelectors
Redraw
ResizeHeight
ResizeWidth
RotateText
RoundedCorners
Row
RowChanged
RowCount
RowHeight
RowNavigation
RowOffset
RowSelectionStyle
Rows

S
SavedBookmark
Scrollbars
SelectByCell
Selected
SelectTypeCol
SelectTypeRow
ShowAddButton
ShowBookmarkButtons
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons

ShowUpdateButton
Size
SplitterPos
SplitterVisible
Strikethrough
String
Style
StyleSet

T
TabNavigation
TagVariant
Text
TextFormat

U
Underline
UseDefaults
UseExactRowCount

V
Value    (Bookmark Object)
Value    (Other Objects)
VertScrollBar
VisibleCols
VisibleGrps
VisibleRows

W
WidthGap
WordWrap

Property Pages
Sheridan Software custom controls support a feature known as property pages.    Property
pages provide an interface through which you can view and modify the properties of your
custom control objects. The purpose of property pages is twofold. First, property pages
allow you to set properties at design time that would not otherwise be available - the so-
called "runtime" properties.    Second, property pages allow you to modify your control in a
host environment that does not provide a property sheet.

The Property Pages Interface
The property pages provide access to a different aspect of a control’s behavior. What
appears in a given dialog will depend on the features that the control supports. There will
always be at least one tab called ‘Properties’ which lists all the properties of the control.
Other tabs may support added functions or utilities.
Properties are listed in a hierarchical menu structure similar to the tree view of the
Windows File Manager. This structure makes it easy for you to access the properties of sub-
objects and collections. As you choose a property name from the tree on the left, the valid
settings for that property appear on the right, enabling you to examine or modify them.

Accessing Property Pages
The method you use to access the property pages of your control depends on two things;
the version of the control you are using, and the host environment in which you are using
the control.
Many host environments support the use of the right mouse button to pop up a context-
specific menu. In these environments, you simply click on your control with the right
mouse button, and choose ‘Property Pages’ or ‘Properties’ from the pop-up menu.
If this behavior is not supported, use the property sheet of your design environment. You
will see a property labeled ‘(Custom)’ in the property sheet. By double-clicking this
property or choosing the ellipsis (...) button, you can invoke the property pages for the
selected control.
If neither of these methods are supported, you will need to consult the documentation of
your host environment for information on how to change the properties of objects. You may
need to choose a special menu option, or perform a shifted mouse-click or double-click on
the control. Try searching your environment’s online help file for references to objects,
embedded objects, object properties, object settings, OLE linking, OLE servers, or
properties.

Note For the SSDBCombo, SSDBDropDown, and SSDBGrid controls, property pages are
replaced by the Grid Editor which performs all functions of a property page.

ReadType Property
See Also Applies To Example
Description

Determines what data is needed by the RowBuffer object in the UnboundReadData
event.

Syntax
object . ReadType[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying which type of unbound read to perform,
as described in Settings.

Settings
Setting Description

0 Read all (data and bookmarks)
1 Read bookmarks only
2 Read all bookmarks and data for bound column only
3 Read all bookmarks and data for displayed column only.

There are constants available for the settings of this property.

Remarks
This property can be used to optimize performance when using the controls in unbound
mode.
This property is used during the UnboundReadData event to determine how the control
will retrieve the unbound data. When set to 0, the control is requesting all unbound data,
including bookmarks and field values. A setting of 1 means the control needs only
bookmarks, such as when searching for a bookmark. A setting of 2 means the control must
retrieve all bookmarks but only the data for bound column. This occurs when the control is
searching for a bookmark using data from the bound column, and is limited to the
DataDropDown and DataCombo controls.The last setting is for use with a DataCombo or
DataDropDown that has a value set for the DataFieldToDisplay property. This setting will
return bookmarks and the data from the field being displayed by the control.
This property is unavailable at design time and is read-only at run time.

ReadType Property Applies To
ssRowBuffer

ReadType Property See Also
DataFieldToDisplay property
UnboundReadData event

Performance Tuning

ReBind Method
Applies To Example
Description

In bound mode, rebinds the grid to the database.
In unbound mode, refreshes the unbound grid by setting rowcount to 0 and rereading data
from the top.

Syntax
object . ReBind

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

ReBind Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Record Selectors

RecordSelectors Property
Applies To
Description

Determines whether record selectors will be displayed.

Syntax
object . RecordSelectors[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether record selectors are displayed, as
described in Settings.

Settings
Setting Description

True (Default) Record selectors will be displayed.
False Record selectors will not be displayed.

Remarks

If RecordSelectors is set to False, the only way the user can select an entire row is if
AllowUpdates is set to False and SelectByCell is set to True.

RecordSelectors Property Applies To
SSDBGrid

Redraw Property
Applies To Example
Description

Determines whether the control should be redrawn during updating.

Syntax
object . Redraw[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the control should be redrawn, as
described in Settings.

Settings
Setting Description

True (Default) The control is redrawn.
False The control is not redrawn.

Remarks
When Redraw is set to false, the contents of the control will not be updated after each
change and will not be repainted until the Redraw property is set true. This is especially
useful for situations where you want to perform a number of changes to the control (such
as adding items to an AddItem grid) and then repainting it once to reflect these changes.
Note When the control is operating in AddItem mode, rows added while Redraw is set to
False are not available until Redraw is reset to True, even if accessed through code. This is
a function of the way the Redraw property affects data cacheing to improve performance
during block additions. When Redraw is set to True, any cached data becomes available in
the grid.

Redraw Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Remove Method
See Also Applies To Example
Description

Used to remove a specified object from a collection.

Syntax
object . Remove(Index    As Variant)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Index Required. An integer expression which determines the index of the object
to be removed.

Remarks
The Remove method is used to remove individual objects.    To delete all objects in a
collection, use the RemoveAll method.
When the Remove method is used, all objects that come after the deleted object will be
shifted up.

Remove Method Applies To
Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

Remove Method See Also
Add method
Count property
RemoveAll method

RemoveAll Method (AddItem Mode)
Applies To Example
Description

Removes all rows from an AddItem grid.

Syntax
object . RemoveAll

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

RemoveAll Method (AddItem Mode) Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RemoveAll Method (Collections)
See Also Applies To Example
Description

Removes all objects from a collection.

Syntax
object . RemoveAll

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
For Bookmarks, the RemoveAll method removes all bookmarks from a collection, setting
the Count property to 0.
For Buttons, the RemoveAll method removes all buttons from a collection, setting the
IndexSelected value to -1.
For Columns and Groups, the RemoveAll method removes all columns from a collection,
setting the Count property to 0.

RemoveAll Method (Collections) Applies To
Bookmarks collection
Buttons collection
Columns collection
Groups collection
SelBookmarks collection
StyleSets collection

RemoveAll Method (Collections) See Also
Add method
Remove method

RemoveAll Method (Column Object)
Applies To Example
Description

Removes all items from a column’s combo box.

Syntax
object . RemoveAll

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

RemoveAll Method (Column Object) Applies To
Column object

RemoveItem Method (AddItem Mode)
Applies To Example
Description

Removes a string at the specified row from an AddItem grid.

Syntax
object . RemoveItem([Row    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Row A variant specifying the row to remove.

Remarks
This method is useful for removing rows one at a time.    Use the RemoveAll method to
erase an AddItem grid.

RemoveItem Method (AddItem Mode) Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RemoveItem Method (Column Object)
Applies To Example
Description

Removes an item from a combo box.

Syntax
object . RemoveItem(Index    As Integer)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

index An integer specifying the index number of the item to remove.

RemoveItem Method (Column Object) Applies To
Column object

Reset Method
Applies To
Description

Destroys the associated layout for a control.

Syntax
object . Reset

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
The reset method is useful for when the programmer changes the DataSource and needs
to create a new layout.

Example
The following example resets the layout, changes the data mode, and creates a new
layout:

SSDBGrid1.Reset
SSDBGrid1.DataMode = 2
SSDBGrid1.Cols = 2
SSDBGrid1.Columns(0).Caption = "Name"
SSDBGrid1.Columns(1).Caption = "Social Security Number"
SSDBGrid1.Refresh ‘ Needed to display new layout

Reset Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ResizeHeight Property
See Also Applies To
Description

Sets or returns the height of rows after the user resizes a row.

Syntax
object . ResizeHeight[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that evaluates to the new height.

Remarks
This property is only valid when used in the RowResize event procedure.    This property
allows you to limit the resizing of rows.

ResizeHeight Property Applies To
SSDBGrid

ResizeHeight    See Also
ResizeWidth

ResizeWidth Property
See Also Applies To
Description

Sets or returns the width of a group or column after the user resizes it.

Syntax
object . ResizeWidth[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that evaluates to the new width of the column or
group.

Remarks
This property is only valid when used in the ColResize or GrpResize event procedures.
This property allows you to limit the resizing of columns or groups.

ResizeWidth Property Applies To
SSDBGrid

ResizeWidth Property See Also
ResizeHeight

RotateText Property
See Also Applies To
Description

Determines whether caption text should be rotated.

Syntax
object . RotateText[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether caption area text should be
rotated, as described in Settings.

Settings
Setting Description

True Caption area text will be rotated.
False (Default) Caption area text will not be rotated.

Remarks
This property is most useful if the Orientation property is set so that the control displays
vertically.    If the caption is rotated and the font selected is a TrueType font, each letter of
the caption is rotated 90 degrees.

RotateText Property Applies To
SSDBData

RotateText Property See Also
Caption
Orientation

RoundedCorners Property
Applies To
Description

Determines whether the control should be displayed with rounded corners or square
corners.

Syntax
object . RoundedCorners[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying whether to display rounded corners, as
described in Settings.

Settings
Setting Description

False Control will be displayed with square corners.
True Control will be displayed with rounded corners.

Remarks
The following is an example of a Data Command button without rounded corners:

The following is an example of a Data Command button with rounded corners:

RoundedCorners Property Applies To
SSDBCommand
SSDBData

Row Property
See Also Applies To
Description

Sets or returns the current display row.

Syntax
object . Row[= rownumber]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

rownumber An integer expression specifying the current row.

Remarks
This property is only available at runtime.
The Row property reflects the value of the visible row, not the absolute row. See What's
New for more information on the difference between visible and absolute row numbers.
To bring record into view, you have to set current bookmark.    The Row property will only
affect a row currently in display.
This value is zero based.

Row Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Row Property See Also
Col
Grp
VisibleRows

RowBookmark Method
Applies To Example
Description

Returns a bookmark of a row in the grid’s display area.

Syntax
object . RowBookmark(RowNumb    As Long)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

RowNumb A long integer specifying the row of the bookmark to return.

Remarks
Bookmarks returned by this method should not be saved since the values change as
visible rows change.
The bookmark returned is a variant data type.

RowBookmark Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RowChanged Property
Applies To
Description

Determines if any data in row has been changed.    Setting to False performs an undo of
any changes and takes the cell out of edit mode.

Syntax
object . RowChanged[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether data in the row has changed, as
described in Settings.

Settings
Setting Description

True Data in row has changed.
False Data in row has not changed.

Remarks
When a new row is read into the grid, this property is automatically set to false.

RowChanged Property Applies To
SSDBGrid

RowColChange Event
See Also Applies To
Description

Occurs just after the user changes the current row or column.

Syntax
Sub control_RowColChange ([LastRow] As Variant] [LastCol] As Integer])

The event parameters are:
Parameter Description

LastRow A variant identifying the previous row before the change.    If the row has
not changed, this will equal the current row.

LastCol An integer identifying the previous column before the change.    If the
column has not changed, this will equal the current column.

Remarks
This event is triggered just after the current column or row changes.    If both the column
and row change, the event will only be fired once. This event will only occur if the change
was not cancelled by the BeforeRowColChange event
You can use this event to set up the newly entered cell. For example, if the cell is a drop-
down type, you could set the DroppedDown property to True to automatically drop down
the list when the cell is entered.

RowColChange Event Applies To
SSDBGrid

RowColChange Event See Also
BeforeRowColChange
RowLoaded

RowContaining Method
See Also Applies To
Description

Returns the index of the row under a y-coordinate.

Syntax
object . RowContaining(Y    As Single)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Y A floating point variable specifying the index of the row.

Remarks
The value range is 0 to VisibleRows-1.
If the specified coordinate is out of range, an error occurs.

RowContaining Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RowContaining Method See Also
ColContaining

RowCount Property
See Also Applies To Example
Description

Returns the total number of rows requested by the object.

Syntax
object . RowCount [= integer   ]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

integer An integer expression specifying the number of rows the Row Buffer will
contain. Must be a value from 0 to 10.

Remarks
The RowBuffer object is used to transfer data to a control when it is operating in unbound
mode. The size of the RowBuffer is fixed at ten rows - setting the RowCount property to a
higher value will not increase the number of rows in the RowBuffer; it will cause an error.
The main purpose of the RowCount property is to signal the control that all the available
unbound data has been read. Generally, you will set the value of RowCount to zero in the
UnboundReadData event when you begin reading data into the buffer, incrementing it
with each row that is read. If there are more than ten rows of data available, the buffer will
fill up, the value of RowCount will be set to 10 and the control will request another ten
rows via the UnboundReadData event. Your code would reset the count of rows read to
zero, and begin incrementing it again. This will continue until you reach the end of the data
set.
When the last rows of data are reached, at some point the RowBuffer will contain less than
ten rows of data, and your code will set the RowCount property to a value less than ten.
This signals the control that all of the data has been read, and it will not fire another
UnboundReadData event.

RowCount Property Applies To
ssRowBuffer object

RowCount Property See Also
UnboundReadData event

RowHeight Property
See Also Applies To
Description

Sets or returns the height of the rows.

Syntax
object . RowHeight[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the height of every row.

Remarks
All rows are the same height.

RowHeight Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RowHeight Property See Also
DefColWidth

RowLoaded Event
See Also Applies To Example
Description

Occurs when the grid loads a row of data that has scrolled into view.

Syntax
Sub control_RowLoaded (Bookmark    As Variant)

The event parameters are:
Parameter Description

Bookmark A variant specifying the bookmark of the row that has been loaded.

Remarks
If the control is used in bound mode, this event is triggered after the control has loaded the
row values in memory.    The event then gives you the chance to change the values of the
columns.
For unbound mode, this event is triggered so that you can set the values of the text in
each column.
Certain properties are affected by the RowLoaded event, in that where they normally
affect an active row, they will affect the loaded row within the RowLoaded event.    An
example of such a property is Text.    Any properties that behave different within the
RowLoaded event are noted in the Remarks section of their description.

RowLoaded Event Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RowLoaded Event See Also
RowColChange

RowNavigation Property
See Also Applies To
Description

Determines how the arrow keys respond when navigating rows in the grid.

Syntax
object . RowNavigation[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying how arrow keys work when navigation
rows, as described in Settings.

Settings
Setting Description

0 (Default) Full navigation allowed.
1 Left and right arrow keys locked by row.
2 Up and down arrow keys locked by row.
3 All arrow keys locked by row.

There are constants available for the settings of this property.

Remarks
Pressing the Left arrow key when in the first cell of a row moves you to the last cell of the
previous row.    Likewise, pressing the right arrow key when in the last cell of a row moves
you to the first cell of the next row.
Pressing the Up arrow key moves you to the same cell of the previous row, pressing the
Down arrow key moves you to the same cell of the next row.

RowNavigation Property Applies To
SSDBGrid

RowNavigation Property See Also
CellNavigation

RowOffset Property
See Also Applies To
Description

Determines the vertical offset used to draw the button.

Syntax
object . RowOffset[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the horizontal offset used to draw a
button.

Remarks
Offset is determined from the button’s original position.    The value range for this property
is -32767 to 32767 with a default value of 0.
The following example demonstrates the effect of the RowOffset property.    The last button
has a RowOffset value of 5:

RowOffset Property Applies To
Button object
SSDBOptSet

RowOffset Property See Also
ColOffSet

RowResize Event
Applies To
Description

Occurs when the user has resized the rows.

Syntax
Sub control_RowResize (Cancel    As Integer)

The event parameters are:
Parameter Description

Cancel An integer expression that specifies whether the operation occurs.

Remarks
Setting Cancel = True cancels the resizing process and stops the screen from being
redrawn so that it appears that the resize never occurs.

RowResize Event Applies To
SSDBGrid

RowSelectionStyle Property
See Also Applies To
Description

Determines how a row will appear when selected.

Syntax
object . RowSelectionStyle[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying how a row appears when selected, as
described in Settings.

Settings
Setting Description

0 ListBox style (using System colors for highlight).
1 (Default) Invert colors.
2 3D appearance.

There are constants available for the settings of this property.

RowSelectionStyle Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

RowSelectionStyle Property See Also
ActiveRowStyleSet

RowTop Method
Applies To
Description

Returns the y-coordinate of the top of a row.

Syntax
object . RowTop(RowNum    As Integer)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

rownum An integer specifying the row number.

RowTop Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Rows Property
See Also Applies To
Description

Sets or returns the number of rows in the grid.

Syntax
object . Rows[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of rows.

Remarks
At runtime, Rows is read-only.   
At design time, this property determines the amount of rows to display in Unbound or
AddItem modes.    When working in bound mode, this property is automatically set,
deriving the information from the database.

Rows Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Rows Property See Also
Col
Cols
Row
UnboundReadData

This control is located in:
SSDATA16.OCX, SSDATA32.OCX

This control is located in:
SSDATB16.OCX, SSDATB32.OCX

SavedBookmark Property
Applies To Example
Description

Sets or returns the currently saved bookmark.

Syntax
object . SavedBookmark[= value]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Value A variant specifying the bookmark value.

SavedBookmark Property Applies To
SSDBCommand

Scroll Event
See Also Applies To
Description

Occurs just before a scroll takes place.

Syntax
Sub control_Scroll (Cancel    As Integer)

The event parameters are:
Parameter Description

Cancel An integer expression that specifies whether the operation occurs.

Remarks
A Scroll event can occur either by the user scrolling through the grid or through use of the
Scroll method by the programmer.
You can prevent the scroll from occuring by setting the Cancel parameter to True. If this
event is not cancelled, the scroll occurs and the ScrollAfter event is fired.

Scroll Event Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Scroll Event See Also
Scrollbars
Scroll method
ScrollAfter event

Scroll Method
See Also Applies To
Description

Causes the grid to be scrolled.

Syntax
object . Scroll Cols    As Integer, Rows    As Long

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Cols An integer expression specifying how many columns to scroll.
Rows A long integer expression specifying how many rows to scroll.

Scroll Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Scroll Method See Also
Scrollbars
Scroll event

ScrollAfter Event
See Also Applies To
Description

Occurs after a scroll takes place.

Syntax
Sub control_ScrollAfter ()

Remarks
You can use this event to synchronize grid scrolling with another grid or with other
controls.
This event is triggered upon the successful completion of the Scroll event. You can
prevent this event from occuring by setting the Cancel parameter of the Scroll event to
True.

ScrollAfter Event Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ScrollAfter Event See Also
Scrollbars
Scroll method
ScrollAfter event

Scrollbars Property
See Also Applies To
Description

Determines the type of scrollbars to use.

Syntax
object . Scrollbars[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the type of scrollbars to use, as described
in Settings.

Settings
Setting Description

0 None
1 Horizontal only
2 Vertical only
3 Both
4 (Default) Automatically determined by SSDBGrid

There are constants available for the settings of this property.

Scrollbars Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Scrollbars Property See Also
Scroll event
Scroll method

SelBookmarks Collection
Applies To Example
Description

The SelBookmarks collection represents a set of selected bookmark objects.

Properties

Count Item

Methods

Add Remove RemoveAll

Remarks
Bookmarks are added to this collection whenever a user selects a row in the grid. If
Multiselect is True, then each row selected will be added to the collection in the order in
which the selection occured. Order is never based on the displayed order. When a row is
unselected, that row is then removed from the SelBookmarks collection.
You can add bookmarks to the SelBookmarks collection through code. It is also easy to
access the rows in the SelBookmarks collection without moving the current row position.
Caution Because of the volatile nature of the SelBookmarks collection, it is
inadvisable to store or use the ordinal position of a row within this collection. Doing so may
produce unpredictable and undesirable results.

SelBookmarks Collection Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

SelBookmarks Method
See Also Applies To
Description

Returns a Bookmark object at the specified index.

Syntax
object . SelBookmarks([Index As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Index A variant specifying the bookmark number.

Remarks
When no index is specified the SelBookmarks collection object is returned.

SelBookmarks Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

SelBookmarks Method See Also
DeleteSelected

SelChange Event
Applies To

Occurs when the current range changes to a different cell or range of cells.

Syntax
Sub control_SelChange (SelType As Long, cancel As Integer, DispSelRowOverflow As
Integer)

The event parameters are:

Part Description

object An object expression that evaluates to an object in the Applies To list.
seltype Indicates the type of selection (0=Group, 1=Column, 2=Row).
cancel Determines whether the selection reverts to its position before the

event occurred.
DispSelRowOverflow Defaults to true.    If set to true, an error message is displayed if the

maximum number of selected rows exceeds the MaxSelectedRows
value.    If set to false, no error message is displayed, giving the
opportunity to display your own error message.

Remarks
Occurs when a cell other than the current is clicked as well as when a user drags to select
a new range of cells.
Setting cancel to True causes the selection to revert to the cell or range active before the
event occurred.

SelChange Event Applies To
SSDBGrid

SelectByCell Property
See Also Applies To
Description

Determines if selection of the row will occur if the user clicks on a cell.

Syntax
object . SelectByCell[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying if the entire row should be selected when
a user clicks on a cell, as described in Settings.

Settings
Setting Description

True (Default) The row will be selected when a user clicks on a cell in the row.
False The row will receive focus, but will not be selected (highlighted) when the

user clicks on a cell.

Remarks
This property only works when AllowUpdate = False. The behavior of this property is
different from its behavior in Data Widgets 1.0.

SelectByCell Property Applies To
SSDBGrid

SelectByCell Property See Also
SelectTypeCol
SelectTypeRow

SelectTypeCol Property
See Also Applies To
Description

Determines the column selection type.

Syntax
object . SelectTypeCol[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the column selection type, as described
in Settings.

Settings
Setting Description

0 None
1 (Default) Single Select
2 Multi Select, Individual selection only
3 Multi-Select, Range selection allowed

There are constants available for the settings of this property.

Remarks
Single select means that only one column can be selected at a time.    Multi select means
that multiple columns can be selected at once.    None means that no columns can be
selected.
Multiple selections may be contiguous by holding down the Shift    key, or may be selective
by holding down the Ctrl    key when selecting.    For contiguous selection, SelectTypeCol
must be set to 3.    For selective, SelectTypeCol must be set to either 2 or 3.
If Range Selection is allowed, code should be placed in the SelChange event to prevent
extremely large selections.

SelectTypeCol Property Applies To
SSDBGrid

SelectTypeCol Property See Also
SelectTypeRow

SelectTypeRow Property
See Also Applies To
Description

Determines the row selection type.

Syntax
object . SelectTypeRow[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the row selection type, as described in
Settings.

Settings Setting Description

0 None
1 Single Select
2 (Default) Multi Select, Individual selection only
3 Multi-Select, Range selection allowed

There are constants available for the settings of this property.

Remarks
None means that no rows can be selected. Single select means that only one row can be
selected at a time.    Multi select means that multiple row can be selected as once. The
number of rows that may be selected is determined by the MaxSelectedRows property.
Multiple selections may be contiguous by holding down the Shift    key, or may be selective
by holding down the Ctrl    key when selecting.    For contiguous selection, SelectTypeRow
must be set to 3.    For selective, SelectTypeRow must be set to either 2 or 3.
If Range Selection is allowed, code should be placed in the SelChange event to prevent
extremely large selections.

SelectTypeRow Property Applies To
SSDBGrid

SelectTypeRow Property See Also
SelectTypeCol propery
MaxSelectedRows property

Selected Property
Applies To
Description

Sets or returns whether an object is selected.

Syntax
object . Selected[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the object is selected, as
described in Settings.

Settings
Setting Description

True Object is currently selected.
False Object is not currently selected.

Selected Property Applies To
Column object
Group object

ShowAddButton Property
See Also Applies To
Description

Determines whether the Add Record button is displayed on the control.

Syntax
object . ShowAddButton[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the Add Record button
on the control, as described in Settings.

Settings
Setting Description

True (Default) The Add Record button will be displayed.
False The Add Record button will not be displayed.

ShowAddButton Property Applies To
SSDBData

ShowAddButton Property See Also
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton

ShowBookmarkButtons Property
See Also Applies To
Description

Determines which of the bookmark buttons are to be displayed on the control.

Syntax
object . ShowBookmarkButtons[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying which of the bookmark buttons are to be
displayed, as described in Settings.

Settings
Setting Description

0 Show none of the bookmark buttons
1 Show Add bookmark button only
2 Show Goto bookmark button only
3 Show Add and Goto bookmark buttons only
4 Show Clear All Bookmarks button only
5 Show Add and Clear All Bookmarks buttons only
6 Show Clear All and Goto Bookmark buttons only
7 (Default)    Show all bookmark buttons

There are constants available for the settings of this property.

ShowBookmarkButtons Property Applies To
SSDBData

ShowBookmarkButtons Property See Also
ShowAddButton
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton

ShowBookmarkDropDown Event
See Also Applies To
Description

Occurs immediately before the dropdown bookmark list is displayed.

Syntax
Sub control_ShowBookmarkDropDown()

Remarks
If the property DroppedDown is set to TRUE, the SSDBData control will drop down the
list.    If DroppedDown is set to FALSE, the dropdown will not be displayed.

ShowBookmarkDropDown Event Applies To
SSDBData

ShowBookmarkDropDown Event See Also
DroppedDown
CloseBookmarkDropDown Method

ShowCancelButton
See Also Applies To
Description

Determines whether the Cancel button is displayed on the control.

Syntax
object . ShowCancelButton[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the Cancel    button on
the control.

Settings
Setting Description

True (Default) The Cancel button will be displayed.
False The Cancel button will not be displayed.

Remarks
The Cancel (Cancel Add) button cancels the adding of a new record to the database.

ShowCancelButton Applies To
SSDBData

ShowCancelButton See Also
ShowAddButton
ShowBookmarkButtons
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton

ShowDeleteButton Property
See Also Applies To
Description

Determines whether the Delete Record button is displayed on the control.

Syntax
object . ShowDeleteButton[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the Delete Record
button on the control, as described in Settings.

Settings
Setting Description

True (Default) The Delete Record button will be displayed.
False The Delete Record button will not be displayed.

ShowDeleteButton Property Applies To
SSDBData

ShowDeleteButton Property See Also
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton

ShowFindButtons Property
See Also Applies To
Description

Determines which of the find buttons are to be displayed on the control.

Syntax
object . ShowFindButtons[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying which of the find buttons are to be
displayed, as described in Settings.

Settings
Setting Description

0 Show none of the find buttons
1 Show Find button only
2 Show Find and Find Next buttons only
3 Show Find, Previous, and Next buttons

There are constants available for the settings of this property.

ShowFindButtons Property Applies To
SSDBData

ShowFindButtons Property See Also
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton

ShowFindDialog Event
See Also Applies To
Description

Occurs when the Find dialog is called, immediately prior to displaying the dialog.

Syntax
Sub control_ShowFindDialog()

ShowFindDialog Event Applies To
SSDBData

ShowFindDialog Event See Also
FindDialog
CloseFindDialog event

ShowFirstLastButtons Property
See Also Applies To
Description

Determines whether the first and last record button is displayed on the control.

Syntax
object . ShowFirstLastButtons[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the First Record and
Last Record buttons on the control, as described in Settings.

Settings
Setting Description

True (Default) The First Record and Last Record buttons will be displayed.
False The First Record and Last Record buttons will not be displayed.

Remarks
Clicking the First Record button will take the user to the first record in the database, while
clicking the Last Record button will take the user to the last record in the database.

ShowFirstLastButtons Property Applies To
SSDBData

ShowFirstLastButtons Property See Also
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowPageButtons
ShowPrevNextButtons
ShowUpdateButton

ShowPageButtons Property
See Also Applies To
Description

Determines whether the page forward and page backward buttons are displayed on the
control.

Syntax
object . ShowPageButtons[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the Page forward and
Page backward buttons on the control, as described in Settings.

Settings
Setting Description

True (Default) The Page forward and Page backward buttons will be displayed.
False The Page forward and Page backward buttons will not be displayed.

Remarks
Clicking the Page Forward button will move n records forward through the data.    Clicking
the Page Backward button will move n records backward through the data.    The value for
n is determined by the PageValue property.

ShowPageButtons Property Applies To
SSDBData

ShowPageButtons Property See Also
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPrevNextButtons
ShowUpdateButton

ShowPrevNextButtons Property
See Also Applies To
Description

Determines whether the previous record and next record buttons are displayed on the
control.

Syntax
object . ShowPrevNextButtons[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the Previous Record
and Next Record buttons on the control, as described in Settings.

Settings
Setting Description

True (Default) The Previous Record and Next Record buttons will be displayed.
False The Previous Record and Next Record buttons will not be displayed.

ShowPrevNextButtons Property Applies To
SSDBData

ShowPrevNextButtons Property See Also
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowUpdateButton

ShowUpdateButton Property
See Also Applies To
Description

Determines whether the Update Record button is displayed on the control.

Syntax
object . ShowUpdateButton[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the Update Record
button on the control, as described in Settings.

Settings
Setting Description

True (Default) The Update Record will be displayed.
False The Update Record will not be displayed.

Remarks
The Update Record button will write any changes made to the most recently modified
record.

ShowUpdateButton Property Applies To
SSDBData

ShowUpdateButton Property See Also
ShowAddButton
ShowBookmarkButtons
ShowCancelButton
ShowDeleteButton
ShowFindButtons
ShowFirstLastButtons
ShowPageButtons
ShowPrevNextButtons

Size Property
Applies To Example
Description

Returns or sets the font size used in the specified Font or Headfont object.

Syntax
object . Size[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Font An integer expression specifying the size of the font in points.

Remarks
Use this property to format text in the font size you want.    The default font size is
determined by the operating system.    To change the size, specify the size of the font in
points.    The maximum value for the Size property is 2048 points.
The Font and Headfont objects are not directly available at design time.    At design time,
set the Size property through the control’s Font or Headfont property.    At runtime, you
can set Size directly by specifying its setting for the appropriate Font/Headfont object.

Size Property Applies To
Font object
HeadFont object

Soundex Method Applies To
SSDBData

Soundex Method
Applies To
Description

Returns the soundex string for a supplied string.

Syntax
object . Soundex(String    As String)

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

String A string expression for which you wish to find the Soundex string.

Remarks
A Soundex string is a 4-character code that represents the supplied string. This code can
be used to search for words that are phonetically similiar.
Soundex codes are based on an algorithm that analyzes the letters in a string and returns
a value. Words with similar values will have similar sounds. Even though it considers
phonetics, the Soundex algorithm is ultimately based on spelling, so words with the same
pronunciation may return different Soundex codes. For example, the word "THROUGH"
returns a Soundex code of T620. The word "THREW" returns a Soundex code of T600.
Through code, you can compare Soundex values to see if they are within a certain range,
and take action to either exclude or include particular strings. Soundex is particularly
useful when searching for names. For example, "Smith", "Smyth" and "Smythe" all return
Soundex codes of S530. "Cook" and "Koch" both return identical Soundex values, even
though they are spelled quite differently.

Speed Buttons
Speed buttons allow for a user to click on a button and hold it to repeat a function.   
This function is controlled by the DelayInitial and DelaySubsequent properties.   
DelayInitial determines the amount of time before a speed button begins to repeat when
the mouse button is held down.    DelaySubsequent determines the amount of time
between subsequent clicks are repeated when the mouse button is held down on a
repeatable button.

SplitterMove Event
See Also Applies To
Description

Occurs when the splitter is relocated by the user.

Syntax
Sub control_SplitterMove (Cancel    As Integer)

The event parameters are:
Parameter Description

Cancel An integer expression that specifies whether the operation occurs.

Remarks
Setting Cancel = 1 causes the splitter to return to its previous position and the screen is
not redrawn so that it appears that the process never happened.

SplitterMove Event Applies To
SSDBGrid

SplitterMove Event See Also
SplitterPos
SplitterVisible

SplitterPos Property
See Also Applies To
Description

Sets or returns the column in which to place the splitter.

Syntax
object . SplitterPos[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the position of the splitter.

Remarks
Valid range is from 0 to the maximum number of columns created.

SplitterPos Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

SplitterPos Property See Also
SplitterVisible
SplitterMove Event

SplitterVisible Property
See Also Applies To
Description

Determines whether the splitter is visible.

Syntax
object . SplitterVisible[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the display state of the splitter, as
described in Settings.

Settings
Setting Description

True The splitter will be displayed.
False (Default) The splitter will not be displayed.

Remarks
The splitter is used to fix the position of groups and columns.    When the splitter is visible,
the user can relocate it by using the mouse.

SplitterVisible Property Applies To
SSDBGrid

SplitterVisible Property See Also
SplitterPos
SplitterMove Event

Standard Method - Depending on your host environment, this method may be referred to by a
different name or may not apply to this control. Refer to your host environment's documentation or
help file for further information regarding this method.

Standard Property - Depending on your host environment, this property may be referred to by a
different name or may not apply to this control. Refer to your host environment's documentation or
help file for further information regarding this property.

Strikethrough Property
Applies To Example
Description

Returns or sets the font style of the specified Font or Headfont object to either
strikethrough or non-strikethrough.

Syntax
object . Strikethrough[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Font A Boolean expression specifying the font style as described in Settings.

Settings
Setting Description

True Turns on strikethrough formatting
False (Default) Turns off strikethrough formatting

Remarks
The Font and Headfont objects are not directly available at design time.    At design time,
set the Strikethrough property through the control’s Font or Headfont property.    At
runtime, you can set Strikethrough directly by specifying its setting for the appropriate
Font/Headfont object.

Strikethrough Property Applies To
Font object
HeadFont Object

String Property (Bookmark Object)
See Also Applies To Example
Description

Returns the string stored in a bookmark object.

Syntax
object . String[= string]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the string stored in a bookmark.

String Property Applies To
Bookmark object (SSDBData only)

String Property See Also
Value

Style Property
Applies To
Description

Sets or returns the column’s control style.

Syntax
object . Style[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the control style as described in Settings.

Settings
Setting Description

0 (Default) Edit Mode
1 Edit Button
2 Check Box
3 Combo Box
4 Button

There are constants available for the settings of this property.

Remarks
The following are examples of the various modes that Style can be set to:

Edit (Address field)

CheckBox (Paid field)

Combo Box (City field)

Button (Name field)

Style Property Applies To
Column object

StyleSet Object
See Also Applies To
Description

The StyleSet object contains properties pertaining to the appearance of the ActiveCell,
Column, and Group objects as well as the SSDBCombo, SSDBDropDown, and SSDBGrid
controls.

Properties

AlignmentPicture ForeColor PictureMetaHeight
AlignmentText Name PictureMetaWidth
BackColor Picture
Font

Remarks

You identify a StyleSet by using the StyleSet or HeadStyleSet properties.

StyleSet Object Applies To
StyleSets collection

StyleSet Object See Also
HeadStyleSet
StyleSet
StyleSets collection.

StyleSet Property
See Also Applies To
Description

Returns or sets the name of a StyleSet in the StyleSets collection.

Syntax
object . StyleSet[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the name of a StyleSet.

Remarks
This property determines the StyleSet to be used for the controls and objects listed in the
Applies To list.    Note that the StyleSet specified must be in the StyleSets collection.    If a
change is made to a StyleSet, the control must be refreshed.    StyleSets will override each
other based on the following hierarchy:

Data Area:

ActiveCell.StyleSet (overrides all below)
Control.ActiveRowStyleSet (overrides all below)
Column.StyleSet (overrides all below)
Group.StyleSet (overrides all below)
Control.StyleSet

The following is a list of properties used in the various StyleSets.

Properties Used by SSDBCombo, SSDBDropDown, SSDBGrid

BackColor Font ForeColor

Properties Used by the Column, Group, and ActiveCell objects

BackColor Font ForeColor

StyleSet Property Applies To
ActiveCell object
Column object
Group object
SSDBCombo
SSDBDropDown
SSDBGrid

StyleSet Property See Also
HeadStyleSet
StyleSet object
StyleSets collection

StyleSets Collection
See Also Applies To
Description

Contains a collection of StyleSet objects

Properties

Count Item

Methods

Add Remove RemoveAll

Syntax
object . StyleSets

Remarks
The StyleSet properties can be set to distinguish one StyleSet from another.    A StyleSet
called "Loss" may have a BackColor of ‘Red’, while a StyleSet called "Profit" may have a
BackColor of ‘Green’.
Note that not all properties of a StyleSet are used in every case.

StyleSets Collection Applies To
Column object
Group object
SSDBCombo
SSDBDropDown
SSDBGrid

StyleSets Collection See Also
HeadStyleSet
StyleSet
StyleSet object

StyleSets Method
Applies To
Description

Returns a StyleSet object at the specified index.

Syntax
object . StyleSets([Index As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Index A variant specifying the StyleSet number.

Remarks
When no index is specified the StyleSets collection object is returned.

StyleSets Method Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Support files needed for distribution - 16 Bit
Due to the nature of the OLE architecture, Data Widgets 2.0 controls require that the
following supporting files be shipped with your application.   
These files must be installed on any machine that uses Data Widgets.

OC25.DLL
TYPELIB.DLL

In addition to being installed, the following file(s) must be registered, either by a setup
program or by using the 16-bit Registration Server Utility (REGSVR.EXE) available from
Microsoft.

OC25.DLL

When you install the Data Widgets package, the correct files are automatically installed
and registered on your machine, provided you do not have later versions installed.

A note about OLE file distribution
The introduction of OCX controls and the availablility of 32-bit Windows platforms has
introduced new concerns regarding the five files used for OLE (COMPOBJ.DLL, OLE2.DLL,
OLE2DISP.DLL, OLE2NLS.DLL, STORAGE.DLL).    These files are only needed to support
16-Bit applications created with Data Widgets.

Windows 95 and Windows NT
If your application is running under Windows 95 or Windows NT, then the OLE DLLs are
part of the OS and you do not need to install or update these files, provided the version
numbers match or exceed those below:

Windows 95
COMPOBJ.DLL Version 2.2
OLE2.DLL Version 2.2
OLE2DISP.DLL Version 2.1
OLE2NLS.DLL Version 2.1
STORAGE.DLL Version 2.2

Windows NT
COMPOBJ.DLL Version 2.1
OLE2.DLL Version 2.1
OLE2DISP.DLL Version 2.1
OLE2NLS.DLL Version 2.1
STORAGE.DLL Version 2.1

Windows 3.x and Windows for Workgroups 3.x
If your application is running under Windows 3.x or Windows For Workgroups 3.x, you
must make sure that these DLLs are installed and registered for any applications created
with the 2.0 version of Data Widgets. These DLLs are included with the Data Widgets
installation disks and are copied to your machine when you install Data Widgets under
either of these environments.

Windows 3.x and Windows for Workgroups 3.x
COMPOBJ.DLL Version 2.03
OLE2.DLL Version 2.03
OLE2DISP.DLL Version 2.03
OLE2NLS.DLL Version 2.03
STORAGE.DLL Version 2.03

Support files needed for distribution - 32 Bit
Due to the nature of the OLE architecture, Data Widgets 2.0 controls require that a number
of supporting files be shipped with your application. These files must be installed on any
machine that runs a Data Widgets application.

MFC42.DLL 4.2.6256
MSVCRT.DLL 4.20.6201
OLEAUT32.DLL 2.20.4054
OLEPRO32.DLL 5.0.4055

The above files are automatically installed and registered on your machine by the Data
Widgets package, provided you do not have later versions installed.
Additionally, the following files must be registered, either via a setup program or via the
32-bit Registration Server Utility (REGSVR32.EXE) available from Microsoft:

MFC42.DLL
OLEAUT32.DLL
OLEPRO32.DLL

System Requirements
You must have the following to utilize Data Widgets:
§ Microsoft Visual Basic version 4.x or a development tool that supports OLE Custom

Controls (.OCX files).
§ A hard disk with at least 5 megabytes of available space for a full installation.
§ For the 32-bit version of Data Widgets, you must have Windows 95 or later, or Windows

NT 3.51 or later.
§ For the 16-bit version of Data Widgets, you must have Windows version 3.1 or later,

running in enhanced mode.

TabNavigation Property
Applies To
Description

Determines how the grid will process the Tab key.

Syntax
object . TabNavigation[= number   ]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression that specifies how the control will handle Tab key
usage, as described in Settings.

Settings
Setting Description

0 (Default) Move to Next Cell. The Tab key will cause the cursor to move to
the next cell in the grid, or to the next line in the grid if the focus is on the
last cell in a row.

1 Move to Next Control. The Tab key will move the focus to the next control
on the form, as determined by the tab order.

Remarks
This property gives you the ability to change the way the SSDBGrid control responds to the
Tab key. This property is particularly useful if you are using the Grid as a multi-column list
box.
There are constants available for the settings of this property.

TabNavigation Property Applies To
SSDBGrid

TagVariant Property
Applies To Example
Description

Stores any extra data needed for your program.    You can use this property to attach data
of any type, except user-defined types, to an object or control.

Syntax
object . TagVariant[= expression]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A Variant expression.

Remarks
The TagVariant property is similar to the Visual Basic Tag property.    However, in addition
to string expressions, the TagVariant property can store any data type including other
objects, with the exception of user-defined types.   
This property is only available at runtime.

TagVariant Property Applies To
Column object
Group object
SSDBCombo
SSDBCommand
SSDBDropDown
SSDBGrid
SSDBOptSet

 Technical Information

Performance Tuning
Methods you can use to improve the speed of your applications
when using Data Widgets 2.0.

Using Data Widgets 2.0 with Visual C++
Information and examples to get you started using the Data Widgets
controls in Microsoft Visual C++.

System Requirements
A list of requirements for using the product

Included Files
A list of files included with the product.

Distribution Notes
A list of the files you need to distribute with your applications

    Technical Support
World Wide Web
The Sheridan Software World Wide Web site provides the latest patches and product
information, as well as information for the Visual Basic developer.   
http://www.shersoft.com

Internet Email
Submit your questions to our technical support staff via electronic mail.    Be sure to
include detailed information on your problem, the Sheridan product and product version
you are using, as well as information on your host environment such as the machine type,
RAM, video card, and operating system.
support.data@shersoft.com

CompuServe
You can obtain technical support on CompuServe by contacting the SYSOP at the
SHERIDAN section of the COMPA forum.    You can type GO SHERIDAN at any CompuServe
prompt.

Fax
To fax questions or comments regarding any Sheridan product, dial (516) 753-3661.

Telephone Support
For technical support for this or any other Sheridan product, contact Sheridan Software

systems at (516) 753-0985.    You can either speak to a live technical support
representative or get answers using the Automated Fax Service.

Text Property
Applies To
Description

Sets or returns the text string associated with the specified column, or in the case of the
SSDBCombo, text currently in the edit portion.

Syntax
object . Text[= text]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

text A string expression that evaluates to the string stored in the column.

Remarks

Based on the above graphic, the following is true:

?SSDBGrid.Columns(0).Text = "Microsoft Press"
?SSDBGrid.Columns(3).Text = "Redmond"

Text Property Applies To
ActiveCell object
Column object
SSDBCombo

TextError Event
See Also Applies To
Description

Occurs when text fails validation.

Syntax
Sub control_TextError (ErrCode    As Long, ErrString    As String, RestoreString    As
String, Text    As String, RtnDispErrMsg    As Integer, RtnRestore    As Integer)

The event parameters are:
Parameter Description

ErrCode A long integer specifying the error code resulting from the validation
failure.

ErrString A string that evaluates to the error message that SSDBCombo generates.
RestoreString A string that evaluates to the restore string if RtnRestore is true.
Text A string that evaluates to the text that failed validation.
RtnDispErrMsg An integer expression that indicates if an error message box should be

displayed.
RtnRestore An integer expression that determines if text should be restored to its

original state.

TextError Event Applies To
SSDBCombo
SSDBDropDown

TextError Event See Also
ListAutoValidate

TextFormat Property
Applies To Example
Description

Used to set the format mask of the edit portion of the control.

Syntax
object . TextFormat[= string]

Settings
Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

string A string expression that determines the format mask to use.

Remarks
This property complies with standard text formatting properties.

TextFormat Property Applies To
SSDBCombo

Totalling Values in a Grid column
This example uses a DataGrid that is bound to a recordsource. The value to be totalled is
in the first column of the grid (Columns(0).) Totalling the values in the column is
accomplished by clicking a command button.
The value of the cell in the column is examined for each row in the grid, and added to a
temporary variable. When all rows have been added, the value of the variable is assigned
to the control displaying the total (a text box.) The following code is used:

(General)(declarations)
Dim iTotal as Global Integer

Private Sub Command1_Click()

Dim iC as Integer
Dim vBM as Variant

SSDBGrid1.MoveFirst
For iC = 0 To SSDBGrid1.Rows - 1

vBM = SSDBGrid1.GetBookmark(i)
iTotal = iTotal + SSDBGrid1.Columns(0).CellValue(vBM)

Next iC

Text1.Text = iTotal

End Sub

This code uses the Bookmark value of each row in combination with the CellValue
property of the Column object to examine the value of the cell.

UnboundAddData Event
See Also Applies To Example
Description

Occurs when an unbound grid has a new row added to it.

Syntax
Sub control_UnboundAddData (RowBuf    As ssRowBuffer, NewRowBookmark    As
Variant)

The event parameters are:
Parameter Description

RowBuf The ssRowBuffer object that will be used to transfer the data.    The number
of rows to be retrieved is determined by RowCount.

NewRowBookmark A bookmark that acts as a unique identifier for each row of data.

Remarks
This event notifies you when a new row of data must be added.    The RowBuf    argument
represents an ssRowBuffer object that can contain up to ten rows of data to be
transferred between the control and the data source.    Before returning from this event,
newrowbookmark must be set to the bookmark of the newly added row.

UnboundAddData Event Applies To
SSDBGrid

UnboundAddData Event See Also
AllowAddNew property
UnboundPositionData event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

UnboundDeleteRow Event
See Also Applies To Example
Description

Occurs when a row is deleted from an unbound grid.

Syntax
Sub control_UnboundDeleteRow (Bookmark    As Variant)

The event parameters are:
Parameter Description

Bookmark A bookmark of the row to be deleted.

Remarks
This event notifies you that a row must be deleted from the database.    The Bookmark
argument must be set to the bookmark value provided when the row was retrieved with
the UnboundReadData event or added by UnboundAddData event.

UnboundDeleteRow Event Applies To
SSDBGrid

UnboundDeleteRow Event See Also
AllowDelete property
UnboundAddData event
UnboundPositionData event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

UnboundPositionData Event
See Also Applies To Example
Description

Occurs when a user repositions the unbound grid.

Syntax
Sub control_UnboundPositionData (StartLocation    As Variant, NumberOfRowsToMove   
As Long, NewLocation    As Variant)

The event parameters are:
Parameter Description

StartLocation A bookmark specifying the row before (for forward) or after (for reverse)
the rows to be retrieved.    If null, forward fetching occurs from the
beginning of the data set while reverse begins at the end of the data set.

NumberofRowsToMove A long integer specifying the number of rows to move.    A
positive number indicates a move forward while a negative number
indicates a move backwards.

NewLocation A bookmark specifying the new location to be repositioned to.

Remarks
UnboundPositionData is used to optimize data display.    Under normal circumstances,
the grid is read sequentially when a user scrolls the grid, but with UnboundPositionData,
records that will not be displayed can be bypassed for quicker data access. StartLocation   
and NumberOfRowsToMove    are provided by the control, allowing you to specify
NewLocation.

UnboundPositionData Event Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

UnboundPositionData Event See Also
UnboundAddData event
UnboundDeleteRow event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

UnboundReadData Event
See Also Applies To Example
Description

Occurs when an unbound grid requests data for display.

Syntax
Sub control_UnboundReadData (RowBuf    As ssRowBuffer, StartLocation    As Variant,
ReadPriorRows    As Boolean)

The event parameters are:
Parameter Description

RowBuf The ssRowBuffer object that will contain the retrieved data.    The number
of rows to be retrieved is determined by RowCount.

StartLocation A bookmark specifying the row before (for forward) or after (for reverse)
the rows to be retrieved.    If null, forward fetching occurs from the
beginning of the data set while reverse begins at the end of the data set.

ReadPriorRows If set to False, data is retrieved in a forward direction, if True, data is
retrieved in a reverse direction.

Remarks
This event notifies you that the control must retrieve data.    Once retrieved, data is stored
in the control’s buffer.
In unbound mode, the control uses the ssRowBuffer object to populate the grid. You use
the UnboundReadData event to fill the RowBuffer with data. The RowBuffer retrieves a
maximum of ten rows of data at a time. As long as the RowBuffer is filled with ten rows of
data, the control will continue to fire the UnboundReadData event.
When all the data has been read into the control, you signal the control to stop reading by
setting the RowCount property of the RowBuffer object to a value less than ten. The
control will then stop firing the UnboundReadData event.
While the unbound read is occurring, the control uses the Rows property to determine the
size of the grid and position the scroll bar. Before the unbound read begins, the control
estimates the size of the data set to be 100 rows. During the unbound read, the control will
adjust the scrollbar according to its estimate. The estimate changes when:

· The control reads more than 100 rows of data. The estimate is then enlarged to 200
rows. After 200 rows have been read, it changes to 300 rows, and so on.

· The RowCount of the RowBuffer object is set to less than ten. At this point the
control has read all the data and knows exactly how many rows there are, and will
adjust itself accordingly.

UnboundReadData Event Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

UnboundReadData Event See Also
UnboundAddData event
UnboundDeleteRow event
UnboundPositionData event
UnboundWriteData event
ssRowBuffer Object

Performance Tuning

UnboundWriteData Event
See Also Applies To Example
Description

Occurs when an unbound grid has a row of modified data to write to the database.

Syntax
Sub control_UnboundWriteData (RowBuf    As ssRowBuffer, writelocation    As Variant)

The event parameters are:
Parameter Description

RowBuf The ssRowBuffer object that contains the modified data.
WriteLocation A value identifying the unique bookmark of the row as specified in the

UnboundReadData and UnboundWriteData events.

Remarks
During this event, the value of the RowCount property of the ssRowBuffer object will
always be 1 since you can update only one row of a data at a time.
To cancel the UnboundWriteData event, set the RowCount property of the
ssRowBuffer object to 0.

UnboundWriteData Event Applies To
SSDBGrid

UnboundWriteData Event See Also
UnboundAddData event
UnboundDeleteRow event
UnboundPositionData event
UnboundReadData event
UnboundWriteData event
ssRowBuffer Object

Underline Property
See Also Applies To Example
Description

Returns or sets the font style of the specified Font or HeadFont object to either
underlined or non-underlined.

Syntax
object . Underline[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying the font style as described in Settings.

Settings
Setting Description

True Turns on underline formatting.
False (Default) Turns off underline formatting.

Remarks
The Font and Headfont objects are not directly available at design time.    At design time,
set the Underline property through the control’s Font or HeadFont property.    At
runtime, you can set Underline directly by specifying its setting for the appropriate
Font/Headfont object.

Underline Property Applies To
Font object
Headfont object

Underline Property See Also
Font object
Headfont object

Update Method
Applies To
Description

Updates any modified information in the grid. This method is applicable to all data modes.

Syntax
object . Update

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
This method causes the control to update the database with any data that has been
modified but not yet written to the database.

Update Method Applies To
SSDBGrid

UpdateError Event
See Also Applies To
Description

Occurs when an unexpected error occurs in a field when the control is updating the row.

Syntax
Sub control_UpdateError (ColIndex    As Integer, Text    As String, ErrCode    As Integer,
ErrString    As String, Cancel    As Integer)

The event parameters are:
Parameter Description

ColIndex The column of the current row that contains the error.
Text The erroneous text.
ErrCode The error code.    The code represents a standard host environment error

number.
ErrString The error string.    The string represents the actual error message.
Cancel Set this to True to cancel any further updating of the row.

Remarks
This event will be fired when moving off of the current row for each cell that does not pass
validation whether in Bound, Unbound, or AddItem mode.
For more information on how to handle data-related errors, see "How the Data Grid
handles data validation and error checking."

UpdateError Event Applies To
SSDBGrid

UpdateError Event See Also
IsCellValid
How the Data Grid handles data validation and error checking

Updating Rows from a Modal Form
There is a caveat when using a bound control to update a row or rows in a record set of a
data control on a modal form.    If a row is updated with an invalid field, such as a null key
field, Visual Basic does not display an error until the modal form is hidden or unloaded.    To
overcome this Visual Basic limitation, include the following code in response to the Error
event of the Visual Basic data control:

Sub Data1_Error (DataErr As Integer, Response As Integer)
 On Error Resume Next
 If DataErr Then
Beep
MsgBox Error (DataErr)
DataErr = 0
Response = 0
 End If
End Sub

Note        This is applicable to any bound control including the standard Visual Basic
controls.

UseDefaults Property
Applies To
Description

Determines whether the grid will use default values to populate new records.

Syntax
object . UseDefaults[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether new records will be populated
with default values, as described in Settings.

Settings
Setting Description

True (Default) The control will retrieve default values from the data source and
use them to populate new records.

False The control will not retrieve or use default values.

Remarks
Retrieving default values from the data source affects the overall performance of the grid,
and may cause problems with some systems, particularly ODBC.
If you are using the control with an ODBC data source, or you do not wish to populate new
records with default values, you can set UseDefaults to False. Setting this property to
False should also improve the performance of the control when adding records.
If you experience problems when using an ODBC data source, set this property to False.

UseDefaults Property Applies To
SSDBGrid

UseExactRowCount Property
Applies To
Description

Determines whether the grid portion scans for the exact row count.

Syntax
object . UseExactRowCount[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether the exact row count is scanned,
as described in Settings.

Settings
Setting Description

True (Default) Exact row count will be used.
False Estimated row count will be used.

Remarks:
When set to True, the control gets the last row in the record set when it initially binds to a
data control.    This may cause some performance penalties when accessing large
databases.

UseExactRowCount Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

Using Data Widgets

How Data Widgets Are Supplied
Data Widgets ships a total of four OCX files, grouped in pairs by 16-bit and 32-bit controls.
Filename Controls Contained
SSDATA16.OCX 16-bit version of the Enhanced Data Control, DataOptionSet,

and Data Command Button controls.
SSDATB16.OCX 16-bit version of the Data Grid, Data DropDown, and Data

Combo controls.
SSDATA32.OCX 32-bit version of the Enhanced Data Control, DataOptionSet,

and Data Command Button controls.
SSDATB32.OCX 32-bit version of the Data Grid, Data DropDown, and Data

Combo controls.

Including Data Widgets in Your Project
Custom controls are generally installed on a project-need basis.    Once you have included
a custom control in a project and saved that project, the control will be available whenever
you subsequently open the project.
The method you use to add a Data Widgets control to your project varies depending on
which programming environment you are using.    Data Widgets comes in two varieties:

§ 32-bit OCX controls that are compatible with any programming system supporting
OLE custom controls, supports advanced data binding, and runs in a 32-bit
environment such as Windows NT or Windows 95.

§ 16-bit OCX controls that are compatible with any programming system supporting
OLE custom controls and advanced data binding.

Visual Basic 4.0
The use of OLE Custom Controls are new to Version 4.0 of Visual Basic, replacing the
previously used VBX format.    To use the Data Widgets controls in Visual Basic 4.0:

1. Open the project you want to add the Data Widgets control to.
2. Select Custom Controls from the Tools menu.
3. Select the appropriate Data Widgets control from the list of Available Controls.

All of the Data Widget controls are prefaced by the name Sheridan (i.e., Sheridan
Data Command Control).    A checked box next to the control indicates that it has
been selected.

4. Click the OK button.
The control(s) you have selected are now added to your project.

Other Languages
Data Widgets OCX controls are supported by a variety of host environments.    To use Data
Widgets in programming environments other that Visual Basic 4.0, consult your
development tool’s documentation for information on how to use OLE Custom Controls or
OCX Controls.
Once the control is loaded, it should appear as an extension of your environment.    Use the

control’s Property Pages or the environment’s property sheet (if available) to set up the
control.
For more information on compatibility between different versions of the controls across
different host environments, see Introduction to OCX Controls.

Using a Data DropDown in a Data Grid Column
Another powerful feature of the Data Grid is the ability to link a Data DropDown control to
a column in the Data Grid.    Similar to the cell button feature, this feature allows the user
to click a button in the cell to drop down a list of choices.
The Data DropDown control can be bound to another record set in another data control.   
For instance, if one of the columns in the Data Grid contains a State Code, you can link in a
Data DropDown and bind it to a data control with a list of State Codes and descriptions.   
When a button is clicked,    a list of states would drop down for the user to choose from.
This is done by setting the DropDownHwnd property to the window handle of a Data
DropDown control that is on your form.    For more information on how to do this, refer to
the Data DropDown.

Using the Cell Button Feature of the Data Grid
Each column in the Data Grid allows you to include on the right of each cell a button for
you to perform additional processing when pressed.    To activate the cell button feature,
set the property Style to Edit Button for the corresponding column.    Whenever the
button is clicked, the BtnClick event will be triggered, allowing you to perform any
function you wish, such as displaying a dialog with a larger text box for memo-type fields.   

Using the Data Grid as a List Box
By default, the Data Grid does not look nor act much like a standard Windows list box.   
However, by setting just a few properties, the Data Grid can look and behave just like one. 
It can be used as a bound list box or an unbound virtual list.
To make the Data Grid work like a listbox, set the AllowAddNew, AllowDelete,
AllowDragDrop, AllowUpdate, and RecordSelectors properties all to False.    Set
SelectByCell to True, SelectTypeRow to either Single or MultiSelect, and set
SelectTypeCol to None.    The Data Grid can now be used as a multi-column list box with
optional headings.    You can modify other properties as needed to customize the grid to
your liking.

VC++ ActiveCell Object example
Here is an example of how to get the active cell object from the SSDBGrid. You can use the
wrapper class to automatically return the ActiveCell Object. This is a very common
exchange using OLE controls in Visual C++; you use an empty variant to get the dispatch
pointer to the collection, and then use that pointer to create the object.

// Uses the active cell object to display the text from the active
// cell in the Edit control on the dialog
//The ActiveCell method of the grid returns
//a dispatch pointer
LPDISPATCH pdispActiveCell = m_grid.ActiveCell();
ASSERT(pdispActiveCell);
//Use the dipatch pointer that was returned
//to create an instance of the ISSActiveCell Class
ISSActiveCell pobjCell(pdispActiveCell);
ASSERT(pobjCell);
//You can now use any of the ISSActiveCell methods
CString csText = pobjCell.GetText();

How can you get the text in a cell if the cell is not in the current row?
How should I validate data being entered into the grid?

VC++ Common Questions Answers
How can you get the text in a cell if the cell is not in the current row?

void CBndGridView::OnButton8()
{

CSSDBGrid* pGrid = (CSSDBGrid*) GetDlgItem(IDC_SSDBGRIDCTRL1);
COleVariant bookmark; //The CellText() method needs a bookmark

//initialize a variant for the column object index. We will look at
columns 2

//you can also use COleVariant instead of a standard variant
//used standard variant for this example
VARIANT vaCol;
VariantInit(&vaCol);
vaCol.vt=VT_I2;
vaCol.iVal = 2;

COleVariant va; //need an empty variant to initialize the collection

LPDISPATCH pDispCols=NULL;
pDispCols = pGrid->_Columns(va);

//Get the columns collection by passing the LPDISPATCH to the
//constructor

ISSColumns Cols(pDispCols);

LPDISPATCH pDispCol=Cols._Item(vaCol);
//create the column object in the same way
ISSColumn Col(pDispCol);

//Get a bookmark for visible row number 5
bookmark = pGrid->RowBookmark(5);
//use the CellText method of the Column object to display the text
AfxMessageBox(Col.CellText(bookmark));

VariantClear(&vaCol);

}

How should I validate data being entered into the grid?

For example, if you wanted to ensure that the user always enters data in a cell, use the
BeforeColUpdate event.

void CBndGridView::OnBeforeColUpdateSsdbgridctrl1(short ColIndex, const
VARIANT FAR& OldValue, short FAR* Cancel)
{

CSSDBGrid* pGrid = (CSSDBGrid*) GetDlgItem(IDC_SSDBGRIDCTRL1);
COleVariant va;
COleVariant vIndex(ColIndex, VT_I2);

//Access the columns collection using an empty variant
LPDISPATCH pdispCols = pGrid->_Columns(va);
ISSColumns Cols(pdispCols);

//Access the particular column using the _Item() function of the columns
//collection

LPDISPATCH pdispCol = Cols._Item(vIndex);
ISSColumn ThisCol(pdispCol);

if ((ThisCol.GetText()).IsEmpty()) //GetText returns a CString
{ AfxMessageBox("This Column must be filled - Try again");

*Cancel = 1; //This cancels the column update
//You can also restore the old value...
ThisCol.SetText((LPCSTR)OldValue.bstrVal);

}

}

VC++ Create StyleSet example
Here is an example of how to create a StyleSet. You can use the wrapper class to create
the StyleSet for you.

void CDataView::OnBtnStyleSets()
{

CSSDBGrid* pGrid = (CSSDBGrid*) GetDlgItem(IDC_SSDBGRIDCTRL1);
ASSERT(pGrid);

LPDISPATCH lpDispStyles = NULL;
LPDISPATCH lpDispStyle = NULL;
ISSStyleSets* pStyles = NULL;
ISSStyleSet* pStyle=NULL;
CString StyleName;

//use empty variant for collection
VARIANT va;
VariantInit(&va);
//get the dispatch pointer to StyleSets Collection
lpDispStyles = pGrid->StyleSets(va);
if(lpDispStyles)
{

pStyles = new ISSStyleSets(lpDispStyles);

if (pStyles)
{

COleVariant vaColor1((long)RGB(255,100,100), VT_I4);

try
{
pStyles->Add("Color");
}
catch(CException* e)
{

AfxMessageBox("You can only create the StyleSet color
once!");

e->Delete();
}

COleVariant va2((long)(pStyles->GetCount() -1), VT_I4);
lpDispStyle = pStyles->GetItem(va2);

if(lpDispStyle)
{
pStyle = new ISSStyleSet(lpDispStyle);
pStyle->SetBackColor(vaColor1);

CSSDBGrid* pGrid = (CSSDBGrid*) GetDlgItem(IDC_SSDBGRIDCTRL1);

VARIANT vaCol;
VariantInit(&vaCol);
vaCol.vt=VT_I2;
vaCol.iVal = 0;

COleVariant var; //need an empty variant to initialize the
collection

LPDISPATCH pDispCols=NULL;
pDispCols = pGrid->Columns(var);
ASSERT(pDispCols);
//Get the columns collection by passing the LPDISPATCH to the

constructor
ISSColumns Cols(pDispCols);
ASSERT(Cols);
LPDISPATCH pDispCol=Cols.Item(vaCol);
ASSERT(pDispCol);
//create the column object in the same way
ISSColumn Col(pDispCol);
ASSERT(Col);

VARIANT row;
VariantInit(&row);
row.vt=VT_I2;
row.iVal = 2;
Col.CellStyleSet("Color",row);
if(pStyles)
{

delete pStyles;
}

if(pStyle)
{

delete pStyle;
}

}
}

}

}

VC++ Create StyleSet with Wrapper class example
Here is an example that shows you how to use the wrapper class to create the styleset for
you.

//Create the color and the name of the style set
//you would like to create
COleVariant color((long)RGB(0,200,0), VT_I4);
CString name = "Green";
//Use the CGridHelper Class to create the styleset
//object for you, pass it the name of the Styleset
ISSStyleSet* mystyle = mygrid.CreateStyleSets(name);

//Use the newly create styleset
AfxMessageBox(mystyle->GetName());
//Set the BackColor of the styleset
mystyle->SetBackColor(color);
COleVariant row((short)1, VT_I2);
//Use the CGridHelper Class to get column
ISSColumn* Col =mygrid.GetColumn(0);
ASSERT(Col);
//Use the CellStyleSet method to apply a
//styleset to a certain column, and row
Col->CellStyleSet(name, row);

Once you have created the styleset you can then use it again referencing it by name.

CSSDBGrid* pGrid = (CSSDBGrid*)GetDlgItem(IDC_SSDBGRIDCTRL1);
mygrid.Create(pGrid);

COleVariant row(((short) pGrid->GetRow()), VT_I2);
ISSColumn* pCol = mygrid.GetColumn(2);
ASSERT(pCol);
if(pCol != 0)
{

pCol->CellStyleSet("Green", row);
}

VC++ CreateStyleSets Method
// #N CreateStyleSets
//
// #D Description:
// Returns a styleset pointer
//
// #A Arguments:
// #1 CString name - The name of the styleset you want to create
//
//
// #R Return:
// If successful returns a styleset pointer
// If unsuccessful returns 0
//
//#C Comments:
//

VC++ Get SelBookmarks with Wrapper example
This example shows you how to use the wrapper class to get the SelBookmarks Collection.

// Use the CGridHelper Class to get the SelBookmarks Collection
CSSDBGrid* pGrid = (CSSDBGrid*)GetDlgItem(IDC_SSDBGRIDCTRL1);
mygrid.Create(pGrid);

ISSSelBookmarks* pSelBooks = mygrid.GetSelBookmarks();
ASSERT(pSelBooks);
if(pSelBooks == NULL)
{

TRACE("Failed to get SelBookmarks pointer");
return;

}
long num = pSelBooks->GetCount();
TRACE("The number of Selected Rows is %d", num);

You use the CellText method to get the text of a column that you are not currently on. You
can not set the text this way, you need to be on the current row to actually change the
text, but using CellText, or CellValue you can retrieve it.

COleVariant bookmark; //The CellText() method needs a bookmark
bookmark = pGrid->RowBookmark(5);
//use the CellText method of the Column object
AfxMessageBox(Col.CellText(bookmark));

VC++ GetActiveCell Method
// #N GetActiveCell
//
// #D Description:
// Returns an activecell pointer
//
// #A Arguments:
//
//
// #R Return:
// If successful returns the activecell pointer
// If unsuccessful returns 0
//
//#C Comments:
//

VC++ GetColumn Method
// #N GetColumn
//
// #D Description:
// Returns a column pointer from an index number
//
// #A Arguments:
// #1 short Colindex - The zero based index of the column you want
//
//
// #R Return:
// If successful returns a column pointer
// If unsuccessful returns 0
//
//#C Comments:
// Will Validate if column is valid to the grid you are using
//

VC++ GetGroup Method
// #N GetGroup
//
// #D Description:
// Returns a group pointer from an index number
//
// #A Arguments:
// #1 short GroupIndex - The zero based index of the group you want
//
//
// #R Return:
// If successful returns a group pointer
// If unsuccessful returns 0
//
//#C Comments:
// Will Validate if Group is valid to the grid you are using
//

VC++ GetSelBookmarks Method
// #N GetSelBookmarks
//
// #D Description:
// Returns a SelBookmarks pointer
//
// #A Arguments:
//
//
// #R Return:
// If successful returns a styleset pointer
// If unsuccessful returns 0
//
//#C Comments:
//

VC++ Wrapper Methods
C

CreateStyleSets
G

GetActiveCell
GetColumn
GetGroup
GetSelBookmarks

ValidateList Event Applies To
SSDBCombo
SSDBDropDown

ValidateList Event
Applies To
Description

Occurs when the control needs to validate the data entered by the user against the list of
values in the dropdown.

Syntax
Sub control_ValidateList (Text    As String, RtnPassed    As Integer)
Part Description

Text The text to validate
RtnPassed Set this to notify the control that the data is valid or not.      This parameter

defaults to False.

Remarks

If the control has the ListAutoValidate property set to False, the control will trigger this
event when it needs to validate the data entered by the user.

When this event occurs, the Text parameter will contain the value to validate.    If the value
in Text is valid, set RtnPassed to True.
You should set the ListAutoValidate property to False and process this event to optimize
list validation in large sets.    Since the control cannot search a data control using index
fields due to a Visual Basic limitation, using the data control ‘Find’ methods in this event
can significantly improve validation time.

Value Property (Bookmark Object)
See Also Applies To Example
Description

Sets or returns the value stored in a bookmark object.

Syntax
object . Value[= value]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

value A variant expression specifying the value stored in a bookmark.

Value Property (Bookmark) Applies To
Bookmark object (SSDBData only)

Value Property (Bookmark) See Also
String

Value Property (Button Object)
Applies To

Description

Sets or returns the current state (checked / not checked) of the button object.

Syntax
object . Value[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

value A boolean expression specifying whether the button is selected or not.

Settings
Setting Description

True (Default) Button object is selected.
False Button object is not selected.

Value Property (Button Object) Applies To
Button object

Value Property (SSDBGrid)
See Also Applies To
Description

Returns the value stored in a column.

Syntax
object . Value[= value]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Value A variant expression specifying the value stored in a column.

Remarks
Value returns the contents of a column in its native Variant form while Text returns the
contents of a column as a string.

Value Property Applies To
ActiveCell Object
Column Object
ssRowBuffer Object

Value Property See Also
Text

VertScrollBar Property
Applies To
Description

Determines whether a vertical scrollbar is displayed in a column.

Syntax
object . VertScrollBar[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A boolean expression specifying whether a vertical scrollbar is displayed,
as described in Settings.

Settings
Setting Description

True Vertical scrollbar is displayed.
False (Default) Vertical scrollbar is not displayed.

Remarks:
The vertical scrollbar is useful when there is data that extends past the width of the
column.    The scrollbar allows the user to scroll through the entire contents of the cell.

VertScrollBar Property Applies To
Column object

VisibleCols Property
See Also Applies To
Description

Returns the number of visible columns in the grid.

Syntax
object . VisibleCols

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
VisibleCols is only available at runtime and is read-only.    VisibleCols returns an integer
expression specifying the number of visible columns in the grid.

VisibleCols Property Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

VisibleCols See Also
Col
Cols

VisibleGrps Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

VisibleGrps Property
Applies To
Description

Returns the number of visible groups in the grid.

Syntax
object . VisibleGrps

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
VisibleGrps is only available at runtime and is read-only. VisibleGrps returns an integer
expression specifying the number of visible groups in the grid.

VisibleRows Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

VisibleRows Property
Applies To
Description

Returns the number of visible rows in the grid.

Syntax
object . VisibleRows[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the number of visible rows in the grid.

Remarks
VisibleRows is only available at runtime and is read-only.

Visual C++ Information
Methods Included in the Wrapper Class
Inserting controls into your VC++ project
Other VC++ Examples
Important Note on Using Examples
Some Common Questions
Data Widgets 2.0 ships with a number of samples that illustrate how to use the controls in
Microsoft Visual C++ version 4.0 or later. These samples are included in the SAMPLES\
MSVC directory under your installation directory. The samples include a wrapper class that
exposes the functionality of the controls in VC++.
The wrapper class is designed to encapsulate the use of some of the functions of the
Sheridan Software SSDBGrid controls. The source code to the CGridHelper class is
contained in GridHelper.cpp and GridHelper.h.
The class holds a pointer to the control you are using when you pass it through the create
function. Remember, if you use GetDlgItem it returns a temporary pointer only, so you
would need to call the create function again the next time you need to use it. There is
some sample code that shows you how to get a pointer you can store.
You can obtain a permanent pointer to the Grid on a dialog by using this code. Please note
that this will give you an ASSERT failure if you also have a member variable defined for the
grid in ClassWizard.

CSSDBGrid* pGrid2 = new CSSDBGrid();
pGrid2->Attach(GetDlgItem(IDC_SSDBGRIDCTRL1)->GetSafeHwnd());

TRACE("The caption is %s\n", pGrid2->GetCaption());
pGrid2->Detach();
delete pGrid2;

The wrapper class assists in using the collections that are part of the controls. If the
function fails it's return value is 0 (zero), so that you can use the ASSERT() macro in your
code to check for a successful result.
In the example of the wrapper classes GetColumn() function, you pass GetColumn the
index of the column you want to use. For example 1. You would then receive a pointer to
that column if the function is successful, and zero if the function fails. You can then use this
pointer to call any of the methods or get or set any of the properties of the column object.
You can store the pointer that was returned to you for later use if you want, but you are
responsible for deleting the object.

What are Bookmarks? (Enhanced Data Control)
Bookmarks are a powerful feature that allow you to "flag" a record you want to remember. 
The EDC allows you to Add, Store, and Delete bookmarks without the need for coding.    To
access a stored bookmark, the user need only click on the button, where a dropdown
list of stored bookmarks will appear for selection.

What is Data Widgets?
Data Widgets is a set of custom controls that allow you to design front-ends for database
applications with all the simplicity and power you have come to expect from your host
development application.
Designed with ease of use in mind, Data Widgets virtually eliminates the need for time-
consuming coding when developing applications involving database operations.    What
used to take hours of development can now take minutes.    All you need to do is drop a
control on a form, set a few properties, and Data Widgets does the rest!
Data Widgets includes six bound custom controls, each for specific data-manipulation
functions, provided in both 16-bit and 32-bit OLE Custom Control (OCX) format.   
Data Widgets Features
Using Data Widgets
Introduction to OCX controls
Optimizing Data Widgets
StyleSets
Property Pages

 What's New?
Perhaps the most significant change in Data Widgets 2.0 is the transition from VBX to OCX
format for custom controls.    The OCX format utilizes Microsoft’s OLE automation
specifications.    Controls such as Data Widgets can now be used on a range of
development environments, whereas in the past, Data Widgets was limited to
environments that supported the VBX format. For a discussion of OCX related issues, refer
to the section Introduction to OCX Controls.
Version 2.0 of Data Widgets introduces the use of objects and collections.    Objects allow
you to manipulate the custom controls much more easily and with more power than in the
past.    For example, you can easily set a property specific to an object (such as an
individual column) by accessing the object directly.    This means that you can customize
Data Widgets to suit your individual needs.    Collections are simply organized groupings of
objects. For more information on objects and collections, see the section entitled Object
Concepts.
With this release of Data Widgets also comes the transition from accessing and
manipulating grid rows by row number to using bookmarks.    Row numbers are still used in
Data Widgets 2.0, but their meaning has been redefined.
There are now two types of row numbers, Display    row numbers which indicate the row
number as it appears in the current view, and Absolute    row numbers which indicate the
row number relative to the entire grid.    Absolute row numbers are only    used in AddItem
mode, while display row numbers are used in bound, unbound, and AddItem modes of the
grid.
Because of the many changes, code that worked in Version 1.0 will need to be modified to
take advantage of the new structure.    Additionally, many of the properties that existed in
1.0 have either been altered to conform with this new structure, or eliminated completely.   
To help ease the transition of users from 1.0 to 2.0, refer to the Online Help file
‘DATW1TO2.HLP’.

WhereIs Applies To
SSDBData
SSDBOptSet
SSDBGrid

WhereIs Method
See Also Applies To Example
Description

Returns the current area of the control to which the cursor is pointing.    Returns values for
nothing, button areas, and caption area.

Syntax
object . WhereIs(X    As Single, Y    As Single, [scale    As Variant])

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

X Determines the X coordinate.
Y Determines the Y coordinate.
scale (Optional)    Determines the scale to use as described in Settings.

Settings
The settings for scale    are:
Setting Description

0 Twips
1 Pixels
2 Container Coordinates
3 HiMetric

There are constants for the settings of this parameter.

Remarks
For SSDBData, WhereIs returns the following values:

Value Description

0 Pointing at nothing
1 Pointing at caption
2 Pointing at bevel
3 Pointing at button "First"
4 Pointing at button "Last"
5 Pointing at button "Previous Page"
6 Pointing at button "Next Page"
7 Pointing at button "Previous Record"
8 Pointing at button "Next Record"
9 Pointing at button "Add Record"
10 Pointing at button "Cancel Add Record"

11 Pointing at button "Update Record"
12 Pointing at button "Delete Record"
13 Pointing at button "Find Next"
14 Pointing at button "Find Previous"
15 Pointing at button "Find"
16 Pointing at button "Add Bookmark"
17 Pointing at button "Clear Bookmarks"
18 Pointing at button "Goto Bookmark"

There are constants for the settings of this parameter.

For SSDBGrid, WhereIs returns the following values:

Value Description

0 Pointing at nothing
1 Pointing at Grid Heading
2 Pointing at Group Header
3 Pointing at Column Header
4 Pointing at Grid Selector
5 Pointing at Record Selector
6 Pointing at Background
7 Pointing at Data

There are constants for the settings of this parameter.

For SSDBOptSet, WhereIs returns the following values:

Value Description

0 Pointing at nothing
1 Pointing at button
2 Pointing at caption

There are constants for the settings of this parameter.

WhereIs Method See Also
ButtonFromCaption
ButtonFromPos

WidthGap Property
See Also Applies To
Description

Returns or sets the minimum horizontal distance between columns.

Syntax
object . WidthGap[= number]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

number An integer expression specifying the minimum amount of horizontal
distance between columns.

Remarks
The following example shows a DataOptionSet with a small WidthGap setting:

The following example shows a DataOptionSet with a large WidthGap:

WidthGap Property Applies To
SSDBOptSet

WidthGap Property See Also
ColOffSet
RowOffSet

WordWrap Property Applies To
SSDBCommand
SSDBOptSet
SSDBData

WordWrap Property
See Also Applies To
Description

Determines if the text specified in the Caption property will be wrapped.

Syntax
object . WordWrap[= boolean]

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

boolean A Boolean expression specifying whether to wrap the caption text, as
described in Settings.

Settings Description

True (Default) Caption text will wrap to multiple lines as needed.
False Caption text will reamin on a single line.

Remarks
Word wrapping causes text to be split into multiple lines if the caption width exceed the
width of the control, or in the case of SSDBOptSet, the width of the column.

The following is an example of a button without wordwrap:

The following is an example of a button with wordwrap:

WordWrap Property See Also
MultiLine

Add Method example
This example adds the current row bookmark to a selected bookmarks collection:

SSDBGrid1.SelBookmarks.Add(SSDBGrid1.Bookmark)

This example adds five buttons to a button collection:
SSDBOptSet1.Buttons.Add 5

This example adds a second and third column to a columns collection:
SSDBGrid1.Columns.Add 1
SSDBGrid1.Columns.Add 2

This example adds a second and third group to a groups collection:
SSDBGrid1.Groups.Add 1
SSDBGrid1.Groups.Add 2

AddItem Method example
The following code adds two cells to an AddItem grid with the FieldSeparator property
set to a comma:

SSDBGrid1.AddItem "Hello,World"

AddItem Method (Column Object) example
The following example adds the state abbreviation NY to a combo box:

SSDBGrid1.Columns(3).AddItem "NY"

AfterClick Event example
The following code displays a dialog box after the user has performed a database function:

Private Sub SSDBCommand1_AfterClick()
MsgBox ("Database Action Performed!")

End Sub

AfterDelete Event example
This example shows how to use the AfterDelete event to execute custom code:

Private Sub SSDBCommand1_AfterDelete()
 MsgBox ("Database Record Deleted!")
End Sub

AfterInsert Event example
This example shows how to use the AfterInsert event to execute custom code:

Private Sub SSDBCommand1_AfterInsert()
 MsgBox ("New Record Inserted!")
End Sub

AfterUpdate Event example
This example shows how to use the AfterUpdate event to execute custom code:

Private Sub SSDBCommand1_AfterUpdate()
 MsgBox ("Record Updated!")
End Sub

BackColor Property example
The following is an example of how the BackColor property affects the SSDBOptSet
control:

SSDBOptSet1.Buttons(1).BackColor = &H00808080& ‘ Set to dark gray

BeforeColUpdate Event example
This example demonstrates how to restore the old value:

Cancel = 0
SSDBGrid1.Columns(ColIndex).Value = OldValue

Bold Property example
This sample code sets the caption text for the control to bold:

SSDBOptSet1.Caption = "DataOptionSet Example!"
SSDBOptSet1.Font.Bold = True
SSDBGrid.Headfont.Bold = True

Bookmark Property example
This sample code uses the Bookmark property of the RowBuffer object to assign a unique
bookmark:

For j = 0 To SSDBGrid1.Cols - 1 'For each column in the
grid

RowBuf.Value(i, j) = myarray(p, j) 'Set the value of
each column in the row buffer to the corresponding value in the arrray
Next
RowBuf.Bookmark(i) = p 'set the value of the
bookmark for the current row in the rowbuffer

Also see the example code for the UnboundReadData event.

ButtonEnabled Property example
The following example demonstrates how the ButtonEnabled property can be used.    In
our Payment Method example below, the four credit card options are set with an initial
property of ButtonEnabled=False.    Only when the user clicks on the "Credit Card"
button do we want the various credit card types enabled for selection.

The following code is placed in the Click event of the "Credit Card" button:
   

 SSDBOptSet1.Buttons(0).Enabled = True
 SSDBOptSet1.Buttons(1).Enabled = True
 SSDBOptSet1.Buttons(2).Enabled = True
 SSDBOptSet1.Buttons(3).Enabled = True

ButtonFromCaption Method example
The following example looks for a button with the caption of "Visa" and hides it:

SSDBOptSet1.ButtonFromCaption ("Visa").Visible = False

ButtonFromPos Method example
This sample looks for a button that resides at (100,100) and changes its position:

Sub SSDBOptSet1_MouseMove (Button As Integer, Shift As Integer, X As
Single, Y As Single)

SSDBOptSet1.ButtonFromPos (100,100).ColOffSet = 10
SSDBOptSet1.ButtonFromPos (100,100).RowOffSet = -15

End Sub

ButtonVisible Property example
This example demonstrates the use of the ButtonVisible property.    In this example, the
first button in a group is selected using the IndexSelected property, then the visibility of
the button is set using the ButtonVisible property:

SSDBOptSet1.IndexSelected = 0
SSDBOptSet1.ButtonVisible = False

Similarly, you can use the Visible property of the Button Object to display or hide
individual buttons. Here the second Button object in the Buttons Collection is made
invisible:

Buttons Collection example
To refer to a button within a collection, use the following syntax:

Control.Buttons(Button Number).Property = Value

The following example demonstrates various properties that can be set:

SSDBOptSet1.Buttons(0).Caption = "This is button #1 of the collection"
SSDBOptSet1.Buttons(1).Caption = "This is button #2 of the collection"
SSDBOptSet1.Buttons(2).RowOffSet = 5

The following example demonstrates adding four buttons to a SSDBOptSet control:

SSDBOptSet1.Buttons.Add(4)

Caption Property example
This sample code sets the caption text of a SSDBCommand button:

SSDBCommand1.Caption = "Next Student"

This sample code sets the caption text for a Column object and a Group object header:

SSDBGrid1.Columns(1).Caption = "Active"
SSDBGrid1.Groups(0).Caption = "Company Info"

This sample code sets the caption text of a group of    DataOptionSet buttons.    When using
the caption property with the DataOptionSet, only the selected button is affected.

SSDBOptSet1.Buttons(0).Caption = "Visa"
SSDBOptSet1.Buttons(1).Caption = "Mastercard"
SSDBOptSet1.Buttons(2).Caption = "AMEX"

CellText Method example
The following example takes the text from a cell and displays it in a message box:

DispText = SSDBGrid1.Columns(2).CellText(SSDBGrid1.LastRow)
MsgBox ("The value for that Row is :" + DispText)

CellValue Method example
The following example uses the value of a cell to perform a calculation:

SalesTax = SSDBGrid1.Columns(5).CellValue(SSDBGrid1.Bookmark)
Total = (SubTotal * SalesTax)

Find Example
It is possible to use the CloseFindDialog event in combination with the Find method to
implement custom code that is invoked when the user performs a search, and yet still uses
the built-in search features of the control.
For example, suppose you wish to log each search performed by the user. You might write
a subroutine called LogQuery to write the criteria of each query to a log file. Your
subroutine would be placed in the CloseFindDialog event. After calling your subroutine to
log the query, you would use the Find method to actually perform the query:

Sub SSDBData1_CloseFindDialog(FindString as Variant, Criteria As
Variant, Direction As Variant, ColToSearch As Variant, Cancel As
Integer)

Cancel = True
LogQuery FindString, Criteria, Direction, ColToSearch
Find FindString, Criteria, Direction, ColToSearch

End Sub

Note that it is important to set the value of Cancel    to True. Otherwise, the query will be
performed a second time after exiting the event.

ColChanged Property Example
The following example demonstrates use of the ColChanged property

If SSDBGrid1.Columns(0).ColChanged Then
MsgBox ("The name has changed!")

EndIf

ColOffSet Property example
The following example demonstrates the effect of the ColOffset property.    The last button
has a ColOffset value of 20:

The code for this example would be:

SSDBOptSet1.Buttons(3).ColOffSet = 20

ColPosition Method example
The following code returns the index for the column that appears fifth on the grid:

X=SSDBGrid1.ColPosition (4)

The following code returns the index for the column that appears second in the group:

X=SSDBGrid1.Groups(3).ColPosition (1)

Columns Collection example
To refer to a column within a collection, use the following syntax:

Control.Columns(Column Number).Property = Value

The following example demonstrates setting a property:

SSDBGrid1.Columns(0).Caption = "This is Column #1 of the collection"

Count Property example
The following code takes the number of buttons and displays it in a message box:

Dim NumButtons as Integer
NumButtons = SSDBOptSet1.Buttons.Count
Msg = "Total Number of Buttons: " + Str(NumButtons)
Response = MsgBox(Msg, 0)

DropDownHwnd Property Example
The following code ties the second column of a Data Grid to a Data DropDown:

SSDBGrid1.Columns(1).DropDownHwnd = SSDBDropDown1.Hwnd

FieldDelimiter Property example
In the following example, the FieldSeparator is set to ",":

SSDBGrid1.FieldDelimiter = "!"
SSDBGrid1.AddItem ("!Hello, world!,!How Are You?!")

This example adds two columns to the grid.    If FieldDelimiter was set to "None", it would
have added three because it would have interpreted the comma in "Hello, World" as a
separator.

FieldValue Property Example
The following example displays a message box containing the employee name
corresponding to the current record, assuming that DataField is set to the field
"EmployeeName":

MsgBox ("Current Employee: "+SSDBData1.FieldValue)

Font Object example
The following code changes the Bold property setting of a Font object identified by the
Font property of a Data Widgets control:

SSDBOptSet.Font.Bold = True ‘ Sets caption text to bold

The following code changes the Size property setting of a Font object identified by the
Font property of a Data Widgets control:

SSDBData.Font.Size = 10 ‘ Set the font size to 10 points

The following code changes the Name property setting of a Font object identified by the
Font property of a Data Widgets control:

SSDBCommand.Font.Name = "Arial" ‘ Sets the font to Arial

Font3D Property example
This sample code sets the caption text to 3D with heavy shading if the font is greater than
18 points.

If (SSDBCommand1.Font.Size > 18) Then
 SSDBCommand1.Font3D = 2 ' Raised w/heavy shading
Else
 SSDBCommand1.Font3D = 1 ' Raised w/light shading
End If

GetBookmark Method example
The following example moves the current row down two records:

BM=SSDBGrid1.GetBookmark(2)
SSDBGrid1.Bookmark = BM

Groups Collection example
To refer to a column within a groups collection, use the following syntax:

Control.Groups(Group Number).Property = Value

The following example demonstrates various properties that can be set:

SSDBGrid1.Groups(0).Caption = "This is Group #1 of the collection"
SSDBGrid1.Groups(1).Caption = "This is Group #2 of the collection"

GrpHeadClick Event example
The following example displays a message box when a group header is clicked, indicating
the group number:

Sub SSDBGrid1_GrpHeadClick (ByVal GrpIndex As Integer)
 MsgBox "Grp" + Str$(GrpIndex)
End Sub

GrpPosition Method example
The following code returns the index for the group that appears third on the grid:

X=SSDBGrid1.GrpPosition (2)

HeadClick Event example
The following example displays a message box when a column header is clicked, indicating
the column number:

Sub SSDBGrid1_HeadClick (ByVal ColIndex As Integer)
 MsgBox "Column :" + Str$(ColIndex)
End Sub

HeadFont Object example
The following code changes the Bold property setting of a HeadFont object:

SSDBGrid.HeadFont.Bold = True ‘ Sets caption/header text to bold

InitColumnProps Event example
The following example sets the initial caption alignment for a grid:

Private Sub SSDBGrid1_InitColumnProps()
 SSDBGrid1.Groups(0).CaptionAlignment = 2 ' Sets Group 0 Center
 SSDBGrid1.Groups(1).CaptionAlignment = 0 ' Sets Group 1 Left
 SSDBGrid1.Groups(2).CaptionAlignment = 1 ' Sets Group 2 Right
End Sub

IsItemInList Method example
The following example displays an error if the text in the edit portion is not in the
dropdown list:

Sub SSDBCombo1_LostFocus()
If Not SSDBCombo1.IsItemInList Then

 MsgBox "Text Is Not In List!""
End If

End Sub

IsTextValid Method example
An example of when text would be invalid is if the text is null and AllowNull is false.    You
could then display an error message such as:

Sub SSDBCombo1_LostFocus()
If not SSDBCombo1.IsTextValid then

 MsgBox "Text Is Not Valid!"
EndIf

End Sub

Italic Property example
This sample code sets the caption text for the control to italic:

SSDBOptSet1.Caption = "DataOptionSet Example!"
SSDBOptSet1.Font.Italic = True

SSDBGrid.Headfont.Italic = True

List Property example
The following example demonstrates the List property by adding two strings:

SSDBGrid1.Columns(2).List(3) = "Hello"
SSDBGrid1.Columns(2).List(4) = "World"

Locked Property example
The following code demonstrates the Locked property by generating an error when a user
attempts to edit a locked column:

Private Sub SSDBGrid1_Click()
 If SSDBGrid1.Columns(currentcol).Locked = True Then
 MsgBox ("This field can not be edited!")
 End If
End Sub

MinColWidth Property example
The following example sets the minimum column width for the fourth button to 50:

SSDBOptSet1.Buttons(3).MinColWidth = 50

MinHeight Property example
The following example sets the minimum height of the control to 250:

SSDBOptSet1.MinHeight = 250

MousePointer Property example

The following sample code sets the mouse icon to the custom type using the icon
"DISK.ICO":

SSDBOptSet1.MousePointer = 99
SSDBOptSet1.MouseIcon = DISK.ICO

MoveRecords Method example
The following code moves forward 10 records in a grid:

SSDBGrid1.MoveRecords (10)

The following code moves backward 5 records in a grid:

SSDBGrid1.MoveRecords (-5)

NumberFormat Property example
The following examples demonstrate the effects NumberFormat has on data:

Data NumberFormat String Displayed Result

5459.4 $ ##,##0.00 $ 5,459.40
334.9 ###0.000 334.900
100 Currency $100.00

NumberOfButtons Property example
This example creates five buttons in the DataOptionSet and creates captions for them:

SSDBOptSet1.NumberOfButtons = 10
For X = 0 To (SSDBOptSet1.NumberOfButtons - 1)

SSDBOptSet1.Buttons(x).Caption = "Button #"+STR$(X)
Next X

OptionValue Property example
The following example shows three buttons which are bound to a database with the field
"City".    When the current field in the database matches one of the option values, the
button becomes selected.    If the user selects another option button, the field of the
current database’s record will be set to the button’s option value.

SSDBOptSet1.Buttons(0).OptionValue = "NY"
SSDBOptSet1.Buttons(1).OptionValue = "NJ"
SSDBOptSet1.Buttons(2).OptionValue = "CT"

PageValue Property example
This sample code sets the PageValue so that the control will move forward 40 records
when they click the "Next Page" button.

SSDBData1.PageValue = 40
SSDBCommand1.PageValue = 40

Picture Property example
To load the picture at runtime you need to use the LoadPicture property as shown here:

SSDBCommand1.Picture = LoadPicture("icons\writing\erase02.ico")

PictureButtons Property example
This sample code loads a custom PictureButton bitmap:

SSDBData.PictureButtons = LoadPicture ("c:\bitmaps\mybutns.bmp")

ReadType Property Example
Unless you use the ReadType property in your code for the UnboundReadData event,
your program may read data unneccesarily and performance may be adversely affected.
This is particularly true in the DataDropDown and DataCombo controls, where the user is
frequently searching for information in a specific field.
The following is based on the example code for the UnboundReadData event. For the full
listing of the example code, see the UnboundReadData example .

For i = 0 To RowBuf.RowCount - 1 'For each row in the row
buffer

If p < 0 Or p > counter Then Exit For 'If the pointer is
outside the grid then stop this

Select Case RowBuf.ReadType 'Optimize the data read
based on the ReadType

Case 0 'Read All Data
For j = 0 To SSDBGrid1.Cols - 1 'For each column

in the grid
RowBuf.Value(i, j) = myarray(p, j) 'Set the value

of each column in the row buffer to the corresponding value in the
arrray

Next
RowBuf.Bookmark(i) = p 'set the value of

the bookmark for the current row in the rowbuffer

Case 1 'Read bookmarks only
RowBuf.Bookmark(i) = p 'set the value of

the bookmark for the current row in the rowbuffer

Case 3 'Read bookmarks and bound column
RowBuf.Value(i, 0) = myarray(p, 0) 'this just assumes

the first column is the bound column
RowBuf.Bookmark(i) = p 'set the value of

the bookmark for the current row in the rowbuffer

End Select

If ReadPriorRows Then 'move the pointer
forward or backward, depending _

p = p - 1 'on which way it's
supposed to move

Else
p = p + 1

End If

r = r + 1 'increment the number
of rows read
Next i

ReBind Method example
The following example removes a column from a bound grid then replaces it by calling the
ReBind method:

SSDBGrid1.Columns.Remove(2)
SSDBGrid1.ReBind

Redraw Property example
The following code demonstrates the Redraw property:

SSDBGrid1.Redraw = False
For X = 1 To 5000
 SSDBGrid1.AddItem "This is Row " + STR$(X)
 Next X
SSDBGrid1.Redraw = True

Remove Method example
The following example illustrates use of the remove method by deleting the fourth button
in a collection of ten buttons:

SSDBOptSet1.Buttons(4).Caption = "Fifth"
SSDBOptSet1.Buttons.Remove (3) ‘ Fourth button is removed
X = SSDBOptSet1.Buttons(3).Caption‘ X contains "Fifth" since all buttons
shifted

RemoveAll Method (AddItem Mode) example

The following code removes all strings from an AddItem grid:

SSDBGrid1.RemoveAll

RemoveAll Method (Collections) example
The following example illustrates use of the RemoveAll method:

SSDBData1.Bookmarks.RemoveAll 'All bookmarks deleted
SSDBOptSet1.Buttons.RemoveAll 'All buttons deleted
SSDBGrid1.Columns.RemoveAll 'All columns deleted

RemoveAll Method (Column Object) example
The following code example removes all items from a combo box in the third column:

SSDBGrid.Columns(2).RemoveAll

RemoveItem Method (AddItem Mode) example
The following example removes the fifth row of an AddItem grid:

SSDBGrid1.RemoveItem (4)

RemoveItem Method (Column Object) example
The following code example removes the fourth item of a combo box in the first column:

SSDBGrid1.Columns(0).RemoveItem(3)

RowBookmark Method example
This example selects the last five visible rows in the grid:

VIS = (SSDBGrid1.VisibleRows - 6)
For X = VIS to SSDBGrid1.VisibleRows - 1
 SSDBGrid1.SelBookmarks.Add SSDBGrid1.RowBookmark(X)
Next X

For examples of how to use the RowCount property, see:
DataGrid: Exercise 2 - Unbound Mode
UnboundReadData Event Example

RowLoaded Event example
The following example demonstrates how the RowLoaded event can be used to view and
act upon data as it is read into the grid.    In this scenario, if the State field contains "New
York", a graphic of a heart is displayed in the cell.

SSDBGrid1.StyleSets("rowload1").BackColor = RGB(0, 128, 255)
SSDBGrid1.StyleSets("rowload1").ForeColor = RGB(0, 0, 0)
SSDBGrid1.StyleSets("rowload1").Font.Name = "Arial"
SSDBGrid1.StyleSets("rowload1").Font.Strikethrough = True
SSDBGrid1.StyleSets("rowload1").Picture = "e:\mary\graphics\

heart.bmp"

If SSDBGrid1.Groups(1).Columns(1).CellText(Bookmark) = "New York"
Then

SSDBGrid1.Groups(1).Columns(1).CellStyleSet "rowload1"
End If

SavedBookmark Property example
Create two SSDBCommand buttons; one captioned "Save Bookmark" with
DatabaseAction = 6, and the other captioned "Goto Bookmark" with DatabaseAction =
7.   
In the AfterClick event for the Save Bookmark button, add the following code:

SSDBCommand2.SavedBookmark = SSDBCommand1.SavedBookmark

After scrolling through the database, you can click the "Goto Bookmark" button to return to
the record whose bookmark you saved.

SelBookmarks Collection example
The following example will add the first five rows to the collection:

Dim i as integer
SSDBGrid1.MoveFirst ' Position at the first row
for i = 0 to 4

SSDBGrid1.SelBookmarks.Add SSDBGrid1.Bookmark
SSDBGrid1.MoveNext

next i

It is also easy to access the rows in the SelBookmarks collection without moving the
current row position. For example, if there was a column in the grid called Amount and you
wanted to add up all the rows that were selected to get a total, you could use the following
code:

Dim nTotal as long
Dim nTotalSelRows as integer
Dim i as integer
Dim bkmrk as Variant ' Bookmarks are always defined as variants

nTotalSelRows = SSDBGrid1.SelBookmarks.Count

' In the following, get the bookmark of the selected rows

for i = 0 to nTotalSelRows
bkmrk = SSDBGrid1.SelBookmarks(i)
nTotal = nTotal + SSDBGrid1.Columns("Amount").CellValue(bkmrk)

next i

Debug.Print "The total amount = " & Format(nTotal, "Currency")

Size Property example
The following sample code sets the font size to 18 points:

SSDBOptSet.Font.Size = 18
SSDBGrid.Headfont.Size = 18

Strikethrough Property example
The following sample code causes the text to appear with strikethrough formatting:

SSDBOptSet1.Font.Strikethrough = True
SSDBGrid.Headfont.Strikethrough = True

String Property example
This sample stores a value to a bookmark and identifies it with the String property:

Dim vbookmark as variant
 vbookmark = SSDBCommand1.SavedBookmark
 SSDBData1.Bookmarks(0).Value = vbookmark
 SSDBData1.Bookmarks(0).String = "The first bookmark"

TagVariant Property example
The following code illustrates how the TagVariant property can be set to a double-
precision floating point number:

Dim TaxRate As Double
TaxRate = 0.825
SSDBCommand1.TagVariant = TaxRate

TextFormat Property example
In this example, data displayed in the edit portion of the SSDBCombo will be displayed as
currency:

SSDBCombo1.TextFormat = "Currency"

UnboundAddData Event Example
The following example shows how you can use the UnboundAddData event to take
information from a row that has been added to the grid and append it to an array in
memory. Also see Data Grid: Exercise 2 for an example of how to use unbound mode with
custom code to access a database.
First, place a DataGrid on a form in Visual Basic, and set it to Unbound mode. Then enter
the following code:
In the (declarations) section of the form:

Dim myarray() As String
Dim p As Integer
Dim counter As Integer

In the Form_Load event:

' The last dimension of an array can be re-dimmed
' while preserving data. Therefore, that demension
' should represent "rows" in the grid

ReDim myarray(0 To 2, 0 To 3000) As String
counter = -1

For i = 0 To 3000 'fill the array
myarray(0, i) = "Column 0 in Row " & i
myarray(1, i) = "Column 1 in Row " & i
myarray(2, i) = "Column 2 in Row " & i
counter = counter + 1

Next i

' Set rows to keep scrollbars accurate
SSDBGrid1.Rows = 3000

For i = 0 To 2
SSDBGrid1.Columns.Add i

Next i

In the SSDBGrid1_UnboundAddData event:

Dim i As Integer
Dim s As Integer

counter = counter + 1

s = UBound(myarray, 2) 'the present size of the "rows" dimension of
the array

' Increase the size of the array by one
ReDim Preserve myarray(0 To 2, 0 To s + 1)

For i = 0 To 2
' Fill in the new row in the array
myarray(i, s + 1) = SSDBGrid1.Columns(i).Text

Next i

UnboundDeleteRow Event Example
The following example shows how you can use the UnboundDeleteRow event to take a row
that has been deleted from the grid and remove it from the array in memory. Also see Data
Grid: Exercise 2 for an example of how to use unbound mode with custom code to access a
database.
First, place a DataGrid on a form in Visual Basic, and set it to Unbound mode. Then enter
the following code:
In the (declarations) section of the form:

Dim myarray() As String
Dim p As Integer
Dim counter As Integer

In the Form_Load event:

' The last dimension of an array can be re-dimmed
' while preserving data. Therefore, that demension
' should represent "rows" in the grid

ReDim myarray(0 To 2, 0 To 3000) As String
counter = -1

For i = 0 To 3000 'fill the array
myarray(0, i) = "Column 0 in Row " & i
myarray(1, i) = "Column 1 in Row " & i
myarray(2, i) = "Column 2 in Row " & i
counter = counter + 1

Next i

' Set rows to keep scrollbars accurate
SSDBGrid1.Rows = 3000

For i = 0 To 2
SSDBGrid1.Columns.Add i

Next i

In the UnboundDeleteRow event:

Private Sub SSDBGrid1_UnboundDeleteRow(bookmark As Variant)

Dim iSelectedRow As Integer
Dim clone As Variant

clone = myarray()

For iSelectedRow = SSDBGrid1.SelBookmarks.Count - 1 To 0 Step -1
' Mark the selected rows as deleted
clone(0, SSDBGrid1.SelBookmarks(iSelectedRow)) = "ssdeleted"

Next iSelectedRow

Dim iTempIndex As Integer
' Re-populate the array, but exclude the
' data that has been marked as deleted

For i = 0 To UBound(myarray, 2)
If clone(0, i) <> "ssdeleted" Then

For j = 0 To 2
myarray(j, iTempIndex) = clone(j, i)

Next j
iTempIndex = iTempIndex + 1

End If
Next i

' This global counter is used by the grids read events, so be sure to
reset it

counter = counter - SSDBGrid1.SelBookmarks.Count
' Shrink the array
ReDim Preserve myarray(2, counter)

SSDBGrid1.SelBookmarks.RemoveAll

' Note that the "Rows" property of the grid can be set in the
AfterDelete event

' to preserve the accuracy of the scrollbars

End Sub

In the AfterDelete event (optional)

Private Sub SSDBGrid1_AfterDelete(RtnDispErrMsg As Integer)

SSDBGrid1.Rows = counter
SSDBGrid1.Refresh

End Sub

UnboundPositionData Event example
The following example shows how you can use the UnboundPositionData event to populate
the grid from an array that is stored in memory. This example selects the data to display
from the array based on the position of the grid.
First, place a DataGrid on a form in Visual Basic, and set it to Unbound mode. Then enter
the following code:
In the (declarations) section of the form:

Dim myarray() As String
Dim p As Integer
Dim counter As Integer

In the Form_Load event:

' The last dimension of an array can be re-dimmed
' while preserving data. Therefore, that demension
' should represent "rows" in the grid

ReDim myarray(0 To 2, 0 To 3000) As String
counter = -1

For i = 0 To 3000 'fill the array
myarray(0, i) = "Column 0 in Row " & i
myarray(1, i) = "Column 1 in Row " & i
myarray(2, i) = "Column 2 in Row " & i
counter = counter + 1

Next i

' Set rows to keep scrollbars accurate
SSDBGrid1.Rows = 3000

For i = 0 To 2
SSDBGrid1.Columns.Add i

Next i

In the SSDBGrid1_UnboundPositionData event:

Private Sub SSDBGrid1_UnboundPositionData(StartLocation As Variant,
ByVal NumberOfRowsToMove As Long, NewLocation As Variant)

If IsNull(StartLocation) Then 'If at beginning or end of data set
then

StartLocation = 0 'Start at the beginning
End If

NewLocation = CLng(StartLocation) + NumberOfRowsToMove

End Sub

UnboundReadData Event Example
The following example shows how you can use the UnboundReadData event to populate
the grid from an array that is stored in memory. Also see Data Grid: Exercise 2 for an
example of how to use unbound mode with custom code to access a database.
First, place a DataGrid on a form in Visual Basic, and set it to Unbound mode. Then enter
the following code:
In the (declarations) section of the form:

Dim myarray() As String
Dim p As Integer
Dim counter As Integer

In the Form_Load event:

' The last dimension of an array can be re-dimmed
' while preserving data. Therefore, that demension
' should represent "rows" in the grid

ReDim myarray(0 To 2, 0 To 3000) As String
counter = -1

For i = 0 To 3000 'fill the array
myarray(0, i) = "Column 0 in Row " & i
myarray(1, i) = "Column 1 in Row " & i
myarray(2, i) = "Column 2 in Row " & i
counter = counter + 1

Next i

' Set rows to keep scrollbars accurate
SSDBGrid1.Rows = 3000

For i = 0 To 2
SSDBGrid1.Columns.Add i

Next i

In the SSDBGrid1_UnboundReadData event:

Dim r As Integer
Dim i As Integer
Dim j As Integer

If IsNull(StartLocation) Then 'If the grid is empty then

If ReadPriorRows Then 'If moving backwards through grid
then

p = counter 'pointer = # of last grid row
Else 'else

p = 0 'pointer = # of first grid row
End If

Else 'If the grid already has data in it
then

p = StartLocation 'pointer = location just before or
after the row where data will be added

If ReadPriorRows Then 'If moving backwards through grid
then

p = p - 1 'move pointer back one row
Else 'else

p = p + 1 'move pointer ahead one row
End If

End If

'The pointer (p) now points to the row of the grid where you will start
adding data.

For i = 0 To RowBuf.RowCount - 1 'For each row in the row
buffer

If p < 0 Or p > counter Then Exit For 'If the pointer is
outside the grid then stop this

For j = 0 To 2 'For each column in
the grid

RowBuf.Value(i, j) = myarray(j, p) 'Set the value of
each column in the row buffer to the corresponding value in the arrray

Next j

RowBuf.Bookmark(i) = p 'set the value of the
bookmark for the current row in the rowbuffer

If ReadPriorRows Then 'move the pointer
forward or backward, depending _

p = p - 1 'on which way it's
supposed to move

Else
p = p + 1

End If

r = r + 1 'increment the number
of rows read
Next i

RowBuf.RowCount = r 'set the size of the
row buffer to the number of rows read

By setting the RowCount property of the RowBuffer object, you tell the control when to
stop reading data. The RowBuffer normally holds ten rows of data. As long as there is
enough data to completely fill the RowBuffer, r will be 10. When the control reaches the
end of the data set it will read fewer than ten rows, r will be less than 10 and the
RowCount of the RowBuffer will be set to a value less than 10. This signals the control
that there is no more data to be read, and the UnboundReadData event will not be fired
again.

UnboundWriteData Event Example
The following example shows how you can use the UnboundWriteData event to place
information that has been modified in the grid into an array that is stored in memory. Also
see Data Grid: Exercise 2 for an example of how to use unbound mode with custom code
to access a database.
First, place a DataGrid on a form in Visual Basic, and set it to Unbound mode. Then enter
the following code:
In the (declarations) section of the form:

Dim myarray() As String
Dim p As Integer
Dim counter As Integer

In the Form_Load event:

' The last dimension of an array can be re-dimmed
' while preserving data. Therefore, that demension
' should represent "rows" in the grid

ReDim myarray(0 To 2, 0 To 3000) As String
counter = -1

For i = 0 To 3000 'fill the array
myarray(0, i) = "Column 0 in Row " & i
myarray(1, i) = "Column 1 in Row " & i
myarray(2, i) = "Column 2 in Row " & i
counter = counter + 1

Next i

' Set rows to keep scrollbars accurate
SSDBGrid1.Rows = 3000

For i = 0 To 2
SSDBGrid1.Columns.Add i

Next i

In the SSDBGrid1_UnboundWriteData event:

Private Sub SSDBGrid1_UnboundWriteData(ByVal RowBuf As ssRowBuffer,
WriteLocation As Variant)

For i = 0 To 2 'Loop through the columns
myarray(i, WriteLocation) = SSDBGrid1.Columns(i).Value

Next i

Underline Property example
The following sample code displays the caption text with underline:

SSDBOptSet1.Font.Underline = True
SSDBOptSet1.Caption = "Caption"

SSDBGrid.HeadFont.Underline = True

Value Property (Bookmark Object) example
This sample stores a value to a bookmark:

Dim vbookmark as variant
vBookmark = SSDBCommand1.SavedBookmark
SSDBData1.Bookmarks(0).Value = vBookmark

WhereIs Method example
The following example demonstrates the use of WhereIs.    This code would be placed in
the MouseDown event sub-routine:

Dim nPos As Integer
nPos = SSDBOptSet1.WhereIs(X, Y, Z)
Select Case nPos
 Case 0
 Debug.Print "Pointing at nothing"
 Case 1
 Debug.Print "Pointing at button"
 Case 2
 Debug.Print "Pointing at caption"
EndSelect

hWndEdit Property
Applies To
Description

Returns a handle to the edit portion of the grid.

Syntax
object . HwndEdit

Part Description

object An object expression that evaluates to an object or a control in the Applies
To list.

Remarks
This handle is null until the first time the edit is actually used for in-place editing.

ssRowBuffer Object
See Also Applies To
Description

Used to transfer data to and from the control in unbound mode.

Properties

Bookmark ColumnName RowCount
ColumnCount ReadType Value

Methods

Remarks
The ssRowBuffer object is used as a transport mechanism for the unbound grid to send
and receive data to/from data storage. The logic for storing and retrieving the data is
provided by the programmer as Visual Basic code.

The ColumnCount property returns the number of columns present in the object.
The ColumnName property returns the name of the specified column in the object.
The RowCount property returns or sets the number of rows contained in the
ssRowBuffer object.

When passed to the UnboundReadData event, the ssRowBuffer object is used to fill the
cache with the rows contained in the object.      There may be one or more rows of data in
this case.
When passed to the UnboundWriteData event, the ssRowBuffer object is used to pass
the data to the data storage medium.    The UnboundWriteData event only updates one
row at a time, so the ssRowBuffer object will only contain one row.
When passed to the UnboundAddData event, the data being added is placed in the
ssRowBuffer object. The UnboundAddData event only adds one row at a time, so the
ssRowBuffer object will only contain one row.
In addition to the values for each column, each row    in the row buffer contains a bookmark
value. This bookmark value can be set or retrieved to implement indexing of data and
perform searches. Bookmark valus should be unique if possible.

Note If the ssRowBuffer is passed in an invalid parameter, it will return an error. See
Error Messages for a list of the codes for these errors and what they mean.

ssRowBuffer Object Applies To
SSDBCombo
SSDBDropDown
SSDBGrid

ssRowBuffer Object See Also
ReadType property
UnboundAddData event
UnboundDeleteRow event
UnboundReadData event
UnboundWriteData event

Performance Tuning

