
Basic Constituents

Card Constituent
Button Constituent
Combo Box Constituent
Edit Constituent
Extended Combo Constituent
Header Constituent
Image List Constituent
List Constituent
List View Constituent
Panel Constituent
Progress Constituent
ReBar Constituent
Browser Constituent
Shell Constituent
Splitter Constituent
Status Bar Constituent
System Image List Constituent
Tab Constituent
Tip Constituent
Tool Bar Constituent
Tray Icon Constituent
Tree View Constituent
Zip Constituent

Card Constituent

Properties Methods Events

 Class: B3Card Sample-Card\TestCard.vbp

Overview
 The Card constituent allows you to design programs that use playing cards as components. The card contains the
functionality to show all 52 cards in the deck and has 2 custom card backs. A card can easily be flipped over to show
its back or face as needed.

Features
Using the combination of the Suit and Card properties, the control can be set to any of the 52 standard cards and the
Joker. The card has 2 separate back styles (Red Diamond and Blue Diamond) which are set using the Back property.
The following figure displays the Card sample program:

Figure 11: The BeCubed Card Constituent

In this sample, 4 Card constituents have been added to a form at design time (the Aces). At run time, the other cards
are added as dynamic control array elements.

For example, to add the first column of cards (Clubs) the following code is used:
'clubs
 For iCard = 0 To 13
 If iCard <> 0 Then Load B3CardClubs(iCard)
 StackCards B3CardClubs(iCard), BlueDiamond, Club, iCard + 1, lLastTop
 lLastTop = B3CardClubs(iCard).Top
 Next iCard

When a card is clicked, it is turned over (opposite of the currently visible side). This is done as follows:
'if the card back is currently showing, flip it over.

 If B3CardSpades(Index).Card = Back Then
 B3CardSpades(Index).Card = Index + 1
 Else
 'otherwise, turn it over.
 B3CardSpades(Index).Card = 0
 End If

Properties (Card Constituent)

Description Methods Events

Property Name Property Description

Name Standard Property

AutoSize Automatically sizes the control to fit the card bitmap.

Back Sets the card back to display. The choices are:

0 - BlueDiamond

1 - RedDiamond

DragIcon Standard Property

DragMode Standard Property

Height Standard Property

Index Standard Property

Left Standard Property

Suit Sets the card’s suit. The choices are:

0 - Club
1 - Diamond
2 - Heart
3 - Spade

Tag Standard Property

ToolTipText Standard Property

Top Standard Property

Visible Standard Property

WhatsThisHelpID Standard Property

Width Standard Property

Methods (Card Constituent)

Description Properties Events

Method Name Method Description

AboutBox Standard Method

Drag Standard Method

Move Standard Method

ShowWhatsThis Standard Method

ZOrder Standard Method

Events (Card Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event

DoubleClick Standard Event

DragDrop Standard Event

DragOver Standard Event

MouseMove Standard Event

MouseDown Standard Event

MouseUp Standard Event

Button Constituent

Properties Methods Events

Class: bbbCMD Sample-Button\CmdGrp.vbg

Overview
The BBBCMD constituent is what you might consider an all-in-one control. In Windows, the Button window class
contains the functionality for the following controls:

· Command Button
· Option Button
· Check Box
· Group Button

There are several button state properties that the control provides that allow you to set the type of window you
would like created (remember, all controls are actually windows). The following properties determine the type of
control that is being created:

Property Control
bsPUSHBUTTON Command Button
bsRADIOBUTTON Option Button
bsCHECKBOX Check Box
bsGROUPBOX Group Box

The bsGROUPBOX property allows the control to be used as a container to group other controls.
The following section outlines the extended features of the BeCubed Button constituent control.

Features
This section covers the extended features of the Button control. This control is unique in that the button constituent
can be used as 4 different controls. Since this is the case, each extended feature specifies which controls it applies to.
For ease of use, this section only outlines features that are not provided by the standard controls.

Place the text to the left of a check box or option button.

The bsLEFTTEXT property places the text to the left of the check or option selector within the control. The
bsRIGHTTEXT (default) places the text to the right of the selector.
Create an Owner Draw button (Command Button, Option Button, Check Box)

Owner-draw allows you to draw directly into a control. For example, you may want to draw an image to the left of
an item in a list box. You can also use owner-draw to completely draw the control. This means that you are then
responsible for managing all additional drawing, redrawing, etc.

The prototype for the drawing callback is as follows:
Sub DrawButton (objButton as Object, dw as DRAWITEMSTRUCT)
objButton is the control that is being painted; dw is a draw item structure.

The DrawButton procedure (DRAW.BAS) in the Button sample contains the source code necessary for completely
drawing and managing a control.

Make an Option Button or Check Box act like a Command Button
Using the bsPUSHLIKE property, you can create an option button or check box that can be pushed like a command
button. The button looks raised when it is not selected and sunken when it is.
Intercept Windows Messages with the Control

The WindowProcCB property is used to set the address of a function that is fired for every Windows message. This
procedure is called before default processing has occurred. This allows the programmer to change the parameter
values or cancel processing altogether. You can also use the WindowProcCBAfter property to set the procedure that
is called after default processing has occurred. The same procedure can be used for both callbacks.

Properties (Button Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property

bs3STATE Creates a button that is the same as a check box, except
that the box can be grayed as well as checked or
unchecked. Use the grayed state to show that the state of
the check box is not determined.

bsAUTO3STATE Creates a button that is the same as a three-state check
box, except that the box changes its state when the user
selects it. The state cycles through checked, grayed, and
unchecked.

bsAUTOCHECKBOX Creates a button that is the same as a check box, except
that the check state automatically toggles between
checked and unchecked each time the user selects the
check box.

bsAUTORADIOBUTTON Creates a button that is the same as a radio button,
except that when the user selects it, Windows
automatically sets the button's check state to checked
and automatically sets the check state for all other
buttons in the same group to unchecked.

bsBITMAP Specifies that the button displays a bitmap.

bsBOTTOM Places text at the bottom of the button rectangle.

bsCENTER Centers text horizontally in the button rectangle.

bsCHECKBOX Creates a small, empty check box with text. By default,
the text is displayed to the right of the check box. To
display the text to the left of the check box, combine this
flag with the BS_LEFTTEXT style (or with the
equivalent BS_RIGHTBUTTON style).

bsDEFPUSHBUTTON Creates a push button that behaves like a
BS_PUSHBUTTON style button, but also has a heavy
black border. If the button is in a dialog box, the user can
select the button by pressing the ENTER key, even when
the button does not have the input focus. This style is
useful for enabling the user to quickly select the most
likely (default) option.

bsFLAT Disables 3D effects.

bsGROUPBOX Creates a rectangle in which other controls can be
grouped. Any text associated with this style is displayed

in the rectangle's upper left corner.

bsICON Specifies that the button displays an icon.

bsLEFT Left-justifies the text in the button rectangle. However, if
the button is a check box or radio button that does not
have the BS_RIGHTBUTTON style, the text is left
justified on the right side of the check box or radio
button.

bsLEFTTEXT Places text on the left side of the radio button or check
box when combined with a radio button or check box
style. Same as the BS_RIGHTBUTTON style.

bsMULTILINE Wraps the button text to multiple lines if the text string is
too long to fit on a single line in the button rectangle.

bsNOTIFY Enables a button to send BN_DBLCLK,
BN_KILLFOCUS, and BN_SETFOCUS notification
messages to its parent window. Note that buttons send
the BN_CLICKED notification message regardless of
whether it has this style.

bsOWNERDRAW Creates an owner-drawn button. The owner window
receives a WM_MEASUREITEM message when the
button is created and a WM_DRAWITEM message
when a visual aspect of the button has changed. Do not
combine the BS_OWNERDRAW style with any other
button styles.

bsPUSHBUTTON Creates a push button that posts a WM_COMMAND
message to the owner window when the user selects the
button.

bsPUSHLIKE Makes a button (such as a check box, three-state check
box, or radio button) look and act like a push button. The
button looks raised when it isn't pushed or checked, and
sunken when it is pushed or checked.

bsRADIOBUTTON Creates a small circle with text. By default, the text is
displayed to the right of the circle. To display the text to
the left of the circle, combine this flag with the
BS_LEFTTEXT style (or with the equivalent
BS_RIGHTBUTTON style). Use radio buttons for
groups of related, but mutually exclusive choices.

bsRIGHT Right-justifies text in the button rectangle. However, if
the button is a check box or radio button that does not
have the BS_RIGHTBUTTON style, the text is right
justified on the right side of the check box or radio
button.

bsRIGHTBUTTON Positions a radio button's circle or a check box's square
on the right side of the button rectangle. Same as the

BS_LEFTTEXT style.

bsTEXT Specifies that the button displays text.

bsTOP Places text at the top of the button rectangle.

bsUSERBUTTON Obsolete, but provided for compatibility with 16-bit
versions of Windows. Win32-based applications should
use BS_OWNERDRAW instead.

bsVCENTER Places text in the middle (vertically) of the button
rectangle.

Caption Returns or sets the display caption of the control

dwStyle Holds the value of the combined bsValues from above.
This property is for storage and should not be exposed or
set directly.

Enabled Standard Property

Font Standard Property

ForeColor Standard Property

hWnd Standard Property

ItemDrawCB Sets the address of the callback procedure when
programming an owner draw button. This must be a
procedure in a BSA module with a particular set of
parameters. See the ButtonDraw documentation for
details.

WindowProcCB Sets the address of a callback procedure that will fire for
every Windows message. This procedure will be called
before default processing. The programmer can change
values of parameters or can cancel the message
processing altogether.

WindowProcCBAfter Sets the address of a callback procedure that will fire for
every Windows message. This procedure will be called
after default processing. The same callback procedure
can be used for both WindowProc callbacks.

Methods (Button Constituent)

Description Properties Events

Method Name Method Description

AboutBox

bmCLICK Simulates the user clicking a button. This message causes
the button to receive a WM_LBUTTONDOWN and a
WM_LBUTTONUP message, and the button's parent
window to receive a BN_CLICKED notification message.

object.bmCLICK()

bmGETCHECK Retrieves the check state of a radio button or check box.

object.bmGETCHECK() As Integer

Return Values:
The return value from a button created with the
BS_AUTOCHECKBOX, BS_AUTORADIOBUTTON,
BS_AUTO3STATE, BS_CHECKBOX,
BS_RADIOBUTTON, or BS_3STATE style can be one of
the following:

Value Meaning
BST_CHECKED Button is checked.

BST_INDETERMINATE Button is grayed,
indicating an
indeterminate state
(applies only if the button
has the BS_3STATE or
BS_AUTO3STATE style).

BST_UNCHECKED Button is unchecked

If the button has any other style, the return value is zero.

bmGETIMAGE Retrieves the handle of the image (icon or bitmap)
associated with the button.

object.bmGETIMAGE() As Long

Return Values
The return value is the handle of the image, if any;
otherwise, it is NULL.

bmGETSTATE Determines the state of a button or check box.

object.bmGETSTATE() As Integer

Return Values
The return value specifies the current state of the button.
You can use the following bitmasks to extract information
about the state:

Value Meaning
BST_CHECKED Indicates the button is

checked.

BST_FOCUS Specifies the focus state. A
nonzero value indicates
that the button has the
keyboard focus.

BST_INDETERMINATE Indicates the button is
grayed because the state of
the button is
indeterminate. This value
applies only if the button
has the BS_3STATE or
BS_AUTO3STATE style.

BST_PUSHED Specifies the highlight
state. A nonzero value
indicates that the button is
highlighted. A button is
automatically highlighted
when the user positions the
cursor over it and presses
and holds the left mouse
button. The highlighting is
removed when the user
releases the mouse button.

BST_UNCHECKED Indicates the button is
unchecked. Same as the
Windows NT return value
of zero.

bmSETCHECK Sets the check state of a radio button or check box.

object.bmSETCHECK(fCheck As Integer)

Parameters
fCheck
Specifies the check state. This parameter can be one of the
following values:

Value Meaning
BST_CHECKED Sets the button state to

checked.

BST_INDETERMINATE Sets the button state to
grayed, indicating an
indeterminate state. Use
this value only if the
button has the
BS_3STATE or
BS_AUTO3STATE style.

BST_UNCHECKED Sets the button state to
unchecked

bmSETIMAGE Associates a new image (icon or bitmap) with the button.

object.bmSETIMAGE(image As Long)

wParam = (WPARAM) fImageType; // image-type
flag
lParam = (LPARAM) (HANDLE) hImage; // handle of
the image
Parameters
hImage
Identifies the image to associate with the button.

Return Values
The return value is the handle of the image previously
associated with the button, if any; otherwise, it is 0.

DoClick Simulates a mouse click on the control. Returns nothing.

Refresh Standard Method

Events (Button Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event

Command The equivalent of the Windows WM_COMMAND
message. This duplicates some of the functionality found
in the Click and a few other messages, but this may be
more convenient or more flexible to use.

Command (wp as Long, lp as Long)

DblClick Standard Event

KeyDown Standard Event

KeyPress Standard Event

KeyUp Standard Event

MouseDown Standard Event

MouseMove Standard Event

MouseUp Standard Event

CALL BACKS
Callback Name Callback Description

DrawButton DrawButton is a prototype for a call back procedure. It does not have
to be named DrawButton, but it must have two parameters with the
correct type and be a SUB (not a function returning a value).

You place the address of this routine into the ItemDrawCB property
and set the bsOWNERDRAW property to True and this routine will be
called to perform the painting of the button.

Sub DrawButton (mybut As Object, dw As DRAWITEMSTRUCT)

mybut the control being painted. You can access the value
of the properties from this Object.

dw is a draw item structure as used in all owner draw
controls in Windows.

WinProc A callback procedure used to respond to or process any Windows
message. The button control is already subclassed for you eliminating
the need to write or use a subclassing control to get to any Windows’
message.

Sub WinProc(mybut As Object, msg As Long, wp As Long, lp As
Long, _ bDone As Long)

mybut the control this message belongs to. You can access
the value of the properties from this Object

msg the message value, WM_…

wp the WPARAM value for the message.

lp the LPARAM value for the message.

bDone a flag that can be set to skip processing this message,
also indicates before or after processing on entry.

Notice that the WinProc contains essentially the same information as
any Windows message. The typical hWnd parameter has been
replaced with the control and the bDone parameter has been added. It
is possible and may be necessary to do some creative programming to
get the value that is represented by the lp parameter as this value could
be a direct long value or a pointer to almost any type of data. bDone
is set to FALSE on entry to the WinProc Sub when firing the event for
before default processing. It will be TRUE when the routine is
processing the message after default processing. When bDone is
FALSE, it may be set to TRUE before exiting the routine to skip
default processing. When this is done, the “after” event will not be
fired.

NOTE: The callback procedures supplied for this control can be very tricky to implement. There are several places
in the Basic ActiveX control where the Address of the procedures used must be set into the variables and one place
where they must be cleared. The DrawButton callback will never be fired (even if ItemDrawCB is set), unless the
style of the button is set to owner draw. If you use the owner draw style for a button, you are not only responsible
for the entire rendering of the button, but most of the functionality as well.

If you choose to use the “subclass” callbacks, remember that these callbacks carry a larger overhead due to the fact
that the callback routine will be called for every message the button receives. Be sure not to set these values if you
are not really using the WinProc Sub.

Combo Box Constituent

Properties Methods Events

Class: bbbCombo Sample-Combo\bCombo.vbg

Overview
Combo boxes can be characterized by type and style. Combo box types determine whether the control’s list is a
drop-down list, and whether the selection field is an edit control. A drop-down list appears only when the user opens
it so it uses less screen space than a list that is always visible. If the selection field is an edit control, the user can
enter information that is not already contained in the list. Otherwise, the user may only choose from the items in
the list.

The following table shows the three combo box types and indicates whether each includes a drop-down list and an
edit control:

Combo box type Drop-down list Edit control
Drop-down combo box Yes Yes
Drop-down list box Yes No
Simple combo box No Yes

Combo box styles define specific properties of a combo box. An application can combine styles; however some
styles only apply to certain combo box types. The cbsXXXXX properties, listed in the reference section later in
this chapter, describe the various styles. The next section outlines some of the custom features of the Combo Box
constituent.

Features
Use the control as a file list
The cbDIR method can be used to add the files from a specific directory to the combo box. This method has 2
parameters. The first contains the attributes of the files to select. This attributes parameter allows you to specify
anything from a list of drives on the computer, to a list of Directories for a drive, to a list of files for a directory.
You can also specify whether the list should include hidden, system, read only files, etc. The syntax for this method
is as follows:

lRet = BBBCombo1.cbDIR (lAttributes As Long, sDir As String)
See the reference section for more information on this method.

Search for a specific item in the combo box
The cbFINDSTRING and cbFINDSTRINGEXACT methods are used to search string in the combo box.
CbFINDSTRING finds the first item that begins with a specific string and cbFINDSTRINGEXACT searches for an
exact match. These methods take 2 parameters: The index to begin searching at (-1 begins searching at the beginning
of the list), and the string to search for. The following line of code searches for an exact match on the string “Hello”,
and starts with the first item in the combo box:

lIndex = -1
sString = “HELLO”
BBBComboBox1.cbFINDSTRINGEXACT(lIndex, sString)

Get the coordinates of all items in the drop-down list
The cbGETDROPPEDCONTROLRECT method returns the bounding rectangle of the dropped down list of items in
the combo box. The method takes one parameter, a rectangle structure that is filled with the coordinates.

Determine if the drop-down list is open
In order to determine whether the drop-down list is open or closed, use the cbGETDROPPEDSTATE method. This

method takes no parameters and returns True if the list is open:

Dim bRet As Boolean
bRet = BBBCombo1.cbGETDROPPEDSTATE()

Get the width of the drop down list
The cbGETDROPPEDWIDTH method looks through the items in the combo box and returns the minimum
allowable width of the drop down list.
Retrieve the height of an item in the Combo Box
The cbGETITEMHEIGHT method can be used to retrieve the height of an item. It takes the index of the item to
retrieve the height for as a parameter:

lHeight = BBBComboBox1.CbGETITEMHEIGHT(1)

Retrieve the index of the first visible item in the Combo Box
The cbGETTOPINDEX method is used to retrieve the first visible item.
Programmatically select text in a drop-down combo box
The cbEDITSEL method takes the starting and ending points for text selection. The following line of code selects
the first 5 character of an item:

BBBComboBox1.cbSETEDITSEL(1, 5)

Properties (Combo Box Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property
BorderStyle Standard Property
cbsAUTOHSCROLL Automatically scrolls the text in an edit control to the

right when the user types a character at the end of the line.
If this style is not set, only text that fits within the
rectangular boundary is allowed.

cbsDISABLENOSCROLL Shows a disabled vertical scroll bar in the list box when
the box does not contain enough items to scroll. Without
this style, the scroll bar is hidden when the list box does
not contain enough items.

cbsDROPDOWN Specifies a drop-down combo box.
cbsDROPDOWNLIST Specifies a drop-down list box.
cbsHASSTRINGS Specifies that an owner-drawn combo box contains items

consisting of strings. The combo box maintains the
memory and address for the strings so the application can
use the cbGETLBTEXT message to retrieve the text for a
particular item.

cbsLOWERCASE Converts to lowercase all text in both the selection field
and the list.

cbsNOINTEGRAL_
HEIGHT

Specifies that the size of the combo box is exactly the size
specified by the application when it created the combo
box. Normally, Windows sizes a combo box so that it
does not display partial items.

cbsOEMCONVERT Converts text entered in the combo box edit control from
the Windows character set to the OEM character set and
then back to the Windows set. This ensures proper
character conversion when the application calls the
CharToOem function to convert a Windows string in the
combo box to OEM characters. This style is most useful
for combo boxes that contain filenames and applies only
to combo boxes created with the CBS_SIMPLE or
CBS_DROPDOWN style.

cbsOWNERDRAW_
FIXED

Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
all the same height. The owner window receives a
WM_MEASUREITEM message when the combo box is
created and a WM_DRAWITEM message when a visual
aspect of the combo box has changed.

cbsOWNERDRAW_
VARIABLE

Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
variable in height. The owner window receives a
WM_MEASUREITEM message for each item in the
combo box when you create the combo box and a
WM_DRAWITEM message when a visual aspect of the
combo box has changed.

cbsSIMPLE Specifies a simple combo box.
cbsSORT Automatically sorts strings added to the list box.
cbsUPPERCASE Converts to uppercase all text in both the selection field

and the list.
Container Standard Property
CtlHeight
DragIcon Standard Property
DragMode Standard Property
dwStyle Holds the value of the combined bsValues from above.

This property is for storage and should not be exposed or
set directly.

Enabled Standard Property
Font Standard Property
ForeColor Standard Property
Height, Width Standard Property
HelpContextID Standard Property
hWnd Standard Property
Index Standard Property
ItemCompareCB
ItemData
ItemDrawCB Sets the address of the callback procedure for drawing

when programming an owner draw list. This must be a
procedure in a BASIC module with a particular set of
parameters. See the ItemDraw documentation for
details.

ItemMeasureCB Sets the address of the callback procedure for measuring
items when programming an owner draw list. This must
be a procedure in a BASIC module with a particular set of
parameters. See the ItemDraw documentation for
details.

Left, Top Standard Property
List Standard Property
ListCount Standard Property
ListIndex Standard Property
MousePointer Standard Property
Object Standard Property
Parent Standard Property
TabIndex Standard Property
TabStop Standard Property
Tag Standard Property
Text Standard Property
ToolTipText Standard Property
TopIndex Standard Property
Visible Standard Property
WhatsThisHelpID Standard Property
WindowProcCB Sets the address of a callback procedure that will fire for

every Windows message. This procedure will be called
before default processing. The programmer can change
values of parameters or can cancel the message
processing altogether.

WindowProcCBAfter Sets the address of a callback procedure that will fire for
every Windows message. This procedure will be called
after default processing. The same callback procedure
can be used for both WindowProc callbacks.

Methods (Combo Box Constituent)

Description Properties Events

Method Name Method Description

AboutBox
AddItem Standard Method
cbADDSTRING adds a list item.

object.cbADDSTRING(sString As String) As Long

Parameters
sString - specifies the string to add to the combo box.

Returns
The index of the item added.

cbDELETESTRING deletes a list item.

object.cbDELETESTRING(lIndex As Long) As Long

Parameters
lIndex - item to delete.

Returns
the number of items left in the list.

cbDIR Adds the filenames matching the specified attributes and
path to the list.

object.cbDIR(lAttributes As Long, sDir As String) As
Long

Parameters
lAttributes - Specifies the attributes of the files to be added
to the list box. This parameter can be a combination of the
following values:
Value Description
DDL_ARCHIVE Includes archived files.

DDL_DIRECTORY Includes subdirectories.
Subdirectory names are enclosed
in square brackets ([]).

DDL_DRIVES Includes drives. Drives are
listed in the form [-x-], where x
is the drive letter.

DDL_EXCLUSIVE Includes only files with the
specified attributes. By default,
read-write files are listed even if
DDL_READWRITE is not
specified.

DDL_HIDDEN Includes hidden files.

DDL_READONLY Includes read-only files.

DDL_READWRITE Includes read-write files with
no additional attributes.

DDL_SYSTEM Includes system files.

sDir - specifies the filename to add to the list. If the
filename contains wildcards (for example, *.*), all files
that match the wildcards and have the attributes specified
by the lAttributes parameter are added to the list.

Returns
The 0 based index of the last file added to the list.

cbFINDSTRING returns the index of the first list item that begins with the
specified text.

object.cbFINDSTRING(lIndexStart As Long, sString As
String) As Long

Parameters
lIndexStart - specifies the index to begin the search, -1
starts at the beginning.

sString - specifies the string to search for.

Returns
The index of the item matching the string or -1 if none
were found.

cbFINDSTRINGEXACT returns the index of the first list item exactly matching the
specified text.

object.cbFINDSTRINGEXACT(lIndexStart As Long,
sString As String) As Long

Parameters
lIndexStart - specifies the index to begin the search, -1
starts at the beginning.

sString - specifies the string to search for.

Returns
The index of the item matching the string or -1 if none
were found.

cbGETCOUNT returns the number of list items.

object.cbGETCOUNT() As Long

Returns
the count of items in the list.

cbGETCURSEL returns the index of the currently selected item, if any.

object.cbGETCURSEL() As Long

Returns
the index of the currently selected item or -1 if none are
selected.

cbGETDROPPED_
CONTROLRECT

Fills the specified rectangle structure with the screen
coordinates of a drop-down list.

object.cbGETDROPPEDCONTROLRECT(rect As Long)

Parameters
rect - a long representing the first long in a rect structure.
This will fill the rest of the rect structure with the values.

cbGETDROPPEDSTATE Returns TRUE if a drop-down list is open; otherwise, it
returns FALSE.

object.cbGETDROPPEDSTATE() As Boolean

Returns
True if open, otherwise False.

cbGETDROPPED_
WIDTH

Returns the minimum allowable width, in pixels, of the
drop down list.

object.cbGETDROPPEDWIDTH() As Long

Returns
the minimum width of the dropped list box.

cbGETEDITSEL returns the starting and ending position of the current
selection. In drop-down list boxes, the window procedure
returns an error.

object.cbGETEDITSEL(lStart As Long, lStop As Long)
As Long

Parameters
lStart = carat position within the edit control to begin the
selection of text.

lStop = carat position within the edit control to end the
selection of text.

Returns
zero-based 32-bit value with the starting position of the
selection in the low-order word and with the ending
position of the first character after the last selected
character in the high-order word.

cbGETEXTENDEDUI Returns TRUE if the combo box is a drop-down combo
box or drop-down list box and the extend user-interface
flag is set; otherwise, it returns FALSE.

object.cbGETEXTENDEDUI() As Boolean

Returns
True if using the extended UI, otherwise False. By
default, the F4 key opens or closes the list and the DOWN
ARROW changes the current selection. In a combo box
with the extended user interface, the F4 key is disabled and
pressing the DOWN ARROW key opens the drop-down
list.

cbGETHORIZONTAL_
EXTENT

returns the scrollable width, in pixels, of the drop down
list.
object.cbGETHORIZONTALEXTENT() As Long
Returns
the scrollable width, in pixels.

cbGETITEMDATA returns the 32-bit value associated with the specified list
item.

object.cbGETITEMDATA(lIndex As Long) As Long

Parameters
lIndex - specifies the item.

Returns
the 32 bit “item data” value. This value is set though
cbSETITEMDATA.

cbGETITEMHEIGHT returns the height, in pixels, of the specified owner-drawn
list item.

object.cbGETITEMHEIGHT(lIndex As Long) As Long

Parameters
lIndex - this parameter must be -1 to retrieve the height of
the selection field. It must be zero to retrieve the height of
list items, unless the combo box has the
cbsOWNERDRAWVARIABLE style. In that case, the
index parameter is the zero-based index of a specific list
item.

Returns
the height of the specified item.

cbGETLBTEXT copies the specified list text to the specified buffer.

object.cbGETLBTEXT(lIndex As Long, sString As String)
As Long

Parameters
lIndex - specifies the item from which to retrieve the text.
sString - specifies the string to place the text in, this string
must be initialized to at least the length of the text + 1.

Returns
the length of the text of the item.

cbGETLBTEXTLEN returns the length, in bytes, of the specified list text.

object.cbGETLBTEXTLEN(lIndex As Long) As Long

Parameters
lIndex - specifies the item from which to retrieve the text
length.

Returns
the length of the text of the item.

cbGETLOCALE returns the current locale for the list.

object.cbGETLOCALE() As Long
cbGETTOPINDEX returns the index of the first visible item in the drop down

list.

object.cbGETTOPINDEX() As Long

cbINITSTORAGE initializes space for the specified number of items and the
specified number of bytes for item strings.

object.cbINITSTORAGE(lItems As Long, lMem As Long)
As Long

Parameters
lItems - specifies the number of items to add

lMem - specifies the amount of memory to allocate for
strings.

Returns
maximum number of items that the memory object can
store.

cbINSERTSTRING inserts a list item at the specified position.

object.cbINSERTSTRING(lIndex As Long, sString As
String) As Long

Parameters
lIndex - the 0 based index that indicates the point at which
to insert the string. If -1 is specified, the string is inserted
at the end of the list.

sString - specifies the string to insert.

Returns
the index at the point the string was inserted.

cbLIMITTEXT sets the maximum number of characters a user can enter in
the edit control. In drop-down list boxes, the window
procedure returns an error.

object.cbLIMITTEXT(lLimit As Long)
Parameters
lLimit - specifies the maximum number of characters that
can be typed into the edit portion of a combo box.

cbRESETCONTENT removes the contents of the list.

object.cbRESETCONTENT()

cbSELECTSTRING selects the first list item, if any, that begins with the
characters in the specified text.

object.cbSELECTSTRING(lIndex As Long, sString As
String) As Long

Parameters
lIndex - indicates the position within the list to begin the
search. Setting this -1 will begin the search at the
beginning of the list.

sString - specifies the prefix string to search for.

Returns
The index of the item selected or -1 if the item was not
found.

cbSETCURSEL sets the current selection.

object.cbSETCURSEL(lIndex As Long) As Long

Parameters
lIndex - index of the item to select or -1 to deselect all
items.

Returns
the item selected or -1 if none selected.

cbSETDROPPEDWIDT
H

Sets the minimum allowable width, in pixels, of the drop
down list.

object.cbSETDROPPEDWIDTH(lWidth As Long) As
Long

Parameters
lWidth - specifies the minimum width allowable for the
drop list.

Returns
the new width of the list box or -1 if it fails.

cbSETEDITSEL selects the specified range of text. In drop-down list boxes,
the window procedure returns an error.

object.cbSETEDITSEL(lStart As Long, lStop As Long) As
Long

Parameters
lStart - specifies the starting position of selected text.

lStop - specifies the ending position of selected text.

Returns
If successful 1 is returned, if it fails -1 is returned.

cbSETEXTENDEDUI Sets or clears the extended user-interface flag. This flag

changes the keys that open and close the list in a drop-
down combo box or drop-down list box. If the combo box
is a simple combo box, the window procedure returns an
error.

object.cbSETEXTENDEDUI(bUI As Boolean) As
Boolean

Parameters
bUI - if True, turns on the extended UI, if False turn it off.

Returns
Success or failure.

cbSETHORIZONTAL_
EXTENT

sets the scrollable width, in pixels, of the drop down list.

object.cbSETHORIZONTALEXTENT(lWidth As Long)

Parameters
lWidth - specifies the drop down list width.

cbSETITEMDATA associates the specified 32-bit value with a list item.

object.cbSETITEMDATA(lIndex As Long, lData As Long)
As Boolean

Parameters
lIndex - specifies the item to associate the lData value
with.

lData - the value to associate with the specified ite.

Returns
Success or failure.

cbSETITEMHEIGHT sets the height of the specified owner-drawn list item or the
selection field.

object.cbSETITEMHEIGHT(lIndex As Long, lHeight As
Long) As Boolean

Parameters
lIndex - specifies the item.

lHeight - specifies the height

Returns
Success or failure

cbSETLOCALE sets the current locale for the list. The locale affects how
the list is sorted if it has the cbsSORT style and strings are
added using cbADDSTRING.

object.cbSETLOCALE(lLocale As Long) As Long

Parameters
lLocale - specifies the new locale

Returns
the old locale.

cbSETTOPINDEX scrolls the drop down list so the specified item is at the top
of the visible range.

object.cbSETTOPINDEX(lIndex As Long) As Boolean

Parameters
lIndex - species the 0 based item.

Returns
Success or Failure

cbSHOWDROPDOWN Shows or hides the drop-down list. This message has no
effect on simple combo boxes.

object.cbSHOWDROPDOWN(bShow As Boolean)

Parameters
bShow - if True, shows the drop down list, if False hides
the drop down list.

Clear Standard Method
Drag Standard Method
FontSelect
Move Standard Method
Refresh Standard Method
ReleaseFont
RemoveItem Standard Method
SetFocus Standard Method
ShowWhatsThis Standard Method

Events (Combo Box Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event

Command Processes notification messages from the edit control and
list window and sends corresponding combo box
notification messages to the parent window.
For edit control notifications, the window procedure may
update the list window's current selection, caret index, and
top index. For list notification messages, the window
procedure may update the content of the selection field.

CBN_CLOSEUP Indicates the list in a drop-
down combo box or drop-
down list box is about to
close.

CBN_DBLCLK Indicates the user has double-
clicked a list item in a simple
combo box.

CBN_DROPDOWN Indicates the list in a drop-
down combo box or drop-
down list box is about to
open.

CBN_EDITCHANGE Indicates the user has changed
the text in the edit control of a
simple or drop-down combo
box. This notification
message is sent after the
altered text is displayed.

CBN_EDITUPDATE Indicates the user has changed
the text in the edit control of a
simple or drop-down combo
box. This notification
message is sent before the
altered text is displayed.

CBN_ERRSPACE Indicates the combo box
cannot allocate enough
memory to carry out a
request, such as adding a list
item.

CBN_KILLFOCUS Indicates the combo box is
about to lose the input focus.

CBN_SELCHANGE Indicates the current selection
has changed.

CBN_SELENDCANCEL Indicates that the selection
made in the drop down list,
while it was dropped down,
should be ignored.

CBN_SELENDOK Indicates that the selection
made drop down list, while it

was dropped down, should be
accepted.

CBN_SETFOCUS Indicates the combo box
has received the input
focus.

DblClick Standard Event

DragDrop Standard Event

DragOver Standard Event

GotFocus Standard Event

KeyDown Standard Event

KeyPress Standard Event

KeyUp Standard Event

LostFocus Standard Event

MouseDown Standard Event

MouseMove Standard Event

MouseUp Standard Event

Resize Standard Event

CALL BACKS
CallBack Name CallBack Description

DrawItem DrawItem is a prototype for a call back procedure. It does not have to
be named DrawItem, but it must have two parameters with the correct
type and be a SUB (not a function returning a value).

You place the address of this routine into the ItemDrawCB property
and set the cbOWNERDRAW property to True and this routine will be
called to perform the painting of line items.

Sub DrawItem (objItem As Object, dw As DRAWITEMSTRUCT)

objItem the control being painted. You can access the value
of the properties from this Object.

dw is a draw item structure as used in all owner draw
controls in Windows.

MeasureItem MeasureItem is a prototype for a call back procedure. It does not have
to be named MeasureItem, but it must have two parameters with the
correct type and be a SUB (not a function returning a value).

You place the address of this routine into the ItemMeasureCB property
and set the cbOWNERDRAW property to True and this routine will be

called to perform the sizing of an owner draw item.

Sub MeasureItem (objItem As Object, dw As
MEASUREITEMSTRUCT)

objItem the control being painted. You can access the value
of the properties from this Object.

dw is a draw item structure as used in all owner draw
controls in Windows.

WindowProc A callback procedure used to respond to or process any Windows
message. The combo box control is already subclassed for you
eliminating the need to write or use a subclassing control to get to any
Windows’ message.

Sub WinProc(mybut As Object, msg As Long, wp As Long, lp As
Long, _ bDone As Long)

mycom the control this message belongs to. You can access
the value of the properties from this Object

msg the message value, WM_…

wp the WPARAM value for the message.

lp the LPARAM value for the message.

bDone a flag that can be set to skip processing this message,
also indicates before or after processing on entry.

Notice that the WinProc contains essentially the same information as
any Windows message. The typical hWnd parameter has been
replaced with the control and the bDone parameter has been added. It
is possible and may be necessary to do some creative programming to
get the value that is represented by the lp parameter as this value could
be a direct long value or a pointer to almost any type of data. bDone
is set to FALSE on entry to the WinProc Sub when firing the event for
before default processing. It will be TRUE when the routine is
processing the message after default processing. When bDone is
FALSE, it may be set to TRUE before exiting the routine to skip
default processing. When this is done, the “after” event will not be
fired.

Edit Constituent

Properties Methods Events

Class: bbbEdit Sample-Edit\Edit.vbg

Overview
The Visual Basic equivalent of the edit control is the text box. Edit is the base window class used to create this
control. The Basic Constituents edit control is an extended version of the Visual Basic text box. The control contains
features that allow you to set the text in the edit constituent to read-only, capitalize the text in the control as it is
entered, paste new text into the current selection and much more. The following section outlines some of the
features of the edit constituent.

Features
Set the text in the edit constituent to read-only
To set the text to read-only, use the esREADONLY property. This prevents the use from modifying text displayed in
an edit control.

Capitalize all characters displayed in the edit control
Characters in the edit control can be capitalized by using the esUPPERCASE property. This converts the characters
as they are typed into the edit control.

Undo the entry of text into the edit control
If you want to undo an entry that a user has made, use the emUNDO method. This method takes no parameters and
returns a boolean indicating whether or not the operation was successful.

Get a count of lines in a multiline edit control
If an edit control is set to multiline, the text wraps when the end of the line is reached. In order to determine the
number of lines of text displayed in the edit control, use the emGETLINECOUNT method. This method takes no
parameters and returns the number of lines of text in a multiline edit control. If no text is in the edit control, the
return value is 1.

Determine whether the content of an edit control has been modified.
To determine if the contents of an edit control has been modified, use the emGETMODIFY method. This method
takes no parameters and returns a boolean indicating if the text has been modified.

Retrieve the position of the scroll box in a multiline edit control.
To determine the position of the scrollbar thumb in an edit control, use the emGETTHUMB method. This method
takes no parameters and returns the position of the scroll bar.

Hide the selection in an edit control
To hide the current selection in the edit control, use the emHIDESELECTION method. See the control reference for
more information about the parameters to this method.

Scroll text horizontally or vertically
The emLINESCROLL method allows you to scroll the text in the edit control either horizontally or vertically. This
method takes 2 parameters: The number of characters to scroll horizontally and vertically respectively. The method
returns True if successful.

Paste new text over the current selection
To paste new text over the current selection, use the emREPLACESEL method. This method takes a parameter
indicating whether or not the replacement can be undone along with the new text.

Properties (Edit Constituent)

Description Methods Events

Property Name Property Description

Appearance

BackColor

BorderStyle

Enabled

esAUTOHSCROLL Automatically scrolls text to the right when the user types
a character at the end of the line. When the user presses the
<ENTER> key, the control scrolls all text back to position
0.

esAUTOVSCROLL Automatically scrolls text up one page when the user
presses <ENTER> on the last line.

esCENTER Centers text in a multiline edit control.

esLEFT Aligns text flush left.

esLOWERCASE Converts all characters to lowercase as they are typed into
the edit control.

esMULTILINE Designates a multiple-line edit control.

esNOHIDESEL Normally, an edit control hides the selection when the
control loses the input focus and inverts the selection when
the control receives the input focus. Setting this property
to True leaves the selection inverted all of the time.

esOEMCONVERT Text entered in the edit control is converted from the ANSI
character set to the OEM character set and then back to
ANSI. This style is most useful for edit controls that
contain filenames.

esPASSWORD Displays all characters as an asterisk (*) as they are typed
into the edit control. An application can use the
SetPasswordChar member function to change the character
that is displayed.

esREADONLY Prevents the user from entering or editing text in the edit
control.

esRIGHT Aligns text flush right in a multiline edit control.

esUPPERCASE Converts all characters to uppercase as they are typed into
the edit control.

esWANTRETURN Specifies that a carriage return be inserted when the user
presses the ENTER key while entering text into a multiple-
line edit control in a dialog box. Without this style,
pressing the ENTER key has the same effect as pressing
the dialog box's default pushbutton. This style has no
effect on a single-line edit control.

Font

ForeColor

hWnd

MaxLength

ReadyState

Text

wsHSCROLL

wsVSCROLL

Methods (Edit Constituent)

Description Properties Events

Method Name Method Description

AboutBox

emCANPASTE Determines whether an edit control can paste a
specified clipboard format.

object.emCANPASTE(uFormat As Integer) As
Boolean

Parameters
uFormat
Value identifying the clipboard format to try, or zero to
try any format currently on the clipboard.

Return Values
Returns a nonzero value if the clipboard format can be
pasted or zero otherwise.

emCANUNDO Determines whether an edit-control operation can be
undone; that is, whether the control can respond to the
emUNDO method.

object.emCANUNDO() As Boolean

Return Values
If the edit control can correctly process the EM_UNDO
message, the return value is TRUE; otherwise, it is
FALSE.

emCHARFROMPOS Retrieves the zero-based character index and zero-based
line index of the character nearest the specified point in
an edit control.

object.emCHARFROMPOS(xCoord As Integer,
yCoord As Integer, CharIdx As Integer, LineIdx As
Integer)

Parameters
xCoord
Specifies the x-coordinate of a point in the edit control's
client area. The coordinate is relative to the upper-left
corner of the client area.

yCoord
Specifies the y-coordinate of a point in the edit control's
client area. The coordinate is relative to the upper-left
corner of the client area.

CharIdx
Returns the 0 based character index for the character.

CharIdy
Returns the 0 based line index for the character.

emEMPTYUNDOBUFFER Resets the undo flag of an edit control. The undo flag is
set whenever an operation within the edit control can be
undone.

object.emEMPTYUNDOBUFFER()

Remarks
The undo flag is automatically reset whenever the edit
control receives a WM_SETTEXT or
EM_SETHANDLE message.

emFMTLINES Sets the inclusion flag of soft linebreak characters on or
off within a multiline edit control. A soft linebreak
consists of two carriage returns and a linefeed and is
inserted at the end of a line that is broken because of
wordwrapping.

object.emFMTLINES(fAddEOL As Boolean) As
Boolean

Parameters
fAddEOL
Specifies whether soft-linebreak characters are to be
inserted. A value of TRUE inserts the characters; a
value of FALSE removes them.

Return Values
The return value is identical to the fAddEOL parameter.

emGETFIRSTVISIBLELINE Determines the uppermost visible line in an edit control.

object.emGETFIRSTVISIBLELINE() As Long

Return Values
The return value is the zero-based index of the
uppermost visible line in a multiline edit control. For
single-line edit controls, the return value is the zero-
based index of the first visible character.

emGETHANDLE Retrieves a handle of the memory currently allocated
for a multiline edit control’s text.

object.emGETHANDLE() As Long

Return Values
The return value is a memory handle identifying the
buffer that holds the content of the edit control. If an
error occurs, such as sending the message to a single-
line edit control, the return value is zero.

emGETLIMITTEXT Retrieves the current text limit, in characters, for an edit
control.

object.emGETLIMITTEXT() As Long

Return Values
The return value is the text limit.

emGETLINE Copies a line of text from an edit control and place it in
a specified buffer.

object.emGETLINE(line As Long, lpch As String) As
Long

Parameters
line
Specifies the zero-based index of the line to retrieve
from a multiline edit control. A value of zero specifies
the topmost line. This parameter is ignored by a single-
line edit control.

lpch
A string buffer that receives a copy of the line. The first
word of the buffer specifies the maximum number of
characters that can be copied to the buffer.

Return Values
The return value is the number of characters copied.
The return value is zero if the line number specified by
the line parameter is greater than the number of lines in
the edit control.

Remarks
The copied line does not contain a terminating null
character.

emGETLINECOUNT Retrieves the number of lines in a multiline edit control.

object.emGETLINECOUNT() As Long

Return Values
The return value is an integer specifying the number of
lines in the multiline edit control. If no text is in the edit
control, the return value is 1.

emGETMARGINS Retrieves the widths of the left and right margins for an
edit control.

object.emGETMARGINS(wLeft As Integer, wRight
As Integer)

Parameters
wLeft
Width of the left margin
wRight
Width of the right margin

emGETMODIFY Determines whether the content of an edit control has

been modified.

object.emGETMODIFY() As Boolean

Return Values
If the content of edit control has been modified, the
return value is TRUE; otherwise, it is FALSE.

Remarks
Windows maintains an internal flag indicating whether
the content of the edit control has been changed. This
flag is cleared when the edit control is first created;
alternatively, an application can send an
EM_SETMODIFY message to the edit control to clear
the flag.

emGETPASSWORDCHAR Retrieves the password character displayed in an edit
control when the user enters text.

object.emGETPASSWORDCHAR() As Integer

Return Values
The return value specifies the character to be displayed
in place of the character typed by the user. The return
value is 0 if no password character exists.

Remarks
If the edit control is created with the ES_PASSWORD
style, the default password character is set to an asterisk
(*).

emGETRECT Retrieves the formatting rectangle of an edit control.
The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of
the edit-control window.

object.emGETRECT(Top As Long, Left As Long,
Height As Long, Width As Long)

Parameters
Top, Left, Height, Width
Receives the formatting rectangle.

emGETSEL Gets the starting and ending character positions of the
current selection in an edit control.

object.emGETSEL(lpdwStart As Long, lpdwEnd As
Long) As String

wParam = (WPARAM) (LPDWORD) lpdwStart; //
receives starting position
lParam = (LPARAM) (LPDWORD) lpdwEnd; //
receives ending position

Parameters
lpdwStart

Receives the starting position of the selection.

lpdwEnd
Receives the position of the first nonselected character
after the end of the selection.

Return Values
The selected text is returned.

emGETTHUMB Retrieves the position of the scroll box (thumb) in a
multiline edit control.

object.emGETTHUMB() As Long

Return Values
The return value is the position of the scroll box.

emHIDESELECTION Hides or shows the selection in an edit control.

object.emHIDESELECTION(fHide As Boolean,
fChangeStyle As Boolean)

Parameters
fHide
Value specifying whether to hide or show the selection.
If this parameter is zero, the selection is shown.
Otherwise, the selection is hidden.
fChangeStyle
Value specifying whether to change the control’s
esNOHIDESEL window style. If this parameter is zero,
the selection is temporarily shown or hidden.
Otherwise, the style is changed.

emLIMITTEXT Limits the amount of text the user may enter into an edit
control.

object.emLIMITTEXT(cchMax As Long)

Parameters
cchMax
Specifies the maximum number of characters the user
can enter. If this parameter is zero, there is no limit.

Remarks
This method limits only the text the user can enter. It
has no effect on any text already in the edit control If an
application places more text into an edit control than is
specified in the emLIMITTEXT method, the user can
edit the entire contents of the edit control.

The default limit to the amount of text a user can enter
in an edit control is 30,000 characters.

emLINEFROMCHAR Retrieves the index of the line that contains the
specified character index in a multiline edit control. A
character index is the number of characters from the

beginning of the edit control.

object.emLINEFROMCHAR(ich As Long) As Long

Parameters
ich
Specifies the character index of the character contained
in the line whose number is to be retrieved. If the ich
parameter is -1, either the line number of the current
line (the line containing the caret) is retrieved or, if
there is a selection, the line number of the line
containing the beginning of the selection is retrieved.

Return Values
The return value is the zero-based line number of the
line containing the character index specified by ich.

emLINEINDEX Retrieves the character index of a line in a multiline edit
control. The character index is the number of characters
from the beginning of the edit control to the specified
line.

object.emLINEINDEX(line As Long) As Long

Parameters
line
Specifies the zero-based line number. A value of -1
specifies the current line number (the line that contains
the caret).

Return Values
The return value is the character index of the line
specified in the line parameter, or it is -1 if the specified
line number is greater than the number of lines in the
edit control.

emLINELENGTH Retrieves the length of a line, in characters, in an edit
control.

object.emLINELENGTH(ich As Long) As Long

Parameters
ich
Specifies the character index of a character in the line
whose length is to be retrieved. If this parameter is -1,
the message returns the number of unselected characters
on lines containing selected characters. For example, if
the selection extended from the fourth character of one
line through the eighth character from the end of the
next line, the return value would be 10 (three characters
on the first line and seven on the next).

Return Values
The return value is the length, in characters, of the line
specified by the ich parameter.

emLINESCROLL Scrolls the text vertically or horizontally in a multiline
edit control.

object.emLINESCROLL(cxScroll As Long, cyScroll As
Long) As Boolean

Parameters
cxScroll
Specifies the number of characters to scroll
horizontally.
cyScroll
Specifies the number of lines to scroll vertically.

Return Values
If the message is sent to a multiline edit control, the
return value is TRUE; if the message is sent to a single-
line edit control, the return value is FALSE.

emPOSFROMCHAR Retrieves the coordinates of the specified character in
an edit control.

object.emPOSFROMCHAR(wCharIndex As Integer,
xCoord As Integer, yCoord As Integer)

Parameters
wCharIndex
Value of lParam. Specifies the zero-based index of the
character.
xCoord, yCoord
Receives the coordinates of the specified character. The
coordinates locate the upper-left corner of the character.
If the wCharIndex is greater than the index of the last
character in the control, the returned coordinates are of
the position just past the last character of the control.
The coordinates are relative to the upper-left corner of
the edit control’s client area.

Remarks
For a single-line edit control, the y-coordinate is always
zero. A returned coordinate can be negative if the
character has been scrolled outside the edit control’s
client area. The coordinates are truncated to integer
values.

emREPLACESEL Replaces the current selection in an edit control with the
specified text.

object.emREPLACESEL(fCanUndo As Boolean,
lpszReplace As String)

Parameters
fCanUndo
Specifies whether the replacement operation can be
undone. If this is TRUE, the operation can be undone. If
this is FALSE , the operation cannot be undone.

lpszReplace
Contains the replacement text.

Remarks
If there is no current selection, the replacement text is
inserted at the current location of the caret.

emSCROLL scrolls the text vertically in a multiline edit control.

object.emSCROLL(nScroll As Integer) As Boolean

Parameters
nScroll
Value of wParam. Specifies the action the scroll bar is
to take. This parameter may be one of the following
values:
Value Meaning
SB_LINEDOWN Scrolls down one line.
SB_LINEUP Scrolls up one line.
SB_PAGEDOWN Scrolls down one page.
SB_PAGEUP Scrolls up one page.

Return Values
If the message is successful, the return value is TRUE,
otherwise the return value is FALSE.

Remarks
An application should use the EM_LINESCROLL
message to scroll to a specific line or character position.
An application should use the EM_SCROLLCARET
message to scroll the caret into view.

emSCROLLCARET Scrolls the caret into view in an edit control.

object.emSCROLLCARET()

emSETHANDLE Sets the handle of the memory that will be used by a
multiline edit control.

object.emSETHANDLE(hloc As Long)

Parameters
hloc
Identifies the memory the edit control uses to store the
currently displayed text instead of allocating its own
memory. If necessary, the control reallocates this
memory.

Remarks
Before an application sets a new memory handle, it
should send an EM_GETHANDLE message to retrieve
the handle of the current memory buffer and should free
that memory.

An edit control automatically reallocates the given
buffer whenever it needs additional space for text, or it

removes enough text so that additional space is no
longer needed.

Sending an EM_SETHANDLE message clears the undo
buffer (EM_CANUNDO returns zero) and the internal
modification flag (EM_GETMODIFY returns zero).
The edit control window is redrawn.

emSETLIMITTEXT Sets the text limit for an edit control. The text limit is
the maximum amount of text, in bytes, that the edit
control can contain.

object.emSETLIMITTEXT(cbMax As Long)

Parameters
cbMax
Specifies the new text limit, in bytes. If this parameter
is 0, Windows sets the maximum text limit.

emSETMARGINS Sets the widths of the left and right margins for an edit
control.

object.emSETMARGINS(fwMargin As Long, wLeft
As Integer, wRight As Integer)

Parameters
fwMargin
Specifies the margins to set. This parameter can be a
combination of the following values:
Value Meaning
EC_LEFTMARGIN Sets the left margin.
EC_RIGHTMARGIN Sets the right margin.
EC_USEFONTINFO Uses information about the
current font of the edit control to set the margins.

wLeft
Specifies the width of the left margin, in pixels.

wRight
Specifies the width of the right margin, in pixels.

emSETMODIFY Sets or clears the modification flag for an edit control.
The modification flag indicates whether the text within
the edit control has been modified. It is automatically
set whenever the user changes the text.

object.emSETMODIFY(fModified As Integer)

Parameters
fModified
Specifies the new value for the modification flag. A
value of TRUE indicates the text has been modified,
and a value of FALSE indicates it has not been
modified.

emSETPASSWORDCHAR Sets or removes the password character for a single-line

edit control when the user types text. When a password
character is set, that character is displayed in place of
each character the user types.

object.emSETPASSWORDCHAR(ch As Integer)

Parameters
ch
Value of wParam. Specifies the character to be
displayed in place of the character typed by the user. If
this parameter is zero, the characters typed by the user
are displayed.

emSETREADONLY Sets or removes the read-only style of an edit control.

object.emSETREADONLY(fReadOnly As Boolean)
As Boolean

Parameters
fReadOnly
Specifies whether to set or remove the read only style.
A value of True sets the read only style; a value of False
removes the read only style.

Return Values
If the operation succeeds, the return value is nonzero;
otherwise, it is zero.

emSETRECT Sets the formatting rectangle of a multiline edit control.
The formatting rectangle is the limiting rectangle of the
text. The limiting rectangle is independent of the size of
the edit control window.

This message is processed only by multiline edit
controls.

object.emSETRECT(Top As Long, Left As Long,
Height As Long, Width As Long)

Parameters
Top, Left, Height, Width
Specifies the new dimensions of the rectangle.

emSETRECTNP Sets the formatting rectangle of a multiline edit control.

The emSETRECTNP message is identical to the
emSETRECT message, except that the edit control
window is not redrawn.

object.emSETRECTNP(Top As Long, Left As Long,
Height As Long, Width As Long)

Parameters
Top, Left, Height, Width
Specifies the new dimensions of the rectangle.

emSETSEL Selects a range of characters in an edit control.

object.emSETSEL(nStart As Integer, nEnd As Integer)

Parameters
nStart
Value of wParam. Specifies the starting character
position of the selection.
nEnd
Specifies the ending character position of the selection.

emSETTABSTOPS Sets the tab stops in a multiline edit control. When text
is copied to the control, any tab character in the text
causes space to be generated up to the next tab stop.

This message is processed only by multiline edit
controls.

object.emSETTABSTOPS(cTabs As Integer, lpdwTabs
As Long) As Boolean

Parameters
cTabs
Specifies the number of tab stops contained in the
lpdwTabs parameter. If this parameter is zero, the
lpdwTabs parameter is ignored and default tab stops are
set at every 32 dialog box units.

lpdwTabs
The first element in an array of Longs specifying the tab
stops, in dialog units.

Return Values
If all the tabs are set, the return value is TRUE;
otherwise, it is FALSE.

emUNDO Undo the last edit control operation.

object.emUNDO() As Boolean

Return Values
For a single-line edit control, the return value is always
True. For a multiline edit control, the return value is
True if the undo operation is successful, or False if the
undo operation fails.

Events (Edit Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event

DblClick Standard Event

KeyDown Standard Event

KeyPress Standard Event

KeyUp Standard Event

MouseDown Standard Event

MouseMove Standard Event

MouseUp Standard Event

ReadyStateChange Standard Event

Extended Combo Constituent

Properties Methods Events

Class: bbbExCom Sample-ComboEx\bComboEx.vbg

Overview
The Extended Combo box offers the same features as the Basic Constituents combo box along with some useful
additions. The Extended Combo allows for the addition of images within the items displayed in the extended combo.
These images are stored in an image list control. The control also allows you to indent the text and images of each
item. The following section outlines the custom features of the extended combo box constituent.

Features
In addition to the extended feature offered by the combo box constituent, the extended combo box provides the
following methods:

Attach to an Image List control
The cbSETIMAGELIST method sets the image list that the combo box uses; the cbGETIMAGELIST retrieves the
handle to the current image list.

Determine if the text in the edit control has changed
To determine if the text has changed, use the cbemHASEDITCHANGED method. This method takes no parameters
and returns a boolean indicating if the text has changed.

Prepare to store a large number of items in the combo box
Use the cbINITSTORAGE method before adding a large number of items to the combo box. The lItems parameter
sets the number of items to add the combo box and the lMem parameter specifies the length of the strings to be
added.

Set the maximum number of character that the user can enter in the edit control
The cbLIMITTEXT method is used to limit the amount of text entered. This method takes one parameter that sets
the maximum number of characters that may be entered in the edit portion of the edit combo box.
The following table shows the three combo box types and indicates whether each includes a drop-down list and an
edit control:

Combo box type Drop-down list Edit control
Drop-down combo box Yes Yes
Drop-down list box Yes No
Simple combo box No Yes

Properties (Extended Combo Constituent)

Description Methods Events

Property Name Property Description

Appearance Standard Property
BackColor Standard Property
BorderStyle Standard Property
cbsAUTOHSCROLL Automatically scrolls the text in an edit control to the

right when the user types a character at the end of the line.
If this style is not set, only text that fits within the
rectangular boundary is allowed.

cbsDISABLENOSCROLL Shows a disabled vertical scroll bar in the list box when
the box does not contain enough items to scroll. Without
this style, the scroll bar is hidden when the list box does
not contain enough items.

cbsDROPDOWN Specifies a drop-down combo box.
cbsDROPDOWNLIST Specifies a drop-down list box.
cbsLOWERCASE Converts to lowercase all text in both the selection field

and the list.
cbsNOINTEGRAL_
HEIGHT

Specifies that the size of the combo box is exactly the size
specified by the application when it created the combo
box. Normally, Windows sizes a combo box so that it
does not display partial items.

cbsOEMCONVERT Converts text entered in the combo box edit control from
the Windows character set to the OEM character set and
then back to the Windows set. This ensures proper
character conversion when the application calls the
CharToOem function to convert a Windows string in the
combo box to OEM characters. This style is most useful
for combo boxes that contain filenames and applies only
to combo boxes created with the CBS_SIMPLE or
CBS_DROPDOWN style.

cbsOWNERDRAW_
FIXED

Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
all the same height. The owner window receives a
WM_MEASUREITEM message when the combo box is
created and a WM_DRAWITEM message when a visual
aspect of the combo box has changed.

cbsOWNERDRAW_
VARIABLE

Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
variable in height. The owner window receives a
WM_MEASUREITEM message for each item in the
combo box when you create the combo box and a
WM_DRAWITEM message when a visual aspect of the
combo box has changed.

cbsSIMPLE Specifies a simple combo box.
cbsSORT Automatically sorts strings added to the list box.
cbsUPPERCASE Converts to uppercase all text in both the selection field

and the list.
CtlHeight
dwStyle Holds the value of the combined bsValues from above.

This property is for storage and should not be exposed or

set directly.
Enabled Standard Property

Font Standard Property

ForeColor Standard Property

hWnd Standard Property

ImageList Standard Property
ItemData Standard Property
List Standard Property
ListCount Standard Property
ListIndex Standard Property
MousePointer Standard Property
Text Standard Property
TopIndex Standard Property
WindowProcCB Sets the address of a callback procedure that will fire for

every Windows message. This procedure will be called
before default processing. The programmer can change
values of parameters or can cancel the message
processing altogether.

WindowProcCBAfter Sets the address of a callback procedure that will fire for
every Windows message. This procedure will be called
after default processing. The same callback procedure
can be used for both WindowProc callbacks.

Methods (Extended Combo Constituent)

Description Properties Events

Method Name Method Description

AboutBox Invokes the control’s About Box
AddItem Standard Method
cbemDELETEITEM Deletes an item from the list.

object.cbemDELETEITEM(Item As Long) As Boolean

Parameters
Item
Specifies the item to delete.

Returns
Success or failure.

cbemGETCOMBO_
CONTROL

Gets the hWnd of the Combo control.

object.cbemGETCOMBOCONTROL() As Long

Returns
The handle to the Combo control.

cbemGETEDIT_
CONTROL

Gets the hWnd of the Edit control within the Combo
control.

object.cbemGETEDITCONTROL() As Long

Returns
The handle to the edit control.

cbemGETEXSTYLE Gets the extended styles of the combo.

object.cbemGETEXSTYLE() As Long

Returns
The extended style bits.

cbemGETIMAGELIST Gets the handle to the image list attached to the combo
control.

object.cbemGETIMAGELIST() As Long

Returns
The handle to the associated image list.

cbemGETITEM Gets item information from the list.

object.cbemGETITEM(mask As Long, iItem As Long,
pszText As String, iImage As Long, iSelectedImage As
Long, iOverlay As Long, iIndent As Long, lParam As
Long) As Long

Parameters
mask
Determines the parameters that will be filled with
information when the method returns. The values can be

a combination of the following.
CBEIF_TEXT the psztext parameter will

contain valid data.

CBEIF_IMAGE the iImage parameter will
contain valid data.

CBEIF_SELECTEDIMAGE the iSelectedimage
parameter will contain
valid data.

CBEIF_OVERLAY the iOverlay parameter
will contain valid data.

CBEIF_INDENT the IiNDENT parameter
will contain valid data.

CBEIF_LPARAM the lParam parameter will
contain valid data.

iItem
Specifies the index of the item.

pszText
The Text of the item.

iImage
Image index within the image list control.

iSelectedImage
Selected Image index within the image list control.

iOverlay
Overlay mask for the item.

iIndent
Amount of indent for the item.

lParam
Program specified data associated with the item.

Returns
cbemHASEDIT_
CHANGED

Checks the edit control to see if there has been changes.

object.cbemHASEDITCHANGED() As Boolean

Returns
True or False.

cbemINSERTITEM Inserts an item into the list.

object.cbemINSERTITEM(mask As Long, iItem As Long,
pszText As String, iImage As Long, iSelectedImage As
Long, iOverlay As Long, iIndent As Long, lParam As
Long) As Long

Parameters
mask
Determines the parameters that will be filled with

information when the method returns. The values can be
a combination of the following.
CBEIF_TEXT the psztext parameter will

contain valid data.

CBEIF_IMAGE the iImage parameter will
contain valid data.

CBEIF_SELECTEDIMAGE the iSelectedimage
parameter will contain
valid data.

CBEIF_OVERLAY the iOverlay parameter
will contain valid data.

CBEIF_INDENT the IiNDENT parameter
will contain valid data.

CBEIF_LPARAM the lParam parameter will
contain valid data.

iItem
Specifies the index of the item.

pszText
The Text of the item.

iImage
Image index within the image list control.

iSelectedImage
Selected Image index within the image list control.

iOverlay
Overlay mask for the item.

iIndent
Amount of indent for the item.

lParam
Program specified data associated with the item.

Returns
The index to the item just added.

cbemSETEXSTYLE Sets the extended styles for the combo.

object.cbemSETEXSTYLE(style As Long) As Long

Parameters
style
The extended style bits.

Returns
The old extended style bits.

cbemSETIMAGELIST Hooks an image list to the extended combo control.

object.cbemSETIMAGELIST(iImageList As Long) As
Long

Parameters
iImage
The handle to the associated image list.

Returns
The old image list handle.

cbemSETITEM Sets the item information for an existing item in the list.

object.cbemSETITEM(mask As Long, iItem As Long,
pszText As String, iImage As Long, iSelectedImage As
Long, iOverlay As Long, iIndent As Long, lParam As
Long) As Long

Parameters
mask
Determines the parameters that will be filled with
information when the method returns. The values can be
a combination of the following.
CBEIF_TEXT the psztext parameter will

contain valid data.

CBEIF_IMAGE the iImage parameter will
contain valid data.

CBEIF_SELECTEDIMAGE the iSelectedimage
parameter will contain
valid data.

CBEIF_OVERLAY the iOverlay parameter
will contain valid data.

CBEIF_INDENT the IiNDENT parameter
will contain valid data.

CBEIF_LPARAM the lParam parameter will
contain valid data.

iItem
Specifies the index of the item.

pszText
The Text of the item.

iImage
Image index within the image list control.

iSelectedImage
Selected Image index within the image list control.

iOverlay
Overlay mask for the item.

iIndent
Amount of indent for the item.

lParam
Program specified data associated with the item.

Returns
The item index.

cbADDSTRING Adds a list item.

object.cbADDSTRING(sString As String) As Long

Parameters
sString - specifies the string to add to the combo box.

Returns
The index of the item added.

cbDELETESTRING Deletes an item from the list.

object.cbDELETEITEM (lItem As Long) As Long

Parameters
lItem - specifies the item to delete.

Returns
index of the deleted item

cbDIR Adds the filenames matching the specified attributes and
path to the list.

object.cbDIR(lAttributes As Long, sDir As String) As
Long

Parameters
lAttributes - Specifies the attributes of the files to be added
to the list box. This parameter can be a combination of the
following values:
Value Description
DDL_ARCHIVE Includes archived files.

DDL_DIRECTORY Includes subdirectories.
Subdirectory names are
enclosed in square
brackets ([]).

DDL_DRIVES Includes drives. Drives are
listed in the form [-x-],
where x is the drive letter.

DDL_EXCLUSIVE Includes only files with the
specified attributes. By
default, read-write files are
listed even if
DDL_READWRITE is not
specified.

DDL_HIDDEN Includes hidden files.

DDL_READONLY Includes read-only files.

DDL_READWRITE Includes read-write files
with no additional
attributes.

DDL_SYSTEM Includes system files.

sDir - specifies the filename to add to the list. If the
filename contains wildcards (for example, *.*), all files
that match the wildcards and have the attributes specified
by the lAttributes parameter are added to the list.
Returns
The 0 based index of the last file added to the list.

c7bFINDSTRING Returns the index of the first list item that begins with the
specified text.

object.cbFINDSTRING(lIndexStart As Long, sString As
String) As Long

Parameters
lIndexStart - specifies the index to begin the search, -1
starts at the beginning.

sString - specifies the string to search for.

Returns
The index of the item matching the string or -1 if none
were found.

cbFINDSTRINGEXACT Returns the index of the first list item exactly matching the
specified text.

object.cbFINDSTRINGEXACT(lIndexStart As Long,
sString As String) As Long

Parameters
lIndexStart - specifies the index to begin the search, -1
starts at the beginning.

sString - specifies the string to search for.

Returns
The index of the item matching the string or -1 if none
were found.

cbGETCOUNT Returns the number of list items.

object.cbGETCOUNT() As Long

Returns
the count of items in the list.

cbGETCURSEL Returns the index of the currently selected item, if any.

object.cbGETCURSEL() As Long

Returns
the index of the currently selected item or -1 if none are
selected.

cbGETDROPPED_
CONTROLRECT

Fills the specified rectangle structure with the screen
coordinates of a drop-down list.

object.cbGETDROPPEDCONTROLRECT(rect As Long)

Parameters
rect - a long representing the first long in a rect structure.
This will fill the rest of the rect structure with the values.

cbGETDROPPEDSTATE Returns TRUE if a drop-down list is open; otherwise, it
returns FALSE.

object.cbGETDROPPEDSTATE() As Boolean

Returns
True if open, otherwise False.

cbGETDROPPED_
WIDTH

Returns the minimum allowable width, in pixels, of the
drop down list.

object.cbGETDROPPEDWIDTH() As Long

Returns
the minimum width of the dropped list box.

cbGETEDITSEL Returns the starting and ending position of the current
selection. In drop-down list boxes, the window procedure
returns an error.

object.cbGETEDITSEL(lStart As Long, lStop As Long)
As Long

Parameters
lStart = carat position within the edit control to begin the
selection of text.

lStop = carat position within the edit control to end the
selection of text.

Returns
zero-based 32-bit value with the starting position of the
selection in the low-order word and with the ending
position of the first character after the last selected
character in the high-order word.

cbGETEXTENDEDUI Returns TRUE if the combo box is a drop-down combo
box or drop-down list box and the extend user-interface
flag is set; otherwise, it returns FALSE.

object.cbGETEXTENDEDUI() As Boolean

Returns
True if using the extended UI, otherwise False. By
default, the F4 key opens or closes the list and the DOWN
ARROW changes the current selection. In a combo box
with the extended user interface, the F4 key is disabled and
pressing the DOWN ARROW key opens the drop-down
list.

cbGETHORIZONTAL_
EXTENT

Returns the scrollable width, in pixels, of the drop down
list.

object.cbGETHORIZONTALEXTENT() As Long

Returns
the scrollable width, in pixels.

cbGETITEMDATA Returns the 32-bit value associated with the specified list
item.

object.cbGETITEMDATA(lIndex As Long) As Long

Parameters
lIndex - specifies the item.

Returns
the 32 bit “item data” value. This value is set though
cbSETITEMDATA.

cbGETITEMHEIGHT Returns the height, in pixels, of the specified owner-drawn
list item.

object.cbGETITEMHEIGHT(lIndex As Long) As Long

Parameters
lIndex - this parameter must be -1 to retrieve the height of
the selection field. It must be zero to retrieve the height of
list items, unless the combo box has the
cbsOWNERDRAWVARIABLE style. In that case, the
index parameter is the zero-based index of a specific list
item.

Returns
the height of the specified item.

cbGETLBTEXT Copies the specified list text to the specified buffer.

object.cbGETLBTEXT(lIndex As Long) As String

Parameters
lIndex - specifies the item from which to retrieve the text.

Returns
the text of the item.

cbGETLBTEXTLEN Returns the length, in bytes, of the specified list text.

object.cbGETLBTEXTLEN(lIndex As Long) As Long

Parameters
lIndex - specifies the item from which to retrieve the text
length.

Returns
the length of the text of the item.

cbGETLOCALE Returns the current locale for the list.

object.cbGETLOCALE() As Long
cbGETTOPINDEX Returns the index of the first visible item in the drop down

list.

object.cbGETTOPINDEX() As Long
cbINITSTORAGE Initializes space for the specified number of items and the

specified number of bytes for item strings.

object.cbINITSTORAGE(lItems As Long, lMem As Long)
As Long

Parameters
lItems - specifies the number of items to add

lMem - specifies the amount of memory to allocate for
strings.

Returns
maximum number of items that the memory object can
store.

cbINSERTSTRING Inserts a list item at the specified position.

object.cbINSERTSTRING(lIndex As Long, sString As
String) As Long

Parameters
lIndex - the 0 based index that indicates the point at which
to insert the string. If -1 is specified, the string is inserted
at the end of the list.

sString - specifies the string to insert.

Returns
the index at the point the string was inserted.

cbLIMITTEXT Sets the maximum number of characters a user can enter in
the edit control. In drop-down list boxes, the window
procedure returns an error.

object.cbLIMITTEXT(lLimit As Long)

Parameters
lLimit - specifies the maximum number of characters that
can be typed into the edit portion of a combo box.

cbRESETCONTENT Removes the contents of the list.

object.cbRESETCONTENT()
cbSELECTSTRING Selects the first list item, if any, that begins with the

characters in the specified text.

object.cbSELECTSTRING(lIndex As Long, sString As
String) As Long

Parameters
lIndex - indicates the position within the list to begin the
search. Setting this -1 will begin the search at the
beginning of the list.

sString - specifies the prefix string to search for.

Returns
The index of the item selected or -1 if the item was not
found.

cbSETCURSEL Sets the current selection.

object.cbSETCURSEL(lIndex As Long) As Long

Parameters
lIndex - index of the item to select or -1 to deselect all
items.

Returns
the item selected or -1 if none selected.

cbSETDROPPEDWIDT
H

Sets the minimum allowable width, in pixels, of the drop
down list.

object.cbSETDROPPEDWIDTH(lWidth As Long) As
Long

Parameters
lWidth - specifies the minimum width allowable for the
drop list.

Returns
the new width of the list box or -1 if it fails.

cbSETEDITSEL Selects the specified range of text. In drop-down list boxes,
the window procedure returns an error.

object.cbSETEDITSEL(lStart As Long, lStop As Long) As
Long

Parameters
Lstart - specifies the starting position of selected text.

lStop - specifies the ending position of selected text.

Returns
If successful 1 is returned, if it fails -1 is returned.

cbSETEXTENDEDUI Sets or clears the extended user-interface flag. This flag
changes the keys that open and close the list in a drop-
down combo box or drop-down list box. If the combo box
is a simple combo box, the window procedure returns an
error.

object.cbSETEXTENDEDUI(bUI As Boolean) As
Boolean

Parameters
bUI - if True, turns on the extended UI, if False turn it off.

Returns
Success or failure.

cbSETHORIZONTAL_
EXTENT

Sets the scrollable width, in pixels, of the drop down list.

object.cbSETHORIZONTALEXTENT(lWidth As Long)

Parameters
lWidth - specifies the drop down list width.

cbSETITEMDATA Associates the specified 32-bit value with a list item.

object.cbSETITEMDATA(lIndex As Long, lData As Long)
As Boolean

Parameters
lIndex - specifies the item to associate the lData value
with.

lData - the value to associate with the specified ite.

Returns
Success or failure.

cbSETITEMHEIGHT Sets the height of the specified owner-drawn list item or
the selection field.

object.cbSETITEMHEIGHT(lIndex As Long, lHeight As
Long) As Boolean

Parameters
lIndex - specifies the item.

lHeight - specifies the height

Returns
Success or failure

cbSETLOCALE Sets the current locale for the list. The locale affects how
the list is sorted if it has the cbsSORT style and strings are
added using cbADDSTRING.

object.cbSETLOCALE(lLocale As Long) As Long

Parameters
lLocale - specifies the new locale

Returns
the old locale.

cbSETTOPINDEX Scrolls the drop down list so the specified item is at the top
of the visible range.

object.cbSETTOPINDEX(lIndex As Long) As Boolean

Parameters
lIndex - species the 0 based item.

Returns
Success or Failure

cbSHOWDROPDOWN Shows or hides the drop-down list. This message has no
effect on simple combo boxes.

object.cbSHOWDROPDOWN(bShow As Boolean)

Parameters
bShow - if True, shows the drop down list, if False hides
the drop down list.

Clear Standard Method

FontSelect
Refresh Standard Method
ReleaseFont
RemoveItem Standard Method

Events (Extended Combo Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event

Command Processes notification messages from the edit control and
list window and sends corresponding combo box
notification messages to the parent window.
For edit control notifications, the window procedure may
update the list window's current selection, caret index, and
top index. For list notification messages, the window
procedure may update the content of the selection field.

CBN_CLOSEUP Indicates the list in a drop-
down combo box or drop-
down list box is about to
close.

CBN_DBLCLK Indicates the user has double-
clicked a list item in a simple
combo box.

CBN_DROPDOWN Indicates the list in a drop-
down combo box or drop-
down list box is about to
open.

CBN_EDITCHANGE Indicates the user has changed
the text in the edit control of a
simple or drop-down combo
box. This notification
message is sent after the
altered text is displayed.

CBN_EDITUPDATE Indicates the user has changed
the text in the edit control of a
simple or drop-down combo
box. This notification
message is sent before the
altered text is displayed.

CBN_ERRSPACE Indicates the combo box
cannot allocate enough
memory to carry out a
request, such as adding a list
item.

CBN_KILLFOCUS Indicates the combo box is
about to lose the input focus.

CBN_SELCHANGE Indicates the current selection
has changed.

CBN_SELENDCANCEL Indicates that the selection
made in the drop down list,
while it was dropped down,
should be ignored.

CBN_SELENDOK Indicates that the selection
made drop down list, while it
was dropped down, should be

accepted.
CBN_SETFOCUS Indicates the combo box has

received the input focus.

DblClick Standard Event

KeyDown Standard Event

KeyPress Standard Event

KeyUp Standard Event

MouseDown Standard Event

MouseMove Standard Event

MouseUp Standard Event

Resize

CALL BACKS
Event Name Event Description

WindowProc A callback procedure used to respond to or process any
Windows message. The extended combo control is already
subclassed for you eliminating the need to write or use a
subclassing control to get to any Windows’ message.

Sub WinProc(mycom As Object, msg As Long, wp As
Long, lp As Long, _ bDone As Long)

mycom the control this message belongs to.
You can access the value of the
properties from this Object

msg the message value, WM_…

wp the WPARAM value for the message.

lp the LPARAM value for the message.

bDone a flag that can be set to skip processing
this message, also indicates before or
after processing on entry.

Notice that the WinProc contains essentially the same
information as any Windows message. The typical hWnd
parameter has been replaced with the control and the
bDone parameter has been added. It is possible and may
be necessary to do some creative programming to get the
value that is represented by the lp parameter as this value
could be a direct long value or a pointer to almost any type
of data. bDone is set to FALSE on entry to the WinProc
Sub when firing the event for before default processing.

It will be TRUE when the routine is processing the
message after default processing. When bDone is FALSE,
it may be set to TRUE before exiting the routine to skip
default processing. When this is done, the “after” event
will not be fired.

Header Constituent

Properties Methods Events

Class: bbbHead Sample-Header\bHead.vbg

Overview
A header is a control that resembles one or more buttons that are connected in a horizontal row. The buttons are
commonly placed above list boxes to allow columns of the list box to be sorted. The Basic Constituents Header
allows you to create as many header items as you like. A header items can contain text, which can be aligned to the
left, center or right, and may also contain a bitmap (stdPicture object). You can add and delete items at run-time,
retrieve their bounding rectangles and get the count of items in the header. The following section outlines some of
these features in detail.

Features
This section outlines some of the features of the Basic Constituents Header Control.

Add a new item to the header
To add a new item, use the hdmINSERTITEM method. This method takes parameters that set the index of the item,
its type, the text of the item, its picture, etc. See the reference for more information on the parameters.

The following lines of code add a new item to the header. This item displays the text “Header” and the text is
centered. The 2nd parameter indications that the header will display text. Even though we are only displaying text,
we still declare an instance of a StdPicture as a place holder for the bitmap:

Dim bRet As Boolean
Dim iPicture As StdPicture
bRet = Bbbhead1.hdmINSERTITEM(0, HDI_TEXT, 100, ByVal "Header", iPicture,

HDF_CENTER Or HDF_STRING, 0)
bRet = Bbbhead1.hdmINSERTITEM(1, HDI_TEXT, 100, ByVal "Header", iPicture,

HDF_CENTER Or HDF_STRING, 0)
The following screen shows the result of the operation. This form contains an ActiveX control that uses a header as a
constituent:

Figure 12: The Basic Constituents Header control displaying two items (button style with text).

Get information about an item in the header control
Use the hdmGETITEM method to retrieve information about an item in the header control. See the reference section
later in this chapter for more information about the parameters to this method.

Determine the number of items in a header
The hdmGETITEMCOUNT method returns the number of items in a header. This method requires no parameters
and returns the number of items in the header.

Retrieve the size of and dimensions of an item in the header

The hdmLAYOUT method is used to determine the bounding rectangle, as well as the position of an item in the
header. This is particularly useful if you are inserting an item between 2 headers. For example, imagine that you
have 2 items in a header (A and B) and are preparing to insert a third, C. In reality, you want to insert C between A
and B. To do this, you need to know the position and size of item B. When C is inserted (in B’s place), it needs to be
set to the same size and position as B. The hdmLAYOUT method provides the information that you need to do this.
See the reference section later in this chapter for more information about this method.

Track the actions taken on the divider between 2 columns
The BeginTrack event is triggered when a user drags the divider between 2 headers. The EndTrack event is fired
when the dragging stops. The DividerClick and DividerDblClick events are triggered when the user clicks or
double-clicks a divider.

Properties (Header Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property

BorderStyle Standard Property

ccsADJUSTABLE Enables / disables dragging on the toolbar

Container Standard Property

DragIcon Standard Property

DragMode Standard Property

Enabled Standard Property

ForeColor Standard Property

Height Standard Property

HelpContextID Standard Property

hdsBUTTONS Header items behave like buttons.

hdsHIDDEN Indicates a header control that is intended to be hidden.
This style does not hide the control; instead, it causes the
header control to return zero in the cy member of the
WINDOWPOS structure returned by an
HDM_LAYOUT message. You would then hide the
control by setting its height to zero.

hdsHORZ Header style, if true, The header control is horizontal.

hWnd Standard Property

Index Standard Property

Left Standard Property

MouseIcon Standard Property

MousePointer Standard Property

Parent Standard Property

TabIndex Standard Property

TabStop Standard Property

Tag Standard Property

Top Standard Property

Visible Standard Property

WhatsThisHelpID Standard Property

Width Standard Property

Methods (Header Constituent)

Description Properties Events

Method Name Method Description

hdmDELETEITEM Deletes an item from a header control.

object.hdmDELETEITEM(index As Long) As Boolean

Parameters
index
 Index of the item to delete.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

hdmGETITEM Retrieves information about an item in a header control.

object.hdmGETITEM (index As Long, mask As Long,
cxy As Long, pszText As String, fmt As Long, lParam As
Long) As Boolean

Parameters
index
Index of the item for which information is to be retrieved.
Mask
Mask flags that indicate which of the other structure
members contain valid data. This member can be a
combination of the following values:

HDI_BITMAP The hbm member is
valid.

HDI_FORMAT The fmt member is valid.

HDI_HEIGHT The cxy member is valid
and specifies the height
of the item.

HDI_LPARAM The lParam member is
valid.

HDI_TEXT The pszText and
cchTextMax members are
valid.

HDI_WIDTH The cxy member is valid
and specifies the width of
the item.

cxy - Width or height of item.

PszText - Pointer to item string.

fmt - A set of bit flags that specify the item's format.
This member can include one of the following text
justification or right-to-left reading order bit flags:

HDF_CENTER Centers the contents of
the item.

HDF_LEFT Left aligns the contents of
the item.

HDF_RIGHT Right aligns the contents
of the item.

HDF_RTLREADING Displays text using right-
to-left reading order.

The preceding value is combined with one of the
following values:

HDF_BITMAP The item displays a
bitmap.

HDF_OWNERDRAW The owner window of the
header control draws the
item.

HDF_STRING The item displays a
string.

The HDF_JUSTIFYMASK mask will isolate the text
justification portion fmt.

lParam - Application-defined item data.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

hdmGETITEMCOUNT Retrieves a count of the items in a header control.

hdmGETITEMCOUNT () As Long

Return Values
If the operation succeeds, the return value is the number
of items.
If the operation fails, the return value is - 1.

hdmHITTEST Tests a point to determine which header item, if any, is at
the specified point.

object.hdmHITTEST (x As Long, y As Long, flags As
Long) As Long

Parameters
x, y
Points to test, in client coordinates

flags

Variable that receives information about the results of a
hit test. This member can be one or more of the
following values:

HHT_NOWHERE The point is inside the
bounding rectangle of the
header control but is not
over a header item.

HHT_ONDIVIDER The point is on the
divider between two
header items.

HHT_ONDIVOPEN The point is on the
divider of an item that has
a width of zero. Dragging
the divider reveals the
item instead of resizing
the item to the left of the
divider.

HHT_ONHEADER The point is inside the
bounding rectangle of the
header control.

HHT_TOLEFT The point is to the left of
the bounding rectangle of
the header control.

HHT_TORIGHT The point is to the right
of the bounding rectangle
of the header control.

Two of these values can be combined, such as when the
position is above and to the left of the client area.

Return Values
Returns the index of the item at the specified position, if
any, or - 1 otherwise.

hdmINSERTITEM Inserts a new item into a header control.

object.hdmINSERTITEM (index As Long, mask As
Long, cxy As Long, pszText As String, hbm As
StdPicture, fmt As Long, lParam As Long) As Boolean

Parameters
index
 Index of the item after which the new item is to be
inserted. The new item is inserted at the end of the header
control if index is greater than or equal to the number of
items in the control. If index is zero, the new item is
inserted at the beginning of the header control.

mask
Mask flags that indicate which of the other structure
members contain valid data. This member can be a

combination of the following values:

HDI_BITMAP The hbm member is
valid.

HDI_FORMAT The fmt member is valid.

HDI_HEIGHT The cxy member is valid
and specifies the height
of the item.

HDI_LPARAM The lParam member is
valid.

HDI_TEXT The pszText and
cchTextMax members are
valid.

HDI_WIDTH The cxy member is valid
and specifies the width of
the item.

cxy
Width or height of item.

pszText
Pointer to item string.

hbm
Handle to item bitmap.

fmt
A set of bit flags that specify the item's format. This
member can include one of the following text
justification or right-to-left reading order bit flags:

HDF_CENTER Centers the contents of
the item.

HDF_LEFT Left aligns the contents of
the item.

HDF_RIGHT Right aligns the contents
of the item.

HDF_RTLREADING Displays text using right-
to-left reading order.

The preceding value is combined with one of the
following values:

HDF_BITMAP The item displays a
bitmap.

HDF_OWNERDRAW The owner window of the
header control draws the
item.

HDF_STRING The item displays a

string.

The HDF_JUSTIFYMASK mask will isolate the text
justification portion fmt.

lParam
Application-defined item data.

Return Values
If the operation succeeds, the return value is the index of
the new item.
If the operation fails, the return value is - 1.

hdmLAYOUT Message retrieves the size and position of a header
control within a given rectangle. This message is used to
determine the appropriate dimensions for a new header
control that is to occupy the given rectangle.

object.hdmLAYOUT (iLeft As Long, iTop As Long,
iRight As Long, iBottom As Long, hWnd As Long,
hwndInsertAfter As Long, x As Long, y As Long, cx
As Long, cy As Long, flags As Long) As Boolean

Parameters
hWnd
Identifies the window.

hwndInsertAfter
 Specifies the position of the window in Z order (front-
to-back position). This member can be the handle of the
window behind which this window is placed, or can be
one of the special values listed with the SetWindowPos
function.
x, y
Specifies the window position.

cx, cy
Specifies the window size.

flags
Specifies the window position. This member can be one
of the following values:

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

hdmSETITEM Sets the attributes of the specified item in a header
control.

object.hdmSETITEM (index As Long, mask As Long,
cxy As Long, pszText As String, hbm As
StdPicture, fmt As Long, lParam As Long) As
Boolean

Parameters
index - Index of the item whose attributes are to be
changed.
mask - Mask flags that indicate which of the other
structure members contain valid data. This member can
be a combination of the following values:

HDI_BITMAP The hbm member is
valid.

HDI_FORMAT The fmt member is valid.

HDI_HEIGHT The cxy member is valid
and specifies the height
of the item.

HDI_LPARAM The lParam member is
valid.

HDI_TEXT The pszText and
cchTextMax members are
valid.

HDI_WIDTH The cxy member is valid
and specifies the width of
the item.

cxy - Width or height of item.
pszText - Pointer to item string.
hbm - Handle to item bitmap.
fmt - A set of bit flags that specify the item's format.
This member can include one of the following text
justification or right-to-left reading order bit flags:

HDF_CENTER Centers the contents of
the item.

HDF_LEFT Left aligns the contents of
the item.

HDF_RIGHT Right aligns the contents
of the item.

HDF_RTLREADING Displays text using right-
to-left reading order.

The preceding value is combined with one of the
following values:

HDF_BITMAP The item displays a
bitmap.

HDF_OWNERDRAW The owner window of the
header control draws the
item.

HDF_STRING The item displays a
string.

The HDF_JUSTIFYMASK mask will isolate the text
justification portion fmt.

lParam
Application-defined item data.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

Remarks
The HDN_ITEMCHANGING notification message is
sent to the parent window before the item attributes are
changed. The parent window can return FALSE to
prevent the changes, and in that case, HDM_SETITEM
returns FALSE. If the parent window returns TRUE, the
changes are made and the parent window receives the
HDN_ITEMCHANGED notification message.

Events (Header Constituent)

Description Properties Methods

Event Name Event Description

BeginTrack Fires when a user begins dragging a column divider.

Sub BeginTrack(Item As Long, Cancel As Boolean)

Parameters:

Item

Column being dragged.

Cancel - if set to True rejects the column divider drag.

DividerDblClick Fires when a divider is double clicked.

Sub DividerDblClick(Item As Long)

Parameters:

Item - column double clicked.

EndTrack Fires when the user stops dragging an item.

Sub EndTrack(Item As Long)

Parameters:

Item - column that was being dragged.

ItemClick Fires when the user clicks on a header item.

Sub ItemClick(Item As Long)

Parameters:

Item - header item clicked.

ItemDblClick Fires when the user double clicks on a header item.

Sub ItemDblClick(Item As Long)

Parameters:

Item - header item double clicked.

CALL BACKS
Call Back Name Event Description

Notify The notify callback is a prototype for a call back procedure. It is called
if the NotifyProcCB property is set to a function address. Some of the
messages available though the notify call back also have corresponding
events. It is possible to use either or both, however we do not fully
document the Notify messages here. See the WIN32 documentation for
WM_NOTIFY as it applies to the header control. The following
notification messages are available:
HDN_BEGINTRACK
HDN_DIVIDERDBLCLICK
HDN_ENDTRACK
HDN_ITEMCHANGED
HDN_ITEMCHANGING
HDN_ITEMCLICK
HDN_ITEMDBLCLICK
HDN_TRACK

Syntax:

Sub Notify(myControl As Object, wp As Long, lp As Long)

Parameters:

myControl :A reference to the header control.

wp :The WPARAM parameter associated with the notification message.

lp :The LPARAM parameter associated with the notification message.

DrawItem DrawItem is a prototype for a call back procedure. It does not have to
be named DrawItem, but it must have two parameters with the correct
type and be a SUB (not a function returning a value).

You place the address of this routine into the ItemDrawCB property and
set the cbOWNERDRAW property to True and this routine will be
called to perform the painting of the button.

Sub DrawItem (objItem As Object, dw As DRAWITEMSTRUCT)

objItem the control being painted. You can access the value
of the properties from this Object.

dw is a draw item structure as used in all owner draw
controls in Windows.

WindowProc A callback procedure used to respond to or process any Windows
message. The header control is already subclassed for you eliminating
the need to write or use a subclassing control to get to any Windows’
message.

Sub WinProc(myhed As Object, msg As Long, wp As Long, lp As Long,
_ bDone As Long)

myhed the control this message belongs to. You can access
the value of the properties from this Object

msg the message value, WM_…

wp the WPARAM value for the message.

lp the LPARAM value for the message.

bDone a flag that can be set to skip processing this message,
also indicates before or after processing on entry.

Notice that the WinProc contains essentially the same information as
any Windows message. The typical hWnd parameter has been replaced
with the control and the bDone parameter has been added. It is
possible and may be necessary to do some creative programming to get
the value that is represented by the lp parameter as this value could be a
direct long value or a pointer to almost any type of data. bDone is set
to FALSE on entry to the WinProc Sub when firing the event for before
default processing. It will be TRUE when the routine is processing the
message after default processing. When bDone is FALSE, it may be set
to TRUE before exiting the routine to skip default processing. When
this is done, the “after” event will not be fired.

Image List Constituent

Properties Methods Events

Class: bbbImgLi Sample-ImgList\bList.vbg

Overview
An image list is a control that stores a collection of same-sized images, each of which can be referred to by its
index. Image lists are used to manage a set of icons or bitmaps.
The BeCubed image list allows you to add and remove items as well as draw an item to a device context (hDC).

Properties (Image List Constituent)

Description Methods Events

Property Description

BackColor Standard Property
hImageList Returns a handle to the image list.
ImageHeight Sets or returns the height of an image. This cannot be set

after adding images.
ImageWidth Sets or returns the width of an image. This cannot be set

after adding images.
Index Standard Property
Name Standard Property
Parent Standard Property
Tag Standard Property

Methods (Image List Constituent)

Description Properties Events

Method Description

AboutBox Invokes the control’s About Box.
Add Adds pictures to an image view. Pictures must be

bitmaps, not icons or metafiles.
object.Add(pic As StdPicture, picmask As StdPicture)

Parameters
pic
Specifies the picture to add.
picmask
Specifies the picture mask to add.

Return Value (Boolean)
Returns the index of the picture if successful.

Draw Draws a picture from an image list to the specified device
context.

object.Draw(index As Long, hDC As Long, x As Long, y
As Long, Style As Long)

Parameters
index
Specifies the index of the picture to draw.

hDC
 Specifies the device context to draw the picture.

x, y
Specifies the top, left coordinate of the picture within the
hDC, expressed in pixels, based on window coordinates.

style Specifies how the picture is rendered using one of the
following options:

ILD_FOCUS Draws the image in a
manner that appears to
have the focus.

ILD_SELECTED Draws the image in a
manner that appears to be
selected.

ILD_BLEND Draws the image so that it
appears disabled.

ILD_BLEND25 Draws the image, blending
25 percent with the system
highlight color. This value
has no effect if the image
list does not contain a
mask.

ILD_BLEND50 Draws the image, blending
50 percent with the system
highlight color. This value
has no effect if the image
list does not contain a
mask.

ILD_MASK Draws the mask.

ILD_NORMAL Draws the image using the
background color for the
image list. If the
background color is the
CLR_NONE value, the
image is drawn
transparently using the
mask.

ILD_TRANSPARENT Draws the image
transparently using the
mask, regardless of the
background color. This
value has no effect if the
image list does not contain
a mask.

Return Value (Boolean)
Returns the index of the picture if successful.

Remove Removes pictures from an image view.

object.Remove(index As Long)

Parameters
index
Specifies the index of the picture to draw.

Return Value (Boolean)
There is no return value.

Events (Image List Constituent)

Description Properties Methods

There are no events for this control.

List Constituent

Properties Methods Events

Class: bbbList Sample-List\bList.vbg

Overview
The list constituent is the BeCubed version of the standard list box. This list box contains a great amount of
functionality not contained within its standard control counterpart. The list constituent allows you add a list of files
to the list box, allows you to search for strings and supports owner-draw capabilities. The following section outlines
some of the custom features of the list box constituent.

Features
For ease of readability, this section only outlines features that are not contained within the standard list box control.

Add a list of file names to the list box
The lbDIR method adds the list of filenames specified in the sDir parameter. The lAttributes parameter is used to set
the type of files that the list should contain (list of drives, list of directories, read only, hidden, system, etc.).

Search for a string in the list box
The lbFINDSTRING and lbFINDSTRINGEXACT methods allow you to search for strings in the list box. The
lbFINDSTRING method searches for the first item that begins with the string searched for. The method takes 2
parameters: where in the list to start (-1 begins at the top of the list) and the string to search for. The
lbFINDSTRINGEXACT searches for a string that exactly matches the string searched for. The following line of
code searches a list constituent for an exact match on the string “Hello”:

lRet = BBBList1.lbFINDSTRINGEXACT(-1, “Hello”)
If found, lRet contains the index of the item.

Determine the height of an item in the list box
The lbGETITEMHEIGHT method returns the height of an item. This method takes one parameter that contains the
index of the item to check. The return value is the height, in pixels, of the item. The following line of code retrieves
the height of the 2nd item in the list box:

lHeight = BBBList1.lbGETITEMHEIGHT(2)

Retrieve the bounding rectangle for a specific item in the list
The lbGETITEMRECT method is used to retrieve the bounding rectangle of an item. This method takes 2
parameters: The index of the item to check and a rectangle structure that receives the coordinates.

Retrieve the index of the first visible item in the list box
The lbGETTOPINDEX method is used to determine the first item that is visible in the list box. This method takes no
parameters and returns the index of the first visible item:

lIndex = BBBListBox1.lbGETTOPINDEX

Prepare to store a large number of items to the list box
The lbINITSTORAGE method is used to prepare to store a large number of items. This method takes 2 parameters:
The number of items to be stored and the length of the items. The following line of code attempts to add memory for
1000 items, each 10 positions wide. If the return is -2, not enough memory is available:

lRet = BBBListBox1.lbINITSTORAGE (1000, 10)

Retrieve the index closest to a specific point on the list box
The lbITEMFROMPOINT method can be used to determine the item that is closest to a specific point on the list
box. The method takes 2 parameters: The x and y coordinates of the point. Both of these positions are relative to the

upper-left corner of the client area of the list box.

Programmatically select a range of items in a multi-selection list box
The lbSELITEMRANGE method selects a range of items. This method takes 3 parameters. The first determines
whether or not to highlight the strings, the second and third set the starting and ending positions for the selection.
The following line of code selects and highlights the first 10 items of a list box:

lRet = BBBListBox1.lbSETITEMRANGE(True, 0, 9)

Set tab stops in the list box
The lbSETTABSTOPS method is used to set tab stops within the list box. This method takes 2 parameters. The first
is the number of tab stops, the second is an array that sets the position of the tab stops.
See the lbSETTABSTOPS method in the reference section for more information about this method.

Scroll the list box to place a specific item at the top
The lbSETTOPINDEX method can be used to set a specific item at the top of the range of visible items.

Properties (List Constituent)

Description Methods Events

Property Name Property Description

Appearance Standard Property

BackColor Standard Property

dwStyle Holds the value of the combined bsValues from above.
This property is for storage and should not be exposed or
set directly.

Enabled Standard Property

Font Standard Property

ForeColor Standard Property

hWnd Standard Property

ItemCompareCB Enables sorting compare routine.

ItemData sets or returns the number associated with a particular line
item

ItemDrawCB sets the address of the callback procedure when
programming an owner draw button. This must be a
procedure in a BSA module with a particular set of
parameters. See the ButtonDraw documentation for
details.

ItemMeasureCB Enables mixed line height list items.

lbsDISABLENO_
SCROLL

Shows a disabled vertical scroll bar for the list box when
the box does not contain enough items to scroll. If you do
not specify this style, the scroll bar is hidden when the list
box does not contain enough items.

lbsEXTENDEDSEL Allows multiple items to be selected by using the SHIFT
key and the mouse or special key combinations.

lbsHASSTRINGS Specifies that a list box contains items consisting of
strings. The list box maintains the memory and addresses
for the strings so that the application can use the
lbGETTEXT method to retrieve the text for a particular
item. By default, all list boxes except owner-drawn list
boxes have this style. You can create an owner-drawn list
box either with or without this style.

lbsMULTICOLUMN Specifies a multicolumn list box that is scrolled
horizontally. The lbSETCOLUMNWIDTH message sets
the width of the columns.

lbsMULTIPLESEL Turns string selection on or off each time the user clicks
or double-clicks a string in the list box. The user can
select any number of strings.

lbsNOINTEGRAL_
HEIGHT

Specifies that the size of the list box is exactly the size
specified by the application when it created the list box.
Normally, Windows sizes a list box so that the list box
does not display partial items.

lbsNOSEL Specifies that the list box contains items that can be
viewed but not selected.

lbsNOTIFY Notifies the parent window with an input message
whenever the user clicks or double-clicks a string in the
list box.

lbsOWNERDRAW_
FIXED

Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
the same height. The owner window receives an
ItemMeasure call back when the list box is created and a
ItemDraw call back when a visual aspect of the list box
has changed.

lbsOWNERDRAW_
VARIABLE

Specifies that the owner of the list box is responsible for
drawing its contents and that the items in the list box are
variable in height. The owner window receives a
ItemMeasure call back for each item in the combo box
when the list box is created and a DrawItem call back
when a visual aspect of the list box has changed.

lbsSORT Sorts strings in the list box alphabetically.
lbsUSETABSTOPS Enables a list box to recognize and expand tab characters

when drawing its strings. The default tab positions are 32
dialog box units. A dialog box unit is a horizontal or
vertical distance. One horizontal dialog box unit is equal
to 0.25 of the current dialog box base-width unit.
Windows calculates these units based on the height and
width of the current system font. The
GetDialogBaseUnits function returns the current dialog
box base units in pixels.

lbsWANTKEYBOARD_
INPUT

Specifies that the owner of the list box receives
WM_VKEYTOITEM messages whenever the user
presses a key and the list box has the input focus. This
enables an application to perform special processing on
the keyboard input.

List Returns or sets the items contained in a control's list
portion. The list property is a string array.

ListCount number of items in the control
ListIndex item number of the currently selected items (-1 nothing

selected)
MousePointer Standard Property
MouseIcon Standard Property
SelCount number of items currently selected.
Selected boolean, sets or returns the selected state of an individual

items.
Text string contents of the currently selected item
TopIndex index number of the item at the top of the lists’ view

window.
WindowProcCB Sets the address of a callback procedure that will fire for

every Windows message. This procedure will be called
before default processing. The programmer can change
values of parameters or can cancel the message
processing altogether.

WindowProcCBAfter Sets the address of a callback procedure that will fire for

every Windows message. This procedure will be called
after default processing. The same callback procedure
can be used for both WindowProc callbacks.

Methods (List Constituent)

Description Properties Events

Method Name Method Description

AboutBox Standard Method
AddItem Standard Method

Clear Standard Method

ColorTranslate Translates a system color into an RGB (can also pass just
the RGB)

FontSelect Enables the use of a font other then the standard default
font. Useful for ownerdraw listbox.

lbADDFILE Inserts a file into a directory list box filled by the
DlgDirList function and retrieves the list box index of the
inserted item.

object.lbADDFILE(sFile As String) As Long

Parameters
sFile
The name of the file to add.

Return Values
The return value is the zero-based index of the file that
was added, or -1 if an error occurs.

lbADDSTRING Adds a string to a list box and returns its index.

object.lbADDSTRING(sString As String) As Long

Parameters
sString
String that is to be added.

If you create the list box with an owner-drawn style but
without the lbsHASSTRINGS style, You should use the
lbGETITEMDATA and lbSETITEMDATA messages to
retrieve or modify the item data after adding an item to the
list.

Return Values
The return value is the zero-based index of the string in the
list box. If an error occurs, the return value is -1. If there is
insufficient space to store the new string, the return value
is -2.

Remarks
If you create an owner-drawn list box with the lbsSORT
style but not the lbsHASSTRINGS style, you must use the
ItemCompare call back to sort the items in the list.

lbDELETESTRING Removes a string from a list box and returns the number of
strings remaining in the list.

object.lbDELETESTRING(lIndex As Long) As Long

Parameters
index
Specifies the zero-based index of the string to be deleted.
In Windows 95 the this parameter is limited to 16-bit
values.

Return Values
The return value is a count of the strings remaining in the
list. The return value is -1 if the index parameter specifies
an index greater than the number of items in the list.

lbDIR Adds a list of filenames to a list box and returns the index
of the last filename added.

object.lbDIR(lAttributes As Long, sDir As String) As Long

Parameters
lAttributes
Specifies the attributes of the files to be added to the list
box. This parameter can be a combination of the following
values:

Value Description
DDL_ARCHIVE Includes archived files.

DDL_DIRECTORY Includes subdirectories.
Subdirectory names are
enclosed in square
brackets ([]).

DDL_DRIVES Includes drives. Drives are
listed in the form [-x-],
where x is the drive letter.

DDL_EXCLUSIVE Includes only files with
the specified attributes. By
default, read-write files are
listed even if
DDL_READWRITE is
not specified.

DDL_HIDDEN Includes hidden files.

DDL_READONLY Includes read-only files.

DDL_READWRITE Includes read-write files
with no additional
attributes.

DDL_SYSTEM Includes system files.

sDir
String that specifies the filename to add to the list. If the
filename contains wildcards (for example, *.*), all files
that match the wildcards and have the attributes specified
by the lAttributes parameter are added to the list.

Return Values
The return value is the zero-based index of the last
filename added to the list. If an error occurs, the return
value is -1. If there is insufficient space to store the new
strings, the return value is -2.

lbFINDSTRING Returns the index of the first string in the list box that
matches a given prefix.

object.lbFINDSTRING(lIndexStart As Long, sString As
String) As Long

Parameters
lIndexStart
Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom
of the list box, it continues from the top of the list box
back to the item specified by the lIndexStart parameter. If
lIndexStart is -1, the entire list box is searched from the
beginning. In Windows 95 this parameter is limited to
16-bit values.

sString
Contains the prefix to search for. The search is case
independent, so this string can contain any combination of
uppercase and lowercase letters.

Return Values
The return value is the index of the matching item, or -1 if
the search was unsuccessful.

lbFINDSTRINGEXACT Returns the index of the string that is equivalent to or
prefixed by a given prefix.

object.lbFINDSTRINGEXACT(lIndexStart As Long,
sString As String) As Long

Parameters
lIndexStart
Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom
of the list box, it continues from the top of the list box
back to the item specified by the lIndexStart parameter. If
lIndexStart is - 1, the entire list box is searched from the
beginning. In Windows 95 this parameter is limited to
16-bit values.

sString
String to search for. This string can contain a complete
filename, including the extension. The search is not case
sensitive, so this string can contain any combination of
uppercase and lowercase letters.

Return Values
The return value is the zero-based index of the matching
item, or -1 if the search was unsuccessful.

lbGETANCHORINDEX Returns the index of the item that the mouse last selected.

object.lbGETANCHORINDEX() As Long

Return Values
The return value is the index of the anchor item.

lbGETCARETINDEX Returns the index of the item that has the focus rectangle.

object.lbGETCARETINDEX() As Long

Return Values
The return value is the zero-based index of the list box
item that has the focus rectangle. If the list box is a single-
selection list box, the return value is the zero-based index
of the item that is selected, if any.

lbGETCOUNT Returns the number of items in the list box.

object.lbGETCOUNT() As Long

Return Values
The return value is the number of items in the list box, or -
1 if an error occurs.
Remarks
The returned count is one greater than the index value of
the last item (the index is zero-based).

lbGETCURSEL Returns the index of the currently selected item.

object.lbGETCURSEL() As Long

Return Values
In a single-selection list box, the return value is the zero-
based index of the currently selected item. If there is no
selection, the return value is -1.

Remarks
Do not send this message to a multiple-selection list box.
To retrieve the indexes of the selected items in a multiple-
selection list box, use the lbGETSELITEMS message. To
determine whether the item that has the focus rectangle in
a multiple selection list box is selected, use the lbGETSEL
message.

If sent to a multiple-selection list box, lbGETCURSEL
returns the index of the item that has the focus rectangle. If
no items are selected, it returns -1.

lbGETHORIZONTAL_
EXTENT

Returns the scrollable width, in pixels, of a list box.

object.lbGETHORIZONTALEXTENT() As Long

Return Values
The return value is the scrollable width, in pixels, of the
list box.

lbGETITEMDATA Returns the 32-bit value associated with the given item.

object.lbGETITEMDATA(lIndex As Long) As Long

Parameters
lIndex

Specifies the index of the item. In Windows 95 this
parameter is limited to 16-bit values.

Return Values
The return value is the 32-bit value associated with the
item, or -1 if an error occurs.

lbGETITEMHEIGHT Returns the height, in pixels, of an item in a list box.

object.lbGETITEMHEIGHT(lIndex As Long) As Long

Parameters
lIndex
Specifies the zero-based index of the list box item. This
index is used only if the list box has the
lbsOWNERDRAWVARIABLE style; otherwise, it must
be zero. In Windows 95 this parameter is limited to 16-
bit values.

Return Values
The return value is the height, in pixels, of each item in the
list box. The return value is the height of the item specified
by the index parameter if the list box has the
lbsOWNERDRAWVARIABLE style. The return value is -
1 if an error occurs.

lbGETITEMRECT Retrieves the client coordinates of the given list box item.

object.lbGETITEMRECT(lIndex As Long, sRect As
String) As Long

Parameters
lIndex
Specifies the zero-based index of the item. In Windows
95 this parameter is limited to 16-bit values.

sRect
Points to a RECT structure that will receive the client
coordinates for the item in the list box.

Return Values
If an error occurs, the return value is -1.

lbGETLOCALE Retrieves the locale of the list box. The high-order word
contains the country code and the low-order word contains
the language identifier.

object.lbGETLOCALE() As Long

Return Values
The return value is a 32-bit value that specifies the current
locale of the list box.

lbGETSEL Returns the selection state of a list box item.

object.lbGETSEL(lIndex As Long) As Boolean

Parameters
lIndex
Specifies the zero-based index of the item. In Windows

95 this parameter is limited to 16-bit values.

Return Values
True if successful or False otherwise.

lbGETSELCOUNT Returns the number of selected items in a multiple-
selection list box.

object.lbGETSELCOUNT() As Long

Return Values
The return value is the count of selected items in the list
box. If the list box is a single-selection list box, the return
value is -1.

lbGETSELITEMS Creates an array of the indexes of all selected items in a
multiple-selection list box and returns the total number of
selected items.

object.lbGETSELITEMS(lCount As Long, lArray As
Long) As Long

Parameters
lCount
Specifies the maximum number of selected items whose
item numbers are to be placed in the buffer. In Windows
95 this parameter is limited to 16-bit values.

lArray
Points to the first element of a Long array large enough for
the number of integers specified by the lCount parameter.

Return Values
The return value is the number of items placed in the
buffer. If the list box is a single-selection list box, the
return value is -1.

lbGETTEXT Retrieves the string associated with a given item and the
length of the string.

object.lbGETTEXT(lIndex As Long, sString As String)
As Long

Parameters
lIndex
Specifies the zero-based index of the string to retrieve. In
Windows 95 this parameter is limited to 16-bit values.

sString
String that will receive the value. The string must have
sufficient space for the string and a terminating null
character. An lbGETTEXTLEN message can be sent
before the lbGETTEXT message to retrieve the length, in
characters, of the string.

Return Values
The return value is the length of the string, in characters,
excluding the terminating null character. If index does not
specify a valid index, the return value is -1.

lbGETTEXTLEN Returns the length, in characters, of the string associated
with a given item.

object.lbGETTEXTLEN(lIndex As Long) As Long

Parameters
lIndex
Specifies the zero-based index of the string. In Windows
95 this parameter is limited to 16-bit values.

Return Values
The return value is the length of the string, in characters,
excluding the terminating null character. Under certain
conditions, this value may actually be greater than the
length of the text. For more information, see the following
Remarks section.

lbGETTOPINDEX Returns the index of the first visible item in a list box.

object.lbGETTOPINDEX() As Long

Return Values
The return value is the index of the first visible item in the
list box.

lbINITSTORAGE Allocates memory for the specified number of items and
their associated strings.

object.lbINITSTORAGE(lItems As Long, lMem As Long)
As Long

Parameters
lItems
Specifies the number of items to add. In Windows 95 this
parameter is limited to 16-bit values.

lMem
Specifies the amount of memory, in bytes, to allocate for
item strings.

Return Values
The return value is the maximum number of items that the
memory object can store before another memory
reallocation is needed, if successful. It is -2 if not enough
memory is available.

Remarks
Windows 95: This message helps speed up the
initialization of list boxes that have a large number of
items (more than 100).

Windows NT: This message is not needed on Windows
NT.

lbINSERTSTRING Inserts a string at a given index in a list box.

object.lbINSERTSTRING(lIndex As Long, sString As
String) As Long

Parameters
lIndex
Specifies the zero-based index of the position at which to
insert the string. If this parameter is -1, the string is added
to the end of the list. In Windows 95 this parameter is
limited to 16-bit values.

sString
String to be inserted.

Return Values
The return value is the index of the position at which the
string was inserted. If an error occurs, the return value is -
1. If there is insufficient space to store the new string, the
return value is -2.

lbITEMFROMPOINT Retrieves the zero-based index of the item nearest the
specified point in a list box.

object.lbITEMFROMPOINT(lX As Long, long lY As
Long) As Long

Parameters
lX
Specifies the x-coordinate of a point, relative to the upper-
left corner of the client area of the list box.

lY
Specifies the y-coordinate of a point, relative to the upper-
left corner of the client area of the list box.

Return Values
The return value contains the index of the nearest item in
the low-order word. The high-order word is zero if the
specified point is in the client area of the list box, or one if
it is outside the client area.

lbRESETCONTENT Removes all items from a list box.

object.lbRESETCONTENT()
lbSELECTSTRING Selects the first string it finds that matches a given prefix.

object.lbSELECTSTRING(lIndex As Long, sString As
String) As Long

Parameters
lIndex
Specifies the zero-based index of the item before the first
item to be searched. When the search reaches the bottom
of the list box, it continues from the top of the list box
back to the item specified by the lIndexStart parameter. If
lIndexStart is -1, the entire list box is searched from the
beginning. In Windows 95 this parameter is limited to
16-bit values.
sString
String that contains the prefix to search for. The search is
case independent, so this string can contain any
combination of uppercase and lowercase letters.

Return Values
If the search is successful, the return value is the index of
the selected item. If the search is unsuccessful, the return
value is -1 and the current selection is not changed.

lbSELITEMRANGE Selects a given range of items in a list box.

object.lbSELITEMRANGE(BOOL bSelect, lStart As
Long, lStop As Long) As Long

Parameters
bSelect
Specifies how to set the selection. If the bSelect parameter
is True, the string is selected and highlighted; if bSelect is
zero, the highlight is removed and the string is no longer
selected.

lStart
Specifies the zero-based index of the first item to select.

lStop
Specifies the zero-based index of the last item to select.

Return Values
If an error occurs, the return value is -1.
Remarks
Use this message only with multiple-selection list boxes.
This message can select a range only within the first
65,536 items.

lbSELITEMRANGEEX Selects a given range of items if the index of the first item
in the range is less than the index of the last item in the
range. Cancels the selection in the range if the index of the
first item is greater than the last.

object.lbSELITEMRANGEEX(lStart As Long, lStop As
Long) As Boolean

Parameters
lStart
Specifies the zero-based index of the first item to select. In
Windows 95 this parameter is limited to 16-bit values.

lStop
Specifies the zero-based index of the last item to select.

Return Values
If an error occurs, the return value is -1.

Remarks
If the lStart parameter is less than the lStop parameter, the
specified range of items is selected. If lStart is greater than
lStop, the selection is removed from the specified range of
items.

Use this message only with multiple-selection list boxes.
This message can select a range only within the first

65,536 items.
lbSETANCHORINDEX Sets the item that the mouse last selected to a given item.

object.lbSETANCHORINDEX(lIndex As Long) As
Boolean

Parameters
lIndex
Specifies the index of the new anchor item. In Windows 95
this parameter is limited to 16-bit values.

Return Values
Returns True for success or False for failure.

lbSETCARETINDEX Sets the focus rectangle to a given list box item.

object.lbSETCARETINDEX(lIndex As Long, bScroll As
Boolean) As Boolean

Parameters
index
Specifies the zero-based index of the list box item that is to
receive the focus rectangle. In Windows 95 this parameter
is limited to 16-bit values.

bScroll
If this value is False, the item is scrolled until it is fully
visible; if it is True, the item is scrolled until it is at least
partially visible.

Return Values
If an error occurs, the return value is -1.

lbSETCOLUMNWIDTH Sets the width, in pixels, of all columns in a list box.

object.lbSETCOLUMNWIDTH(lWidth As Long)

Parameters
lWidth
Specifies the width, in pixels, of all columns.

lbSETCOUNT Sets the number of items in a list box.

object.lbSETCOUNT(lCount As Long) As Long

Parameters
lCount
Specifies the new count of items in the list box. In
Windows 95 this parameter is limited to 16-bit values.

Return Values
If an error occurs, the return value is -1. If there is
insufficient memory to store the items, the return value is -
2.

Remarks
The lbSETCOUNT message is supported only by list
boxes created with the lbsNODATA style and not created
with the lbsHASSTRINGS style. All other list boxes return

-1.
lbSETCURSEL Selects a given list box item.

object.lbSETCURSEL(lIndex As Long) As Boolean

Parameters
lIndex
Specifies the zero-based index of the string that is selected.
If the index parameter is -1, the list box is set to have no
selection. In Windows 95 this parameter is limited to 16-
bit values.

Return Values
If an error occurs, the return value is -1. If the index
parameter is -1, the return value is -1 even though no error
occurred.

Remarks
Use this message only with single-selection list boxes. You
cannot use it to set or remove a selection in a multiple-
selection list box.

lbSETHORIZONTAL_
EXTENT

Sets the scrollable width, in pixels, of a list box.

object.lbSETHORIZONTALEXTENT(lWidth As Long)

Parameters
lWidth
Specifies the number of pixels by which the list box can be
scrolled. In Windows 95 this parameter is limited to 16-
bit values.

lbSETITEMDATA Associates a 32-bit value with a list box item.

object.lbSETITEMDATA(lIndex As Long, lData As
Long) As Boolean

Parameters
lIndex
Specifies the zero-based index of the item. In Windows 95
this parameter is limited to 16-bit values.

lData
Specifies the 32-bit value to be associated with the item.

Return Values
If an error occurs, the return value is -1.

lbSETITEMHEIGHT Sets the height, in pixels, of an item or items in a list box.

object.lbSETITEMHEIGHT(lIndex As Long, lHeight As
Long) As Boolean

Parameters
lIndex
Specifies the zero-based index of the item in the list box.
Use this parameter only if the list box has the
lbsOWNERDRAWVARIABLE style; otherwise, set it to
zero. In Windows 95 this parameter is limited to 16-bit

values.

lHeight
Specifies the height, in pixels, of the item.

Return Values
True for success, False for failure.

lbSETLOCALE Sets the locale of a list box and returns the previous locale
identifier.

object.lbSETLOCALE(lLocale As Long) As Long

Parameters
lLocale
Specifies the locale identifier that the list box will use for
sorting when adding text.

Return Values
The return value is the previous locale identifier. If the
wLocaleID parameter specifies a locale that is not installed
on the system, the return value is -1 and the current list
box locale is not changed.

lbSETSEL Selects an item in a multiple-selection list box.

object.lbSETSEL(BOOL bSelect, lIndex As Long) As
Boolean

Parameters
bSelect
Specifies how to set the selection. If the bSelect parameter
is True, the string is selected and highlighted; if bSelect is
False, the highlight is removed and the string is no longer
selected.

lIndex
Specifies the zero-based index of the string to set. If index
is -1, the selection is added to or removed from all strings,
depending on the value of bSelect.

Return Values
If an error occurs, the return value is -1.

Remarks
Use this message only with multiple-selection list boxes.

lbSETTABSTOPS Sets the tab stops to those specified in a given array.

object.lbSETTABSTOPS(lTabs As Long, lTabArray As
Long) As Boolean

Parameters
lTabs
Specifies the number of tab stops in the list box.

lTabArray
Points to the first member of an array of integers
containing the tab stops, in dialog box units. The tab stops

must be sorted in ascending order; backward tabs are not
allowed.

Return Values
If all the specified tabs are set, the return value is True
otherwise, it is False.

Remarks
To respond to the lbSETTABSTOPS method, the list box
must have been created with the lbsUSETABSTOPS style.
If lTabs parameter is 0, the default tab stop is two dialog
box units.

lbSETTOPINDEX Scrolls the list box so the specified item is at the top of the
visible range.

object.lbSETTOPINDEX(lIndex As Long) As Boolean

Parameters
lIndex
Specifies the zero-based index of the item in the list box.

Warning
Windows 95: The lIndex parameter is limited to 16-bit
values. This means list boxes cannot contain more than
32,767 items. Although the number of items is restricted,
the total size in bytes of the items in a listbox is limited
only by available memory.

Return Values
True for success, False for Failure.

Remarks
The system scrolls the list box contents so that either the
specified item appears at the top of the list box or the
maximum scroll range has been reached.

Refresh Standard Method

ReleaseFont Releases the font established by FontSelect
RemoveItem Standard Method

Events (List Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event

Command LBN_DBLCLK The user double-clicks an
item in the list box.

LBN_ERRSPACE The list box cannot
allocate enough memory
to fulfill a request.

LBN_KILLFOCUS The list box loses the
keyboard focus.

LBN_SELCANCEL The user cancels the
selection of an item in the
list box.

LBN_SELCHANGE The selection in a list box
is about to change.

LBN_SETFOCUS The list box receives the
keyboard focus.

DblClick Standard Event

KeyDown Standard Event

KeyPress Standard Event

KeyUp Standard Event

MouseDown Standard Event

MouseMove Standard Event

MouseUp Standard Event

Resize Standard Event

CALL BACKS
Callback Name Callback Description

 DrawItem DrawItem is a prototype for a call back procedure. It does not have to
be named DrawItem, but it must have two parameters with the correct
type and be a SUB (not a function returning a value).

You place the address of this routine into the ItemDrawCB property
and set the cbOWNERDRAW property to True and this routine will be
called to perform the painting of the item.

Sub DrawItem (objItem As Object, dw As DRAWITEMSTRUCT)

objItem the control being painted. You can access the value
of the properties from this Object.

dw is a draw item structure as used in all owner draw
controls in Windows.

MeasureItem MeasureItem is a prototype for a call back procedure. It does not have
to be named MeasureItem, but it must have two parameters with the
correct type and be a SUB (not a function returning a value).

You place the address of this routine into the ItemMeasureCB property
and set the lbsOWNERDRAW property to True and this routine will be
called to perform the sizing of an owner draw item.

Sub MeasureItem (objItem As Object, dw As
MEASUREITEMSTRUCT)

objItem the control being painted. You can access the value
of the properties from this Object.

dw is a draw item structure as used in all owner draw
controls in Windows.

WindowProc A callback procedure used to respond to or process any Windows
message. The list box control is already subclassed for you eliminating
the need to write or use a subclassing control to get to any Windows’
message.

Sub WinProc(objItem As Object, msg As Long, wp As Long, lp As
Long, _ bDone As Long)

objItem the control this message belongs to. You can access
the value of the properties from this Object

msg the message value, WM_…

wp the WPARAM value for the message.

lp the LPARAM value for the message.

bDone a flag that can be set to skip processing this message,
also indicates before or after processing on entry.

Notice that the WinProc contains essentially the same information as
any Windows message. The typical hWnd parameter has been
replaced with the control and the bDone parameter has been added. It
is possible and may be necessary to do some creative programming to
get the value that is represented by the lp parameter as this value could
be a direct long value or a pointer to almost any type of data. bDone
is set to FALSE on entry to the WinProc Sub when firing the event for
before default processing. It will be TRUE when the routine is
processing the message after default processing. When bDone is
FALSE, it may be set to TRUE before exiting the routine to skip

default processing. When this is done, the “after” event will not be
fired.

List View Constituent

Properties Methods Events

Class: bbbLiView Sample-ListView\bbbListView.vbg

Overview
Much like the standard ListView, the BeCubed ListView constituent provides the ability to add and remove items
from a list. Items in the list may contain bitmap images that are stored in an associated image list control. The
BeCubed ListView constituent is a good example of the dramatic difference that can exist between the functionality
of a standard Visual Basic control and a BeCubed constituent. The BeCubed version provides owner-draw
capabilities, the ability to determine how many list items are visible, coordinates of list items, a callback function
that lets you determine how you would like the list items sorted and access to all Windows messages.

The standard ListView control uses the ListItem object and the ListItems collection to add items to the ListView.
These are components of the standard ListView control but not the base window class. For more on window classes,
see the Creating ActiveX Controls using the BeCubed Constituent Wizard section earlier in this manual.

To add an item to the standard ListView control, you use the following syntax:
ListView1.ListItems.Add(Object, Index, Key, Text, Icon, SmallIcon)

The base window class has neither a list item object or a list items collection (collection where all of the list items
are stored). Since this is the case, if we wish to preserve existing source code, we must recreate them. The good
news is that the samples provided with the constituents have already done this for you. Let’s examine the
implications that this has on the development of ActiveX controls.

At first glance, you may think that the lack of the ListItems collection and ListItem object in the base class equate to
a loss of functionality. In reality, the exact opposite is true. The key to understanding ActiveX development is to
realize that a control is built from the ground up and is based on a specific set of requirements. If you start the
development of a control locked into the preset functionality of another control, you are prevented from
implementing the features that you want in the way that you want to. In this case, you are not really writing an
ActiveX control, you are simply using someone else’s. Additionally, your control may not require the additional
overhead that the list item and other such objects and features require. This additional overhead is confusing to the
users of your control and increases the size of distribution disks.

Consider the example presented earlier in the Creating ActiveX Controls using the BeCubed Constituent Wizard
section. We have a command button, a list box and a text box on our user control. When the command button is
pressed, the item in the text box is added to the list box. When an item is added to the list box, we in turn want it
added to a database. Most importantly, we want to preserve the AddItem syntax of the standard list box so that we do
not have to change our existing code. If we are locked into the functionality of the standard AddItem method, the
addition of items to the database becomes more convoluted.

Note: In this situation, you would probably want to add a property denoting the location
of the database as well as a property indicating whether or not you want new items added
to the database.

Open the group ListView sample project provided with the constituents. Make sure that you have opened the group
project. This sample contains 2 projects. The first is an ActiveX control that implements the ListView constituent.
The second is a sample that exercises the features of the constituent.

Figure 13: The ListView Constituent Control Example Program

Take a look at the components of the ActiveX project. Notice that under the Classes section, 2 classes exist:
B3ListItem and B3ListItems. B3ListItem implements a list item object and B3ListItems a list items collection (the
collection where the individual B3ListItems are stored. If you take a look at the B3ListItem object, you will notice
the it contains the same methods that the standard ListView control implements for its ListItem object.

Take a look at the AddItem method for the B3ListItem class. In this sample, the AddItem method simply calls the
lvmInsertItem method of the ListView constituent. Let’s take a look at how this works.
The user control contains a property called ListItems. This is an instance of our B3ListItems class object. When a
user addresses the ActiveX control with MyControl.ListItems.Add(), they are actually addressing the ListItems
property of the user control. This ListItems property (our B3ListItems class instance) is itself an object with a
method called Add. This method adds a new item to the ListView constituent.
This may sound a bit convoluted at first, but consider the possibilities. In our previous example we wanted to
automatically add each new list item to a database. To accomplish this in our ListView, we simply add the database
code to the B3ListItems object’s Add method. This eliminates the need for the user to write additional database
code, while preserving existing syntax.

Another important point to consider is functionality overkill. Imagine that all you wanted your ActiveX control to do
is to add items to a list box and database. If you were forced into using the standard list item object and list items
collection, your control would contain a large number of unwanted properties and methods. This not only makes it
more confusing for people to understand the functionality of your control, it adds considerable overhead during
distribution (comctl32.ocx, for example is 597,856 bytes compared to 50,688 for the ListView constituent.)

If we view the construction of ActiveX components in this light, we approach control development by asking what
functionality we want our control to have and then combining the components that we need to achieve that
functionality. If is definitely a different paradigm, but once understood, the quality of your controls will improve
dramatically.

The following section outlines the extended features of the BeCubed ListView constituent control.

Features
This section covers the extended features of the ListView control. For ease of use, we only cover items that are not
available in the standard ListView control.

Draw directly into the ListView control at run time without using an image list. (owner-draw).
On of the most interesting features that the ListView constituent provides is owner-draw capabilities. Owner-draw
allows you to draw directly into the items of a ListView control at run time. Images drawn in the ListView are
automatically preserved by the ListView constituent. If you were to do this with a standard ListView, the drawing
would disappear once the list item was scrolled out of (and back into) view. All management of the drawing is
handled by the ListView constituent.
To utilize owner-draw capabilities, set the lvsOWNDERDRAWFIXED property to True. This enables the list to
repaint items automatically. Owner-draw capabilities are available in report view only.

Retrieve the coordinates of a list item.
In order to draw directly into a list item, you must know exactly where that item is located. The
lvmGETITEMRECT method retrieves the rectangle of a specific list item. This method takes the index of the list
item whose coordinates you are seeking.

 Insert a new column into the ListView control.
The lvmINSERTCOLUMN method inserts a new column into the ListView control. Use lvmGETCOLUMN to
retrieve attributes about a column.
See the Constituent Control Reference later in this manual for more information on the parameters to this method.

Remove a column from the ListView control.
The lvmDELETECOLUMN method removes an existing column from the ListView control.
See the Constituent Control Reference in the back of this manual for more information on the parameters to this
method.

Retrieve the width of a column in the ListView.
The lvmGETCOLUMNWIDTH method allows you to retrieve the width of a column when in report or ListView. It
takes the column number as a parameter and returns the width of a column.

lWidth = BBBListView1.lvmGETCOLUMNWIDTH(1)

Determine the number of items that are currently visible to the user.
It may be important to determine how many items exist within the visible area of the ListView control at any given
time. If the user resizes a form, and you in turn resize your control, the number of visible list items may change. If
you need to determine how many items are displayed in the visible area, use the lvmGETCOUNTPERPAGE
method. This method requires no parameters and returns the count of the items that can be displayed:

iCount = BBBListView1.lvmGETCOUNTPERPAGE()

Determine the number of items that are currently selected.
If extended selection is in force, the user may select more than one list item. The lbmGETSELECTEDCOUNT
method returns the number of items that are currently selected in the ListView.

lRet = BBBListView1.lvmGETSELECTEDCOUNT()

Sort the items in the ListView control with a user-defined sorting function.
One of the features of the ListView constituent is the ability to sort the list items in any way you choose. This is
accomplished using the lvmSORTITEMS method. Your application supplies the function that does the sorting. The
function is passed to the ListView using the AddressOf operator. As items are sorted, the ListView passes pairs of
items to your function for comparison. This is implemented as a callback. Your application receives a callback from
the ListView control as the pairs of items are sorted.
See the Constituent Control Reference in the back of this manual for more information on the parameters to this
method.

Access the edit control within a ListView.
In the BeCubed ListView control, you have direct access to the edit control that is displayed when editing items.
When a ListView control is in edit mode, a rectangle appears around the list item being edited. At this point, the user
may change the text associated with that entry. To initiate an edit in the constituent, you can also use the
lvmEDITLABEL method. When a label edit begins, the ListView control receives a BeforeLabelEdit event. Once

the editing has completed, an AfterLabelEdit event occurs.

Scroll the ListView to ensure that a specific item is visible.
Scrolling the ListView to display a specific item is accomplished by using the lvmENSUREVISIBLE method. This
method takes the index of the list item you want to ensure is visible, and a Boolean indicating whether or not the
ListView should scroll if the item is already partially visible. The following example ensures that the tenth item in
the ListView is visible. If the item is already partially visible, the list scrolls to fully display the item. The return
value is true if the item was successfully scrolled into view.

bRet = BBBListView1.lvmENSUREVISIBLE (10, TRUE)

Scroll the ListView to a specific position.
The lvmSCROLL method can be used to scroll the list of items. This method takes 2 parameters that determine the
amount of horizontal and vertical scrolling respectively.
See the Constituent Control Reference in the back of this manual for more information on the parameters to this
method.

Locate a specific item within the ListView.
The lvmFINDITEM method allows you to search for a specific item within the ListView. The method allows you to
specify what to search for, as well as where to begin the search (-1 indicates to begin at the top of the list). You can
also specify the direction in which to search and whether to wrap around to the top of the list if the item is not found.

You may also specify whether you want to match the search string exactly, or want to locate the first list item that
begins with the search string (For example, “Miss”, locates “Mississippi”).
The following code searches a bbbListView control for the string sSearchString. In order for the search to be
successful, the string in the ListView must exactly match sSearchString.

BBBListView1.lvmFINDITEM(-1, LVFI_STRING, sSearchString, 0, 0, 0, 0)

-1 Start at top of list
LVFI_STRING Search the list for an exact match
sSearchString String to search for

Additionally, each item of the ListView control has an lParam member you can use to store numbers, pointers to
objects, etc. The lParam member of the ListView can also be searched for a specific entry. In the next example,
lParamItem is the item that you are searching for:

BBBListView1.lvmFINDITEM(-1, LVFI_PARAM, lParamItem , 0, 0, 0, 0)

-1 Start at top of list
LVFI_PARAM Search the lParam member of the bbbListView
lParamItem Item to search for

See the Constituent Control Reference later in this manual for more information about this method.

Move an item to a new location within the ListView.
The lvmSETITEMPOSITION and lvmSETITEMPOSITION32 methods allow you to move items to different
locations within the ListView. This method takes three parameters, the item to be moved and the X and Y
coordinates of the new location.
Retrieve an incremental search string of characters entered by the user.
The ListView constituent maintains an incremental search string of characters entered by a user. The incremental
search string is the character sequence the user types while the ListView has the input focus.
For example, imagine that the following items are in your ListView:

James
Joan
Joanie

When the user types “J”, the list scrolls to the first entry in the ListView that begins with J (James). At this point, the
incremental search string of the ListView control contains the letter “J”. If the user quickly types the letter “o”, the
incremental search string is updated to contain “Jo” and the list is scrolled to Joan. If the user pauses too long, the
incremental search string times out and is reset. Each time the a new character is typed (within the timeout period),
the incremental string is updated and the ListView scrolls to the item that most closely matches the string.

To retrieve the incremental search string, use the lvmGETISEARCHSTRING method. This method requires no
parameters and returns either the search string, or NULL if the control is not in incremental search mode (the
ListView does not have the input focus).

Determine the spacing between items in the ListView.
Use the lbmGETITEMSPACING method to determine much space exists between list items. The method takes one
parameter that asks whether you want spacing information for icon or small icon view. The following code fragment
retrieves the spacing in small icon view:

Dim lSpacing As Long
Dim fSmall As Boolean

fSmall = True
lSpacing = BBBListView1.lvmGETITEMSPACING(fSmall)

Determine the width of a string using the currently selected font.
The lvmGETSTRINGWIDTH method returns the width (in pixels) of the text of an item in the ListView. This
method is particularly useful for determining the width of a column. You can use the return from this method to call
lvmSETCOLUMNWIDTH (remember to pad the column width a bit so that the string is not truncated).

lWidth = BBBListView1.lvmGETSTRINGWIDTH(sText)

Retrieve the coordinates of all items in the ListView control.
The lvmGETVIEWRECT method returns the bounding rectangle of all items in the ListView control. This method
can be used in icon or small icon view.

Prepare to add a large number of items to the ListView.
If you are planning to add a large number of items to the ListView control, use lbmSETITEMCOUNT. This method
takes 1 parameter, the number of items that the ListView will ultimately contain.

Properties (List View Constituent)

Description Methods Events

Property Name Property Description

Arrange
BackColor Standard Property
BorderStyle Standard Property
Container Standard Property
DragIcon Standard Property
DragMode Standard Property
Enabled Standard Property
Font Standard Property
ForeColor Standard Property
Height Standard Property
HelpContextID Standard Property
hWnd Standard Property
Index Standard Property
Left Standard Property
lvsALIGNLEFT Specifies that items are left-aligned in icon and small icon

view.
lvsALIGNTOP Specifies that items are aligned with the top of the list

view control in icon and small icon view.
lvsAUTOARRANGE Specifies that icons are automatically kept arranged in icon

and small icon view.
lvsBUTTON Specifies that item icons look like buttons in icon view.
lvsEDITLABELS Allows item text to be edited in place. The parent window

must process the LVN_ENDLABELEDIT notification
message.

lvsICON Specifies icon view.
lvsLIST Specifies list view.
lvsNOCOLUMN_
HEADER

Specifies that a column header is not displayed in report
view. By default, columns have headers in report view.

lvsNOLABELWRAP Displays item text on a single line in icon view. By default,
item text may wrap in icon view.

lvsNOSCROLL Disables scrolling. All items must be within the client area.
lvsNOSORTHEADER Specifies that column headers do not work like buttons.

This style is useful if clicking a column header in report
view does not carry out an action, such as sorting.

lvsOWNERDRAW_
FIXED

Enables the owner window to paint items in report view.
The list view control sends a WM_DRAWITEM message
to paint each item; it does not send separate messages for
each subitem. The itemData member of the
DRAWITEMSTRUCT structure contains the item data for
the specified list view item.

lvsREPORT Specifies report view. When using the lvsREPORT style
with a List View control, the first column is always left-
aligned. You can not use LVCFMT_RIGHT to change this
alignment.

lvsSHAREIMAGELISTS Specifies that the control does not take ownership of the
image lists assigned to it; that is, it does not destroy the
image lists when it is destroyed. This style enables the
same image lists to be used with multiple list view

controls.
lvsSHOWSELALWAYS Always show the selection, if any, even if the control does

not have the focus.
lvsSINGLESEL Allows only one item at a time to be selected. By default,

multiple items may be selected.
lvsSMALLICON Specifies small icon view.
lvsSORTASCENDING Sorts items based on item text in ascending order.
lvsSORTDESCENDING Sorts items based on item text in descending order.
MouseIcon Standard Property
MousePointer Standard Property
Name Standard Property
Object Standard Property
Parent Standard Property
SelectedItem Standard Property
TabIndex Standard Property
TabStop Standard Property
Tag Standard Property
Top Standard Property
Visible Standard Property
WhatsThisHelpID Standard Property
Width Standard Property

Methods (List View Constituent)

Description Properties Events

Method Name Method Description

Drag Standard Method
lvmARRANGE Arranges items in icon view.

object.lvmARRANGE(code As Long)
Parameters: code Specifies the alignment, which
can be one of the following values:

LVA_ALIGNLEFT Aligns items along the left
edge of the window.

LVA_ALIGNTOP Aligns items along the top
edge of the window.

LVA_DEFAULT Aligns items according to
the list view control's
current alignment styles
(the default value).

LVA_SNAPTOGRID Snaps all icons to the
nearest grid position.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmCREATEDRAG_
IMAGE

Creates a drag image list for the specified item.

object.lvmCREATEDRAGIMAGE(item As Long, x As
Long, y As Long)

Parameters
item
Index of the item.
x, y
upper-left corner of the image, in view coordinates.

Return Value (Long)
Returns the handle to the drag image list if successful or
NULL otherwise.

lvmDELETEALLITEMS Removes all items from a list view control. Returns True
if successful or False if the method failed.
object.lvmDELETEALLITEMS()

Parameters
N/A

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmDELETECOLUMN Removes a column from a list view control. Returns True

if successful or False if the method failed.

object.lvmDELETECOLUMN(Col As Long)

Parameters
Col
Index of the column to delete.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmDELETEITEM removes an item from a list view control. Returns True if
successful or False if the method failed.

object.lvmDELETEITEM (item As Long)

Parameters
item
Index of the list view item to delete.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmEDITLABEL Returns the hWnd of the edit control used to edit the label.
This method implicitly selects and focuses the specified
item.

object.lvmEDITLABEL(iItem As Long)

 Parameters
iItem
Index of the list view item. To cancel editing, set iItem to
-1.

Return Value (Long)
Returns the handle of the edit control that is used to edit
the item text if successful or NULL otherwise.

Remarks
When the user completes or cancels editing, the edit
control is destroyed and the handle is no longer valid.
You can safely subclass the edit control, but you should
not destroy it.
The control must have the focus before you send this
message to the control. Focus can be set using the
SetFocus function.

lvmENSUREVISIBLE ensures that a list view item is entirely or at least partially
visible, scrolling the list view control if necessary.

object.lvmENSUREVISIBLE(index As Long, fPartialOK
As Boolean)

Parameters
index
Index of the list view item.
fPartialOK

Value specifying whether the item must be entirely visible.
If this parameter is TRUE, no scrolling occurs if the item
is at least partially visible.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmFINDITEM searches for a list view item with the specified
characteristics.

object.lvmFINDITEM(Start As Long, flags As Long,
ByVal psz As String, lParam As Long, x As Long, Y As
Long, vkDirection As Long)

Parameters
iStart
Index of the item to begin the search with or -1 to start
from the beginning. The specified item is itself excluded
from the search.

flags
Type of search to perform. This member can be one or
more of the following values:

LVFI_PARAM Searches based on the
lParam member. The
lParam member of the
matching item must match
lParam. If this flag is
specified, all other flags
are ignored.

LVFI_PARTIAL Matches if the item text
begins with the string
pointed to by the psz
member. This value
implies use of
LVFI_STRING.

LVFI_STRING Searches based on the
item text. Unless
additional values are
specified, the item text of
the matching item must
exactly match the string
pointed to by the psz
member.

LVFI_WRAP Continues the search at the
beginning if no match is
found.

LVFI_NEARESTXY Finds the item nearest the
specified position in the
specified direction.

psz
Pointer to a null-terminated string to compare with the

item text if flags specifies LVFI_STRING or
LVFI_PARTIAL.

lParam
Value to compare with the lParam member of a list view
item structure if the flags Parameter specifies
LVFI_PARAM.

x, y
specifies the starting position to search from. These
parameters are used only if LVFI_NEARESTXY is
specified.
vkDirection
Direction to search in. This member is used only if
LVFI_NEARESTXY is specified. If this member used, it
specifies the virtual-key code of an arrow key.

Return Value (Long)
Returns the index of the item if successful or -1 otherwise.

lvmGETBKCOLOR Returns the BackColor of the ListView control.

object.lvmGETBKCOLOR()

Parameters
N/A

Return Value (Long)
Returns the background color of the list view control.

lvmGETCALLBACK_
MASK

Retrieves the callback mask for a list view control.
Returns the call back mask. (See
lvmSETCALLBACKMASK)

object.lvmGETCALLBACKMASK()

Parameters
N/A

Return Value (Long)
Returns the callback mask.

lvmGETCOLUMN Retrieves the attributes of a list view control's column.

object.lvmGETCOLUMN(Col As Long, mask As Long,
fmt As Long, cx As Long, pszText As String, SubItem As
Long)

Parameters
Col
Index of the column.

mask
Specifies which members of this structure contain valid
information. This member can be zero, or one or more of
the following values:

LVCF_FMT The fmt parameter is

valid.

LVCF_SUBITEM The SubItem parameter is
valid.

LVCF_TEXT The pszText parameter is
valid.

LVCF_WIDTH The cx parameter is valid.

fmt
Specifies the alignment of the column heading and the
subitem text in the column. This member can be one of
the following values:

LVCFMT_CENTER Text is centered.

LVCFMT_LEFT Text is left-aligned.

LVCFMT_RIGHT Text is right-aligned.

Note: The leftmost column in a list view control must be
left aligned.

cx
Specifies the width, in pixels, of the column.

pszText
String that contains the column heading.

SubItem
Specifies the index of the subitem associated with
column.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmGETCOLUMN_
WIDTH

Retrieves the width of a column in report or list view.

object.lvmGETCOLUMNWIDTH (Col)

Parameters
Col
Index of the column. This parameter is ignored in list
view.

Return Value (Long)
Returns the column width if successful or zero otherwise.

lvmGETCOUNTPER_
PAGE

Calculates the number of items that can fit vertically in
the visible area of a list view control when in list or
report view. Only fully visible items are counted.
Returns the number of fully-visible items if successful.

object.lvmGETCOUNTPERPAGE ()

Parameters
N/A

Return Value (Long)
Returns the number of fully-visible items if successful. If
the current view is icon or small icon view, the return
value is the total number of items in the list view control.

lvmGETEDITCONTROL Retrieves the handle to the edit control being used to edit
a list view item's text. If no label is being edited, the
return value is NULL. The edit control is not created
until after the LVN_BEGINLABELEDIT notification
message is sent.

object.lvmGETEDITCONTROL ()

Parameters
N/A

Return Value (Long)
Returns the handle to the edit control if successful or
NULL otherwise.

Remarks
If no label is being edited, the return value is NULL. The
edit control is not created until after the
LVN_BEGINLABELEDIT notification message is sent.
When the user completes or cancels editing, the edit
control is destroyed and the handle is no longer valid.
You can safely subclass the edit control, but you should
not destroy it. To cancel editing, you can send the list
view control a WM_CANCELMODE message.
The list view item being edited is the currently focused
item ¾ that is, the item in the focused state. To find an
item based on its state, use the lvmGETNEXTITEM
message.

See Also
LVN_BEGINLABELEDIT, lvmGETEDITCONTROL,
lvmGETNEXTITEM, WM_CANCELMODE

lvmGETIMAGELIST Retrieves the handle to an image list used for drawing list
view items.

object.lvmGETIMAGELIST(ImageList)

Parameters
ImageList
Image list to retrieve. This parameter can be one of the
following values:

LVSIL_NORMAL Image list with large icons

LVSIL_SMALL Image list with small icons

LVSIL_STATE Image list with state

images

Return Value (LONG)
Returns the handle of the specified image list if
successful or NULL otherwise.

lvmGETISEARCH_
STRING

Retrieves the incremental search string of a list-view
control.

object.lvmGETISEARCHSTRING()

Parameters
N/A

Return Value (String)
The incremental search string or NULL if the list-view
control is not in incremental search mode.

Remarks
The incremental search string is the character sequence
that the user types while the list view has the input focus.
Each time the user types a character, the system appends
the character to the search string and then searches for a
matching item. If the system finds a match, it selects the
item and, if necessary, scrolls it into view.
A timeout period is associated with each character that
the user types. If the timeout period elapses before the
user types another character, the incremental search
string is reset.

lvmGETITEM retrieves some or all of a list view item's attributes.

object.lvmGETITEM (mask As Long, item As Long,
SubItem As Long, state As Long, stateMask As Long,
pszText As String, Image As Long, lParam As Long)

Parameters
mask
A set of bit flags that specify attributes of this data
structure or of an operation that is using this structure.
The following bit flags specify the members of the
LV_ITEM structure that contain valid data or need to be
filled in. One or more of these bit flags may be set:

LVIF_TEXT The pszText member is
valid or needs to be filled
in.

LVIF_IMAGE The iImage member is
valid or needs to be filled
in.

LVIF_PARAM The lParam member is
valid or needs to be filled
in.

LVIF_STATE The state member is valid
or needs to be filled in.

item
Specifies the zero-based index of the item to which this
method refers.

SubItem
Specifies the one-based index of the subitem to which
this structure refers, or zero if this structure refers to an
item rather than a subitem.

state
Specifies the current state of the item if the item's state is
being retrieved, or the new state if the item's state is
being set. The stateMask member specifies the bits of the
state member that are valid. This member can be any
valid combination of state values.

stateMask
Specifies the bits of the state member that are valid.

pszText
String that contains the item text if the method specifies
item attributes. If this member is the
LPSTR_TEXTCALLBACK value, the item is a callback
item. Do not set the pszText member to
LPSTR_TEXTCALLBACK if the list view control has
lvsSORTASCENDING or lvsSORTDESCENDING
style.
If the structure is receiving item attributes, this member
is the pointer to the buffer that receives the item text.

Image
Index of the list view item's icon in the icon and small
icon image lists.
If this member is the I_IMAGECALLBACK value, the
parent window is responsible for storing the index. In this
case, the list view control sends the parent an
LVN_GETDISPINFO notification message to get the
index when it needs to display the image.

lParam
A 32-bit value to associate with the item. If you use the
LVM_SORTITEMS message, the list view control passes
this value to the application-defined comparison
function. You can also use the LVM_FINDITEM
message to search a list view control for an item with a
specified lParam value.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks
The LV_ITEM structure, which in this method is broke
into it’s respective members, is used with a number of
messages, including lvmGETITEM, lvmSETITEM,

lvmINSERTITEM, and lvmDELETEITEM.

See Also
lvmDELETEITEM, lvmINSERTITEM, lvmSETITEM

lvmGETITEMCOUNT Retrieves the number of items in a list view control.

object.lvmGETITEMCOUNT()

Parameters
N/A

Return Value (Long)
Returns the number of items.

lvmGETITEMPOSITION Retrieves the position of a list view item.

object.lvmGETITEMPOSITION(index As Long, x As
Long, y As Long)

Parameters
hWnd
Handle to the list view control.

index
Index of the list view item.

x, y
Receives the position of the item's upper-left corner, in
view coordinates.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmGETITEMRECT retrieves the bounding rectangle for all or part of an item
in the current view.

object.lvmGETITEMRECT(index As Long, Top As
Long, Left As Long, Right As Long, Bottom As Long)

Parameters
index
Index of the list view item.

left, top, right, bottom
Receives the bounding rectangle.

code
Portion of the list view item for which to retrieve the
bounding rectangle. This parameter can be one of the
following values:

LVIR_BOUNDS Returns the bounding
rectangle of the entire
item, including the icon
and label.

LVIR_ICON Returns the bounding
rectangle of the icon or

small icon.

LVIR_LABEL Returns the bounding
rectangle of the item text.

LVIR_SELECTBOUNDS Returns the union of the
LVIR_ICON and
LVIR_LABEL rectangles,
but excludes columns in
details view.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmGETITEMSPACING Determines the spacing between items in a list view
control.

object.lvmGETITEMSPACING(fSmall As Boolean)

Parameters
fSmall
View to retrieve the item spacing for. This parameter is
TRUE for small icon view, or FALSE for icon view.

Return Value (Long)
Returns the amount of spacing between items.

lvmGETITEMSTATE Retrieves the state of a list view item.

object.lvmGETITEMSTATE(index As Long, mask As
Long)

Parameters
index
Index of the list view item.

mask
Mask that specifies which of the item's state flags to
return.

Return Value (Long)
Returns the item's state flags.

lvmGETITEMTEXT Retrieves the text of a list view item or subitem.

object.lvmGETITEMTEXT (item As Long, SubItem As
Long)

Parameters
iItem
Index of the list view item.

iSubItem
Index of the subitem, or zero to retrieve the item label.

Return Value (String)
The item or subitem text.

lvmGETNEXTITEM searches for a list view item that has the specified
properties and bears the specified relationship to a

specified item.

object.lvmGETNEXTITEM (Start As Long, flags As
Long, state As Long)

Parameters
Start
Index of the item to begin the search with, or -1 to find
the first item that matches the specified flags. The
specified item itself is excluded from the search.

flags
Geometric relation of the requested item to the specified
item and, if specified, the state of the requested item.
The geometric relation can be one of the following
values:

LVNI_ABOVE Searches for an item that
is above the specified
item.

LVNI_ALL Searches for a subsequent
item by index (the default
value).

LVNI_BELOW Searches for an item that
is below the specified
item.

LVNI_TOLEFT Searches for an item to the
left of the specified item.

LVNI_TORIGHT Searches for an item to the
right of the specified item.

The state can be zero, or it can be one or more of the
following values:

LVNI_CUT The item has the
LVIS_CUT state flag set.

LVNI_DROPHILITED The item has the
LVIS_DROPHILITED
state flag set.

LVNI_FOCUSED The item has the
LVIS_FOCUSED state
flag set.

LVNI_SELECTED The item has the
LVIS_SELECTED state
flag set.

If an item does not have all of the specified state flags
set, the search continues with the next item.

Return Value (Long)
Returns the index of the next item if successful or -1

otherwise.
lvmGETORIGIN Retrieves the current view origin for a list view control.

object.lvmGETORIGIN (x As Long, y As Long)

Parameters
x, y
Receives the view origin.

Return Value (Boolean)
Returns TRUE if successful or FALSE if the current view
is list or report view.

lvmGETSELECTED_
COUNT

Determines the number of selected items in a list view
control.

object.lvmGETSELECTEDCOUNT ()

Parameters
N/A

Return Value (Long)
Returns the number of selected items.

lvmGETSTRINGWIDTH Determines the width of a specified string, using the
specified list view control's current font.

object.lvmGETSTRINGWIDTH (psz As String)

Parameters
psz
String.

Return Value (Long)
Returns the string width if successful or zero otherwise.

Remarks
This method returns the exact width, in pixels, of the
specified string. If you use the returned string width as
the column width in a call to the
lvmSETCOLUMNWIDTH method, the string will be
truncated. To get the column width that can contain the
string without truncating it, you must add padding to the
returned string width.

See Also
lvmSETCOLUMNWIDTH

lvmGETTEXTBK_
COLOR

Retrieves the text background color of a list view control.

object.lvmGETTEXTBKCOLOR ()

Parameters
N/A

Return Value (Long)
Returns the background color of the text.

lvmGETTEXT_
COLOR

Retrieves the text color of a list view control.

object.lvmGETTEXTCOLOR ()

Parameters

Return Values
Returns the text color.

lvmGETTOPINDEX Retrieves the index of the topmost visible item when in list
or report view.

object.lvmGETTOPINDEX ()

Parameters
N/A

Return Value (Long)
Returns the index of the item if successful or zero if the
list view control is in icon or small icon view.

lvmGETVIEWRECT Retrieves the bounding rectangle of all items in the list
view control. The list view must be in icon or small icon
view.

object.lvmGETVIEWRECT (left AS Long, top As Long,
right As Long, bottom As Long)

Parameters
left, top, right, bottom
receives the bounding rectangle. All coordinates are
relative to the visible area of the list view control.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmHITTEST Determines which list view item, if any, is at a specified
position.

object.lvmHITTEST (x As Long, y As Long, flags As
Long, Item As Long)

Parameters
x, y
Position to hit test, in client coordinates.

flags
Variable that receives information about the results of a
hit test. This member can be one or more of the following
values:

LVHT_ABOVE The position is above the
client area of the control.

LVHT_BELOW The position is below the
client area of the control.

LVHT_NOWHERE The position is inside the
list view control's client
window, but it is not over
a list item.

LVHT_ONITEMICON The position is over a list
view item's icon.

LVHT_ONITEMLABEL The position is over a list
view item's text.

LVHT_ONITEMSTATEICON The position is over the
state image of a list view
item.

LVHT_TOLEFT The position is to the left
of the list view control's
client area.

LVHT_TORIGHT The position is to the right
of the list view control's
client area.

Remarks
You can use LVHT_ABOVE, LVHT_BELOW,
LVHT_TOLEFT, and LVHT_TORIGHT to determine
whether to scroll the contents of a list view control. Two
of these values may be combined ¾ for example, if the
position is above and to the left of the client area.
You can test for LVHT_ONITEM to determine whether a
specified position is over a list view item. This value is a
bitwise-OR operation on LVHT_ONITEMICON,
LVHT_ONITEMLABEL, and
LVHT_ONITEMSTATEICON.

Item
Receives the index of the matching item.

Return Value (Long)
Returns the index of the item at the specified position, if
any, or -1 otherwise.

lvmINSERTCOLUMN Inserts a new column in a list view control.

object.lvmINSERTCOLUMN(Col As Long, mask As
Long, fmt As Long, cx As Long, pszText As String,
SubItem As Long)

Parameters
See lvmGETCOLUMN

Return Value (Long)
Returns the index of the new column if successful or -1
otherwise.

See Also
lvmGETCOLUMN

lvmINSERTITEM Inserts a new item in a list view control.

object.lvmINSERTITEM (mask As Long, item As Long,
SubItem As Long, state As Long, stateMask As Long,
pszText As String, Image As Long, lParam As Long)

Parameters
see lvmGETITEM

Return Value (Long)
Returns the index of the new item if successful or -1
otherwise.

Remarks
If a list view control has either the
LVS_SORTASCENDING or LVS_SORTDESCENDING
window style, an LVM_INSERTITEM message will fail if
you try to insert an item that has
LPSTR_TEXTCALLBACK as the pszText member of its
LV_ITEM structure.

lvmREDRAWITEMS Forces a list view control to redraw a range of items.

object.lvmREDRAWITEMS (First As Long, Last As
Long)

Parameters
First
Index of the first item to redraw.

Last
Index of the last item to redraw.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks
The specified items are not actually redrawn until the list
view window receives a WM_PAINT message to repaint.
To repaint immediately, call the UpdateWindow function
after using this macro.

lvmSCROLL Scrolls the content of a list view control.

object.lvmSCROLL(dx As Long, dy As Long)

Parameters
dx
Integer value that specifies the amount of horizontal
scrolling. If the view type of the list view control is icon
view, small icon view, or report view, this value specifies
the number of pixels to scroll. If the view type of the list
view control is list view, this value specifies the number
of columns to scroll.
dy
Integer value that specifies the amount of vertical
scrolling.
If the view type of the list view control is icon view,
small icon view, or list view, this value specifies the
number of pixels to scroll. If the view type of the list
view control is report view, this value specifies the
number of lines to scroll.

Return Value (Boolean)

Returns TRUE if successful or FALSE otherwise.
lvmSETBKCOLOR Sets the background color of a list view control.

object.lvmSETBKCOLOR(clrBk)

Parameters
clrBk
Background color to set or the CLR_NONE value for no
background color. List view controls with background
colors redraw themselves significantly faster than those
without background colors.

Return Value (Boolean)

Returns TRUE if successful or FALSE otherwise.
lvmSETCALLBACK_
MASK

Changes the callback mask for a list view control.

object.lvmSETCALLBACKMASK (mask As Long)

Parameters
mask
Specifies the value of the callback mask. The bits of the
mask indicate the item states or images for which the
application stores the current state data. This value can be
any combination of the following constants:

LVIS_CUT The item is marked for a
cut-and-paste operation.

LVIS_DROPHILITED The item is highlighted as
a drag-and-drop target.

LVIS_FOCUSED The item has the focus.

LVIS_SELECTED The item is selected.

LVIS_OVERLAYMASK The application stores the
image list index of the
current overlay image for
each item.

LVIS_STATEIMAGEMASK The application stores the
image list index of the
current state image for
each item.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks

The callback mask of a list view control is a set of bit
flags that specify the item states for which the
application, rather than the control, stores the current
data. The callback mask applies to all of the control's
items, unlike the callback item designation, which
applies to a specific item. The callback mask is zero by
default, meaning that the list view control stores all item
state information. After creating a list view control and
initializing its items, you can use this method or
lvmSETCALLBACKMASK message to change the
callback mask. To get the current callback mask, send the
lvmGETCALLBACKMASK message.

See Also
lvmGETCALLBACKMASK, lvnGETDISPINFO

lvmSETCOLUMN Sets the attributes of a list view column.

object.lvmSETCOLUMN(Col As Long, mask As Long,
fmt As Long, cx As Long, pszText As String, SubItem As
Long)

Parameters
see lvmGETCOLUMN

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmSETCOLUMN_
WIDTH

Changes the width of a column in report or list view.

object.lvmSETCOLUMNWIDTH (Col As Long, cx As
Long)

Parameters
Col
Index of the column. In list view, the Col parameter must
be -1.

cx
New width of the column, in list view coordinates, or one
of the following values:

LVSCW_AUTOSIZE

Automatically sizes the column.

LVSCW_AUTOSIZE_USEHEADER

Automatically sizes the column to fit the header text.
lvmSETIMAGELIST Assigns an image list to a list view control.

object.lvmSETIMAGELIST (himl As Long, Type As
Long)

Parameters
himl
Handle to the image list to assign.

Type
Type of image list. This parameter can be one of the
following values:

LVSIL_NORMAL Image list with large icons

LVSIL_SMALL Image list with small icons

LVSIL_STATE Image list with state
images

Return Value (Long)
Returns the handle of the image list previously associated
with the control if successful; NULL otherwise.

lvmSETITEM Sets some or all of a list view item's attributes.

object.lvmSETITEM (mask As Long, item As Long,
SubItem As Long, state As Long, stateMask As Long,
pszText As String, Image As Long, lParam As Long)

Parameters
see lvmGETITEM

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmSETITEMCOUNT Prepares a list view control for adding a large number of
items.

object.lvmSETITEMCOUNT (cItems As Long)

Parameters
cItems
Number of items that the list view control will ultimately
contain.

Return Value
No return value.

Remarks
By using this before adding a large number of items, you
enable a list view control to reallocate its internal data
structures only once rather than every time you add an
item.

lvmSETITEMPOSITION Moves an item to a specified position in a list view
control, which must be in icon or small icon view.

object.lvmSETITEMPOSITION (item As Long, x As
Long, y As Long)

Parameters
index
Index of the list view item.

x and y
New position of the item's upper-left corner, in view

coordinates.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks
If the list view control has the LVS_AUTOARRANGE
style, the list view control is arranged after the position of
the item is set.

lvmSETITEM_
POSITION32

Moves an item to a specified position in a list view
control, which must be in icon or small icon view.

object.lvmSETITEMPOSITION (item As Long, x As
Long, y As Long)

Parameters
item
Index of the list view item to set the position of.

x and y
New horizontal and vertical coordinates of the item.

Return Value
No return value.

lvmSETITEMSTATE Changes the state of an item in a list view control.

object.lvmSETITEMSTATE(item As Long, state As
Long, mask As Long)

Parameters
item
Index of the list view item.

state
New state bits for the item.

mask
Mask specifying which of the item's current state bits to
change.

Return Values
No return value.

See Also
LVM_SETITEMSTATE

lvmSETITEMTEXT Changes the text of a list view item or subitem.

object.lvmSETITEMTEXT(item As Long, SubItem As
Long, pszText As String)

Parameters
item
Index of the list view item.

iSubItem
Index of the subitem or zero to set the item label.

pszText
String that contains the new text. This parameter can be
NULL.

Return Value
No return value.

lvmSETTEXTBKCOLOR Sets the background color of text in a list view control.

object.lvmSETTEXTBKCOLOR(clrText As Long)

Parameters
clrText
New text color.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmSETTEXTCOLOR Sets the text color of a list view control.

object.lvmSETTEXTCOLOR(clrText As Long)

Parameters
clrText
New text color.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

lvmSORTITEMS An application-defined comparison function to sort the
items of a list view control. The index of each item
changes to reflect the new sequence.

object.lvmSORTITEMS (pfnCompare As Long,
lParamSort As Long)

Parameters
pfnCompare
Pointer to the application-defined comparison function.
The comparison function is called during the sort
operation each time the relative order of two list items
needs to be compared. Use AddressOf to specify the
function address.

lParamSort
Application-defined value that is passed to the
comparison function.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks
The comparison function has the following form:

Function CompareFunc(lParam1 As Long, lParam2 As
Long, lParamSort As Long) As Long

The lParam1 parameter is the 32-bit value associated

with the first item being compared; and the lParam2
parameter is the value associated with the second item.
These are the values that were specified in the lParam
Parameter when they were inserted into the list. The
lParamSort parameter is the same value passed to the
lvmSORTITEMS message.
The comparison function must return a negative value if
the first item should precede the second, a positive value if
the first item should follow the second, or zero if the two
items are equivalent.

lvmUPDATE Updates a list view item. If the list view control has the
lvsAUTOARRANGE style, this causes the list view
control to be arranged.

object.lvmUPDATE (item As Long)

Parameters
iItem
Index of the item to update.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Refresh Standard Method
Move Standard Method
OLEDrag
SetFocus Standard Method
Zorder Standard Method

Events (List View Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event
DblClick Standard Event
KeyDown Standard Event
KeyPress Standard Event
KeyUp Standard Event
MouseDown Standard Event
MouseMove Standard Event
MouseUp Standard Event
AfterLabelEdit
BeforeLabelEdit
DragDrop Standard Event
DragOver Standard Event
GotFocus Standard Event
ItemClick
LostFocus Standard Event

Panel Constituent

Properties Methods Events

Class: bbbPanel Sample-Panel\B3Panel.vbp

Overview
The panel constituent is a control that can be used by itself or used as a container for other controls. The panel has
Bevel-in and Bevel-Out properties that are used to change the look of the control. The control has a .Picture property
and can be used for displaying a bitmap.

Properties (Panel Constituent)

Description Methods Events

Property Name Description

Alignment Sets or returns the text alignment within the window.
Possible Values:

0 - Left
1 - Right
3 - Center

AutoSize When set to True sizes the control to fit the picture.
BackColor Standard Property
BevelIn Type of inside bevel. Possible Values:

0 - Raised
1 - Lowered

BevelInWidth Width of the inside bevel in pixels.
BevelOut Type of outside bevel .

0 - Raised
1 - Lowered

BevelOutWidth Width of the outside bevel in pixels.
Border True / False, turns the border on or off, the border is 1

pixel wide.
BorderColor Standard Property
Caption Standard Property
Enabled Standard Property
Font Standard Property
ForeColor Standard Property
hWnd Standard Property
LightColor Used for the light color in 3-d effects.
MouseIcon Standard Property
MousePointer Standard Property
Multiline True / False, turns multiline on or off. Valignment will

only work when multiline is False.
Picture A picture, if specified is drawn as the background of the

control.
ShadowColor Color used as the shadow in 3-d effects.
Valignment Vertical alignment of the text. Multiline must be false for

this to work.

0 - Top
1 - Bottom
2 - Vertical Center

Methods (Panel Constituent)

Description Properties Events

Method Name Description

AboutBox Invokes the control’s About Box

Events (Panel Constituent)

Description Properties Methods

Event Name Description

Click Standard Event
DblClick Standard Event
KeyDown Standard Event
KeyPress Standard Event
KeyUp Standard Event
MouseDown Standard Event
MouseMove Standard Event

Progress Constituent

Properties Methods Events

Class: bbbProgressBar Sample-Progress\B3ProgressBar.vbg

Overview
The progress bar allows you to graphically show the user the progress of an operation. This control allows you to set
the minimum and maximum positions for the progress bar, set the current position and also allows for incremental
progress (5% at a time, etc).

Properties (Progress Constituent)

Description Methods Events

Property Name Property Description

Border True / False, turns the border on or off, the border is 1
pixel wide.

Enabled Standard Property
hWnd Standard Property
MouseIcon Standard Property
MousePointer Standard Property

Methods (Progress Constituent)

Description Properties Events

Method Name Method Description

AboutBox Invokes the control’s About Box
pbmDELTAPOS advances the current position of a progress bar by a

specified increment and redraws the bar to reflect the new
position.

object.pbmDELTAPOS (nIncrement As Integer) As Integer

Parameters
nIncrement - Amount to advance the position.

Return Values
Returns the previous position.

pbmSETPOS sets the current position for a progress bar and redraws the
bar to reflect the new position.

object.pbmSETPOS (nNewPos As Integer) As Integer

Parameters
nNewPos - New position.

Return Values
Returns the previous position.

pbmSETRANGE sets the minimum and maximum values for a progress bar
and redraws the bar to reflect the new range.

object.pbmSETRANGE (nMinRange As Integer,
nMaxRange As Integer) As Integer

Parameters
nMinRange - Minimum range value. By default, the
minimum value is zero.
nMaxRange - Maximum range value. By default, the
maximum value is 100.

Return Values
Returns the previous range values if successful, or zero
otherwise. The low-order word specifies the previous
minimum value, and the high-order word specifies the
previous maximum value.

pbmSETSTEP specifies the step increment for a progress bar. The step
increment is the amount by which the progress bar
increases its current position whenever it receives a
pbmSTEPIT method. By default, the step increment is set
to 10.

object.pbmSETSTEP (nStepInc As Integer) As Integer
lParam = 0;

Parameters
nStepInc - New step increment.

Return Values
Returns the previous step increment.

pbmSTEPIT advances the current position for a progress bar by the step
increment and redraws the bar to reflect the new position.
An application sets the step increment by using the
SETSTEP message.

object.pbmSTEPIT () As Integer

Return Values
Returns the previous position.

Remarks: When the position exceeds the maximum range
value, this message resets the current position so that the
progress indicator starts over again from the beginning.

Events (Progress Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event
DblClick Standard Event
MouseDown Standard Event
MouseMove Standard Event
MouseUp Standard Event

ReBar Constituent

Properties Methods Events

Class: bbbReBar Sample-ReBar\bReBarTst.vbg

Overview
The ReBar is a control that can contain a number of bands. Each of these bands can contain one or more controls.
The best example of a ReBar is contained within Microsoft’s Internet Explorer. At the top of the browser is ReBar
control that allows you to enter the location of the web page that would like to view.

If you take a close look at this control, you will notice that it is comprised of a number of bands. The first Band
contains the text box in which you enter the web location. There is also a slider that allows you view specific
features provided by the web browser. If you slide this slider to the left, you are able to view these choices. If you
have Internet Explorer, take a moment to look at this control.

The following section outlines the features of the ReBar constituent.

Features
The ReBar control does not have a standard control counterpart. This section outlines some of the features of the
ReBar.

Add and remove bands from the ReBar
The rbINSERTBAND and rbDELETEBAND methods are used to add and remove bands from the ReBar. See the
reference section later in this chapter for more information about these methods.

Retrieve the count of bands on the ReBar
The rbGETBANDCOUNT method returns the number of bands that are currently on the ReBar. This method takes
no parameters and returns the number of bands that the control contains.

Determine the number of rows the ReBar has
When a user drags a control downward on the ReBar, a new row is created. If the control is dragged back up, the
row is destroyed. The rbGETROWCOUNT method returns the number of rows that the ReBar currently contains.

Determine the height of a row on the ReBar
The rbGETROWHEIGHT method returns the height of the specified row (in pixels).

Use ToolTips on the ReBar
ToolTips are set using the rbsTOOLTIPS method. This method

Properties (ReBar Constituent)

Description Methods Events

Property Name Description

rbsTOOLTIPS Tooltips are supported. This style allows you to use the
same tooltip in all of the inner bands. There is no hot
region in the ReBar that will otherwise cause the tooltip
created by this style bit to be shown.

RbsVARHEIGHT The ReBar control displays bands at the minimum
required height when possible. Without this style, the
ReBar control displays all bands at the same height. The
control uses the height of the tallest visible band to
determine the height of other bands.

rbsBANDBORDERS A border is placed around each band in the ReBar.

rbsFIXEDORDER This style prevents the user from reordering the ReBar
bands.

Methods (ReBar Constituent)

Description Properties Events

Method Name Description

rbDELETEBAND Removes a band from the ReBar.

object.rbDELETEBAND(Index As Long) As Boolean

Parameters
Index
The zero-based index of the band to delete

Returns
0 if successful; non-zero otherwise

rbGETBANDCOUNT Returns the number of bands in the ReBar

object.rbGETBANDCOUNT() As Long

Returns
UINT - Number of bands in the ReBar

rbGETBANDINFO Retrieves information on the specified band.

object.rbGETBANDINFO (Index As Long, fMask As
Long, fStyle As Long, clrFore As OLE_COLOR, clrBack
As OLE_COLOR, lpText As String, iImage As Long,
hwndChild As Long, cxMinChild As Long, cyMinChild
As Long, cx As Long, hbmBack As stdPicture, wID As
Long) As Boolean

Parameters

Index - the zero-based index of the place to insert the
band;
-1 signifies that the band will be added to the end

fMask - Flags that indicate which members of this
structure are valid or must be filled. This value can be a
combination of the following:

RBBIM_STYLE The fStyleMember is
valid.

RBBIM_COLORS The clrFore and clrBack
members are valid

RBBIM_TEXT The lpText member is
valid.

RBBIM_IMAGE The iImage member is
valid.

RBBIM_CHILD The hwndChild member is
valid.

RBBIM_CHILDSIZE The cxMinChild and
cyMinChild members are
valid.

RBBIM_SIZE The cx member is valid.

RBBIM_BACKGROUND The hbmBack member is
valid.

RBBIM_ID The wID member is valid.

fStyle - Flags that specify the band style. This value can be
a combination of the following:

Value
RBBS_BREAK The band will be on a new

line. Use this style if you
plan to have more than
one line of controls in
your ReBar. This style is
used by Internet Explorer
3.0.

RBBS_FIXEDSIZE The band can't be sized. If
you use this style, the
sizing grip will not be
displayed on the band.

RBBS_CHILDEDGE An edge will appear
around the top and bottom
of the child window.

RBBS_HIDDEN The band will not be
visible.

RBBS_NOVERT The band will not be
displayed when the Rebar
control is vertical.

RBBS_FIXEDBMP The bitmap will not move
when the band is resized.

clrFore
The band's foreground color, used to draw text.

clrBack
The band's background color.

lpText
The display text for the band.

iImage
Zero-based index of the image that should be displayed in
the band, if any. The image list is set using the ImageList
property.

hwndChild
Handle of the child window contained in the band, if any.

cxMinChild - The minimum horizontal size of the child

window, in pixels. The band cannot be sized smaller than
this value.

cyMinChild - The minimum vertical size of the child
window, in pixels. The band cannot be sized smaller than
this value.

cx
The horizontal size of the band, in pixels.

hbmBack
The background bitmap.

wID
The ID of the band.

Returns

True / False.
rbGETROWCOUNT Retrieves the number of rows in the ReBar.

object.rbGETROWCOUNT() As Long

Parameters
None

Returns
the number of rows

rbGETROWHEIGHT Returns the height of the specified row in the ReBar.

object.rbGETROWHEIGHT(Index As Long) As Long

Parameters
Index
The zero-based row to check

Returns
the height, in pixels, of the row

rbINSERTBAND Inserts a band into a ReBar.

object.rbGETBANDINFO (Index As Long, fMask As
Long, fStyle As Long, clrFore As OLE_COLOR, clrBack
As OLE_COLOR, lpText As String, iImage As Long,
hwndChild As Long, cxMinChild As Long, cyMinChild
As Long, cx As Long, hbmBack As stdPicture, wID As
Long) As Boolean

Parameters
See rbGETBANDINFO

Returns

True / False.
rbSETBANDINFO Sets the information about an existing band in the ReBar.

object.rbGETBANDINFO (Index As Long, fMask As

Long, fStyle As Long, clrFore As OLE_COLOR, clrBack
As OLE_COLOR, lpText As String, iImage As Long,
hwndChild As Long, cxMinChild As Long, cyMinChild
As Long, cx As Long, hbmBack As stdPicture, wID As
Long) As Boolean

Parameters
See rbGETBANDINFO

Returns

True / False.
rbSETBARINFO Sets information about the ReBar. Used right now to

activate the image list.

object.rbSETBARINFO () As Boolean

Parameters
None

Returns

True / False.

Events (ReBar Constituent)

Description Properties Methods

Event Name Description

HeightChange HeightChange (newHeight As Single) This event is fired
each time the ReBar control resizes for any reason. If you
have placed the ReBar control on another control (such as
the user control in VB5), be sure to set the height of the
containing control in this event.

Notes
One of the new controls created for Internet Explorer 3.0 is
the Rebar control. Rebar contains child windows such as
toolbars, combo boxes, and bitmaps, and manages the size
and position of the child windows it contains. Once you
create the child windows and assign them to the ReBar, the
child windows are displayed in it. If you use Internet
Explorer 3.0, you see the Rebar control at the top of the
screen. You probably thought that is was just a funky
toolbar, but it is actually a ReBar. Take a look:
Each area that contains a child window is referred to as a
band. Rebar controls can contain one or more bands. Each
band can have any combination of the following: a gripper
bar, a bitmap, a text label, and a child window. However,
bands cannot contain more than one of these items. For
example, you cannot have two grippers or two child
windows within one band.

All bands, except those that have the RBBS_FIXEDSIZE style,
can be resized via the gripper bar. You can also single-click on
the gripper to minimize or maximize the band. The Rebar control
manages the size and position of the child window assigned to
that band.

Browser Constituent

Properties Methods Events

Class: bbbBrowser Sample-Browse\bbbBrowser.vbg

Overview
The Visual Basic 5 environment provides access to an application called the Object Browser. The Object Browser
reads type library (typelib) information from an OCX or DLL file. This information includes properties, methods,
method parameters, events, constants, etc. The BeCubed Browser is a constituent control that provides access to this
functionality from within your Visual Basic program.

The Browser sample program, contained in the \samples\browse directory of Basic Constituents demonstrates the
use of this control.

Open the Browser control group sample. This sample contains 2 projects, the Browser ActiveX sample and a test
project. Open the ActiveX sample and then open its user control. Notice that the user control contains, 2 B3ListView
controls, a splitter, a text box and a command button.

Figure 1: The Browser ActiveX Control Sample displaying information about the Card constituent.

Note: The B3ListView controls contained within this sample are actually instances of the bbbListView control
sample provided with the constituents.

The functionality of the program is quite simple, although the underlying code is a bit more complex. The user
clicks the command button (looks like an open file icon). A common dialog box prompts the user for the full path to
an .OCX file. Once the user has selected the file, the Browser control adds 4 items to the B3ListView on the left:
Properties, Methods, Events and Other. It then enumerates the list of properties for the selected OCX and places
them in the B3ListView control on the right. The user may view the methods, events and other information about the
control by selecting the corresponding item in the B3ListView on the left.

Under the surface, the Browser constituent invokes a callback procedure that enumerates the properties, methods,
events, constants, etc. of the selected control.

Let’s take a moment to review how a callback procedure works. A callback is an event procedure that is called
repeatedly in order to pass information to the user. In the case of the Browser control, the TypeInfo event is called

repeatedly in order to pass the properties, methods, etc. of the selected control to the user. Each time a the callback
occurs, the function is called.

In the case of the Browser constituent, the callback function is a component of the browser (bbbBrowser) control
itself and is therefore created when the control is drawn on the form. The Browser’s callback is called repeatedly in
order to pass the list of properties, methods, etc. of the selected control. In the case of an OCX, the first item that is
enumerated is the properties. When the TypeInfo callback is first called, the type parameter indicates what type of
item is being passed in. In this case, it is TKIND_PROPERTY, a property. The function is called repeatedly until
all of the properties have been enumerated. Once the full list of properties has been passed in, the methods are
enumerated. When this begins, the type parameter of the TypeInfo callback indicates that a method is now being
passed in. The function continues to be called repeatedly for each of the method’s parameters (the type parameter
changes to TKIND_PARAMETER to indicate that a parameter is being passed in). This type of iteration continues
until all of the properties, methods, events, etc. have been passed to the callback procedure. See the Browser
reference later in this chapter for more information about the TypeInfo callback.

Take a moment to look at the TypeInfo procedure of the bbbBrowser control within the ActiveX sample. Set a
breakpoint at the beginning of the procedure, close the user control and run the sample project. Click the command
button, and from the common dialog box select an OCX file (not COMCTL32.OCX since it contains multiple
controls – the sample is not set up to handle this). Once the OCX is selected, the browser constituent begins
enumerating the properties, methods events, etc. of the selected control. When the first property is passed to the
callback procedure, your breakpoint is hit. Step through the procedure and note the order of events. If the first item
is a property (type is TKIND_PROPERTY). It is added to the list of properties in a class called Control, and then the
function exits. The function is immediately called again to pass the next property and so on.

It is important to note that the sample contains a class object called objControl. This class is used to store the
properties, methods, etc. of the selected control. This is more organized than using arrays. Also, you cannot pass
typed arrays to a procedure.

The order of events is as follows:
The user clicks the command button and is prompted to select an OCX. Once selected, the properties, methods,
events, etc. of the selected control are enumerated by the browser constituent. As these items are enumerated, they
are passed, one by one, to the Browser constituent’s callback function. Inside the callback, these items are added to
clsControl. This class contains member variables to store the properties, methods, etc. When the user makes a
selection in the B3ListView control on the left (chooses which items to view), the corresponding list of items is
retrieved from the control class.

This example can be expanded in many ways, including storing the properties, methods, etc. the user has selected
from the B3ListView.

Take a look at the Browser test project contained in the project group. This program actually contains one ActiveX
control: the Browser ActiveX control. The Browser ActiveX control itself contains the controls necessary to use
the browser control. In other words, when you draw the Browser ActiveX control on a form, it already contains all
of the controls necessary to utilize the browser ‘s functionality (2 B3ListView’s, splitter, text box, command button,
etc.).

The browser is an example of a fully functional control that meets a specific need. In order to provide your user with
browser capabilities, simply add this ActiveX control to any Visual Basic 5 project.

Features
The Browser contains one major method, GetTypeInfo, This method begins the type library enumeration process
based on the selected file set in the TypeLibName property. See the Overview section earlier in this chapter, as well
as the reference (following this section) for a complete description of this control.

Properties (Browser Constituent)

Description Methods Events

Property Name Property Description

Documentation String that returns the associated documentation string.
HelpContext
HelpFile String that returns the associated help file name.
Iname String that returns the associated name.
lParamType String that returns the items type.
TypeLibName String that sets or returns the Type Lib Name.

Methods (Browser Constituent)

Description Properties Events

Method Name Method Description

AboutBox Invokes the control’s About Box

GetTypeInfo Method that starts the type information process.

GetDispIProperties

Events (Browser Constituent)

Description Properties Methods

Event Name Event Description

TypeInfo This event is fired for each item in the type library. From
within this event you can use the iName, iParamType,
Documentation, and HelpFile string properties to obtain the
information about the item.

Syntax
TypeInfo (item As Long, type As Integer)

Parameters
item
Specifies the index of the item within the object that it
exists.

type
Specifies the type of object that this item represents and
will be one of the following values.

TKIND_PARAMETER
TKIND_PROPERTY

TKIND_METHOD
TKIND_ENUM
TKIND_RECORD
TKIND_MODULE
TKIND_INTERFACE
TKIND_DISPATCH
TKIND_COCLASS
TKIND_ALIAS
TKIND_UNION

Remarks
No information is available until the TypeLibName has
been set with a valid type library file name (or a DLL/OCX
that contains a type library).

Once the type library name is specified, but only before the
GetTypeInfo method is used, the iName, Documentation
and HelpFile strings contain information about the overall
type library.
Using the GetTypeInfo method starts a process of
enumerating the information in the type library. The
TypeInfo event will fire for each item in the type library.
The control goes though the type library in a sequential
fashion, so associations between items may be based on the
type of the item and the order in which it was received.
The first TypeInfo event to fire will have a type of
TKIND_ENUM, TKIND_RECORD, TKIND_MODULE,
TKIND_INTERFACE, TKIND_DISPATCH,
TKIND_COCLASS, TKIND_ALIAS or TKIND_UNION.
After that you could get a TKIND_METHOD or a
TKIND_PROPERTY type of event. This property or event
would belong to the last TKIND_ENUM,
TKIND_RECORD, etc. that was received.

EnumValue This event is fired for each enumerated value and provides
the value associated with the last item from the TypeInfo
event.

Sub object_EnumValue(vValue As Variant)

Parameters:
vValue
Holds the value of the enumerated property. This could be
any type that Variant supports.

Shell Constituent

Properties Methods Events

Class: bbbShell Sample-TreeSh\bTreeSh.vbg

Overview
The Shell Name Space constituent is a custom control that allows you to browse objects within the Windows shell.

These objects include:
· The Windows Desktop
· Desktop Folders
· Start Menu Programs
· Startup Folder
· My Computer
· Network Neighborhood
· Control Panel
· Recycle Bin
· Fonts
· Printers

You can use the control in one of three ways:
· Stand-alone
· With a bbbTreeView Control
· With a bbbListView Control
· With both a bbbTreeView and a bbbListView control

The combination of the Shell Name Space, the bbbTreeView and the bbbListView is used to emulate the Windows
Explorer. The following section explains the Shell Name Space sample included with Basic Constituents.

Let’s take a look at the Shell Name Space sample program. Run Visual Basic and open the Shell Name Space
sample. This sample contains the following controls:

· bbbShell
· bbbListView
· bbbTreeView
· bbbSystemImageList
· bbbSplitter
· bbbToolbar
· bbbPanel
· bbbToolTip

These controls are configured to emulate the Windows Explorer. While it is fairly easy to obtain this look using the
standard Visual Basic controls, you cannot easily emulate the functionality of Explorer. To solve this problem, the
BeCubed controls provide the following extended features:

· Ability to browse items in the Windows Shell (Shell Name Space)
· Ability to access the System Image List (bbbImageList)
· Synchronization of the folder and file listings (bbbTreeView and bbbListView)

Features
This section outlines some of the features that the shell name space constituent provides:

Set the topmost folder for the Shell Name Space
Use the TopFolder method to specify the topmost folder that the user can view. The following line of code sets the
topmost folder to the desktop.

BBBShell1.TopFolder(CSIDL_DESKTOP)
See the reference section for more information on this method.

Set the starting folder for the Shell Name Space
The SpecialFolder method is used to set the highest level displayed in the shell name space. This method can be
used with any combination of the TreeView, ListView or Shell control by itself. The following line of code sets the
starting folder to the Recycle Bin:

BBBShell1.SpecialFolder CSIDL_BITBUCKET

Move up one or more levels in the shell (Must Connect TreeView)

To move up one or more levels, use the UpLevel method. This method takes the number of levels to move up as a
parameter. The following line of code moves up 2 folders.

BBBShell1.UpLevel 2

Notes
This control can be used by itself. To do that simply use the SpecialFolder method to set the starting point.
Optionally use the TopFolder method to restrict movement past your base folder. The MoveLevel and UpLevel
methods can be used to move from folder to folder.

The folder content information is taken from the EnumItem event.

The control can be connected to a Basic Constituent TreeView control. In this case the TreeView control will be
filled with folder information based on the SpecialFolder method. The user then can move though the tree control
using its functionality. The interaction of the BeCubed Tree and the BeCubed Shell control will load folders as
required.

The control can be connected to a Basic Constituent ListView control. In this case the ListView control will be
filled with folder and object information based on the SpecialFolder method. Enabling the UseListDoubleClick
property will allow the user to navigate to folders shown in the list and the UpLevel method can be used to back up
levels. The TopFolder setting will be honored when using the control this way.

The control can also be connected to both a Basic Constituent TreeView and a Basic Constituent ListView control.
In this case the TreeView will be filled with folders based on the SpecialFolder method and the ListView will be
filled based on the focus in the TreeView control. The two controls will work together though the shell control to
keep the information synched. The user can navigate by using the tree or double clicking in the ListView (if the
UseListDoubleClick property is set).
In all the cases above the ListView and TreeView can be connected to a Basic Constituent System image list in order
to provide the correct icons for the lists in question. Right button context menus are provided by the shell control
though both the TreeView and the ListView. Also Drag source functionality is provided in both the TreeView and
the list view.

Properties (Shell Constituent)

Description Methods Events

Property Name Description
ListIconSize Sets the icon size retrieved from the system image list.

ListSort Determines the way the items placed in the ListView by
the shell control are sorted:
0 - no sorting.
1 - descending.
2 - ascending.

ListView Connects a ListView control to the shell control by way of the
ListView hWnd.

Path Sets or returns a text path (normally used for file system paths).
Use this property when ListView and TreeView properties are not
set.

TreeSort Determines the way the items placed in the TreeView by
the shell control are sorted:
0 - no sorting.
1 - descending.
2 - ascending.

TreeView Connects a TreeView control to the shell control by way of the
TreeView hWnd.

UseListDoubleClick If a ListView control is connected to the TreeView this Boolean
property determines if double clicking will reload the list with
items (in the case of double clicking on a folder) or load the file
according to a file association.

Methods (Shell Constituent)

Description Properties Events

Method Name Description
AboutBox Displays the control’s About Box.

MoveLevel MoveLevel (folder As String) this method is used when
neither a ListView or TreeView is connected to the shell control
to move “down” in the shell structure. folder is specified as a
relative folder to the current path.

SpecialFolder SpecialFolder (folder As Long) specifies the starting
folder within the shell control. You use this method with
any combination of TreeView, ListView or the Shell
control by itself. The possible values are:
CSIDL_BITBUCKET - Recycle bin ¾ file system
directory containing file objects in the user's recycle bin.
The location of this directory is not in the registry; it is
marked with the hidden and system attributes to prevent
the user from moving or deleting it.
CSIDL_COMMON_DESKTOP - File system directory
that contains files and folders that appear on the desktop
for all users.
CSIDL_COMMON_PROGRAMS - File system directory
that contains the directories for the common program
groups that appear on the Start menu for all users.
CSIDL_COMMON_STARTMENU - File system
directory that contains the programs and folders that
appear on the Start menu for all users.
CSIDL_COMMON_STARTUP - File system directory
that contains the programs that appear in the Startup folder
for all users. The system starts these programs whenever
any user logs on to Windows NT or starts up Windows 95.
CSIDL_CONTROLS - Control Panel ¾ virtual folder
containing icons for the control panel applications.
CSIDL_DESKTOP - Windows desktop ¾ virtual folder at
the root of the name space.
CSIDL_DESKTOPDIRECTORY - File system directory
used to physically store file objects on the desktop (not to
be confused with the desktop folder itself).
CSIDL_DRIVES - My Computer ¾ virtual folder
containing everything on the local computer: storage
devices, printers, and Control Panel. The folder may also
contain mapped network drives.
CSIDL_FONTS - Virtual folder containing fonts.
CSIDL_NETHOOD - File system directory containing
objects that appear in the network neighborhood.
CSIDL_NETWORK - Network Neighborhood ¾ virtual
folder representing the top level of the network hierarchy.
CSIDL_PERSONAL - File system directory that serves as
a common repository for documents.
CSIDL_PRINTERS - Printers folder ¾ virtual folder

containing installed printers.
CSIDL_PROGRAMS - File system directory that contains
the user's program groups (which are also file system
directories).
CSIDL_RECENT - File system directory that contains the
user's most recently used documents.
CSIDL_SENDTO - File system directory that contains
Send To menu items.
CSIDL_STARTMENU - File system directory containing
Start menu items.
CSIDL_STARTUP - File system directory that
corresponds to the user's Startup program group.
CSIDL_TEMPLATES - File system directory that serves
as a common repository for document templates.

TopFolder TopFolder (folder As Long) specifies the level in the
shell that the shell control will go ‘higher’ than this folder.
See the SpecialFolder method for the possible values.

UpLevel UpLevel (levels As Long) this method is used to move
“up” the specified number of levels in the shell. It can be
used unless a TreeView control is connected to the shell
control.

Events (Shell Constituent)

Description Properties Methods

Event Name Description
EnumItem EnumItem (DisplayName As String, pidl As String,

SmImage As Long, LgImage As Long, SmOpenImage As
Long, LgOpenImage As Long)

EnumItem is an event used when the control is not
connected to a ListView or TreeView. This event is fired
each time an item is enumerated and allows the Basic
programmer to do whatever he needs to with the
information.

DisplayName
Provides the displayable name of the system object.

pidl
Pointer to an item identifier list.

SmImage
Provides the system image index to the small (16 X 16)
icon.

LgImage
Provides the system image index to the large (32 X 32)
icon.

SmOpenImage
Provides the system image index to the small icon that
represents the open or selected state.

LgOpenImage
Provides the system image index to the large icon that represents
the open or selected state.

Splitter Constituent

Properties Methods Events

Class: bbbSplit Sample-Splitter\Splitter.vbg

Overview
A Splitter is a control that is used to separate 2 controls. Using the methods and events of the splitter, the 2 controls
can be resized so that they always touch the splitter. The best example of this is the Windows Explorer. The explorer
actually contains a TreeView (left side) and a list view (right side). In the center is a splitter control that can be
dragged from left to right. As the splitter is dragged, the ListView and TreeView move and resize accordingly.

The splitter has a SizeWindow event that is fired each time the user resizes the splitter. This event provides sufficient
information to resize and move the corresponding controls to their new positions. The following reference section
provides more information about the properties, methods and events of this control.

Properties (Splitter Constituent)

Description Methods Events

Property Name Description
BorderColor Standard Property
FaceColor Sets the face color (usually light gray).

LightColor Sets the light color (usually white).

MaxPercent Maximum travel of the splitter, based on a percentage of the
client area that the splitter is placed on.

MinPercent Minimum travel of the splitter, based on a percentage of the
client area that the splitter is placed on.

ShadowColor Sets the shadow color (usually dark gray).

Style Type of splitter:

0 - Vertical

1 - Horizontal.

Methods (Splitter Constituent)

Description Properties Events

Method Name Description
UpdateSize This method is used to force an update of the splitter and avoid

an intrusive subclass procedure. Call this method in the splitter
container’s resize event.

Events (Splitter Constituent)

Description Properties Methods

Event Name Description
SizeWindows SizeWindows (W1Left As Single, W1Top As Single,

W1Width As Single, W1Height As Single, W2Left As
Single, W2Top As Single, W2Width As Single, W2Height
As Single, Cancel As Boolean)

The SizeWindows event is fired in order to give the programmer
the opportunity to size the windows associated with the splitter.

Status Bar Constituent

Properties Methods Events

Class: bbbStatusBar Sample-Status\Stat.vbg

Overview
A status bar usually appears at the bottom of a form and provides information about the application. The status bar is
divided into sections, each containing a piece of information.

The Basic Constituents status bar allows you to add and remove parts (sections of the status bar) and get the
dimensions of a part. The following reference covers the properties, methods and events of the status bar.

Properties (Status Bar Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property
BorderStyle Standard Property
Container Standard Property
DragIcon Standard Property
DragMode Standard Property
Enabled Standard Property
ForeColor Standard Property
Height Standard Property
HelpContextID Standard Property
hWnd Standard Property
Index Standard Property
Left Standard Property
MouseIcon Standard Property
MousePointer Standard Property
Name Standard Property
Object Standard Property
Parent Standard Property
TabIndex Standard Property
TabStop Standard Property

Tag Standard Property
Top Standard Property
Visible Standard Property
WhatsThisHelpID Standard Property
Width Standard Property

Methods (Status Bar Constituent)

Description Properties Events

Method Name Method Description

sbGETBORDERS retrieves the current widths of the horizontal and vertical
borders of a status window.

object.sbGETBORDERS (nHorizWidth As Long,
nVertWidth As Long, nBetweenWidth As Long) As
Boolean

Parameters
nHorizWidth - receives the width of the horizontal
border.
nVertWidth - receives the width of the vertical border.
nBetweenWidth - receives the width of the border
between rectangles.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

Remarks
The borders determine the spacing between the outside
edge of the window and the rectangles within the window
that contain text. The borders also determine the spacing
between rectangles.

sbGETPARTS retrieves a count of the parts in a status window. The
message also retrieves the coordinate of the right edge of
the specified number of parts.

object.sbGETPARTS (nParts As Long, aRightCoord As
Long) As Long

Parameters
nParts - Number of parts for which to retrieve
coordinates. If this parameter is greater than the number
of parts in the window, the message retrieves coordinates
for existing parts only.
aRightCoord - this parameter is passed as the first
element an integer array that has the same number of
elements specified by nParts. Each element in the array
receives the client coordinate of the right edge of the
corresponding part. If an element is set to - 1, the
position of the right edge for that part extends to the right
edge of the window.
To retrieve the current number of parts, set this parameter
to zero.

Return Values
Returns the number of parts in the window if successful, or
zero otherwise.

sbGETRECT retrieves the bounding rectangle of a part in a status
window.

object.sbGETRECT (iPart As Long, lLeft As Long, lTop
As Long, lRight As Long, lBottom As Long) As Boolean

Parameters
iPart - Zero-based index of the part whose bounding
rectangle is to be retrieved.
iLeft, iTop, iRight, iBottom - receives the bounding
rectangle.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

sbGETTEXT message retrieves the text from the specified part of a
status window.

object.sbGETTEXT (iPart As Long, iLength As Integer,
iType As Integer) As String

Parameters
iPart - Zero-based index of the part from which to
retrieve text.
iLength - length, in characters, of the text
iType - the type of operation used to draw the text. The
type can be one of the following values:

Value Meaning
0 The text is drawn with a

border to appear lower than
the plane of the window.

SBT_NOBORDERS The text is drawn without
borders.

SBT_POPOUT The text is drawn with a
border to appear higher than
the plane of window.

SBT_RTLREADING Displays text using right-to-
left reading order on Hebrew
or Arabic systems.

If the text has the SBT_OWNERDRAW drawing type,
this message returns the 32-bit value associated with the
text instead of the length and operation type.

Return Values
The text string.

sbGETTEXTLENGTH retrieves the length, in characters, of the text from the
specified part of a status window.

object.sbGETTEXTLENGTH (iPart As Long) As Long

Parameters
iPart - Zero-based index of the part from which to
retrieve text.

Return Values

Returns a 32-bit value that consists of two 16-bit values.
The low word specifies the length, in characters, of the
text. The high word specifies the type of operation used
to draw the text. The type can be one of the following
values:

Value Meaning
0 The text is drawn with a border to appear lower
than the plane of the window.
SBT_NOBORDERS The text is drawn without
borders.
SBT_OWNERDRAW The text is drawn by the
parent window.
SBT_POPOUT The text is drawn with a border to
appear higher than the plane of the window.
SBT_RTLREADING

Displays text using right-to-left reading order on Hebrew
or Arabic systems.

sbSETMINHEIGHT message sets the minimum height of a status window’s
drawing area.

object.sbSETMINHEIGHT (minHeight As Short)

Parameters
minHeight - Minimum height, in pixels, of the window.

Return Values
No return value.

Remarks
The minimum height is the sum of minHeight and twice
the width, in pixels, of the vertical border of the status
window.

sbSETPARTS sets the number of parts in a status window and the
coordinate of the right edge of each part.

object.sbSETPARTS (nParts As Long, aWidths As Long)
As Boolean

Parameters
nParts - Number of parts to set. The number of parts
cannot be greater than 255.
aWidths - first element of an long integer array that has
the same number of elements as parts specified by nParts.
Each element in the array specifies the position, in client
coordinates, of the right edge of the corresponding part.
If an element is - 1, the position of the right edge for that
part extends to the right edge of the window.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

sbSETTEXT sets the text in the specified part of a status window.

object.sbSETTEXT (iPart As Long, uType As Long,

szText As String)

Parameters
iPart - Zero-based index of the part to set. If this value is
255, the status window is assumed to be a simple
window having only one part.
uType - Type of drawing operation. This parameter can
be one of the following values:

Value Meaning
0 The text is drawn with a

border to appear lower than
the plane of the window.

SBT_NOBORDERS The text is drawn without
borders.

SBT_OWNERDRAW The text is drawn by the
parent window.

SBT_POPOUT The text is drawn with a
border to appear higher than
the plane of the window.

SBT_RTLREADING Displays text using right-to-
left reading order on
Hebrew or Arabic systems.

szText - string that specifies the text to set. If uType is
SBT_OWNERDRAW, this parameter represents 32 bits
of data. The parent window must interpret the data and
draw the text when it receives the WM_DRAWITEM
message.

Return Values
If the operation succeeds, the return value is TRUE.
If the operation fails, the return value is FALSE.

Remarks
The message invalidates the portion of the window that
has changed, causing it to display the new text when the
window next receives the WM_PAINT message.

sbSIMPLE specifies whether a status window displays simple text or
displays all window parts set by a previous sbSETPARTS
message.

object.sbSIMPLE (fSimple As Boolean) As Boolean

Parameters
fSimple - Display type flag. If this parameter is TRUE,
the window displays simple text. If it is FALSE, it
displays multiple parts.

Return Values
Returns FALSE if an error occurs.

Remarks
If the status window is being changed from nonsimple to
simple, or vice versa, the window is immediately redrawn.

Events (Status Bar Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event
DblClick Standard Event
MouseDown Standard Event
MouseMove Standard Event
MouseUp Standard Event

System Image List Constituent

Properties Methods Events

Class: bbbSysImg Sample-SysImg\bList.vbg

Overview
The system image list is an image list control that provides access to the set of images that Windows maintains in
order to display the proper bitmap for a specific type of object (file, printer, etc.). These images are not normally
available to the Visual Basic programmer. Using the BeCubed System Image List Constituent, a Visual Basic
program can access these images. The Shell Name Space sample program (provided with the constituents) uses the
BeCubed system image list to implement its own version of the Windows explorer.

Properties (System Image Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property
hImageList Handle to the image list. Can be used in conjunction

with any Window’s API requiring an image list handle.
IconIndex Returns the index of the icon associated with the file

name last specified in the OnFileName method.
ImageHeight Returns the image height.
ImageWidth Returns the image width.
Index Standard Property
MaskColor Standard Property
Name Standard Property
Parent Standard Property
Tag Standard Property
UseMaskColor

Methods (System Image Constituent)

Description Properties Events

Method Name Method Description

AboutBox Invokes the control’s About Box.
Draw Draws a picture from a system image

list to the specified device context.

object.Draw(filename As String, hDC
As Long, x As Long, y As Long, Style
As Long)

Parameters
filename
Specifies the file name. The routine
will draw the icon associated with the
file name.
hDC
Specifies the device context to draw
the picture.
x, y
Specifies the top, left coordinate of the
picture within the hDC, expressed in
pixels, based on window coordinates.
style
Specifies how the picture is rendered.
The following are options.
Value Meaning
ILD_FOCUS
ILD_SELECTED

ILD_BLEND
ILD_BLEND25 Draws the image,

blending 25 percent with the
system highlight color. This
value has no effect if the image
list does not contain a mask.

ILD_BLEND50 Draws the image,
blending 50 percent with the
system highlight color. This
value has no effect if the image
list does not contain a mask.

ILD_MASK Draws the mask.
ILD_NORMAL Draws the image using

the background color for the
image list. If the background
color is the CLR_NONE value,
the image is drawn
transparently using the mask.

ILD_TRANSPARENT Draws the
image transparently using the mask,
regardless of the background color.
This value has no effect if the image
list does not contain a mask.

OnFileName Set the IconIndex property to the icon
associated with the specified file name.

object.Draw(filename As String)

Parameters
filename
Specifies the file name. The
IconIndex property will be set to the
icon that is associated with this file
name.

Events (System Image Constituent)

Description Properties Methods

This control has no Events.

Tab Constituent

Properties Methods Events

Class: bbbTab Sample-TabStrip\Tab.vbg

Overview
A TabStrip is a control that allows you display one or more tabs to the user. Basic Constituent tabs can contain either
text or an image. You can also specify that a tab is not to receive the input focus. The following section outlines the
features of the TabStrip constituent.

Features
Add a tab to the TabStrip
The tcmINSERTITEM method is used to add tabs to the TabStrip constituent. This method takes the index of the
tab, whether the tab displays a text or image heading, the text of the tab (if text is used), an index into an image list
(if a picture is used), and an lParam (see the reference for more information).
The following code adds 4 tabs to the TabStrip. The text on each tab is Tab, plus the current index (Tab 1, Tab 2,
etc.).

Dim lRet As Long
 For iRet = 1 To 4
 lRet = Bbbtab1.tcmINSERTITEM(iRet, TCIF_TEXT, "Tab " & Str$(iRet), 0,

0)
 Next iRet

Delete all tabs from the TabStrip Constituent
The tcmDELETEALLITEMS method removes all tabs from the TabStrip. This method takes no parameters and
returns a Boolean indicating whether of not the removal was successful.

Get the handle of the ImageList control connected to the TabStrip
The tcmGETIMAGELIST method is used to retrieve the handle to the image list. This method takes no parameters
and returns the handle to the image list.

Determine the number of rows displayed in the TabStrip Control
The tcmGETROWCOUNT method is used to determine the number of tabs that are currently displayed. This
method takes no parameters and returns the number or rows displayed.
The following section outlines the properties, methods and events of the Basic Constituents TabStrip Control.

Properties (Tab Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property
BorderStyle Standard Property
ccsADJUSTABLE Enables / disables button dragging on the toolbar.
Container Standard Property
DragIcon Standard Property
DragMode Standard Property
Enabled Standard Property
ForeColor Standard Property
Height Standard Property
HelpContextID Standard Property
hWnd Standard Property
Index Standard Property
Left Standard Property
MouseIcon Standard Property
MousePointer Standard Property
Name Standard Property
Object Standard Property
Parent Standard Property
TabIndex Standard Property
TabStop Standard Property
Tag Standard Property
tcsBUTTONS Specifies that tabs appear as buttons and no border is

drawn around the display area.
tcsFIXEDWIDTH Specifies that all tabs are the same width. This style cannot

be combined with the tcsRIGHTJUSTIFY style.
tcsFOCUSNEVER Specifies that the tab control never receives the input

focus.
tcsFOCUSONBUTTON_
DOWN

Specifies that tabs receive the input focus when clicked.

tcsFORCEICONLEFT Aligns icons with the left edge of each fixed-width tab.
This style can only be used with the tcsFIXEDWIDTH
style.

tcsFORCELABELLEFT Aligns labels with the left edge of each fixed-width tab;
that is, it displays the label immediately to the right of the
icon instead of centering it. This style can only be used
with the tcsFIXEDWIDTH style, and it implies the
tcsFORCEICONLEFT style.

tcsMULTILINE Displays multiple rows of tabs, if necessary, so all tabs are
visible at once.
tcsOWNERDRAWFIXED - Specifies that the parent
window is responsible for drawing tabs.
tcsRAGGEDRIGHT - Does not stretch each row of tabs to
fill the entire width of the control. This style is the default.

tcsRIGHTJUSTIFY Increases the width of each tab, if necessary, so that each
row of tabs fills the entire width of the tab control. This
window style is ignored unless the TCS_MULTILINE
style is also specified.
tcsSINGLELINE - Displays only one row of tabs. The user

can scroll to see more tabs, if necessary. This style is the
default.

tcsTABS Specifies that tabs appear as tabs and that a border is
drawn around the display area. This style is the default.
tcsTOOLTIPS - Specifies that the tab control has a tooltip
control associated with it. For more information about
tooltip controls, see Tooltip Controls

Top Standard Property
Visible Standard Property
WhatsThisHelpID Standard Property
Width Standard Property

Methods (Tab Constituent)

Description Properties Events

Method Name Method Description

tcmADJUSTRECT Calculates a tab control's display area given a window
rectangle or calculates the window rectangle that would
correspond to a specified display area.

object.tcmADJUSTRECT (fLarger As Boolean, iLeft
As Long, iTop As Long, iRight As Long, iBottom As
Long)

Parameters
fLarger - Operation to perform. If this parameter is
TRUE, prc specifies a display rectangle and receives the
corresponding window rectangle. If this parameter is
FALSE, prc specifies a window rectangle and receives
the corresponding display area.
iLeft, iTop, iRight, iBottom - specifies the given
rectangle and receives the calculated rectangle.

Return Values
No return value.

tcmDELETEALLITEMS Removes all items from a tab control.

object.tcmDELETEALLITEMS () As Boolean

Return Values
Returns TRUE if successful or FALSE otherwise.

tcmDELETEITEM removes an item from a tab
control.

object.tcmDELETEITEM (iItem As Long) As Boolean

Parameters
iItem - Index of the item to delete.

Return Values
Returns TRUE if successful or FALSE otherwise.

tcmGETCURFOCUS Returns the index of the item that has the focus in a tab
control.

object.tcmGETCURFOCUS () As Long

Return Values
Returns the index of the tab item that has the focus

Remarks
The item that has the focus may be different than the

selected item.
tcmGETCURSEL Determines the currently selected tab in a tab control.

object.tcmGETCURSEL () As Long

Return Values
Returns the index of the selected tab if successful or - 1
if no tab is selected.

tcmGETIMAGELIST Retrieves the image list associated with a tab control.

tcmGETIMAGELIST () As Long

Return Values
Returns the handle to the image list if successful or
NULL otherwise.

tcmGETITEM Retrieves information about a tab in a tab control.

object.tcmGETITEM (iItem As Long, mask As Long,
pszText As String, iImage As Long, lParam As Long) As
Boolean

Parameters
iItem - Index of the tab.
mask - Value specifying which members to retrieve or
set. This member can be TCIF_ALL (meaning all
members), or zero or more of the following values:

Value Meaning
TCIF_TEXT The pszText member

is valid.
TCIF_IMAGE The iImage member is

valid.
TCIF_PARAM The lParam member is

valid.
TCIF_RTLREADING Displays the text of

pszText using right-to-
left reading order on
Hebrew or Arabic
systems.

pszText - Pointer to a null-terminated string that contains
the tab text if the structure contains information about a
tab. If the structure is receiving information, this member
specifies the address of the buffer that receives the tab
text.
iImage - Index into the tab control's image list or - 1 if
there is no image for the tab.
lParam - Application-defined data associated with the
tab. If there are more or less than 4 bytes of application-
defined data per tab, an application must define a
structure and use it instead of the TC_ITEM structure.
The first member of the application-defined structure
must be a TC_ITEMHEADER structure.

Return Values
Returns TRUE if successful or FALSE otherwise.

tcmGETITEMCOUNT Retrieves the number of tabs in the tab control.

object.tcmGETITEMCOUNT () As Long

Return Values
Returns the number of items if successful or zero
otherwise.

tcmGETITEMRECT Retrieves the bounding rectangle for a tab in a tab
control.

tcmGETITEMRECT (iItem As Long, iLeft As Long,
iTop As Long, iRight As Long, iBottom As Long) As
Boolean

Parameters
iItem - Index of the tab.
iLeft, iTop, iRight, iBottom - receives the bounding
rectangle of the tab, in viewport coordinates.

Return Values
Returns TRUE if successful or FALSE otherwise.

tcmGETROWCOUNT Retrieves the current number of rows of tabs in a tab
control.

object.tcmGETROWCOUNT () As Long

Return Values
Returns the number of rows of tabs.

Remarks
Only tab controls that have the TCS_MULTILINE style
can have multiple rows of tabs.

tcmGETTOOLTIPS Retrieves the handle to the tooltip control associated with
a tab control.

object.tcmGETTOOLTIPS () As Long

Return Values
Returns the handle to the tooltip control if successful or
NULL otherwise.
Remarks
A tab control creates a tooltip control if it has the
TCS_TOOLTIPS style. You can also assign a tooltip
control to a tab control by using the
TCM_SETTOOLTIPS message.

tcmHITTEST Determines which tab, if any, is at a specified screen
position.

object.tcmHITTEST (x As Long, y As Long, uFlags As
Long) As Long

Parameters
x,y - specifies the screen position to test.
uFlags - receives the result of the hit test and can be one
of the following values.
Value Meaning

TCHT_NOWHERE The position is not over a
tab.

TCHT_ONITEM The position is over a tab,
but not over its icon or its
text. For owner-drawn tab
controls, this value is
specified if the position is
anywhere over a tab.

TCHT_ONITEMICON The position is over a tab's
icon.

TCHT_ONITEMLABEL The position is over a tab's
text.

Return Values
Returns the index of the tab or - 1 if no tab is at the
specified position.

tcmINSERTITEM Inserts a new tab in a tab control.

object.tcmINSERTITEM (iItem As Long, mask As Long,
pszText As String, iImage As Long, lParam As Long) As
Long

Parameters
iItem - Index of the new tab.
mask - Value specifying which members to retrieve or
set. This member can be TCIF_ALL (meaning all
members), or zero or more of the following values:
Value Meaning

TCIF_TEXT The pszText member is
valid.

TCIF_IMAGE The iImage member is
valid.

TCIF_PARAM The lParam member is
valid.

TCIF_RTLREADING Displays the text of
pszText using right-to-left
reading order on Hebrew
or Arabic systems.

pszText - Pointer to a null-terminated string that contains
the tab text if the structure contains information about a
tab. If the structure is receiving information, this member
specifies the address of the buffer that receives the tab
text.
iImage - Index into the tab control's image list or - 1 if
there is no image for the tab.
lParam - Application-defined data associated with the
tab. If there are more or less than 4 bytes of application-
defined data per tab, an application must define a
structure and use it instead of the TC_ITEM structure.
The first member of the application-defined structure

must be a TC_ITEMHEADER structure.

Return Values
Returns the index of the new tab if successful or - 1
otherwise.

tcmREMOVEIMAGE Removes an image from a tab control's image list.

object.tcmREMOVEIMAGE (iImage As Long)

Parameters
iImage - Index of the image to remove.

Return Values
No return value.
Remarks
The tab control updates each tab's image index, so each
tab remains associated with the same image it had been.

tcmSETCURFOCUS Sets the focus to a specified tab in a tab control.

object.tcmSETCURFOCUS (iItem As Long)

Parameters
iItem - Specifies the index of the tab that gets the focus.

Return Values
No return value.

Remarks
If the tab control has the TCS_BUTTONS style (button
mode), the tab with the focus may be different from the
selected tab. For example, when a tab is selected, the user
can press the arrow keys to set the focus to a different tab
without changing the selected tab. In button mode,
TCM_SETCURFOCUS sets the input focus to the button
associated with the specified tab, but it does not change
the selected tab.
If the tab control does not have the TCS_BUTTONS
style, changing the focus also changes selected tab. In
this case, the tab control sends the
TCN_SELCHANGING and TCN_SELCHANGE
notification messages to its parent window.

tcmSETCURSEL Selects a tab in a tab control.

object.tcmSETCURSEL (iItem As Long) As Long

Parameters
iItem - Index of the tab to select.

Return Values
Returns the index of the previously selected tab if
successful or - 1 otherwise.

Remarks
A tab control does not send a TCN_SELCHANGING or
TCN_SELCHANGE notification message when a tab is
selected using this message.

tcmSETIMAGELIST Assigns an image list to a tab control.

object.tcmSETIMAGELIST (himl As Long) As Long

Parameters
himl - Handle of the image list to assign to the tab
control.

Return Values
Returns the handle to the previous image list or NULL if
there is no previous image list.

tcmSETITEM Sets some or all of a tab's attributes.

object.tcmSETITEM (iItem As Long, mask As Long,
pszText As String, iImage As Long, lParam As Long) As
Boolean

Parameters
iItem - Index of the tab.
mask - Value specifying which members to retrieve or
set. This member can be TCIF_ALL (meaning all
members), or zero or more of the following values:
Value Meaning

TCIF_TEXT The pszText member is
valid.

TCIF_IMAGE The iImage member is
valid.

TCIF_PARAM The lParam member is
valid.

TCIF_RTLREADING Displays the text of
pszText using right-to-left
reading order on Hebrew
or Arabic systems.

pszText - Pointer to a null-terminated string that contains
the tab text if the structure contains information about a
tab. If the structure is receiving information, this member
specifies the address of the buffer that receives the tab
text.
iImage - Index into the tab control's image list or - 1 if
there is no image for the tab.
lParam - Application-defined data associated with the
tab. If there are more or less than 4 bytes of application-
defined data per tab, an application must define a
structure and use it instead of the TC_ITEM structure.
The first member of the application-defined structure
must be a TC_ITEMHEADER structure.

Return Values
Returns TRUE if successful or FALSE otherwise.

tcmSETITEMSIZE Sets the width and height of tabs in a fixed-width or
owner-drawn tab control.

object.tcmSETITEMSIZE (cx As Integer, cy As

Integer) As Long

Parameters
cx, cy - New width and height, in pixels.

Return Values
Returns the old width and height. The width is in the
low-order word of the return value, and the height is in
the high-order word.

tcmSETPADDING Sets the amount of space (padding) around each tab's
icon and label in a tab control.

object.tcmSETPADDING (cx As Integer, cy As Integer)

Parameters
cx, cy - Amount of horizontal and vertical padding, in
pixels.

Return Values
No return value.

tcmSETTOOLTIPS Assigns a tooltip control to a tab control.

tcmSETTOOLTIPS (hWnd As Long)

Parameters
hwndTT - Handle to the tooltip control.

Return Values
No return value.

Remarks
You can get the tooltip control associated with a tab
control by using the TCM_GETTOOLTIPS message.

Events (Tab Constituent)

Description Properties Methods

Event Name Description

Click Standard Event
DblClick Standard Event
KeyDown Standard Event
KeyPress Standard Event
KeyUp Standard Event
MouseDown Standard Event
MouseMove Standard Event
MouseUp Standard Event
SelChange This eventis fired after the selected tab changes.

Sub object_SelChange()
SelChanging This eventis fired just before the selected tab changes.

Sub object_SelChanging()

Tip Constituent

Properties Methods Events

Class: bbbTipsSample-Tips\Tips.vbp

Overview
A tool tip is a small window that floats above a form or control. Tool tips are generally used to display helpful text to
the user. The Basic Constituents tool tip control is capable of managing tool tips for multiple controls
simultaneously.

Features
This section outlines some of the features of the Basic Constituents tool tip.

Activate or deactivate the tooltip
The ttmACTIVATE method is used to activate and deactivate tool tips. This method takes a boolean indicating
whether or not to activate the control.

Add a tool tip to the control
The tool tip control can manage multiple tool tips. Each of these tips is identified by the uid parameter of the
ttmADDTOOL method. This method is used register a new tool with the tool tip control. A tool is essentially a new
tool tip window that is displayed over a form or control. See the reference section for more information about this
method.

Remove a tool from the tool tip
The ttmDELTOOL method removes a tool from the tool tip. See the reference section for more information about
this method.

Retrieve information about the current tool
The ttmGETCURRENTTOOL method retrieves information about the current tool. The current tool is the one that
the tool tip control is currently displaying text for. See the reference section for more information about this method.

Determine the number of tools maintained by the tool tip
The ttmGETTOOLCOUNT method is used to count the number of tools currently maintained by the tooltip. See the
reference section for more information about this method.

Set the size of a tool window
The ttmNEWTOOLRECT method is used to set the bounding rectangle of a tool maintained by the tooltip. This
method takes the handle and uId, along with the new coordinates for the tool.

Properties (Tip Constituent)

Description Methods Events

Property Name Description

 Enabled Standard Property
hWnd Standard Property
Index Standard Property
Name Standard Property
Tag Standard Property
ttsALWAYSTIP A tooltip control with this style appears when the cursor is

on a tool, regardless of whether the tooltip control's owner
window is active or inactive. Without this style, the tooltip
control appears when the tool's owner window is active,
but not when it is inactive.

ttsNOPREFIX prevents the system from stripping the ampersand (&)
character from a string. If a tooltip control does not have
the this style, the system automatically strips ampersand
characters, allowing an application to use the same string
as both a menu item and as text in a tooltip control.

Visible Standard Property
WhatsThisHelpID Standard Property

Methods (Tip Constituent)

Description Properties Events

Method Name Description

Refresh Standard Method
ttmACTIVATE Activates or deactivates a tooltip control.

object.ttmACTIVATE (fActivate As Boolean)

Parameters
fActivate
Activation flag. If this parameter is TRUE, the tooltip
control is activated. If it is FALSE, the tooltip control is
deactivated.

Return Values
No return value.

ttmADDTOOL Registers a tool with a tooltip control.

object.ttmADDTOOL (uFlags As Long, hWnd As
Long, uId As Long, iLeft As Long, iTop As Long, iRight
As Long, iBottom As Long, lpszText As String) As
Boolean

Parameters
uFlags
A set of bit flags. This member can be a combination of
the following values:

TTF_IDISHWND Indicates that the uId
member is the window
handle to the tool. If this
flag is not set, uId is the
identifier of the tool.

TTF_CENTERTIP Centers the tooltip
window below the tool
specified by the uId
member.

TTF_RTLREADING Displays text using right-
to-left reading order on
Hebrew or Arabic
systems.

TTF_SUBCLASS Indicates that the tooltip
control should subclass the
tool's window to intercept
messages, such as

WM_MOUSEMOVE If
not set, you need to use
the TTM_RELAYEVENT
message to forward
messages to the tooltip
control. For a list of
messages that a tooltip
control processes, see
TTM_RELAYEVENT.

hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

iLeft, iTop, iRight, iBottom
Coordinates of the bounding rectangle of the tool. The
coordinates are relative to the upper-left corner of the
client area of the window identified by hWnd. If uFlags
includes the TTF_IDISHWND value, this member is
ignored.

lpszText
Pointer to the buffer that contains the text for the tool, or
identifier of the string resource that contains the text. If
this member is set to the LPSTR_TEXTCALLBACK
value, the control sends the TTN_NEEDTEXT
notification message to the owner window to retrieve the
text.

Return Values
Returns TRUE if successful or FALSE otherwise.

ttmDELTOOL Removes a tool from a tooltip control.

object.ttmDELTOOL (hWnd As Long, uId As Long)

Parameters
hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

Return Values

No return value.
ttmGETCURRENTTOOL Retrieves the information that a tooltip control maintains

about the current tool; that is, the tool for which the
tooltip is currently displaying text.

object.ttmGETCURRENTTOOL (iTool As Long,
uFlags As Long, hWnd As Long, uId As Long, iLeft As
Long, iTop As Long, iRight As Long, iBottom As Long,
lpszText As String) As Boolean

Parameters
iTool
Zero-based index of the tool for which to retrieve
information.

uFlags
A set of bit flags. This member can be a combination of
the following values:

TTF_IDISHWND Indicates that the uId
member is the window
handle to the tool. If this
flag is not set, uId is the
identifier of the tool.

TTF_CENTERTIP Centers the tooltip
window below the tool
specified by the uId
member.

TTF_RTLREADING Displays text using right-
to-left reading order on
Hebrew or Arabic
systems.

TTF_SUBCLASS - Indicates that the tooltip control
should subclass the tool's window to intercept messages,
such as WM_MOUSEMOVE. If not set, you need to use
the TTM_RELAYEVENT message to forward messages to
the tooltip control. For a list of messages that a tooltip
control processes, see TTM_RELAYEVENT.

hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

iLeft, iTop, iRight, iBottom
 Coordinates of the bounding rectangle of the tool. The
coordinates are relative to the upper-left corner of the
client area of the window identified by hWnd. If uFlags
includes the TTF_IDISHWND value, this member is
ignored.

lpszText
Pointer to the buffer that contains the text for the tool, or
identifier of the string resource that contains the text. If
this member is set to the LPSTR_TEXTCALLBACK
value, the control sends the TTN_NEEDTEXT
notification message to the owner window to retrieve the
text.

Return Values
Returns TRUE if any tools are enumerated or FALSE
otherwise.

ttmGETTEXT Retrieves the text that a tooltip control maintains for a
tool.

object.ttmGETTEXT (hWnd As Long, uId As Long) As
String

Parameters
hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

Return Values
Returns the text associated with the tip tool.

ttmGETTOOLCOUNT Message retrieves a count of the tools maintained by a
tooltip control.

Object.TTM_GETTOOLCOUNT As Long

Return Values
Returns a count of tools.

ttmGETTOOLINFO Retrieves the information that a tooltip control maintains
about a tool.

object.ttmGETTOOLINFO (uFlags As Long, hWnd As
Long, uId As Long, iLeft As Long, iTop As Long, iRight
As Long, iBottom As Long, lpszText As String) As
Boolean

Parameters
uFlags

A set of bit flags. This member can be a combination of
the following values:

TTF_IDISHWND Indicates that the uId
member is the window
handle to the tool. If this
flag is not set, uId is the
identifier of the tool.

TTF_CENTERTIP Centers the tooltip
window below the tool
specified by the uId
member.

TTF_RTLREADING Displays text using right-
to-left reading order on
Hebrew or Arabic
systems.

TTF_SUBCLASS Indicates that the
tooltip control should
subclass the tool's window
to intercept messages,
such as
WM_MOUSEMOVE. If
not set, you need to use
the TTM_RELAYEVENT
message to forward
messages to the tooltip
control. For a list of
messages that a tooltip
control processes, see
TTM_RELAYEVENT.

hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

iLeft, iTop, iRight, iBottom
Coordinates of the bounding rectangle of the tool. The
coordinates are relative to the upper-left corner of the
client area of the window identified by hWnd. If uFlags
includes the TTF_IDISHWND value, this member is
ignored.

lpszText
 Pointer to the buffer that contains the text for the tool, or
identifier of the string resource that contains the text. If

this member is set to the LPSTR_TEXTCALLBACK
value, the control sends the TTN_NEEDTEXT
notification message to the owner window to retrieve the
text.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks - on entry the hWnd and uId parameters define
the tool.

ttmHITTEST Tests a point to determine whether it is within the
bounding rectangle of the specified tool and, if the point
is within, retrieves information about the tool.

object.ttmHITTEST (hWnd As Long, x As Long, y As
Long, uFlags As Long, uId As Long, iLeft As Long, iTop
As Long, iRight As Long, iBottom As Long, lpszText As
String) As Boolean

Parameters
hWnd
Handle to the tool or window with the specified tool.

x,y
Client coordinates of the point to test.

uFlags
A set of bit flags. This member can be a combination of
the following values:

TTF_IDISHWND - Indicates that the uId member is the
window handle to the tool. If this flag is not set, uId is the
identifier of the tool.

TTF_CENTERTIP - Centers the tooltip window below the
tool specified by the uId member.

TTF_RTLREADING Displays text using right-to-left
reading order on Hebrew or Arabic systems.

TTF_SUBCLASS Indicates that the tooltip control
should subclass the tool's window to intercept messages,
such as WM_MOUSEMOVE. If not set, you need to use
the TTM_RELAYEVENT message to forward messages to
the tooltip control. For a list of messages that a tooltip
control processes, see TTM_RELAYEVENT.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

iLeft, iTop, iRight, iBottom
Coordinates of the bounding rectangle of the tool. The
coordinates are relative to the upper-left corner of the
client area of the window identified by hWnd. If uFlags

includes the TTF_IDISHWND value, this member is
ignored.

lpszText
Pointer to the buffer that contains the text for the tool, or
identifier of the string resource that contains the text.

Return Values
Returns TRUE if the tool occupies the specified point or
FALSE otherwise.

ttmNEWTOOLRECT Sets a new bounding rectangle for a tool.

object.ttmNEWTOOLRECT (hWnd As Long, uId As
Long, iLeft As Long, iTop As Long, iRight As Long,
iBottom As Long)

Parameters
hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

iLeft, iTop, iRight, iBottom
Coordinates of the bounding rectangle of the tool. The
coordinates are relative to the upper-left corner of the
client area of the window identified by hWnd.

Return Values
No return value.

ttmSETDELAYTIME Sets the initial, re-show, and autopopup duration’s for a
tooltip control.

object.ttmSETDELAYTIME (uFlags As Long, iDelay
As Long)

Parameters
uFlags
 Duration to set. This parameter can be one of the
following values:

TTDT_AUTOMATIC - Automatically calculates the
initial, re-show, and autopopup duration’s based on the
value of iDelay.

TTDT_AUTOPOP - Sets the length of time before the
tooltip window is hidden if the cursor remains stationary in
the tool's bounding rectangle after the tooltip window has
appeared.

TTDT_INITIAL - Sets the length of time that the cursor

must remain stationary within the bounding rectangle of a
tool before the tooltip window is displayed.

TTDT_RESHOW - Sets the length of the delay before
subsequent tooltip windows are displayed when the cursor
is moved from one tool to another.

iDelay
New duration, in milliseconds.

Return Values
No return value.

ttmSETTOOLINFO Sets the information that a tooltip control maintains for a
tool.

object.ttmSETTOOLINFO (uFlags As Long, hWnd As
Long, uId As Long, iLeft As Long, iTop As Long, iRight
As Long, iBottom As Long, lpszText As String)

Parameters
uFlags
A set of bit flags. This member can be a combination of
the following values:

TTF_IDISHWND Indicates that the uId
member is the window
handle to the tool. If this
flag is not set, uId is the
identifier of the tool.

TTF_CENTERTIP Centers the tooltip
window below the tool
specified by the uId
member.

TTF_RTLREADING Displays text using right-
to-left reading order on
Hebrew or Arabic
systems.

TTF_SUBCLASS Indicates that the tooltip control
should subclass the tool's window to intercept messages,
such as WM_MOUSEMOVE. If not set, you need to use
the TTM_RELAYEVENT message to forward messages to
the tooltip control. For a list of messages that a tooltip
control processes, see TTM_RELAYEVENT.

hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

iLeft, iTop, iRight, iBottom
Coordinates of the bounding rectangle of the tool. The
coordinates are relative to the upper-left corner of the
client area of the window identified by hWnd. If uFlags
includes the TTF_IDISHWND value, this member is
ignored.

lpszText
Pointer to the buffer that contains the text for the tool, or
identifier of the string resource that contains the text. If
this member is set to the LPSTR_TEXTCALLBACK
value, the control sends the TTN_NEEDTEXT
notification message to the owner window to retrieve the
text.

Return Values
No return value.

ttmUPDATETIPTEXT The TTM_UPDATETIPTEXT message sets the tooltip
text for a tool.

object.ttmUPDATETIPTEXT (hWnd As Long, uId As
Long, lpszText As String)

Parameters
hWnd
Handle to the window that contains the tool. If lpszText
includes the LPSTR_TEXTCALLBACK value, this
member identifies the window that receives
TTN_NEEDTEXT notification messages.

uId
Application-defined identifier of the tool. If uFlags
includes the TTF_IDISHWND value, uId must specify
the window handle to the tool.

lpszText
Pointer to the buffer that contains the text for the tool, or
identifier of the string resource that contains the text. If
this member is set to the LPSTR_TEXTCALLBACK
value, the control sends the TTN_NEEDTEXT
notification message to the owner window to retrieve the
text.

Return Values
No return value.

ttmWINDOWFROM_
POINT

Allows a subclass procedure to cause a tooltip to display
text for a window other than the one beneath the mouse
cursor.

object.ttmWINDOWFROMPOINT (x As Long, y As
Long) As Long

Parameters
x, y
Defines the point to be checked.

Return Values
The return value is the handle to the window that
contains the point, or NULL if no window exists at the
specified point.

Remarks
This message is intended to be processed by an application
that subclasses a tooltip. It is not intended to be sent by an
application. A tooltip sends this message to itself before
displaying the text for a window. By changing the
coordinates of the point specified by lppt, the subclass
procedure can cause the tooltip to display text for a
window other than the one beneath the mouse cursor.

Events (Tip Constituent)

Description Properties Methods

There are no events for this control.

Tool Bar Constituent

Properties Methods Events

Class: bbbToolB Sample-ToolBar\b3ToolBar.vbg

Overview
A toolbar is a strip of buttons that is usually displayed at the top of an application’s form. These buttons are used to
execute commands of the application. In most cases, these commands correspond with those offered by the
application’s menus.

The Basic Constituents toolbar allows you to create toolbar buttons using a number of different styles. In addition to
the standard push button, you can create a push button that works like a check box (pressed when selected,
depressed when not). You can also create a group of buttons that allows only one button in the group to be pressed at
a time. You can also create separators between the buttons of the toolbar. The following section outlines some of the
custom features of the Basic Constituents toolbar control.

Features
Add one or more buttons to the toolbar
The tbADDBUTTONS method is used to add buttons to the toolbar. This method takes the number of buttons to
add, the index of the image to display in the control (if an image is used), a command identifier that is used to fire an
event when a specific button is pressed, as well as style and other information. See the reference section for more
information about this method.
To manage multiple buttons of the toolbar, you can use a typed array that contains the information about the buttons.
This method simplifies the tracking of multiple buttons.

Change the image that is displayed in a toolbar button
The tbCHANGEBITMAP method allows you to change the image that is displayed in a toolbar button. These
images are stored in an image list, so you pass the index of the image to the tbCHANGEBITMAP method. This
method takes the id of the button to change the bitmap for along with the index of the new bitmap.

Display the customize toolbar dialog box
The tbCUSTOMIZE method displays the customize dialog for the toolbar. This method takes no parameters and has
no return value.

Remove a button from the toolbar
The tbDELETE method is used to remove a button from the toolbar. This method takes the index of the button to
remove and returns a boolean indicating if the deletion was successful.

Retrieve the bounding rectangle of a toolbar button
To retrieve the bounding rectangle, use the tbGETITEMRECT method. The method takes the index of the button, as
well as variables that receive the coordinate of the button.

Determine the number rows of buttons displayed by the toolbar
The tbGETROWS method is used to determine the number of rows that the toolbar displays. This method takes no
parameters and returns the number of rows displayed by the toolbar.

Retrieve the handle of the tooltip control associated with the toolbar
The tbGETTOOLTIPS method is used to get the handle to the tooltip associated with the toolbar. This method takes
no parameters and returns the handle. If there is no handle, the method returns NULL.

Set the size of the bitmap displayed in a toolbar button
The tbSETBITMAPSIZE method sets the size of the bitmapped images to be added to the toolbar. This method

takes 2 parameters: The width and height, in pixels of the bitmap.

Properties (Tool Bar Constituent)

Description Methods Events

Property Name Description

 BackColor Standard Property
BorderStyle Standard Property
ccsADJUSTABLE Enables / disables button dragging on the toolbar
Container
DragIcon Standard Property
DragMode Standard Property
Enabled Standard Property
ForeColor Standard Property
Height Standard Property
HelpContextID Standard Property
hWnd Standard Property
Index Standard Property
Left Standard Property
MouseIcon Standard Property
MousePointer Standard Property
Name Standard Property
Object Standard Property
Parent Standard Property
TabIndex Standard Property
TabStop Standard Property
Tag Standard Property
tbstyleALTDRAG Allows the user to change the position of a toolbar button

by dragging it while holding down the ALT key. If this
style is not specified, the user must hold down the SHIFT
key while dragging a button. Note that the
ccsADJUSTABLE style must be specified to enable
toolbar buttons to be dragged.

tbstyleTOOLTIPS Creates a tooltip control that an application can use to
display descriptive text for the buttons in the toolbar.

tbstyleWRAPABLE Creates a toolbar that can have multiple lines of buttons.
Toolbar buttons can "wrap" to the next line when the
toolbar becomes too narrow to include all buttons on the
same line. Wrapping occurs on separation and non-group
boundaries.

tbstyleTRANSPARENT Creates a toolbar that is transparent. The parent’s
background shows though the toolbar.

tbstyleFLAT Creates a toolbar that has no bevel edges around the
buttons.

tbstyleNOTEXT Creates a toolbar with no text.
Top Standard Property
Visible Standard Property
WhatsThisHelpID Standard Property
Width Standard Property

Methods (Tool Bar Constituent)

Description Properties Events

Method Name Description

Refresh Standard Method
tbADDBITMAP Adds one or more images to the list of button images

available for a toolbar.

object.tbADDBITMAP (nButtons As Long, nID As
Long, pic As StdPicture) As Long

Parameters
nButtons
Number of button images in the bitmap.

nID
Identifier of a standard set of bitmaps. The following
values are valid:

 0 - no standard bitmaps, use pic parameter.

IDB_STD_LARGE_COLOR Adds large, color standard
bitmaps.

IDB_STD_SMALL_COLOR Adds small, color standard
bitmaps.

IDB_VIEW_LARGE_COLOR Adds large, color view
bitmaps.

IDB_VIEW_SMALL_COLOR Adds small, color view
bitmaps.

pic
Picture that defines the toolbar

Return Values
Returns the index of the first new image if successful or -
1 otherwise.

tbADDBUTTONS Adds one or more buttons to a toolbar.

object.tbADDBUTTONS (uNumButtons As Long,
iBitmap As Long, idCommand As Long, fsState As
Integer, fsStyle As Integer, dwData As Long, iString As
Long) As Boolean

Parameters
uNumButtons
Number of buttons to add.

The following parameters can be a simple variable (if
uNumButtons is 1) or the first element of an array. The
array elements should be properly filled and have at least
as many elements as the uNumButtons parameter.

iBitmap
Zero-based index of button image.

idCommand
Command identifier associated with the button. This
identifier is used in a WM_COMMAND message when
the button is chosen. If the fsStyle member is the
TBSTYLE_SEP value, this member must be zero.
fsState - Button state flags. This member can be a
combination of the following values:

TBSTATE_CHECKED The button has been
pressed.

TBSTATE_ENABLED The button accepts user
input.

TBSTATE_HIDDEN The button is not visible.

TBSTATE_INDETERMINATE The button is grayed.

TBSTATE_PRESSED The button is being
pressed.

TBSTATE_WRAP A line break follows the
button.

fsStyle
Button style. This member can be a combination of
values listed below.

TBSTYLE_BUTTON Creates a standard push
button.

TBSTYLE_CHECK Creates a button that
toggles between the
pressed and not pressed
states each time the user
clicks it. The button has a
different background color
when it is pressed.

TBSTYLE_CHECKGROUP Creates a check button that
stays pressed until another
button in the group is
pressed.

TBSTYLE_GROUP Creates a button that stays
pressed until another
button in the group is
pressed.

TBSTYLE_SEP Creates a separator,
providing a small gap
between button groups. A
button that has this style
does not receive user
input.

dwData
Application-defined value.

iString
Zero-based index of button string.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbADDSTRING Adds a new string to the list of strings available for a
toolbar.

object.tbADDSTRING (sString As String) As Long

Parameters
sString
The address of a buffer that contains a string to add to the
list.

Return Values
Returns the index of the new string if successful or - 1
otherwise.

tbAUTOSIZE Message causes a toolbar to be resized.

object.tbAUTOSIZE

Parameters
N/A

Return Values
N/A

tbBUTTONCOUNT Retrieves a count of the buttons currently in the toolbar.

object.tbBUTTONCOUNT () As Long

Parameters
N/A

Return Values
Returns the count of the buttons.

tbCHANGEBITMAP Changes the bitmap for a button in a toolbar.

object.tbCHANGEBITMAP (idButton As Long,
iBitmap As Long) As Boolean

Parameters
idButton - Command identifier of the button that is to
receive a new bitmap.

iBitmap
Zero-based index of an image in the toolbar's image
list. The system displays the specified image in the
button.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbCHECKBUTTON checks or unchecks a given button in a toolbar.

object.tbCHECKBUTTON (idButton As Long, fCheck
As Boolean) As Boolean

Parameters
idButton
Command identifier of the button to check.

fcheck
Check flag. If this parameter TRUE, the check is added.
If it is FALSE, the check is removed.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
When a button has been checked, it appears to have been
pressed.

tbCOMMANDTOINDEX Retrieves the zero-based index for the button associated
with the specified command identifier.

object.tbCOMMANDTOINDEX (idButton As Long)
As Long

Parameters
idButton
Command identifier associated with the button.

Return Values
Returns the zero-based index for the button.

tbCUSTOMIZE Displays the Customize Toolbar dialog box.

object.tbCUSTOMIZE

Parameters
None

Return Values
No return value.

tbDELETEBUTTON Deletes a button from the toolbar.

object.tbDELETEBUTTON (iButton As Long) As
Boolean

Parameters
iButton
Zero-based index of the button to delete.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbENABLEBUTTON Enables or disables the specified button in a toolbar.

object.tbENABLEBUTTON (idButton As Long,
fEnable As Boolean) As Boolean

Parameters
idButton
Command identifier of the button to enable or disable.

fEnable
Enable flag. If this parameter is TRUE, the button is
enabled. If it is FALSE, the button is disabled.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
When a button has been enabled, it can be pressed and
checked.

tbGETBITMAP Retrieves the index of the bitmap associated with a
button in a toolbar.

object.tbGETBITMAP (idButton As Long) As Long

Parameters
idButton
Command identifier of the button whose bitmap index is
to be retrieved.

Return Values
If successful, the method returns the index of the bitmap.
If unsuccessful, it returns zero.

tbGETBITMAPFLAGS Retrieves the bitmap flags.

object.tbGETBITMAPFLAGS As Long

Return Values
Returns the TBBF_LARGE value if the display can handle
large bitmaps (that is, if the width of the display has at
least 120 pixels per logical inch). Otherwise, the return
value is zero.

tbGETBUTTON Retrieves information about the specified button in a

toolbar.

object.tbGETBUTTON (iButton As Long, iBitmap As
Long, idCommand As Long, fsState As Short, fsStyle As
Short, dwData As Long, iString As Long) As Boolean

Parameters
iButton
Zero-based index of the button for which to retrieve
information.

iBitmap
Zero-based index of button image.

idCommand
Command identifier associated with the button. This
identifier is used in a WM_COMMAND message when
the button is chosen. If the fsStyle member is the
TBSTYLE_SEP value, this member must be zero.

fsState
Button state flags. This member can be a combination of
the values listed in Toolbar Button States.

fsStyle
Button style. This member can be a combination of
values listed in Toolbar Button Styles.

dwData
Application-defined value.

iString
Zero-based index of button string.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbGETBUTTONTEXT Retrieves the text of a button in a toolbar.

object.tbGETBUTTONTEXT (idButton As Long) As
String

Parameters
idButton
Command identifier of the button whose text is to be
retrieved.

Return Values
Returns the string for the button if successful. Otherwise,
the returned string is 0 in length.

tbGETITEMRECT Retrieves the bounding rectangle of a button in a toolbar.

object.tbGETITEMRECT (iButton As Long, iLeft As
Long, iTop As Long, iRight As Long, iBottom As Long)
As Boolean

Parameters

iButton
Zero-based index of the button for which to retrieve
information.

iLeft, iTop, iRight, iBottom
receives the coordinates of the bounding rectangle.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
This message does not retrieve the bounding rectangle for
buttons whose state is set to the TBSTATE_HIDDEN
value.

tbGETROWS Retrieves the number of rows of buttons in a toolbar with
the TBSTYLE_WRAPABLE style.

object.tbGETROWS As Long
 Return Values
Returns the number of rows.

tbGETSTATE Retrieves information about the state of the specified
button in a toolbar, such as whether it is enabled, pressed,
or checked.

object.tbGETSTATE (idButton As Long) As Integer

Parameters
idButton
Command identifier of the button for which to retrieve
information.

Return Values
Returns the button state information if successful or - 1
otherwise. The button state information can be a
combination of the following values:

TBSTATE_CHECKED The button has been

pressed.

TBSTATE_ENABLED The button accepts user
input.

TBSTATE_HIDDEN The button is not visible.

TBSTATE_INDETERMINATE The button is grayed.

TBSTATE_PRESSED The button is being
pressed.

TBSTATE_WRAP A line break follows the button.
tbGETTOOLTIPS Retrieves the handle to the tooltip control, if any,

associated with the toolbar.

object.tbGETTOOLTIPS As Long

Return Values
Returns the handle to the tooltip control or NULL if the
toolbar has no associated tooltip.

tbHIDEBUTTON Hides or shows the specified button in a toolbar.

object.tbHIDEBUTTON (idButton As Long, fShow As
Boolean) As Boolean

Parameters
idButton
Command identifier of the button to hide or show.

fShow
Show flag. If this parameter is TRUE, the button is
hidden. If it is FALSE, the button is shown.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbINDETERMINATE Sets or clears the indeterminate state of the specified
button in a toolbar.

object.tbINDETERMINATE (idButton As Long,
fIndeterminate As Boolean) As Boolean

Parameters
idButton
Command identifier of the button whose indeterminate
state is to be set or cleared.

fIindeterminate
Indeterminate flag. If this parameter is TRUE, the
indeterminate state is set. If it is FALSE, the state is
cleared.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbINSERTBUTTON Inserts a button into a toolbar.

object.tbINSERTBUTTON (iButton As Long, iBitmap
As Long, idCommand As Long, fsState As Integer,
fsStyle As Integer, dwData As Long, iString As Long) As
Boolean

Parameters
iButton
Zero-based index of a button. The message inserts the
new button to the left of this button.

iBitmap
Zero-based index of button image.

idCommand

Command identifier associated with the button. This
identifier is used in a WM_COMMAND message when
the button is chosen. If the fsStyle member is the
TBSTYLE_SEP value, this member must be zero.

fsState
Button state flags. This member can be a combination of
the values listed in Toolbar Button States.

fsStyle
Button style. This member can be a combination of
values listed in Toolbar Button Styles.

dwData
Application-defined value.

iString
Zero-based index of button string.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbISBUTTONCHECKED Determines whether the specified button in a toolbar is
checked.

object.tbISBUTTONCHECKED (idButton As Long) As
Boolean

Parameters
idButton
Command identifier of the button.

Return Values
Returns nonzero if the button is checked or zero otherwise.

tbISBUTTONENABLED Determines whether the specified button in a toolbar is
enabled.

object.tbISBUTTONENABLED (idButton As Long) As
Boolean

Parameters
idButton
Command identifier of the button.

Return Values
Returns nonzero if the button is enabled or zero otherwise.

tbISBUTTONHIDDEN Determines whether the specified button in a toolbar is
hidden.

object.tbISBUTTONHIDDEN (idButton As Long) As
Boolean

Parameters
idButton
Command identifier of the button.

Return Values

Returns nonzero if the button is hidden or zero otherwise.
tbISBUTTON_
INDETERMINATE

Determines whether the specified button in a toolbar is
indeterminate.

object.tbISBUTTONINDETERMINATE (idButton As
Long) As Boolean

Parameters
idButton
Command identifier of the button.

Return Values
Returns nonzero if the button is indeterminate or zero
otherwise.

tbISBUTTONPRESSED determines whether the specified button in a toolbar is
pressed.

object.tbISBUTTONPRESSED (idButton As Long) As
Boolean

Parameters
idButton
Command identifier of the button.

Return Values
Returns nonzero if the button is pressed or zero
otherwise.

tbPRESSBUTTON Presses or releases the specified button in a toolbar.

object.tbPRESSBUTTON (idButton As Long, fPress As
Boolean) As Boolean

Parameters
idButton
Command identifier of the button to press or release.

fPress
Press flag. If this parameter is TRUE, the button is
pressed. If it is FALSE, the button is released.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbSAVERESTORE Saves or restores the state of the toolbar.

object.tbSAVERESTORE (fSave As Boolean, hkr As
Long, pszSubKey As String, pszValueName As String)

Parameters
fSave
Save or restore flag. If this parameter is TRUE, the
information is saved. If it is FALSE, it is restored.

hkr
Handle to the registry key.

pszSubKey

Subkey name.

pszValueName
Value name.

Return Values
No return value.

tbSETBITMAPSIZE Sets the size of the bitmapped images to be added to a
toolbar.

object.tbSETBITMAPSIZE (dxBitmap As Integer,
dyBitmap As Integer) As Boolean

Parameters
dxBitmap
Width, in pixels, of the bitmapped images.

dyBitmap
Height, in pixels, of the bitmapped images.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The size can be set only before adding any bitmaps to the
toolbar. If an application does not explicitly set the bitmap
size, the size defaults to 16 by 15 pixels.

tbSETBUTTONSIZE Sets the size of the buttons to be added to a toolbar.

object.tbSETBUTTONSIZE (dxButton As Integer,
dyButton As Integer) As Boolean

Parameters
dxButton
Width, in pixels, of the buttons.

dyButton
Height, in pixels, of the buttons.

Return Values
Returns TRUE if successful or FALSE otherwise.

Remarks
The size can be set only before adding any buttons to the
toolbar. If an application does not explicitly set the button
size, the size defaults to 24 by 22 pixels.

tbSETCMDID Sets the command identifier of a toolbar button.

object.tbSETCMDID (index As Long, cmdId As Long)
As Boolean

Parameters
index
Zero-based index of the button whose command
identifier is to be set.

CmdId
Command identifier.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbSETPARENT Sets the parent window for a toolbar.

object.tbSETPARENT (hwndParent As Long)

Parameters
hwndParent
Handle to the new parent window.

Return Values
No return value.

tbSETROWS Sets the number of rows of buttons in a toolbar.

object.tbSETROWS (cRows As Integer, fLarger As
Boolean, iLeft As Long, iTop As Long, iRight As Long,
iBottom As Long)

Parameters
cRows
Number of rows requested. The minimum number of
rows is one, and the maximum is equal to the number of
buttons in the toolbar.

fLarger
Flag that indicates whether to create more rows than
requested when the system cannot create the number of
rows specified by cRows. If this parameter is TRUE, the
system creates more rows. If it is FALSE, the system
creates fewer rows.

ILeft, iTop, iRight, iBottom
Receive the bounding rectangle of the toolbar after the
rows are set.

Return Values
No return value.

Remarks
Because the system does not break up button groups when
setting the number of rows, the resulting number of rows
might differ from the number requested.

tbSETSTATE Sets the state for the specified button in a toolbar.

object.tbSETSTATE (idButton As Long, fState As
Integer) As Boolean

Parameters
idButton
Command identifier of the button.

fState
State flags. This parameter can be a combination of the

following values:

TBSTATE_CHECKED The button has been
pressed.

TBSTATE_ENABLED The button accepts user
input.

TBSTATE_HIDDEN The button is not visible.

TBSTATE_INDETERMINATE The button is grayed.

TBSTATE_PRESSED The button is being
pressed.

TBSTATE_WRAP A line break follows the
button.

Return Values
Returns TRUE if successful or FALSE otherwise.

tbSETTOOLTIPS Associates a tooltip control with a toolbar.

object.tbSETTOOLTIPS (hwndToolTip As Long)

Parameters
hwndToolTip
Handle to the tooltip control.

Return Values
No return value.

Remarks
Any buttons added to a toolbar before using the
tbSETTOOLTIPS method are not registered with the
tooltip control.

Events (Tool Bar Constituent)

Description Properties Methods

Event Name Description

Click Standard Event
DblClick Standard Event
KeyDown Standard Event
KeyPress Standard Event
KeyUp Standard Event
MouseDown Standard Event
MouseMove Standard Event
MouseUp Standard Event
ButtonClick ButtonClick (iButton As Long)

Tray Icon Constituent

Properties Methods Events

 Class: bbbTraySample-TrayIcon\TrayIcon.vbp

Overview
The Tray Icon constituent is a control that displays a small window in the system tray of the task bar. The task bar is
the area of the desktop that contains the Start button in Windows 95. The system tray is the area on the opposite side
of the Start button that displays the time and one or more icons.

The Tray Icon constituent allows you to add an icon to the system tray from your Visual Basic program. The icon
can receive events for your program to handle (Click, DblClick, etc.). You can also set the icon that is displayed in
the system tray.

Features
This section outlines the features of the Tray Icon constituent.

Add the tray icon to the system tray.
The AddIcon method is used to add the tray icon to the system tray. This method takes no parameters and returns a
boolean indicating if the addition was successful. The icon displayed is the one set in the .icon property of the
control.

Remove the icon from the system tray.
The RemoveIcon method is used to remove the tray icon from the system tray. This method takes no parameters and
returns a boolean indicating whether or not the icon was removed.
Note: Always use the RemoveIcon method to remove an icon before exiting your program. If you exit your program
without calling RemoveIcon, the icon is stranded in the system tray and is not removed until the system is restarted.

Change the icon that is displayed in the system tray
The ChangeIcon method is used to change the icon that is displayed in the system tray. The new icon displayed is
the one set in the .icon property of the control.

Determine when a user has performed a mouse event on the icon.
When the user performs a mouse event on the icon displayed in the system tray (click, double-click, etc.) the
corresponding event of the tray icon control is called.

Properties (Tray Icon Constituent)

Description Methods Events

Property Name Property Description

(Name) Standard Property
Enabled Standard Property
Icon The icon to display in the task bar.

Tip The “flyover” text to display when the mouse passes over
your icon.

Methods (Tray Icon Constituent)

Description Properties Events

Method Name Method Description

Aboutbox Invokes the control’s About Box
AddIcon Adds the icon to the task bar

ChangeIcon Changes the icon currently in the taskbar

RemoveIcon Removes the icon from the task bar

Events (Tray Icon Constituent)

Description Properties Methods

Event Name Event Description

Click Standard Event
DblClick Standard Event
MouseDown Standard Event
MouseMove Standard Event
MouseUp Standard Event

Tree View Constituent

Properties Methods Events

Class: bbbTree Sample-Tree\bbbTreeView.vbg

Overview
A TreeView is a control that displays a list of items in a hierarchical manner. The Windows Explorer contains a
standard TreeView control (left side).

The Basic Constituents TreeView control contains a number of features not offered in the standard TreeView.
Among them are the ability to get a handle to the edit control of an item and to programmatically instigate the
editing of an item. The TreeView allows you to search for a specific item and provides a callback to a user-defined
function for custom sorting. You can also trap all of the Windows messages that are sent to the control (see the
reference for more information about this topic).

The standard TreeView holds its items in a collection of node objects. These node objects are a part of the standard
control, not the base Windows class. Therefore, the Basic constituent implementation does not contain node objects
or the nodes collection. The sample program implements these object in case you choose to use them.

For more information, see the ListView chapter earlier in this manual. This chapter explains the constituent’s re-
implementation of the ListItem object and ListItems collection, and discusses why you may not necessarily want to
include them in your ActiveX control.

Features
This section outlines the features of the Basic Constituents TreeView control. For readability, only items that are not
available in the standard TreeView control are covered.

Programmatically begin the editing of an item’s label
The tvmEDITLABEL method is used to begin the in-place editing of an item’s text. When this method is called, the
return is the handle to the edit control used to edit the item’s text. This method triggers the BeginLabelEdit in the
control. See the reference for more information on this method. The tvmENDLABELEDITNOW method ends the
editing of the items label.

Retrieve the amount that child items are indented
The tvmGETINDENT method retrieves the number of pixels that child items are indented, relative to their parents.
This method takes one parameter (the index of the item) and returns the number of pixels that the item is indented.

Retrieve the incremental search string for the control.
The TreeView constituent maintains an incremental search string of characters entered by a user. The incremental
search string is the character sequence the user types while the TreeView has the input focus.
For example, imagine that the following items are in your TreeView:

James
Joan
Joanie

When the user types “J”, the list scrolls to the first entry in the TreeView that begins with J (James). At this point,
the incremental search string of the TreeView control contains the letter “J”. If the user quickly types the letter “o”,
the incremental search string is updated to contain “Jo” and the list is scrolled to Joan. If the user pauses too long,
the incremental search string times out and is reset. Each time the a new character is typed (within the timeout
period), the incremental string is updated and the TreeView scrolls to the item that most closely matches the string.

To retrieve the incremental search string, use the tvmGETISEARCHSTRING method. This method requires no
parameters and returns either the search string, or NULL if the control is not in incremental search mode (the
TreeView does not have the input focus).

Retrieve the bounding rectangle of an item
The tvmGETITEMRECT method retrieves the bounding rectangle of an item and indicates whether the item is
visible. See the reference for more information about this method.

Determine the number of items that are currently visible
The tvmGETVISIBLECOUNT method returns the number of items that are currently visible in the TreeView. This
method takes no parameters and returns the number of visible items.

Use a custom sorting routine to sort the items in the TreeView
The tvmSORTCHILDRENCB method sorts the items of a TreeView using an application defined function. This
function is passed to the TreeView as a parameter to the tvmSORTCHILDRENCB method using the AddressOf
operator.

Properties (Tree View Constituent)

Description Methods Events

Property Name Property Description

BackColor Standard Property
BorderStyle Standard Property
Container Standard Property
DragIcon Standard Property
DragMode Standard Property
Enabled Standard Property
Font Standard Property
ForeColor Standard Property
Height Standard Property
HelpContextID Standard Property
hWnd Standard Property
Index Standard Property
Left Standard Property
Name Standard Property
Object Standard Property
Parent Standard Property
SelectedItem
TabIndex Standard Property
TabStop Standard Property
Tag Standard Property
Top Standard Property
TVS_DISABLEDRAG_
DROP

Prevents the tree-view control from sending
TVN_BEGINDRAG notification messages.

TVS_EDITLABELS Allows the user to edit the labels of tree-view items.
TVS_HASBUTTONS Displays plus (+) and minus (-) buttons next to parent

items. The user clicks the buttons to expand or collapse a
parent item's list of child items. To include buttons with
items at the root of the tree view, TVS_LINESATROOT
must also be specified.

TVS_HASLINES Uses lines to show the hierarchy of items.
TVS_LINESATROOT Uses lines to link items at the root of the tree-view control.

This value is ignored if TVS_HASLINES is not also
specified.

TVS_SHOWSEL_
ALWAYS

Causes a selected item to remain selected when the tree-
view control loses focus.

TVS_PRIVATEIMAGE_
LISTS

Causes the control to destroy the image lists associated
with the tree when the TreeView is destroyed.

TVS_NOTOOLTIPS
TVS_CHECKBOXES
TVS_TRACKSELECT
Visible Standard Property
WhatsThisHelpID Standard Property
Width Standard Property

Methods (Tree View Constituent)

Description Properties Events

Method Name Description

Drag Standard Method
Move Standard Method
OLEDrag
Refresh Standard Method
SetFocus Standard Method
tvmCREATEDRAG_
IMAGE

creates a dragging bitmap for the specified item in a tree-
view control, creates an image list for the bitmap, and adds
the bitmap to the image list. An application can display the
image when dragging the item by using the image-list
functions.

object.tvmCREATEDRAGIMAGE (hitem As Long) As
Long

Parameters
hitem
Handle to the item that receives the new dragging
bitmap.
Return Value (Long)
Returns the handle of the image list to which the
dragging bitmap was added if successful or NULL
otherwise.

Remarks
If you create a tree-view control without an associated
image list, you cannot use the
tvmCREATEDRAGIMAGE message to create the image
to display during a drag operation. You must implement
your own way to support drag and drop cursor.

tvmDELETEITEM Removes an item from a tree-view control.

object.tvmDELETEITEM (hitem As Long) As Boolean

Parameters
hitem
Handle to the item to delete. If hitem is the TVI_ROOT
value, all items are deleted from the tree-view control.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks
If the item label is being edited, the edit operation is
canceled and the parent window receives the
TVN_ENDLABELEDIT notification message. The parent
window receives a TVN_DELETEITEM notification
message when the item is removed.

tvmEDITLABEL Begins in-place editing of the specified item's text,

replacing the text of the item with a single-line edit control
containing the text. This message implicitly selects and
focuses the specified item.
object.tvmEDITLABEL(hitem As Long) As Long

Parameters
hitem
Handle to the item to edit.

Return Value (Long)
Returns the handle to the edit control used to edit the item
text if successful or NULL otherwise.

Remarks
This message triggers a BeginLabelEdit event in the
control.
When the user completes or cancels editing, the edit
control is destroyed and the handle is no longer valid.
You can safely subclass the edit control, but do not
destroy it.
The control must have the focus before you send this
message to the control. Focus can be set using the
SetFocus function.

See Also
BeginLabelEdit Event

tvmENDEDITLABEL_
NOW

Ends the editing of a tree-view item's label.

object.tvmENDEDITLABELNOW(fCancel As Boolean)
As Boolean

Parameters
fCancel
Variable that indicates whether the editing is canceled
without being saved to the label. If this parameter is
TRUE, the system cancels editing without saving the
changes. Otherwise, the system saves the changes to the
label.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Remarks
This message causes the EndLabelEdit event to fire.

tvmENSUREVISIBLE Ensures that a tree-view item is visible, expanding the
parent item or scrolling the tree-view control, if necessary.

object.tvmENSUREVISIBLE(hitem As Long) As
Boolean

Parameters
hitem
Handle to the item.

Return Value (Boolean)
Returns TRUE if the system scrolled the items in the tree-

view control to ensure that the specified item is visible.
Otherwise, the message returns FALSE.

Remarks
If this method expands an item, the control receives the
Expand event.

tvmEXPAND Expands or collapses the list of child items, if any,
associated with the specified parent item.

object.tvmEXPAND(hitem As Long, flag As Long) As
Boolean

Parameters
flag
Action flag. This parameter can be one of the following
values:
TVE_COLLAPSE Collapses the list.

TVE_COLLAPSERESET Collapses the list and
removes the child items.
Note that
TVE_COLLAPSE must
also be specified.

TVE_EXPAND Expands the list.

TVE_TOGGLE Collapses the list if it is
currently expanded or
expands it if it is currently
collapsed.

Hitem
 Handle to the parent item to expand or collapse.

Return Value (Boolean)
Returns TRUE if any change took place or FALSE
otherwise.

Remarks
This method does not trigger the Expand or Collapse
Events.

tvmGETCOUNT Retrieves a count of the items in a tree-view control.

object.tvmGETCOUNT() As Long

 Return Value (Long)
Returns the count of items.

tvmGETEDITCONTROL Retrieves the handle to the edit control being used to edit a
tree-view item's text.
object.tvmGETEDITCONTROL() As Long

Return Value (Long)
Returns the handle to the edit control if successful or
NULL otherwise.

tvmGETIMAGELIST Retrieves the handle to the normal or state image list
associated with a tree-view control.

object.tvmGETIMAGELIST(iImage As Long) As Long

Parameters
iImage
Type of image list to retrieve. This parameter can be one
of the following values:

TVSIL_NORMAL Retrieves the normal
image list, which contains
the selected and
unselected images for the
tree-view item.

TVSIL_STATE Retrieves the state image
list, which contains the
images for tree-view items
that are in a user-defined
state.

Return Values
Returns the handle to the image list.

tvmGETINDENT Retrieves the amount, in pixels, that child items are
indented relative to their parent items.

object.tvmGETINDENT(hitem As Long) As Long

Return Value (Long)
Returns the amount of indentation.

tvmGETISEARCH_
STRING

Retrieves the incremental search string for a tree-view
control. The tree-view control uses the incremental search
string to select an item based on characters typed by the
user.

object.tvmGETISEARCHSTRING() As String

Parameters
N/A

Return Value (BSTR)
Returns the incremental search string. If the tree-view
control is not in incremental search mode, the return value
is NULL.

tvmGETITEM Retrieves some or all of a tree-view item's attributes.

object.tvmGETITEM(mask As Long, hItem As Long,
state As Long, stateMask As Long, pszText As String,
cchTextMax As Long, iImage As Long, iSelectedImage
As Long, cChildren As Long, lParam As Long) As
Boolean

Parameters
mask
 Combination of flags that indicate which of the other
structure members contain valid data. When this structure
is used with the TVM_GETITEM message, the mask
member indicates the item attributes to retrieve. This

member can be a combination of the following values:

TVIF_CHILDREN The cChildren member is
valid.

TVIF_HANDLE The hItem member is
valid.

TVIF_IMAGE The iImage member is
valid.

TVIF_PARAM The lParam member is
valid.

TVIF_SELECTEDIMAGE The iSelectedImage
member is valid.

TVIF_STATE The state and stateMask
members are valid.

TVIF_TEXT The pszText and
cchTextMax members are
valid.

Hitem
 Identifies the item to which this structure refers.

State
 Specifies the current state of the item if the item's state is
being retrieved, or the new state if the item's state is
being set. The stateMask member specifies the bits of the
state member that are valid. This member can be any
valid combination of state values. For a list of item states,
see Tree-View Item States.

StateMask
 Specifies the bits of the state member that are valid.

PszText
Pointer to a null-terminated string that contains the item
text if the structure specifies item attributes. If this
member is the LPSTR_TEXTCALLBACK value, the
parent window is responsible for storing the name. In this
case, the tree-view control sends the parent window a
TVN_GETDISPINFO notification message when it
needs the item text for displaying, sorting, or editing, and
a TVN_SETDISPINFO notification message when the
item text changes.
If the structure is receiving item attributes, this member
is the pointer to the buffer that receives the item text.

cchTextMax
Size of the buffer pointed to by the pszText member if
the structure is receiving item attributes. If the structure
specifies item attributes, this member is ignored.

iImage
Index in the tree-view control's image list of the icon

image to use when the item is in the non-selected state.
If this member is the I_IMAGECALLBACK value, the
parent window is responsible for storing the index. In this
case, the tree-view control sends the parent a
TVN_GETDISPINFO notification message to get the
index when it needs to display the image.

iSelectedImage
Index in the tree-view control's image list of the icon
image to use when the item is in the selected state.
If this member is the I_IMAGECALLBACK value, the
parent window is responsible for storing the index. In this
case, the tree-view control sends the parent a
TVN_GETDISPINFO notification message to get the
index when it needs to display the image.

cChildren
Flag that indicates whether the item has associated child
items. This member is one of the following values:
Value Meaning
zero The item has no child items.
1 The item has one or more child items.
I_CHILDRENCALLBACK The parent window
keeps track of whether the item has child items. In this
case, when the tree-view control needs to display the item,
the control sends the parent a TVN_GETDISPINFO
notification message to determine whether the item has
child items.

If the tree-view control has the TVS_HASBUTTONS
style, it uses this member to determine whether to display
the button indicating the presence of child items. You can
use this member to force the control to display the button
even though the item does not have any child items
inserted. This allows you to display the button while
minimizing the control's memory usage by inserting child
items only when the item is visible or expanded.

lParam
A 32-bit value to associate with the item.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

Comments
The TV_ITEM structure specifies the information to
retrieve and receives information about the item. When
the message is sent, the hItem parameter identifies the
item to retrieve information about and the mask
parameter specifies the attributes to retrieve.
If mask specifies the TVIF_TEXT flag, the pszText
parameter must contain the string that receives the item
text and the cchTextMax member must specify the size of
the buffer.
If mask specifies the TVIF_STATE value, the stateMask
member indicates which item states are to be returned.

tvmGETITEMstruct Retrieves some or all of a tree-view item's attributes using
a structure rather than parameters.

object.tvmGETITEMstruct(itemmask As Long) As
Boolean

Parameters
itemmask
A pointer to the first element in the TV_ITEM structure.
This method expects the TV_ITEM structure to exist and
by passing the first element of the structure, the method
receives a pointer to the structure. The TV_ITEM
structure specifies the information to retrieve and
receives information about the item. When the message is
sent, the hItem member identifies the item to retrieve
information about and the mask member specifies the
attributes to retrieve.
If mask specifies the TVIF_TEXT value, the pszText
member must contain the pointer to the buffer that
receives the item text and the cchTextMax member must
specify the size of the buffer.
If mask specifies the TVIF_STATE value, the stateMask
member indicates which item states are to be returned.

Type TV_ITEM
 mask As Long
 hItem As Long
 state As Long
 stateMask As Long
 pszText As String
 cchTextMax As Long
 iImage As Long
 iSelectedImage As Long
 cChildren As Long
 lParam As Long
End Type

Members
mask
Combination of flags that indicate which of the other
structure members contain valid data. When this structure
is used with the TVM_GETITEM message, the mask
member indicates the item attributes to retrieve. This
member can be a combination of the following values:

TVIF_CHILDREN The cChildren member is
valid.

TVIF_HANDLE The hItem member is
valid.

TVIF_IMAGE The iImage member is
valid.

TVIF_PARAM The lParam member is
valid.

TVIF_SELECTEDIMAGE The iSelectedImage

member is valid.

TVIF_STATE The state and stateMask
members are valid.

TVIF_TEXT The pszText and
cchTextMax members are
valid.

hItem
Identifies the item to which this structure refers.

state
Specifies the current state of the item if the item's state is
being retrieved, or the new state if the item's state is
being set. The stateMask member specifies the bits of the
state member that are valid. This member can be any
valid combination of state values. For a list of item states,
see Tree-View Item States.

stateMask
Specifies the bits of the state member that are valid.

pszText
Pointer to a null-terminated string that contains the item
text if the structure specifies item attributes. If this
member is the LPSTR_TEXTCALLBACK value, the
parent window is responsible for storing the name. In this
case, the tree-view control sends the parent window a
TVN_GETDISPINFO notification message when it
needs the item text for displaying, sorting, or editing, and
a TVN_SETDISPINFO notification message when the
item text changes.
If the structure is receiving item attributes, this member
is the pointer to the buffer that receives the item text.

cchTextMax
Size of the buffer pointed to by the pszText member if
the structure is receiving item attributes. If the structure
specifies item attributes, this member is ignored.

iImage
Index in the tree-view control's image list of the icon
image to use when the item is in the non-selected state.
If this member is the I_IMAGECALLBACK value, the
parent window is responsible for storing the index. In this
case, the tree-view control sends the parent a
TVN_GETDISPINFO notification message to get the
index when it needs to display the image.

iSelectedImage
Index in the tree-view control's image list of the icon
image to use when the item is in the selected state.
If this member is the I_IMAGECALLBACK value, the
parent window is responsible for storing the index. In this
case, the tree-view control sends the parent a

TVN_GETDISPINFO notification message to get the
index when it needs to display the image.

cChildren
Flag that indicates whether the item has associated child
items. This member is one of the following values:

zero The item has no child
items.

1 The item has one or more
child items.

I_CHILDRENCALLBACK The parent window keeps
track of whether the item
has child items. In this
case, when the tree-view
control needs to display
the item, the control sends
the parent a
TVN_GETDISPINFO
notification message to
determine whether the
item has child items.

If the tree-view control has the TVS_HASBUTTONS
style, it uses this member to determine whether to display
the button indicating the presence of child items. You can
use this member to force the control to display the button
even though the item does not have any child items
inserted. This allows you to display the button while
minimizing the control's memory usage by inserting child
items only when the item is visible or expanded.

lParam
A 32-bit value to associate with the item.

Remarks
This structure is used with the TVM_GETITEM,
TVM_SETITEM, and TVM_INSERTITEM messages. It
is also included with many of the notification messages.
When the structure is used to retrieve item information,
only the structure members indicated by mask contain
valid data. All other members are invalid.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

tvmGETITEMRECT Retrieves the bounding rectangle for a tree-view item and
indicates whether the item is visible.

object.tvmGETITEMRECT(hitem As Long, fItemRect
As Boolean, top As Long, left As Long, bottom As Long,
right As Long) As Boolean

Parameters

hitem
Handle to an item.

fItemRect
Value specifying the portion of the item for which to
retrieve the bounding rectangle. If this parameter is
TRUE, the bounding rectangle includes only the text of
the item. Otherwise, it includes the entire line that the
item occupies in the tree-view control.
top, left, bottom, right
Receives the bounding rectangle. The coordinates are
relative to the upper-left corner of the tree-view control.

Return Value (Boolean)
If the item is visible and retrieves the bounding rectangle,
the return value is TRUE. Otherwise, the message returns
FALSE and does not retrieve the bounding rectangle.

tvmGETNEXTITEM Retrieves the tree-view item that bears the specified
relationship to a specified item.

object.tvmGETNEXTITEM(hitem As Long, flag As
Long) As Long

Parameters
flag
Flag specifying the item to retrieve. This parameter can
be one of the following values:

TVGN_CARET Retrieves the currently
selected item.

TVGN_CHILD Retrieves the first child
item of the item specified
by the hitem parameter.

TVGN_DROPHILITE Retrieves the item that is
the target of a drag-and-
drop operation.

TVGN_FIRSTVISIBLE Retrieves the first visible
item.

TVGN_NEXT Retrieves the next sibling
item.

TVGN_NEXTVISIBLE Retrieves the next visible
item that follows the
specified item. The
specified item must be
visible. Use the
TVM_GETITEMRECT
message to determine
whether an item is visible.

TVGN_PARENT Retrieves the parent of the
specified item.

TVGN_PREVIOUS Retrieves the previous

sibling item.

TVGN_PREVIOUSVISIBLE Retrieves the first visible
item that precedes the
specified item. The
specified item must be
visible. Use the
TVM_GETITEMRECT
message to determine
whether an item is visible.

TVGN_ROOT Retrieves the topmost or
very first item of the tree-
view control.

hitem
Handle to an item.

Return Value (Long)
Returns the handle to the item if successful or NULL
otherwise.

tvmGETVISIBLE_
COUNT

Obtains the number of items that are fully visible in the
client window of a tree-view control.

object.tvmGETVISIBLECOUNT() As Long

Return Value (Long)
Returns the number of items that are fully visible in the
client window of the tree-view control.

Remarks
Note that the return value is the number of fully-visible
items. If you can see all of 20 items, and part of one more
item, the return value is 20, not 21.

tvmHITTEST Determines the location of the specified point relative to
the client area of a tree-view control.

object.tvmHITTEST(x As Long, y As Long, flags As
Long) As Long

Parameters
When the method is invoked, the x and y member
specifies the Coordinates of the point to test. When the
message returns, the return value is the handle to the item
at the specified point or NULL if no item occupies the
point. Also, when the method returns, the flags parameter
is a hit-test value that indicates the location of the
specified point.

x, y
Client coordinates of point to test.

flags
Variable that receives information about the results of a
hit test. This member can be one or more of the following

values:

TVHT_ABOVE Above the client area

TVHT_BELOW Below the client area

TVHT_NOWHERE In the client area, but
below the last item.

TVHT_ONITEM On the bitmap or label
associated with an item

TVHT_ONITEMBUTTON On the button associated
with an item

TVHT_ONITEMICON On the bitmap associated
with an item

TVHT_ONITEMINDENT In the indentation
associated with an item

TVHT_ONITEMLABEL On the label (string)
associated with an item

TVHT_ONITEMRIGHT In the area to the right of
an item

TVHT_ONITEMSTATEICON On the state icon for a
tree-view item that is in a
user-defined state

TVHT_TOLEFT To the right of the client
area

TVHT_TORIGHT To the left of the client
area

Return Value (Long)
Returns the handle to the tree-view item that occupies the
specified point or NULL if no item occupies the point.

tvmINSERTITEM Inserts a new item in a tree-view control.

object.tvmINSERTITEM(hParant As Long, hInsertAfter
As Long, mask As Long, hItem As Long, state As Long,
stateMask As Long, pszText As String, cchTextMax As
Long, iImage As Long, iSelectedImage As Long,
cChildren As Long, lParam As Long) As Long

Parameters
hParent
Handle to the parent item. If this member is the
TVI_ROOT value or NULL, the item is inserted at the
root of the tree-view control.

hInsertAfter
Handle to the item after which the new item is to be
inserted or one of the following values:

TVI_FIRST Inserts the item at the
beginning of the list.

TVI_LAST Inserts the item at the end
of the list.

TVI_SORT Inserts the item into the
list in alphabetical order.

Return Value (Long)
Returns the handle to the new item if successful or NULL
otherwise.

tvmINSERTITEMstruct inserts a new item in a tree-view control.

object.tvmINSERTITEMstruct(hParentInsert As Long)
As Long

Parameters
hParentInsert
A pointer to the first item in the TV_INSERTSTRUCT
structure. This method expects the TV_INSERTSTRUCT
structure to exist at that pointer location. The
TV_INSERTSTRUCT structure contains information
used to add a new item to a tree-view control.

Type TV_INSERTSTRUCT
 hParent As Long
 hInsertAfter As Long
 item As TV_ITEM
End Type

Members
hParent
Handle to the parent item. If this member is the
TVI_ROOT value or NULL, the item is inserted at the
root of the tree-view control.

hInsertAfter
Handle to the item after which the new item is to be
inserted or one of the following values:

TVI_FIRST Inserts the item at the
beginning of the list.

TVI_LAST Inserts the item at the end
of the list.

TVI_SORT Inserts the item into the
list in alphabetical order.

item
Information about the item to add. See
tvmGETITEMstruct

Return Value (Long)
Returns the handle to the new item if successful or NULL
otherwise.

tvmSELECTITEM Selects the specified tree-view item, scrolls the item into
view, or redraws the item in the style used to indicate the

target of a drag-and-drop operation.

object.tvmSELECTITEM(flag As Long, hitem As Long)
As Boolean

Parameters
flag
Action flag. This parameter can be one of the following
values:

TVGN_CARET Sets the selection to the
given item.

TVGN_DROPHILITE Redraws the given item in
the style used to indicate
the target of a drag and
drop operation.

TVGN_FIRSTVISIBLE Scrolls the tree view
vertically so that the given
item is the first visible
item.

hitem
Handle to an item. If hitem is NULL, the selection is
removed from the currently selected item, if any.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

tvmSETIMAGELIST Sets the normal or state image list for a tree-view control
and redraws the control using the new images.

object.tvmSETIMAGELIST(iImage As Long, himl As
Long) As Long

Parameters
iImage
Type of image list to set. For a list of possible values, see
the description of the tvmGETIMAGELIST message.

himl
Handle to the image list. If himl is NULL, all images are
removed from the tree-view control.

Return Value (Long)
Returns the handle to the previous image list, if any, or
NULL otherwise.
See Also
tvmGETIMAGELIST

tvmSETINDENT Sets the width of indentation for a tree-view control and
redraws the control to reflect the new width.

object.tvmSETINDENT(indent As Long) As Long

Parameters
indent

Width, in pixels, of the indentation. If this parameter is
less than the system-defined minimum width, the new
width is set to the system-defined minimum.

Return Values
No return value.

tvmSETITEM Sets some or all of a tree-view item's attributes.

object.tvmSETITEM(mask As Long, hItem As Long,
state As Long, stateMask As Long, pszText As String,
cchTextMax As Long, iImage As Long, iSelectedImage
As Long, cChildren As Long, lParam As Long) As
Boolean

Parameters
See tvmGETITEM for explanation of parameters.

Return Value (Boolean)
Returns zero if successful or -1 otherwise.

See Also
tvmGETITEM

tvmSETITEMstruct Sets some or all of a tree-view item's attributes.

object.tvmSETITEMstruct(itemmask As Long) As
Boolean

Parameters
See tvmGETITEMstruct for explanation of parameters.

Return Value (Boolean)
Returns zero if successful or -1 otherwise.

See Also
tvmGETITEMstruct

tvmSORTCHILDREN Sorts the child items of the specified parent item in a tree-
view control.

object.tvmSORTCHILDREN(hitem As Long, fRecurse
As Boolean) As Boolean

Parameters
fRecurse
Reserved for future use. Must be zero.

hitem
Handle to the parent item whose child items are to be
sorted.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

tvmSORTCHILDRENCB Sorts tree view items using an application defined callback
function that compares the items.

object.tvmSORTCHILDRENCB(lpfnCompare As Long,
hParent As Long, lParam As Long) As Boolean

Parameters
lpfnCompare
Pointer to an application-defined callback function,
which is called during a sort operation each time the
relative order of two list items needs to be compared. The
callback function has the following form:

Function CompareFunc(lParam1 As Long, lParam2 As
Long, lParamSort As Long) As Long

The callback function must return a negative value if the
first item should precede the second, a positive value if
the first item should follow the second, or zero if the two
items are equivalent.
The lParam1 and lParam2 parameters correspond to the
lParam member of the TV_ITEM structure for the two
items being compared. The lParamSort parameter
corresponds to the lParam parameter passed with this
method.

hParent
Handle to the parent item.

lParam
Application-defined 32-bit value.

Return Value (Boolean)
Returns TRUE if successful or FALSE otherwise.

ZOrder Standard Method

Events (Tree View Constituent)

Description Properties Methods

Event Name Description

AfterLabelEdit
BeforeLabelEdit
Click Standard Event
Collapse
DblClick Standard Event
DragDrop Standard Event
DragOver Standard Event
Expand
GotFocus Standard Event
ItemClick
KeyDown Standard Event
KeyUp Standard Event
KeyPress Standard Event
LostFocus Standard Event
MouseDown Standard Event
MouseUp Standard Event
MouseMove
OLECompleteDrag Standard Event
OLEDragDrop Standard Event
OLEDragOver Standard Event
OLEGiveFeedBack
OLESetData
OLEStartDrag

Zip Constituent

Properties Methods Events

Class: bbbZip Sample-Zip\B3Zip.vbp

Overview
The Zip Constituent is a control that is used to create and manage archives of compressed files. Files can be added to
the archives and extracted at a later date as needed. This control is a limited functionality edition of the
Compression Plus control available from EllTech Development.

An archive is essentially a file that contains other files. When an archive is created, its filename is set using
the .ZipFile property. The file to be added to the archive is set using the .FileSpec property. This property allows you
to specify multiple file specs, separated by a space, to indicate the files that are to be added to the archive. After
these properties are set, the .Action property is set to ETCP_ACTION_ADD to create the new archive and add the
file. If the archive already exists, the file is added to the existing archive.

To extract a file from an archive, the .FileSpec property is set to the name of the archive to extract the file from.
The .ZipFile property is set to the name of the file to extract. Once these properties have been set, setting the .Action
property to ETCP_ACTION_EXTRACT extracts the file from the archive.

Features
The Basic Constituent control provides a basic set of features for creating and managing archives. The reference
contains some sections whose text is grayed out. These items are not available in this edition of the control, but are
left to demonstrate the full functionality of the EllTech Development’s Compression Plus version of the control.

This section outlines some of the features of the Zip constituent. Only items available in the control (not grayed out)
are listed.

Create an Archive and add a file to the archive
To create a new archive and add a file, set the .ZipFile property to the name of the archive and the .FileSpec property
to the name of the file to be added. Then set the .Action property to ETCP_ACTION_ADD.

Extract a file from an archive
To extract a file from an archive, set the .ZipFile property to the name of the archive and the .FileSpec property to
the name of the file to extract. Then set the .Action property to ETCP_ACTION_EXTRACT.

Add a comment to an archive
The Comment property allows you to define a comment for the archive. The comment you add may be up to 1024
bytes long. The comment is added to the file specified in the FileName property.

Determine the size of a file in an archive
The CompSize property retrieves the compressed size for the file specified in the FileName property. The OrigSize
property retrieves the original size of the file.

Retrieve the date for a file in the Archive
The Date property contains the date for the file specified in the .FileName property. The date is returned in the
default system format specified in the international section of the WIN.INI file.

Set the location for a file after it is extracted from an archive
The DestPath property sets the specifies the target drive and/or path where files are placed when extracted from an
archive. When DestPath is set to Null, the files are placed in the current directory. DestPath is Null by default.

Determine the number of files contained within an archive
The .FileCount property specifies the number of entries in the archive specified by the ZipFile property.

Determine if a file in the archive is encrypted
The Encrypted property is a boolean that indicates whether or not the file specified in the .FileName property is
encrypted.

See the reference section for more information on these and other features of the Zip constituent.

Zip Control Reference
This control was provided by EllTech Development. It is a limited functionality edition of EllTech Development’s
full powered control (Compression Plus).

Note: Text that is strike through means that the feature is only available in the full release
version of Compression Plus by EllTech Development. The documentation has been left in its
original context to maintain consistency between the two versions and to also show the
differences between the constituent control and the full feature version.

Note: Standard properties (Index, Left, Tag, etc.) are described in the Visual Basic manual and are not documented
in this chapter.
The following format is used to document each of the bbbZip properties.

Property
Name

Property Description

When the property is available as more than one operation, this section will be
subdivided into appropriate categories as follows.

Zip: This section defines how the property can be used for zip operations.

Unzip: This section defines how the property can be used for unzip
operations.

Dir: This section defines how the property can be used for directory services.

If the property is available as only one type of operation, the subheadings above
will not be used.

Usage [form.]ctlname.Property = string$
string$ = [form.]ctlname.Property

This section shows the syntax for proper usage of this property.
Data Type String This section lists the property's data type.
Availability Design-Time Run-Time Read Run-Time Write
This section identifies the property's availability to the programmer.
See Also Property2, Event1
This section lists other properties or events that are related to this property.

Properties (Zip Constituent)

Description Methods Events

Property Name Property Description

Action The Action property is available as a Zip operation, UnZip operation,
and Directory Service. When using the Action property, set all related
properties first. When the Action property is set, the specified action is
executed immediately.

Zip: You can use the Action property for zip operations when you are
not using the QZip property. Set the Action property to one of the
following values when creating and updating archives.

Setting Value Description
ETCP_ACTION_ADD 2 Adds all files that match

the specifications defined
in the FileSpec property.
The files are added to the
archive specified in
ZipFile.

ETCP_ACTION_DELETE 5 Deletes all files from the
archive that match the
specifications defined in
FileSpec.

ETCP_ACTION_FRESHEN 4 Updates files in an archive
that have a later date/time
stamp without adding files
to the archive.

ETCP_ACTION_UPDATE 3 Updates files in an archive
that have a later date/time
stamp. Files that match the
specifications defined in
FileSpec are also added to
the archive.

ETCP_ACTION_NONE 0 No actions taken.

Unzip: You can use the Action property for unzip operations when you
are not using the QUnZip property. Set the Action property to one of
the following values when extracting files from an archive.

Setting Value Description
ETCP_ACTION_TEST 7 Tests the integrity of an

archive without extracting
the files.

ETCP_ACTION_EXTRACT 6 Extracts files from an
archive.

Dir: The Action property can be used to interrogate an archive file.
First set the ZipFile property to the name of the Zip archive to

interrogate. Then, set the Action property to
ETCP_ACTION_EXAMINE or 1.

During an ETCP_ACTION_EXAMINE operation, the Zip file remains
opened and locked. Set Action to ETCP_ACTION_NONE or 0 when
you are finished examining the archive directory.

Usage [form.]ctlname.Action = integer%
integer% = [form.]ctlname.Action

Data Type Integer

See Also FileSpec, QUnZip, QZip, ZipFile
AfterDate Zip: The AfterDate property is used when searching for files to add to

an archive. The AfterDate property specifies a date (month, day, and
year format as defined by the sShortDate setting in the International
section of the WIN.INI file) used to limit the file search. All files with
a date/time stamp greater than or equal to the date specified in
AfterDate will be added to the archive.

Usage [form.]ctlname.AfterDate = string$
 string$ = [form.]ctlname.AfterDate

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also BeforeDate
Attributes Dir: The Attributes property contains the file's DOS attributes (read-

only, etc) of the current entry being examined. To determine which
attributes are set, simply perform a logical AND of this value with the
appropriate constant from the following table. More than one attribute
bit may be set.

Setting Value Description

ETCP_ATTR_NORMAL 0 Normal file attribute

ETCP_ATTR_READONLY 1 Read-only file attribute

ETCP_ATTR_HIDDEN 2 Hidden file attribute

ETCP_ATTR_SYSTEM 4 System file attribute

ETCP_ATTR_VOLUME 8 Disk volume label

ETCP_ATTR_DIRECTORY 16 Subdirectory

ETCP_ATTR_ARCHIVE 32 Archive

The following code segment demonstrates how you can use the
Attributes property:

If BbbZip1.Attributes AND ETCP_ATTR_ARCHIVE
Then

Print "Archive"
End If

Usage integer% = [form.]ctlname.Attributes

Data Type Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileArchiveBit, IncludeHidSys, ReadOnly
BeforeDate Zip: The BeforeDate property is used when searching for files to add to

an archive. The BeforeDate property specifies a date (month, day, and
year format as defined by the sShortDate setting in the International
section of the WIN.INI file) used to limit the file search. All files with
a date/time stamp earlier than the date specified in BeforeDate will be
added to the archive.

Usage [form.]ctlname.BeforeDate = string$
 string$ = [form.]ctlname.BeforeDate

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also AfterDate
Cancel The Cancel property is available as both a Zip and Unzip property.

Cancel has no effect when no operation is in progress.

Zip: The Cancel property cancels the current Zip operation. Set Cancel
to True to cancel the current operation.

Unzip: The Cancel property cancels the current Unzip operation. Set
Cancel to True to cancel the current operation.

Usage [form.]ctlname.Cancel = boolean%

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also Action
Comment Dir: The Comment property defines the comment for the archive entry

specified in the FileName property. The Comment property can be
used to add or modify a file's comment. The maximum length for a file
comment is 1024 bytes. The ASCII NULL character is not allowed.

Usage [form.]ctlname.Comment = string$
string$ = [form.]ctlname.Comment

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileName, ZipComment

CompMethod Zip: The CompMethod property specifies the compression method and
speed used during Zip operations. The following settings are valid for
the CompMethod property:

Setting Value Description
ETCP_METHOD_NONE 0 Store uncompressed.

ETCP_METHOD_DEFLATE0 1 Deflate fastest: fastest
compression speed, low
compression efficiency.

ETCP_METHOD_DEFLATE1 2 Deflate fast: medium
compression speed,
medium compression
efficiency.

ETCP_METHOD_DEFLATE2 3 Default compression
method: balance between
compression speed and
efficiency.

ETCP_METHOD_DEFLATE3 4 Deflate maximum
compression: slow
compression speed, high
compression efficiency.

ETCP_METHOD_SCRUNCH 5 Use the Scrunch method, a
variant of the LZ78
algorithm: fast
compression, good
efficiency.

ETCP_METHOD_IMPLODE 6 Use the Implode method,
a combination of the
Huffman and LZ77
algorithms: slow
compression, high
efficiency.

ETCP_METHOD_HUFFMAN 7 Use the Huffman method,
a variant of the classic
Huffman algorithm:
medium compression
speed, medium efficiency.

ETCP_METHOD_MASH 8 Use the Mash method, a
combination of the LZ and
Huffman methods: fast
compression, good
efficiency.

ETCP_METHOD_SHRINK 9 Use the Shrink method, a
variant of the LZW
algorithm: fast
compression, medium
efficiency.

ETCP_METHOD_SCRUNCH, ETCP_METHOD_HUFFMAN, and
ETCP_METHOD_MASH are not compatible with PkZip.

Usage [form.]ctlname.CompMethod = integer%
 integer% = [form.]ctlname.CompMethod

Data Type Integer (Enumerated)

Availability Design-Time Run-Time Read Run-Time
Write

See Also ZipFile
CompSize Dir: The CompSize property retrieves the compressed size for the file

specified in the FileName property.

Usage long& = [form.]ctlname.CompSize

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileName, OrigSize
CRC Dir: The CRC property retrieves the 32-bit CRC value for the file

specified in the FileName property.

Usage long& = [form.]ctlname.CRC

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileName
CreateDirs
{True}

Unzip: The CreateDirs property can be used to automatically recreate
entire directory hierarchies when restoring archived files. When
CreateDirs is set to True, and the entries in the ZIP file specified by
ZipFile were stored with relative pathnames, the subdirectory hierarchy
will automatically be created on the target drive. CreateDirs is set to
False by default.

Usage [form.]ctlname.CreateDirs = boolean%
 boolean% = [form.]ctlname.CreateDirs

Data Type Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also ZipFile
Date Dir: The Date property retrieves the file date for the file specified in

the FileName property. The date is returned in the default system
format specified in the sShortDate setting in International section of
the WIN.INI file.

Usage string$ = [form.]ctlname.Date

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileName, Time
DestPath Unzip: The DestPath property specifies the target drive and/or path

where files are placed when extracted from an archive. When DestPath
is set to Null, the files are placed in the current directory. DestPath is
Null by default.

Usage [form.]ctlname.DestPath = string$
string$ = [form.]ctlname.DestPath

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also CreateDirs
DirIndex Dir: The DirIndex property specifies the index number of the current

archive directory entry. Most of the Directory Services properties
contain data reflecting different information associated with this entry.
The valid values for DirIndex range from 0 to FileCount - 1. Note than
an archive can contain entries other than files. Valid entries include
files, subdirectory names, and volume labels. Use the Attributes
property to determine the type of entry at a specific index. The
EntryTypes property can be used to limit the types of entries returned.

Usage [form.]ctlname.DirIndex = long&
long& = [form.]ctlname.DirIndex

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also Attributes, EntryTypes, FileCount
Encrypted Dir: The Encrypted property indicates whether or not the file specified

in the FileName property is encrypted. True is returned when the file is
encrypted.

Usage boolean% = [form.]ctlname.Encrypted

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileName
EntryTypes Dir: The EntryTypes property specifies the type of archive entries that

are included when an archive is examined. The following values are
valid for the EntryTypes property.

Setting Value Description
ETCP_ENTRIES_FILES 0 (Default) Include only

files.

ETCP_ENTRIES_DIRVOL 1 Include only directory and
volume labels.

ETCP_ENTRIES_ALL 2 Include all entries in the
archive.

The Attributes property can be used to determine the type of entry
being examined. Simply AND the Attributes property with
ETCP_ATTR_DIRECTORY for directories or
ETCP_ATTR_VOLUME for volume labels. All others are files.

Usage [form.]ctlname.EntryTypes = integer%
integer% = [form.]ctlname.EntryTypes

Data Type Enumerated Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also Attributes
ExcludeSpec The ExcludeSpec property is available during both Zip and Unzip

operations.

Zip: The ExcludeSpec property defines the filename(s) or filespec(s)
that will be unconditionally excluded from the current zip operation.
For example, if FileSpec="*.*" and ExcludeSpec="*.BMP", all files
would be processed except for files with a .BMP extension.

Unzip: The ExcludeSpec property defines the filename(s) or filespec(s)
that will be unconditionally excluded from the current unzip operation.
For example, if FileSpec="*.*" and ExcludeSpec="*.BMP", all files
would be processed except for files with a .BMP extension.

Usage [form.]ctlname.ExcludeSpec = string$
string$ = [form.]ctlname.ExcludeSpec

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileSpec
ExtractFreshen Unzip: The ExtractFreshen property works with the FileSpec and

ExcludeSpec properties to define additional restrictions on unzip
operations. The ExtractFreshen property restricts unzip operations
based on whether the file in the archive is newer or whether the file
already exists in the directory specified by DestPath. The following
settings are valid for the ExtractFreshen property:

Setting Value Description
ETCP_EXFR_ALL 0 Unconditionally extracts

the files.

ETCP_EXFR_NEWEREXISTS 1 Extracts a file only if the
version in the archive is
newer and the file already

exists in the specified
path.

ETCP_EXFT_NEWER 2 Extracts a file if the file in
the archive is newer or the
file does not already exist
in the specified path.

Usage [form.]ctlname.ExtractFreshen = integer%
 integer% = [form.]ctlname.ExtractFreshen

Data Type Integer (Enumerated)

Availability Design-Time Run-Time Read Run-Time
Write

See Also ExcludeSpec, FileSpec
FileArchiveBit Zip: The FileArchiveBit property specifies the method by which

bbbZip handles files that have the DOS archive bit set. The following
settings are valid for the FileArchiveBit property:

Setting Value Description
ETCP_FAB_IGNORE 0 Ignore the archive bit.

ETCP_FAB_ONLYIFSET 1 Add only files that have
the archive bit set.

ETCP_FAB_ALLRESET 2 Add any file. Turn off the
archive bit if set.

ETCP_FAB_ONLYIFSETRESET 3 Add only files with the
archive bit set. Turn off
the archive bit after adding
the file.

Usage [form.]ctlname.FileArchiveBit = integer%
 integer% = [form.]ctlname.FileArchiveBit

Data Type Integer (Enumerated)

Availability Design-Time Run-Time Read Run-Time
Write

See Also IncludeHidSys
FileCount Dir: The FileCount property specifies the number of entries in the

archive specified by the ZipFile property.

Usage long& = [form.]ctlname.FileCount

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also EntryTypes, ZipFile
FileName Dir: The FileName property retrieves the path (if stored) and name of a

file, subdirectory name, or volume label. Since an archive may contain

different types of entries, the Attributes property should be used to
determine the entry type. To determine the entry type, simply AND the
Attributes property with ETCP_ATTR_DIRECTORY for directories or
ETCP_ATTR_VOLUME for volume labels. All others are files.

Usage string$ = [form.]ctlname.FileName

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also Attributes, EntryTypes
FileSpec The FileSpec property is available during Zip and Unzip operations.

Zip: The FileSpec property specifies the filename(s) or filespec(s) to
add, update, freshen, or delete to/from an archive. Each filename/spec
must be separated by a space.

Unzip: The FileSpec property specifies the filename(s) or filespec(s) to
test or extract from an archive. Each filename/spec must be separated
by a space.

Usage [form.]ctlname.FileSpec = string$
string$ = [form.]ctlname.FileSpec

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also ExcludeSpec, ExtractFreshen
IncludeHidSys Zip: The IncludeHidSys property defines the way bbbZip handles files

that have either the hidden or the system attribute set. The following
settings are valid for the IncludeHidSys property:

Setting Value Description

ETCP_HIDSYS_EXCLUDE 0 (Default) Ignore files with

either the system or the
hidden attribute set.

ETCP_HIDSYS_HIDDEN 1 Include hidden files.

ETCP_HIDSYS_SYSTEM 2 Include system files.

ETCP_HIDSYS_BOTH 3 Include both hidden and
system files.

Usage [form.]ctlname.IncludeHidSys = integer%
 integer% = [form.]ctlname.IncludeHidSys

Data Type Integer (Enumerated)

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileArchiveBit
LongFileNames Zip: The LongFileNames property defines the way bbbZip handles

files that have long file name components.

Usage [form.]ctlname.LongFileNames = integer%
integer% = [form.]ctlname.LongFileNames

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

Method Dir: The Method property contains the current file compression
method. The following values are valid for the Method property:

Setting Value Description

ETCP_METHOD_NONE 0 Store
uncompressed.

ETCP_METHOD_DEFLATE0 1 Deflate fastest: fastest
compression speed, low
compression efficiency.

ETCP_METHOD_DEFLATE1 2 Deflate fast: medium
compression speed,
medium compression
efficiency.

ETCP_METHOD_DEFLATE2 3 Default compression
method: balance between
compression speed and
efficiency.

ETCP_METHOD_DEFLATE3 4 Deflate maximum
compression: slow
compression speed, high
compression efficiency.

ETCP_METHOD_SCRUNCH 5 Use the Scrunch method, a
variant of the LZ78
algorithm: fast
compression, good
efficiency.

ETCP_METHOD_IMPLODE 6 Use the Implode method,
a combination of the
Huffman and LZ77
algorithms: slow
compression, high
efficiency.

ETCP_METHOD_HUFFMAN 7 Use the Huffman method,
a variant of the classic
Huffman algorithm:
medium compression
speed, medium efficiency.

ETCP_METHOD_MASH 8 Use the Mash method, a
combination of the LZ and
Huffman methods: fast

compression, good
efficiency.

ETCP_METHOD_SHRINK 9 Use the Shrink method, a
variant of the LZW
algorithm: fast
compression, medium
efficiency.

ETCP_METHOD_SCRUNCH, ETCP_METHOD_HUFFMAN, and
ETCP_METHOD_MASH are not compatible with PkZip.

Usage integer% = [form.]ctlname.Method

Data Type Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also CompMethod
MoveFiles Zip: The MoveFiles property specifies whether or not files will be

removed from the source drive as they are added, updated, or freshened
in an archive. Set MoveFiles to True to remove files from the source
drive after zip operations. MoveFiles is False by default. The
MoveFiles property is equivalent to the PKZIP -m switch. Files are
only deleted when the operation is successful.

Usage [form.]ctlname.MoveFiles = boolean%
 boolean% = [form.]ctlname.MoveFiles

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileSpec
MultiFirst Zip: The MultiFirst property specifies the size of the first segment in a

multi-volume archive. When creating a multi-volume archive, you may
want to first create the files on the hard disk, sized according to the
target media (for example a 1.44 MB floppy). The first disk in a multi-
volume archive usually contains other data such as the SETUP
program and the README file. Therefore, the archive size on the first
disk is usually smaller than the capacity of the disk. The MultiFirst
property allows you to specify a specific size for the first segment in
the multi-volume archive. When MultiFirst is set to zero, all available
disk space is used on the target drive. This value must be set a nonzero
value. The minimum value is 4096.

Usage [form.]ctlname.MultiFirst = long&
 long& = [form.]ctlname.MultiFirst

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also MultiRest, MultiVolume
MultiRest The MultiRest property specifies the size of the second and subsequent

segments in a multi-volume archive. When creating a multi-volume
archive, you may want to first create the files on the hard disk, sized
according to the target media (for example a 1.44 MB floppy). The
MultiFirst property allows you to specify a specific size for the first
segment in the archive. The MultiRest property is used to specify the
size for the remaining segments in the multi-volume archive. When
MultiRest is set to zero, all available disk space is used on the target
drive. When this value is not set to zero, it must be set to a value
greater than or equal to 4096.

Usage [form.]ctlname.MultiRest = long&
 long& = [form.]ctlname.MultiRest

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also MultiFirst, MultiVolume, MultiVolumeType
MultiVolume The MultiVolume property is available during Zip and Unzip

operations.

Zip: Use the MultiVolumeType property to set the type of multi-
volume archive to create. When creating a multi-volume archive file,
set the MultiVolume property to True. The file specified in ZipFile
must not yet exist. bbbZip does not support the updating of multi-
volume archives. The MultiVolume property is equivalent to the
PKZIP -& switch. MultiVolume is False by default.

Unzip: When extracting files from a multi-volume archive file, set the
MultiVolume property to True. bbbZip can extract files from multi-
volume archive files created with bbbZip, PkZip, and DynaZip.

Usage [form.]ctlname.MultiVolume = boolean%
 boolean% = [form.]ctlname.MultiVolume

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also MultiFirst, MultiRest, MultiVolumeType
MultiVolumeType Zip: The MultiVolumeType property specifies the type of multi-volume

archive to create. The default Compression Plus format is the best
choice since this format allows you to create multi-volume archives on
fixed media. The MultiFirst and MultiRest properties are used to
determine the size of the first and subsequent multi-volume files,
respectively. The following settings are valid for the MultiVolumeType
property.

Setting Description
0 (Default) Use the Compression Plus format.
1 Use the PKZIP format.
2 Use the Inner Media DynaZip format.

Usage [form.]ctlname.MultiVolumeType = integer%
 integer% = [form.]ctlname.MultiVolumeType

Data Type Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also MultiFirst, MultiRest
OrigSize Dir: The OrigSize property contains the original uncompressed size of

the file specified by the FileName property.

Usage long& = [form.]ctlname.OrigSize

Data Type Long Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also CompSize, FileName
OverWrite Unzip: The OverWrite property defines the way bbbZip reacts when it

encounters a file that already exists in the destination subdirectory
specified by DestPath. The following values are valid for the
OverWrite property.

Setting Value Description
ETCP_OVERWRITE_PROMPT 0 Prompts the user to

confirm the overwrite
operation. The Prompt
event is triggered when
the Prompts property is
True.

ETCP_OVERWRITE_ALWAYS 1 Overwrites the file
without prompting.

ETCP_OVERWRITE_NEVER 2 Does not overwrite
existing files.

Usage [form.]ctlname.OverWrite = integer%
integer% = [form.]ctlname.OverWrite

Data Type Integer (Enumerated)

Availability Design-Time Run-Time Read Run-Time
Write

See Also DestPath, Prompt event, Prompts
Password The Password property is available during Zip and Unzip operations.

Zip: The Password property allows you to encrypt files with a
password as they are added, updated, or freshened in an archive. The
password is a string with length up to 64 characters. Password is empty
by default. This property is equivalent to the PKZIP -s[password]
switch. Do not forget your password! If you do, you will not be able to

recover your files.

Unzip: The Password property allows you to extract encrypted files
from an archive. To extract an encrypted file, simply set the Password
property to the same password that was used to encrypt the file. If you
do not have the correct password, you will not be able to extract the
file.

Do not use ASCII Character 34 (the " mark) or ASCII Character 0 in
the Password property.

Usage [form.]ctlname.Password = string$
 string$ = [form.]ctlname.Password

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileSpec
Prompts The Prompts property is available during Zip and Unzip operations.

Zip: The Prompts property indicates the way bbbZip handles control
events and user prompts. When Prompts is True, bbbZip fires Progress
and Prompt control events when appropriate. When Prompts is False,
no prompts or progress information is displayed. Prompts is True by
default.

Unzip: The Prompts property indicates the way bbbZip handles control
events and user prompts. When Prompts is True, bbbZip fires Progress
and Prompt control events when appropriate. When Prompts is False,
no prompts or progress information is displayed. Prompts is True by
default.

Whenever a Prompt event is triggered, bbbZip displays a standard,
built-in dialog by default. You can add custom code to the Prompt
event to handle some or all of the possible types of prompts. When
Prompts is False, the user will not be prompted for overwrite
confirmation and bbbZip will not yield any timeslices to other
Windows applications. If OverWrite is 0, bbbZip will skip the file
without overwriting.

Usage [form.]ctlname.Prompts = boolean%
boolean% = [form.]ctlname.Prompts

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also Progress event, Prompt event
QUnZip Unzip: The QUnZip property is equivalent to the PKUNZIP command

line. With QUnZip, you can carry out a command-line unzip operation
while ignoring all other unzip properties (with the exception of
ReadOnly and Prompts). See Appendix C for a complete list of
Compression Plus unzip switches. Keep in mind that all other bbbZip

unzip properties are ignored when QUnZip is used (again, with the
exception of ReadOnly).

Usage [form.]ctlname.QUnZip = string$

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also Zip, ReadOnly
QZip Zip: The QZip property is equivalent to the PKZIP command line.

With QZip, you can carry out a command-line zip operation while
ignoring all other zip properties (with the exception of Prompts). See
Appendix B for a complete list of Compression Plus zip switches.
Keep in mind that all other bbbZip zip properties are ignored when
QZip is used. QZip cannot be used to create multi-volume archives.

Usage [form.]ctlname.QZip = string$

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also QUnZip
ReadOnly Unzip: The ReadOnly property specifies the way bbbZip opens an

archive. Set ReadOnly to True to open an archive with READ_ONLY
access. This property is useful when opening an archive from a CD-
ROM drive or network drive where write-access is not granted.

Usage [form.]ctlname.ReadOnly = boolean%
boolean% = [form.]ctlname.ReadOnly

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also QUnZip
Recurse Zip: The Recurse property is equivalent to the PKZIP -r switch. When

Recurse is True, all subdirectories beneath the directory level as
indicated by the FileSpec property are also searched for matching files.
Recurse is False by default.

Usage [form.]ctlname.Recurse = boolean%
 boolean% = [form.]ctlnme.Recurse

Data Type Boolean

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileSpec, StorePaths
Status The Status property is available during Zip, Unzip, and Directory

operations.

Zip: The Status property indicates the current status of zip operation. A
return value of 0 indicates no error. See Appendix A for a list of error
codes.

Unzip: The Status property indicates the current status of an unzip
operation. A return value of 0 indicates no error. See Appendix A for a
list of error codes.

Dir: The Status property indicates the current status of a directory
operation. A return value of 0 indicates no error. See Appendix A for a
list of error codes

Usage integer% = [form.]ctlnme.Status

Data Type Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also Action, Cancel
StorePaths Zip: The StorePaths property indicates whether pathnames are stored in

the archive along with the filenames. The following values are valid for
the StorePaths property.

Setting Value Description
ETCP_PATHS_NONE 0 No pathnames

are stored.

ETCP_PATHS_RECURSED 1 If Recurse is
True, all relative
paths are stored
in the archive.

ETCP_PATHS_SPECIFIEDRECURSED 2 If Recurse is
True, all relative
paths are stored
in the archive.

Paths specified in FileSpec are also stored regardless of Recurse.

Usage [form.]ctlname.StorePaths = integer%
 integer% = [form.]ctlname.StorePaths

Data Type Integer (Enumerated)

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileSpec, Recurse
Time Dir: The Time property returns the time of the file specified by the

FileName property. The file time is returned in the default system
format as defined in the International section of the WIN.INI file.

Usage string$ = [form.]ctlname.Time

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also Date, FileName
UseVolLabel The UseVolLabel property is available during Zip and Unzip

operations.

Zip: This property allows you to store a volume label from a specified
drive into the ZIP archive during a zip operation. Set this property to
the drive letter of the desired drive before the zip operation. Setting this
property to the <SPACE> character indicates the default drive. When
more than one character is specified, the first character is used as the
drive letter. Only one volume label can be stored in an archive. This
property is equivalent to the PKZIP switch -$.

Unzip: Set this property to any non-null value to add or set the
current volume label on the drive specified by the DestPath property. A
volume label must have been previously stored in the archive.

Usage [form.]ctlname.UseVolLabel = string$
string$ = [form.]ctlname.UseVolLabel

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also DestPath
ZipComment Dir: The ZipComment property specifies the comment for the archive

specified in the ZipFile property. Use this property to add or modify
the archive comment. The maximum length of the comment is 2048
bytes. The comment cannot include ASCII character 0.

Usage [form.]ctlname.ZipComment = string$
string$ = [form.]ctlname.ZipComment

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also Comment, ZipFile
ZipFile The ZipFile property is available as a Zip operation, Unzip operation,

and Directory Service. The ZipFile property must be defined before
setting the Action property to any of Action's predefined constants
(with the exception of ETCP_ACTION_NONE). If you modify this
property while an action is in progress, the action will be canceled.

Zip: The ZipFile property specifies the name of the archive file to
create or update.

Unzip: The ZipFile property specifies the name of the archive
containing the files to be extracted or tested.

Dir: The ZipFile property specifies the archive file to be interrogated.

Usage [form.]ctlname.ZipFile = string$
string$ = [form.]ctlname.ZipFile

Data Type String

Availability Design-Time Run-Time Read Run-Time
Write

See Also FileName, ZipFileDate
ZipFileDate Zip: The ZipFileDate property specifies the way the date and time

stamp of an archive is to be modified after a zip operation (add, update,
or freshen). The following values are valid for the ZipFileDate
property:

Setting Value Description
ETCP_ZIPDATE_CURRENT 0 (Default) The archive is

stamped with the date and
time of the modification.

ETCP_ZIPDATE_ORIGINAL 1 The archive is stamped
with the original date and
time.

ETCP_ZIPDATE_LATEST 2 The archive is stamped
with the date and time of
the newest file in the
archive.

Usage [form.]ctlname.ZipFileDate = integer%
integer% = [form.]ctlname.ZipFileDate

Data Type Enumerated Integer

Availability Design-Time Run-Time Read Run-Time
Write

See Also ZipFile

Methods (Zip Constituent)

Description Properties Events

There are no methods for this control.

Events (Zip Constituent)

Description Properties Methods

Event
Name

Description

Progress The Progress event is triggered periodically as each file is compressed or
decompressed. This event procedure is the ideal location for handling progress
reports and status displays. The Progress event procedure is defined as follows:

Sub Progress (Operation%, MsgType%, Percent%, Method%, ZipFile$,
FileName$)

Operation Value Description
ETCP_ACTION_NONE 0 No action.
ETCP_ACTION_EXAMINE 1 Directory services
ETCP_ACTION_ADD 2 Add files to an archive
ETCP_ACTION_UPDATE 3 Update an archive
ETCP_ACTION_FRESHEN 4 Freshen an archive
ETCP_ACTION_DELETE 5 Delete files from an archive
ETCP_ACTION_EXTRACT 6 Extract files from an archive
ETCP_ACTION_TEST 7 Test archive files without extracting

A MsgType value of zero indicates that no error occurred and the event was fired to
allow you to display a standard progress report.

A non-zero MsgType value indicates an error condition or that the current Action was
canceled by the user. The following is a list of the possible values for MsgType.

 Note that additional MsgType values may be listed in the include files which define
these constants, as the include files may be updated more frequently than this manual.
See the files for the latest information.

Value Description
ETCP_ERR_NOT_ENOUGH_MEMORY Not enough memory
ETCP_ERR_INVALID_HANDLE Invalid (file or archive) handle
ETCP_ERR_ACCESS_DENIED Access denied (file error)
ETCP_ERR_PATH_NOT_FOUND Path not found (or unable to create

subdirectory)
ETCP_ERR_FILE_NOT_FOUND File not found
ETCP_ERR_NO_PROBLEM No error
ETCP_ERR_UNKNOWN_ARCHIVE_TYPE Not a ZIP archive
ETCP_ERR_INVALID_ARCHIVE_DIR Error in archive directory
ETCP_ERR_UNKNOWN_METHOD Unknown compression method
ETCP_ERR_USER_ABORT User wants to cancel
ETCP_ERR_NO_FILES_FOUND No matching files
ETCP_ERR_INCOMPLETE Unable to complete request
ETCP_ERR_INVALID_SWITCH Invalid switch option
ETCP_ERR_DISK_FULL Write error (disk full?)
ETCP_ERR_READ_PAST_END Read error (read past end?)
ETCP_ERR_INVALID_OFFSET Invalid starting offset for EtUnzipString,

EtUnzipMem, or EtUnzipMemPtr
ETCP_ERR_OVERFLOW Overflow (integer > 32767)

ETCP_ERR_NOTHING_TO_DO No action specified [respond by
displaying help]

ETCP_ERR_SWITCH_CONFLICT Conflicting switches were
specified

ETCP_ERR_TOO_MANY_FILES Too many files to process (more than
65535)

ETCP_ERR_INVALID_DATE Invalid date specified
ETCP_ERR_BAD_FILE_MODE Invalid file mode specified (e.g., tried to

write to a read-only file)
ETCP_ERR_BAD_PASSWORD Incorrect password
ETCP_ERR_BAD_CRC Computed CRC doesn't match recorded

CRC
ETCP_ERR_NOT_WITH_MV Function is not supported for

multivolume archives
ETCP_ERR_CANT_CONTINUE ZIP was modified between

Et4ZipFindNext calls
ETCP_ERR_NOT_REMOVABLE Fixed disk was not specified for a MV

archive format that requires removable
media

The Percent parameter indicates how much of the current file, specified by FileName,
has been processed. This information can easily be applied to a Percent Complete
control or something similar.

The Method parameter specifies the compression method that was/is being applied to
the current file. The following values are valid for the Method parameter.

Setting Value Description
ETCP_METHOD_NONE 0 Store uncompressed.
ETCP_METHOD_DEFLATE0 1 Deflate fastest: fastest compression

speed, low compression efficiency.

ETCP_METHOD_DEFLATE1 2 Deflate fast: medium compression speed,
medium compression efficiency.

ETCP_METHOD_DEFLATE2 3 Default compression method: balance
between compression speed and
efficiency.

ETCP_METHOD_DEFLATE3 4 Deflate maximum compression: slow
compression speed, high compression
efficiency.

ETCP_METHOD_SCRUNCH 5 Use the Scrunch method, a variant of the
LZ78 algorithm: fast compression, good
efficiency.

ETCP_METHOD_IMPLODE 6 Use the Implode method, a combination
of the Huffman and LZ77 algorithms:
slow compression, high efficiency.

ETCP_METHOD_HUFFMAN 7 Use the Huffman method, a variant of
the classic Huffman algorithm: medium
compression speed, medium efficiency.

ETCP_METHOD_MASH 8 Use the Mash method, a combination of
the LZ and Huffman methods: fast
compression, good efficiency.

ETCP_METHOD_SHRINK 9 Use the Shrink method, a variant of the

LZW algorithm: fast compression,
medium efficiency.

The ZipFile parameter specifies the name of the current archive.

If you wish to cancel the current operation, set the Cancel property to True prior to
exiting the Progress event procedure.

The Progress event is also the ideal place to allocate time slices to other applications.
A DoEvents statement placed just before exiting the event procedure should work
well.

Prompt The Prompt event controls the way bbbZip handles user prompts. When the Prompts
property is True (the default), the Prompt event is triggered whenever a decision is
required by the end-user. This includes asking for file overwrite confirmation, asking
for the next disk in a multivolume archive disk sequence, etc. The procedure
definition for the Prompt event follows:

Sub bbbZip1_Prompt (Operation%, MsgType%,
DiskNum%, ZipFile$, FileName$, Reply%)

When the Prompt event is triggered, the Operation parameter will be set to the current
Action. Operation is one of the following values:

Operation Value Description
ETCP_ACTION_NONE 0 No action.
ETCP_ACTION_EXAMINE 1 Directory services
ETCP_ACTION_ADD 2 Add files to an archive
ETCP_ACTION_UPDATE 3 Update an archive
ETCP_ACTION_FRESHEN 4 Freshen an archive
ETCP_ACTION_DELETE 5 Delete files from an archive
ETCP_ACTION_EXTRACT 6 Extract files from an archive
ETCP_ACTION_TEST 7 Test archive files without extracting

You can examine the MsgType parameter to determine the type of prompt needed
(overwrite confirmation, multivolume disk change, etc.). You can either display a
dialog yourself, or instruct bbbZip to use its default dialogs. The following values are
valid for the MsgType parameter:

Value Value Description
ETCP_QUERY_INSERT_DISK 1 Insert a specific disk # in a multivolume

set

ETCP_QUERY_OVERWRITE 2 Overwrite confirmation
ETCP_QUERY_INSERT_LAST 3 Insert the last disk in a PK-compatible

multivolume set

On entry, the Reply parameter is set to ETCP_YOU_DO_IT (-10,000). If Reply is
unchanged on exit, no action was taken during the event and Compression Plus
should use its own default dialog box for this message.

The DiskNum parameter contains the number of the next disk required by the
multivolume backup/restore sequence when MsgType is set to
ETCP_QUERY_INSERT_DISK,.

The ZipFile parameter contains the name of the current archive.

The FileName parameter contains the name of the current file being added, extracted,
etc.

On exit from this event procedure, Reply should be set to indicate how Compression
Plus should proceed. The actual value to use varies according to the message. The
following list contains the possible messages and possible return values for Reply.

MsgType Description
ETCP_QUERY _OVERWRITE Asks for file overwrite confirmation.

FileName contains the name of the file
to be overwritten.

Reply Values
IDYES - Overwrite
IDNO - Do NOT overwrite
IDCANCEL - Abort unzip operation

ETCP_QUERY_INSERT_DISK Asks for a specific disk number during a
multi-volume operation. DiskNum
contains the number of the requested
disk.

Reply Values
IDOK - Disk inserted. Continue.
IDCANCEL - Cancel the multivolume operation

ETCP_QUERY_INSERT_LAST Asks for a the last disk in a multivolume
set to be inserted. This message is
possible only when working with
PKZIP-compatible multivolume
archives.

Reply Values
IDOK - Disk inserted. Continue.
IDCANCEL - Cancel the multivolume operation

IDYES, IDNO, IDCANCEL, and IDOK are defined in the Visual Basic file
CONSTANT.TXT. These constants are also defined in the Windows SDK Help file
and the WINDOWS.H file provided with the Microsoft Windows SDK.
You can also use the defined VB constants vbYES, vbNO, vbCANCEL, vbOK.

