# Visualib Help Index 

Overview
Programming Guide
Function Reference
Registration Information

## Registration Information

License Information
Warrenty
Registration Form

## License

All versions of Visualib are NOT public Domain software NOR are they free software. Visualib is a copyrighted program and requires the user to register the program if he or she intends to use it except for the purpose of limited evaluation described below.

Registration grants the user a license to use Visualib on a single computer at any one time. A registered user may have Visualib installed on more than one computer, but the program may not be in use on more than one computer at the same time.

No user may modify Visualib in any way, without the written permission of Visual Tech, including, but not limited to, disassembling, debugging or otherwise reverseengineering the program.

Non-registered users are granted a limited license of 45 days to use Visualib on a trial basis for the purpose of evaluation and determining if Visualib is suitable for their needs. Use of , except for this limited purpose, requires the user to register the product.

All users of Visualib are granted limited license to copy the product only for the trial use by others, subject to the above limitations, provided that Visualib is copied in its full and unmodified form. That is, the copy must include all files necessary to permit full operation of the program, this license agreement, registration form and full documentation. No fee, charge, license, warranty, registration obligation or other compensation of any kind may be accepted by the donor or recipient in exchange for a copy of Visualib.

Operators of Electronic Bulletin Board Systems (BBS Sysops) may permit Visualib to be downloaded by any user, and any user may be permitted to upload a copy of Visualib to a BBS, with the Sysop's permission, provided the above conditions are met.

Use of non-registered copies of Visualib by any person in connection with a business, corporation, educational establishment or government agency is forbidden. Such users must register the product.

## Warranty

Visual Tech makes no warranty of any kind, express or implied, as to the suitability of the product for a particular purpose and shall not be liable for any damages, loss of productivity, loss of profits or savings or any other incidental or consequential damages, whether direct, indirect or consequential, arising from any failure of the product to operate in any manner desired by the user for which it was not intended or as a result of the user's inability or failure to use the program in the manner in which it was intended. Visual Tech shall not be liable for any damage to data or property which may be caused directly or indirectly by use of the program.

## Registration Form

Visual Tech Co.
P.O. Box 8735

Fort Wayne, IN 46898-8735
(219) 489-0235


Name: $\qquad$
Company : $\qquad$
Address : $\qquad$

City : $\qquad$ State : $\qquad$ Zip : $\qquad$

## Overview

Visualib is a comprehensive state-of-the-art graphics library for the Microsoft Windows environment. It contains powerful and efficient functions to transform and display both 2D and 3D graphic objects. Visualib can be used with either Microsoft Windows Software Development Kit version 3.0 or Borland C++ version 2.0 and up.

Main features of Visualib includes:
2D and 3D viewing systems
Transformations and stack
Drawing functions

## Viewing systems for 2D and 3D graphics

User can establish virtually unlimited number of independent 2D and 3D viewers. In each viewer, user can select various parameters such as the viewport, eye position, perspective or orthogonal projections, view volume, etc.

## Transformation functions and stack

Visualib provides a sophisticated transformation mechanism to support virtually all types of graphics transformations. Visualib maintains a transformation stack which can be used in conjunction with the transformation functions to achieve flexible and efficient graphic effects.

## Graphic object drawing functions

Visualib supports a full set of common 2D and 3D drawing functions such as lines, polygons, ellipses, spheres, polyhedra, etc. Backface culling is implemented for 3D viewers. User may also select double buffer mode to achieve smooth animation effects.

Visualib also provides the powerful curve and surface drawing functions such as Bezier, Hermit curves, B-Spline, NURBS curves and surfaces.

Visualib greatly extends the capabilities of windows' GDI functions. Visualib uses float type for specifying coordinates and avoids the common integer overflow problem associated with the GDI functions. However, all GDI functions are still available and the function calls from both systems can be used at the same time. Visualib can be used with any types of device context - screens, printers, or memory. Consequently, the same routine for display can also be used for printing or storing. Visualib uses the attributes such as colors, line width of the device context set by the GDI functions.

Visualib is the only graphics package for the Windows that delivers the power of high-end graphics work stations. For everyone interested in using graphics in the Windows, Visualib is an indispensable tool.
Whether you are developing a CAD application or simply want to draw a nice business char, you will find that Visualib can save your time and money. Visualib will free
the user from writing highly sophisticated and tedious graphics routines and obtain beautiful 2-D and 3-D graphics quickly.

## About This Manual

Chapter II. GET STARTED provides a brief introduction on how to use Visualib in your windows programming.

Chapter III. INSIDE Visualib is a detailed explanation of all features of Visualib.

Chapter IV. Visualib FUNCTION REFERENCE is the alphabetical reference of all Visualib functions.

Appendix A. BIBLIOGRAPHY lists graphics books and research papers related to the features of Visualib.

Appendix B. COMMON QUESTIONS contains answers to some most commonly asked questions about Visualib.

## Getting Started

Visualib disk contains the following files:
README.1ST - read me first
REGISTER.TXT - ASCII registration form
VISUALIB.LIB - the main library file
VISUALIB.H - the header file
VISUALIB.HLP - on-line Windows help of Visualib
VLIBDEMO.C - Visualib demo program source code
VLIBDEMO.EXE - Visualib demo program executable
The best place to start your Visualib programming is the demo program VLIBDEMO included in the distribution disk. The executable file is ready to run in Windows. Try it and enjoy the show!

The source code VLIBDEMO.C illustrated the application of Visualib library to create beautiful graphics applications. It uses many features on Visualib and may serve as a template on using Visualib.

Visualib functions are contained in the library file VISUALIB.LIB. Place it in a directory so that your linker can find it. In order to use the library functions in your Windows program, the header file VISUALIB.H needs to be included in your C source code after WINDOWS.H.

To use the Visualib system, first you need to initialize the graphics system by calling either initialGraphics2D or InitialGraphics3D. After the graphics system is initialized, you may create 2D or 3D viewers by calling CreateViewer2D or CreateViewer3D. Then call the viewing transformation functions and projection transformation functions to setup the viewers.

Now you can start to draw graphics through the viewers. Using the rich set of drawing functions provided by Visualib together with the modeling transformation functions and the matrix stacks, you will be able to achieve most sophisticated visual effects with ease.

Call the ExitGraphics function to exit the Visualib system.

Refer to 3.4 for a complete description of drawing functions.
The following is a very simple program segment that illustrates the general procedure of using Visualib library.
\#include "windows.h"
\#include "Visualib.h"
/* in the function initInstance */
InitialGraphics3D(3, 100, 100);
/* in the function WindProc */
case WM CREAT: hVIEW = CreatViewer3D("sample viewer",100,20,100,100);
case WM_PAINT:

# Visualib Programming Guide 

Getting Started
Initialization and Termination
Coordinate Systems
Viewer
Modeling Transformations
Drawing Functions

## Visualib Initialization and Termination

The 2D and 3D systems contained in Visualib are completely independent. You may use one of them or both of them at any time. Depending on your choice of graphics systems, one or both of the following initialization functions should be called before using the Visualib systems.

InitialGraphics2D<br>InitialGraphics3D

The initialization function allocates and initializes necessary system variables. When calling InitialGraphics2D or InitialGraphics3D, you specify the maximum number of viewers, the maximum number of points for each object, and the maximum depth of the matrix stack. The initialization function allocates the internal memory based on the given information. If an parameter is set to 0 , the default maximum value for that parameter will be used.

The following functions set the default maximum values.
Max2DViewer
Max3DViewer
Max2DMStack
Max3DMStack
If a parameter in the initialization function is not 0 , then the given value overrides the default value.

To exit a Visualib graphics system, use the function

## ExitGraphics

ExitGraphics will free the memory used by the Visualib system.

## Coordinate Systems

Visualib has three different coordinate systems that concern users.
The world coordinate system is the one that users deal with most often. A world coordinate system is a logical 2D or 3D coordinate in which most Visualib functions use to specify the geometric objects. You may define the world coordinates in any way to suit your application. It does not need to be correlated to the display configuration. Because of the powerful viewing transformations of Visualib, you can set up arbitrary viewing configurations in any world coordinates. The axes of a 3D world coordinate system may be displayed by calling the function:

## MarkPosition3D

The screen coordinate system is the coordinate system used in MS Windows GDI functions. Several Visualib functions use this system to specify certain parameters related to the display devices. Because Visualib is compatible with the GDI functions, user may also call some GDI functions with this kind of coordinates while using Visualib.

The viewing coordinate system is an intermediate coordinate system used by Visualib. The following viewing transformations may be best thought of as operations in the viewing coordinate system.

MoveViewer3D
RotateViewer3D ZoomViewer3D
MoveViewer2D
RotateViewer2D
The coordinates used in the world coordinate system are the 2D and 3D homogenous coordinates. Visualib defines the following types.
typedef struct \{float $x, y, w\}$ POINT2D;
typedef struct \{float $x, y, z, w\}$ POINT3D;
Therefore, three floating point numbers ( $x, y, w$ ) are used to define a 2D point and four floating point numbers ( $x, y, z, w$ ) are used for a 3D point. A point in the 2D space with homogeneous coordinate ( $x, y, w$ ) corresponds to the Euclidean coordinate ( $x / w, y / w$ ) and a 3D point with homogeneous coordinate ( $x, y, z, w$ ) corresponds the Euclidean coordinate ( $x / w$, $y / w, z / w)$. Although this representation will take a little more memory. There are many advantages associated with the homogeneous coordinates:

All affine transformations (including translation) can be handled in a uniform manner by linear transformations.

Perspective projections can be applied naturally and with the clipping in the homogeneous coordinates, the overflow problem associated with the perspective projections is avoided.

For the NURBS curves and surfaces, it is necessary to specify the homogenous coordinates.

To help users convert the regular nonhomogeneous coordinates to the format used by Visualib, Visualib provides the following functions:

AssignPoint2D
AssignPoint3D

Viewer
A viewer is a logical structure which specifies precisely how the graphics objects in a world coordinate system (2D or 3D) is displayed in a two dimensional screen viewport.

## Viewport

The viewport of a viewer is a rectangular region in a window client area which is used for the actual display of the content of the viewer.

## Viewing Transformation

The viewing transformation of a viewer defines the position of the eye related to the world coordinate system.

## Projection Transformation

Projection transformation of a viewer defines the view volume and the way it is mapped to the viewport. A 3D projection can be either perspective or orthogonal.

## Setup Viewer

A 2D or 3D viewer contains three major components:
Viewport
Viewing Transformation
Projection Transformation
The following functions create a 2D or 3D viewer and set its viewport and name:
CreateViewer2D
CreateViewer3D
The viewport of a viewer can be changed by the following function.
SetViewport2D
SetViewport3D
The name of a viewer is changed by the functions:
SetViewerName2D
SetViewerName3D
The frame of a viewer can be displayed by the functions:
DisplayViewerFrame2D
DisplayViewerFrame3D
The name of a viewer is displayed by the functions:
DisplayViewerName2D
DisplayViewerName3D
The viewing transformation of a 2D viewer is set by
SetView2D
The projection of a 2D viewer are set by the following functions:
SetProjection2D
The following function combines the actions of SetView2D and SetProjection
SetWindow2D
The viewing transformation of a 3D viewer is set by the functions:
SetView3D
SetPolarView3D
The projection of a 3D viewer is set by the following functions:
SetPerspective3D

SetOrthogonal3D
To select a viewer for drawing, use the functions:
SelectViewer3D
SelectViewer2D
The content of a viewer is cleared by the functions:
ClearViewer2D
ClearViewer3D
The viewing transformations may be modified by the following functions
MoveViewer3D
MoveWorld3D
RotateViewer3D
RotateWorld3D
ZoomViewer3D
ZoomWorld3D
MoveViewer2D
RotateViewer2D
Note that the viewing transformations are different from the modeling transformations. The modeling transformations affect the current transformation matrix on the stack top only, while the viewing transformations change the setting of a viewer.

To get information on a viewer, use the following functions:
Num2DViewer
Num3DViewer
ViewerPosition3D
ViewerOrientation 3 D
ViewerDirection3D
ViewerPosition2D
ViewerField3D
ViewerField2D

SetView3D defines the VRP, VPN, and VUP of the viewer. VRP is specified by the world coordinates VX, VY, VZ; VPN is specified by VRP and another point ( $R X, R Y, R Z$ ); VUP is determined by the twist angle, which is the angle of rotation about the VPN.

SetPolarView3D sets the viewer's VRP, VPN and VUP. (CX,CY,CZ) defines a reference center (not necessarily the origin) in the world coordinates. VRP is given by the polar coordinates (dist, Azim, Inc). Dist is the distance from VRP to the center. Azim is a rotation about y-axis and Inc is the angle of rotation about z-axis. VUP is again defined by the the twist angle.

SetPerspective3D defines a perspective projection according to the field of view angle of Fovy, Aspect ratio, Front and Back clipping panes.

SetOrthogonal3D defines an orthogonal projection according to the viewing box defined by the Left, Right, Bottom, Top, Front, and Back.

Visualib provides a rich set of viewing transformations to help users achieve various viewing effects.

View reference point (VRP) - A reference point in the view plane that defines the camera position.

View plane normal (VPN) - the direction normal to the view plane.
Together with VRP, it defines the view plane and the direction of the projection.

View up vector (VUP) - the vector in the view plane that points to the up direction.

Field of view angle (Fovy) - the angle of the viewing pyramid in the $y$-direction.
Together with the Aspect ratio, it defines the projection point.
Aspect ratio - the ratio the y size over the $x$ size of the view pyramid.
Clip depth - the minimum and maximum clipping values in z direction. It defines the top and bottom of the viewing pyramid.

## Modeling Transformations and Matrix Stack

Transformations are important part of the graphics system. Visualib provides full support of all types of affine geometric transformations. Users may arbitrarily translate, scale, or rotate any object in any sequence.

> | Rotate3D |
| :--- |
| Translate3D |
| Scale3D |
| Rotate2D |
| Iranslate2D |
| Scale2D |

Note that the modeling transformations are different from the viewing transformations. The modeling transformations affect the current transformation matrix on the stack top only, while the viewing transformations change the setting of a viewer.

To systematically manage the transformation processes, Visualib provides transformation stacks for 2D and 3D modeling transformations. The stack top determines the final effect of transformation process. All the transformation functions discussed above changes some aspects of the stack top. To save the current transformation configurations, use the following functions

PushMatrix2D
PushMatrix3D
These functions will push the current stack top and leave the stack top unchanged. You may get back to this particular state later by using the following function.

PopMatrix2D
PopMatrix3D

## Drawing Functions

Visualib provides a full set of common 2D and 3D drawing functions.
MoveTo2D
LineTo2D
DrawLine2D
Polyline2D
Polygon2D
Rectangle2D
Circle2D
Ellipse2D
Ngon2D
NsideStar2D
NsideFlower2D
MoveTo3D
LineTo3D
DrawLine3D
Polyline3D
Polygon3D
Rectangle3D
Prism3D
NsideStar3D
NsideFlower3D
Cube3D
Sphere3D
NsidePyramid3D
Cone3D
NsidePrism3D
Cylinder3D
Visualib also provides advanced curve and surface functions. Visualib supports cubic Bezier, Hermit, B-Spline, and NURBS curves and surfaces.

BezierCurve2D<br>HermitCurve2D<br>BSplineCurve2D<br>NURBSCurve2D<br>BezierCurve3D<br>HermitCurve3D<br>BSplineCurve3D<br>NURBSCurve3D<br>BezierSurface3D<br>HermitSurface3D<br>BSplineSurface3D<br>NURBSSurface3D

NURBS (NonUniform Rational B-Spline) curves and surfaces have gained popularities in CAD/CAM because of their power and flexibility. NURBS has some distinctive advantages:

NURBS is invariant under perspective projections.
The continuity and smoothness of NURBS curve or surfaces can be controlled by the knots.

All conic sections and quadric surfaces can be represented by NURBS exactly.

## Visualib Function Reference

## A

Arc2D
AssignPoint2D
AssignPoint3D
B
BackfaceCulling
BeginDoubleBuffer3D
BeginDoubleBuffer2D
BezierCurve2D
BezierCurve3D
BezierSurface3D
BrushColor
BSplineCurve2D
BSplineCurve3D
BSplineSurface3D
C
Circle2D
ClearViewer2D
ClearViewer3D
Cone3D
CountClockwise
CreateViewer2D
CreateViewer3D
Cube3D
Cylinder3D
D
DisplayViewerFrame2D
DisplayViewerFrame3D
DisplayViewerName2D
DisplayViewerName3D
Dodecahedron
DrawLine2D
DrawLine3D
E
Ellipse2D
EllipseArc2D
EndDoubleBuffer3D
EndDoubleBuffer2D
ExitGraphics
G
GetViewerName2D
GetViewerName3D
GetViewport2D
GetViewport3D

HermitCurve2D
HermitCurve3D

I
InitialGraphics2D
InitialGraphics3D
Icosahedron
L
LineTo2D
LineTo3D
M
MarkPosition3D
Max2DMStack
Max2DViewer
Max3DMStack
Max3DViewer
MoveTo2D
MoveTo3D
MoveViewer2D
MoveViewer3D
MoveWorld3D
N
Ngon2D
NsideFlower2D
NsideFlower3D NsidePrism3D
NsidePyramid3D
NsideStar2D
NsideStar3D
Num2DViewer
Num3DViewer
NURBSCurve2D
NURBSCurve3D
NURBSSurface3D
0
Octahedron
P
PenColor
Polygon2D
Polygon3D
Polyline2D
Polyline3D
PopMatrix2D
PopMatrix3D
Prism3D
PushMatrix2D
PushMatrix3D
Pyramid3D

## R

Rectangle2D

Rectangle3D
Rotate2D
Rotate3D
RotateViewer2D
RotateViewer3D
RotateWorld3D
S
Scale2D
Scale3D
SelectViewer2D
SelectViewer3D
SetOrthogonal3D
SetPerspective3D
SetPolarView3D
SetProjection2D
SetView2D
SetView3D
SetViewerName2D
SetViewerName3D
SetViewport2D
SetViewport3D
SetWindow2D
Sphere3D
T
Tetrahedron
Translate2D
Translate3D

U
UpdateBuffer3D
UpdateBuffer2D
V
ViewerDirection3D
ViewerField2D
ViewerField3D
ViewerOrientation3D
ViewerPosition2D
ViewerPosition3D
W
Wedge2D
Z
ZoomViewer3D
ZoomWorld3D

## HermitSurface3D

short SetWindow3D (HVIEW hview, float left, float right, float top, float bottom, float front, float back);
void Revolution3D (HDC hDC, float $x 1$, float $y 1$, float $z 1$, float $x 2$, float $y 2$, float $z 2$, float start, float angle, LPPOINT3D vertex, short count);
void Ball3D (HDC hDC, float $x$, float $y$, float $z$, float $r$ );
void Mark3D (HDC hDC, float $x$, float $y$, float $z$, LPSTR mark);

## AssignPoint2D

## Function

Assigns 2D homogeneous coordinate.

## Syntax

void AssignPoint2D(POINT2D *point, float $x$, float $y$ );

## Remarks

AssignPoint2D sets the homogeneous coordinate in point by the $x, y$ coordinate.
Return Value
None.
See also
AssignPoint3D

## AssignPoint3D

## Function

Assigns 3D homogeneous coordinate.

## Syntax

void AssignPoint3D (POINT3D *point, float x, float y, float z);

## Remarks

AssignPoint3D sets the homogeneous coordinate in point by the $x, y, z$ coordinate.
Return Value
None.
See also
AssignPoint2D

## BackfaceCulling

## Function

Sets backface culling flag.

## Syntax

short BackfaceCulling (short flag);

## Remarks

BackfaceCulling sets the backface culling flag. If the flag is set to a nonzero value, the drawing functions will implement backface culling.

## Return Value

BackfaceCulling returns the previous value of backface culling flag.

## See also

CountClockwise

## CountClockwise

## Function

Sets the counter-clockwise flag.

## Syntax

short CountClockwise (short flag);

## Remarks

CountClockwise sets the counter-clockwise flag. The flag is used for backface culling to determine the direction of a polygon normal. If the flag is set to a nonzero value, the drawing functions will assume that a polygon is specified by the vertices in counter-clockwise order, i.e., the direction of the polygon normal is determined by the right-hand system.

## Return Value

CountClockwise returns the previous value of the counter-clockwise flag.

## See also

BackfaceCulling

## BeginDoubleBuffer3D

## Function

Starts double buffer mode.

## Syntax

short BeginDoubleBuffer3D (HDC *hpdc, HVIEW hview);

## Remarks

BeginDoubleBuffer3D starts the double buffer mode for the 3D viewer hview. hpdc is a pointer to the handle of the device context used by the viewer. After calling this function, all drawing function calls to the viewer will be redirected to a buffer. The buffer can be displayed by calling UpdateBuffer3D.

## Return Value

On success, BeginDoubleBuffer3D returns 0. On error, it returns a nonzero value.

## See also

EndDoubleBuffer3D, UpdateBuffer3D

## BeginDoubleBuffer2D

## Function

Starts double buffer mode.

## Syntax

short BeginDoubleBuffer2D (HDC *hdc, HVIEW hview);

## Remarks

BeginDoubleBuffer2D starts the double buffer mode for the 2D viewer hview. hpdc is a pointer to the handle of the device context used by the viewer. After calling this function, all drawing function calls to the viewer will be redirected to a buffer. The buffer can be displayed by calling UpdateBuffer2D.

## Return Value

On success, BeginDoubleBuffer2D returns 0. On error, it returns a nonzero value.

## See also

EndDoubleBuffer2D, UpdateBuffer2D

## EndDoubleBuffer3D

## Function

Ends double buffer mode.

## Syntax

short EndDoubleBuffer3D (HDC *hdc, HVIEW hview);

## Remarks

EndDoubelBuffer3D ends the double buffer mode and releases the memory allocated for the buffer.

## Return Value

On success, EndDoubleBuffer3D returns 0. On error, it returns a nonzero value.

## See also

BeginDoubleBuffer3D, UpdateBuffer3D

## EndDoubleBuffer2D

## Function

Ends double buffer mode.

## Syntax

short EndDoubleBuffer2D (HDC *hdc, HVIEW hview);

## Remarks

EndDoubelBuffer2D ends the double buffer mode and releases the memory allocated for the buffer.

## Return Value

On success, EndDoubleBuffer2D returns 0. On error, it returns a nonzero value.

## See also

BeginDoubleBuffer2D, UpdateBuffer2D

## UpdateBuffer3D

## Function

Displays the buffered image in the double buffer mode.

## Syntax

short UpdateBuffer3D (HDC hdc, HVIEW hview);

## Remarks

UpdateBuffer3D displays the buffered image in the double buffer mode. The content of the buffer is copied to the actual device context.

## Return Value

On success, UpdateBuffer3D returns 0. On error, it returns a nonzero value.

## See also

BeginDoubleBuffer3D, EndDoubleBuffer3D

## UpdateBuffer2D

## Function

Displays the buffered image in the double buffer mode.

## Syntax

short UpdateBuffer2D (HDC hdc, HVIEW hview);

## Remarks

UpdateBuffer3D displays the buffered image in the double buffer mode. The content of the buffer is copied to the actual device context.

## Return Value

On success, UpdateBuffer2D returns 0 . On error, it returns a nonzero value.

## See also

BeginDoubleBuffer2D, EndDoubleBuffer2D

## Tetrahedron

## Function

Draws a tetrahedron.

## Syntax

void Tetrahedron (HDC hdc, float r);

## Remarks

Tetrahedron draws a tetrahedron in the current 3D viewer with current pen color the edges and current brush color for the interior. r specifies the radius of the circumscribing sphere.

## Return Value

None.

## See also

Octahedron, Dodecahedron, Icosahedron

## Octahedron

## Function

Draws a octahedron.

## Syntax

void Octahedron (HDC hdc, float r);

## Remarks

Octahedron draws a octahedron in the current 3D viewer with current pen color the edges and current brush color for the interior. r specifies the radius of the circumscribing sphere.

## Return Value

None.

## See also

Tetrahedron, Dodecahedron, Icosahedron

## Dodecahedron

## Function

Draws a dodecahedron.

## Syntax

void Dodecahedron (HDC hdc, float r);

## Remarks

Dodecahedron draws a dodecahedron in the current 3D viewer with current pen color the edges and current brush color for the interior. $r$ specifies the radius of the circumscribing sphere.

## Return Value

None.

## See also

Tetrahedron, Octahedron, Icosahedron

## Icosahedron

## Function

Draws a icosahedron.

## Syntax

void Icosahedron (HDC hdc, float r);

## Remarks

Icosahedron draws a icosahedron in the current 3D viewer with current pen color the edges and current brush color for the interior. r specifies the radius of the circumscribing sphere.

## Return Value

None.

## See also

Tetrahedron, Octahedron, Dodecahedron

## CreateViewer2D

## Function

Creates a 2D viewer

## Syntax

HVIEW CreateViewer2D (NPSTR Name, int X, int Y, int Width, int Height);

## Remarks

CreateViewer2D creates a 2D viewer. The viewport dimension is Width by Height with Upper-left corner at ( $\mathrm{X}, \mathrm{Y}$ ). The name of the viewer is given by Name.

## Return Value

The viewer handle will be returned if it is created successfully. Otherwise, NULL will be returned. The function returns a handle to the viewer. The handle is used for all other Visualib functions to reference the viewer.

## See also

InitialGraphics2D, SetViewport2D

## CreateViewer3D

## Function

Creates a 3D viewer.

## Syntax

HVIEW CreateViewer3D (NPSTR Name, int X, int Y, int Width, int Height);

## Remarks

CreateViewer3D creates a 3-D viewer. The viewport dimension is Width by Height with upper-left corner at ( $\mathrm{X}, \mathrm{Y}$ ). The name of the viewer is given by Name.

## Return Value

The viewer handle will be returned if it is created successfully. Otherwise, NULL will be returned.

## See also

InitialGraphics3D, SetViewport3D

## Max2DViewer

## Function

Sets the default maximum number of 2D viewers.

## Syntax

void Max2DViewer (short N);

## Remarks

Max2DViewer sets the default maximum number of 2D viewers to $N$.

## Return value

None.
See also
CreatViewer2D, InitialGraphics2D

## Max3DViewer

## Function

Sets the default maximum number of 3D viewers.

## Syntax

void Max3DViewer (short N);

## Remarks

Max3DViewer sets the default maximum number of 3D viewers as $N$.

## Return vlaue

None.
See also
CreatViewer3D, InitialGraphics3Df_initialgraphics3d

## Max2DMStack

## Function

Sets the default maximum depth of the 2D transformation matrix stack.

## Syntax

void Max2DMStack (short N);

## Remarks

Max2DMStack sets the default maximum depth of the 2D transformation matrix stack as N .

## Return value

None.

## See also

InitialGraphics2D

## Max3DMStack

## Function

Sets the default maximum depth of the 3D transformation matrix stack.

## Syntax

void Max3DMStack (short N);

## Remarks

Max3DMStack sets the default maximum depth of the 3D transformation matrix stack as N .

## Return value

None.

## See also

InitialGraphics3D

## InitialGraphics2D

## Function

Initializes the 2D graphic system.

## Syntax

short InitialGraphics2D (short nview, short npoint, short ndepth);

## Remarks

InitialGraphics2D initializes the 2D graphic system with the specified maximum numberof viewers, points, and depth of matrix stack. If any of the numbers is set to zero. the default maximum number will be used.

## Return value

On successful completion, InitalGraphics2D returns 0. It returns a nonzero number on error.

## See also

ExitGraphics, Max2DViewer, Max2DMStack

## InitialGraphics3D

## Function

Initializes the 3D graphic system.

## Syntax

short InitialGraphics3D (short nview, short npoint, short ndepth);

## Remarks

InitialGraphics3D initializes the 3D graphic system with specifying the maximum number of viewers, points, and depth of matrix stack. If any number is set tozero. the default maximum number will be used.

See also
ExitGraphics, Max2DViewer, Max2DMStack

## ExitGraphics

## Function

Exits the graphic system and free the memory used.

## Syntax

void ExitGraphics (void);

## Remarks

ExitGraphics exits the graphics systems. The memory allocated by Visualib is released.

## Return value

None.

## See Also

InitialGraphics2D, InitialGraphics3D

## PenColor

## Function

Selects pen color.

## Syntax

HPEN PenColor (HDC hDC, short Color);

## Remarks

PenColor selects a system pen with color index for the current device context.

## Return value

PenColor returns a handle to the previously selected pen.
See also
BrushColor

## BrushColor

## Function

Selects a brush color.

## Syntax

HBRUSH BrushColor (HDC hDC, short Color);

## Remarks

BrushColor selects a system brush with color index for the current device context.

## Return value

BrushColor returns a handle to the previously selected brush.
See also
PenColor

## PushMatrix2D

## Function

Pushes the 2D transformation matrix stack.

## Syntax

short PushMatrix2D (void);

## Remarks

PushMatrix2D pushes the 2D transformation matrix stack. A copy of the stack top is pushed to the stack.

## Return value

PushMatrix2D returns 0 upon successful completion. A nonzero value is returned if the stack is full.

## See also

PopMatrix2D

## PushMatrix3D

## Function

Pushes the 3D transformation matrix stack.

## Syntax

short PushMatrix3D (void);

## Remarks

PushMatrix3D pushes the 3D transformation matrix stack. A copy of the stack top is pushed to the stack.

## Return value

On success, PopMatrix3D returns 0 . A nonzero value is returned if the stack is full.

## See also

PopMatrix3D

## PopMatrix2D

## Function

Pops the 2D transformation matrix stack.

## Syntax

short PopMatrix2D (void);

## Remarks

PopMatrix2D pops the 2D transformation matrix stack. The stack top is discarded.

## Return value

On success, PopMatrix2D returns 0. A nonzero value is returned if the stack is empty.

## See also

PushMatrix2D

## PopMatrix3D

## Function

Pops the 3D transformation matrix stack.

## Syntax

short PopMatrix3D (void);

## Remarks

PopMatrix3D pops the 3D transformation matrix stack. The stack top is discarded.

## Return value

On success, PopMatrix3D returns 0. A nonzero value is returned if the stack is empty.

## See also

PushMatrix3D

## SetView3D

## Function

Sets 3D viewer's view transformation matrix.

## Syntax

short SetView3D (HVIEW Hview, float VX, float VY, float VZ, float RX, float RY, float RZ, float Twist);

## Remarks

SetView3D sets 3D viewer Hview's viewing transformation matrix according tothe viewer position VX, VY, and VZ; the viwe reference RX, RY, and RZ; and the viewer Twist angle.

## Return value

On success, SetView3D returns 0. On error, it returns a nonzero value.

## See also

SetPolarView3D

## SetPolarView3D

## Function

Sets 3D viewer based on polar coordinates.

## Syntax

short SetPolarView3D (HVIEW Hview, float CX, float CY, float CZ, float Dist, float Azim, float Inc, float Twist);

## Remarks

SetPolarView3D sets viewer Hview's viewing transformation matrix according to the reference center CX, CY, and CZ; the Dist form the reference center to the viewer; and the three orientation angles Azim, Inc, and Twist.

## Return value

On success, SetPolarView3D returns 0. On error, it returns a nonzero value.

## See also

SetView3D

## SetPerspective3D

## Function

Sets perspective projection of a 3D viewer.

## Syntax

short SetPerspective3D (HVIEW Hview, float Fovy, float Aspect, float Front, float Back);

## Remarks

SetPersperspective sets 3D viewer Hview's perspective projection matrix according to the field of view angle of Fovy, Aspect ratio, Front and Back clipping panes.

## Return value

On success, SetPerspective3D returns 0. On error, it returns a nonzero value.

## See also

SetOrthogonal3D

## SetOrthogonal3D

## Function

Sets orthogonal projection of a 3D viewer.

## Syntax

short SetOrthogonal3D (HVIEW Hview, float Left, float Right, float Bottom, float Top, float Front, float Back);

## Remarks

SetOrthogonal3D sets 3D viewer Hview's orthogonal projection matrix according to the viewing box defined by the Left, Right, Bottom, Top, Front, and Back .

## Return value

On success, SetOrthogonal3D returns 0 . On error, it returns a nonzero value.

## See also

SetPerspective3D

## SetViewport2D

## Function

Sets a 2D viewer's viewport.

## Syntax

short SetViewport2D (HVIEW Hview, short X, short Y, short Width, short Height);

## Remarks

SetViewport2D sets 2D viewer Hview's viewport according to the upper left point $(X, Y)$ and the Width and Height in display coordinates.

## Return value

On success, SetViewport2D returns 0. On error, it returns a nonzero value.

## See also

GetViewport2D

## SetViewport3D

## Function

Sets 3D viewer's viewport .

## Syntax

short SetViewport3D (HVIEW Hview, short X, short Y, short Width, short Height);

## Remarks

SetViewport3D sets 3D viewer Hview's viewport according to the upper left point $(X, Y)$ and the Width and Height in display coordinates.

## Return value

On success, SetViewport3D returns 0. On error, it returns a nonzero value.

## See also

GetViewport3D

## SetView2D

## Function

Sets a 2D viewer's viewing transformation matrix .

## Syntax

short SetView2D (HVIEW Hview, float X, float Y, float Angle);

## Remarks

SetView2D sets 2D viewer's view transformation according to the center coordinates $\mathrm{X}, \mathrm{Y}$, and the rotation Angle.

## Return value

On success, SetView2D returns 0. On error, it returns a nonzero value.

## See also

SetWindow2D

## SetProjection2D

## Function

Sets 2D viewer's projection transformation.

## Syntax

short SetProjection2D (HVIEW Hview, float Left, float Right, float Bottom, float Top);

## Remarks

SetProjection2D sets 2D viewer Hview's projection transformation according to the two corner points of the projection rectangle defined by Left, Right, Bottom, and Top.

## Return value

On success, SetProjection2D returns 0. On error, it returns a nonzero value.

## See also

SetWindow2D

## SetWindow2D

## Function

Sets 2D viewer's viewing and projection transformations.

## Syntax

short SetWindow2D (HVIEW Hview, float X1, float Y1, float X2, float Y2);

## Remarks

Set 2D viewer's viewing transformation and projection transformation according to the two corner points in the world coordinates defined by $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 .

## Return value

On success, SetWindow2D returns 0 . On error, it returns a nonzero value.

## See also

SetView2D, SetProjection2D

## SelectViewer3D

## Function

Selects a 3D viewer.

## Syntax

short SelectViewer3D (HVIEW hview);

## Remarks

SelectViewer3D selects viewer Hview as the current 3D viewer. The subsequent 3D drawing function calls will use this viewer. hview must be a valid viewer handle returned by CreateViewer3D.

## Return value

On success, SelectViewer3D returns 0. On error, it returns a nonzero value.

## See also

CreateViewer3D

## SelectViewer2D

## Function

Selects 2D viewer.

## Syntax

short SelectViewer2D (HVIEW hview);

## Remarks

SelectViewer2D selects viewer Hview as the current 2D viewer. The subsequent 2D drawing function calls will use this viewer. hview must be a valid viewer handle returned by CreateViewer2D.

## Return value

On success, SelectViewer2D returns 0. On error, it returns a nonzero value.

## See also

CreateViewer2D

## DisplayViewerFrame2D

## Function

Displays the frame of a 2D viewer.

## Syntax

short DisplayViewerFrame2D (HDC hDC, HVIEW hview, short color);

## Remarks

DisplayViewerFrame2D draws the 2D viewer Hview's rectangle border with Color.
The frame is defined by the viewport set in the function CreateViewer2D or SetViewport2D.

## Return value

On success, DisplayViewerFrame2D returns 0. On error, it returns a nonzero value.

## See also

CreateViewer2D, SetViewport2D

## DisplayViewerFrame3D

## Function

Displays the frame of a 3D viewer.

## Syntax

short DisplayViewerFrame3D (HDC hDC, HVIEW hview, short color);

## Remarks

DisplayViewerFrame3D draws the 3D viewer Hview's rectangle border with Color.
The frame is defined by the viewport set in the function CreateViewer3D or SetViewport3D.

## Return value

On success, DisplayViewerFrame3D returns 0 . On error, it returns a nonzero value.

## See also

CreateViewer3D, SetViewport3D

## DisplayViewerName2D

## Function

Display 2D viewer's name.

## Syntax

short DisplayViewerName2D (HDC hDC, HVIEW hview, short color, short top);

## Remarks

DisplayViewerName2D displays the viewer Hview's name with Color.

## Return value

On success, DisplayViewerName2D returns 0. On error, it returns a nonzero value.
See also
GetViewerName2D, SetViewerName2D

## DisplayViewerName3D

## Function

Displays a 3D viewer's name.

## Syntax

short DisplayViewerName3D (HDC hDC, HVIEW hview, short color, short top);

## Remarks

Display 3D viewer Hview's name with Color.

## Return value

On success, DisplayViewerName3D returns 0. On error, it returns a nonzero value.
See also
GetViewerName3D, SetViewerName3D

## ClearViewer2D

## Function

Clears a 2D viewer.

## Syntax

short ClearViewer2D (HDC hDc, HVIEW hview, short color);

## Remarks

ClearViewer2D clears a 2D viewer Hview's client area with Color.

## Return value

On success, ClearViewer2D returns 0 . On error, it returns a nonzero value.
See also
CreateViewer2D

## ClearViewer3D

## Function

Clears a 3D viewer.

## Syntax

short ClearViewer3D (HDC hDc, HVIEW hview, short color);

## Remarks

ClearViewer3D clears a 3D viewer's client area with Color.

## Return value

On success, ClearViewer3D returns 0 . On error, it returns a nonzero value.
See also
CreateViewer3D

## MoveViewer3D

## Function

Moves a 3D viewer.

## Syntax

short MoveViewer3D (HVIEW Hview, float LeftRight, float UpDow, float BackForth);

## Remarks

MoveViewer3D moves the 3D viewer Hview in the view coordinate system according to LeftRight, UpDown, and BackForth.

## Return value

On success, MoveViewer3D returns 0. On error, it returns a nonzero value.

## See also

MoveWorld3D

## MoveWorld3D

## Function

Moves a 3D viewer.

## Syntax

short MoveWorld3D (HVIEW Hview, float X, float Y, float Z);

## Remarks

Moves 3D viewer Hview in the world coordinate system along $X, Y$, and $Z$.

## Return value

On success, MoveWorld3D returns 0. On error, it returns a nonzero value.
See also
MoveViewer3D

## RotateViewer3D

## Function

Rotatea a 3D viewer.

## Syntax

short RotateViewer3D (HVIEW Hview, float Yaw, float Pitch, float Twist);

## Remarks

RotateViewer3D rotates the 3D viewer Hview in the view coordinate system according to angles of Yaw, Pitch, and Twist with unit of degrees.

## Return value

On success, RotateViewer3D returns 0. On error, it returns a nonzero value.

## See also

RotateWorld3D

## RotateWorld3D

## Function

Rotates a 3D viewer.

## Syntax

short RotateWorld3D (HVIEW Hview, float X, float Y, float Z);

## Remarks

RotateWorld3D rotates the 3D viewer Hview in the world coordinate system arround $X, Y$, and $Z$ Axes with unit of degrees.

## Return value

On success, RotateWorld3D returns 0 . On error, it returns a nonzero value.

## See also

RotateViewer3D

## ZoomViewer3D

## Function

Zooms a 3D viewer.

## Syntax

short ZoomViewer3D (HVIEW Hview, float Zoom);

## Remarks

ZoomViewer3D zooms the 3D viewer Hview by factor Zoom.

## Return value

On success, ZoomViewer3D returns 0 . On error, it returns a nonzero value.
See also
ZoomWorld3D

## ZoomWorld3D

## Function

Zooms a 3D viewer.

## Syntax

short ZoomViewer3D (HVIEW Hview, float Zoom);

## Remarks

ZoomViewer3D zooms the 3D viewer Hview by factor Zoom.

## Return value

On success, ZoomViewer3D returns 0 . On error, it returns a nonzero value.
See also
ZoomViewer3D

## MoveViewer2D

## Function

Moves a 2D viewer.

## Syntax

short MoveViewer2D (HVIEW hview, float LeftRight, float UpDown);

## Remarks

MoveViewer2D changes the viewing transformation of a 2D viewer Hview by moving it in the view coordinate system according to LeftRight and UpDown.

## Return value

On success, MoveViewer2D returns 0 . On error, it returns a nonzero value.

## See also

RotateViewer2D

## RotateViewer2D

## Function

Rotates a 2D viewer.

## Syntax

short RotateViewer2D (HVIEW hview, float Angle);

## Remarks

RotateViewer2D rotates the 2D viewer Hview by Angle degrees.

## Return value

On success, RotateViewer2D returns 0. On error, it returns a nonzero value.

See also
MoveViewer2D

## Num2DViewer

## Function

Gets the number of 2D viewers created in the current system.

## Syntax

short Num2DViewer (void);

## Remarks

Num2DViewer gets the number of 2D viewers created in the current system.

## Return value

Num2DViewer returns the number of 2D viewers.
See also
CreateViewer2D

## Num3DViewer

## Function

Gets the number of 3D viewers created in the current system.

## Syntax

short Num3DViewer (void);

## Remarks

Num3DViewer gets the number of 3D viewers created in the current system.

## Return value

Num3DViewer returns the number of 3D viewers.
See also
CreatViewer3D

## ViewerPosition3D

## Function

Gets a 3D viewer's position.

## Syntax

short ViewerPosition3D (HVIEW Hview, float *VX, float *VY, float *VZ);

## Remarks

ViewerPosition3D gets the 3D viewer Hview's position in the world coordinate system $\mathrm{VX}, \mathrm{VY}$, and VZ .

## Return value

On success, ViewerPosition3D returns 0. On error, it returns a nonzero value.

## See also

SetView3D

## ViewerOrientation3D

## Function

Gets a 3D viewer's orientation.

## Syntax

short ViewerOrientation3D (HVIEW Hview, float *Azim, float *Inc, float *Twist);

## Remarks

ViewOrientation3D gets 3D viewer Hview's orientation in the world coordinate system Azim, Inc, and Twist.

## Return value

On success, ViewerOrientation3D returns 0. On error, it returns a nonzero value.

## See also

SetPolarView3D

## ViewerDirection3D

## Function

Gets a 3D viewer's direction.

## Syntax

short ViewerDirection3D (HVIEW Hview, float *X, float *Y, float *Z);

## Remarks

ViewerDirection3D gets the 3D viewer Hview's direction vector's three components X , $Y$, and $Z$ on the three axes of the world coordinate system .

## Return value

On success, ViewerDirection3D returns 0. On error, it returns a nonzero value.

## See also

SetView3D

## ViewProjectionMode3D

## Function

Get 3D viewer Hview's projection mode.

## Syntax

short ViewProjectionMode3D (HVIEW Hview);

## Remarks

## Return value

See also

## ViewerPosition2D

## Function

Gets a 2D viewer's certer position.

## Syntax

short ViewerPosition2D (HVIEW Hview, float *CX, float *CY, float *Angle);

## Remarks

ViewerPosition2D gets the 2D viewer Hview's certer position CX, CY and the rotation Angle in the world coordinate system.

## Return value

On success, ViewerPosition2D returns 0. On error, it returns a nonzero value.

## See also

SetView2D

## ViewerField3D

## Function

Gets a 3D viewer's viewing field.

## Syntax

short ViewerField3D (HVIEW Hview, float *Left, float *Right, float *Bottom, float *Top, float *Width, float *Height);

## Remarks

ViewerField3D gets the 3D viewer Hview's viewing field defined by Left, Right, Bottom, Top, Front, and Back in the view coordinate system.

## Return value

On success, ViewerField3D returns 0. On error, it returns a nonzero value.

## See also

SetPespective3D, SetOrthogonal3D

## ViewerField2D

## Function

Gets a 2D viewer's viewing field.

## Syntax

short ViewerField2D (HVIEW Hviwe, float *Left, float *Right, float *Bottom, float *Top);

## Remarks

ViewerField2D gets the 2D viewer Hview's viewing field defined by Left, Right, Bottom, and Top in the view coordinate system.

## Return value

On success, ViewerField2D returns 0 . On error, it returns a nonzero value.

## See also

SetProjection2D

## Rotate3D

## Function

Rotates on the current transformation matrix.

## Syntax

void Rotate3D (float Angle, char Axis);

## Remarks

Rotate3D rotates on the current 3D transformation matrix (the stack top) by the amount specified. Axis can be ' $x$;, ' $y$ ', or ' $z$ '. Angle is measured in degrees.

## Return value

None

## See also

Translate3D, Scale3D

## Translate3D

## Function

Translates on the current 3D transformation matrix.

## Syntax

void Translate3D (float X, float Y, float Z);

## Remarks

Translate3D performs a 3D modeling transformation on the current 3D transformation matrix by a translation of ( $X, Y, Z$ ).

## Return value

None.

## See also

Rotate3D, Scale3D

## Scale3D

## Function

Scales on the current 3D transformation matrix .

## Syntax

void Scale3D (float X, float Y, float Z);

## Remarks

Scale3D scales on the current 3D transformation matrix (the stack top) in the $x, y$, and $z$ directions by the amounts specified.

## Return value

None.

## See also

Translate3D, Rotate3D

## Translate2D

## Function

Translates on the current 2D transformation matrix.

## Syntax

void Translate2D (float X, float Y);

## Remarks

Translate2D translates on the current 2D transformation matrix (the stack top) in the $x$ and $y$ directions by the amounts specified.

## Return value

None.

## See also

Rotate2D, Scale2D

## Rotate2D

## Function

Rotates on the current 2D transformation matrix.

## Syntax

void Rotate2D (float Angle);

## Remarks

Rotate2D rotates on the current 2D transformation matrix (the stack top) by the amounts specified.

## Return value

None.

## See also

Translate2D, Scale2D

## Scale2D

## Function

Scales on the current 2D transformation matrix.

## Syntax

void Scale2D (float x, float y);

## Remarks

Scale2D scales on the current 2D transformation matrix (the stack top) in the x and y directions by the amounts specified.

## Return value

None.

## See also

Translate2D, Rotate2D

## GetViewerName2D

## Function

Gets the name of a 2 D viewer.

## Syntax

short GetViewerName2D (HVIEW hview, NPSTR name);

## Remarks

GetViewerName2D gets the name string of the 2D viewer hview.

## Return value

On success, GetViewerName2D returns 0. On error, it returns a nonzero value.

See also
DisplayViewerName2D, SetViewerName2D

## SetViewerName2D

## Function

Sets the name of a 2D viewer.

## Syntax

short SetViewerName2D (HVIEW hview, NPSTR name);

## Remarks

SetViewerName2D sets the name string of the 2D viewer hview.

## Return value

On success, SetViewerName2D returns 0. On error, it returns a nonzero value.
See also
DisplayViewerName2D, GetViewerName2D

## GetViewerName3D

## Function

Gets the name of a 3 D viewer.

## Syntax

short GetViewerName3D (HVIEW hview, NPSTR name);

## Remarks

GetViewerName3D gets the name string of the 3D viewer hview.

## Return value

On success, GetViewerName3D returns 0. On error, it returns a nonzero value.

See also
DisplayViewerName3D, SetViewerName3D

## SetViewerName3D

## Function

Sets the name of a 3D viewer.

## Syntax

short SetViewerName3D (HVIEW hview, NPSTR name);

## Remarks

SetViewerName3D sets the name string of the 3D viewer hview.

## Return value

On success, SetViewerName3D returns 0. On error, it returns a nonzero value.
See also
DisplayViewerName3D, GetViewerName3D

## GetViewport2D

## Function

Gets the position of a 2D viewport.

## Syntax

short GetViewport2D (HVIEW Hview, short *X, short *Y, short *Width, short *Height);

## Remarks

GetViewport2D gets the 2D viewer Hview's viewport position in display coordinates as the upper-left corner X and Y , and the Width and Height.

## Return value

On success, GetViewport2D returns 0 . On error, it returns a nonzero value.

## See also

SetViewport2D

## GetViewport3D

## Function

Gets the position of a 3D viewport.

## Syntax

short GetViewport3D (HVIEW Hview, short *X, short *Y, short *Width, short *Height);

## Remarks

GetViewport3D gets 3D viewer Hview's viewport position in display coordinates as the upper-left corner X and Y , and the Width and Height.

## Return value

On success, GetViewport3D returns 0 . On error, it returns a nonzero value.

## See also

SetViewport3D

## MoveTo2D

## Function

Moves to a new position.

## Syntax

void MoveTo2D (HDC hDC, float X, float Y);

## Remarks

MoveTo2D moves the current 2D display position to $X$ and $Y$ in the current viewer.

## Return value

None.
See also
LineTo2D

## LineTo2D

## Function

Draws a 2D line to a new position.

## Syntax

void LineTo2D (HDC hDC, float X, float Y);

## Remarks

LineTo2D draws a 2D line from the current 2D display position to $X$ and $Y$ in the current viewer with the current pen.

## Return value

None.

## See also

MoveTo2D

## DrawLine2D

## Function

Draws a 2D line segment.

## Syntax

void DrawLine2D (HDC hDC, float X1, float Y1, float X2, float Y2);

## Remarks

DrawLine2D draws a 2D line from X 1 and Y 1 to X 2 and Y 2 in the current 2D viewer with the current pen.

## Return value

None.

## See also

LineTo2D, MoveTo2D

## Polyline2D

## Function

Draws a 2D polyline.

## Syntax

void Polyline2D (HDC hDC, LPPOINT2D Point, short N);

## Remarks

Polyline2D draws a 2D polyline defined by N 2D Points in the current 2D viewer with current pen for edges and current brush for interior.

## Return value

None.

## See also

Polygon2D

## Polygon2D

## Function

Draws a 2D polygon.

## Syntax

void Polygon2D (HDC hDC, LPPOINT2D point, short count);

## Remarks

Polygon2D draws a 2D polygon defined by N 2D Points in the current 2D viewer with current pen for edges and current brush for interior.

## Return value

None.

## See also

Polyline2D

## ResetVertex2D

## Function

Reset temperory 2D point buffer Point2D to empty.
Syntax
void ResetVertex2D (void);

## Remarks

## Return value

None.

See also

## SetVertex2D

## Function

Set one 2D point $X$ and $Y$ into the 2D point buffer Point2D

## Syntax

void SetVertex2D (float X, float Y);

## Remarks

## Return value

None.

See also

## Rectangle2D

## Function

Draws a 2D rectangle.

## Syntax

void Rectangle2D (HDC hDC, float X1, float Y1, float X2, float Y2);

## Remarks

Rectangle2D draws a 2D rectangle defined by $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 in the current 2D viewer with current pen for edge and current brush for interior.

## Return value

None.

## See also

Polygon2D

## Circle2D

## Function

Draws a 2D circle..

## Syntax

void Circle2D (HDC hDC, float X, float Y, float Radius);

## Remarks

Circle2D draws a 2D circle defined by center $X, Y$ and Radius in the current 2D viewer with current pen for edge and current brush for interior.

## Return value

None.

## See also

Arc2D

## Arc2D

## Function

Draws a 2D circular arc.

## Syntax

void $\operatorname{Arc2D}$ (HDC hDC, float $x$, float $y$, float $r$, float start, float angle);

## Remarks

Arc2D draws a 2D circular arc in the current 2D viewer with the current pen color.
$(x, y)$ is the center of the circle and $r$ is the radius of the circle. The starting angle and the span of the arc are specified by the parameter start and angle measured in degrees.

## Return Value

None.

## See also

Circle2D

## EllipseArc2D

## Function

Draws a 2D elliptic arc.

## Syntax

void EllipseArc2D (HDC hDC, float x, float y, float r1, float r2, float start, float angle);

## Remarks

EllipseArc2D draws a 2D elliptic arc in the current 2D viewer with the current pen color. $(x, y)$ is the center of the ellispe and $r 1, r 2$ are the half-axes of the ellipse. The starting angle and the span of the arc are specified by the parameter start and angle measured in degrees.

## Return Value

None.

## See also

Ellipse2D

## Wedge2D

## Function

Draws a 2D circular wedge.

## Syntax

void Wedge2D (HDC hDC, float x, float y, float r1, float r2, float start, float angle);

## Remarks

Wedge2D draws a 2D circular wedge in the current 2D viewer with the current pen color. $(x, y)$ is the center of the circle and $r$ is the radius of the circle. The starting angle and the span of the arc are specified by the parameter start and angle measured in degrees.

## Return Value

None.

## See also

Arc2D

## Ellipse2D

## Function

Draws a 2D ellipse.

## Syntax

void Ellipse2D (HDC hDC, float $x$, float $y$, float r1, float r2);

## Remarks

Ellipse2D draws a 2D ellipse defined by center $\mathrm{X}, \mathrm{Y}$ and two radius R1 and R2 in the current 2D viewer with current pen for edge and current brush for interior.

## Return value

None.

## See also

EllipseArc2D

## Ngon2D

## Function

Draws a 2D N-sided regular polygon.

## Syntax

void Ngon2D (HDC hDC, float X, float Y, float R1, float R2, short N);

## Remarks

Ngon2D draws a 2D N-sided regular polygon define by ceter X , Y and two radius R1 and R2 in the current 2D viewer with current pen for edge and current brush for interior.

## Return value

None.

## See also

Polygon2D

## NsideStar2D

## Function

Draws a 2D N-point star.

## Syntax

void NsideStar2D (HDC hDC, float X, float Y, float Radius, short N);

## Remarks

NsideStar2D draws a 2D N-point regular star defined by center $\mathrm{X}, \mathrm{Y}$ and Radius in the current 2D viewer with current pen for edge and current brush for interior.

## Return value

None.

## See also

Polygon2D

## NsideFlower2D

## Function

Draw a 2D N-point flower.

## Syntax

void NsideFlower2D (HDC hDC, float X, float Y, float R1, float R2, short N);

## Remarks

Draw a 2D N-point flower defined by center $\mathrm{X}, \mathrm{Y}$, and the inner and outer radius R1 and R2 in the current 2D viewer with current pen for edge and current brush for interior

## Return value

None.

## See also

Polygon2D

## MoveTo3D

## Function

Move current 3D display position.

## Syntax

void MoveTo3D (HDC hDC, float X, float Y, float Z);

## Remarks

MoveTo3D moves current 3D display position to $X, Y$, and $Z$ in the current 3D viewer.

## Return value

None.
See also
LineTo3D

## LineTo3D

## Function

Drawsa 3D line to a new position.

## Syntax

void LineTo3D (HDC hDC, float x, float y, float z);

## Remarks

LineTo3D draws a 3D line from the current display position to $X, Y$, and $Z$ in the current viewer with current pen.

## Return value

None.

## See also

MovoTo3D

## DrawLine3D

## Function

Draws a 3D line segment.

## Syntax

void DrawLine3D (HDC hDC, float X1, float Y1, float Z1, float X2, float Y2, float Z2);

## Remarks

DrawLine3D draws a 3D line from $\mathrm{X} 1, \mathrm{Y} 1$, and Z 1 to $\mathrm{X} 2, \mathrm{Y} 2$, and Z 2 in the current 3D viewer with current pen.

## Return value

None.

## See also

LineTo3D, MovoTo3D

## MarkPosition3D

## Function

Draws 3D axes.

## Syntax

void MarkPosition3D (HDC hdc, float $x$, float $y$, float $z$, float scale);

## Remarks

MarkPosition3D draws a 3D axes in size of Scale at $X, Y$, and $Z$ in the current 3D viewer with red, green, and blue for the three axes.

## Return value

None.

## See also

CreateViewer3D

## Polyline3D

## Function

Draw a 3D polyline.

## Syntax

void Polyline3D (HDC hDC, LPPOINT3D Point, short N);

## Remarks

Polyline3D draws a polyline defined by N 3D Point with current pen for the edge and current brush for the interior in the current viewer.

## Return value

None.

## See also

Polygon3D

## Polygon3D

## Function

Draws a 3D polygon.

## Syntax

void Polygon3D (HDC hDC, LPPOINT3D Point, short N);

## Remarks

Polygon3D draws a polygon defined by N 3D Point with current pen for the edge and current brush for the interior in the current viewer.

## Return value

None.

## See also

Polyline3D

## ResetVertex3D

Function
Reset the temperary 3D point buffer Point3D to empty
Syntax
void ResetVertex3D (void);

## Remarks

## Return value

See also

## SetVertex3D

Function
Set a 3D point $X, Y$, and $Z$ into the 3D point buffer Point3D
Syntex
void SetVertex3D (float X, float Y, float Z);

## Remarks

## Return value

None.

## See also

## Shape3D

## Function

Draw a 2D shape defined by N 2D Point at $\mathrm{X}, \mathrm{Y}$, and Z in MS Windows' device context hDC with current pen for the edge and current brush for the interior

## Syntax

void Shape3D (HDC hDC, float X, float Y, float Z, LPPOINT2D Point, short N);

## Remarks

Draw a 2D shape defined by N 2D Point at $X, Y$, and $Z$ in MS Windows' device context hDC with current pen for the edge and current brush for the interior

## Return value

None.

## See also

## Rectangle3D

## Function

Draw a Rectangle.

## Syntax

void Rectangle3D (HDC hDC, float X1, float Y1, float X2, float Y2, float Z);

## Remarks

Rectangle3D draws a Rectangle defined by $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{X} 2$, and Y 2 and elevation Z in the current 3D viewer with current pen for the edge and current brush for the interior.

## Return value

None.

## See also

Polygon3D

## Prism3D

## Function

Draws a 3D prism.

## Syntax

void Prism3D (HDC hDC, float X, float Y, float Z, float H, LPPOINT2D BaseVertex, LPPOINT2D HeadVertex, short N);

## Remarks

Prism3D draws a 3D prism defined by the $N$ point base shape BaseVertex and head shape HeadVertex at $\mathrm{X}, \mathrm{Y}$, and Z with current pen for the facets edges and the current brush for the facet interior.

## Return value

None.

## See also

NsidePrism3D

## Pyramid3D

## Function

Draws a pyramid.

## Syntax

void Pyramid3D (HDC hDC, float x, float y, float $z$, float height, LPPOINT2D
basevertex, short count);

## Remarks

Pyramid3D draws a pyramid in the current 3D viewer. The apex is specified by $(x, y, z)$. The vertices of the based is in the array basevertex and the number of base vertices is given by count.

## Return Value

None.

## See also

NsidePyramid3D

## NsideStar3D

## Function

Draw a 3D N point star.

## Syntax

void NsideStar3D (HDC hDC, float X, float Y, float Z, float H, float R, short N);

## Remarks

NsideStar3D draw a 3D N point regular star defined by $H$ and $R$ and $X, Y$, and $Z$ with current pen for the facet edges and the current brush for the facet interior.

## Return value

None.

## See also

NsideFlower3D

## NsideFlower3D

## Function

Draw a 3D N point flower.

## Syntax

void NsideFlower3D (HDC hDC, float X, float Y, float Z, float H, float R1, float R2, short N);

## Remarks

NsideFlower3D draws a 3D N point regular flower defined by R1, R2, and $H$ at $X, Y$, and $Z$ with current pen for the facet edges and the current brush for the facet interior.

## Return value

None.

## See also

NsideStar3D

## Cube3D

## Function

Draws a 3D rectangular box.

## Syntax

void Cube3D (HDC hDC, float x1, float y1, float $z 1$, float $x 2$, float $y 2$, float $z 2$ );

## Remarks

Cube3D draws a 3D rectangular box defined by two corner points $\mathrm{X} 1, \mathrm{Y} 1, \mathrm{Z} 1$ and X 2 , Y2, Z2 with current pen for the facet edges and the current brush for the facet interior

## Return value

None.

## See also

Rectangle3D

## Sphere3D

## Function

Draws a sphere.

## Syntax

void Sphere3D (HDC hDC, float X, float Y, float Z, float R, short N1, short N2);

## Remarks

Sphere3D draws a spherical polyhedron with radius $R$ at $X, Y$, and $Z$ in the current 3D viewer with current pen for the facet edges and the current brush for the facet interior

## Return value

None.

## See also

Cylinder3d, Cone3D

## NsidePyramid3D

## Function

Draws a regular 3D pyramid.

## Syntax

void NsidePyramid3D (HDC hDC, float X, float Y, float Z, float R, float H, short N);

## Remarks

Draw a vertical 3D N sided regular pyramid defined by radius R and height H at position $X, Y$, and $Z$ in the current viewer with current pen for the facet edges and the current brush for the facet interior

## Return value

None.

## See also

Pyramid3D

## Cone3D

## Function

Draws a cone.

## Syntax

void Cone3D (HDC hDC, float X, float Y, float Z, float R, float H);

## Remarks

Cone3D draws a vertical 3D cone define by radius R and height H at position $\mathrm{X}, \mathrm{Y}$, and $Z$ in the current viewer with current pen for the facet edges and the current brush for the facet interior

## Return value

None.

## See also

Cylinder3D

## NsidePrism3D

## Function

Draws an N sided regular prism.

## Syntax

void NsidePrism3D (HDC hDC, float X, float Y, float Z, float R, float H, short N);

## Remarks

Draw a vertical 3D N side prism defined by radius R and height H at $\mathrm{X}, \mathrm{Y}$, and Z with current pen for the facet edges and the current brush for the facet interior.

## Return value

None.

## See also

Prism3D

## Cylinder3D

## Function

Draw a 3D cylinder.

## Syntax

void Cylinder3D (HDC hDC, float X, float Y, float Z, float R, float H);

## Remarks

Cylinder3D draws a vertical 3D cylinder defined by radius R and height H at position $\mathrm{X}, \mathrm{Y}$, and Z in the current 3D viewer with current pen for the facet edges and the current brush for the facet interior.

## Return value

None.

## See also

Cone3D

## BezierCurve2D

## Function

Draws a 2D Bezier curve.

## Syntax

void BezierCurve2D(HDC hdc, LPPOINT2D CtrlPolygon);

## Remarks

BezierCurve2D draws a Bezier curve in the current 2D viewer. The curve is specified by four control points in the CtrIPolygon.

## Return value

None.

## See also

BSplineCurve2D, HermitCurve2D, NURBSCurve2D

## HermitCurve2D

## Function

Draws a 2D Hermit curve.

## Syntax

void HermitCurve2D(LPPOINT2D CtrIPolygon);

## Remarks

HermitCurve2D draws a Hermit curve in the current 2D viewer. The curve is specified by four control points in the CtrlPolygon.

## Return value

None.

## See also

BezierCurve2D, BSplineCurve2D, NURBSCurve2D

## BSplineCurve2D

## Function

Draws a 2D uniform non-rational B-Spline curve.

## Syntax

void BSplineCurve2D(HDC hdc, LPPOINT2D CtrIPolygon, int N);

## Remarks

BezierCurve2D draws a unform non-rational B-Spline curve in the current 2D viewer. The curve is specified by N control points in the CtrlPolygon. The first and the last knots are of multiplicity 3 and all othe knots are simple and uniformly spaced.

## Return value

None.

## See also

BezierCurve2D, HermitCurve2D, NURBSCurve2D

## NURBSCurve2D

## Function

Draws a 2D NURBS curve.

## Syntax

void NURBSCurve2D(HDC hdc, LPPOINT2D CtrlPolygon, int N, float Knots[]);

## Remarks

NURBSCurve2D draws a non-uniform rational B-spline (NURBS) curve in the current
2D viewer. The curve is specified by N control points in the CtrlPolygon and $\mathrm{N}+2$ Knots.

## Return value

None.

## See also

BezierCurve2D, BSplineCurve2D, HermitCurve2D

## BezierCurve3D

## Function

Draws a 3D Bezier curve.

## Syntax

void BezierCurve3D(HDC hdc, LPPOINT3D CtrlPolygon);

## Remarks

BezierCurve3D draws a Bezier curve in the current 3D viewer. The curve is specified by four control points in the CtrlPolygon.

## Return value

None.

## See also

BSplineCurve3D, HermitCurve3D, NURBSCurve3D

## HermitCurve3D

## Function

Draws a 3D Hermit curve.

## Syntax

void HermitCurve3D(LPPOINT3D CtrIPolygon);

## Remarks

HermitCurve3D draws a Hermit curve in the current 3D viewer. The curve is specified by four control points in the CtrlPolygon.

## Return value

None.

## See also

BezierCurve3D, BSplineCurve3D, NURBSCurve3D

## BSplineCurve3D

## Function

Draws a 3D uniform non-rational B-Spline curve.

## Syntax

void BSplineCurve3D(HDC hdc, LPPOINT3D CtrlPolygon, int N);

## Remarks

BezierCurve3D draws a unform non-rational B-Spline curve in the current 3D viewer. The curve is specified by N control points in the CtrlPolygon. The first and the last knots are of multiplicity 3 and all othe knots are simple and uniformly spaced.

## Return value

None.

## See also

BezierCurve3D, HermitCurve3D, NURBSCurve3D

## NURBSCurve3D

## Function

Draws a 3D NURBS curve.

## Syntax

void NURBSCurve3D(HDC hdc, LPPOINT3D CtrlPolygon, int N, float Knots[]);

## Remarks

NURBSCurve3D draws a non-uniform rational B-spline (NURBS) curve in the current 3D viewer. The curve is specified by N control points in the CtrlPolygon and $\mathrm{N}+2$ Knots.

## Return value

None.

## See also

BezierCurve3D, BSplineCurve2D, HermitCurve3D

## BezierSurface3D

## Function

Draws a 3D Bezier surface.

## Syntax

void BezierSurface3D(HDC hdc, LPPOINT3D CtrlNet, int Ns, int Nt);

## Remarks

BezierSurface3D draws a Bezier surface in the current 3D viewer. The curve is specified by the CtrlNet which is an array of 4 by 4 points. The surface is drawn in wire-frame form with $\mathrm{Ns}+1$ lines in s direction and $\mathrm{Nt}+1$ lines in the t direction.

## Return value

None.

## See also

BSplineSurface3D,$\underline{\text { HermitSurface3D }}$, NURBSSurface3D

## HermitSurface3D

## Function

Draws a 3D Hermit surface.

## Syntax

void HermitSurface3D(LPPOINT3D CtrINet);

## Remarks

HermitCurve3D draws a Hermit curve in the current 3D viewer. The curve is specified by four control points in the CtrlPolygon. The surface is drawn in wire-frame form with Ns+1 lines in s direction and Nt+1 lines in the t direction.

## Return value

None.

## See also

BezierSurface3D, BSplineSurface3D, NURBSSurface3D

## BSplineSurface3D

## Function

Draws a 3D uniform non-rational B-Spline surface.

## Syntax

void BSplineSurface3D(HDC hdc, LPPOINT3D CtrlPolygon, int N, int Ns, int Nt);

## Remarks

BSplineSurface3D draws a unform non-rational B-Spline surface in the current 3D viewer. The curve is specified by N control points in the CtrlPolygon. The first and the last knots are of multiplicity 3 and all othe knots are simple and uniformly spaced. The surface is drawn in wire-frame form with Ns+1 lines in s direction and Nt+1 lines in the $t$ direction for each rectangular patch.

## Return value

None.

## See also

BezierCurve3D, HermitCurve3D, NURBSCurve3D

## NURBSSurface3D

## Function

Draws a 3D NURBS surface.

## Syntax

void NURBSSurface3D(HDC hdc, LPPOINT3D CtrlPolygon, float SKnots[], float TKnot[], int SCount, int TCount, int Ns, int Nt);

## Remarks

NURBSSurface3D draws a non-uniform rational B-spline (NURBS) surface in the current 3D viewer. The surface is specified by SCount by TCount control points in the CtrlPolygon and with SCount+2 SKnots and TCount+2 TKnots. The surface is drawn in wire-frame form with Ns+1 lines in s direction and Nt+1 lines in the t direction for each bezier patch.

## Return value

None.

## See also

BezierSurface3D, BSplineSurface2D, HermitSurface3D

Gerald Farin,
Alan Watt,

## Appendix B. COMMON QUESTIONS

Q. What is the difference between your MoveTo2D, LineTo2D and GDI's MoveTo, LineTo functions?
A. MoveTo2D and LineTo2D performs the transformation from the world coordinates to the viewport of the selected viewer. MoveTo and LineTo uses the screen coordinates. GDI has several screen mapping modes, but they are all simple scaling transformations. Visualib provides much more sophesticated viewing transformations. Another difference is that GDI functions use 16 bit integer type for coordinates which may easily cause overflow, while Visualib functions use float type.
Q. I just want to display some simple 2D graphics. How could Visualib help me?
A. GDI drawing functions have sevear limitations. For example, GDI Ellipse function can only draw ellipses with horizonal and vertical axes. Visualib lets you draw any kinds of ellipses with its powerful transformation capabilities.

