
(About) Property
Applies To

Description
Displays version information about the control.

Usage
Click on the ellipses ('...') button next to the property text to activate the about dialog box.

Remarks
Available only at design time.

(Custom) Property
Applies To

Description
Displays the property pages for the control.

Usage
Right-click on the object and choose 'Property Pages’ from the pop-up menu, or click on
the ellipses ('...') button next to the property text to activate the property pages dialog
box.

Remarks
Available only at design time. The property pages dialog provides access to the properties
of the control in design environments which do not have a property sheet. Property Pages
also provide access to certain properties at design-time which are not available from the
property sheet.
For more information see Property Pages

ActiveThreed Constants

AlignFrameText Constants
Constant Value Description
ssLeftJustify 0 Left align text.
ssRightJustify 1 Right align text.
ssCenter 2 Center text.

AlignPanelText Constants
Constant Value Description
ssLeftTop 0 Text to left and top.
ssLeftMiddle 1 Text to left and middle.
ssLeftBottom 2 Text to left and bottom.
ssRightTop 3 Text to right and top.
ssRightMiddle 4 Text to right and middle.
ssRightBottom 5 Text to right and bottom.
ssCenterTop 6 Text to center and top.
ssCenterMiddle 7 Text to center and middle.
ssCenterBottom 8 Text to center and bottom.

AlignTo Constants
Constant Value Description
ssTextRight 0 Text to right.
ssTextLeft 1 Text to left.

AutoSize Constants (SSSplitter)
Constant Value Description
ssAutoSizeNone 0 No autosizing.
ssAutoSizeFillContainer 1 Autosize Splitter control to form or container.

AutoSizeButton Constants
Constant Value Description
ssNone 0 No autosizing.
ssPictureToButton 1 Autosize picture to button.
ssButtonToPicture 2 Autosize button to picture.

AutoSizePanel Constants
Constant Value Description

ssNone 0 No autosizing.
ssWidthToCaption 1 Autosize panel width to caption.
ssHeightToCaption 2 Autosize panel height to caption.
ssChildToPanel 3 Autosize child form to panel.

BackStyle Constants
Constant Value Description
ssOpaque 0 Opaque background.
ssTransparent 1 Transparent background.

Bevel Constants
Constant Value Description
ssNone 0 No inner or outer bevel.
ssInset 1 Inset inner or outer bevel.
ssRaised 2 Raised inner or outer bevel.

BorderStyle Constants (SSSplitter)
Constant Value Description
ssBorderStyleNone 0 Control will have no border
ssBorderStyleFixedSingle 1 Control will have a single pixel black border
ssBorderStyleInset 2 Control will appear inset into the background
ssBorderStyleRaised 3 Control will appear raised above the background

ButtonStyle Constants
Constant Value Description
ssFollowOS 0 Button follows default OS button appearance.
ssWin95 1 Windows 95 / NT 4.0 button appearance.
ssWin3X 2 Windows 3.X / NT 3.X button appearance.
ssActiveBorders 3 Button borders appear when mouse is over button.
ssBorderless 4 No button borders.

CaptionStyle Constants
Constant Value Description
ssStandard 0 Caption text appears on a single line.
ssWrapped 1 Caption text can wrap to multiple lines.

CheckBoxValue Constants
Constant Value Description

ssCBUnchecked 0 Check box is not checked.
ssCBChecked 1 Check box is checked.
ssCBGrayed 2 Check box is grayed (indeterminate.)

ClipBoard Constants
Constant Value Description
ssCFText 1 Clipboard format is pure text (TXT).
ssCFBitmap 2 Clipboard format is bitmap (BMP).
ssCFMetafile 3 Clipboard format is standard metafile (WMF).
ssCFDIB 8 Clipboard format is device-independent bitmap.
ssCFPallette 9 Clipboard format is color palette.
ssCFEMetafile 14 Clipboard format is enhanced metafile (EMF).
ssCFFiles 15 Clipboard format is a list of filenames (Explorer).
ssCFRTF -16639 Clipboard format is rich text w/formatting (RTF).

DragOver Constants
Constant Value Description
ssEnter 0 OLEDragEnter - mouse cursor has entered control.
ssLeave 1 OLEDragLeave - mouse cursor has left control.
ssOver 2 OLEDragOver - mouse cursor is inside control.

FloodFillStyle Constants
Constant Value Description
ssSegmented 0 Panel fill will be segmented.
ssSolid 1 Panel fill will be solid.

FloodType Constants
Constant Value Description
ssNone 0 No flood.
ssLeftToRight 1 Flood from left to right.
ssRightToLeft 2 Flood from right to left.
ssTopToBottom 3 Flood from top to bottom.
ssBottomToTop 4 Flood from bottom to top.
ssWideningCircle 5 Flood in widening circle.

Font3D Constants
Constant Value Description
ssNone 0 No 3-D text font.
ssRaisedLight 1 Font raised with light shading.

ssRaisedHeavy 2 Font raised with heavy shading.
ssInsetLight 3 Font inset with light shading.
ssInsetHeavy 4 Font inset with heavy shading.

MarqueeDirection Constants
Constant Value Description
ssMDRightToLeft 0 Text moves from right to left.
ssMDLeftToRight 1 Text moves from left to right.
ssMDTopToBottom 2 Text moves from top to bottom.
ssMDBottomToTop 3 Text moves from bottom to top.

MarqueeStyle Constants
Constant Value Description
ssNoneMarquee 0 Text is static.
ssScrollingMarquee 1 Text moves constantly in one direction.
ssSlidingMarquee 2 Text moves and then stops.
ssBlinkingMarquee 3 Text flashes on and off.
ssBouncingMarquee 4 Text moves and reverses direction.

OLEDrag Constants
Constant Value Description
ssOLEDragManual 0 OLEDrag mode is manual.
ssOLEDragAutomatic 1 OLEDrag mode is automatic.

OLEDrop Constants
Constant Value Description
ssOLEDropNone 0 OLEDrop mode is not supported.
ssOLEDropManual 1 OLEDrop mode is manual.

OLEDropEffect Constants
Constant Value Description
ssOLEDropEffectNone 0 OLEDrop mode is not supported.
ssOLEDropEffectCopy 1 OLEDrop data is being copied.
ssOLEDropEffectMove 2 OLEDrop data is being moved
ssOLEDropEffectScroll -2147483648 OLEDrop data causes scrolling.

(&H80000000)

PictureAlignment Constants

Constant Value Description
ssPALeftOfCaption 0 Picture aligned to left of text.
ssPARightOfCaption 1 Picture aligned to right of text.
ssPAJustify 2 Picture aligned to control edge opposite of text.

PictureBackground Constants
Constant Value Description
ssCentered 0 Background picture is centered at actual size.
ssStretched 1 Background picture is stretched to fill control.
ssTiled 2 Background picture is tiled to fill control.

PictureDnChange Constants
Constant Value Description
ssNoChange 0 Use Up bitmap with no change.
ssDither 1 Dither Up bitmap.
ssInvert 2 Invert Up bitmap.

Shadow Color Constants
Constant Value Description
ssDarkGrey 0 Dark gray shadow.
ssBlack 1 Black shadow.

ShadowStyle Constants
Constant Value Description
ssInset 0 Shadow inset.
ssRaised 1 Shadow raised.

SplitterBarAppearance (SSSplitter)
Constant Value Description
ssSplitterBarBorderless 0 Splitter bars have no border.
ssSplitterBarFlat 1 Splitter bars have flat, 1-pixel borders.
ssSplitterBar3D 2 Splitter bars have shaded 3-D style borders

SplitterBarJoinStyle (SSSplitter)
Constant Value Description
ssJoinContinuous 0 Splitter bar junctions are seamless.
ssJoinSegmented 1 Splitter bar junctions display borders.

SplitterBarType (SSSplitter)
Constant Value Description
ssSplitterBarBoth 0 Splitter bar junctions is being moved.
ssSplitterBarHorizontal 1 Horizontal splitter bar is being moved.
ssSplitterBarVertical 2 Vertical splitter bar is being moved.

SplitterResizeStyle (SSSplitter)
Constant Value Description
ssResizeNonProportional 0 Splitter panes will not resize proportionally to control

size.
ssResizeProportional 1 Splitter panes will resize proportionally to control

size.

SplitType (SSSplitter)
Constant Value Description
ssTopOfSplit 0 New pane will be created above existing pane.
ssBottomOfSplit 1 New pane will be created below existing pane.
ssLeftOfSplit 2 New pane will be created to the left of existing pane.
ssRightOfSplit 3 New pane will be created to the right of existing

pane.

ActiveThreed Controls

      
Using the ActiveThreed Controls
Describes how to use the features that are common to all the
ActiveThreed controls, including common properties, events and
methods.

SSCheck Box Control
Give you multi-state data entry and display functions with a highly
customizable appearance.
SSCommand Button Control
Provides you with buttons that can have a variety of styles for use
on your forms.
SSFrame Control
Used as a container for other controls. Provides unique background
capabilities and active features
SSOption Button Control
Give you exclusive data entry and display functions with a highly
customizable appearance.
SSPanel Control
Used as a container for other controls. Provides active features and
can also be used as a progress indicator.
SSRibbon Button Control
Gives you buttons with exclusive and group operation functions for
use on forms or toolbars.
SSSplitter Control
Organize the controls of your application based on a series of
resizable panes of varying sizes, separated by movable splitter bars.

Add Method
See Also Example Applies To

Description
This method is used to add a new pane to the Splitter control by splitting an existing pane.

Syntax
object.Add panename,    splitdir, [newpanename]

Part Description
object An object expression that evaluates to an object or a control in the Applies

To list.
panename A string expression that evaluates to the name of an existing pane object

that will be split to create the new pane.
splitdir An integer expression specifying the location of the new pane, as

described in Settings.
newpanename Optional. A variant expression specifying a name for the newly created

pane.
Settings

Setting Description
0 Top of split. The pane will be divided horizontally and the new pane will appear

above the existing one.
1 Bottom of split. The pane will be divided horizontally and the new pane will

appear below the existing one.
2 Left of split. The pane will be divided vertically and the new pane will appear

to the left of the existing one.
3 Right of split. The pane will be divided vertically and the new pane will appear

to the right of the existing one.
Remarks

The panename supplied must be an existing Pane object from the Panes collection.
When splitting a pane, the existing pane is divided exactly in half in the direction implied
by splitdir (horizontal for 0 and 1, vertical for 2 and 3.) If you wish you can specify a name
for the new pane at the time of creation by supplying a value for newpanename. If you do
not specify a name, the default name for the new pane will be used.
Once the new pane has been added, you can change its size using the Height and Width
properties of the Pane object.

Note You can only split a pane that does not contain a control. If you attempt to split a
pane containing a control, an error will occur.

Adding Animation To Controls

You can add animated pictures to your controls in the same way that you add static
pictures. Animated pictures are simply regular bitmaps divided into a number of equally
sized segments that constitute the "frames" of the animation. Segmented bitmaps are
assigned to the Picture property of the control, or to one of the associated picture
properties (PictureDisabled, PictureDn or PictureDnDisabled; animation cannot be
applied to the PictureBackground property)
You enable the animated capabilities of a control by setting the PictureFrames property
of the control to a number greater than one. The number you specify for PictureFrames is
the number of segments in your bitmap.
The property pages of the ActiveThreed controls contain a special Animation Builder tab
that gives you the ability to easily import multiple bitmaps into one segmented bitmap,
then apply that bitmap to the Picture property of the control. You can also set the number
of frames that will be used in the resultant bitmap.

To add an animated picture to your control:
1. Select the Picture property of the control and specify the name of a segmented

bitmap that will be used as an animation. You can create your own segmented
bitmaps, or use one of the ones that comes with ActiveThreed.

2. Enter the number of segments in the bitmap as the value for the PictureFrames
property.

Note that you can obtain some special animation effects by setting PictureFrames to a
value other than the actual number of segments in the bitmap. An incorrect setting of
PictureFrames can result in a "rolling" animation that scrolls across the picture area of
the control in addition to exhibiting an animated action. You may want to experiment with
different settings for PictureFrames to see what kind of effects you can produce.

Adding Pictures to Captions

All of the ActiveThreed controls (except the SSSplitter) can incorporate a picture into the
area occupied by their caption. The implementation of this feature varies from control to
control. In the SSCheck and SSOption controls, the picture shares the caption area with the
caption, but text and picture remain separate, and the picture can be aligned only to the
right or left of the caption. For the SSCommand, SSRibbon and SSPanel controls, the
caption and the picture share the area of the control, and can be aligned with respect to or
independently of one another. The SSFrame provides a picture that is restricted to the
caption area of the control, similar to that of the SSCheck and SSOption.
You can add a picture to a control by specifying the name of a bitmap, icon or metafile for
the control's Picture property. Certain controls support multiple pictures, such as the
SSCommand which supplies separate picture properties for the down and disabled states
of the button via the PictureDn and PictureDisabled properties. The SSFrame and
SSPanel controls have a PictureBackground property that lets you specify a picture for
the background of the control that is distinct from the control's caption picture as specified
by the Picture property.
Because you have a number of picture properties (Picture, PictureDn, PictureDisabled,
PictureDnDisabled) it is possible to set them to use pictures of different sizes. Doing so
will result in the dimensions of the largest picture being used as the de facto picture size
for the control. This is most apparent when using the AutoSize property to adjust the size
of the control to the size of the picture.
If you specify a metafile for the Picture property, some of the properties of the control
relating to picture alignment may behave somewhat differently. When you use a metafile,
if the control has a caption, the AutoSize property (SSCommand, SSRibbon, SSPanel) has
no effect. The effect of the PictureAlignment depends on whether the picture is being
aligned to the control or to the caption. If the setting of PictureAlignment is such that
the metafile will be aligned to the control (Top Left, Center Bottom, etc.) the property is
ignored and the metafile fills the full area of the control. If however the metafile is aligned
to the caption (Left of Caption, Top of Caption , etc.) the metafile will be scaled into an area
with the specified alignment. For example, if PictureAlignment is set to "Right of
Caption" then the metafile will be scaled into whatever area of the control has the
specified alignment and is outside the caption area:

To add a picture to your control:
1. Select the Picture property of the control
2. Enter the filename of a bitmap, icon or metafile, or choose one from the File Open

dialog.
3. Select the type of alignment you wish the picture to have by choosing a value for the

PictureAlignment property.
To add a background picture to an SSFrame or SSPanel:

1. Select the PictureBackground property of the control
2. Enter the filename of a bitmap, icon or metafile, or choose one from the File Open

dialog.
3. Select the PictureBackgroundStyle property and choose the way you want the

background picture to be aligned; centered, stretched or tiled.

Align Property
See Also Example Applies To

Description
Returns or sets a value that determines how the control will be aligned to its container.

Syntax
object.Align[= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the alignment of the control, as described in

Settings.
Settings

Setting Description
0 None
1 Top of container
2 Bottom of container
3 Left of container
4 Right of container

Remarks
This is a standard property found on container controls. A control with the Align property
set to greater than zero will automatically resize itself when its container is resized.

Note When changing the setting of the Align property through code, you may have to
refresh the control in order for the AutoSize property to take effect.

Alignment Property
See Also Example Applies To

Description
Returns or sets a value that determines how the caption of the control will be aligned.

Syntax
object.Alignment[= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the alignment of the caption of the control,

as described in Settings.
Settings

For SSCheck and SSOption

Setting Description
0 (Default) Left Justify
1 Right Justify

For SSFrame

Setting Description
0 (Default) Top Left
1 Top Right
2 Top Center
3 Bottom Right
4 Bottom Left
5 Bottom Center

For SSCommand, SSPanel and SSRibbon

Setting Description
0 (Default - SSPanel) Left Justify - Top
1 Left Justify - Middle
2 Left Justify - Bottom
3 Right Justify - Top
4 Right Justify - Middle
5 Right Justify - Bottom
6 Center - Top
7 (Default - SSCommand & SSRibbon) Center - Middle
8 Center - Bottom

Remarks
For the SSCheck and SSOption, Alignment controls how the check box or option button
graphic will be aligned within the control:

For the SSFrame, the Alignment property controls the alignment of the entire caption area
relative to the control itself. The setting of Alignment also affects the placement of any
picture specified by the Picture property.
For SSCommand, SSPanel & SSRibbon, Alignment controls the alignment of the caption
text within the entire area of the control. The setting of Alignment may or may not affect
the alignment and scaling of the control's picture, based on the type of alignment, the type
of picture and the type of picture alignment. See Adding Pictures To Captions for more
information.

Collection Summary See Also

Panes
ssDataObjectFiles

Event Summary See Also

C
Click
D
DblClick
K
KeyDown
KeyPress
KeyUp
M
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
O
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag
R
Resize
S
SplitterEndDrag
SplitterStartDrag

Method Summary See Also

    Note *
A
Add
C
Clear
D
DoClick
G
GetData
GetFormat
I
Item
O
OLEDrag
P
PaneFromControl
PaneFromPosition
PaneFromPositionEx
PlaySoundFile
R
Refresh
Remove
S
SetData
SetFocus *

Object Summary See Also

Font
Pane
ssDataObject

Property Summary See Also

      Note *
(About)
(Custom)
A
Align
Alignment
AutoRepeat
AutoSize (SSCommand & SSRibbon)
AutoSize (SSPanel)
AutoSize (SSSplitter)
B
BackColor
BackStyle
BevelInner
BevelOuter
BevelWidth
Bold
BorderStyle
BorderWidth
ButtonStyle
C
Cancel
Caption
CaptionStyle
CheckBoxGraphics
CheckBoxMaskColor
CheckBoxUseMask
ClipControls
Control
ControlName
Count
D
DataField *
DataSource *
Default
DragMode
E
Enabled
F
Files
FloodColor

FloodFillStyle
FloodPercent
FloodShowPct
FloodType
Font
Font3D
ForeColor
G
GroupAllowAllUp
GroupNumber
H
Height *
HelpContextID *
Hwnd
I
Italic
L
Left *
Locked
LockHeight
LockWidth
M
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MinHeight
MinWidth
MouseIcon
MousePointer
N
Name *
Name (Font object)
O
OLEDropMode
OptionBtnGraphics
OptionBtnMaskColor
OptionBtnUseMask
Outline
P
Picture
PictureAlignment

PictureAnimationDelay
PictureAnimationEnabled
PictureBackground
PictureBackgroundStyle
PictureDisabled
PictureDisabledFrames
PictureDn
PictureDnChange
PictureDnDisabled
PictureDnDisabledFrames
PictureDnFrames
PictureFrames
PictureMaskColor
PictureUseMask
R
RoundedCorners
S
ShadowStyle
Size
SplitterBarAppearance
SplitterBarJoinStyle
SplitterBarWidth
SplitterResizeStyle
Strikethrough
T
TagVariant
Top *
TripleState
U
Underline
V
Value (SSCheck)
Value (SSCommand, SSOption, SSRibbon)
W
Width *
Windowless

Animation Builder Property Page

The SSFrame, SSPanel, SSOption, SSCheck, SSRibbon and SSCommand controls provide an
Animation Builder property page.    Here is what it looks like:

The Animation Builder page enables you to setup a sequence of bitmaps that can
subsequently be animated by ActiveThreed controls.
When you click "Insert Frame..." to add individual files to a segmented bitmap, the File
Open dialog gives you the ability to select multiple files. The order in which these files are
selected is significant. The last file you select will be the first file imported into the
segmented bitmap. Because the files are imported in reverse order, you should begin by
selecting the last file you want to use, and work your way back to the first one. For
example, if you wish to import ten bitmaps, BMP01.BMP through BMP10.BMP, you should
select BMP10.BMP first, then BMP09.BMP and so on until you finally select BMP01.BMP.

Creating a Bitmap Sequence
To create a bitmap sequence from a set of bitmaps:
1. Create or acquire the sequence of bitmaps that are to be animated.
2. Select a picture-type property of the control in the Property Name field.

Note Only 'Picturexxxx' properties that have an associated 'PicturexxxxFrames'
property are available.    Not all picture-related properties are available for all
ActiveThreed controls.

3. Press the Insert Picture button and select a bitmap using the Insert Picture dialog.

At this point a preview of the bitmap will appear in the sequence displayed in the box
labeled Frames.

Removing a Bitmap from the Sequence

To remove a bitmap from the sequence displayed in the box labeled Frames:
1. Select the bitmap you want to remove by directly clicking on it in the Frames box.
2. Press the Remove Picture button.

At this point the bitmap will be removed from the sequence.

AutoRepeat Property
Applies To Example

Description
Returns or sets a value that determines whether the control will automatically generate
multiple click events.

Syntax
object.AutoRepeat[= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying the repeat mode of the control, as described

in Settings.
Settings

Setting Description
True The button will generate multiple Click events when the mouse button is held

down over the control, or the spacebar is held down while the control has
focus.

False (Default) The button will generate a single Click event when the mouse
button is held down over the control, or the spacebar is held down while the
control has focus.

Remarks
Use the AutoRepeat property when you want the user to be able to perform an action
repeatedly. The button will continue to fire the Click event as long as the mouse cursor is
over the control and the user is holding down the mouse button.
There is an initial delay of 500 milliseconds between the time the user clicks the button
and the time the AutoRepeat function takes over. Once the button has begun to
AutoRepeat, additional Click events will be fired at 100 millisecond intervals. (Times are
approximate and may vary depending on the level of overall system activity.)

AutoSize Property (SSCommand & SSRibbon)
See Also Applies To

Description
Returns or sets a value that specifies how the control will adjust it's size based on the size
of the picture.

Syntax
object.AutoSize [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying how the control will resize itself, as described

in Settings.
Settings

Setting Description
0 (Default) None. The control will not resize itself.
1 Button To Picture. The control will resize itself to match the dimensions of the

picture specified in the Picture property.
2 Picture to Button. The control will resize the picture specified in the Picture

property to match the dimensions of the control.
Remarks

This property is used primarily to create custom button effects. When AutoSize is set to 1,
the button will automatically assume the dimensions of the picture specified by the
Picture property. By setting the    ButtonStyle property to 'Borderless' and using mask
colors in the picture, you can create a wide variety of effects, from irregularly shaped
buttons to buttons that seem to float over their container. Using the PictureDn,
PictureDisabled, and for the Ribbon button, PictureDnDisabled properties, you can
control the appearance of the button in any of its states.

Note This property has no effect when a caption is specified for the control.
Although you can use AutoSize to create buttons that appear irregularly shaped, the
active area of the button is always rectangular.
Since you can specify pictures of different sizes for the Picture, PictureDn,
PictureDisabled, and PictureDnDisabled properties, if you set AutoSize to '1 - Button
To Picture', the control will adjust itself based on the size of the largest picture specified in
any of these properties. For example, if the picture specified for PictureDisabled is larger
than any of the other pictures, PictureDisabled will be used to adjust the size of the
control.

AutoSize Property (SSPanel)
See Also Applies To

Description
Returns or sets a value that determines whether the control will resize itself automatically
based on the size of the caption.

Syntax
object.AutoSize [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying how the control will resize itself, as described

in Settings.
Settings

Setting Description
0 None
1 Width to Caption
2 Height to Caption
3 Child to Panel

Remarks
Use the AutoSize property to have the control automatically adjust its size based on the
size of the caption. You can also use this property to have the control automatically resize
it's child control to fill the area of the panel. This setting will only take effect if there is a
single child control on the panel.

AutoSize Property (SSSplitter)
See Also Applies To

Description
Returns or sets a value that determines whether the control will automatically resize itself
to fill its container.

Syntax
object.AutoSize [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying how the control will resize itself, as described

in Settings.
Settings

Setting Description
0 (Default) None
1 Fill Container

Remarks
Use the AutoSize property to have the control automatically adjust its size based on the
size of its container. This property is similar to the standard Align property, except that it
aligns the control to all sides of the container at once.
The AutoSize property operates exclusively of the Align property. If the Align property of
the SSSplitter is set to anything other than '0 - None' then the AutoSize property has no
effect.

Note When changing the setting of the Align property through code, you may have to
refresh the control in order for the AutoSize property to take effect.

BackColor Property
See Also Applies To

Description
Returns or sets the background color of the control.

Syntax
object.BackColor [= color]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
color A value or constant that determines the color of the specified object.

Remarks
The appearance of the control's background is determined by the BackStyle property. If
BackStyle is set to '0 - Opaque', the background of the control will be filled with the color
specified by the BackColor property. Any other setting for BackStyle will cause the
background to be filled with something other than the BackColor.

BackStyle Property
See Also Applies To

Description
Returns or sets a value that determines whether the background of the control will be
opaque or transparent.

Syntax
object.BackStyle [= integer]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
integer An integer expression specifying the type of background style to use, as

described in Settings.
Settings

Setting Description
0 Opaque. The area of the control will be filled with the control’s BackColor.
1 Transparent. The area of the control will allow what is behind the control to

show through.
Remarks

The new Transparent style of ActiveThreed controls allows the background to show through
the control. The SSFrame or SSPanel appear only as a border (with caption and caption
picture visible, if specified) giving you a visible and functional container that does not
interfere with the background pattern or picture of the application. SSCommand and
SSRibbon buttons can also be made transparent, with the button's appearance being
dependent on the background of the container, the setting of the BorderStyle property,
and the settings of any picture-related properties.
If you plan to use a transparent background for any control, there are certain procedures
you must observe. The transparent control's container, whether it be a form or another
container control, must have its ClipControls property set to False. Also, any control that
is to use a transparent background must be set to have a transparent BackStyle at design
time. If a control is transparent at design time, you may change between transparent and
opaque modes at run time. However, if a control is opaque at design time, and you
attempt to set to transparent at run time, an error will occur.

BevelInner Property
See Also Applies To

Description
Returns or sets a value that specifies the type of inside beveling for the panel.

Syntax
object.BevelInner [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the type of inner bevel to use.

Settings

Setting Description
0 (Default) None. No inner bevel is drawn.
1 Inset. The inner bevel appears as if it is inset into the background.
2 Raised. The inner bevel appears as if it is raised from the background.

Remarks
This property gives you control over the three-dimensional appearance of the control's
border. This property has no effect if BorderWidth is set to 0.

BevelOuter Property
See Also Applies To

Description
Returns or sets a value that specifies the type of outside beveling for the panel.

Syntax
object.BevelOuter [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
Number An integer expression specifying the type of outer bevel to use.

Settings

Setting Description
0 None.    No outer bevel is drawn.
1 Inset.    The outer bevel appears as if it is inset into the background.
2 (Default) Raised.    The outer bevel appears as if it is raised from the

background.
Remarks

This property gives you control over the three-dimensional appearance of the control's
border. This property has no effect if BorderWidth is set to 0.

BevelWidth Property
See Also Applies To

Description
Returns or sets the width (in pixels) of the beveled area of the control, which determines
the amount of the 3-D effect.

Syntax
object.BevelWidth [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
Number An integer expression specifying the width of the beveling.

Remarks
This property only applies to controls with Windows 3.X style borders. For other border
settings this property has no effect.
The valid range for this property is 0 to 10. The default value for this property is 1.

Bold Property
See Also Applies To

Description
Returns or sets the font style of the specified Font object to either bold or non-bold.

Syntax
object.Bold [= boolean]
The Bold property syntax has these parts:

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
Boolean A Boolean expression specifying the font style, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on bold formatting.
False Turns off bold formatting.

Remarks
The Font object is not directly available at design time. Instead you set the Bold property
through a control's Font property.   
At run time, however, you can set Bold directly by specifying its setting for the appropriate
Font object.

BorderStyle Property
See Also Applies To

Description
Returns or sets a value that specifies the type of border for the control

Syntax
object.BorderStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the appearance of the control border, as

described in Settings.
Settings

Setting Description
0 None.    No border is drawn.
1 Fixed Single.    A single pixel border is drawn.
2 (Default) Inset.    The border appears as if it is inset into the background.
3 Raised.    The border appears as if it is raised from the background.

Remarks
A setting of 0 (no border) is useful when setting the AutoSize property of the control so
that it fills the form or container on which it is placed.

BorderWidth Property
See Also Applies To

Description
Returns or sets the width (in pixels) of the space between the outer and inner bevels.

Syntax
object.BorderWidth [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the width of the panel border.

Remarks
If this property is set to 0, the settings of BevelInner and BevelOuter have no effect.
The valid range for this property is 0 to 30.

ButtonStyle Property
See Also Applies To

Description
Returns or sets a value that specifies the appearance of the button.

Syntax
object.ButtonStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the style of the button, as described in

Settings.
Settings

Setting Description
0 (Default) Button style is operating system dependent. (i.e. Windows 95 or

Windows 3.X, depending on the environment.)
1 Windows 95 style.
2 Windows 3.X style.
3 Active Borders style (mouse sensitive borders.)
4 Borderless.

Remarks
The settings of this property provide a variety of interface styles for the buttons of your
application. By default, the buttons will adjust themselves to match the overall style of the
operating environment, however you can specify specific styles if you wish.
When the Active Borders style is specified for a button, the button appears to have no
borders until the user passes the mouse over the button. The borders then appear, and
remain visible until the mouse pointer leaves the control.
The SSCommand button will always display a focus rectangle when it receives focus,
whatever the setting of ButtonStyle. Ribbon buttons will not display a focus rectangle.

Cancel Property
See Also Applies To

Description
Returns or sets a value that determines whether a command button is the Cancel button
on a form.

Syntax
object.Cancel [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the object is the Cancel button, as

described in Settings.
Settings

Setting Description
True The command button is the Cancel button.
False (Default) The command button is not the Cancel button.

Remarks
This is an extender property.
Use the Cancel property to give the user the option of canceling uncommitted changes
and returning the form to its previous state.
Only one command button on a form can be the Cancel button.    When the Cancel
property is set to True for one command button, it's automatically set to False for all other
command buttons on the form.
When a command button's Cancel property setting is True and the form is the active form,
the user can choose the command button by clicking it, pressing the ESC key, or pressing
ENTER when the button has the focus..

Caption Property
See Also Applies To

Description
Returns or sets the caption text of the control.

Syntax
object.Caption [= text]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
text A string expression that evaluates to the text displayed as the caption.

Remarks
The appearance of the caption is based on the Font property and the Alignment property.
The caption may optionally be wrapped using the CaptionStyle property or animated
using the MarqueeStyle property. The alignment of the caption may be affected by any
pictures that share the caption area.

CaptionStyle Property
See Also Applies To

Description
Returns or sets a value that specifies how caption text will be displayed on the control.

Syntax
object.CaptionStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the caption style, as described in Settings.

Settings

Setting Description
0 (Default) Standard.    The caption displays as static text on a single line.
1 Wrapped.    The caption displays as static text on multiple lines.

Remarks
ActiveThreed controls now include a set of active caption styles. You can use these styles
to give added impact to your application, or to call attention to particular areas of interest
within your program. Caption text is displayed in the caption area of the control; the size of
this area is generally the size of the control, but may vary based on the specific control
being used and on whether or not caption pictures are being displayed.
The CaptionStyle property specifies whether caption text will appear on    one line or be
wrapped to multiple lines. Animated text effects are provided by setting the
MarqueeStyle property and the MarqueeDirection property..
The CaptionStyle property only takes effect if MarqueeStyle is set to '0 - None' or '3 -
Blinking.' Otherwise, text is wrapped automatically as required by the type of marquee
animation.

CheckBoxGraphics Property
See Also Applies To

Description
Returns or sets the image to be used for the check box portion of the control.

Syntax
object.CheckBoxGraphics [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap) Specifies a graphic. You can load the graphic from the properties

window at design time. At run time, you can set this property using
the LoadPicture function on a bitmap.

Remarks
You can specify a custom appearance for the check box portion of the control using this
property, which will replace the standard check box graphic . This is useful for designing
a distinctive user interface.

The picture specified for this property is a segmented bitmap containing all the possible
states of the control. Several sample bitmaps are included with ActiveThreed to get you
started in designing your own check box multiple-state bitmaps.
The SSCheck control has nine states. If you are creating custom graphics, your bitmap
should have nine segments of equal width. These nine states should appear from left to right
in the segmented bitmap. The states of the control are:

0. Unchecked - the normal state of the control when unchecked
1. Checked - the normal state of the control when checked
2. Grayed - the normal state of the control when in an indeterminate state
3. Unchecked Pressed - unchecked, with the left mouse button being pressed while

over the control
4. Checked Pressed - checked, with the left mouse button being pressed while over

the control
5. Grayed Pressed - indeterminate, with the left mouse button being pressed while

over the control
6. Unchecked Disabled - the disabled state of the control when unchecked
7. Checked Disabled - the disabled state of the control when checked
8. Grayed Disabled - the disabled state of the control when indeterminate

You can specify part of the check box graphic as transparent, using the
CheckBoxMaskColor and CheckBoxUseMask properties.

CheckBoxMaskColor Property
See Also Applies To

Description
Returns or sets the color that will become the transparent part of the check box graphic.

Syntax
object.CheckBoxMaskColor [= color]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
color A value or constant that determines the mask color of the check box graphic.

Remarks
This setting only takes effect when CheckBoxUseMask is set to True. This property works
in conjunction with the CheckBoxGraphics property to create a custom graphic for the
check box that replaces the standard check box graphic .

By specifying one of the colors used in the segmented bitmap as the CheckBoxMaskColor,
you cause that color to become transparent when used by the control. This gives you the
ability to design check box graphics that have shapes other than square, or that have
transparent areas.

CheckBoxUseMask Property
See Also Applies To

Description
Returns or sets a value that determines whether the control will use the
CheckBoxMaskColor to create transparent areas.

Syntax
object.CheckBoxUseMask [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the mask color will be used, as

described in Settings.
Settings

Setting Description
True The mask color will be used.
False (Default) The mask color will not be used.

Remarks
This property enables the use of a mask color in the segmented bitmap specified by the
CheckBoxGraphics property. When set to True, the color specified by the
CheckBoxMaskColor property will become transparent in the control. When set to False,
all colors in the segmented bitmap will be opaque and visible.
For more information on creating custom check box graphics, see the CheckBoxGraphics
property.

Clear Method
Applies To

Description
This method deletes the contents of the ssDataObject object.

Syntax
object.Clear

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
Remarks

This method is available only for component drag sources. If Clear is called from a
component drop target, an error is generated.

Click Event
See Also Applies To

Description
Occurs when the user clicks the left mouse button and releases it over the control or, in
the case of the SSCommand and SSCheck controls, when the user presses the spacebar
while the control has focus.

Syntax (SSCheck, SSOption, SSRibbon)
Sub control_Click ([index As Integer] value As Integer)

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
value An integer expression that specifies the value of the control.

Syntax (SSCommand, SSPanel, SSSplitter)
Sub control_Click ([index As Integer])

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
Remarks

The value parameter is included for backwards compatibility with previous versions of
THREED. You should use the Value property of the control in your code, rather than the
value parameter of this event.
Clicking a control generates MouseDown and MouseUp events in addition to the Click
event. The order in which these three events occur varies from control to control. See the
Event Maps for further details.

Note To distinguish between the left, right, and middle mouse buttons, use the
MouseDown and MouseUp events.

ClipControls Property
Applies To

Description
Returns or sets a value that determines whether graphics methods in Paint events repaint
the entire object or only newly exposed areas.    Also determines whether the Microsoft
Windows operating environment creates a clipping region that excludes nongraphical
controls contained by the object.

Syntax
object.ClipControls [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A Boolean expression that specifies how objects are repainted, as described in

Settings.
Settings

Setting Description
True (Default) Graphics methods in Paint events repaint the entire object.    A

clipping region is created around nongraphical controls on the form before a
Paint event.

False Graphics methods in Paint events repaint only newly exposed areas.    A
clipping region isn't created around nongraphical controls before a Paint
event.    Complex forms usually load and repaint faster when ClipControls is set
to False.

Remarks
Clipping is the process of determining which parts of a form or container, such as an
SSFrame, SSPanel or SSSplitter control, are painted when the form is displayed.    An
outline of the form and controls is created in memory.    The Windows operating
environment uses this outline to paint some parts, such as the background, without
affecting other parts, such as the contents of a TextBox control.    Because the clipping
region is created in memory, setting this property to False can reduce the time needed to
paint or repaint a form.
ClipControls must be set to False on the container of a transparent ActiveThreed control.
Failure to do so will cause the transparent control to repaint improperly.
Avoid nesting controls with ClipControls set to True inside a control with ClipControls set
to False (for instance, an SSPanel inside an SSSplitter).    This kind of control nesting causes
the controls to repaint incorrectly.    To fix this problem, set the ClipControls property for
both the container control and the nested controls to True.

Compatibility Issues
See Also

An Introduction to ActiveX Controls
What is an ActiveX control?

An ActiveX (or OCX) control is a specific type of DLL that makes use of OLE Automation to
provide functions to other programs. An ActiveX control is an in-process OLE server, and
the program that uses its services is an OLE client. ActiveX controls can provide a nearly
unlimited range of functions to their clients.

How is an ActiveX control different from a VBX control?
The VBX control specification was designed exclusively for use with Visual Basic. Although
some other languages offer limited VBX support, the majority of VBX controls function only
in Visual Basic. VBX controls are also limited in other ways. Their 16-bit architecture
restricts their ability to use memory and to function in a 32-bit operating system, such as
Windows NT.
The difference between ActiveX and VBX controls may not even be apparent to you if you
program exclusively in Visual Basic. You access the properties of an ActiveX control at
design time and through code just as you do the properties of a VBX. The process of
including both types of controls in your project and distributing them is very similar. The
similarities end when you move outside of the Visual Basic programming environment.
ActiveX controls are supported by a much wider range of host environments, including
other languages, database management systems, and productivity applications. ActiveX
controls can be used as the building blocks in a modular software environment, where a
complete project might include your own code, custom controls and commercial
applications all working together. ActiveX controls also have the ability to make full use of
the newest 32-bit operating systems, taking advantage of improved memory access,
better multi-tasking and increased performance.

See Also
Upgrade Notes

Contacting Technical Support

Internet
You can send electronic mail to technical support via the Internet. Messages should be
addressed to: support.3D@shersoft.com
For up-to-the-minute information and the latest updates, as well as general information
about Sheridan Software Systems Inc. and our products, visit our home page on the World
Wide Web. The address is http://www.shersoft.com

CompuServe
You can obtain technical support on CompuServe by visiting the SHERIDAN forum. You can
type GO SHERIDAN at any CompuServe prompt. Or you can send e-mail to our technical
support department at 74774,547

FAX
To fax questions or comments regarding any Sheridan product, dial (516) 753-3661.

Telephone Support
For technical support for this or any other Sheridan product, contact Sheridan Software
systems at (516) 753-0985. You can either speak to a live technical support representative
or get answers using the Automated Fax Service.
Sheridan's support hours are 9AM to 5PM (EST), Monday through Friday.

Copyright Notice Credits
      

ActiveThreed Controls
A reference guide to the controls, with summaries of how to use
their common and individual features. Also includes lists of the
properties, methods and events found in each control.

Quick Tours
Step-by-step introductions to using the ActiveThreed controls and
the Splitter control.

Control Reference
An alphabetical listing of all programming language topics

Properties
Events
Methods
Objects

Collections
Errors
Constants

Technical Specifications
A list of system requirements, included files and troubleshooting
tips.

Contacting Technical Support
How to obtain technical and product support for Sheridan products.

Control Background Effects

ActiveThreed controls provide a number of different background effects that can add style
to your application. The range of effects available depends on the control.
All controls (except the SSSplitter) support some kind of picture in addition to the caption
text. The two container controls (SSFrame and SSPanel) support two types of pictures; a
background picture and a caption picture. The background picture can be stretched or tiled
to fill the area of the control. The rest of the controls support a caption picture only.
In addition to pictures, all of the ActiveThreed controls support transparent backgrounds. It
is also possible to add transparency to your pictures, whether the picture is in the
background or in the caption.

Transparent Operation
Any of the ActiveThreed controls may have a transparent background. To make the control
transparent, simply set the BackStyle property to '1 - Transparent.'    However, when using
transparent controls, you must set the ClipControls property of the control's container (if
it has one) to False. The first time you create a transparent control in a project, you will see
a warning message to this effect. If you fail to do this, the control may not redraw itself
properly.

To make a control transparent:
1. Select the control's container, and verify whether or not it has a ClipControls

property. If it does, set the property value to False.
2. Select the control you wish to make transparent.
3. Select the BackStyle property of the control and change its value to '1 -

Transparent'.
4. If this is the first transparent control you have created in a project, you will need to

press OK when the warning dialog appears:

Note If you wish to make a control transparent at run time, it must first be set to
transparent at design time. If you attempt to set a non-transparent control to transparent
at run-time, an error occurs.

Control Property
See Also Example Applies To

Description
Returns or sets the control or the handle to the control located on the pane.

Syntax
object.Control [= control]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
control A variant expression that evaluates to the control or the window handle of a

control located on a Splitter pane.
Remarks

You can use the Control property to access any of the properties of the control located on
the specified pane.
In environments that support it, such as Visual Basic, the value returned by Control is a
dispatch pointer to the control itself. The dispatch pointer is a stand-in for the control that
can be used syntactically in the same way as the control itself. For example, to change the
background color of Command button "SSCommand1" on the first pane of a Splitter
control, you would use the following code:

SSSplitter1.Panes(0).Control.BackColor = &H00C0C0C0&

This is functionally identical to the following:
SSCommand1.BackColor = &H00C0C0C0&

In environments that do not support dispatch pointers, such as Delphi, the value returned
by Control is the window handle of the control.
The Control property is also used to dynamically move controls among panes at run time,
as well as moving controls into or out of the Splitter control. If a pane contains a control,
and you set the Control property of the pane to a second control, the second control will
move into the pane, and the original control will be moved into an empty pane, if one is
available. If there are no empty panes available, what happens to the original control
depends on where the second control came from.
If the second control is coming from another pane in the same Splitter, the two controls
will switch places. If the second control is coming from outside the Splitter, the original
control will be removed from the Splitter and re-parented to the container of the Splitter
control. Similarly, if you set the Control property of a Pane object to Null in code, the
control on that pane is automatically re-parented to the Splitter's container, and the pane
becomes empty.

ControlName Property
See Also Example Applies To

Description
Returns the name of the control located on the pane.

Syntax
object.ControlName [= name]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
name A string expression that evaluates to the name of a control located on a

Splitter pane.
Remarks

This property is read-only.
In environments that support it, such as Visual Basic, the value returned by ControlName
is the value of the Name property of the control, as obtained by the dispatch pointer to
the control. In environments that do not support dispatch pointers, such as Delphi, the
Name property is not available at run-time. Therefore, the control's Caption is returned.

Copyright © 1997 Sheridan Software Systems, Inc. All rights reserved.
Information in this document is subject to change without notice and does not represent a
commitment on the part of Sheridan Software Systems, Inc.    The software described in this
document is furnished under a license agreement or nondisclosure agreement.    The
software may be used or copied only in accordance with the terms of the agreement.    It is
against the law to copy the software on any medium except as specifically allowed in the
license or nondisclosure agreement.    No part of this manual may be reproduced or
transmitted in any form or by any means, electronic or mechanical, including photocopying
and recording, for any purpose without the express written permission of Sheridan Software
Systems, Inc.

ActiveThreed, the ActiveThreed Logo, and the Sheridan logo are trademarks of Sheridan Software Systems, Inc.

Microsoft, Visual Basic, and Windows are registered trademarks of Microsoft Corporation.
All other trademarks and registered trademarks are the property of their respective owners.
This help file was produced using Microsoft Word for Windows from Microsoft Corporation and ForeHelp from ForeFront, Incorporated.

Count Property
See Also Applies To

Description
Returns the total number of panes in the collection.

Syntax
object.Count [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of items in the collection.

Remarks
Use this property to find the total number of panes that have been created in a Splitter
control.

The Sheridan    ActiveThreed Development Team
Product Manager

BradP

Programming
KrishC
NickC
VladL

Documentation
JimD
RajM

Quality Assurance
JohnC
GaryD
SaroK
JasonM

DataField Property
See Also Applies To

Description
Returns or sets a value that binds the control to a field in the current database record.

Syntax
object.DataField [= name]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
name A string expression that evaluates to the name of one of the fields in the

recordset specified by the DataSource property, to which the value of the
control will be bound.

Remarks
This is an extender property.
This property is environment-dependent. In environments that provide data binding, you
can use the DataSource property to specify a source of data records, such as the Visual
Basic Data Control, then use the DataField property to bind the control to a particular
field within the recordset. This property may not be available in all environments.
The value that is retrieved or stored in the database by the control depends on the control
being used. The SSCheck control will display boolean values from the database, and
changing the value of the control will cause the value in the database to change when the
recordset is updated. The SSPanel control can display any text or numeric data from the
database.
The SSPanel can display data automatically via it's Caption property, but will only change
the stored value if the control's caption is changed through code and the record is
updated.
Consult the documentation for your development environment for more information on
using data binding features.

DataSource Property
See Also Applies To

Description
Returns or sets the name of the data control used to bind the control at run time.

Syntax
object.DataSource [= name]
The DataSource property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
name A string expression that evaluates to the name of the Data control to which

the control will be bound at run time.
Remarks

This is an extender property.
This property is environment-dependent. In environments that provide data binding, you
can use the DataSource property to specify a source of data records, such as the Visual
Basic Data Control, then use the DataField property to bind the control to a particular
field within the recordset. This property may not be available in all environments.
Unlike the DataField    property, the DataSource property setting is not available at run
time.
Consult the documentation for your development environment for more information on
using data binding features.

DblClick Event
See Also Applies To

Description
Occurs when the user double-clicks the mouse while the mouse pointer is over a splitter
bar.

Syntax
Sub control_DblClick ([index As Integer])

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
Remarks

Clicking a control generates MouseDown and MouseUp events in addition to the Click
event.
If DblClick doesn't occur within the system's double-click time limit, the object recognizes
another Click event. The double-click time limit may vary because the user can set the
double-click speed in the Windows Control Panel.

Note      To distinguish between the left, right, and middle mouse buttons, use the
MouseDown and MouseUp events.

Default Property
See Also Applies To

Description
Returns or sets a value that determines whether a command button is the default button
on a form.

Syntax
object.Default [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the object is the Default button, as

described in Settings.
Settings

Setting Description
True The command button is the Default button.
False (Default) The command button is not the Default button.

Remarks
This is an extender property.
Only one command button on a form can be the default command button.    When Default
is set to True for one command button, it's automatically set to False for all other command
buttons on the form.
When the command button's Default property setting is True and its parent form is active,
the user can choose the command button (invoking its Click event) by pressing ENTER.   
Any other control with the focus doesn't receive a keyboard event (KeyDown, KeyPress, or
KeyUp) for the ENTER key unless the user has moved the focus to another command
button on the same form.    In this case, pressing ENTER chooses the command button that
has the focus instead of the default command button.

Distributable Files

This section describes files you will need to distribute in addition to your application files
and runtime DLL's.
If your application makes use of ActiveThreed controls (THREED20.OCX or SPLITTER.OCX),
you will need to install the following files on the user's system:

File Description
THREED20.OCX ActiveThreed file that contains the SSCheck, SSCommand, SSFrame,

SSOption, SSPanel, and SSRibbon ActiveX controls.
This file should be distributed with applications that contain any of the
controls mentioned above.

SPLITTER.OCX ActiveThreed file that contains the SSSplitter ActiveX control.
This file should be distributed with applications that contain the
SSSplitter control.

In addition, due to the nature of the OLE architecture, the new ActiveX controls require the
following support files to be shipped with your application. Version numbers of the files you
distribute should be equal to or greater than those listed here:
ASYCFILT.DLL 2.20.4054
MSVCRT.DLL 4.20.6201
OLEAUT32.DLL 2.20.4049
OLEPRO32.DLL 5.0.4055
STDOLE2.TLB 2.20.4049

Distribution Notes

Distributable Files
Non-Distributable Files

DoClick Method
See Also Example Applies To

Description
This method is used to trigger the Click event of the control.

Syntax
object.DoClick

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
Remarks

Invoking this method causes the Click event of the control to be fired and any code
contained in it to be executed.

DragMode Property
See Also Applies To

Description
Returns or sets a value that determines whether manual or automatic drag mode is used
for a drag-and-drop operation.

Syntax
object.DragMode [= number]
The DragMode property syntax has these parts:

Part Description
object An object expression that evaluates to an object in the Applies To list.
number An integer expression that specifies the drag mode, as described in Settings.

Settings
The settings for number are:

Setting Description

0 (Default) Manual - requires using the Drag method to initiate a drag-and-drop
operation on the source control.

1 Automatic - clicking the source control automatically initiates a drag-and-
drop operation.    OLE container controls are automatically dragged only when
they don't have the focus.

Remarks
When DragMode is set to 1 (Automatic), the control doesn't respond as usual to mouse
events.    Use the 0 (Manual) setting to determine when a drag-and-drop operation begins
or ends; you can use this setting to initiate a drag-and-drop operation in response to a
keyboard or menu command or to enable a source control to recognize a MouseDown
event prior to a drag-and-drop operation.
Also, when DragMode is set to automatic, animations are disabled for the control.

Note While a control is being dragged, it can't recognize other user-initiated mouse or
keyboard events (KeyDown, KeyPress or KeyUp, MouseDown, MouseMove, or
MouseUp).

Enabled Property
Applies To

Description
Returns or sets a value that determines whether the object can be selected by the user.

Syntax
object.Enabled [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying the state of the object, as described in

Settings.
Settings

Setting Description
True (Default) The object can be selected by the user using the mouse or keyboard.
False The object cannot be selected

Remarks
Changing the Enabled property of an object changes its appearance, and may cause a
different picture or graphic to be displayed.

Exercise 10: Adding A Custom Control Graphic

ActiveThreed controls give you the power to customize your applications in many ways.
You have already seen how to create custom-designed buttons using the SSCommand and
SSRibbon buttons. Similarly, you can customize the working part of the SSCheck and
SSOption controls. You can replace the standard square check box and round option button
with graphics of your own design.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX10.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture files may also be
found in this directory.

1. Create a new project, and place an SSCheck control on Form1.
2. To replace the existing control states, you assign a custom bitmap to the

CheckBoxGraphics property. This must be a segmented bitmap, similar to the
ones used to provide animation, but it can only contain nine segments. Each
segment corresponds to one of the states of the control. The SSCheck control has
the following nine states, and the segments must appear from left to right in this
order:
1. Unchecked
2. Checked
3. Grayed
4. Unchecked Pressed
5. Checked Pressed
6. Grayed Pressed
7. Unchecked Disabled
8. Checked Disabled
9. Grayed Disabled

The first three segments provide the normal states of the control. The "Pressed"
segments represent how the control will look when the mouse is being clicked on
the control. The final three segments define the control's appearance when it is
disabled.
ActiveThreed ships with a number of segmented check box graphics to get you
started in designing your own. For now, set CheckBoxGraphics to HCHECK.BMP.
This is a check box graphic that gives the check box an informal, handwritten
appearance.

3. As with control pictures and animations, check box graphics can use mask colors
to create transparent areas. Set the CheckBoxMaskColor to white.    You can
select it from the property sheet color palette, or enter the value &H00FFFFFF&
for the property.

4. As with the standard picture properties, once you have selected the correct mask
color, you must turn on masking in order to activate the transparent effect. Do
this by setting CheckBoxUseMask to True.

5. Run the project and click the check box a few times. The custom graphic
replicates the functions of the default check box control, but with a different
appearance. Stop the project when you are done.

6. Add an SSOption button to your form. The Option button's OptionBtnGraphics
property uses a segmented graphic for customization as well, but the option

button graphic has only six segments. From left to right, they are:
1. Unselected
2. Selected
3. Unselected Pressed
4. Selected Pressed
5. Unselected Disabled
6. Selected Disabled

Set OptionBtnGraphics to HOPTION.BMP, the supplied option button graphic.
7. To make the graphic transparent, set the OptionBtnMaskColor property to

white. You can select it from the property sheet color palette, or enter the value
&H00FFFFFF& for the property.

8. Enable the use of mask colors by setting the OptionBtnUseMask property to
True.

9. Once you have set up the option button to use the custom graphic, select it on
the form and copy it to the clipboard. Then paste it onto the form twice. Answer
No when asked if you want to create a control array. This will give you three
SSOption buttons with the same custom graphic.

10. Run the project, and click on each of the option buttons. When you have seen
enough, stop the project.

By now, changing the appearance of ActiveThreed controls should be second nature. You
have seen that not only can you add decorative pictures to your check and option controls,
you can change the appearance of the control itself, creating an entirely custom interface
that suits the style of your application. The technique for changing a control's appearance
is very similar to that for adding a picture.
The next exercise covers a unique feature of the SSCheck control, and discusses some
issues of compatibility with existing Windows common controls and previous versions of
THREED.

Exercise 11: Working With Control States

Previous versions of the THREED controls provided a check box with two logical states -
checked and unchecked. These two states are sufficient to perform most of the operations 
for which check boxes are used. However, the Windows common check box control
supports a third state - grayed. Grayed is an indeterminate state that is neither checked
nor unchecked. It is most commonly used when the state of a check box is affected by the
states of other controls in the application.
 You are probably familiar with this concept from installing software. Often an installation
program will group the software's component pieces into categories. You have the option
to install just the categories or components you want by selecting check boxes. If you
choose a category, check off some of it's components and uncheck others, the check box
for the category as a whole becomes grayed.
The SSCheck control in ActiveThreed supports both types of operation. If you are using a
previous version of THREED, you do not need to modify your code to deal with unexpected
check box states. If your application calls for the use of grayed check boxes, they are also
available to you.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX11.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory.

1. Create a new project and place an SSCheck control on Form1.
2. Check the value of the TripleState property. This is the property that determines

whether the control will support two or three states. TripleState defaults to False,
which maintains backwards compatibility with previous versions of THREED.

3. Place an SSCommand button on Form1 and enter the following code in the Click
event:

SSCheck1.Value = ssCBChecked
4. Run the project. When you click the button, the check box becomes checked.

Because the grayed state is unavailable, any non-zero value evaluates as logical
true, causing the control to become checked.

5. Stop the project. Select the SSCheck control and change the TripleState property
to True. Now run the project again and click the command button. This time, the
check box appears in the grayed state.

Now you are ready to use the SSCheck control in whichever mode suits the needs of your
application.
This completes the SSCheck/SSOption portion of the Quick Tour. You should now have an
understanding of the properties that are unique to those controls, and some of the
possibilities they offer you.
The final lesson of Quick Tour 1 covers the THREED20 container controls; the SSFrame and
the SSPanel. You will see that these two controls give you yet another attractive way to
liven up your applications.

Exercise 12: Understanding Background Pictures

Visually, one of the coolest features of the World Wide Web is the use of tiled backgrounds.
Backgrounds provide a setting and an atmosphere to the information, and create a
distinctive look or mood that helps distinguish the web site from all others. ActiveThreed
gives you the ability to create that same sense of identity in your applications, using the
SSFrame and SSPanel controls.
In addition to the control's picture, which can be animated and is primarily associated with
the caption of the control, SSFrame and SSPanel support background pictures. The
background picture appears behind the control, which means it is behind any child controls
contained by the SSFrame or SSPanel, and behind the caption and picture of the control
itself.
Background pictures can be specified in a variety of styles, including tiled, to give your
application the custom look that best suits its function and your taste.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX12.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture files may also be
found in this directory.

1. Start a new project, and place an SSFrame control on Form1. Set the Picture
property of Form1 to BACKGR1.BMP.

2. Set the Picture property of the Frame to CUBE1.BMP. Notice that the picture
appears in the caption area of the control. Keep in mind that when dealing with
the frame, the default Picture property always refers to the caption picture. In
the SSPanel, the picture specified by the Picture property can be moved to any
part of the control (as you will see in the next exercise) but is still independent of
the background. You can apply all the common features to the picture specified by
Picture; animation, color masking, etc.

3. Like the other THREED20 controls, the type of background the Frame has is
controlled by the BackStyle property. The BackStyle property should be set to
its default setting of '0 - Opaque.'

4. In addition to the styles specified by BackStyle, the SSFrame and SSPanel have a
number of new settings that were not present in the other controls. These are
available using the PictureBackgroundStyle property. The settings for this
property are Picture Centered, Picture Stretched and Picture Tiled. These
additional settings give you control over the display of the background picture.
Make sure    the PictureBackgroundStyle property is set to '0 - Centered.'

5. Select the PictureBackground property and set it to 3DTILE1.BMP. The picture
appears in the center of the frame, surrounded by an area of the frame's
BackColor. (If you do not see this, you may need to increase the size of your
SSFrame.)

6. Click on the Form, and set its ClipControls property to False. Now select
SSFrame1 and change the BackStyle to '1 - Transparent.' Click OK to
acknowledge the transparency warning. The frame should now have a picture in
the center, and be surrounded by a transparent background.
NoteAs with other controls, if you wish to change the transparency of an SSFrame
or SSPanel at run time, the control must be set to a transparent style at design
time. If you attempt to change an opaque control to transparent at run-time, an
error will result.

7. Set the PictureBackgroundStyle of the SSFrame to '2 - Tiled.' The graphic will
be repeated multiple times to fill the area of the control. You can also try the
setting of '1 - Stretched' to see its effect on the control.

8. You will be using this project in the next exercise, so you may want to save it
now.

Now you've seen the difference between the standard Picture property and the
PictureBackground property of the SSFrame and SSPanel controls. You've also explored
the different PictureBackgroundStyle settings of the controls that let you specify how
the background will be displayed.
In the next exercise, you will see some of the unique alignment properties of the SSFrame
and SSPanel controls, and learn more about using pictures with these controls.

Exercise 13: More On Alignment

Because each of the THREED20 controls are different, they handle graphics and the
alignment of pictures in slightly different ways. For example, you saw in Exercise 9 that the
PictureAlignment options of the SSCheck and SSOption controls are left of the caption,
right of the caption and the edge of the control opposite the check box/option button.
These options are sufficient for Check and Option controls, but not for a control such as the
Panel or the Command button, where more possibilities are needed.
Similarly, the way alignment properties are implemented varies from control to control.
This exercise will show you what the differences are and how they apply to the Frame,
Panel and other THREED20 controls.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX13.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture file may also be
found in this directory.

1. If you do not have the project from the previous exercise available, open it now,
or re-create it by following the instructions in the previous exercise. Alternately,
you can use the included example.

2. Once you have a form with an SSFrame control on it, add an SSPanel control.
3. Set the Picture property of the SSPanel control to CUBE1.BMP. Notice the

difference between the alignment of the picture on the SSFrame control and the
picture on the SSPanel control. While the Frame's picture is tied to the caption
area of the control, the Panel's picture is aligned relative to the area of the entire
control.

4. Select the PictureAlignment property of the SSPanel and look at the possible
values for the property. The SSPanel has the greatest number of
PictureAlignment options of any ActiveThreed control, although the
SSCommand and SSRibbon buttons have nearly as many settings as the SSPanel.
Try setting PictureAlignment of the SSPanel to '4 - Right Middle', then to '8 -
Center Bottom', then to '10 - Right of Caption', checking the effect each time. Try
as many settings you'd like until you are familiar with this property.

5. Change the PictureAlignment property of the SSFrame control to '1 - Right of
Caption.' There are only two options for aligning the picture in the Frame control.

6. You have control over more than just the alignment of the pictures used in your
controls. You can also control the alignment of the caption area of the control. The
settings for the Alignment property of each control are different, and affect the
control's appearance in different ways. For example, select the SSPanel control
and set its Alignment property to '1 - Left Justify - BOTTOM.' Notice how the
caption moves to the lower left corner of the control. The picture does not move.

7. Now select the SSFrame control and change the Alignment property to '3 -
Bottom Left'. This makes a much more noticeable change in the control. The
entire caption area is moved to the bottom of the frame, and the picture moves
as well. However, the alignment of the picture is unchanged with respect to the
caption.

Now that you have explored some of the different caption alignment and picture alignment
options of the SSFrame and SSPanel controls, you may want to go back and see what
options are available for the other THREED20 controls. You should have a better idea now

of how to change pictures and caption text independently of one another, and align them
to different areas of the control.
The next lesson covers the use of the SSPanel control as a progress indicator.

Exercise 14: Making A Progress Indicator

Often, you want to display to the user a visual indicator of the progress of some task. This
might be a lengthy operation, such as a file download or a lengthy database update, or
simply something that happens sequentially, such as a product installation or the
completion of a series of wizard-style dialogs. Whatever the reason, the SSPanel is capable
of handling this type of job, and even has some unique properties to make your work
easier.

1. Create a new project, and add an SSPanel control to Form1.
2. Add a horizontal scroll bar below the panel. The scroll bar will represent the

"process" being measured by the panel. Set the following properties for the scroll
bar:
LargeChange = 10
Max = 100

3. To set up the Panel for use as a progress indicator, you use properties, which
control the manner in which the Panel is filled or "flooded" with another color. To
activate the indicator features, all you need to do is set the FloodType property to
a value other than 0. First, set FloodType to '1 - Left to Right.' This is the most
common type of flood fill, but you have several other choices, including vertical
fills.

4. You may notice that the caption of the control is no longer visible. This is because
when using a flood fill style, the caption is disabled. However, you can have the
control display the percentage of completion in place of the caption. Set the
FloodShowPct property to True.

5. To set the amount of completion, you use the run-time only FloodPercent
property. Double-click the scroll bar and enter the following code in the Change
event:

SSPanel1.FloodPercent = Hscroll1.Value
6. Run the project. Click on the right button of the scroll bar. As the scroll bar's

thumb moves, you will see the progress indicator fill up with blue, and the
percentage of completion will be displayed. When the scroll bar thumb is all the
way to the right, the SSPanel reads 100%. Stop the project.

7. You can choose from a variety of progress indicator effects. Select the SSPanel
and change the following properties:
FloodColor = &H00000080& (Dark red)
FloodFillStyle = '1 - Segmented'

8. Run the project again and drag the scroll bar. This time the indicator fills up with
dark red in discrete segments. Stop the project.

9. There is one final setting you can explore. Resize the SSPanel so that it's shape is
mostly square, but fairly large. Move or resize the scroll bar as necessary. Finally,
set FloodType to '4 - Widening Circle.' Run the project. This time, the indicator
takes the form of a colored circle that grows. When the edges of the circle touch
the edge of the control, the task is complete.

Congratulations! You have now completed all of Quick Tour 1. You have gained a great deal
of knowledge that will help you to use the ActiveThreed THREED20 controls to their
maximum potential. Starting with the common properties, you have covered all the major

features of each THREED20 control. You now know the majority of what you need to know
to use the controls to activate your programs with multimedia power. A few topics, such as
data binding, were not covered by this tutorial, but you can find out what you need to
know about these topics by consulting the Control Reference. For questions on individual
properties, methods or events, click the appropriate heading on the contents page and
choose the item of interest off the list.
Quick Tour 2 introduces you to the concepts and usage of the SSSplitter control. The
Splitter is a flexible container control that allows you to organize multiple controls in a
series of resizable panes. When you drag the splitter bars that separate these panes with
your mouse, the control contained by each pane is automatically resized. The SSSplitter
controls brings the frames metaphor, found on many web sites, to your desktop
applications.

Exercise 1: Adding A Scrolling Caption

In this exercise, you will learn how to create a scrolling, or marquee caption. Marquee
captions use motion to draw the user's attention to a particularly important feature of your
program. For maximum effectiveness, marquee captions should be used sparingly
throughout your interface.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX1.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory.

1. Start Visual Basic by clicking on the icon on the Start Menu or Program
Manager.

2. If the ActiveThreed THREED20 controls do not appear in your toolbox, open the
Custom Controls dialog. When the list of available controls appears, select "Sheridan
ActiveThreed Controls" and click OK.
3. Begin by placing an SSCommand button on the form. Select the

 button from the Toolbox and draw a fair
sized button on the form. Although you will be working with an SSCommand button for the
first part of this lesson, keep in mind that the properties used may be applied to any
THREED20 control.

4. Change the Caption property to a long string of text, such as "This is the
Introduction to Sheridan ActiveThreed Controls". A long text string will better
illustrate some of the changes you will be making to the control.

5. The caption text appears centered on the button. Depending on the size of your
command button, the beginning and end of the long caption may be cropped by
the edges of the control. This is the default behavior for caption text.

6. Now change the setting of the CaptionStyle property to '1 - Wrapped.' Notice
how the text wraps to multiple lines so that all the text fits within the control. You
may need to adjust the height of your control to see this effect. Change
CaptionStyle back to '0 - Standard.'

7. To get the caption to scroll, you must set the MarqueeStyle property. The default
setting is '0 - None' which results in a static caption. Change MarqueeStyle to '1
- Scrolling.'

8. Run the project. (You do not need to save it at this point.) You will see the caption
scrolling slowly from right to left. Take note of the speed and smoothness of the
scrolling motion. Also notice that even if the caption text is longer than the width
of the button, you can read the entire caption as it scrolls. Close the form or press

 to stop the program.
9. The speed and smoothness of the scrolling are controlled by the MarqueeDelay

and MarqueeScrollAmount properties. To see the effects of these properties,
first change MarqueeScrollAmount from 1 to 20. Leave MarqueeDelay the
same for now. Run the project again. You will see the caption scrolling much more
quickly, but you may notice that the scrolling motion is rather choppy.
MarqueeScrollAmount sets the number of pixels the caption will move during
each "scroll". Increasing its value causes the caption to move more quickly, at the
expense of smoothness.

10. Stop the program and change the setting of MarqueeScrollAmount back to 1.
Change the value of MarqueeDelay to 0. Run the project again and observe the
difference. The scrolling is still faster than it was originally, but much smoother.
MarqueeDelay controls the number of milliseconds between each "Scroll." By
reducing it's value you can increase the speed of the scrolling without sacrificing
smoothness. You should be careful, however, because too low a setting for
MarqueeDelay makes the control consume more CPU resources, affecting
overall system responsiveness. Stop the program and reset MarqueeDelay to
120.

11. Now that you know how to control the scrolling motion of the text, try changing
the direction of the scrolling. You have seen the text scrolling horizontally from
right to left. As you might expect, you can also reverse direction and have the
text scroll from left to right. To make things interesting though, select the
MarqueeDirection property and set it to '3 - Bottom to Top.' Before you run the
project, notice that the caption has changed and now appears wrapped, as it did
in step 6. This is because the caption text wraps automatically for vertical
scrolling. Similarly, if you had left CaptionStyle set to '1 - Wrapped' in step 6,
you would have seen the text change to a single line when you initially selected
the scrolling MarqueeStyle. Now run the project. The text scrolls vertically in a
style reminiscent of movie credits. Stop the project when you have seen enough.

12. Scrolling is only one type of movement that is available to caption text. Change
the height of your command button so that the caption fits completely within the
control, with room to spare both below and above it. Now change the
MarqueeStyle property to '4- Bouncing.' Run the project again. You will see the
caption text scroll to the top of the control as it did before, but when it reaches
the top, it reverses direction and moves the other way. Once you have seen how
this works, stop the project.
You can explore the remaining MarqueeStyle settings, Blinking and Sliding, on
your own. Blinking flashes the caption on and off at a rate specified by
MarqueeDelay, while Sliding is similar to Scrolling, except that the text stops
moving once all of it has been displayed.

13. Now, double click your command button to bring up the code window and select
the MarqueeCycleBegin event. This is the event that is fired whenever a
marquee caption appears or changes direction. Enter the following code in the
MarqueeCycleBegin event procedure:

Select Case SSCommand1.ForeColor
Case vbBlack
 SSCommand1.ForeColor = vbBlue
Case vbBlue
 SSCommand1.ForeColor = vbCyan
Case vbCyan
 SSCommand1.ForeColor = vbGreen
Case vbGreen
 SSCommand1.ForeColor = vbMagenta
Case vbMagenta
 SSCommand1.ForeColor = vbRed
Case vbRed
 SSCommand1.ForeColor = vbYellow
Case vbYellow
 SSCommand1.ForeColor = vbWhite
Case vbWhite
 SSCommand1.ForeColor = vbBlack

End Select
Once you have entered and checked the code, run the project. You will see the
color of the text change each time the marquee caption begins a new cycle. With
the present settings, a cycle begins each time the caption bumps against the
edge of the control and reverses direction.

Now you know how to create marquee style captions of various types, control their layout,
speed and direction, and use the MarqueeCycleBegin event to take action based on the
position of the marquee text. Again, you can apply these properties to all the ActiveThreed
controls. Certain controls may have limitations or implement a particular property slightly
differently than the SSCommand button, so be sure and double check the documentation
for any property you need to use.
Since you now have the ability to add visual appeal to your applications with moving text,
the next lesson will show you how to add audio appeal by using sounds with your
ActiveThreed controls

Exercise 2: Playing Sounds

Adding sound to your application with ActiveThreed controls is simple and straightforward.
Sounds enhance the user interface of your application, and give it a true multimedia look
and feel.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX2.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated sound files may also be
found in this directory.

1. Create a new project, and place an SSCommand button on Form1.
2. Double-click the command button to bring up the code window. Add the following

statement to the Click event:

SSCommand1.PlaySoundFile "3DCLICK.WAV"
The sound file is supplied with ActiveThreed, but you could use one of your own.
Whichever you choose, the sound clip should be fairly short.

Note    In the design environment, the .WAV file must be located in the same
directory as your Visual Basic executable file, or in one of the directories referenced
by the environment path. Alternatively, you can specify the full path information for
the file in the PlaySoundFile method. When you distribute applications, the sound
file may be stored in the same directory as your executable file.

3. Run the project. When you click the button, you should hear the sound effect.
4. Stop the program. Now place an SSPanel control on the form and set the following

properties for it:
MarqueeStyle = 'Bouncing’
MarqueeScrollAmount= 5

5. Next you will specify a sound file that will provide an audio cue whenever the
caption bounces against the edge of the control. The included 3DBINK.WAV file is
suitable for this task.
The place to play the sound is the MarqueeCycleEnd event. This is the event
that is fired when the marquee caption changes direction, so it is the best place to
put a sound effect that corresponds to that occurrence.
Add this code to the MarqueeCycleEnd event of the SSPanel control:

SSPanel1.PlaySoundFile "3DBINK.WAV"
6. Run the project. As the caption on the panel scrolls, you will hear a sound effect

whenever it bumps against the edge of the panel.

As you can see, adding sound to the ActiveThreed controls is easy. In the next exercise,
you will learn how to add a cool, Web-like interface to your applications by using
transparent controls.

Exercise 3: Transparent Operation

The success of the World Wide Web, coupled with the evolution of computer display
technology,    has caused a shift in the nature of user interface design. The metallic
elements and single color backgrounds found in many programs have begun to give way
to colorful images and textures. Using ActiveThreed controls, you can present a Web-like
interface to your users while using familiar component technology. One of the features that
helps you to do this is the transparent background option.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX3.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture file may also be
found in this directory.

1. Start a new project, and set the ClipControls property of Form1 to False. In order
for transparent backgrounds to function properly, the ClipControls property of
the control's container must always be set to False.

2. Select a background picture for your form. This can be any Windows bitmap that
is large enough to cover the form, or you can use the included BACKGR1.BMP.
Specify the file name of your bitmap in the Picture property of Form 1.

3. Place an SSFrame control on the form. Set the BackStyle property to '1 -
Transparent.' You will receive a warning about setting ClipControls    to False.

This warning appears the first time you change a control's BackStyle to
transparent. Since you have already set the form's ClipControls property to
False, simply click OK to acknowledge the warning.

4. Without even running the project, you can see that the Frame has become
transparent.

5. Now add an SSCommand button to the form beside the SSFrame. Again, set the
BackStyle to '1 - Transparent.'

6. Next, you will add code to the command button to change the transparency when
the mouse passes over it. Double-click the SSCommand button to open its code
window.
Note A control that has a transparent background specified at design time can
easily be changed to another type of background at run time. The reverse is not
true. If a control is given an opaque BackStyle at design time and you attempt to
change it to a transparent BackStyle at run time, an error will result. If you wish
to change the transparency of a control through code, it must first be set to
transparent at design time.

7. Select the MouseEnter event for the command button, and place the following
code in the event:

SSCommand1.BackStyle = ssOpaque

8. Select the MouseExit event and place the following code in the event procedure:

SSCommand1.BackStyle = ssTransparent
9. Run the project, and pass the mouse pointer over the command button. The

button now becomes opaque whenever the mouse is over it. Stop the project
when you are done.

Now you have seen how transparency works, and begun to explore the use of mouse
events to control the interface, The use of transparency will be more fully explored in the
lessons that follow.

Exercise 4: Adding an Animated Picture

Any of the ActiveThreed controls can have an animated picture in addition to or in place of
its caption. Like marquee captions, animation adds visual pizzazz to your application and
draws attention to critical features. As with animated captions, animated pictures are best
used sparingly to ensure maximum effect.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX4.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture file may also be
found in this directory.

1. Create a new project and place a large SSCommand button on Form1. To make
the picture easier to see, delete the text of the Caption property.

2. Animated pictures use the standard Picture property of the control. You supply a
special segmented bitmap that has been divided into a number of areas of equal
size. The segments of the bitmap become the frames of your animation. The
Property Pages for the ActiveThreed controls contain a special utility to help you
construct a segmented bitmap out of a series of individual bitmaps.
For now, you can use a    picture file that is included with ActiveThreed. Specify
ANIM19.BMP for the command button's Picture property.

3. Once you have specified a segmented bitmap for the Picture property, you must
tell the control how many segments the bitmap contains. This is done using the
PictureFrames property. By default, PictureFrames is set to 1 for a static
image. The ANIM19.BMP image contains 19 segments, so set PictureFrames to
19. The control should look like this:

4. Run the project and watch the show! Creating an animated control is that simple.
ActiveThreed also gives you a finer degree of control over the animation. Stop the
project and return to design mode.

5. As with the marquee caption properties, you can control the delay and therefore
the speed of the animation. Set the PictureAnimationDelay property to 200 and
run the project again. You will see the animation occurring much more slowly.

6. Not only can you control the speed of the animation, you can stop it altogether.
Double-click on the SSCommand button and enter the following code in the Click
event:

SSCommand1.PictureAnimationEnabled = Not
SSCommand1.PictureAnimationEnabled

Run the project and click the button a few times to see the effect. The
PictureAnimationEnabled property simply turns the animation on and off at the
current frame.

7. You will be using this project in the next exercise, so you may want to save it now.

There are other properties that can have a profound effect on the pictures and animations
you use with your controls. These properties give you the ability to make parts of the
graphic transparent, and automatically adjust your controls to fit the size of any picture or
animation. These properties are covered in the next exercise.

Exercise 5: Mask Colors & AutoSize

Whenever possible, you want the graphics used in your application to blend naturally with
the rest of the interface. Many applications sport custom textured backgrounds, and most
users of the 32-bit versions of Windows can alter their background colors to suit personal
taste. One way to insure a sophisticated looking interface is to use transparent areas in
your graphics. Transparency allows background colors and textures to show through, and
lets your graphics appear to be non-rectangular. ActiveThreed gives you the ability to
create transparent graphics using mask colors.

In addition to using mask colors, you can have the ActiveThreed controls adjust the size of
the picture to match the control, or resize the control to the size of the picture. These
techniques are useful when you want to altogether replace the face of a button, panel or
other control with a graphic.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX5.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture file may also be
found in this directory.

1. If you do not have the project from the previous lesson open, open it now. If you
must, re-create it by following the steps in Exercise 4. Alternately, you can use the
included project. Your project should look like this:

2. In order to use a mask color, you must specify which color will be masked out of
the image. To make the white area around the animation transparent, first set the
PictureMaskColor property to white. Click on the button for the
PictureMaskColor property in the Property window, and choose white from the
color palette. Alternatively, you can enter &H00FFFFFF& for the property's value.

3. Once you have selected the color which will be masked, you must turn on masking to
enable the transparent effect. Do this by setting PictureUseMask to True. You should
immediately see the results of the color masking. The project will now look like this:

4. After setting the transparency, you may want to adjust the size of the control to
conform to the size of the picture, or you might want the picture scaled to fill the
control at its present size. In either case, you can use the AutoSize property to

adjust the dimenisons of the graphic and the control relative to one another. This
will be especially useful later when working with button styles.
Note The AutoSize property only functions when the control has no caption
text. If you have caption text specified for your control, delete it now.

Set the AutoSize property of your command button to '1 - Adjust Picture Size to
Button.' Your project should now look like this:

5. Change the setting of AutoSize to '2 - Adjust Button Size to Picture.' You will
immediately see the difference:

6. You will be using this project in the next exercise, so if you are not using the
sample projects included with ActiveThreed, save the project now.

Now you have seen how to make your control graphics transparent and automatically
adjust the size of the controls to match the graphic. Although you have worked primarily
with SSCommand buttons, the skills you have learned are applicable to any of the
THREED20 controls.
In the next exercise, you will learn how to further expand upon the concepts of the last two
lessons and create even more customized interface effects. The properties covered in the
next few exercises will apply only to buttons - the SSCommand and SSRibbon controls.

Exercise 6: Border Styles & Button Pictures

This exercise explores some of the properties that are unique to the ActiveThreed button
controls - SSCommand and SSRibbon. You can use them to create a customized interface
style of your choice, from borderless, web-like buttons to Office-style toolbars.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX6.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture file may also be
found in this directory.

1. If you do not have the project from the last exercise available, open it now. If you
did not save the project from the last exercise, you may use the one provided.

2. The SSCommand and SSRibbon buttons support a variety of border styles to
match the chosen look of your application. By default, the appearance of the
button follows that of the operating system's native controls. You can change this
by changing the setting of the ButtonStyle property. Try changing ButtonStyle
from the default value ('0 - Follow OS') to '3 - Active Borders'. Your form should
look like this:

Run the project. The button appears to have no border, but when the mouse
pointer passes over the control, the border becomes visible.
Note that the control will display a focus rectangle if it is the only control on the
form, regardless of its current border state. This is normal behavior for a
command button. You can add a second control, such as a text box, and give that
control focus if you want to see what the button looks like without the focus
rectangle.
If you do not want a focus rectangle to appear, you can use an SSRibbon button,
which cannot receive input focus and therefore will not display a focus rectangle.
The down side to this approach is that the user must click an SSRibbon button
with the mouse. The spacebar cannot be used to click an SSRibbon because the
control cannot receive focus. Also, a Ribbon button operates in toggle mode, so
you must add code if you wish to duplicate the functions of a Command button.

3. You can use a combination of properties to create buttons with a completely
custom appearance. For example, you can create a button that appears to be
round instead of square. The next few steps will show you how to do this. First,
add a second SSCommand button to your form and set the properties as follows:
AutoSize = '2 - Adjust Button Size to Picture'
BackStyle = '1 - Transparent'
ButtonStyle = '4 - Borderless'
Caption = "" (empty)

4. Make sure the form has the following properties set to the following values:
ClipControls = False
Picture = BACKGR1.BMP (in the QUICK TOUR 1 subdirectory)

5. Set the Picture property of SSCommand2 to REDBALL1.BMP. This file can be
found in the QUICK TOUR 1 subdirectory of the    SAMPLES directory.

6. Change the PictureMaskColor to white. You can select it from the property
sheet color palette, or enter the value &H00FFFFFF& for the property. Make sure
PictureUseMask is set to True.

7. Run the project. You will see that your second SSCommand button appears to be a
red ball floating over the textured background. Only the focus rectangle is
rectangular. If you click on the first button, the focus rectangle will move, and the
button will appear perfectly round.

Now that you know how to design a custom button appearance, you are ready to go a step
further and define different appearances for the different states of the control. The next
exercise will build on the form and controls created in this exercise, so you may want to
save your project now.

Exercise 7: Adding Additional Button States

This exercise will show you how to control pictures and animation for the various states of
the command and ribbon buttons. By using button state pictures, you gain complete
control over the appearance of the button in all phases of its operation.
All buttons have at least three states, and up state, which is the button's normal
appearance, a down state, which is how the button appears when depressed, and a
disabled state, which is how the button appears when it is inactive. The SSRibbon button
adds a fourth state, down disabled, to cover inactive, depressed buttons. You can specify a
separate picture (or animation) for each of these states. If you wish your button to appear
transparent, each state picture must share a common mask color.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX7.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture files may also be
found in this directory.

1. If you do not have the project from the last exercise available, open it now. If you
did not save the project from the last exercise, you may use the one provided.
Your project should have two SSCommand buttons; SSCommand1 is animated
with active borders, SSCommand2 is a borderless red ball. Both buttons should
use mask colors and have transparent backgrounds.

2. Select SSCommand2 (the red ball) and choose the PictureDn property from the
property sheet. In the FileOpen dialog, select the file GRNBALL1.BMP and click OK.
Make sure the PictureDnFrames property is set to 1, since this button is not
animated.

3. Run the project and click the red ball. When you press it with the mouse, the ball
turns green! Stop the project.

4. Select the red ball button again and choose the PictureDisabled property from
the property sheet. In the File Open dialog, select GRYBALL1.BMP and click OK.   
Make sure the PictureDisabledFrames property is set to 1, since this button is
not animated.

5. Select SSCommand1 (the animated one) and add the following code to the Click
event:

SSCommand2.Enabled = Not SSCommand2.Enabled
6. Run the project. First, click the red ball to verify that it turns green when clicked.

Then click the animated button. You should see the red ball turn gray as the
control is disabled. Verify this by attempting to click on the gray ball. When you
are done, click the animated button again to return the ball to its enabled state.   
Then stop the project.

7. Now that you have seen how to specify the down and disabled states of a static
button, changing the states of an animated button should be easy! Select
SSCommand1, and from the property sheet choose PictureDisabled. In the File
Open dialog, select the file DIANIM19.BMP and click OK.

8. Once you have selected the disabled state picture, change
PictureDisabledFrames to 19, the number of frames in this animation.

9. Enter the following code in the Click event of SSCommand2:

SSCommand1.Enabled = Not SSCommand1.Enabled
10. Run the project. This time click on the red ball first. You will see that the animation

turns gray, indicating the button is disabled. Because both the enabled and
disabled animations have the same number of frames, the animation continues
smoothly between the two states. If the animations had different numbers of
frames, changing the state would start each animation at the beginning.
If you pass the mouse over the animated button, you may also notice that the
borders do not "activate," another indication of the button's inactive state. Click
the red ball again to re-enable the animated button. Try clicking it now. When you
are done, stop the project.

11. To see the effects of the fourth state, you will need an SSRibbon button. Create an
SSRibbon button on your form and give it the following property settings:
AutoSize = '2 - Adjust Button Size to Picture'
BackStyle = '1 - Transparent'
ButtonStyle = '4 - Borderless'
Caption = "" (empty)
Picture = BLUBALL1.BMP
PictureDisabled = GRYBALL1.BMP
PictureDisabledFrames = 1
PictureDn = BLUBALL2.BMP
PictureDnDisabled = GRYBALL2.BMP
PictureDnDisabledFrames = 1
PictureDnFrames = 1
PictureFrames = 1
PictureMaskColor = &H00FFFFFF& (white)
PictureUseMask = True

12. After you have created the ribbon button, add the following code to the Click
event of SSCommand1:

SSRibbon1.Enabled = Not SSRibbon1.Enabled
13. Run the project. Click the ribbon button a few times. Because the SSRibbon

button is a toggle button, you will see the control switch between the up and
down state once with each click. Click the ribbon button to return it to the up
state.

14. Click SSCommand1 to disable the ribbon button. Notice that in the up state, the
ribbon button looks the same as SSCommand2 when disabled. Click
SSCommand1 again to re-enable both buttons.

15. Click the ribbon button to toggle it into the down state. Now click SSCommand1
again to disable it. This time you will see the fourth state of the button come into

effect. When you have seen enough, stop the project.

This exercise has covered the concept of button states in depth, shown you how to set
different appearances and even animations for the various button states. It has also
served as an introduction to the special features found in ribbon buttons, and the
differences between ribbon and command buttons.
The next exercise will be dedicated to the SSRibbon button and the capabilities of that
control. You will see how to use ribbon buttons in groups to create exclusive and toggle
button effects.

Exercise 8: Using Buttons In Groups

By this time, you know most of what you need to know about the common properties of
the THREED20 controls. You have also learned about some of the unique features of the
SSCommand and SSRibbon controls. In the final exercise of this lesson, you will discover
some of the features of the SSRibbon button that make it unique. Most of these features
involve using a series of SSRibbon buttons together, as you might on a toolbar, or if you
wished to emulate an option button using an SSRibbon button.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX8.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture files may also be
found in this directory.

1. Create a new project and place three SSRibbon buttons on Form1.
2. Make sure the ClipControls property of the form is set to False, then set the

following properties for each button (You may want to create a single button, set
the properties, then copy the button and paste it back onto the form twice.
Although you could create a control array, for the purposes of this exercise do not
create a control array.):
AutoSize = '2 - Adjust Button Size to Picture'
BackStyle = '1 - Transparent'
ButtonStyle = '4 - Borderless'
Caption = "" (empty)
Picture = BLUBALL1.BMP
PictureDn = BLUBALL2.BMP
PictureDnFrames = 1
PictureFrames = 1
PictureMaskColor = &H00FFFFFF& (white)
PictureUseMask = True
When you are done, your form should look something like this:

2. Click on each button, one at a time, and check the value of the GroupNumber
property. Each button should be set to group number 1, as this is the default. This
means the buttons will interact with one another in an exclusive fashion. Also
check the value of the GroupAllowAllUp property. This should be set to True,
meaning that it is possible for all the buttons in the group to be in the up position
(when a button is in the up position, its Value = False.)

3. Run the project. Click on the first button. It will remain pressed. Click the first
button a second time, and it will return to the up position.

4. Click the first button a third time so it is pressed. Now click on the second button.
As the second button is pressed, the first button returns to the up position. Click
the third button and the second button becomes unpressed. Finally, click the third
button again. Now all buttons should be in the up position.

5. Stop the project. On the form, select the first button and change the
GroupAllowAllUp property to False. Now select the third button and check the
value of the GroupAllowAllUp property. You will see that it has also changed to
False. Setting the GroupAllowAllUp value of one SSRibbon button sets it for all
the buttons in the same group.

6. Run the project again. Notice that although you have set GroupAllowAllUp to
False, all the buttons in the group are up! This is because changing the value of
GroupAllowAllUp will not change the Value property of any individual button.
GroupAllowAllUp cannot take effect until you change the Value of a particular
button. This is true both at design and run time.

7. Click the first button, then click it again. Instead of returning to the up position,
the button stays pressed. Now the only way to return a button to the up position
is to press another button. Once you understand how GroupAllowAllUp works,
stop the project.

8. Select the three buttons on your form using the mouse, then copy them to the
clipboard. Paste them back onto the form, answering No when asked if you want
to create a control array. Move the three new buttons below the original three,
and change the following properties for each one:
Picture = GRNBALL1.BMP
PictureDn = GRNBALL2.BMP
GroupNumber = 2
GroupAllowAllUp = True

9. Select the first button of the original group (the first blue button) and change its
Value property to True. The project should now look like this:

10. Run the project. Click on several buttons from each group. You will see that the
two groups are independent of one another. Clicking one of the green buttons has
no effect on any of the blue buttons. Also, one of the blue buttons is always down,
while all the green buttons can be up.

11. Stop the project. This time, select each button one at a time, set its
GroupAllowAllUp property to True, and set its GroupNumber to a unique value
(1 for SSRibbon1, 2 for SSRibbon2, etc.) Run the project again and experiment
with clicking all the buttons.
Although the buttons appear to be grouped because of their color and
arrangement, each button in this case functions independently of the others. This
is an important point to consider - you must judge whether to put buttons in
groups based solely on the need for exclusive operation, not on similarity of

function or appearance. What the user ultimately perceives as a "group" of ribbon
buttons is not necessarily a group from the programmer's point of view.

This concludes Lesson Two. You have received a complete overview of the properties and
events common to the THREED20 controls. You should now be comfortable creating
several types of scrolling captions, adding sounds, working with transparent controls, and
using different types of graphics and animation, including transparent graphics.
You should also have a good feel for how to use the button controls, and an understanding
of what the two types of buttons are and how they differ. You know most of the properties
that are unique to the button controls, and you have an understanding of what button
states are and how they work.
You now have everything you need to dive in and begin creating activated programs using
ActiveThreed. Start spicing up drab interfaces with hot multimedia ingredients that will
make your users sit up and take notice! As you explore the possibilities, consult the Control
Reference section of the help file if you need help using one of the common properties with
a specific control.
The next two lessons will go into further control-specific detail, gradually covering all the
features of the THREED20 controls. Lesson 2 will teach you how to use the SSCheck and
SSOption controls, and Lesson 3 covers the special features of the SSFrame and SSPanel
controls.

Exercise 9: Captions, Pictures and Alignment

In Lesson 1, you learned about using pictures (specifically animated pictures) and captions,
but not about using them together. This is because for most controls the interaction of
caption and picture is straightforward; the caption appears on top of the picture, and the
two have little effect on one another except for aesthetic considerations.
With the SSCheck and SSOption controls, the interaction of picture and caption is
somewhat more complex. (This is also true of the SSFrame control, as you will see in a
future exercise.) The area occupied by the caption is separate from the area occupied by
the picture. The style and placement of the caption affects the picture, and vice-versa. This
lesson will explore the nature of that interaction.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX9.VBP, located under QUICK TOUR 1 in the
SAMPLES subdirectory of your installation directory. The indicated picture file may also be
found in this directory.

1. Create a new project, and place a medium size SSCheck control on Form 1.
2. Add a picture to the control by setting the following properties:

Picture = BLUBALL1.BMP
PictureFrames = 1
PictureMaskColor = &H00FFFFFF& (white)
PictureUseMask = True
Your form should look something like this:

3. Notice that the picture is aligned to the left of the caption, not to the left side of
the control. Also notice that the caption is not superimposed on top of the picture.
In an SSCheck or SSOption, the check box or option button always stays on the
outer edge of the control. Pictures or captions are aligned accordingly. You can
verify this by setting the Alignment property of the control to '1 - Right Justify.'
The control now looks like this:

Alignment controls the orientation of the control as a whole, as determined by

the placement of the check box or option button. The picture itself may be
aligned to the left or right of the caption by setting the PictureAlignment
property.

4. Set the PictureAlignment property of the control to '1 - Right of Caption.' you
will see the following:

There is one other setting for PictureAlignment. Set PictureAlignment to '2 -
Justify.' The control assumes this appearance:

The '2 - Justify' setting aligns the picture to the edge of the control opposite the
check box or option button. This is useful if you wish to have a series of controls
with evenly aligned pictures.

5. There is one more consideration when using pictures with SSCheck and SSOption
controls, and it involves the movement of captions using the moving
MarqueeStyle settings. First, set the PictureAlignment property to '0 - Left of
Caption.' Notice how the picture moves near to the end of the caption text. Then
set the MarqueeStyle of the control to '1 - Scrolling.' The picture moves again to
the edge of the control, as it was when PictureAlignment was set to '2 - Justify.' 
Although the picture's alignment hasn't changed, it has moved in response to a
change in the size of the caption area. When an SSCheck or SSOption control is
using a moving marquee style, the caption area of the control is maximized to
better display the marquee effect.

6. Run the project. Observe the movement of the caption. Unlike the button controls,
the caption does not scroll across the picture. Scrolling takes place in the caption
area, which is independent of the picture area.

Now that you have covered the different alignment settings of the SSCheck & SSOption
controls. In the next exercise, you will see how to customize the appearance of the
interface portion of the control - that is, how to change the actual "box" portion of the
check box, and the "button" of the option button.

Exercise 1: Setting Up Splitter Panes

Here's the first exercise in the Splitter Quick Tour. You will learn how to create a Splitter
control and set up a basic system of panes.
A Splitter is a container control composed of a collection of pane objects. Each pane object
is capable of holding a single control, although that control may be a container control. The
panes of a Splitter are separated by splitter bars, which provide the user interface of the
Splitter. Splitter bars divide two or more panes either horizontally or vertically.
You create new panes in the Splitter by splitting an existing pane into two, either
horizontally or vertically. The result is that the existing pane becomes half its current width
or height, and a new pane is created that is half the current pane's width or height. The
two panes occupy the same area as the one pane did previously, so the size and
arrangement of other existing panes is not affected. Once you see the control in operation,
this procedure will be intuitively obvious.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX1.VBP, located under QUICK TOUR 2 in the
SAMPLES subdirectory of your installation directory.

1. Start Visual Basic by clicking on the icon on the Start Menu or Program
Manager.

2. Select the SSSplitter control and create a large splitter that covers most of your form.
If the ActiveThreed Splitter control does not appear in your toolbox, open the Custom
Controls dialog. When the list of available controls appears, check the box next to the
"Sheridan Splitter Control" and click OK.
3. When the splitter appears, there is already one pane in existence. In the center of
each pane is a cluster of user interface controls that looks like this:

This is the design-time interface of the SSSplitter control. These controls provide
information about the current pane, and give you the ability to split or delete the
pane. The individual parts of the interface are:

Pane Name The SSSplitter control automatically generates a default name for a
pane when it is created, but you can change the name to anything you want.

Pane Number Each pane is a member of the Panes Collection, and has a
unique index. As panes are added to and deleted from the collection, the index of any given
pane may change.

Split Horizontal Causes the pane to be split horizontally, creating a new pane
underneath the existing one.

Split Vertical Causes the pane to be split vertically, creating a new pane to
the right of the existing one.

Delete Pane Deletes the current pane. There must always be at least one pane
object, so when the Splitter has only one pane (as it does when first created) this button will
be disabled.

By using the buttons, you will see how easily and quickly you can create even
complex pane layouts.

4. Click on the button of Pane A.
This will create a second pane, B, in the bottom half of the control.

5. Click on the splitter bar between Panes A and B with your mouse, and drag it towards
the top of the control, until Pane A takes up only about 1/5th of the control's area. As you
can see, the splitter bars operate at design time just as they do at run time. The control
should look something like this:

Pane A will eventually become the toolbar area of the application.
6. Now split Pane B horizontally. Pane B will be in the middle, with Pane C at the

bottom of the control.

7. Click on the button of Pane B.
This will split the center of the control into two equal pieces, Pane B on the left
and Pane D on the right.

8. Drag the splitter bar between B and D to the right until B occupies about two-thirds of
the center area, and D occupies one-third. The control should now look something like this:

9. Split Pane C vertically, creating C and E, then split Pane E vertically. The bottom
area of the control should now be occupied by three panes - from left to right C, E
and F. If you make any mistakes, simply click the

 button on any pane you created
accidentally.

10. Resize panes C, E and F so they are roughly the same width.
11. Split Pane C horizontally, creating Pane G.
12. Split Pane F horizontally to create Pane H, then split H horizontally to create I. Resize
F, H and I so they are roughly the same height. At this point, your splitter should look like
this:

13. You will be using this project in the exercises that follow, so be sure to save it now.

Good work! You've successfully set up the basic structure of your application in just a few
minutes, using nothing but your mouse.
In the next exercise, you will begin to add the individual controls that make up your
application.

Exercise 2: Adding Single Controls To Panes

Now that you have created the panes you need to hold the controls of your application, its
time to add the controls. You can begin with single controls, each of which will occupy a
single pane.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX2.VBP, located under QUICK TOUR 2 in the
SAMPLES subdirectory of your installation directory.

1. If you do not have the project from Exercise 1 available, open it now. Display
Form1 which contains your Splitter.

2. The first control you will add to your application will be a text box. This is the
central control of the application, as it provides note taking capabilities. Because
it is the most important control, it will be located on the largest pane.
Select the standard Text Box control from your Visual Basic toolbox, and draw a
text box inside of Pane B. The size of the text box does not matter, as long as it is
drawn completely inside the pane.

3. As soon as you place the text box, the Splitter control resizes it to occupy all of
Pane B. This gives you immediate feedback as to how the controls will look in the
completed application.

4. Select a standard List Box from the toolbox and draw the list box inside of Pane D.
Again, you will see the control automatically resized to fit the pane.
Note Because the height of the list box is constrained by the integral height of
the list, the list box may not entirely fill the pane. This is normal behavior.

5. Add the following controls to the following panes. For each control, make sure you
draw the control inside the boundaries of the pane. If you make a mistake, simply
highlight the incorrectly placed control and delete it:
Pane C add SSCheck control (ActiveThreed check box)
Pane F add SSOption control (ActiveThreed option button)
Pane G add SSPanel control (ActiveThreed panel)
Pane H add SSOption control (ActiveThreed option button)
Pane I add SSOption control (ActiveThreed option button)
(If the ActiveThreed THREED20 controls do not appear in your toolbox, open the
Custom Controls dialog. When the list of available controls appears, check the box
next to the "Sheridan ActiveThreed Controls" and click OK.)
When you are finished, the control should look like this:

Already the application is beginning to take shape. The List Box will provide a list
of names or keywords that can be added to the notes area using only the mouse.
The check box and option buttons will set various program options, and the
SSPanel will display a digital clock.

6. Grab the splitter bar between the list box and the text box, and drag it to the left.
Notice how the controls smoothly and automatically resize to fit the new pane
size. Also notice that the splitter bar between the text box and the list box
operates independently of the splitter bar between Pane E and the three option
buttons, even though they may look continuous. When you are done, drag the
splitter bar back to it's previous position

7. Suppose you decide you want to give the digital clock the ability to add a
time/date stamp to the notes area via drag and drop. For convenience, the
SSPanel should be directly adjacent to the text box.
Moving controls around in the SSSplitter is as easy as adding them. To move the
SSPanel to be underneath the text box, simply click on the panel and drag it. An
outline of the control will appear. Drop the outline on top of the check box. The
two controls automatically switch places.

8. Save the project at this stage. You may want to give the different stages of the
project different file names.

Now you know how easy it is to add controls to the SSSplitter and move them around from
pane to pane. You've seen the splitter in action as it resizes controls on the fly and swaps
controls that you move with the mouse.
In the next exercise, you will see how to add multiple controls to a pane using container
controls.

Exercise 3: Adding Multiple Controls To Panes

You have seen how to create Splitter panes, and how easy it is to add controls to panes.
Each Splitter pane holds a single control, which is automatically resized to fill the area of
the pane. However, there will probably be times when, to suit the layout of your
application,    you want more than one control in each pane.
To add multiple controls to a pane, you simply place a container control on the pane first.
Any other controls can go "inside" the container. Although the individual controls will not
be resized automatically, the container will be, and you can take appropriate action
through code. You can use this as a technique if you want to place a single control inside a
pane but not have it resize automatically; simply place a container control on the pane
first, then place your fixed-size control inside the container.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX3.VBP, located under QUICK TOUR 2 in the
SAMPLES subdirectory of your installation directory.

1. If you do not have the project from Exercise 2 available, open it now. Display
Form1 which contains your Splitter.

2. Select an SSPanel control from the toolbox and draw a panel inside of Pane A. Set
the BevelOuter property of the panel    to '1 - Inset.'

3. Draw another SSPanel inside of Pane E. Set the BevelOuter property of this Panel
to '0 - None.'

4. The pane at the top of the control will become the toolbar for the application.
Select the SSRibbon button from the toolbox and draw a small Ribbon button on
the topmost panel. The ribbon button should be about the same height as the
panel and roughly square. Repeat this several times until you have four Ribbon
buttons on the toolbar. Or you can copy the first button and paste it into the
SSPanel three times. If you do this, do not create a control array.

5. Select the SSCommand button and add two command buttons to the SSPanel you
just created in the bottom center pane. Your application should now look
something like this:

6. The basic structure of the application is now complete. You would of course need
to change the caption of each control and implement the application's
functionality through code. You would probably also want to implement some
restrictions on the sizing of Splitter panes, such as making sure the toolbar is
always visible. You can do this using Splitter properties or through code, and
these techniques are covered in the next exercise.

7. When you have multiple controls inside a container control, they are not
automatically resized with the container. If you want to implement resizing of
controls, you must do this through code. Select the toolbar panel (SSPanel2) and
double click it to bring up the code window. Select the Resize event procedure.

8. There are several ways you might handle a resizable toolbar. The simplest is to
simply resize and reposition the buttons based on the size of the SSPanel that
contains them. Theoretically, this requires no changes to the Splitter, either at
design time or through code, but realistically you would probably want to place a
lower limit on the size of the pane.
In the Resize event procedure of the panel, enter the following code. (You do not
need to type the comments, they are for your information only.)

' Test to see if the combined width of 4 buttons would
' exceed the width of the panel, and if so limit the
' first button's height to 1/4th of the panel's width
If SSPanel2.Height > (SSPanel2.Width / 4) Then
 SSRibbon1.Height = (SSPanel2.Width / 4)
Else
 SSRibbon1.Height = SSPanel2.Height
End If

' Make first button square and place in upper left corner
SSRibbon1.Width = SSRibbon1.Height
SSRibbon1.Left = 0
SSRibbon1.Top = 0

' Make second button same size as first and place it
' directly next to the first button
SSRibbon2.Height = SSRibbon1.Height
SSRibbon2.Width = SSRibbon1.Width
SSRibbon2.Left = SSRibbon1.Width
SSRibbon2.Top = 0

' Make third button same size as first and place it
' directly next to the second button
SSRibbon3.Height = SSRibbon1.Height
SSRibbon3.Width = SSRibbon1.Width
SSRibbon3.Left = (SSRibbon1.Width * 2)
SSRibbon3.Top = 0

' Make fourth button same size as first and place it
' directly next to the third button
SSRibbon4.Height = SSRibbon1.Height
SSRibbon4.Width = SSRibbon1.Width
SSRibbon4.Left = (SSRibbon1.Width * 3)
SSRibbon4.Top = 0

9. Save and run the project. Drag the topmost splitter bar up and down a few times

to see the effect on the SSRibbon buttons. As the Panel is resized, the buttons
automatically adjust themselves to fit. However, they do not grow so large as to
expand beyond the edges of the panel.

In the next exercise, you will see how to set limits on the size and movement of Splitter
panes by using the properties of the Pane object. You will also be introduced to the
Property Pages of the Splitter control, which give you access to properties unavailable
through the Visual basic property sheet, such as the properties of sub-objects.

Exercise 4: Controlling Pane Size and Splitter Bar Movement

When setting up an application using the SSSplitter, you will often want to control the size
of individual panes. Sometimes you may want a pane to have a minimum height or width,
or you may want the size of the pane to remain constant. The Pane object has properties
that make these tasks easy. To access the properties of the Pane object at design time, you
must use the SSSplitter Property Pages.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX4.VBP, located under QUICK TOUR 2 in the
SAMPLES subdirectory of your installation directory.

1. If you do not have the project from Exercise 3 available, open it now. Display
Form1 which contains your Splitter.

2. Click on one of the splitter bars with the secondary mouse button to bring up the
context menu for the SSSplitter control. Select 'Properties...' from the menu. The
Property Pages will appear:

3. Select the item for the Panes collection, and click the icon to expand the
collection. You will see nine separate entries; one for each pane in the collection.

You will be making two changes to the Splitter. You will set a minimum height for the
pane that contains the toolbar (Pane A), and you will restrict the pane that contains the
command buttons (Pane E) by locking its width and setting a minimum value for its height.
4. Select Panes(0) from the list and click on the

 icon to expand the properties for the pane:

From here you can see the name of the control located on the pane, the pane's
name and its other properties.

5. Select the Name property of the pane and change it from "Pane A" to the more
descriptive "Toolbar." Hit Enter after you have entered the new name.

6. Two properties, MinHeight and MinWidth, control the minimum dimensions of
the pane that the control will allow. You want to set the minimum height of the
pane to a number large enough to ensure the toolbar will be visible and legible.
Set the MinHeight property to 300 and hit Enter.

7. You may notice that as you make changes in the property pages, the properties
whose values have changed are marked. Now click the Apply button. The values
you have entered will be applied to the control, and the property pages will clear
the marked properties, indicating that their values are now synchronized with
those of the control. The property pages remain open for you to do more work.

8. Click the icon next to Panes(0) to collapse the properties for that pane. Select
Panes(5) and click the

 icon next to it to expand its properties. The
Name of the property should be Pane E and the ControlName property should be
SSPanel3. Change the Name property of the pane to "Buttons".

9. Locking the dimensions of a pane is accomplished using the LockHeight and
LockWidth properties. You want to lock the width of the pane at its current width,
so set the LockWidth property to True. When you are done, click the Apply
button.
Note The LockHeight and LockWidth properties only affect the pane at run
time. At design time you can still change the height or width of the pane either by
using the mouse or changing the Height and Width properties of the Pane object
in the property pages.

10. Finally, you want to set the minimum height of this pane to a value just slightly

greater than the combined heights of the two command buttons on SSPanel3. The
number you use depends on the size of your command buttons, but a value of
1000 should be about right. Enter 1000 for the MinHeight property of the pane,
and click the OK button. The property pages will close.

11. Save and run the project. Try sizing the toolbar. You will see that when it reaches
minimum size, you can no longer reduce its height. Similarly, the width of the
panel containing the command buttons cannot be changed.

12. Stop the project. With the limits on pane size in place, you do not need to worry
about losing the toolbar or clipping the command buttons. However, the
command buttons may be incorrectly positioned when the SSPanel containing
them is changed. To remedy this, enter the following code in the Resize event of
the panel containing the command buttons (SSPanel3):

' Code for positioning command buttons vertically
' This code assumes both buttons are the same height
' Center Command1 in the top half of the panel and
' Command2 in the bottom half of the panel
Dim iHalfHeight As Integer
Dim iButtonTop As Integer

iHalfHeight = Int(SSPanel3.Height / 2)

iButtonTop = Int((iHalfHeight - SSCommand1.Height) / 2)

SSCommand1.Top = iButtonTop
SSCommand2.Top = iHalfHeight + iButtonTop

13. Save the project and run it again. This time when you resize the panel with the
buttons, they stay evenly centered and spaced. Stop the project when you are
finished.

Now you have seen how to limit and control panes through their properties, and written
some more code for repositioning controls in response to the changing size of their
container. In the next exercise, you will see how to write code that uses the events of the
Splitter control to give you an even finer degree of control over the behavior of splitter
panes.

Exercise 5: Accessing Panes Through Code

Sometimes you may want to have a greater degree of control over the splitter panes than
simply locking them or setting their minimum dimensions. The SSSplitter provides you with
several events and properties that let you control the panes through code.

Note Files covering all the concepts in this exercise, including any code you need to type,
can be found in the Visual Basic project EX5.VBP, located under QUICK TOUR 2 in the
SAMPLES subdirectory of your installation directory.

1. If you do not have the project from Exercise 4 available, open it now. Display
Form1 which contains your Splitter.

2. The first feature you will implement is uniform resizing of the panes containing
the option buttons. Currently, when the splitter bar above SSOption1 is moved,
the pane containing SSOption1 is resized, but the panes below it are not. This
affects the look of your application. To remedy this, you will write code to resize
each pane when the top one is resized.
To make it easier to work with the panes which contain the option buttons, click
on a splitter bar with your secondary mouse button and select "Properties..." from
the context menu to invoke the property pages.

3. Click on the icon next to the
Panes collection. Change the names of the panes which hold the option buttons,
Panes(6), Panes(7) and Panes(8), from "Pane F", "Pane H" and "Pane I" to "Opt1",
"Opt2" and "Opt3," respectively.

While you have the property pages open, also change the name of Panes(3) from
"Pane C" to "Clock." (This pane contains the SSPanel that will be the digital clock in the
completed application.) This will save you a step later in the exercise. When you have
changed the names of all four panes, click OK to accept the changes and close the property
pages.

4. You will use the Resize event of the Splitter control to change the size of the
option panes. Resize is triggered whenever a splitter bar is moved or when the
control as a whole is resized. Double-click one of the splitter bars to bring up the
code window for the SSSplitter, and enter the following code in the Resize event:

Dim lOptHeight As Long 'The height of one option panel

' Set the height of each option panel to be 1/3 the height
' of the Buttons panel, minus the approx. width of a splitter

bar
lOptHeight = Int(SSSplitter1.Panes("Buttons").Height / 3) - 50

' Set the pane unaffected by the splitter move to the correct
' height (avoids cascading events)
SSSplitter1.Panes("Opt3").Height = lOptHeight

' Set the topmost option pane to the correct height and the
' remaining pane will also be the right size
SSSplitter1.Panes("Opt1").Height = lOptHeight

4. Save and run the project. Try dragging the splitter bar below the text and list
boxes up and down. You will see that all the panes containing the option buttons
will stay the same size.

5. Currently, the pane containing the buttons is locked. This is good, because you
cannot change it's width and clip the edges of the buttons. But it is also bad
because it constricts the movement of the panes on either side of it. Ideally, you
would want to have the pane remain the same width, but still be moveable. You
can do this through code, using the Resize event and the SplitterStartDrag
event.
Double-click on one of the splitter bars to bring up the code window for the
SSSplitter. Select the SplitterStartDrag event. The SplitterStartDrag event
occurs when the splitter bar is first moved, before any resizing has taken place. It
provides the following parameters:
SplitterBarType This is an integer value that tells you if the splitter bar being

moved is a horizontal bar, a vertical bar, or a combination of the
two.

BorderPanes This is a special collection of pane objects that includes only the
panes affected by the movement of the splitter bar. You can
step through the panes in this collection to see if a particular
pane is among them, or to take action on each pane.

Cancel This is a boolean value that determines whether the movement
of the splitter bar will succeed. It is normally False, but if you
change it to True the splitter bar movement will be canceled.

First, enter the following code in the (General) (declarations) section of the
form:

Private bJustOnce As Boolean
Private lOptWidth As Long
Private lButtonWidth As Long
Private lTrueButtonWidth As Long

6. Enter the following code for the SplitterStartDrag event. As always, comments
are for your information and do not need to be typed:

' Set a flag to avoid cascading Resize events
bJustOnce = True

' Set widths to negative values so you can check them
' later to see which pane you're working with
lOptWidth = -1
lButtonWidth = -1

' Keep the real width of the Buttons pane
lTrueButtonWidth = SSSplitter1.Panes("Buttons").Width

' For each pane affected by the resize
For Each p In BorderPanes

' If it's an option pane (any one would do)
If p.Name = "Opt3" Then

' Get it's width and stop looking
lOptWidth = SSSplitter1.Panes("Opt3").Width

Exit For
End If

' If it's the Buttons pane
If p.Name = "Buttons" Then

' Get it's width and keep looking
' to see if options pane is also affected
lButtonWidth = SSSplitter1.Panes("Buttons").Width
End If

Next p

7. Next, enter the following code in the Resize event, after the code you previously
entered there:

' Check flag to avoid cascading events
If bJustOnce = True Then

bJustOnce = False

' If the width of the Buttons pane has changed
' but the width of the option pane has not
' (dragging splitter bar on left side of Buttons)
If lOptWidth = -1 And lButtonWidth <> -1 Then

' Find out how much it has changed
lBWidthChange = SSSplitter1.Panes("Buttons").Width -

lButtonWidth
' Add the amount of change to the width of the option pane
' To push the right edge of the Buttons pane into place
SSSplitter1.Panes("Opt3").Width =

SSSplitter1.Panes("Opt3").Width + lBWidthChange

' But if the widths of both the Button and option
' panes have changed (dragging splitter on right
' side of Buttons)
ElseIf lButtonWidth <> -1 And lOptWidth <> -1 Then
' Find out how much the width of the option pane has changed
lOWidthChange = lOptWidth - SSSplitter1.Panes("Opt3").Width
' And add that amount to the width of the Clock pane
' To push the left edge of the Buttons pane into place
SSSplitter1.Panes("Clock").Width =

SSSplitter1.Panes("Clock").Width + lOWidthChange
End If

' Finally, check the width of the Buttons panel and
' set it to the correct value
If SSSplitter1.Panes("Buttons").Width <> lTrueButtonWidth Then

SSSplitter1.Panes("Buttons").Width = lTrueButtonWidth
End If

End If

8. The last thing you must do is bring up the property pages for the Splitter, select
Panes(5) and set the LockWidth property of the "Buttons" pane to False. This will
make the Buttons pane moveable, while the code you entered will make sure it
remains the correct width.

9. Save and run the project. You will see that when you drag the splitter on the left
or the right of the buttons panel, the pane moves, but retains its size. The panes
on the opposite side of the panel are resized accordingly.

Congratulations! You have now completed all of Quick Tour 2. You have seen how to use
the SSSplitter to organize controls in resizable panes, both singly and in groups. You have
explored the property pages and used them to set the properties of objects. And you have
gained an understanding of how to control pane size and movement through code.
If you have any further questions on using the SSSplitter, you can consult the Control
Reference to get more specific help with individual properties and events. If you want to
learn more about the property pages, see the section entitled Property Pages.

Files Property
See Also Applies To

Description
Returns an ssDataObjectFiles collection, which in turn contains a list of all filenames
used by an ssDataObject object (such as the names of files that a user drags to or from
the Windows Explorer.)

Syntax
object.Files(index)

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
index An integer expression which is an index to an array of filenames.

Remarks
The ssDataObjectFiles collection is filled with filenames only when the ssDataObject
object contains data of type ssCFFiles (see Constants for more information. The
ssDataObject object can contain several different types of data.) You can iterate through
the collection to retrieve the list of file names.
The ssDataObjectFiles collection can be filled to allow ActiveThreed controls to act as a
drag source for a list of files.

FloodColor Property
See Also Example Applies To

Description
Returns or sets the color used to paint the area inside the panel's inner bevel when the
panel is used as a status or progress indicator (when the FloodType property setting is
other than None.)

Syntax
object.FloodColor [= color]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
color A value or constant that determines the color of the specified object.

Remarks
Use this property with FloodFillStyle, FloodPercent, FloodShowPct and FloodType to
cause the panel to display a colored status bar indicating the degree of completion of a
task.

FloodFillStyle Property
See Also Example Applies To

Description
Returns or sets a value that specifies the appearance of the panel when used as a status
or progress indicator.

Syntax
object.FloodFillStyle [=    number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the style of the flood fill, as described in

Settings.
Settings

Setting Description
0 (Default) Solid. The flood fill will display as a continuous colored area.
1 Segmented. The flood fill will display as evenly divided colored segments.

Remarks
Use this property with FloodColor, FloodPercent, FloodShowPct and FloodType to
cause the panel to display a colored status bar indicating the degree of completion of a
task.

FloodPercent Property
See Also Example Applies To

Description
Returns or sets the percentage of the painted area inside the panel's inner bevel when the
panel is used as a status or progress indicator (when the FloodType property setting is
other than None).

Syntax
object.FloodPercent [=    number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression between 0 and 100 specifying the amount (percentage)

of flood fill.
Remarks

The FloodPercent property can be set to an integer value between 0 and 100.
Use this property in conjunction with FloodColor, FloodFillStyle, FloodShowPct, and
FloodType to cause the panel to display a colored status bar, indicating the degree of
completion of a task.
This property is not available at design time.

FloodShowPct Property
See Also Example Applies To

Description
Returns or sets a value that determines whether the current setting of the FloodPercent
property will be displayed in the center of the panel when the panel is used as a status or
progress indicator (when the FloodType property setting is other than None).

Syntax
object.FloodShowPct [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the panel will display a flood fill, as

described in Settings.
Settings

Setting Description
True The current setting of the FloodPercent property will be displayed.
False (Default) The current setting of the FloodPercent property will not be

displayed.
Remarks

Use this property with FloodColor, FloodPercent, FloodShowPct and FloodType to
cause the panel to display a colored status bar indicating the degree of completion of a
task.

FloodType Property
See Also Example Applies To

Description
Returns or sets a value that specifies the appearance of the panel when used as a status
or progress indicator.

Syntax
object.FloodType [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the type of flood fill, as described in Settings.

Settings

Setting Description
0 (Default)    None. Panel has no status bar capability and the caption (if any) is

displayed.
1 Left to right.    Panel will be painted in a color, which is specified by the

FloodColor property, from the left inner bevel to the right as the
FloodPercent property increases.

2 Right to left.    Panel will be painted in a color, which is specified by the
FloodColor property, from the right inner bevel to the left as the
FloodPercent property increases.

3 Top to bottom.    Panel will be painted in a color, which is specified by the
FloodColor property, from the top inner bevel downward as the
FloodPercent property increases.

4 Bottom to top.    Panel will be painted in a color, which is specified by the
FloodColor property, from the bottom inner bevel upward as the
FloodPercent property increases.

5 Widening circle.    Panel will be painted in a color, which is specified by the
FloodColor property, from the center outward in a widening circle as the
FloodPercent property increases.

Remarks
Use this property with FloodColor, FloodFillStyle, FloodPercent and FloodShowPct to
cause the panel to display a colored status bar indicating the degree of completion of a
task.

Font Object
See Also Applies To

Description
Contains the information used to format the display of text in the caption of the control.

Properties
Bold
Italic
Name (default)
Size
Strikethrough
Underline

Remarks
You frequently identify a Font object using the Font property of an object that displays text.

Font Property
See Also Applies To

Description
Returns or sets the properties of the Font object at design time and run time.

Syntax
object.Font

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
Remarks

This setting provides access to the properties of the Font object. At design time, you can
choose this setting to invoke the Font dialog box and set the font attributes of the object.
At run time, specify a property setting of the object that you want to change or return.

Font3D Property
See Also Applies To

Description
Returns or sets a value that specifies the 3-D style of the control’s caption text.

Syntax
object.Font3D [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the 3-D font style, as described in Settings.

Settings

Setting Description
0 (Default) None.    Caption is displayed flat (not 3-dimensional).
1 Raised w/light shading.    Caption appears as if it is raised slightly above the

background.
2 Raised w/heavy shading.    Caption appears even more raised.
3 Inset w/light shading.    Caption appears as if it is inset slightly into the

background.
4 Inset w/heavy shading.    Caption appears even more inset.
5 Drop Shadow. Caption appears with a dark gray drop shadow slightly below

and to the right of the text.
Remarks

The Font3D property works in conjunction with all the other font properties (bold, italic,
etc.)    Settings 2 and 4 (heavy shading) look best with larger, bolder fonts.    Dramatic
effects can be created by combining the different Font3D setting with the other font
properties.

ForeColor Property
See Also Applies To

Description
Returns or sets the foreground (text) color of the control.

Syntax
object.ForeColor [= color]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
color A value or constant that determines the color of the specified object.

GetData Method
See Also Applies To

Description
This method is used to return data from an ssDataObject object in the form of a variant.

Syntax
object.GetData (format)

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
format An integer expression specifying the data format, as described in Settings.

Parentheses must enclose the constant or value. If format is 0 or omitted,
GetData automatically uses the appropriate format.

Settings

Setting Description
1 Text (.TXT files)
2 Bitmap (.BMP files)
3 metafile (.WMF files)
8 Device-independent bitmap (DIB)
9 Color palette
14 Enhanced metafile (.EMF files)
15 List of files
-16639 Rich text format (.RTF files)

Remarks
Constants that correspond to these formats are available. See Constants for more
information.
It's possible for the GetData and SetData methods to use data formats other than those
listed in Settings, including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. However, there are a few caveats:
§ The SetData method requires the data to be in the form of a byte array when it does

not recognize the data format specified.
§ The GetData method always returns data in a byte array when it is in a format that it

doesn't recognize, although Visual Basic can transparently convert this returned byte
array into other data types, such as strings.

§ The byte array returned by GetData will be larger than the actual data when running
on some operating systems, with arbitrary bytes at the end of the array. The reason for
this is that the application does not always know the data's format, and knows only the
amount of memory that the operating system has allocated for the data. This allocation
of memory is often larger than is actually required for the data. Therefore, there may
be extraneous bytes near the end of the allocated memory segment. As a result, you
must use appropriate functions to interpret the returned data in a meaningful way
(such as truncating a string at a particular length with the Left function if the data is in
a text format).

Note Not all applications support ssCFBitmap or ssCFPalette, so it is recommended that

you use ssCFDIB whenever possible.

GetFormat Method
See Also Applies To

Description
This method returns a Boolean value indicating whether an item in the ssDataObject
object matches a specified format. This method does not support named arguments.

Syntax
object.GetFormat format

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
format An integer expression specifying the data format, as described in Settings.

Settings

Setting Description
1 Text (.TXT files)
2 Bitmap (.BMP files)
3 metafile (.WMF files)
8 Device-independent bitmap (DIB)
9 Color palette
14 Enhanced metafile (.EMF files)
15 List of files
-16639 Rich text format (.RTF files)

Remarks
Constants that correspond to these formats are available. See Constants for more
information.
The GetFormat method returns True if an item in the ssDataObject object matches the
specified format. Otherwise, it returns False.

GroupAllowAllUp Property
See Also Applies To

Description
Returns or sets a value that determines whether or not all buttons in a group can be in the
'up' position.

Syntax
object.GroupAllowAllUp[= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying state of the buttons in the group, as

described in Settings.
Settings

Setting Description
True All buttons in the current group may be in the 'up' position.
False (Default) At least one button in the current group must be depressed.
Note When this property is set for one button in a group, then the property is
automatically set to the same value for all the other buttons in the group.

Remarks
This property controls the behavior of ribbon buttons in an exclusive group, as specified by
their GroupNumber property. Normally, when buttons are in the same group, one of the
buttons is pushed in at all times. By setting this property to True, you can override this
behavior, so it becomes possible that none of the buttons in the group will be in the 'down'
state.

GroupNumber Property
See Also Applies To

Description
Returns or sets the number of the group to which the button belongs.

Syntax
object.GroupNumber [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of the button’s group.

Remarks
You can assign ribbon buttons to a group by setting the GroupNumber property of the
buttons to the same value. Buttons in the same group exhibit exclusive behavior,
effectively operating like option buttons. Depressing one button in a group automatically
causes the others to return to the undepressed state
By setting the GroupAllowAllUp property, you can specify whether the button group
requires one button to be depressed at all times.

Height Property
See Also Applies To

Description
Returns or sets the vertical dimension of an object.

Syntax
object.Height [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An single precision expression specifying the height of the object. The value

returned is in the scale units of the object's container.
Remarks

This is an extender property, except when applied to the Pane object.
Use the Height, Width, Left, and Top properties for operations or calculations based on
an object's total area, such as sizing or moving the object.

HelpContextID Property
Applies To

Description
Returns or sets an associated context number for an object. Used to provide context-
sensitive help for your application.

Syntax
object.HelpContextID [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the context number of the Help topic

associated with the object, as described in Settings..
Settings

Setting Description
0 (Default) No context number specified.
> 0 An integer specifying a valid context number.

Remarks
This is an extender property.
For context-sensitive help on an object in your application, you must assign the same
context number to both object and to the associated help topic when you compile your
help file.

hWnd Property
Applies To

Description
Returns the window handle of the control.

Syntax
object.hWnd

Remarks

Note The ActiveThreed non-container controls (all except SSFrame & SSPanel) normally
operate as windowless controls in any environment that supports windowless controls.
When a control is windowless, using the hWnd property to return the window handle will
create a window for the control.
This property is read-only and is only available at run time.

Included Files

The following table gives a brief description of the files that are installed on your hard disk
during the Setup process.

Filename(s) Description
THREED20.OCX ActiveThreed file that contains the SSCheck, SSCommand, SSFrame,

SSOption, SSPanel, and SSRibbon ActiveX controls.

SPLITTER.OCX ActiveThreed file that contains the SSSplitter ActiveX control.

THREED20.HLP ActiveThreed on-line help files.
THREED20.CNT

README.WRI Pertinent, up-to-date version information on ActiveThreed, plus
additions and corrections to the documentation

HISTORY.WRI Revision history of ActiveThreed outlining changes to the product from
version to version.

UPGRADE.TXT Text file that contains information on how to upgrade applications that
currently use THREED.VBX, THREED16.OCX and THREED32.OCX.

\SAMPLES*.* Samples and exercise files provided with ActiveThreed. Also contains
the project files used by the Quick Tour tutorials

\GRAPHICS*.* Bitmaps and animations provided for use with ActiveThreed in your
applications.

SSPPG.DLL Property Page DLL for design-time support.

MSVCRT.DLL Support files required by ActiveX controls
OLEPRO32.DLL
OLEAUT32.DLL
STDOLE2.TLB

UNINSTAL.EXE Uninstall program used to uninstall ActiveThreed. It is recommended
that you use the facility provided by your operating system to uninstall
applications, if one is available.
Windows 95 and Windows NT 4.0 users should use the "Add/Remove
Programs" tool in Control Panel to uninstall ActiveThreed.

INSTALL.LOG Log file created by the install program and used by UNINSTAL.EXE

Including Sound

Sound is a big part of producing multimedia applications. Sound support for the
ActiveThreed controls is implemented in a simple and straightforward manner. Each
control supports a PlaySoundFile method. When calling this method, you pass it the
name of the sound file you would like to be played. Sound files must be in the Windows
WAV format. The method can be called from any event, function or subroutine in your
application.

Note The computer running the application must have a properly installed and
configured audio playback device in order to use sounds.
Unless you specify a fully qualified pathname for the PlaySoundFile method, the
ActiveThreed controls will look for the sound file first in the same directory as your
executable, then in any directories specified by the environment's PATH statement. This
makes it easy to distribute sound files with your completed application - simply place them
in the same directory as the executable. However, at design time, the executable used is
that of your design environment. Any sounds you wish to use must be placed in the same
directory as the executable for your programming language. This is only necessary until
you are ready to compile and distribute the application.

To add sound to an event in an ActiveThreed control:
1. Bring up the code window for the control, and select the name of the event that you

want to trigger the sound.
2. In the event procedure, enter the following code, substituting the name of the control

for SSControl and the name of your chosen sound file for MYWAVE.WAV:

SSControl.PlaySoundFile "MYWAVE.WAV"

3. Make sure the sound file is located in a directory where it can be found by the control;
either the same directory as your development environment's executable, or one of
the directories along your path.

Quick Tour 1 Introduction

ActiveThreed is a set of ActiveX controls designed to add a cutting-edge interface to your
applications. The ActiveThreed THREED20 controls (THREED20 refers to all the
ActiveThreed controls except the SSSplitter) replicate the functions of some of the
Windows base controls, but with a variety of cool new features. The THREED20 controls
give you the tools to design attractive and engaging applications, utilizing many of the
interface features popularized by the Internet and the World Wide Web. Together with the
Splitter control, the THREED20 controls provide enhanced interface capabilities which you
can use to give your application a multimedia look and feel. You can design programs that
integrate well with content on the World Wide Web as well as the most recent versions of
popular applications suites.

Note The code and forms created in these exercises are included with the product. They
are in the SAMPLES\QUICK TOUR 1 subdirectory of your product installation directory.
In the code included with these exercises, the ActiveThreed constants are used wherever
applicable. It is recommended that you use the constants in your own code, rather than
the numeric values, to insure compatibility with future versions of ActiveThreed. Constants
for the various enumerated properties can be found in the Object Browser.

Lesson 1: General Properties
This Quick Tour will introduce you to the primary features of the THREED20 controls;
SSCheck, SSCommand, SSFrame, SSOption, SSPanel and SSRibbon.
ActiveThreed's THREED20 controls have been designed to be easy to use. They share
many of the same properties and methods from control to control. Once you learn how to
work with the interface features of one control, you can apply your knowledge to any of
the THREED20 controls. In this Quick Tour, you will first learn how to use the general
features of the THREED20 controls, then move on to more control-specific features.
ActiveThreed THREED20 controls can be used in a variety of development environments.
For the sake of simplicity, the Quick Tours will use the Visual Basic 4.0 development
platform to illustrate the features of the controls. Examples of how to use the controls in
other environments are included in the SAMPLES directory, which is located in the
subdirectory where you installed ActiveThreed.

Quick Tour 2 Introduction

ActiveThreed includes a totally new control called the SSSplitter control. The Splitter is a
flexible container control that allows you to organize multiple controls in a series of
resizable panes. When you drag the splitter bars that separate these panes with your
mouse, the control contained by each pane is automatically resized. Each pane can
contain only one control, but that control may be a container control such as the SSPanel,
which gives you the option of putting multiple controls in a single pane. The SSSplitter
controls brings the frames metaphor, found on many web sites, to your desktop
applications.
Aside from the splitter bars, the Splitter has no run-time user interface, since the control is
completely covered with other controls. The design time interface of the splitter is simple
and intuitive - on screen buttons make it easy to delete panes or add new panes by
splitting existing ones horizontally or vertically. Similarly, the Splitter has just a few events
to deal with the movement of splitter bars and the resizing of panes. Despite its simplicity,
the Splitter is quite flexible and powerful.
Controls are added to the Splitter the same way you would add them to any other
container control. Once inside, controls can be moved from pane to pane via simple drag
and drop.

Note The code created in these exercises is included with the product. It is in the
SAMPLES\QUICK TOUR 2 subdirectory of your Product installation directory.

Learning to use the Splitter Control
In this Quick Tour, you will construct a simple framework application using the Splitter. The
application will be a simple Personal Information Manager (PIM) type of program featuring
many of the elements you would use in creating real world applications, such as data entry
fields, toolbars, list boxes and various types of buttons. Along the way, you will fully
explore the capabilities of the Splitter control. For the sake of simplicity, the Quick Tours
will use the Visual Basic 4.0 development platform to illustrate the features of the control.
Moreso than in Quick Tour 1, you may want to rely on the samples provided with
ActiveThreed as you move through the exercises, because of the cumulative nature of the
work you will be doing.

Italic Property
See Also Applies To

Description
Returns or sets the font style of the specified Font object to either italicized or non-
italicized.

Syntax
object.Italic [= boolean]
The Italic property syntax has these parts:

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A Boolean expression specifying the font style, as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on italic formatting.
False Turns off italic formatting.

Remarks
The Font object is not directly available at design time.    Instead you set the Italic
property through a control's Font property.   
At run time, however, you can set Italic directly by specifying its setting for the Font
object.

Item Method
Applies To Example

Description
Returns the pane object corresponding to the specified name or index.

Syntax
object.Item name

object.Item(index)

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
name A string expression that evaluates to the name of an existing Pane object.
index An integer expression that evaluates to the position of a Pane object within

the Panes collection.
Remarks

This is the default method of the Panes collection. Individual panes within the collection
may be accessed using this method
If index is a numeric expression, it must be a number from 1 to the value of the collection's
Count property. If the value provided as index does not match any existing member of the
collection, an error occurs.

KeyDown Event
See Also Applies To

Description
Occurs when the user presses a key while an object has the focus.

Syntax
Sub control_KeyDown ([index As Integer] keycode As Integer, shift As Integer)

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
keycode A key code, such as 112 (the F1 key) or 36 (the HOME key.) Your development

environment may have pre-defined constants for key code values; you should
use them wherever possible.

shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at
the time of the event.

Remarks
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
KeyDown is not invoked for:
§ The ENTER key if the control is an SSCommand control with the Default property set to

True.
§ The ESC key if the control is an SSCommand control with the Cancel property set to

True.

KeyPress Event
See Also Applies To

Description
Occurs when the user presses and releases a key

Syntax
Sub control_KeyPress ([Index As Integer] keyascii As Integer)

The event parameters are:

Parameter Description
Index An integer expression that uniquely identifies a control if it is in a control

array.
keyascii An integer that returns a standard numeric ANSI keycode. Keyascii is passed

by reference; changing it sends a different character to the object. Changing
keyascii to 0 cancels the keystroke so the object receives no character.

Remarks
In order to generate a KeyPress event, the key pressed must be an ANSI key: any printable
keyboard character, the CTRL key combined with a character from the standard alphabet
or one of a few special characters, and the ENTER or BACKSPACE key. Changing the value
of the keyascii argument changes the character displayed.

KeyUp Event
See Also Applies To

Description
Occurs when the user releases a key after having pressed it while an object has the focus.

Syntax
Sub control_KeyUp ([index As Integer] keycode As Integer, shift As Integer)

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
keycode A key code, such as 112 (the F1 key) or 36 (the HOME key.) Your development

environment may have pre-defined constants for key code values; you should
use them wherever possible.

shift An integer that corresponds to the state of the SHIFT, CTRL, and ALT keys at
the time of the event. A bit is set if the key is down.

Remarks
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
KeyDown is not invoked for:

§ The ENTER key if the control is an SSCommand control with the Default property
set to True.

§ The ESC key if the control is an SSCommand control with the Cancel property set
to True.

Learning To Use ActiveThreed Controls

Introduction to Quick Tour 1

Lesson 1: General Properties

Exercise 1: Adding a scrolling caption
Exercise 2: Playing sounds
Exercise 3: Transparent operation
Exercise 4: Adding an animated picture
Exercise 5: Mask colors & AutoSize

Lesson 2: SSCommand & SSRibbon

Exercise 6: Border styles & button pictures
Exercise 7: Adding additional button states
Exercise 8: Using buttons in groups

Lesson 3: SSCheck & SSOption

Exercise 9: Captions, pictures and alignment
Exercise 10: Adding a custom control graphic
Exercise 11: Working with control states (2 vs. 3)

Lesson 4: SSFrame & SSPanel

Exercise 12: Understanding background pictures
Exercise 13: More on alignment
Exercise 14: Making a progress indicator

Back To Quick Tours

Learning To Use The Splitter Control

Introduction to Quick Tour 2

Exercise 1: Setting up Splitter panes
Exercise 2: Adding single controls to panes
Exercise 3: Adding multiple controls to panes
Exercise 4: Controlling pane size and splitter bar movement
Exercise 5: Accessing panes through code

Back To Quick Tours

Left Property
See Also Applies To

Description
Returns or sets the distance between the left edge of an object and the left edge of its
container.

Syntax
object.Left [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An single precision expression specifying the distance of the object from the

left edge of its container. The value returned is in the scale units of the
object's container.

Remarks
This is an extender property, except when applied to the Pane object.
Use the Height, Width, Left, and Top properties for operations or calculations based on
an object's total area, such as sizing or moving the object.
This property is read-only the Pane object.

Lesson 2: SSCommand & SSRibbon

Now that you are familiar with the properties and methods common to all the THREED20
controls, it is time to begin exploring each individual control in further detail. Each control
has unique abilities that set it apart from the rest.
This lesson covers properties exclusive to the SSCommand and SSRibbon buttons.
Although both are buttons, the SSCommand operates like the Windows common command
button - once clicked, it automatically pops back up. The SSRibbon is a toggle button that
behaves in a manner similar to a check box or option button. Once clicked, the button
changes state, staying pressed down. A second click is required to pop it back up.
SSRibbon buttons also have the ability to operate in exclusive mode, like option buttons.
The control automatically takes care of ensuring that no two buttons in the same group
can be pressed at the same time.

Lesson 3: SSCheck & SSOption

Lessons 1 of Quick Tour 1 introduced the THREED20 controls (the controls contained in
THREED20.OCX) and taught how to use the features that are common to all the controls.
Lesson 2 covered two specific controls, the SSCommand and SSRibbon button controls.
Lesson 3 builds on the knowledge gained in Lessons 1 and 2, and goes into deeper detail
on two other THREED20 controls; SSCheck and SSOption. These two controls have much in
common with one another, and both feature the common ActiveThreed ability to create a
truly customized interface experience for the users of your programs.
This lesson will introduce you to some of the nuances of using scrolling captions with the
Check and Option controls. You will also find out more about control states, and use that
knowledge to create custom graphics that replace the "Square Box - Round Box" look of
the standard Check and Option controls. Finally, you will discover how to use the different
states of the SSCheck control to ensure compatibility with both older and newer programs.

Lesson 4: SSFrame & SSPanel

This final lesson of Quick Tour 1 covers the two remaining THREED20 controls, SSFrame
and SSPanel. As with the previous lessons, it will build on the knowledge you have already
acquired.
The primary purpose of the SSFrame and SSPanel controls is to act as containers for other
controls. In addition to grouping controls functionally, SSFrame and SSPanel allow you to
group controls visually with extended interface properties.
Adding controls to an SSPanel or SSFrame control is identical to adding controls to the
Windows common Picture Box or Frame container controls. Simply place the SSFrame or
SSOption on a form, then draw the controls inside the container control. Alternatively, you
can cut controls from a form to the clipboard, select the SSFrame or SSPanel, then paste
the controls inside.
The SSPanel control can also serve as a flexible label-type control, displaying information
either textually or graphically.

LockHeight Property
See Also Applies To

Description
Returns or sets a value that determines whether the height of the pane can be changed

Syntax
object.LockHeight [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the pane may be vertically resized,

as described in Settings.
Settings

Setting Description
True The height of the pane cannot be changed.
False (Default) The pane height may be changed by moving the splitter bars.

Remarks
You can use this property to ensure that a particular pane always remains the same height.
Note that this limitation applies only to resizing the pane using the splitter bars. You may
still set the pane to any size through code, regardless of the value of this property.
This property takes effect at run time. At design time you can move the splitter bars
without restriction.

LockWidth Property
See Also Applies To

Description
Returns or sets a value that determines whether the width of the pane can be changed

Syntax
object.LockWidth [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the pane may be horizontally

resized, as described in Settings.
Settings

Setting Description
True The width of the pane cannot be changed.
False (Default) The pane width may be changed by moving the splitter bars.

Remarks
You can use this property to ensure that a particular pane always remains the same width.
Note that this limitation applies only to resizing the pane using the splitter bars. You may
still set the pane to any size through code, regardless of the value of this property.
This property takes effect at run time. At design time you can move the splitter bars
without restriction.

Locked Property
See Also Applies To

Description
Returns or sets a value that determines whether the splitter bars will be movable or
stationary.

Syntax
object.Locked [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the splitters between panes may be

moved, as described in Settings.
Settings

Setting Description
True Splitters cannot be moved and panes cannot be resized.
False (Default) Splitters can move and panes are sizable.

Remarks
If you are designing an application with a fixed layout, you can use this property to prevent
the user from moving the splitter bars in the Splitter control. Normally, the splitter bars are
movable, allowing the user to resize panes.
This property takes effect at run time. At design time you can move the splitter bars
without restriction.

MarqueeCycleBegin Event
See Also Example Applies To

Description
Occurs just before the control’s caption begins a new marquee cycle.

Syntax
Sub control_MarqueeCycleBegin ([index As Integer])

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
Remarks

The MarqueeCycleBegin event occurs before the caption text appears in a control, when
the text has finished scrolling out of the caption area and is about to re-appear (Scrolling
Marquee), when the text has reached an edge of the control and is about to reverse
direction (Bouncing Marquee), when the text has reached the point where it has come to a
stop (Sliding Marquee), or when the text is about to become visible again (Blinking
Marquee.)

MarqueeCycleEnd Event
See Also Applies To

Description
Occurs after the control’s caption completes a marquee cycle.

Syntax
Sub control_MarqueeCycleEnd ([index As Integer])

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
Remarks

The MarqueeCycleEnd event is similar to the MarqueeCycleBegin event and usually
occurs at nearly the same time, although slightly before. It's primary purpose is for use
with the Sliding marquee style, as it gives you a way to take an action when the motion of
the text has stopped.

MarqueeDelay Property
See Also Example Applies To

Description
Returns or sets the scrolling speed of the marquee effect of the caption text.

Syntax
object.MarqueeDelay [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the delay between scrolling effects in

milliseconds..
Remarks

This property controls the speed of the text scrolling. Setting MarqueeDelay to 0 will
cause the control to scroll the text as quickly as possible. Setting any value for this
property will slow down scrolling by introducing a delay into the amount of time it takes
the control to scroll the caption one unit in any direction. The size of a unit is determined
by the MarqueeScrollAmount property.
Use this property in conjunction with the MarqueeScrollAmount property to achieve the
desired scrolling speed and smoothness.

Warning! Setting MarqueeDelay to 0 or a low number (less than 55 for Windows 95, less
than 10 for Windows NT) will increase the demands the control places on the system's
CPU. Depending on the machine running the application, this can have a significant effect
on overall system performance.

MarqueeDirection Property
See Also Example Applies To

Description
Returns or sets the scrolling direction of the marquee effect of the caption text.

Syntax
object.MarqueeDirection [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the type of marquee scrolling to perform, as

described in Settings..
Settings

Setting Description
0 (Default) Right To Left
1 Left To Right
2 Top To Bottom
3 Bottom To Top

Remarks
This property determines which direction the    caption text will begin scrolling. Scrolling
must first be enabled by setting the CaptionStyle property to Scrolling Marquee,
Bouncing Marquee or Sliding Marquee.
You can use the MarqueeCycleBegin event to change the direction of the scrolling once
the control is displayed.
Note that when 0 or 1 is selected, the caption area is set to the maximum possible width
based on the size of    the control.    A setting of 2 or 3 sets the caption area to the
maximum possible height.

MarqueeScrollAmount Property
See Also Applies To

Description
Returns or sets the number of pixels the marquee caption will be scrolled after each delay.

Syntax
object.MarqueeScrollAmount [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of pixels to scroll the marquee

caption..
Remarks

The minimum setting for this property is 1.
This property controls the smoothness of the text scrolling effect. A smaller value will
produce a smoother scroll, but the overall time it takes the text to scroll will be longer. A
larger value results in faster but more choppy scrolling.
Use this property in conjunction with the MarqueeScrollDelay property to achieve the
desired scrolling speed and smoothness.

MarqueeStyle Property
See Also Example Applies To

Description
Returns or sets the type of marquee effect the caption of the control will have.

Syntax
object.MarqueeStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the type of marquee scrolling to perform, as

described in Settings..
Settings

Setting Description
0 (Default) None
1 Scrolling Marquee.    The caption displays as text that moves constantly in one

direction.
2 Sliding Marquee.    The caption displays as text that moves initially then stops.
3 Blinking Marquee.    The caption displays as text that blinks on and off.
4 Bouncing Marquee.    The caption displays as text that moves constantly and

reverses direction.
Remarks

ActiveThreed controls now include a series of active caption styles. You can use these
styles to give added impact to your application, or to call attention to particular areas of
interest within your program.. Caption text is displayed in the caption area of the control;
the size of this area is generally the size of the control, but may vary based on the specific
control being used and on whether or not caption pictures are being displayed.
The movement of the caption is controlled by the MarqueeDelay and
MarqueeScrollAmount properties. These two properties affect the speed and the
smoothness of the scrolling, respectively.
When MarqueeStyle is set to 0, the caption will be static. Setting MarqueeStyle from 1
to 4 produces a moving caption. The direction of the movement is controlled by the
MarqueeDirection property. When set to '1 - Scrolling,' the caption text will move   
continuously in one direction. The beginning of the text re-appears as soon as the last of
the text has left the caption area. Before the text appears, a MarqueeCycleBegin event
is fired.
When MarqueeStyle is set to '2- Sliding,' the caption text will move until it reaches the
edge of the caption area. It then stops moving and appear static. If the text is too long to
fit completely within the caption area, the caption will continue to scroll until all of the text
has been displayed, then it will stop.
Blinking caption text does not move, but flashes on and off. The rate of the flashing is
controlled by the MarqueeDelay property. The MarqueeCycleBegin event is fired just
before the text appears.
A setting of '4- Bouncing' causes the text to move in 2 directions. The text will move in one
direction until it reaches the edge of the caption area, when it will reverse direction. If the

caption text is too long to fit completely within the area, the caption will continue to scroll
in one direction until all the text has been displayed, then it will reverse direction.
When MarqueeStyle is set to '4- Sliding,' the caption text will move until all of the text
has been displayed in the caption area. It then stops moving and appears static.

MinHeight Property
See Also Applies To

Description
Returns or sets the minimum possible height of the pane.

Syntax
object.MinHeight [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number A single precision expression specifying the minimum height of the pane, in

units determined by the scale mode of the container.
Remarks

You can use this property to ensure that a particular pane is never resized below a certain
height.
Note that this limitation applies only to resizing the pane using the splitter bars. You may
still set the pane to any size through code, regardless of the value of this property.
This property takes effect at run time. At design time you can move the splitter bars
without restriction.

MinWidth Property
See Also Applies To

Description
Returns or sets the minimum possible width of the pane.

Syntax
object.MinWidth [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number A single precision expression specifying the minimum width of the pane, in

units determined by the scale mode of the container.
Remarks

You can use this property to ensure that a particular pane is never resized below a certain
width.
Note that this limitation applies only to resizing the pane using the splitter bars. You may
still set the pane to any size through code, regardless of the value of this property.
This property takes effect at run time. At design time you can move the splitter bars
without restriction.

MouseDown Event
See Also Applies To

Description
Occurs when the user presses a mouse button while the mouse pointer is within the
boundary of the control.

Syntax
Sub control_MouseDown ([index As Integer] button As Integer, shift As Integer, x As

Single, y As Single)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
button An integer expression that identifies the button that was pressed to cause the

event. The button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the button specified in the button argument is pressed. A bit is
set if the key is down.

x,y A single-precision value that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the coordinate
system set by the scale mode of the object's container.

Remarks
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

MouseEnter Event
See Also Example Applies To

Description
Occurs when the mouse pointer enters the boundary of the control.

Syntax
Sub control_MouseEnter ([index As Integer] button As Integer, shift As Integer, x As

Single, y As Single)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
button An integer expression that identifies the button that was pressed when the

event occurred. The button argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the event occurred. A bit is set if the key is down.

x,y A single-precision value that specifies the location of the mouse pointer when
it entered the control. The x and y values are always expressed in terms of the
coordinate system set by the scale mode of the object's container.

Remarks
This event is fired whenever the mouse pointer passes within the borders of the control. As
the mouse pointer leaves the control, a MouseExit event is fired.
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

MouseExit Event
See Also Example Applies To

Description
Occurs when the mouse pointer exits the boundary of the control

Syntax
Sub control_MouseExit ([index As Integer] button As Integer, shift As Integer, x As

Single, y As Single)   
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
button An integer expression that identifies the button that was pressed when the

event occurred. The button argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the event occurred. A bit is set if the key is down.

x,y A single-precision value that specifies the location of the mouse pointer when
it entered the control. The x and y values are always expressed in terms of the
coordinate system set by the scale mode of the object's container.

Remarks
This event is fired whenever the mouse pointer was over the control and then moves
outside its borders. When the mouse pointer first enters the control, a MouseEnter event
is fired.
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

MouseIcon Property
See Also Applies To

Description
Returns or sets the icon that will be used for the mouse pointer when the MousePointer
property is set to Custom.

Syntax
object.MouseIcon [= picture]
object.MouseIcon = LoadPicture(pathname)

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture An object expression that evaluates to a Picture, most commonly the Picture

property from a Form object, PictureBox control, or Image control.
pathname A string expression specifying the path and filename of the file containing the

custom icon.
Remarks

The MouseIcon property provides a custom icon that is used when the MousePointer
property is set to 99. You can use the MouseIcon property to load either cursor (.CUR) or
icon (.ICO) files.

MouseMove Event
See Also Example Applies To

Description
Occurs when the mouse pointer is moved while within the boundaries of the control.

Syntax
Sub control_MouseMove ([index As Integer] button As Integer, shift As Integer, x As

Single, y As Single)     
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
button An integer expression that identifies the button that was pressed when the

event occurred. The button argument is a bit field with bits corresponding to
the left button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the event occurred. A bit is set if the key is down.

x,y A single-precision value that specifies the location of the mouse pointer. The x
and y values are always expressed in terms of the coordinate system set by
the scale mode of the object's container.

Remarks
This event is fired whenever the mouse is moved within the borders of the control. As the
mouse is moved within the boundaries of the control, this event will occur multiple times.
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

MousePointer Property
See Also Applies To

Description
Returns or sets a value specifying the type of mouse pointer displayed when the mouse is
over a particular part of an object at run time.

Syntax
object.MousePointer [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the type of mouse pointer displayed, as

described in Settings.
Settings

Setting Description
0 (Default) Shape determined by the object.
1 Arrow.
2 Cross (cross-hair pointer).
3 I Beam.
4 Icon (small square within a square).
5 Size (four-pointed arrow pointing north, south, east, and west).
6 Size NE SW (double arrow pointing northeast and southwest).
7 Size N S (double arrow pointing north and south).
8 Size NW, SE (double arrow pointing northwest and southeast).
9 Size WE (double arrow pointing west and east).
10 Up Arrow.
11 Hourglass (wait).
12 No Drop.
13 Arrow and hourglass.
14 Arrow and question mark.
15 Size all.
99 Custom icon specified by the MouseIcon property.

Remarks
You can use this property when you want to indicate changes in functionality as the mouse
pointer passes over controls on a form or dialog box.    The Hourglass setting (11) is useful
for indicating that the user should wait for a process or operation to finish.

MouseUp Event
See Also Applies To

Description
Occurs when the user releases a mouse button while the mouse pointer is within the
boundaries of the control.

Syntax
Sub control_MouseUp ([index As Integer] button As Integer, shift As Integer, x As

Single, y As Single)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
button An integer expression that identifies the button that was released to cause the

event. The button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the button specified in the button argument is released. A bit is
set if the key is down.

x,y A single-precision value that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the coordinate
system set by the scale mode of the object.

Remarks
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

Name Property
Applies To

Description
Returns or sets a unique ID string for the specified object.

Syntax
object.Name [= text]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
text A string expression that specifies a unique identifier for the object.

Remarks
This is an extender property, except when applied to the Pane or Font object.
The Name property is read-only at run time.
The default name for new objects is the kind of object plus a unique integer. For example,
the first new SSCommand object is SSCommand1, and the second SSPanel control you
create on a form is SSPanel2.
An object's Name property must start with a letter and can be a maximum of 40
characters. It can include numbers and underline (_) characters but can't include
punctuation or spaces.

Name Property (Font object)
See Also Applies To

Description
Returns or sets the font name of the Font object.

Syntax
object.Name [= font]
The Name property syntax has these parts:

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
font A string expression specifying the name of the font to be used.

Remarks
The Font object is not directly available at design time. Instead you set the Name
property through a control's Font property.   
At run time, however, you can set Name directly by specifying its setting for the Font
object.

Non-Distributable Files

Non-distributable files are required to support the product in a development environment.
Under the terms of your license agreement, you cannot distribute these files with your
application. These include the executable and support files for the design-time environment
and the design-time support files for product components.

The following files may NOT be distributed:

SSPPG.DLL Support files for the property pages

*.HLP
*.TXT

Any help or documentation files included with
ActiveThreed

OLE Drag and Drop Operations
See Also
ActiveThreed controls comply with the ActiveX standard, which means they are capable of
handling OLE drag and drop operations from other applications or even the Windows shell.
OLE Drag and Drop support is provided via a number of methods and events that work
together to support both sides of a drag-and-drop conversation; the object being dragged,
or "source" and the object receiving the drag, or "target".
In an OLE drag and drop situation, there are 2 groups of events that occur; Drag Side   
events and Drop Side events. Together these two groups constitute all the communication
that goes on between the drag and drop source and target. The execution of these events
is as follows:
Note that there are constants for most of the values you need to use when implementing
drag-and-drop. See Constants for more information.

Drag Side (source control)
To start a drag and drop operation, you call the OLEDrag method. This initiates the drag
and drop and fires an OLEStartDrag event in the source control.
The OLEStartDrag event receives parameters that include an ssDataObject object. This
is an object that serves as the container for whatever information is being transferred by
the drag-and-drop operation. The ssDataObject object can be queried to provide
information about what is being dragged and what data types are supported. You also
receive an Effects parameter that tells it what types of operations are allowed. Possible
effects are none, move, copy, and scroll.
As the mouse pointer with the dragging object moves, multiple OLEGiveFeedback events
are fired. The event is passed an Effect parameter, as well as a boolean DefaultCursors
parameter that determines whether to display default or custom mouse pointers as the
mouse moves. This event is used to determine when the dragging object is over a suitable
target.

Drop Side (target control)
When a dragging object enters the control that is a possible target, the OLEDragOver
event for the target control is fired.
When the mouse button is released, an OLEDragDrop event is fired in the target control.

Drag Side (source control)
If the drag and drop target needs more information than was supplied with the object (in
OLEStartDrag) it will cause the OLESetData event to be fired in the source control. The
source control can use this event to continue the conversation by supplying additional
data.
When the object is dropped, an OLECompleteDrag event is fired in the source control.
Note that to handle an object being dragged from Windows itself or another application,
only the drop side of the conversation must be implemented in your program. Similarly, if
your application will be acting only as a source of draggable objects, you will only need to
implement the drag side of the operation.

See Also
ssDataObject object

OLECompleteDrag Event
See Also Applies To

Description
Occurs when a source component is dropped onto a target component, informing the
source component that a drag action was either performed or canceled.

Syntax
Sub control_OLECompleteDrag ([index As Integer] effect As Integer)

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
effect A long integer set by the source object identifying the action that has been

performed, thus allowing the source to take appropriate action if the
component was moved (such as the source deleting data if it is moved from
one component to another). The possible values are listed in Settings.

Settings
The settings for effect are:

Value Description
0 Drop target cannot accept the data, or the drop operation was canceled.
1 Drop results in a copy of data from the source to the target. The original data

is unaltered by the drag operation.
2 Drop results in a link to the original data being created between drag source

and drop target.
Remarks

The OLECompleteDrag event is the final event to be called in an OLE drag/drop
operation. This event informs the source component of the action that was performed
when the object was dropped onto the target component. The target sets this value
through the effect parameter of the OLEDragDrop event. Based on this, the source can
then determine the appropriate action it needs to take. For example, if the object was
moved into the target, the source needs to delete the object from itself after the move.

OLEDrag Method
See Also Applies To

Description
This method causes the control to enter OLE Drag mode. OLE Drag mode ends when
mouse button is released.

Syntax
object.OLEDrag

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
Remarks

When the OLEDrag method is called, the component’s OLEStartDrag event occurs,
allowing it to supply data to a target component.

OLEDragDrop Event
See Also Applies To

Description
Occurs when a source component is dropped onto a target component when the source
component determines that a drop can occur.

Syntax
Sub control_OLEDragDrop ([index As Integer] data As ssDataObject, effect As Integer,

button As Integer, shift As Integer, x As Single, y As Single)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
data A ssDataObject object containing formats that the source will provide and, in

addition, possibly the data for those formats. If no data is contained in the
ssDataObject, it is provided when the control calls the OLEGetData method.

effect A long integer set by the target component identifying the action that has
been performed (if any), thus allowing the source to take appropriate action if
the component was moved (such as the source deleting the data). The
possible values are listed in Settings.

button An integer expression that identifies the button that was released to cause the
event. The button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the button specified in the button argument is released. A bit is
set if the key is down.

x,y A single-precision value that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the coordinate
system set by the scale mode of the object.

Settings
The settings for effect are:

Value Description
0 Drop target cannot accept the data.
1 Drop results in a copy of data from the source to the target. The original data

is unaltered by the drag operation.
2 Drop results in data being moved from drag source to drop source. The drag

source should remove the data from itself after the move.
Remarks

The source ActiveX component should always mask values from the effect parameter to
ensure compatibility with future implementations of ActiveX components. Presently, only
three of the 32 bits in the effect parameter are used. In the future, these other bits may be
used. Therefore, as a precaution against future problems, drag sources and drop targets
should mask these values appropriately before performing any comparisons.
For example, a source component should not compare an effect against, say, the number

1, such as in this manner:
If Effect = 1 Then ...

Instead, the source component should mask for the value or values being sought, such as
this:

If Effect And 1 = 1 Then ...

This allows for the definition of new drop effects in the future while preserving backwards
compatibility with your existing code.
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

OLEDragOver Event
See Also Applies To

Description
Occurs when one component is dragged over another.

Syntax
Sub control_OLEDragOver ([index As Integer] data As ssDataObject, effect As Integer,

button As Integer, shift As Integer, x As Single, y As Single)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
data A ssDataObject object containing formats that the source will provide and, in

addition, possibly the data for those formats. If no data is contained in the
ssDataObject, it is provided when the control calls the OLEGetData method.

effect A long integer set by the target component identifying the action that has
been performed (if any), thus allowing the source to take appropriate action if
the component was moved (such as the source deleting the data). The
possible values are listed in Settings.

button An integer expression that identifies the button that was released to cause the
event. The button argument is a bit field with bits corresponding to the left
button (bit 0), right button (bit 1), and middle button (bit 2). These bits
correspond to the values 1, 2, and 4, respectively. Only one of the bits is set,
indicating the button that caused the event.

shift An integer expression that corresponds to the state of the SHIFT, CTRL, and
ALT keys when the button specified in the button argument is released. A bit is
set if the key is down.

x,y A single-precision value that specifies the current location of the mouse
pointer. The x and y values are always expressed in terms of the coordinate
system set by the scale mode of the object.

state An integer that corresponds to the transition state of the control being
dragged in relation to a target form or control. The possible values are listed in
Settings.

Settings
The settings for effect are:

Value Description
0 Drop target cannot accept the data.
1 Drop results in a copy of data from the source to the target. The original data

is unaltered by the drag operation.
2 Drop results in data being moved from drag source to drop source. The drag

source should remove the data from itself after the move.
-2147483648 (&H80000000) Scrolling is occurring or about to occur in the target

component. This value is used in conjunction with the other values. Use only if
you are performing your own scrolling in the target component.

The settings for state are:

Value Description
0 Source component is being dragged within the range of a target.
1 Source component is being dragged out of the range of a target.
2 Source component has moved from one position in the target to another.

Remarks

Note If the value of the state parameter is 1, indicating that the mouse pointer has left
the target, then the x and y parameters will contain zeros.
The source ActiveX component should always mask values from the effect parameter to
ensure compatibility with future implementations of ActiveX components. Presently, only
three of the 32 bits in the effect parameter are used. In the future, these other bits may be
used. Therefore, as a precaution against future problems, drag sources and drop targets
should mask these values appropriately before performing any comparisons.
For example, a source component should not compare an effect against, say, the number
1, such as in this manner:

If Effect = 1 Then ...

Instead, the source component should mask for the value or values being sought, such as
this:

If Effect And 1 = 1 Then ...

This allows for the definition of new drop effects in the future while preserving backwards
compatibility with your existing code.
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

OLEDropMode Property
See Also Applies To

Description
Returns or sets a value that determines whether the control can be a drop target for OLE
drag-and-drop operations.

Syntax
object.OLEDropMode [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying how the control will handle OLE drag-and-

drop operations, as described in Settings..
Settings

Setting Description
0 The control will not support OLE drag operations.
1 (Default) The control supports manual OLE drop mode.

Remarks

Note In Visual Basic, the target component inspects what is being dragged over it in
order to determine which events to trigger; the OLE drag/drop events, or the Visual Basic
drag/drop events. There is no collision of components or confusion about which events are
fired, since only one type of object can be dragged at a time.

OLEGiveFeedback Event
See Also Applies To

Description
Occurs after every OLEDragOver event. OLEGiveFeedback allows the source
component to provide visual feedback to the user, such as changing the mouse cursor to
indicate what will happen if the user drops the object, or provide visual feedback on the
selection (in the source component) to indicate what will happen.

Syntax
Sub control_OLEGiveFeedback ([index As Integer] effect As Long, defaultcursors As

Boolean)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
effect A long integer set by the target component in the OLEDragOver event

specifying the action to be performed if the user drops the selection on it.
This allows the source to take the appropriate action (such as giving visual
feedback). The possible values are listed in Settings.

defaultcursors A boolean value which determines whether Visual Basic uses the default
mouse cursor proved by the component, or uses a user-defined mouse
cursor, as described in Settings.

Settings
The settings for effect are:

Value Description
0 Drop target cannot accept the data.
1 Drop results in a copy of data from the source to the target. The original data

is unaltered by the drag operation.
2 Drop results in data being moved from drag source to drop source. The drag

source should remove the data from itself after the move.
-2147483648 (&H80000000) Scrolling is occurring or about to occur in the target

component. This value is used in conjunction with the other values. Note Use
only if you are performing your own scrolling in the target component.

The settings for defaultcursors are:

Value Description
True (Default) Default mouse cursor is used.
False Use a custom mouse cursor.

Remarks
If there is no code in the OLEGiveFeedback event, or if the defaultcursors parameter is
set to True, then the mouse cursor is automatically set to the default cursor provided by
the component.
The source ActiveX component should always mask values from the effect parameter to
ensure compatibility with future implementations of ActiveX components. Presently, only
three of the 32 bits in the effect parameter are used. In the future, these other bits may be

used. Therefore, as a precaution against future problems, drag sources and drop targets
should mask these values appropriately before performing any comparisons.
For example, a source component should not compare an effect against, say, the number
1, such as in this manner:

If Effect = 1 Then ...

Instead, the source component should mask for the value or values being sought, such as
this:

If Effect And 1 = 1 Then ...

This allows for the definition of new drop effects in the future while preserving backwards
compatibility with your existing code.
The shift argument is a bit field with the least-significant bits corresponding to the SHIFT
key (bit 0), the CTRL key (bit 1), and the ALT key (bit 2).    These bits correspond to the
values 1, 2, and 4, respectively. The shift argument indicates the state of these keys.
Some, all, or none of the bits can be set, indicating that some, all, or none of the keys are
pressed.    For example, if both CTRL and ALT are pressed, the value of shift is 6.
Unlike the Click and DblClick events, MouseDown and MouseUp events enable you to
distinguish between the left, right, and middle mouse buttons. You can also write code for
mouse-keyboard combinations that use the SHIFT, CTRL, and ALT keyboard modifiers.
Your development environment may have pre-defined constants for the values of button
and shift; you should use them wherever possible.

OLESetData Event
See Also Applies To

Description
Occurs on a source component when a target component performs the GetData method on
the source’s ssDataObject object, but the data for the specified format has not yet been
loaded.

Syntax
Sub control_OLESetData ([index As Integer] data As ssDataObject, dataformat As

Integer)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
data An ssDataObject object in which to place the requested data. The

component calls the SetData method to load the requested format.
dataformat An integer expression specifying the format of the data that the target

component is requesting. The source component uses this value to determine
what to load into the ssDataObject object.

Settings
The settings for dataformat are:

Setting Description
1 Text (.TXT files)
2 Bitmap (.BMP files)
3 metafile (.WMF files)
8 Device-independent bitmap (DIB)
9 Color palette
14 Enhanced metafile (.EMF files)
15 List of files
-16639 Rich text format (.RTF files)

Remarks
In certain cases, you may wish to defer loading data into the ssDataObject object of a
source component to save time, especially if the source component supports many
formats. This event allows the source to respond to only one request for a given format of
data. When this event is called, the source should check the format parameter to
determine what needs to be loaded and then perform the SetData method on the
ssDataObject object to load the data which is then passed back to the target component.
Constants that correspond to these formats are available. See Constants for more
information.

OLEStartDrag Event
See Also Applies To

Description
Occurs when a component's OLEDrag method is performed. This event specifies the data
formats and drop effects that the source component supports. It can also be used to insert
data into the ssDataObject object.

Syntax
Sub control_OLEStartDrag ([index As Integer] data As ssDataObject, allowedeffects As

Long)
The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
data An ssDataObject object containing formats that the source will provide

and, optionally, the data for those formats. If no data is contained in the
ssDataObject, it is provided when the control calls the GetData method.
The programmer should provide the values for this parameter in this
event.

allowedeffects A long integer containing the effects that the source component supports.
The possible values are listed in Settings. The programmer should provide
the values for this parameter in this event.

Settings
The settings for allowedeffects are:

Value Description
0 Drop target cannot accept the data.
1 Drop results in a copy of data from the source to the target. The original data

is unaltered by the drag operation.
2 Drop results in data being moved from drag source to drop source. The drag

source should remove the data from itself after the move.
Remarks

The source component should logically OR together the supported values and place the
result in the allowedeffects parameter. The target component can use this value to
determine the appropriate action (and what the appropriate user feedback should be).
You may wish to defer putting data into the ssDataObject object until the target
component requests it. This allows the source component to save time by not loading
multiple data formats.
When the target performs the GetData method on the ssDataObject object, the source’s
OLESetData event will occur if the requested data is not contained in the ssDataObject.
At this point, the data can be loaded into the ssDataObject, which will in turn provide the
data to the target.
If the user does not load any formats into the ssDataObject, then the drag/drop operation
is canceled.

OptionBtnGraphics Property
See Also Example Applies To

Description
Returns or sets the image to be used for the option button portion of the control.

Syntax
object.OptionBtnGraphics [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap) Specifies a graphic. You can load the graphic from the properties window at

design time. At run time, you can set this property using the LoadPicture
function on a bitmap.

Remarks
You can specify a custom appearance for the button portion of the control using this
property, which will replace the standard option button graphic . This is useful for
designing a distinctive user interface.

The picture specified for this property is a segmented bitmap containing all the possible
states of the control. Several sample bitmaps are included with ActiveThreed to get you
started in designing your own option button multiple-state bitmaps.
The SSOption control has six states. If you are creating custom graphics, your bitmap should
have six segments of equal width. These six states should appear from left to right in the
segmented bitmap. The states of the control are:

0. Unselected - the normal state of the control when unchecked
1. Selected - the normal state of the control when checked
2. Unselected Pressed - unchecked, with the left mouse button being pressed while

over the control
3. Selected Pressed - checked, with the left mouse button being pressed while over

the control
4. Unselected Disabled - the disabled state of the control when unchecked
5. Selected Disabled - the disabled state of the control when checked

You can specify part of the option button graphic as transparent, using the
OptionBtnMaskColor and OptionBtnUseMask properties.

OptionBtnMaskColor Property
See Also Example Applies To

Description
Returns or sets the color that will become the transparent part of the option button
graphic.

Syntax
object. OptionBtnMaskColor [= color]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
color A value or constant that determines the mask color of the option button

graphic.
Remarks

This setting only takes effect when OptionBtnUseMask is set to True. This property works
in conjunction with the OptionBtnGraphics property to create a custom graphic for the
check box that replaces the standard check box graphic .

By specifying one of the colors used in the segmented bitmap as the OptionBtnMaskColor,
you cause that color to become transparent when used by the control. This gives you the
ability to design check box graphics that have shapes other than square, or that have
transparent areas. This is especially important when designing option button graphics, since
option buttons are generally round.

OptionBtnUseMask Property
See Also Example Applies To

Description
Returns or sets a value that determines whether the control will use the
OptionBtnMaskColor to create transparent areas.

Syntax
object. OptionBtnUseMask [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the mask color will be used, as

described in Settings.
Settings

Setting Description
True The mask color will be used.
False (Default) The mask color will not be used.

Remarks
This property enables the use of a mask color in the segmented bitmap specified by the
OptionBtnGraphics property. When set to True, the color specified by the
OptionBtnMaskColor property will become transparent in the control. When set to False,
all colors in the segmented bitmap will be opaque and visible.
For more information on creating custom check box graphics, see the OptionBtnGraphics
property.

Outline Property
Applies To

Description
Returns or sets a value that determines whether the control is displayed with a 1-pixel
black border around its outer edge.

Syntax
object.Outline [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying the visibility of the control’s border, as

described in Settings.
Settings

Setting Description
True A 1-pixel black border will be drawn around the control.
False (Default) No border is drawn.

Remarks
This property only applies to controls with Windows 3.X style borders. For other border
settings this property has no effect.

Pane Object
See Also Example Applies To

Description
A Pane object is an area of the Splitter control, bounded either by splitter bars, the
borders of the control or both. Each Pane object is a container which may hold one child
control.
A Pane object is always a member of the Panes collection of the control.

Properties
Control
ControlName
Height
Left
LockHeight
LockWidth
MinHeight
MinWidth
Name
Top
Width

PaneFromControl Method
See Also Example Applies To

Description
This method returns the Pane object associated with a particular control.

Syntax
object.PaneFromControl ("control")

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
control A child control of the Splitter control for which you wish to find the

corresponding pane or window handle.
Remarks

Use this method when you wish to find out which pane contains a particular control.

PaneFromPosition Method
See Also Example Applies To

Description
This method returns the Pane object associated with a particular set of coordinates.

Syntax
object.PaneFromPosition (x, y)

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
x, y A single-precision value that specifies a point somewhere within the

boundaries of the control. The x and y values are always expressed in terms of
the coordinate system set by the scale mode of the object.

Remarks
Use this method when you want to find out which pane is at a specific position. The most
common use for this method would be to determine which pane is underneath the mouse
pointer at a given time.
Use this method when you are reasonably sure that the coordinates you are passing are
within the boundaries of a pane. If there is no pane located at the specified coordinates
(i.e. the point is on a splitter bar, on the border of the control, or outside the control's client
area) a trappable error will occur.
You can also use the PaneFromPositionEx method, which functions identically to the
PaneFromPosition method except that it does not produce an error if the coordinates are
not inside a pane.

PaneFromPositionEx Method
See Also Example Applies To

Description
This method returns the Pane object associated with a particular set of coordinates.

Syntax
object.PaneFromPositionEx (x, y)

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
x, y A single-precision value that specifies a point somewhere within the

boundaries of the control. The x and y values are always expressed in terms of
the coordinate system set by the scale mode of the object.

Remarks
Use this method when you want to find out which pane is at a specific position. The most
common use for this method would be to determine which pane is underneath the mouse
pointer at a given time.
This method does not raise an error if the specified point is not located inside a pane. If the
point is not within a pane, the method returns a value of Nothing.

Panes Collection
See Also Example Applies To

Description
The Panes collection is a collection of all the Pane objects in a Splitter control.

Properties
Count

Methods
Add
Item
Remove

Picture Property
See Also Applies To

Description
Returns or sets a Picture object for display.

Syntax
object.Picture [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic. You can load the graphic from the

properties window at design time. At run time, you can set this
property using the LoadPicture function on a bitmap, icon or metafile.

Remarks
This property will set the picture for the specified object. Any object can have a bitmap for
the Picture property; only certain objects will accept an icon for the Picture property.
A picture is displayed in the control based on the PictureAlignment property. The picture
is associated with the control’s caption and is separate from the background picture
specified by the PictureBackground property.
The Picture property is also used to provide animation for the control. This is
accomplished by specifying a segmented bitmap for the Picture property. Each segment
becomes a single frame of the animation, and you specify the number of segments
(frames) to use by setting the PictureFrames property.
For some controls, the Picture property is only one of two or more properties controlling
the display of pictures or animation. This is true of the SSCommand and SSRibbon controls,
where separate pictures can be specified for the different states of the control.

PictureAlignment Property
See Also Applies To

Description
Returns or sets a value that specifies how the picture will be aligned on the control.

Syntax
object.PictureAlignment[= setting]

Settings
The PictureAlignment property has the following settings for the SSCheck, SSFrame
and SSOption controls:

Setting Description
0 (Default) Left of Caption
1 Right of Caption
2 Justified (does not apply to SSFrame)

The PictureAlignment property has the following settings for the SSCommand,
SSPanel and SSRibbon controls:

Setting Description
0 (Default - SSPanel) Left Top
1 Left Middle
2 Left Bottom
3 Right Top
4 Right Middle
5 Right Bottom
6 Center Top
7 (Default - SSCommand & SSRibbon) Center Middle
8 Center Bottom
9 Left of Caption
10 Right of Caption
11 Top Of Caption
12 Bottom Of Caption

Remarks
The Justified setting of the SSCheck and SSOption controls aligns the picture to the edge of
the control opposite the check box or option button. Therefore, this setting will be affected
by the value of the Alignment property of the control.
Use the PictureAlignment property in conjunction with the Alignment property to
produce a variety of design effects.

Example

PictureAnimationDelay Property
See Also Example Applies To

Description
Returns or sets the number of milliseconds between frames of an animation effect.

Syntax
object.PictureAnimationDelay [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of milliseconds between

animation frames.
Remarks

Decreasing the number of milliseconds increases the smoothness of the animation, but
causes the animation to require more system resources. A higher value for this setting
produces more choppy animation.

Warning! Setting PictureAnimationDelay to 0 or a low number (less than 55 for Windows
95, less than 10 for Windows NT) will increase the demands the control places on the
system's CPU. Depending on the machine running the application, this can have a
significant effect on overall system performance.

PictureAnimationEnabled Property
See Also Example Applies To

Description
Returns or sets a value which determines whether the animation will play or not.

Syntax
object.PictureAnimationEnabled [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether to play the animation, as described

in Settings.
Settings

Setting Description
True (Default) The animation will play.
False The animation will remain a static picture with a single frame of the animation

being displayed.
Remarks

Use this property to activate and deactivate the animation at run time, for example, you
might enable the animation in response to a MouseEnter event, and disable it in the
MouseExit event.

PictureBackground Property
See Also Applies To

Description
Returns or sets a picture for display in the background of the control.

Syntax
object.PictureBackground [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic. You can load the graphic from the

properties window at design time. At run time, you can set this
property using the LoadPicture function on a bitmap, icon or
metafile.

Remarks
The display of the background picture is controlled by the BackStyle property. When
BackStyle is set to any picture style this is the picture used.
To display a picture on the surface of the control or in the caption of the control, use the
Picture property.

Note PictureBackground is affected by the PictureMaskColor and PictureUseMask
properties in the same way as the Picture property. You can therefore create background
pictures with transparent areas. The color specified by the PictureMaskColor property
will be transparent in both the caption picture (specified by the Picture property) and in
the background picture (specified by the PictureBackground property.)

PictureBackgroundStyle Property
See Also Applies To

Description
Returns or sets a value that determines whether the background picture of the control will
be centered, stretched or tiled.

Syntax
object.PictureBackgroundStyle [= integer]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
integer An integer expression specifying the type of background style to use, as

described in Settings.
Settings

Setting Description
0 Centered. The area of the control will be filled with a picture, as specified by

the PictureBackground property. The picture will appear actual size in the
center of the control and be clipped by the control’s boundaries. If the picture
does not fill the control's area, it will be bounded by an area that is either
transparent or filled with the control's BackColor property, as determined by
the BackStyle property..

1 Stretched. The area of the control will be filled with a picture, as specified by
the PictureBackground property. The picture will be stretched or shrunk
horizontally and/or vertically to fill the area of the control.

2 Tiled. The area of the control will be filled with a picture, as specified by the
PictureBackground property. The picture will be tiled from the upper left
hand corner of the control, and will be repeated as many times as necessary
to fill the area of the control.

Remarks
The SSFrame and SSPanel controls now support several new background styles designed to
make the controls integrate smoothly into applications with textured backgrounds.
The new PictureBackgroundStyle property enables you to set a different,
complementary background for the Frame or Panel control. The Centered option displays a
picture at actual size in the center of the control. If the picture is smaller than the control,
it will be surrounded by a background region. If the picture is larger than the control, it will
be cropped by the edges of the control. This setting is similar to the Centered setting
available when specifying wallpaper for the Windows desktop.
The Stretched option will automatically alter the size of the picture to match that of the
control, enlarging or shrinking it as necessary. The entire area of the control will be filled
with the specified picture.
The Tiled option will repeat the specified picture, starting in the upper left corner of the
control, as many times as needed to fill the area of the control. If the picture is larger than
the control, it will be cropped by the right and bottom edges of the control. This setting is
similar to the Tiled setting available when specifying wallpaper for the Windows desktop.

PictureDisabled Property
See Also Applies To

Description
Returns or sets the image to be used for the button when it is disabled.

Syntax
object.PictureDisabled [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic. You can load the graphic from the

properties window at design time. At run time, you can set this
property using the LoadPicture function on a bitmap, icon or
metafile.

Remarks
Command and Ribbon buttons can have different pictures for their up, down and disabled
states. You set the picture for the up state using the standard Picture property. You can
optionally specify a down and/or a disabled state by specifying a picture for, respectively,
the PictureDn property and the PictureDisabled property.
If no pictures are specified for the additional button states, the picture specified by the
Picture property will be used for all states of the button.
This property is also used to provide animation for the disabled state of the control. This is
accomplished by specifying a segmented bitmap for the PictureDisabled property. Each
segment becomes a single frame of the animation, and you specify the number of
segments (frames) to use by setting the PictureDisabledFrames property.

PictureDisabledFrames Property
See Also Applies To

Description
Returns or sets the number of segments (frames) that will be used when animating the
control’s picture    when the control is disabled.

Syntax
object.PictureDisabledFrames [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of segments in the disabled

picture.
Remarks

The SSCommand and SSRibbon controls give you the option to replace the default
appearance of the control with a bitmap that you specify. You can also display animation
on these controls by using a segmented bitmap. Each segment in the bitmap becomes a
frame in the animation.
The property pages for the ActiveThreed controls give you an automated interface for
importing individual bitmaps into your animation, which is then stored as a segmented
bitmap. Additionally, you can specify any segmented bitmap you have previously created.
In either case, the overall width of the bitmap is divided evenly into the number of
segments specified by the PictureDisabledFrames property.

PictureDn Property
See Also Applies To

Description
Returns or sets the image to be used for the 'down' state of a button.

Syntax
object.PictureDn [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic. You can load the graphic from the

properties window at design time. At run time, you can set this
property using the LoadPicture function on a bitmap, icon or
metafile.

Remarks
Command and Ribbon buttons can have different pictures for their up, down and disabled
states. You set the picture for the up state using the standard Picture property. You can
optionally specify a down and/or a disabled state by specifying a picture for, respectively,
the PictureDn property and the PictureDisabled property.
If no pictures are specified for the additional button states, the picture specified by the
Picture property will be used for all states of the button.
This property is also used to provide animation for the down state of the control. This is
accomplished by specifying a segmented bitmap for the PictureDn property. Each
segment becomes a single frame of the animation, and you specify the number of
segments (frames) to use by setting the PictureDnFrames property.

PictureDnChange Property
See Also Applies To

Description
Returns or sets a value that specifies how the 'down' state of a button is created.

Syntax
object.PictureDnChange [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the method for creating the pressed-in state

of the button, as described in Settings.
Settings

Setting Description
0 (Default) No change. The picture will look the same in both states of the

control.
1 Dither. The down state of the button will be created by dithering the picture

used for the up state.
2 Invert. The down state of the button will be created by reversing the colors

used for the up state.
Remarks

This property applies only when no picture has been specified in the PictureDn property.

PictureDnDisabled Property
See Also Applies To

Description
Returns or sets the image to be used for the 'down' state of a button when it is disabled.

Syntax
object.PictureDnDisabled [= picture]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
picture A picture object specifying a graphic, as described in Settings.

Settings

Setting Description
(None) (Default) No picture.
(Bitmap, icon, metafile) Specifies a graphic. You can load the graphic from the

properties window at design time. At run time, you can set this
property using the LoadPicture function on a bitmap, icon or
metafile.

Remarks
Ribbon buttons can have different pictures for their four different states: up, down,
disabled and down disabled. You set the picture for the up state using the standard
Picture property. You can optionally specify a down state by specifying a picture for the
PictureDn property.
When the button is disabled, the PictureDisabled and the PictureDnDisabled
properties are used to specify the pictures for the up and down states, respectively.
This property is also used to provide animation for the down disabled state of the control.
This is accomplished by specifying a segmented bitmap for the PictureDnDisabled
property. Each segment becomes a single frame of the animation, and you specify the
number of segments (frames) to use by setting the PictureDnDisabledFrames property.
If no pictures are specified for the additional button states, the picture specified by the
Picture property will be used for all states of the button.

PictureDnDisabledFrames Property
See Also Applies To

Description
Returns or sets the number of segments (frames) that will be used when animating the
control’s picture    when the control is 'down' and disabled.

Syntax
object.PictureDisabledFrames [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of segments in the disabled

picture.
Remarks

The SSRibbon control gives you the option to replace the default appearance of the control
with a bitmap that you specify. You can also display animation on this control by using a
segmented bitmap. Each segment in the bitmap becomes a frame in the animation.
The property pages for the ActiveThreed controls give you an automated interface for
importing individual bitmaps into your animation, which is then stored as a segmented
bitmap. Additionally, you can specify any segmented bitmap you have previously created.
In either case, the overall width of the bitmap is divided evenly into the number of
segments specified by the PictureDisabledFrames property.

PictureDnFrames Property
See Also Applies To

Description
Returns or sets the number of segments (frames) that will be used when animating the
control’s picture    when the control is 'down'.

Syntax
object.PictureDnFrames [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of segments in the down picture.

Remarks
The SSCommand and SSRibbon controls give you the option to replace the default
appearance of the control with a bitmap that you specify. You can also display animation
on these controls by using a segmented bitmap. Each segment in the bitmap becomes a
frame in the animation.
The property pages for the ActiveThreed controls give you an automated interface for
importing individual bitmaps into your animation, which is then stored as a segmented
bitmap. Additionally, you can specify any segmented bitmap you have previously created.
In either case, the overall width of the bitmap is divided evenly into the number of
segments specified by the PictureDnFrames property.

PictureFrames Property
See Also Applies To

Description
Returns or sets the number of segments (frames) that will be used when animating the
control’s picture.

Syntax
object.PictureFrames [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the number of segments in the picture.

Remarks
The SSCommand and SSRibbon controls give you the option to replace the default
appearance of the control with a bitmap that you specify. You can also display animation
on these controls by using a segmented bitmap. Each segment in the bitmap becomes a
frame in the animation.
The property pages for the ActiveThreed controls give you an automated interface for
importing individual bitmaps into your animation, which is then stored as a segmented
bitmap. Additionally, you can specify any segmented bitmap you have previously created.
In either case, the overall width of the bitmap is divided evenly into the number of
segments specified by the PictureDisabledFrames property.

PictureMaskColor Property
See Also Applies To

Description
Returns or sets the color in a picture that will be made transparent.

Syntax
object.PictureMaskColor [= color]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
color A long integer value or constant that determines the color which will become

transparent.
Remarks

When you are designing a picture for use on a control you often want part of the picture to
be transparent, particularly the area surrounding the outlines of the picture. This prevents
a rectangle of a fixed color from appearing around the picture if there is a change to the
background color of the control or the application.
You can achieve a transparent effect by specifying a mask color when setting up your
application. The mask color tells the control which color in your picture will become
transparent. The mask color for the caption picture (specified by the Picture property) is
specified using the PictureMaskColor property.

PictureUseMask Property
See Also Applies To

Description
Returns or sets a value that determines whether the picture will have a transparent color.

Syntax
object.PictureUseMask [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the mask color will be used to create

a transparent picture, as described in Settings.
Settings

Setting Description
True Mask color will be used. Picture will be transparent wherever mask color

appears.
False (Default) Mask color will not be used. Picture will be opaque.

Remarks
Use this property to enable transparency in the picture specified by the Picture property.
You can specify portions of your picture to be transparent, so that an irregularly shaped
object does not appear surrounded by a rectangle of solid color. The color that will become
transparent is specified by the PictureMaskColor property.

PlaySoundFile Method
Applies To

Description
This method causes the control to play the sound file specified.

Syntax
object.PlaySoundFile filename

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
filename A string expression that evaluates to the name of a Windows .WAV sound file.

Remarks
The sound file must be distributed along with your application, unless you use a sound that
is likely to be on the systems of all your users, such as TADA.WAV.

Note The computer running the application must have a properly installed and
configured audio playback device in order to use sounds.

Property Pages
See Also
Sheridan Software custom controls support a feature known as property pages.    Property
pages provide an interface through which you can view and modify the properties of your
custom control objects. The purpose of property pages is twofold. First, property pages
allow you to set properties at design time that would not otherwise be available - the so-
called "runtime" properties.    Second, property pages allow you to modify your control in a
host environment that does not provide a property sheet.

The Property Pages Interface
Here is what a Sheridan Property Page looks like:

There will always be at least two tabs called 'Alphabetic' and 'Categorized'.    The
Alphabetic tab contains an alphabetic listing of all properties supported by the control.   
The Categorized tab contains a list of properties grouped into categories.    Take the
following property page for example:

In this example the Categorized tab contains categories such as Appearance, Behavior,
and Font, under which related properties are listed.    A category can be expanded or

collapsed by clicking on the or

 to the left of the category name.
Each custom control may also have additional property page tabs.    These tabs may contain
added functions or utilities.    In the picture above, the control also supports a Animation
Builder property page which allows the user to perform special functions with the control.

Animated pictures can be created using the Animation Builder Property Page for
ActiveThreed's SSFrame, SSPanel, SSOption, SSCheck, SSRibbon and SSCommand controls.

Accessing Property Pages
The method you use to access the property pages of your control depends on two things;
the version of the control you are using, and the host environment in which you are using
the control.
Many host environments support the use of the secondary mouse button to pop up a
context-specific menu. In these environments, you simply click on your control with the
secondary mouse button, and choose ‘Property Pages’ or ‘Properties’ from the context
menu.
If this behavior is not supported, use the property sheet of your design environment. You
will see a property labeled ‘(Custom)’ in the property sheet. By double-clicking this
property or pressing the button, you can invoke the property pages for the selected
control.
If neither of these methods are supported, you will need to consult the documentation of

your host environment for information on how to change the properties of objects. You may
need to choose a special menu option, or perform a shifted mouse-click or double-click on
the control. Try searching your environment’s online help file for references to objects,
embedded objects, object properties, object settings, OLE linking, OLE servers, or
properties.

See Also
Animation Builder Property Page

Quick Tours

      
Quick Tour 1: Learning To Use ActiveThreed
Controls
A step-by-step guide to exploring all the features of the SSCheck,
SSCommand, SSFrame, SSOption, SSPanel and SSRibbon controls..

Quick Tour 2: Learning To Use The Splitter
Control
A step-by-step guide to adding resizable panes to your application
using the SSSplitter control.

Refresh Method
Applies To

Description
This method forces a complete repaint of a control.

Syntax
object.Refresh

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
Remarks

Generally, painting a control is handled automatically while no events are occurring.
However, there may be situations where you want the form or control updated
immediately, for example, after some external event has caused a change to the form. In
such a case, you would use the Refresh method.

Remove Method
Applies To

Description
This method removes a pane from the Splitter control.

Syntax
object.Remove panetodelete

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
panetodelete A string expression that evaluates to the name of a Pane object in the

current Panes collection.
Remarks

Note You can only remove a pane that does not contain a control. If you attempt to
remove a pane containing a control, an error will occur.

Resize Event
See Also Example Applies To

Description
Occurs after a splitter bar has moved and all adjacent panes have been resized.

Syntax
Sub control_Resize

Remarks
You can use the Resize event to implement specific behaviors that take place whenever
the layout of the Splitter control is altered, such as resizing individual panes, or re-
positioning controls inside of a container located on a pane.

Resizing Panes Through Code
See Also
There may be instances when you wish to set the size of a number of panes
programmatically. The obvious way to do this is to cycle through the Panes collection and
set the height and or width of each Pane object. However, using this method may have
unpredictable results. The reason for this is that the panes in a Splitter control are
organized according to the order in which they were created, and this controls how each
individual pane is resized. As you loop through the Panes collection, you cannot be sure
that resizing one pane will not change the size of other panes that were altered earlier in
the loop.
For example, if you have a loop that resizes each pane in a Splitter containing four panes,
the loop will resize the panes in order, starting with Panes(0) and ending with Panes(3).
Depending on how the panes were created, it is possible that changing the size of Panes(3)
will also change the size of Panes(2) or Panes(1). Since the loop has already set these
panes to the size you want, any further change to their dimensions is undesirable.
The solution to this problem is to lock each pane in the loop after you have set it to the
correct size. Locking the pane prevents the resizing of adjacent panes from altering its
dimensions. Once you are finished resizing all the panes, you    loop through the collection
again and unlock all the panes.
To illustrate this procedure, suppose you have a Splitter control with sixteen panes in a 4 X
4 grid and you want each pane to be the same size. Furthermore, certain panes have their
height and/or width locked, and you want them to retain the locked status you set for them
at design time. The following code will resize each pane while maintaining its locked
status.
First, add this code to the (General) (declarations) section of the form containing the
Splitter:

Private Type PaneLock
Name As String
LockHeight As Boolean
LockWidth As Boolean

End Type

Next, add this code to the Form Load event
Private Sub Form_Load()

Dim tLockSave() As PaneLock
Dim lSBWidth As Long
Dim lPWidth As Long
Dim lPHeight As Long
Dim iC As Integer

' Determine optimum width of panes
lSBWidth = SSSplitter1.SplitterBarWidth * Screen.TwipsPerPixelX
lPWidth = SSSplitter1.Width - (lSBWidth * 3)
lPWidth = lPWidth / 4

' Determine optimum height of panes
lSBWidth = SSSplitter1.SplitterBarWidth * Screen.TwipsPerPixelY
lPHeight = SSSplitter1.Height - (lSBWidth * 3)
lPHeight = lPHeight / 4

ReDim tLockSave(0 To (SSSplitter1.Panes.Count - 1))
iC = 0

For Each p In SSSplitter1.Panes
' Save lock status of pane
tLockSave(iC).Name = p.Name
tLockSave(iC).LockHeight = p.LockHeight
tLockSave(iC).LockWidth = p.LockWidth
' Unlock Pane
p.LockWidth = False
p.LockHeight = False

iC = iC + 1
Next p

' Cycle through all panes & set size
For Each p In SSSplitter1.Panes

' Set pane to optimum size
p.Width = lPWidth
p.Height = lPHeight
' Lock pane
p.LockWidth = True
p.LockHeight = True

Next p

' Restore original lock status
For iC = 0 To (SSSplitter1.Panes.Count - 1)

SSSplitter1.Panes(tLockSave(iC).Name).LockWidth =
tLockSave(iC).LockWidth

SSSplitter1.Panes(tLockSave(iC).Name).LockHeight =
tLockSave(iC).LockHeight

Next iC

End Sub

This code uses a dynamically-resized array of user-defined types to keep track of how
panes have been locked at design time. The basic structure uses three loops; the first loop
saves the lock status of each pane in the array and unlocks the pane. The second loop
resizes the panes equally based on the size of the control and the width of the splitter bar.
The final loop restores the original lock status of each pane from the array.

RoundedCorners Property
See Also Applies To

Description
Returns or sets a value that determines whether the control will have rounded corners.

Syntax
object.RoundedCorners [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying whether the control will have rounded

corners, as described in Settings.
Settings

Setting Description
True (Default) The corners of the control will appear rounded.
False The control's corners will be square.

Remarks
This property is ignored when the ButtonStyle property is set to anything other than '2 -
Windows 3.X Style'

SSCheck control
Properties Events Methods

Description
The SSCheck control is a flexible, multimedia-enabled replacement for the standard
Windows check box control. An SSCheck control displays a check mark when selected; the
check mark disappears when the SSCheck control is cleared. The control may also appear
"grayed out" to indicate an indeterminate state.

File Name
THREED20.OCX

Object Type
SSCheck

Remarks
Use this control to give the user a True/False or Yes/No option. Use of the grayed state
provides the option of Yes/No/Unsure or True/False/Either. You can control whether the
SSCheck supports two or three states.
You can set the value of an SSCheck control programmatically with the Value property.
The Value property also determines the state of the control, checked; unchecked or
grayed.
You can use SSCheck controls in groups to display multiple choices from which the user
can select one or more. SSCheck and SSOption controls function similarly but with an
important difference: Any number of SSCheck controls on a form can be selected at the
same time. In contrast, only one SSOption in a group can be selected at any given time.
In environments that support data binding, the SSCheck can also display the value of a
true/false data field from a database.

SSCheck Events:

Click
KeyDown
KeyPress
KeyUp
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag

SSCheck Methods:

OLEDrag
PlaySoundFile
Refresh
SetFocus

 SSCheck Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Alignment
BackColor
BackStyle
Caption
CaptionStyle
CheckBoxGraphics
CheckBoxMaskColor
CheckBoxUseMask
DataField *
DataSource *
DragMode
Enabled
Font
Font3D
ForeColor
Height
HelpContextID *
Hwnd
Left *
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MouseIcon
MousePointer
Name *
OLEDropMode
Picture
PictureAlignment
PictureAnimationDelay
PictureAnimationEnabled
PictureFrames
PictureMaskColor
PictureUseMask
TagVariant
Top *
TripleState
Value

Width *
Windowless

SSCommand control
Properties Events Methods

Description
The SSCommand control is an extended version of the standard Windows command
button. It is functionally identical to a regular command button, but it provides a greater
range of interface features, including sound, pictures and animation. You can use an
SSCommand control to begin, interrupt, or end a process, or to open or close a dialog box.

File Name
THREED20.OCX

Object Type
SSCommand

Remarks
A user can always choose an SSCommand control by clicking it with the mouse (provided it
is not disabled.) Additionally, an SSCommand button can be "pushed" using the spacebar
while the control has input focus. To allow the user to choose an SSCommand by pressing
ENTER, set its Default property to True. To allow the user to choose an SSCommand
button by pressing ESC, set the Cancel property to True. There can only be one Default
and one Cancel button on a form.

SSCommand Events:

Click
KeyDown
KeyPress
KeyUp
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag

SSCommand Methods:

DoClick
OLEDrag
PlaySoundFile
Refresh
SetFocus

SSCommand Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Alignment
AutoRepeat
AutoSize
BackColor
BackStyle
BevelWidth
ButtonStyle
Cancel *
Caption
CaptionStyle
Default *
DragMode
Enabled
Font
Font3D
ForeColor
Height *
HelpContextID *
Hwnd
Left *
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MouseIcon
MousePointer
Name *
OLEDropMode
Outline
Picture
PictureAlignment
PictureAnimationDelay
PictureAnimationEnabled
PictureDisabled
PictureDisabledFrames
PictureDn
PictureDnFrames
PictureFrames

PictureMaskColor
PictureUseMask
RoundedCorners
TagVariant
Top *
Value
Width *
Windowless

SSFrame control
Properties Events Methods

Description
An SSFrame control is a container control that serves to group other controls both visibly
and functionally.    For example, you can use an SSFrame control to separate groups of
SSOption controls on a single form. Within each SSFrame, the SSOptions operate
exclusively of controls outside the SSFrame.

File Name
THREED20.OCX

Object Type
SSFrame

Remarks
To group controls, first draw the SSFrame control, and then draw the controls inside the
SSFrame. This enables you to move the SSFrame and the controls it contains together. If
you draw a control outside the Frame and then try to move it inside with the mouse, the
control will only be on top of the SSFrame. To move a control or controls inside of an
SSFrame, you must highlight the control(s), cut them to the clipboard, highlight the
SSFrame, then paste the controls from the clipboard.

SSFrame Events:

Click
DblClick
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag

SSFrame Methods:

OLEDrag
PlaySoundFile
Refresh

 SSFrame Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Alignment
BackColor
BackStyle
Caption
CaptionStyle
ClipControls
DragMode
Enabled
Font
Font3D
ForeColor
Height *
HelpContextID *
Hwnd
Left *
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MouseIcon
MousePointer
Name *
OLEDropMode
Picture
PictureAlignment
PictureAnimationDelay
PictureAnimationEnabled
PictureBackground
PictureBackgroundStyle
PictureFrames
PictureMaskColor
PictureUseMask
ShadowStyle
TagVariant
Top *
Width *

SSOption control
Properties Events Methods

Description
The SSOption control is a flexible, multimedia-enabled replacement for the standard
Windows option button control. SSOption controls operate in exclusive mode - when one
SSOption is selected, any others in the same container are automatically deselected.

File Name
THREED20.OCX

Object Type
SSOption

Remarks
Usually, SSOption controls are used in a group to display options from which the user can
select only one. You group SSOption controls by drawing them inside a container such as
an SSFrame control, an SSPanel control, or a form.
While SSOption controls and SSCheck controls may appear to function similarly, there is an
important difference: When a user selects an SSOption, the other SSOption controls in the
same group are automatically unselected. In contrast, any number of SSCheck controls can
be selected at the same time.

SSOption Events:

Click
DblClick
KeyDown
KeyPress
KeyUp
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag

SSOption Methods:

OLEDrag
PlaySoundFile
Refresh
SetFocus

 SSOption Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Alignment
BackColor
BackStyle
Caption
CaptionStyle
DragMode
Enabled
Font
Font3D
ForeColor
Height *
HelpContextID *
Hwnd
Left *
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MouseIcon
MousePointer
Name *
OLEDropMode
OptionBtnGraphics
OptionBtnMaskColor
OptionBtnUseMask
Picture
PictureAlignment
PictureAnimationDelay
PictureAnimationEnabled
PictureFrames
PictureMaskColor
PictureUseMask
TagVariant
Top *
Value
Width *
Windowless

SSPanel control
Properties Events Methods

Description
An SSPanel control is a container control that serves to group other controls both visibly
and functionally.    The SSPanel provides a unified, distinctive area suited to the creation of
control groupings such as toolbars and control panels. The SSPanel can also function as a
progress indicator, showing the percentage of completion of a task both graphically and
textually.

File Name
THREED20.OCX

Object Type
SSPanel

Remarks
The SSPanel is a three-dimensional rectangular area of variable size that can be as large as
the form itself or just large enough to display a single line of text. It can present status
information in a dynamically colored circle or bar with or without showing percent.
You can create a number of interesting 3-D border effects with the panel by changing the
type of beveled borders used on the outside of the control.
In environments that support data binding, the SSPanel can also display text or numeric
data from a database.

SSPanel Events:

Click
DblClick
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag

SSPanel Methods:

OLEDrag
PlaySoundFile
Refresh

 SSPanel Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Align
Alignment
AutoSize
BackColor
BackStyle
BevelInner
BevelOuter
BevelWidth
BorderWidth
Caption
CaptionStyle
ClipControls
DataField *
DataSource *
DragMode
Enabled
FloodColor
FloodFillStyle
FloodPercent
FloodShowPct
FloodType
Font
Font3D
ForeColor
Height *
HelpContextID *
Hwnd
Left *
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MouseIcon
MousePointer
Name *
OLEDropMode
Outline
Picture

PictureAlignment
PictureAnimationDelay
PictureAnimationEnabled
PictureBackground
PictureBackgroundStyle
PictureFrames
PictureMaskColor
PictureUseMask
RoundedCorners
TagVariant
Top *
Width *

SSRibbon control
Properties Events Methods

Description
The SSRibbon control is similar to the SSCommand button, except that toggles between
two states (up and down) when clicked. It also displays the same exclusive behavior as an
option button, but its exclusivity is determined by a property of the control rather than its
grouping inside a container.

File Name
THREED20.OCX

Object Type
SSRibbon

Remarks
SSRibbon buttons can be used in groups to emulate the functionality of a toolbar or ribbon
such as those found in Microsoft Excel and Microsoft Word. Unlike the SSCommand button,
the SSRibbon button cannot receive input focus; it must be clicked with the mouse.

SSRibbon Events:

Click
MarqueeCycleBegin
MarqueeCycleEnd
MouseDown
MouseEnter
MouseExit
MouseMove
MouseUp
OLECompleteDrag
OLEDragDrop
OLEDragOver
OLEGiveFeedback
OLESetData
OLEStartDrag

SSRibbon Methods:

OLEDrag
PlaySoundFile
Refresh

 SSRibbon Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Alignment
AutoSize
BackColor
BackStyle
BevelWidth
ButtonStyle
Caption
CaptionStyle
DragMode
Enabled
Font
Font3D
ForeColor
GroupAllowAllUp
GroupNumber
Height *
HelpContextID *
Hwnd
Left *
MarqueeDelay
MarqueeDirection
MarqueeScrollAmount
MarqueeStyle
MouseIcon
MousePointer
Name *
OLEDropMode
Outline
Picture
PictureAlignment
PictureAnimationDelay
PictureAnimationEnabled
PictureDisabled
PictureDisabledFrames
PictureDn
PictureDnChange
PictureDnDisabled
PictureDnDisabledFrames

PictureDnFrames
PictureFrames
PictureMaskColor
PictureUseMask
RoundedCorners
TagVariant
Top *
Value
Width *
Windowless

SSSplitter control
Properties Events Methods Objects Collections

Description
The SSSplitter is a container control that organizes the controls it contains into resizable
panes, which are separated by splitter bars that can be dragged with the mouse. It
provides functionality similar to that of the frames found on web pages that use the HTML
2.0 (or greater) specification.

File Name
SPLITTER.OCX

Object Type
SSSplitter

Remarks
The SSSplitter control consists of a collection of Pane objects. Each pane object can hold
one control, and that control is automatically resized to fill the area of the pane whenever
the pane itself is resized. Objects inside the SSSplitter behave as if they were inside a
single container; for example, SSOption buttons on separate panes still operate exclusively
with SSOptions on other panes.

SSSplitter Events:

Click
DblClick
MouseDown
MouseMove
MouseUp
Resize
SplitterEndDrag
SplitterStartDrag

SSSplitter Methods:

PaneFromControl
PaneFromPosition
PaneFromPositionEx
PlaySoundFile
Refresh
Remove

 SSSplitter Properties:
Entries marked with a * are extender properties.
(About)
(Custom)
Align
AutoSize
BackColor
BorderStyle
ClipControls
DragMode
Enabled
Height *
Hwnd
Left *
Locked
Name *
SplitterBarAppearance
SplitterBarWidth
SplitterBarJoin
SplitterResizeStyle
TagVariant
Top *
Width *

Special Thanks To
Felicia, Bryan, Michele and Jessica

Special Thanks To
Monica

Special Thanks To
Kym

Special Thanks To
Eileen & Clyde

Special Thanks To
Lori

Special Thanks To
Lisa Joy

Special Thanks To
Alim, Timor, Dilshod, The Professor & The Weasel

Special Thanks To
Kim and T.J.

Special Thanks To
Barbara, Daniel, Lauren and baby James

SetData Method
See Also Applies To

Description
This method is used to insert data into an ssDataObject object using the specified data
format.

Syntax
object.SetData [data], [format]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
data Optional A variant containing the data to be passed to the ssDataObject

object.
format Optional. An integer expression specifying the format of the data being

passed, as described in Settings.
Settings

The settings for format are:

Setting Description
1 Text (.TXT files)
2 Bitmap (.BMP files)
3 metafile (.WMF files)
8 Device-independent bitmap (DIB)
9 Color palette
14 Enhanced metafile (.EMF files)
15 List of files
-16639 Rich text format (.RTF files)

Remarks
Constants that correspond to these formats are available. See Constants for more
information.
The data argument is optional. This allows you to set several different formats that the
source component can support without having to load the data separately for each format.
Multiple formats are set by calling SetData several times, each time using a different
format. If you wish to start fresh, use the Clear method to clear all data and format
information from the ssDataObject.
The format argument is also optional, but either the data or format argument must be
specified. If data is specified, but not format, then your development environment should
try to determine the format of the data. If it is unsuccessful, then an error is generated.
When the target requests the data, and a format was specified, but no data was provided,
the source’s OLESetData event occurs, and the source can then provide the requested
data type.
It's possible for the GetData and SetData methods to use data formats other than those
listed in Settings, including user-defined formats registered with Windows via the
RegisterClipboardFormat() API function. However, there are a few caveats:

§ The SetData method requires the data to be in the form of a byte array when it does
not recognize the data format specified.

§ The GetData method always returns data in a byte array when it is in a format that it
doesn't recognize, although Visual Basic can transparently convert this returned byte
array into other data types, such as strings.

§ The byte array returned by GetData will be larger than the actual data when running
on some operating systems, with arbitrary bytes at the end of the array. The reason for
this is that the application does not always know the data's format, and knows only the
amount of memory that the operating system has allocated for the data. This allocation
of memory is often larger than is actually required for the data. Therefore, there may
be extraneous bytes near the end of the allocated memory segment. As a result, you
must use appropriate functions to interpret the returned data in a meaningful way
(such as truncating a string at a particular length with the Left function if the data is in
a text format).

Note Not all applications support ssCFBitmap or ssCFPalette, so it is recommended that
you use ssCFDIB whenever possible.

SetFocus Method
Applies To

Description
This method moves the focus to the specified control..

Syntax
object.SetFocus

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list..
Remarks

This is an extender method.
The object must be a control that can receive the focus. After invoking the SetFocus
method, any user input is directed to the specified control.
You can only move the focus to a visible control. You also can't move the focus to a control
if the Enabled property is set to False.    If the Enabled property has been set to False at
design time, you must first set it to True before it can receive the focus using the
SetFocus method.

ShadowStyle Property
See Also Applies To

Description
Returns or sets a value that specifies how the frame will be drawn.

Syntax
object.ShadowStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the frame style, as described in Settings.

Settings

Setting Description
0 (Default) Inset.    The frame appears sunken into the background.
1 Raised.    The frame appears raised above the background.

Remarks
This property determines the three-dimensional appearance of the border of the Frame
control. If inset, the frame is highlighted and shadowed so as to appear sculpted in to the
background. If raised, the frame appears as a ridge that rises above the background.

Size Property
See Also Applies To

Description
Returns or sets the font size used in the specified Font object.

Syntax
object.Size [= number]
The Size property syntax has these parts:

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the size of the font in points.

Remarks
Use this property to format text in the font size you want.    The default font size is
determined by the operating system.    To change the default, specify the size of the font in
points.    The maximum value for the Size property is 2048 points.
The Font object is not directly available at design time.    Instead you set the Size property
through a control's Font property.
At run time, however, you can set Size directly by specifying its setting for the appropriate
Font object.

SplitterBarAppearance Property
See Also Applies To

Description
Returns or sets a value that specifies the 3-D look of the splitter bars.

Syntax
object.SplitterBarAppearance [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the appearance of the splitter bars, as

described in Settings.
Settings

Setting Description
0 Borderless
1 Flat
2 (Default) 3-D (beveled)

SplitterBarJoinStyle Property
See Also Applies To

Description
Returns or sets a value that specifies how the splitter bars connect to one another.

Syntax
object.SplitterBarJoinStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the appearance of the splitter bar junctions,

as described in Settings.
Settings

Setting Description
0 (Default) Segmented. A visible seam is displayed at the junction between

horizontal and vertical splitter bars.
1 Continuous. Splitter bars blend into one another at the junctions.

SplitterBarWidth Property
See Also Applies To

Description
Returns or sets the width of the splitter bars in pixels

Syntax
object.SplitterBarWidth [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying the width of the splitter bars.

Remarks
If SplitterBarWidth is set to a value too small to display a 3-D or bordered effect (less
than 3 pixels,) the setting of SplitterBarAppearance will be ignored.
You can set the SplitterBarWidth to 0. This will create invisible splitter bars that cannot
be moved by the user.

SplitterEndDrag Event
See Also Example Applies To

Description
Occurs after a splitter bar has been moved, but before the panes are resized in response to
the move.

Syntax
Sub control_SplitterEndDrag

Remarks
You can use this event to determine whether and how individual panes will be resized in
response to a splitter bar drag. You can also include code to place limitations on splitter
bar movement.

SplitterResizeStyle Property
See Also Applies To

Description
Returns or sets a value that specifies how the individual panes will behave when the entire
Splitter control is resized.

Syntax
object.SplitterResizeStyle [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An integer expression specifying how the Splitter will respond to resizing, as

described in Settings.
Settings

Setting Description
0 Splitter panes will not resize when the control is sized. The panes along the

moving edge of the control will be expanded or clipped to accommodate the
new control size.

1 Splitter panes will resize proportionally when the control is sized. All panes will
grow or shrink, either horizontally or vertically, to accommodate the new
control size.

Remarks
This property is particularly useful when the AutoSize property is set to Fill Container and
the Splitter control is on a form. When the form is resized, all the splitter panes will
automatically be proportionally resized as well.

SplitterStartDrag Event
See Also Example Applies To

Description
Occurs when a splitter bar begins to move in response to the user dragging it.

Syntax
Sub control_SplitterStartDrag ([index As Integer] SplitterBarType As Long, BorderPanes

As Panes, Cancel As Boolean)

The event parameters are:

Parameter Description
index An integer expression that uniquely identifies a control if it is in a control

array.
SplitterBarType An integer expression that evaluates to the direction of the movement, as

described in Settings.
BorderPanes A collection object consisting of the Pane objects adjacent to the moving

splitter bar, and thus affected by it. This is a collection of all the panes that
will be resized in response to the move.

Cancel A boolean expression that determines if the drag operation will be
completed. Setting Cancel to True stops the drag operation, and no change
is made to the control.

Settings

Setting Description
0 Horizontal. The splitter bar being moved is a horizontal splitter bar.
1 Vertical. The splitter bar being moved is a vertical splitter bar.
2 Both. A junction between two splitter bars is being moved

Remarks
You can use this event to provide a fine degree of control of the resizing of panes in your
Splitter control. You can set minimum, maximum and fixed horizontal and vertical sizes on
a pane-by-pane basis by examining the panes which will be affected by the resize
operation before it occurs.

Strikethrough Property
See Also Applies To

Description
Returns or sets the font style of the specified Font object to either strikethrough or non-
strikethrough.

Syntax
object.Strikethrough [= boolean]
The Strikethrough property syntax has these parts:

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A Boolean expression specifying the font style as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on strikethrough formatting.
False (Default) Turns off strikethrough formatting.

Remarks
The Font object is not directly available at design time.    Instead you set the
Strikethrough property through a control's Font property.   
At run time, however, you can set Strikethrough directly by specifying its setting for the
appropriate Font object.

System Requirements

You must have the following to run this product.

§ A hard disk with approximately 15 megabytes of available space for a full installation,
including all documentation and sample files. For just the controls and system DLLs,
less than 2 megabytes is required.

§ At least four megabytes of RAM. Some environments may require more than four
megabytes.

§ Windows 95 or later, or Windows NT 3.51 or later. If you are using Windows NT 3.51,
you must have Service Pack 5 or greater installed.

§ A host environment that fully supports the ActiveX control specifications
§ Container controls (SSFrame, SSPanel & SSSplitter) require a host environment that

supports the ISimpleFrameSite interface (such as Visual Basic) in order to contain child
controls.

§ Windowless controls (SSCheck, SSCommand, SSOption, SSRibbon) require a host
environment that supports the IWindowlessControlSite interface (such as Visual BAsic
5.0) in order to operate in windowless mode. In all other environments, the controls will
operate in windowed mode; i.e. they will have a window handle.

TagVariant Property
Applies To

Description
Returns or sets any extra data needed for your program. You can use this property to
attach data of any type, except user defined types, to an object or control.

Syntax
object.TagVariant [= expression]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
expression A variant expression

Remarks
The TagVariant property is similar to the Visual Basic Tag property. However, in addition
to string expressions, the TagVariant property can store any data type including other
objects.

Note The TagVariant property can store all data types except user defined types.

Technical Specifications

      
Property Pages
A guide to using the Property Pages to set features of the control,
including the properties of sub-objects and animated pictures.

Troubleshooting & Tips
Procedures to solve the most common problems with the product

Compatibility Issues
Procedures to solve the most common problems with the product

System Requirements
A list of requirements for using the product

Included Files
A list of files included with the product and their locations

Distribution Notes
A list of the files you need to distribute with your applications

Top Property
See Also Applies To

Description
Returns or sets the distance between the top edge of an object and the top edge of its
container.

Syntax
object.Top [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An single precision expression specifying the distance of the object from the

top edge of its container. The value returned is in the scale units of the
object's container.

Remarks
This is an extender property, except when applied to the Pane object..
Use the Height, Width, Left, and Top properties for operations or calculations based on
an object's total area, such as sizing or moving the object.
This property is read-only for the Pane object.

Trappable Errors

Trappable errors can occur while an application is running, either within the development
environment or as a stand-alone executable.    Some of these can also occur during design
time or compile time.

General Errors

Code Definition
380 Invalid Property Value
30009 The BackStyle can not be set to transparent at run-time if it was not set to

Transparent at design-time.

SSPanel Errors

Code Definition
30002 Bevel width must be from 0 to 30
30003 Border width must be from 0 to 30
30006 Flood percent must be from 0 to 100

SSCommand/SSRibbon Errors

Code Definition
30004 Bevel width must be from 0 to 10
30005 Group number must be from 0 to 99

SSSplitter Errors

Code Definition
31001 Invalid position passed to PaneFromPosition method. The point may lie on a

splitter bar or outside of the Splitter control's client area.
31002 Specified control is invalid. You passed a value that is not a control name, and

a control name was expected.
31003 PaneFromControl could not locate the pane based on the argument control
31004 Tried to remove the root pane in the Panes collection (via the Remove method)
31005 Tried to remove a pane that has a control in it via the remove method
31006 Invalid control name
31007 The Add method of the Panes collection was passed a pane name which

contains a control.
31008 Add method of Panes collection passed a bad pane name to split
31009 Pane too small. You tried to add a pane through code, but the resulting pane

would have been to small to display.
31010 Add method of Panes collection passed a new pane name that already exists.

TripleState Property
See Also Applies To

Description
Returns or sets a value that specifies whether the control will have two or three logical
states.

Syntax
object.TripleState [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying number of states of the control, as described

in Settings.
Settings

Setting Description
True Control will have three logical states: Checked, Unchecked and Grayed.
False (Default) Control will have two logical states: Checked and Unchecked.

Remarks
This property affects the settings of the Value property of the control. When TripleState
is FALSE any non-zero value means checked and 0 means unchecked. When TripleState is
TRUE, a Value of 0 means Unchecked, 1 means Checked and 2 means Grayed. Any other
non-zero value also evaluates to Checked.
You can use the TripleState property to ensure compatibility with either earlier versions of
the THREED check box control or the standard Windows check box control.

Troubleshooting and Tips

As controls get more complicated and must operate in a wider range of development and
operating environments, the complexity of the interaction between operating system,
programming system and custom control increases. With all this complexity, things may
occasionally go wrong. There might also be useful features of the product that you are not
using because you don't know they are there.
Below is a list of helpful suggestions and common problems you may encounter when
using the product and writing and distributing applications that use it. Click the description
which most closely matches the information you want or the problem you are having.

When I started using the SSSplitter, I saw a QuickHelp screen with tips on
how to use the control. Now that screen is gone. How do I get it back?

I used a particular color as a mask color in a graphic, but when I specify
that color for the MaskColor property, it appears in the control and is not masked
out. Why?

I would like to use an SSRibbon
button as a command button - that is, when you click it, it pops right back up. Is
there a way to do this?

How can I make buttons that look like
those in Internet Explorer - gray until the mouse passes over them, then
becoming colorful?

I specified a picture for the SSFrame
or SSPanel, but it's too small or in the wrong place. How can I add a big picture or
texture to these controls?

I have written some code to resize
the panes in my SSSplitter control, but the results do not come out as I expected.
How do I resize panes through code?

The colors do not appear right in my
controls that have pictures, or the colors on my system change when I use the
controls. What is going on?

Troubleshooting Answers

When I started using the SSSplitter, I saw a QuickHelp screen with tips on how to
use the control. Now that screen is gone. How do I get it back?

ActiveThreed provides QuickHelp when you first begin using the SSSplitter control.
QuickHelp is a summary of the control's major features and how to get started using them.
After you are familiar with using the Splitter, you will probably want to turn off QuickHelp.
You can do this by checking the box at the bottom of the QuickHelp screen that begins
"Don't show me this dialog again..."
If you've turned off QuickHelp and want to get it back, simply do the following:

1. Create a new project and add an SSSplitter control to your form.
2. Click the Splitter with your secondary mouse button to bring up the context menu for

the control.
3. From the menu select "QuickHelp..." The QuickHelp screen will appear. At this point

you can read the information on the screen. QuickHelp is always available via this
menu option.

4. If you want QuickHelp to appear every time you create a new Splitter control, clear
the check box at the bottom of the screen that says "Don't show me this dialog
again..."

5. When you are finished with QuickHelp, click the OK button to close the screen.

I used a particular color as a mask color in a graphic, but when I specify that
color for the MaskColor property, it appears in the control and is not masked
out. Why?

First you must be sure you have specified a mask color for the control and that color
masking is enabled. Check to see that you have correctly set the PictureMaskColor (or
OptionBtnMaskColor or CheckBoxMaskColor) property to the correct color, and that
the PictureUseMask (or OptionBtnUseMask or CheckBoxUseMask) property is set to
True. If this does not solve the problem there may be another cause.
Different types of video drivers seem to handle color values differently in different
situations. This can mean that although you use a certain color in your bitmap, and then
specify that same color as the mask color in your ActiveThreed control, the color will not be
masked and will appear in the bitmap. Even if you successfully mask out the color, you
may find that the color does not appear masked if you move your application to another
machine with a different video system.
To be on the safe side, we recommend that you use one of the primary colors - red, green
or blue, at full intensity - for your mask color. In terms of RGB values this would be
RGB(255,0,0), RGB(0,255,0) or RGB(0,0,255). When you create the bitmap in your bitmap
editor, make sure to use one of these colors for the areas you want to appear as
transparent. Of the three, red seems to work best.
One other consideration is the number of colors in your bitmap. If you are using high-color
bitmaps (bitmaps saved in a mode that supports 65536 or more colors) and you continue
to experience problems with mask colors, try converting your bitmaps to 256 colors. Most
image editors can perform this type of conversion. If your application is going to be run on

256-color systems, see the topic below on using 256-color bitmaps.
Take the following steps to correct this situation:

1. Open the bitmap in your bitmap editing program.
2. Using the editor's flood fill tool, fill in all the areas that you want to appear

transparent with one of the preferred mask colors, red, blue, or green. Try red first.
Make sure that the colors are pure; i.e 100% of the specified color.

3. Save the bitmap using your editor's Save command. You may want to use Save As
and give the bitmap a different name.

4. Load the new bitmap into your ActiveThreed control by setting one of the control's
picture-related properties (Picture, PictureDn, PictureDnDisabled,
PictureBackground) to the filename of the bitmap file.

5. Set the PictureMaskColor property of the control to the color you used in the
bitmap as the mask color. Make sure the PictureUseMask property is set to True

I would like to use an SSRibbon button as a command button - that is, when you
click it, it pops right back up. Is there a way to do this?

The SSRibbon button is not designed to operate in command-button mode. If you need a
command button, you should use the SSCommand control. Because the SSRibbon button
cannot receive input focus, it will not display a focus rectangle and you cannot use the
keyboard to select or click the button. This violates standard Windows interface
conventions and may confuse the user of your application.
However, if for some reason you want to use an SSRibbon button as a command button
substitute, you can implement code in the control's events to make it respond in a manner
similar to a regular command button. Keep in mind, though, that the functionality may not
be identical to that of the SSCommand button.
To use an SSRibbon button as a command button, take the following steps:

1. Add the SSRibbon button to a form in your project.
2. Place the following code in the Click event of the SSRibbon button. Substitute the

name of your control for SSRibbon1:
SSRibbon1.Value = 0

How can I make buttons that look like those in Internet Explorer - gray until the
mouse passes over them, then becoming colorful?

The SSCommand and SSRibbon button contain properties that you can use to specify
different pictures for the various states of the control, and you can create Internet
Explorer-style borders on your buttons by simply setting the ButtonStyle property of the
control to '3 - ActiveBorders.' However, if you want to duplicate the color-changing
functionality of Internet Explorer's buttons, you need to use code.
The SSCommand and SSRibbon controls feature two events that make it easy to add this
capability to your programs: MouseEnter and MouseExit. By placing code in these
events to change the picture-related properties of the control, you can make your buttons
even more mouse-sensitive.
To do this you will need two copies of each button picture you use; a color version and a
grayscale or monochrome version. You make these pictures available to the application,
then switch between them in response to the mouse events.

To change the button picture when the mouse passes over the button, take the following
steps:

1. In the MouseEnter event of your control, add the following code. The filenames of
the pictures are provided as examples only. You could alternately specify the Picture
property of another control in your application (perhaps an invisible picture box,
image control, or an image list control.)

' Change the button pictures to their color versions
Set SSRibbon1.Picture = LoadPicture("COLORUP.BMP")
Set SSRibbon1.PictureDn = LoadPicture("COLORDN.BMP")

2. Place the following code in the MouseExit event of the control:

' Change the button pictures to their grayscale versions
Set SSRibbon1.Picture = LoadPicture("GRAYUP.BMP")
Set SSRibbon1.PictureDn = LoadPicture("GRAYDN.BMP")

You might want to additionally add code to the MouseEnter events of other buttons
on the form that would change the pictures of all buttons other than themselves to
their grayscale versions. This will often solve problems that occur when the user
moves the mouse extremely rapidly across the controls.

I specified a picture for the SSFrame or SSPanel, but it's too small or in the
wrong place. How can I add a big picture or texture to these controls?

The container controls of ActiveThreed (SSFrame and SSPanel) support a special picture
property called PictureBackground. For these controls, the standard Picture property
controls the picture that will be displayed in the caption area of the control. (For the
SSPanel, this is effectively the entire area of the control.) If you wish to display a large
picture that appears behind the controls in the container, or that will act as "wallpaper" for
the control. you must use the PictureBackground property. Use of the
PictureBackground gives you added ability to manipulate the picture, such as stretching
or tiling it to fill the control. PictureBackground also operates without regard to any
caption the control might have or the settings of any of the Alignment properties.

Note that PictureBackground uses the same mask color properties as the regular
Picture property. This makes it possible to have transparent areas in your control's
background as well as in its caption picture.

I have written some code to resize the panes in my SSSplitter control, but the
results do not come out as I expected. How do I resize panes through code?

Panes are resized based on the order in which they were created. When looping through
the Panes collection in code, you may find that resizing panes in collection order does not
produce the results you want. This is because resizing of panes later in the loop may
inadvertently change the size of panes set up earlier in the loop.
The best way to manage the resizing of panes through code is to lock each pane as it is
resized. This way, later changes to adjacent panes will not affect the size of panes you
have already set. The procedure for doing this, which includes the ability to retain the
design-time LockHeight and LockWidth settings of individual panes, is outlined in
Resizing Panes Through Code.

The colors do not appear right in my controls that have pictures, or the colors on
my system change when I use the controls. What is going on?

This is a common problem on systems using a 256-color display adapter. The system can
only display 256 colors at a time. Windows attempts to compensate for colors that are
outside its displayable range by changing existing colors or switching the entire palette of
colors that the system is using. When this "palette shift" occurs, you may see the graphics
on your screen flash or change color completely. Systems that use more than 256 colors do
not exhibit palette shift.
If you use high color images in your application (also known as 16-bit color and 24-bit color
images) users of 256-color systems will observe palette shifts when your application is run
on their system. This is an unavoidable side effect of Windows attempting to compensate
for the lack of available colors when displaying your graphics.
The best way to minimize the effects of palette shift on 256-color systems is to use 256-
color pictures that use a common color palette. This will at least insure that the pictures in
your application do not conflict with one another, although you may still observe palette
shifting in graphics outside of your application.
Many image editing programs contain tools for modifying and converting color palettes.
Your best approach is to standardize on a single palette for your applications, then use this
palette to create all the graphics for your program. Any clip art you use, or graphics you
have created previously, can be converted to this palette. If necessary, pictures can be
dithered to adapt their palettes to the one you are using.
You may also find it helpful to use "identity" palettes. An identity palette is a special
palette that has the high intensity VGA colors as the first 8 entries in its palette, and the
low-intensity VGA colors as the last 8 entries. Identity palettes can minimize palette shift in
colors outside of your application, particularly those used by Windows itself. Again, you will
need an image editor or conversion tool that supports the creation of identity palettes.
Another possibility is to use images that contain less than 256 colors. Often, you will find
that dithering an image to 128 colors or even 64 colors provides acceptable quality. If you
use an identity palette with a sub-256-color image, you may find you are able to eliminate
palette shift altogether. In addition, the size of your graphics and executable files will be
smaller.
One final solution is to use your image editor to convert your graphics all the way down to
the 16-color VGA palette. This may result in pictures that are grainy or unclear, but with
certain images and careful dithering, the results can look surprisingly good. This approach
will eliminate any palette shift considerations as well as making your application suitable
for use on 16 color VGA systems.

Underline Property
See Also Applies To

Description
Returns or sets the font style of the specified Font object to either underlined or non-
underlined.

Syntax
object.Underline [= boolean]
The Underline property syntax has these parts:

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A Boolean expression specifying the font style as described in Settings.

Settings
The settings for boolean are:

Setting Description
True Turns on underlining.
False Turns off underlining.

Remarks
The Font object is not directly available at design time.    Instead you set the Underline
property through a control's Font property.   
At run time, however, you can set Underline directly by specifying its setting for the
appropriate Font object.

Upgrade Notes

This section contains important information for users upgrading from earlier versions of
THREED to ActiveThreed.

Note ActiveThreed is a 32-bit only product! It will not work with the 16-bit version of
Visual Basic 4.0
When upgrading a Visual Basic project that uses THREED.VBX the conversion process is
automatic. After you have installed THREED20.OCX, any projects containing THREED.VBX
will be automatically upgraded to the newer version when they are opened in the Visual
Basic development environment.

For Visual Basic 4.0 32-bit
It is possible to upgrade a Visual Basic 4.0 project directly from THREED16.OCX or
THREED32.OCX to THREED20.OCX by editing the project (VBP) file in a text editor, such as
Notepad. You must make the following modification:
1. In the old VBP file, find the following line:

Object={0BA686C6-F7D3-101A-993E-0000C0EF6F5E}#1.0#0; THREED32.OCX

2. Change the version number to 2.0 as in the following line:

Object={0BA686C6-F7D3-101A-993E-0000C0EF6F5E}#2.0#0; THREED20.OCX

3. Save the file using your text editor, then open the project as you normally would.
For Visual Basic 5.0

The upgrade from THREED16.OCX or THREED32.OCX is an automatic process. When you
open a project that uses a previous version of THREED, you will see a dialog that prompts
you to upgrade the project to THREED20.OCX.

Other Upgrade Issues
Previous versions of the SSCheck control found in THREED.VBX, THREED16.OCX and
THREED32.OCX supported only two logical states: checked and unchecked. This differs
from the standard Visual Basic and Windows check box which supports three states;
checked, unchecked and grayed.
If you have existing programs that use a previous version of the SSCheck control, and
those programs assume a specific set of values (i.e. that only 2 states are available) you
must make sure that the TripleState property is set to False. This is the default setting,
and ensures full compatibility with previous versions of the control. However, if you wish to
use the new capabilities of the control, or use the SSCheck to replace standard check
boxes, you should make sure TripleState is set to True.

Using ActiveThreed Controls

ActiveThreed is a set of ActiveX controls designed to add a cutting-edge interface to your
applications. ActiveThreed consists of seven 32-bit ActiveX controls in two files -
THREED20.OCX and SPLITTER.OCX. The THREED20 controls replicate the functions of some
of the Windows base controls, adding expanded features to give your applications the
active look and feel users have come to expect. Also included in ActiveThreed is a Splitter
control that provides a flexible, multi-paned container for other controls. Together, the
THREED20 controls and Splitter of ActiveThreed give you the tools to design attractive and
engaging applications, utilizing many of the interface features popularized by the Internet
and the World Wide Web.
THREED20.OCX, which contains the THREED20 controls of ActiveThreed, is an upgraded
version of the THREED.VBX, THREED16.OCX and THREED32.OCX custom controls that
were included with the Professional Edition of Microsoft® Visual Basic. It can be substituted
directly for older versions of the control without requiring modifications to your program's
forms or code. However, you will need to re-compile existing applications if you want them
to take advantage of ActiveThreed. For more information on upgrading your older THREED
applications to ActiveThreed, see Upgrade Notes.

ActiveThreed provides advanced functionality and performance. It is fully compliant with
the ActiveX standard. Its lightweight controls do not require the MFC DLL, making it
especially suitable for network or Internet applications. The THREED20 controls give you
enhanced interface design features, which you can use to give your application a
multimedia look and feel. You can design programs that integrate well with content on the
World Wide Web as well as the most recent versions of popular applications suites.
In addition, ActiveThreed includes an all-new Splitter control. The Splitter is a container
control that is visually and functionally similar to the frames found on many Web sites. It
provides a system of resizable panes separated by movable, three-dimensional splitter
bars, which you use to group and organize the other controls in your application. The
Splitter is packaged as a separate lightweight OCX; you can choose whether or not to
include it with the THREED20 controls in your application.
The following is a guide to using the features common to the THREED20 controls. (Most of
these will not apply to the SSSplitter.) For information on control-specific features, consult
the Remarks section of the topic for that particular control, or the topic for the specific
property, method, event, object or collection you want to use.
Using Marquee Captions
Windowed vs. Windowless Operation
Control Background Effects

Transparent Operation
Adding Pictures to Captions
Using Mask Colors with Pictures
Adding Animation To Controls
Including Sound
OLE Drag and Drop Operations
Resizing Panes Through Code (SSSplitter)

Using Marquee Captions

Marquee captions are text that incorporates movement. Because movement is attention-
getting, marquee captions are useful for drawing attention to a particular part of your
application. Marquee captions are also useful when you need to display a long string of
text in an area that doesn't have the space to accommodate that text. By using moving
text, you can display more information than the area would usually allow.

To create a marquee caption:
1. Enter the text for the Caption property of the control as you normally would.
2. Set the MarqueeStyle property to select the type of motion effect you want. The

choices are None (static), Scrolling, Sliding, Blinking and Bouncing.
3. Set the MarqueeDirection property to indicate which direction you would like the

marquee text to move. This property is not applicable to the Static or Blinking styles.
4. Set the MarqueeDelay property to set the interval of the timer used to control the

animation. A higher value will result in slower animation. A very small value (less
than 55 for Windows 95, less than 10 for Windows NT) is equivalent to zero. This will
cause the control to recieve timer messages as fast as the system will allow, which
may adversely affect the performance of your application.

5. Set the MarqueeScrollAmount to determine the amount of scrolling that will take
place with each expiration of the MarqueeDelay timer. A higher value will result in
faster but choppier scrolling. Lower values produce a smoother, slower effect.

6. If you wish to take some action in response to the behavior of the marquee caption
text, use the MarqueeCycleBegin event. This event occurs whenever the caption is
about to begin a new marquee cycle. What constitutes a cycle varies depending on
the MarqueeStyle. Generally, it is when the caption has disappeared and is about to
reappear, or when the caption changes its movement, such as changing direction.

There is also a MarqueeCycleEnd event which occurs after the marquee cycle is
complete. This is useful for taking action after a caption has completed an action, such as
when text using the Sliding marquee style comes to a halt.

Using Mask Colors with Pictures

Any of the pictures you use with ActiveThreed may have transparent areas. You specify
which areas of the picture will be transparent through the use of mask colors. A mask color
is a color that appears in the picture. You specify that this color should be transparent by
entering its color value in the PictureMaskColor property. You can either enter the value
for the property directly, or select the color directly from the color selection dialog of your
development environment or the property pages.
Some colors work better than others as mask colors. This is because different video drivers
handle the creation of colors in slightly different ways. This may cause a particular mask
color to work on one system but not another. To ensure maximum compatibility across
systems, the best colors to use as mask colors are primary colors at 100% intensity: red,
green or blue. Pure white and black (0% intensity) are also good choices.
Once you specify a mask color using the PictureMaskColor property, you must activate
color masking for the picture by setting the PictureUseMask property to True. This
property gives you the ability to select whether or not you want picture masking active for
the control.
The PictureMaskColor and PictureUseMask properties apply to all the pictures
specified for the control. They affect the following properties: Picture,
PictureBackground, PictureDisabled, PictureDn, PictureDnDisabled.
You can also use mask colors when specifying custom graphics for the button portion of
the SSCheck and SSOption controls. Because these pictures serve a special purpose, they
have their own mask color properties; CheckBoxMaskColor, CheckBoxUseMask,
OptionBtnMaskColor and OptionBtnUseMask.

To use a mask color with a picture (caption or background):
1. If you wish to use an icon or metafile for your picture, you do not need to take any

special action. These formats intrinsically support transparent areas. Any transparent
area in the original picture will be transparent when used with an ActiveThreed
control.

2. If you wish to use a bitmap as your picture, create the bitmap using a single color
(such as red) for all the areas of the picture that you wish to be transparent.

3. Specify the bitmap you wish to use by entering its path name for the Picture
property, either directly or via the File Open dialog.

4. Select the PictureMaskColor property, and enter the color you used for the
transparent areas of the bitmap. You can enter the color value directly, or choose the
color from the color selection dialog / dropdown.

5. Select the PictureUseMask property and set its value to True.

Value Property (SSCheck)
See Also Applies To

Description
Returns or sets a value that determines the logical state of the control.

Syntax
object.Value [= integer]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
integer An integer expression specifying the state of a check box object, as described

in Settings.
Settings

The setting of Value property for SSCheck depends on the setting of the TripleState
property. TripleState toggles the control between two or three logical states. The settings
for each are as follows:
The settings when TripleState is set to FALSE are:

Setting Description
False (Default) The check box is not checked.
True The check box is checked.

The settings when TripleState is set to TRUE are:

Setting Description
0 (Default) The check box is not checked.
1 The check box is checked.
2 The check box is grayed.
> 2 or < 0 The check box is checked.

Remarks
This is the default property of the control.
For backwards compatibility with previous versions of THREED, the Value property of the
SSCheck control returns a Boolean value when TripleState is set to False. You can set the
Value property to a Boolean or an integer value - any non-zero value is treated as True -
but the value returned will always be Boolean. When TripleState is True, Value returns an
integer.

Value Property (SSCommand, SSOption, SSRibbon)
See Also Applies To

Description
Returns or sets a value that determines the logical state of the control.

Syntax
object.Value [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying the state of a button object, as described in

Settings.
Settings

Setting Description
True The button is in a depressed state.
False (Default) the button is in a raised state.

Remarks
This is the default property of the control.
When the value of an SSOption button is set to True, the values of all the other option
buttons in the same container are automatically set to False.
You can simulate a button click by setting the value of a SSCommand or SSRibbon to True.
This has the same effect as invoking the DoClick method for the control.
The Value property of the SSCommand button is available only at run-time.

Width Property
See Also Applies To

Description
Returns or sets the horizontal dimension of an object.

Syntax
object.Width [= number]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
number An single precision expression specifying the width of the object. The value

returned is in the scale units of the object's container.
Remarks

This is an extender property, except when applied to the Pane object..
Use the Height, Width, Left, and Top properties for operations or calculations based on
an object's total area, such as sizing or moving the object.

Windowed vs. Windowless Operation

Most development platforms support windowed controls. This means that each control on a
form exists as a separate window, has it's own window handle, and consumes resources
which are necessary for the "housekeeping" of opening and keeping track of windows. The
window requirements of custom controls place a limit on the number of controls you can
have in an application without adversely affecting overall program and system
performance.
Some development environments provide support for windowless controls. Windowless
controls are lightweight; they do not have a window handle and do not consume system
resources in the same way (or at the same rate) as windowed controls. Typically, when
using windowless controls, you can use more controls in your application without affecting
it's efficiency, and the application as a whole should be leaner, with a reduced "memory
footprint."
ActiveThreed's non-container controls (SSCheck, SSCommand, SSOption & SSRibbon) can
operate in windowless mode in environments that support that type of operation.
However, they can also operate in standard windowed mode. Container controls (SSFrame,
SSPanel, SSSplitter) always operate in windowed mode. Windowless controls are supported
through the use of the IWindowlessControlSite interface; any environment that uses this
interface will support ActiveThreed controls in windowless mode.
How the controls operate is completely transparent to the programmer. If your
environment supports windowless controls, the ActiveThreed controls will take advantage
of windowless operation until you need to use some "window-specific" feature of the
control, such as obtaining its window handle. The controls can dynamically readjust their
mode of operation to assure maximum flexibility and efficiency.

Windowless Property
See Also Applies To

Description
Returns or sets a value that determines whether the control can operate in windowless
mode.

Syntax
object.Windowless [= boolean]

Part Description
object An object expression that evaluates to an object or a control in the Applies To

list.
boolean A boolean expression specifying the window mode capabilities of the control,

as described in Settings.
Settings

Setting Description
True (Default) The control will operate in windowless mode if it supported by the

environment.
False The control will not operate in windowless mode.

Remarks
This property is available at design time only.
The non-container ActiveThreed controls can operate in windowless mode in environments
that support it. If you do not wish to use windowless mode, you can set this property to
False, which will force the controls into windowed mode at all times. You may want to do
this if your operating environment does not properly support the controls in windowless
mode.

(About) Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

(Custom) Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Add Method applies to:

Panes collection

Align Property applies to:

SSPanel control
SSSplitter control

Alignment Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

AutoRepeat Property applies to:

SSCommand control

AutoSize Property (SSCommand & SSRibbon) applies to:

SSCommand control
SSRibbon control

AutoSize Property (SSPanel) applies to:

SSPanel control

AutoSize Property (SSSplitter) applies to:

SSSplitter control

BackColor Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

BackStyle Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

BevelInner Property applies to:

SSPanel control

BevelOuter Property applies to:

SSPanel control

BevelWidth Property applies to:

SSCommand control
SSPanel control
SSRibbon control

Bold Property applies to:

Font object

BorderStyle Property applies to:

SSSplitter control

BorderWidth Property applies to:

SSPanel control

ButtonStyle Property applies to:

SSCommand control
SSRibbon control

Cancel Property applies to:

SSCommand control

Caption Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

CaptionStyle Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

CheckBoxGraphics Property applies to:

SSCheck control

CheckBoxMaskColor Property applies to:

SSCheck control

CheckBoxUseMask Property applies to:

SSCheck control

Clear Method applies to:

ssDataObject object
ssDataObjectFiles collection

Click Event applies to:

SSCheck control
SSCommand control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

ClipControls Property applies to:

SSFrame control
SSPanel control
SSSplitter control

Control Property applies to:

Pane object

ControlName Property applies to:

Pane object

Count Property applies to:

Panes collection
ssDataObjectFiles collection

DataField Property applies to:

SSCheck control
SSPanel control

DataSource Property applies to:

SSCheck control
SSPanel control

DblClick Event applies to:

SSFrame control
SSPanel control
SSSplitter control

Default Property applies to:

SSCommand control

DoClick Method applies to:

SSCommand control

DragMode Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Enabled Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Files Property applies to:

ssDataObject object

FloodColor Property applies to:

SSPanel control

FloodFillStyle Property applies to:

SSPanel control

FloodPercent Property applies to:

SSPanel control

FloodShowPct Property applies to:

SSPanel control

FloodType Property applies to:

SSPanel control

Font Object applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

Font Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

Font3D Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

ForeColor Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

GetData Method applies to:

ssDataObject object

GetFormat Method applies to:

ssDataObject object

GroupAllowAllUp Property applies to:

SSRibbon control

GroupNumber Property applies to:

SSRibbon control

Height Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control
Pane object

HelpContextID Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

Hwnd Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Italic Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

Item Method applies to:

Panes collection
ssDataObjectFiles collection

KeyDown Event applies to:

SSCheck control
SSCommand control
SSOption control

KeyPress Event applies to:

SSCheck control
SSCommand control
SSOption control

KeyUp Event applies to:

SSCheck control
SSCommand control
SSOption control

Left Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control
Pane object

LockHeight Property applies to:

Pane object

LockWidth Property applies to:

Pane object

Locked Property applies to:

SSSplitter control

MarqueeCycleBegin Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MarqueeCycleEnd Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MarqueeDelay Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MarqueeDirection Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MarqueeScrollAmount Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MarqueeStyle Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MinHeight Property applies to:

Pane object

MinWidth Property applies to:

Pane object

MouseDown Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MouseEnter Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MouseExit Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MouseIcon Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MouseMove Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MousePointer Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

MouseUp Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

Name Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control
Font object
Pane object

Name Property (Font object) applies to:

Font object

OLECompleteDrag Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OLEDrag Method applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

OLEDragDrop Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OLEDragOver Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OLEDropMode Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OLEGiveFeedback Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OLESetData Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OLEStartDrag Event applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

OptionBtnGraphics Property applies to:

SSOption control

OptionBtnMaskColor Property applies to:

SSOption control

OptionBtnUseMask Property applies to:

SSOption control

Outline Property applies to:

SSCommand control
SSPanel control
SSRibbon control

Pane Object applies to:

SSSplitter control

PaneFromControl Method applies to:

SSSplitter control

PaneFromPosition Method applies to:

SSSplitter control

PaneFromPositionEx Method applies to:

SSSplitter control

Panes Collection applies to:

SSSplitter control

Picture Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PictureAlignment Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PictureAnimationDelay Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PictureAnimationEnabled Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PictureBackground Property applies to:

SSFrame control
SSPanel control

PictureBackgroundStyle Property applies to:

SSFrame control
SSPanel control

PictureDisabled Property applies to:

SSCommand control
SSRibbon control

PictureDisabledFrames Property applies to:

SSCommand control
SSRibbon control

PictureDn Property applies to:

SSCommand control
SSRibbon control

PictureDnChange Property applies to:

SSRibbon control

PictureDnDisabled Property applies to:

SSRibbon control

PictureDnDisabledFrames Property applies to:

SSRibbon control

PictureDnFrames Property applies to:

SSCommand control
SSRibbon control

PictureFrames Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PictureMaskColor Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PictureUseMask Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

PlaySoundFile Method applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Refresh Method applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Remove Method applies to:

Panes collection
ssDataObjectFiles collection

Resize Event applies to:

SSSplitter control

RoundedCorners Property applies to:

SSCommand control
SSPanel control
SSRibbon control

SetData Method applies to:

ssDataObject object

SetFocus Method applies to:

SSCheck control
SSCommand control
SSOption control

ShadowStyle Property applies to:

SSFrame control

Size Property applies to:

Font object

SplitterBarAppearance Property applies to:

SSSplitter control

SplitterBarJoinStyle Property applies to:

SSSplitter control

SplitterBarWidth Property applies to:

SSSplitter control

SplitterEndDrag Property applies to:

SSSplitter control

SplitterResizeStyle Property applies to:

SSSplitter control

SplitterStartDrag Event applies to:

SSSplitter control

Strikethrough Property applies to:

Font object

TagVariant Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control

Top Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control
Pane object

TripleState Property applies to:

SSCheck control

Underline Property applies to:

Font object

Value Property (SSCheck) applies to:

SSCheck control

Value Property (SSCommand, SSOption, SSRibbon) apply to:

SSCommand control
SSOption control
SSRibbon control

Width Property applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control
SSSplitter control
Pane object

Width Property applies to:

SSCheck control
SSCommand control
SSOption control
SSRibbon control
SSSplitter control

ssDataObject Object applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

ssDataObjectFiles Collection applies to:

SSCheck control
SSCommand control
SSFrame control
SSOption control
SSPanel control
SSRibbon control

Add Method Example

The following code adds 1 vertical and 1 horzontal pane to the Splitter control.
SSSplitter1.Panes.Add "Pane A", 2 'split vertically
SSSplitter1.Panes.Add "Pane B", 1 'split horzontally

Align Property Example

The following code aligns the Splitter control to the top of its container.
SSSplitter1.Align = 1

Alignment Property Example

The following code aligns the caption of an SSCommand button control to the bottom-
center of the control.

SSCommand1.Alignment = 8

AutoRepeat Property Example

This example increments the numeric value in a label control as an SSCommand button is
pressed and held down:
Place a label control and an SSCommand button on a form.    Then place the following code
in the Load event of the form:

Private Sub Form_Load()
 Label1.Caption = 1
 SSCommand1.Caption = "Increase!"
 SSCommand1.AutoRepeat = True
End Sub

Place the following code into the Click event of the SSCommand button:
Private Sub SSCommand1_Click()
 Label1.Caption = Str$(Val(Label1.Caption) + 1)
End Sub

Now run the program and hold down the SSCommand button.

Control Property Example

Assuming a picture control (Picture1) is placed within Panes(0) of an SSSplitter control, the
following code will set the Picture property of another control (namely Picture2) to the
picture in the Picture1 control via the Control property.

Private Sub Command1_Click()
 Picture1.Picture = "C:\MYPIC.BMP"
 Picture2.Picture = SSSplitter1.Panes(0).Control.Picture
End Sub

ControlName Property Example

Assuming a picture control (Picture1) is placed within Pane(0) of an SSSplitter control, the
following code will display a message box containing the name of the picture control.

Private Sub Command1_Click()
 MsgBox SSSplitter1.Panes(0).ControlName
End Sub

DoClick Method Example

The following code triggers an SSCommand button’s Click event when a regular command
button is pressed.
Place the following code in the Click event of a command button.

Private Sub Command1_Click()
SSCommand1.DoClick

End Sub

Place the following code in the Click event of the SSCommand button.
Private Sub SSCommand1_Click()

MsgBox "SSCommand1's Click event was fired!"
End Sub

Now run the program and press the regular command button (Command1).    You will
notice that the message placed in the Click event of the SSCommand button is displayed.

FloodColor Property Example

This example increments and decrements a progress bar created using an SSPanel control.
Place two command buttons (Command1 and Command2), and an SSPanel control on a
form.    Then place the following code in the Load event of the form:

Private Sub Form_Load()
'Size/Position window and controls
Me.Width = 3400
Me.Height = 3500
SSPanel1.Move 100, 100, 1000, 2500
Command1.Move 1380, 1440, 1445, 495
Command2.Move 1380, 2160, 1445, 495

'Initialize properties
Command1.Caption = "Increment"
Command2.Caption = "Decrement"

SSPanel1.BevelOuter = 1
SSPanel1.FloodType = 4
SSPanel1.FloodFillStyle = 1
SSPanel1.FloodColor = RGB(0, 255, 0)
SSPanel1.FloodPercent = 0
SSPanel1.FloodShowPct = True

End Sub

Place the following code in the Click event of the Command1 button:
Private Sub Command1_Click()

If SSPanel1.FloodPercent < 100 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent + 10
End If

End Sub

Place the following code in the Click event of the Command2 button:
Private Sub Command2_Click()

If SSPanel1.FloodPercent > 0 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent - 10
End If

End Sub

Now run the program and repeatedly press the Increment and Decrement buttons.    You
will notice that a progress bar of the style, flood fill style and color you have specified is
drawn in the SSPanel as you press the buttons.    In addition, the percentage of fill is also
displayed in the SSPanel.

FloodFillStyle Property Example

This example increments and decrements a progress bar created using an SSPanel control.
Place two command buttons (Command1 and Command2), and an SSPanel control on a
form.    Then place the following code in the Load event of the form:

Private Sub Form_Load()
'Size/Position window and controls
Me.Width = 3400
Me.Height = 3500
SSPanel1.Move 100, 100, 1000, 2500
Command1.Move 1380, 1440, 1445, 495
Command2.Move 1380, 2160, 1445, 495

'Initialize properties
Command1.Caption = "Increment"
Command2.Caption = "Decrement"

SSPanel1.BevelOuter = 1
SSPanel1.FloodType = 4
SSPanel1.FloodFillStyle = 1
SSPanel1.FloodColor = RGB(0, 255, 0)
SSPanel1.FloodPercent = 0
SSPanel1.FloodShowPct = True

End Sub

Place the following code in the Click event of the Command1 button:
Private Sub Command1_Click()

If SSPanel1.FloodPercent < 100 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent + 10

End If
End Sub

Place the following code in the Click event of the Command2 button:
Private Sub Command2_Click()

If SSPanel1.FloodPercent > 0 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent - 10
End If

End Sub

Now run the program and repeatedly press the Increment and Decrement buttons.    You
will notice that a progress bar of the style, FloodFill style and color you have specified is
drawn in the SSPanel as you press the buttons.    In addition, the percentage of fill is also
displayed in the SSPanel.

FloodPercent Property Example

This example increments and decrements a progress bar created using an SSPanel control.
Place two command buttons (Command1 and Command2), and an SSPanel control on a
form.    Then place the following code in the Load event of the form:

Private Sub Form_Load()
'Size/Position window and controls
Me.Width = 3400
Me.Height = 3500
SSPanel1.Move 100, 100, 1000, 2500
Command1.Move 1380, 1440, 1445, 495
Command2.Move 1380, 2160, 1445, 495

'Initialize properties
Command1.Caption = "Increment"
Command2.Caption = "Decrement"

SSPanel1.BevelOuter = 1
SSPanel1.FloodType = 4
SSPanel1.FloodFillStyle = 1
SSPanel1.FloodColor = RGB(0, 255, 0)
SSPanel1.FloodPercent = 0
SSPanel1.FloodShowPct = True

End Sub

Place the following code in the Click event of the Command1 button:
Private Sub Command1_Click()

If SSPanel1.FloodPercent < 100 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent + 10

End If
End Sub

Place the following code in the Click event of the Command2 button:
Private Sub Command2_Click()

If SSPanel1.FloodPercent > 0 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent - 10

End If
End Sub

Now run the program and repeatedly press the Increment and Decrement buttons.    You
will notice that a progress bar of the style, floodfill style and color you have specified is
drawn in the SSPanel as you press the buttons.    In addition, the percentage of fill is also
displayed in the SSPanel.

FloodShowPct Property Example

This example increments and decrements a progress bar created using an SSPanel control.
Place two command buttons (Command1 and Command2), and an SSPanel control on a
form.    Then place the following code in the Load event of the form:

Private Sub Form_Load()
'Size/Position window and controls
Me.Width = 3400
Me.Height = 3500
SSPanel1.Move 100, 100, 1000, 2500
Command1.Move 1380, 1440, 1445, 495
Command2.Move 1380, 2160, 1445, 495

'Initialize properties
Command1.Caption = "Increment"
Command2.Caption = "Decrement"

SSPanel1.BevelOuter = 1
SSPanel1.FloodType = 4
SSPanel1.FloodFillStyle = 1
SSPanel1.FloodColor = RGB(0, 255, 0)
SSPanel1.FloodPercent = 0
SSPanel1.FloodShowPct = True

End Sub

Place the following code in the Click event of the Command1 button:
Private Sub Command1_Click()

If SSPanel1.FloodPercent < 100 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent + 10

End If
End Sub

Place the following code in the Click event of the Command2 button:
Private Sub Command2_Click()

If SSPanel1.FloodPercent > 0 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent - 10

End If
End Sub

Now run the program and repeatedly press the Increment and Decrement buttons.    You
will notice that a progress bar of the style, flood fill style and color you have specified is
drawn in the SSPanel as you press the buttons.    In addition, the percentage of fill is also
displayed in the SSPanel.

FloodType Property Example

This example increments and decrements a progress bar created using an SSPanel control.
Place two command buttons (Command1 and Command2), and an SSPanel control on a
form.    Then place the following code in the Load event of the form:

Private Sub Form_Load()
'Size/Position window and controls
Me.Width = 3400
Me.Height = 3500
SSPanel1.Move 100, 100, 1000, 2500
Command1.Move 1380, 1440, 1445, 495
Command2.Move 1380, 2160, 1445, 495

'Initialize properties
Command1.Caption = "Increment"
Command2.Caption = "Decrement"

SSPanel1.BevelOuter = 1
SSPanel1.FloodType = 4
SSPanel1.FloodFillStyle = 1
SSPanel1.FloodColor = RGB(0, 255, 0)
SSPanel1.FloodPercent = 0
SSPanel1.FloodShowPct = True

End Sub

Place the following code in the Click event of the Command1 button:
Private Sub Command1_Click()

If SSPanel1.FloodPercent < 100 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent + 10

End If
End Sub

Place the following code in the Click event of the Command2 button:
Private Sub Command2_Click()

If SSPanel1.FloodPercent > 0 Then
SSPanel1.FloodPercent = SSPanel1.FloodPercent - 10

End If
End Sub

Now run the program and repeatedly press the Increment and Decrement buttons.    You
will notice that a progress bar of the style, floodfill style and color you have specified is
drawn in the SSPanel as you press the buttons.    In addition, the percentage of fill is also
displayed in the SSPanel.

Item Method Example

Assuming a picture control (Picture1) is placed within Pane(0) of an SSSplitter control, the
following code will display a message box containing the name of the picture control.

MsgBox SSSplitter1.Panes.Item(0).ControlName

Since Item is the default method of the Panes collection, this code is equivalent to:
MsgBox SSSplitter1.Panes(0).ControlName

MarqueeCycleBegin Event Example

This example randomly sets the color of the SSCommand button’s caption each time a
marquee cycle is completed.
Place the following code in the Load event of the form:

Private Sub Form_Load()
Randomize
SSCommand1.Caption = "Hello!"
SSCommand1.Font.Name = "Arial"
SSCommand1.Font.Bold = True
SSCommand1.Font.Size = 18
SSCommand1.Move 1000, 1000, 2500, 1000

SSCommand1.MarqueeStyle = 4 'Bouncing text
SSCommand1.MarqueeDirection = ssMDLeftToRight
SSCommand1.MarqueeDelay = 0

End Sub

Place the following code in the MarqueeCycleBegin event of the SSCommand button.
Private Sub SSCommand1_MarqueeCycleBegin()

SSCommand1.ForeColor = RGB(Int(Rnd * 255) + 1, Int(Rnd * 255) + 1,
Int(Rnd * 255) + 1)
End Sub

MarqueeDelay Property Example

This example slows down the scrolling speed of .the marquee caption in an SSCommand
button each time the button is clicked.
Place the following code in the Click event of the form:

Private Sub SSCommand1_Click()
SSCommand1.MarqueeDelay = SSCommand1.MarqueeDelay + 30

End Sub

MarqueeDirection Property Example

This example randomly sets the color of the SSCommand button’s caption each time a
marquee cycle is completed.
Place the following code in the Load event of the form:

Private Sub Form_Load()
Randomize
SSCommand1.Caption = "Hello!"
SSCommand1.Font.Name = "Arial"
SSCommand1.Font.Bold = True
SSCommand1.Font.Size = 18
SSCommand1.Move 1000, 1000, 2500, 1000

SSCommand1.MarqueeStyle = 4 'Bouncing text
SSCommand1.MarqueeDirection = ssMDLeftToRight
SSCommand1.MarqueeDelay = 0

End Sub

Place the following code in the MarqueeCycleBegin event of the SSCommand button.
Private Sub SSCommand1_MarqueeCycleBegin()

SSCommand1.ForeColor = RGB(Int(Rnd * 255) + 1, Int(Rnd * 255) + 1,
Int(Rnd * 255) + 1)
End Sub

MarqueeStyle Property Example

This example randomly sets the color of the SSCommand button’s caption each time a
marquee cycle is completed.
Place the following code in the Load event of the form:

Private Sub Form_Load()
Randomize
SSCommand1.Caption = "Hello!"
SSCommand1.Font.Name = "Arial"
SSCommand1.Font.Bold = True
SSCommand1.Font.Size = 18
SSCommand1.Move 1000, 1000, 2500, 1000

SSCommand1.MarqueeStyle = 4 'Bouncing text
SSCommand1.MarqueeDirection = ssMDLeftToRight
SSCommand1.MarqueeDelay = 0

End Sub

Place the following code in the MarqueeCycleBegin event of the SSCommand button.
Private Sub SSCommand1_MarqueeCycleBegin()

SSCommand1.ForeColor = RGB(Int(Rnd * 255) + 1, Int(Rnd * 255) + 1,
Int(Rnd * 255) + 1)
End Sub

MouseEnter Event Example

The following code increases the animation speed of an SSCommand button as the mouse
is moved over it:
Place an SSCommand button on a form.    Then place the following code into the Load
event of the form:

Private Sub Form_Load()
SSCommand1.Width = 2000
SSCommand1.Height = 1500
SSCommand1.Caption = "Exit"
SSCommand1.Alignment = ssCenterBottom
SSCommand1.Picture = LoadPicture("C:\Sheridan\ActiveThreed\Graphics\

Animations\Segmented Bitmaps\Red light(16).bmp")
SSCommand1.PictureMaskColor = vbBlue
SSCommand1.PictureAnimationDelay = 100
SSCommand1.PictureFrames = 16

End Sub

Place the following code into the MouseEnter event of the SSCommand button:
Private Sub SSCommand1_MouseEnter(ByVal Button As Integer, ByVal Shift
As Integer, ByVal X As Single, ByVal Y As Single)

SSCommand1.PictureAnimationDelay = 10
End Sub

Place the following code into the MouseExit event of the SSCommand button:
Private Sub SSCommand1_MouseExit(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)

SSCommand1.PictureAnimationDelay = 100
End Sub

Now run the program and move the mouse pointer over the command button. You will
notice that the animation speeds up as you pass the mouse over the control.

MouseExit Event Example

The following code increases the animation speed of an SSCommand button as the mouse
is moved over it:
Place an SSCommand button on a form.    Then place the following code into the Load
event of the form:

Private Sub Form_Load()
SSCommand1.Width = 2000
SSCommand1.Height = 1500
SSCommand1.Caption = "Exit"
SSCommand1.Alignment = ssCenterBottom
SSCommand1.Picture = LoadPicture("C:\Sheridan\ActiveThreed\Graphics\

Animations\Segmented Bitmaps\Red light(16).bmp")
SSCommand1.PictureMaskColor = vbBlue
SSCommand1.PictureAnimationDelay = 100
SSCommand1.PictureFrames = 16

End Sub

Place the following code into the MouseEnter event of the SSCommand button:
Private Sub SSCommand1_MouseEnter(ByVal Button As Integer, ByVal Shift
As Integer, ByVal X As Single, ByVal Y As Single)

SSCommand1.PictureAnimationDelay = 10
End Sub

Place the following code into the MouseExit event of the SSCommand button:
Private Sub SSCommand1_MouseExit(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)

SSCommand1.PictureAnimationDelay = 100
End Sub

MouseMove Event Example

The following example alternates the direction in which a marquee is scrolling depending
on the position of the mouse pointer over the control.
Place the following code into the Load event of the form:

Private Sub Form_Load()
SSPanel1.MarqueeStyle = 1
SSPanel1.MarqueeDelay = 1
SSPanel1.MarqueeDirection = ssMDLeftToRight
SSPanel1.Caption = "Right -->"

End Sub

Add the following code to the MouseMove event of the panel"
Private Sub SSPanel1_MouseMove(Button As Integer, Shift As Integer, X As
Single, Y As Single)

If X < SSPanel1.Width / 2 Then
SSPanel1.MarqueeDirection = ssMDRightToLeft
SSPanel1.Caption = "<-- Left"

Else
SSPanel1.MarqueeDirection = ssMDLeftToRight
SSPanel1.Caption = "Right -->"

End If
End Sub

Now run the program and move the mouse pointer over the command button. You will
notice that when the mouse is over the left half of the SSPanel, the marquee scrolls from
right to left.    When the mouse is over the right half of the SSPanel, the marquee scrolls
from left to right.

OptionBtnGraphics Property Example

The following code sets an option button graphic, and graphic mask color.    It then applies
the mask color to make all pure-blue areas in the graphic transparent.

SSOption1.OptionBtnGraphics = LoadPicture("MYOPTIONBTNPIC.BMP")
SSOption1.OptionBtnMaskColor = vbBlue
SSOption1.OptionBtnUseMask = True

OptionBtnMaskColor Property Example

The following code sets an option button graphic, and graphic mask color.    It then applies
the mask color to make all pure-blue areas in the graphic transparent.

SSOption1.OptionBtnGraphics = LoadPicture("MYOPTIONBTNPIC.BMP")
SSOption1.OptionBtnMaskColor = vbBlue
SSOption1.OptionBtnUseMask = True

OptionBtnUseMask Property Example

The following code sets an option button graphic, and graphic mask color.    It then applies
the mask color to make all pure-blue areas in the graphic transparent.

SSOption1.OptionBtnGraphics = LoadPicture("MYOPTIONBTNPIC.BMP")
SSOption1.OptionBtnMaskColor = vbBlue
SSOption1.OptionBtnUseMask = True

Pane Object Example

The following code adds a 3 new Pane objects to the Panes collection, for a total of 4
panes:

SSSplitter1.Panes.Add "Pane A", 2 'split vertically
SSSplitter1.Panes.Add "Pane B", 1 'split horizontally
SSSplitter1.Panes.Add "Pane C", 1 'split horizontally

MsgBox SSSplitter1.Panes.Count'display number of panes

PaneFromControl Method Example

Assuming four Pane objects are created and a picture box (Picture1) is placed in Pane D,
the following code will display the name of the pane that contains the picture box:

Dim MyPane As Pane

Set MyPane = SSSplitter1.PaneFromControl(Picture1)
MsgBox MyPane.Name

PaneFromPosition Method Example

This example creates a 4-way split window using the SSSplitter control and highlights each
pane as the mouse pointer passes over it.    First, place an SSSplitter control and a picture
box on a form.
Place the following code into the Load event of the form:

Private Sub Form_Load()
SSSplitter1.Panes.Add "Pane A", 2
SSSplitter1.Panes.Add "Pane B", 1
SSSplitter1.Panes.Add "Pane C", 1
SSSplitter1.AutoSize = ssAutoSizeFillContainer

Picture1.Visible = False
Picture1.BackColor = vbBlue

End Sub

Place the following code into the MouseMove event of the SSSplitter control:
Private Sub SSSplitter1_MouseMove(Button As Integer, Shift As Integer, x
As Single, y As Single)

Dim MyPane As Pane

If Picture1.Visible = False Then Picture1.Visible = True

On Error GoTo ErrorHandler
Set MyPane = SSSplitter1.PaneFromPosition(x, y)
MyPane.Control = Picture1

Exit Sub

ErrorHandler:
' Used to handle the movement of the mouse pointer over
' a splitter bar

End Sub

Now run the program and move the mouse pointer over each of the 4 panes of the
window.    The PaneFromPosition method was first used to obtain the Pane object for the
pane the mouse pointer was over.    Next, the Control property of the Pane object was set
to the picture box.    This makes the picture box a child of the pane.

PaneFromPositionEx Method Example

This example creates a 4-way split window using the SSSplitter control and highlights each
pane as the mouse pointer passes over it.    First, place an SSSplitter control and a picture
box on a form.
Place the following code into the Load event of the form:

Private Sub Form_Load()
SSSplitter1.Panes.Add "Pane A", 2
SSSplitter1.Panes.Add "Pane B", 1
SSSplitter1.Panes.Add "Pane C", 1
SSSplitter1.AutoSize = ssAutoSizeFillContainer

Picture1.Visible = False
Picture1.BackColor = vbBlue

End Sub

Place the following code into the MouseMove event of the SSSplitter control:
Private Sub SSSplitter1_MouseMove(Button As Integer, Shift As Integer, x
As Single, y As Single)

Dim MyPane As Pane

If Picture1.Visible = False Then Picture1.Visible = True

Set MyPane = SSSplitter1.PaneFromPositionEx(x, y)

If MyPane Is Nothing Then
' Take no action

Else
MyPane.Control = Picture1

EndIf

End Sub

Now run the program and move the mouse pointer over each of the 4 panes of the
window.    The PaneFromPositionEx method was first used to obtain the Pane object for
the pane the mouse pointer was over.    Next, the Control property of the Pane object was
set to the picture box.    This makes the picture box a child of the pane.

Panes Collection Example

The following code adds a 3 new Pane objects to the Panes collection, for a total of 4
panes:

SSSplitter1.Panes.Add "Pane A", 2 'split vertically
SSSplitter1.Panes.Add "Pane B", 1 'split horizontally
SSSplitter1.Panes.Add "Pane C", 1 'split horizontally

MsgBox SSSplitter1.Panes.Count'display number of panes

PictureAnimationDelay Property Example

The following code increases the animation speed of an SSCommand button as the mouse
is moved over it:
Place an SSCommand button on a form.    Then place the following code into the Load
event of the form:

Private Sub Form_Load()
 SSCommand1.Width = 2000
 SSCommand1.Height = 1500
 SSCommand1.Caption = "Exit"
 SSCommand1.Alignment = ssCenterBottom
 SSCommand1.Picture = LoadPicture("C:\Sheridan\ActiveThreed\Graphics\
Animations\Segmented Bitmaps\Red light(16).bmp")
 SSCommand1.PictureMaskColor = vbBlue
 SSCommand1.PictureAnimationDelay = 100
 SSCommand1.PictureFrames = 16
End Sub

Place the following code into the MouseEnter event of the SSCommand button:
Private Sub SSCommand1_MouseEnter(ByVal Button As Integer, ByVal Shift
As Integer, ByVal X As Single, ByVal Y As Single)
 SSCommand1.PictureAnimationDelay = 10
End Sub

Place the following code into the MouseExit event of the SSCommand button:
Private Sub SSCommand1_MouseExit(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)
 SSCommand1.PictureAnimationDelay = 100
End Sub

Now run the program and move the mousepointer over the command button. You will
notice that the animation speeds up as you pass the mouse over the control.

PictureAnimationEnabled Property Example

The following code animates an SSCommand button as the mouse is moved over it:
Place an SSCommand button on a form.    Then place the following code into the Load
event of the form:

Private Sub Form_Load()
SSCommand1.Width = 2000
SSCommand1.Height = 1500
SSCommand1.Caption = "Exit"
SSCommand1.Alignment = ssCenterBottom
SSCommand1.Picture = LoadPicture("C:\Sheridan\ActiveThreed\Graphics\

Animations\Segmented Bitmaps\Red light(16).bmp")
SSCommand1.PictureMaskColor = vbBlue
SSCommand1.PictureAnimationDelay = 30
SSCommand1.PictureFrames = 16
SSCommand1.PictureAnimationEnabled = False

End Sub

Place the following code into the MouseEnter event of the SSCommand button:
Private Sub SSCommand1_MouseEnter(ByVal Button As Integer, ByVal Shift
As Integer, ByVal X As Single, ByVal Y As Single)

SSCommand1.PictureAnimationEnabled = True
End Sub

Place the following code into the MouseExit event of the SSCommand button:
Private Sub SSCommand1_MouseExit(ByVal Button As Integer, ByVal Shift As
Integer, ByVal X As Single, ByVal Y As Single)

SSCommand1.PictureAnimationEnabled = False
End Sub

Now run the program and move the mouse pointer over the command button

Resize Event Example

This example creates a 2-way split window using the SSSplitter control.    Each pane
contains a label control displaying the pane’s width.   
First, Place one SSSplitter control and two label controls on a form. Then place the
following code into the Load event of the form:

Private Sub Form_Load()
SSSplitter1.Panes.Add "Pane A", ssRightOfSplit
SSSplitter1.Panes(0).Control = Label1
SSSplitter1.Panes(1).Control = Label2

Label1.Caption = Int(SSSplitter1.Panes(0).Width /
Screen.TwipsPerPixelX)

Label2.Caption = Int(SSSplitter1.Panes(1).Width /
Screen.TwipsPerPixelX)
End Sub

Place the following code into the Resize event of the SSSplitter control:
Private Sub SSSplitter1_Resize(ByVal BorderPanes As SSSplitter.Panes)

Label1.Caption = Int(SSSplitter1.Panes(0).Width /
Screen.TwipsPerPixelX)

Label2.Caption = Int(SSSplitter1.Panes(1).Width /
Screen.TwipsPerPixelX)
End Sub

Now run the program and move the splitter bar between the two panes left and right.   
When you release the mouse button the labels are updated to display the width of both
panes.

SplitterEndDrag Event Example

This example creates a 4-way split window using the SSSplitter control.    Each pane
contains a label control displaying the pane’s name.    Moving the splitter bar between
panes A and B upward and downward will move panes B and C.    Moving the splitter bar
between panes B and D will not resize any panes.
First, place an SSSplitter control and 4 label controls on a form. Then place the following
code into the Load event of the form:

Private Sub Form_Load()
Label1.Caption = "Pane A"
Label2.Caption = "Pane B"
Label3.Caption = "Pane C"
Label4.Caption = "Pane D"

SSSplitter1.Panes.Add "Pane A", 1
SSSplitter1.Panes.Add "Pane B", 1
SSSplitter1.Panes.Add "Pane B", 2

SSSplitter1.Panes(0).Control = Label1
SSSplitter1.Panes(1).Control = Label2
SSSplitter1.Panes(2).Control = Label3
SSSplitter1.Panes(3).Control = Label4

SSSplitter1.Panes(1).Height = 1000

SSSplitter1.AutoSize = ssAutoSizeFillContainer
End Sub

Place the following code into the SplitterEndDrag event of the SSSplitter control:
Private Sub SSSplitter1_SplitterEndDrag()

SSSplitter1.Panes(1).Height = 1000 ‘resize Pane B
End Sub

Place the following code into the SplitterStartDrag event of the SSSplitter control:
Private Sub SSSplitter1_SplitterStartDrag(ByVal SplitterBarType As Long,
ByVal BorderPanes As Panes, Cancel As Boolean)

If ((BorderPanes(0).Control = Label3) And (BorderPanes(1).Control =
Label4)) Then Cancel = True
End Sub

Now run the program and move the splitter bar between panes A and B up and down.   
Without the code in the SplitterEndDrag event you would have moved the splitter bar, and
as a result resized both panes B and C.    By setting the height property of Pane B
("SSSplitter1.Pane(1)"), both panes B and C appear to move rather that resize.    In
addition, by placing the code in the SplitterStartDrag you can prevent the splitter bar
between panes B and D from being dragged by the user.    Although this could have been
accomplished by setting Pane D’s LockHeight property to True, it would have prevented the
splitter from being moved as a result of the splitter between panes A and B being moved.

SplitterStartDrag Event Example

This example creates a 4-way split window using the SSSplitter control.    Each pane
contains a label control displaying the pane’s name.    Moving the splitter bar between
panes A and B upward and downward will move panes B and C.    Moving the splitter bar
between panes B and D will not resize any panes.
First, place one SSSplitter control and four label controls on a form. Then place the
following code into the Load event of the form:

Private Sub Form_Load()
Label1.Caption = "Pane A"
Label2.Caption = "Pane B"
Label3.Caption = "Pane C"
Label4.Caption = "Pane D"

SSSplitter1.Panes.Add "Pane A", 1
SSSplitter1.Panes.Add "Pane B", 1
SSSplitter1.Panes.Add "Pane B", 2

SSSplitter1.Panes(0).Control = Label1
SSSplitter1.Panes(1).Control = Label2
SSSplitter1.Panes(2).Control = Label3
SSSplitter1.Panes(3).Control = Label4

SSSplitter1.Panes(1).Height = 1000

SSSplitter1.AutoSize = ssAutoSizeFillContainer
End Sub

Place the following code into the SplitterEndDrag event of the SSSplitter control:
Private Sub SSSplitter1_SplitterEndDrag()

SSSplitter1.Panes(1).Height = 1000 ‘resize Pane B
End Sub

Place the following code into the SplitterStartDrag event of the SSSplitter control:
Private Sub SSSplitter1_SplitterStartDrag(ByVal SplitterBarType As Long,
ByVal BorderPanes As Panes, Cancel As Boolean)

If ((BorderPanes(0).Control = Label3) And (BorderPanes(1).Control =
Label4)) Then Cancel = True
End Sub

Now run the program and move the splitter bar between panes A and B up and down.   
Without the code in the SplitterEndDrag event you would have moved the splitter bar, and
as a result resized both panes B and C.    By setting the height property of Pane B
("SSSplitter1.Pane(1)"), both panes B and C appear to move rather that resize.    In
addition, by placing the code in the SplitterStartDrag you can prevent the splitter bar
between panes B and D from being dragged by the user.    Although this could have been
accomplished by setting Pane D’s LockHeight property to True, it would have prevented the
splitter from being moved as a result of the splitter between panes A and B being moved.

ssDataObjectFiles Collection Example

This example shows the use of the Files property to view and manipulate data contained
in the ssDataObjectFiles collection (where "ssData" represents an object of type
ssDataObject):   

Debug.Print ssData.Files(index)
For Each v in ssData.Files

Debug.Print v
Next v
ssData.Files.Add "autoexec.bat"
ssData.Files.Remove index
ssData.Files.Clear
For i = 0 to ssData.Files.Count - 1

Debug.print ssData.Files(i)
Next i

Note This collection is used by the Files property only when the data in the
ssDataObject object is in the ssCFFiles format (see Constants for more information.)

An extender property or method is a control property or method that is supplied and
implemented by the host environment.    For example, the Left and Top properties are not
implemented within the control, so there may be host environments (for example,    Visual
C++) that don't have these properties available for the controls.    Another example would
be the DataSource and DataField properties which are implemented in Visual Basic but
are not available in Delphi.

Entries marked with an asterisk are extender properties or methods and may not be available in all environments.

A property, such as Picture or PictureDn that specifies a picture to be displayed on the
control, or a property, such as PictureFrames or PictureAlignment that affects how the
specified picture(s) will be displayed.

Standard Event. This is a standard event found in Visual Basic controls. Consult your Visual Basic documentation
for settings and other details on the use of this event.

Standard Method. This is a standard method found in Visual Basic controls. Consult your Visual Basic
documentation for settings and other details on the use of this method. You may also use the Visual Basic Object
Browser to view a brief description of this method.

Standard Property. This is a standard property found in Visual Basic controls. Consult your Visual Basic
documentation for settings and other details on the use of this property. You may also use the Visual Basic Object
Browser to view a brief description of this property.

See Also
LockHeight property
LockWidth property
Pane object
Panes Collection

See Also
Height property
Pane object
Panes collection
Remove method
Width property

See Also
Alignment property
AutoSize property (SSSplitter)

See Also
Align property
PictureAlignment property

See Also
AutoSize property (SSPanel)
ButtonStyle property
Picture property
PictureDn property

See Also
AutoSize property (SSCommand & SSRibbon)

See Also
Align property
SplitterResizeStyle property

See Also
BackStyle property
ForeColor property

See Also
BackColor property
PictureBackground property
PictureBackgroundStyle property

See Also
BevelOuter property
BevelWidth property
BorderWidth property

See Also
BevelInner property
BevelWidth property
BorderWidth property

See Also
BevelInner property
BevelOuter property
BorderWidth property

See Also
Font property
Font object

See Also
AutoSize property

See Also
BevelInner property
BevelOuter property

See Also
BorderStyle property

See Also
Default property

See Also
Alignment property
CaptionStyle property
Font property
MarqueeStyle property
Picture property

See Also
MarqueeDirection property
MarqueeDelay property
MarqueeScrollAmount property
MarqueeStyle property

See Also
CheckBoxMaskColor property
CheckBoxUseMask property
OptionBtnGraphics property
Picture property

See Also
CheckBoxGraphics property
CheckBoxMaskColor property
CheckBoxUseMask property

See Also
CheckBoxGraphics property
CheckBoxMaskColor property

See Also
DblClick event
MouseDown event
MouseUp event
Value property (SSCheck)
Value Property (SSCommand, SSOption, SSRibbon)

See Also
ControlName property
Pane object

See Also
Control property

See Also
Panes collection

See Also
DataSource property

See Also
DataField property

See Also
Click event
MouseDown event
MouseUp event

See Also
Cancel property

See Also
Click event

See Also
OLEDragMode property

See Also
ssDataObject object
ssDataObjectFiles collection

See Also
BackColor property
FloodFillStyle property
FloodPercent property
FloodShowPct property
FloodType property

See Also
FloodColor property
FloodPercent property
FloodShowPct property
FloodType property

See Also
FloodColor property
FloodFillStyle property
FloodShowPct property
FloodType property

See Also
FloodColor property
FloodPercent property
FloodType property

See Also
FloodColor property
FloodFillStyle property
FloodPercent property
FloodShowPct property

See Also
Font property

See Also
Font object
Compatibility Issues

See Also
Caption property

See Also
BackColor property

See Also
GetFormat method
OLESetData event
SetData method
ssDataObject object

See Also
GetData method
OLESetData event
SetData method
ssDataObject object

See Also
GroupNumber property

See Also
GroupAllowAllUp property

See Also
Left property
Top property
Width property

See Also
Font property
Font object

See Also
KeyPress event
KeyUp event

See Also
KeyDown event
KeyUp event

See Also
KeyUp event
KeyDown event

See Also
Height property
Top property
Width property

See Also
Locked property
LockWidth property

See Also
Locked property
LockWidth property

See Also
LockHeight property
LockWidth property

See Also
MarqueeCycleEnd event
MarqueeDelay property
MarqueeDirection property
MarqueeStyle property

See Also
MarqueeCycleBegin event
MarqueeDelay property
MarqueeDirection property
MarqueeStyle property

See Also
CaptionStyle property
MarqueeDirection property
MarqueeScrollAmount property

See Also
CaptionStyle property
MarqueeCycleBegin event

See Also
CaptionStyle property
MarqueeDelay property
MarqueeDirection property

See Also
CaptionStyle property
MarqueeCycleBegin event
MarqueeDirection property
MarqueeDelay property
MarqueeScrollAmount property

See Also
LockHeight property
MinWidth property

See Also
LockWidth property
MinHeight property

See Also
Click event
DblClick event
MouseUp event

See Also
MouseExit event
MouseMove event

See Also
MouseEnter event
MouseMove event

See Also
MousePointer property

See Also
MouseEnter event
MouseExit event

See Also
MouseIcon property

See Also
Click event
DblClick event
MouseDown event

See Also
Font property

See Also
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

See Also
OLECompleteDrag event
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

See Also
OLECompleteDrag event
OLEDrag method
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

See Also
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDropMode property
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

See Also
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

See Also
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLESetData event
OLEStartDrag event

See Also
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLEStartDrag event
SetData method
ssDataObject object

See Also
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLESetData event

See Also
CheckBoxGraphics property
OptionBtnMaskColor property
OptionBtnUseMask property
Picture property

See Also
OptionBtnGraphics property
OptionBtnUseMask property

See Also
OptionBtnGraphics property
OptionBtnMaskColor property

Properties
Events
Methods
Objects
Collections

See Also
Font object
Panes collection

See Also
PaneFromPosition method

See Also
PaneFromControl method
PaneFromPositionEx method

See Also
PaneFromControl method
PaneFromPosition method

See Also
Pane object

See Also
PictureAlignment property
PictureBackground property
PictureFrames property

See Also
Alignment property
Picture property

See Also
PictureFrames property

See Also
PictureAnimationDelay property

See Also
BackStyle property
Picture property

See Also
BackColor property
BackStyle property
PictureBackground property

See Also
Picture property
PictureDisabledFrames property
PictureDn property

See Also
Picture property
PictureDisabled property
PictureFrames property

See Also
Picture property
PictureDisabled property
PictureDnFrames property

See Also
Picture property
PictureDn property

See Also
Picture property
PictureDisabled property
PictureDn property

See Also
Picture property
PictureDnDisabled property
PictureFrames property

See Also
Picture property
PictureDn property
PictureFrames property

See Also
Picture property

See Also
PictureUseMask property

See Also
Picture property
PictureMaskColor property

See Also
Locked property

See Also
ButtonStyle property

See Also
OLESetData event
GetData method
ssDataObject object

See Also
BorderStyle property

See Also
Font object
Font property

See Also
SplitterBarWidth property
SplitterBarJoinStyle property

See Also
SplitterBarAppearance property

See Also
SplitterBarAppearance property

See Also
SplitterStartDrag event

See Also
AutoSize property
SplitterBarAppearance property

See Also
SplitterEndDrag event

See Also
Font object
Font property

See Also
Height property
Left property
Width property

See Also
Value property (SSCheck)
Upgrade Notes

See Also
Font object
Font property

See Also
TripleState property
Value property (SSCommand, SSOption, SSRibbon)

See Also
DoClick method
Value property (SSCheck)

See Also
Height property
Left property
Top property

See Also
Windowed vs. Windowless Operation

See Also
ssDataObjectFiles collection
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

See Also
ssDataObject object
OLECompleteDrag event
OLEDrag method
OLEDragDrop event
OLEDragOver event
OLEDropMode property
OLEGiveFeedback event
OLESetData event
OLEStartDrag event

ssDataObject Object
See Also Applies To

Description
An ssDataObject object is a container for data being transferred from an component
source to an component target. The data is stored in the format defined by the method
using the ssDataObject object.

Properties
Files

Methods
Clear
GetData
GetFormat
SetData

Collections
ssDataObjectFiles

Remarks
The ssDataObject, which mirrors the Visual Basic DataObject object and the IDataObject
interface, allows OLE drag and drop and clipboard operations to be implemented.

ssDataObjectFiles Collection
See Also Example Applies To

Description
A collection of strings which is the type of the Files property on the ssDataObject object.

Properties
Count

Methods
Clear
Item
Remove

Remarks
The ssDataObjectFiles collection is a collection of strings which represent a set of files
which have been selected either through the GetData method, or through selection in an
application such as the Windows Explorer.
Although the ssDataObjectFiles collection has methods and properties of its own, you
should use the Files property of the ssDataObject object to view and manipulate the
contents of the ssDataObjectFiles collection.

