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Acronym
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Notice
Embedded System Products, Inc. makes no warranty, expressed or implied, with regard to this material 
including but not limited to merchantability or fitness for a given purpose. The information in this document
is subject to change without notice. Embedded System Products, Inc. assumes no responsibility for any 
errors which may appear herein. Embedded System Products, Inc. shall have no liability for 
compensatory, special, incidental, consequential, or exemplary damages.

This document is provided for the sole purpose of assisting the evaluation of RTXC and may not be 
copied in whole or in part without the express written permission of Embedded System Products, Inc..    
The software products described in this Evaluation Kit are and shall remain the property of Embedded 
System Products, Inc.. The RTXC Evaluation Kit is not for sale or redistribution.    Any unauthorized use, 
duplication, or disclosure is strictly forbidden.



Trademark Notices
RTXC, RTXCgen, and RTXCbug are trademarks of Embedded System Products, Inc.

MS-DOS is a trademark of Microsoft Corp.

IBM and PC/XT and PC/AT are trademarks of International Business Machines Corporation.



Overview
This Evaluation Kit is furnished to provide you with a means of getting "hands on" experience with RTXC. 
While the Evaluation Kit does not contain all of the software in the standard RTXC distribution, it does 
contain all of the Kernel Services of the Extended Library version of RTXC. You will be able to write your 
own real-time tasks, link them with the RTXC kernel, and run them in a preemptive, time-sliced, or round-
robin multitasking environment. 

Libraries contain all you need to develop your own tests of RTXC. A make file is included so that you may 
quickly compile and link your tests. However, the system configuration is fixed for this evaluation. 
RTXCgen, the system generation utility, is not included in the Evaluation Kit.

This manual is not meant as a tutorial on real-time kernels in general. Its intent is to explain the "inputs" 
and "outputs" of RTXC and how to use them to build a real-time multitasking system. In an effort to assist 
you in your successful evaluation of RTXC, this manual will cover the following subjects:

· Basic concepts of RTXC design

· Interfaces to the RTXC services

· Writing user tasks for RTXC

· RTXC debug environment

So, go ahead and play with it. Try different executive services (there are 72 of them). Have two tasks 
communicate with each other through RTXC queues, messages, or semaphores. Perform time-based 
operations. Be as creative as you like. We believe you will like what you see.



Copyright
Copyright (c) 1986-1995 Embedded System Products, Inc.

10450 Stancliff, Suite 110
Houston, Texas    77099-4383

PHONE: (713) 561-9990
FAX: (713) 561-9980



Version
This Evaluation Manual is for RTXC version 3.2.



Format
This manual accompanies the RTXC Evaluation Kit and applies to the evaluation of RTXC on all 
supported evaluation target computers.    See the accompanying RTXC Evaluation Kit Binding Manual for 
specific details about running RTXC on your evaluation target system.
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Background
RTXC, the Real-Time eXecutive in C, is an efficient software    framework with which to develop real-time 
embedded systems on a broad range of microprocessors, microcontrollers, and DSP processors. The 
RTXC Application Program Interface (API) has understandable Kernel Service names which make it easy 
to learn and easy to use. That ease of use translates to less time involved with system matters and more 
time to spend on developing the application. 

Based on concepts developed by Dr. E.W. Dijkstra in the mid-1960s with an implementation history dating
from 1978, RTXC provides a sound foundation for the solution of complex real-time systems. It is based 
on the concept of preemptive multitasking which permits a system to make efficient use of both time and 
system resources.



Features
RTXC provides many features which are designed to support real-time, multitasking systems including:

· Multitasking with preemptive task scheduling

· Round Robin and Time-Sliced scheduling within same priority level

· Support for static and dynamically created tasks

· Fixed or dynamically changeable task priorities

· Intertask communication and synchronization via semaphores, messages, and queues

· Efficient timer management

· Timeouts on many services

· Management of memory

· Resource management

· Fast context switch

· Small RAM and ROM requirements 

· Standard programmer interface on all processors

· Highly flexible configuration to permit custom fit to the application



RTXC as a Software Component
You should treat RTXC as any other software library. It is not necessary that you know how RTXC 
performs its functions internally. Rather, you need only know what Kernel Services of RTXC to use to 
achieve a desired result. Thus, RTXC becomes much like a large scale integrated circuit component in 
the hardware. Knowledge of what inputs produce what outputs is all that is needed to use the part 
successfully.



RTXC Library Configurations
RTXC is distributed in three source code configurations defined by the set of Kernel Services embodied in
each. The different configurations are available to meet the real needs of the embedded systems 
marketplace where there is a wide diversity of functional capabilities required in a real-time kernel. RTXC 
allows you to license the source code library that most closely fits your needs. If you need more 
capabilities later on, there is a simple upgrade path.

The three source code libraries, Basic, Advanced, and Extended, are upwardly compatible with each 
other. All of the services in the Basic Library are included in the Advanced Library. And all of the Advanced
Library is part of the Extended Library. If you have obtained a license for the Basic Library, you may 
upgrade to either the Advanced or Extended Library without changing the application programs developed
with the Basic Library. 

The Kernel Service descriptions in Section 5 will indicate to which RTXC configuration each Kernel 
Service belongs. The method is explained in the following paragraphs.

Related Topics:
Basic Library
Advanced Library
Extended Library



Basic Library
The Basic Library, RTXC/BL, consists of the fundamental operations you need to be able to use all 
classes of RTXC system components, tasks, messages, mailboxes, queues, semaphores, memory 
partitions, and timers. A Kernel Service in the Basic Library is to be found in all three RTXC source code 
configurations.



Advanced Library
RTXC/AL, the RTXC Advanced Library, augments the RTXC Basic Library with additional Kernel 
Services. Most of the additional functions are related to allowing a task to perform some synchronous 
operation with some system resource. A Kernel Service in the Advanced Library is part of the Advanced 
and Extended Libraries only. It is not found in the RTXC/BL configuration. 



Extended Library
The Extended Library, RTXC/EL, contains the full complement of RTXC services. The additional Kernel 
Services offered in the Extended Library implement the services with timeouts. A Kernel Service in the 
Extended Library is found only in the Extended Library. It is not in either the Basic or Advanced Libraries.
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What is a Real-Time Kernel?
A real-time kernel, also called a real-time executive, is a program which implements a set of rules and 
policies about allocation of a computer system's resources. Policies are those principles which guide the 
design. Rules implement those policies and resolve policy conflicts. Neither can be violated without 
indeterminate or catastrophic results to the system's operation.

An example of a policy would be that the design must be deterministic, i.e., predictable. A rule example 
might be that threaded lists permitting random order of node insertion and/or deletion shall be 
implemented as doubly linked lists. This is an implementation of the policy of deterministic design. The 
double links permit direct access to a node during the deletion process, thus making it a predictable 
procedure.

The rules permit software processes to operate and gain access to various system resources in an 
orderly manner. Access to the kernel's services may take several forms but is usually one of calls to 
subroutines or higher language functions. The kernel's services embody and enforce these rules to 
ensure orderliness in the application processes which use them. 



RTXC Policies
In order to understand much of what is to follow in this manual, an explanation of the policies of RTXC is 
in order. If your application design conforms, you should produce an efficient system design.

Policy RTXC should contain a sufficient number and types of services to make it useful to a variety of 
real applications.

Policy RTXC should employ a multitasking design in order to achieve maximum CPU efficiency.

Policy RTXC multitasking should be driven in response to system events, whether of internal or external
origin.

Policy The executive should support an application design composed of a set of separate but 
interrelated tasks each having a priority indicative of its relative scheduling importance.

Policy RTXC performance should be deterministic to the greatest extent possible.

Policy RTXC should have a small RAM requirement for kernel operations.

Policy RTXC should be written in such a manner that it imposes minimal overhead to the application 
tasks it is governing.



RTXC Basic Rules
The following rules attempt to implement some of the RTXC policies above. An understanding of these 
rules will enable you to resolve questions about how the kernel is operating.

Rule The Current Task (i.e., the task which is currently in control of the CPU) is the highest priority task
in the system which is not otherwise blocked (Ready).

Rule The Current Task maintains control of the CPU until it runs to completion (i.e., termination), 
voluntarily yields, becomes blocked by unavailability of a needed resource, or is preempted.

Rule If a task of higher priority than the Current Task becomes Ready, it preempts the lower priority 
task and becomes the Current Task.

Rule The RTXC Kernel is interruptible, but not reentrant.

Rule An Interrupt Service Routine (ISR) must not issue a Kernel Service request except for those 
specifically permitted for use in an ISR.

Rule The Null Task is always the lowest priority task and whose priority must never be changed.

Rule The Null Task must always be Ready and MUST NEVER be blocked.



System Resources
The design of the kernel must be concerned with the management of certain system resources which 
include the CPU, memory, and implicitly, time. Each must be shared among the competing processes in 
such a manner that the overall function of the system is accomplished.

Sharing memory is obviously essential as it is a finite resource in the system. The CPU must be shared to
increase its efficiency because it is usually much faster than the physical process it is controlling or 
monitoring. To have it wait on a slow process would be inefficient, thereby violating a basic system policy.

Time is the most difficult of the resources managed by the kernel as it is the most unforgiving. The design 
and code of Kernel Services must be such that they require minimal execution time yet are predictable.    
Execution speed of the various services determines the responsiveness of the system to changes in the 
physical process. But speed alone is not sufficient. It is equally important that each service be predictable 
with respect to time.

Without the predictability, a system designer would have no assurance that the timing constraints of the 
physical process would be met.



Multitasking
Multitasking is one of the major policies implemented in a modern executive. Real-time kernels of today 
generally make use of some part of the work done by Dr. E.W. Dijkstra in the early and mid-1960s. While 
multitasking was an acknowledged concept before then, it is his work which has had the most impact as it
formulated a set of constructs and rules for implementing such a design.

Multitasking appears to give the computer the ability to perform multiple operations concurrently. 
Obviously, the computer cannot be doing two or more things at once as it is a sequential machine. 
However, with the functions of the system decomposed into different tasks, the effect of concurrency can 
be achieved.

In multitasking, each task, once given operating control of the CPU, either runs to completion, or to a 
point where it must wait for an event to occur, for a needed resource to become available, or until it is 
interrupted. Because the computer is usually much faster than the events in the physical process, efficient
use of the computer can be obtained by using the time a task might wait for an event to occur to run 
another task.

This switching from one task to another forms the basis of multitasking. The result is the appearance of 
several tasks being executed simultaneously.



READY List
The key to multitasking is the READY List. This list is constantly being changed by various Kernel 
Services which insert runnable tasks or remove those which are blocked and temporarily not able to run. 
The READY List is actually a doubly linked list containing those tasks which are runnable (Ready) in 
descending order of priority. Thus, the Current Task is always the first task in the thread.



Tasks
In RTXC, a task is a program module, a process, which exists to perform a defined function or set of 
functions as part of an overall application.    An application usually consists of several tasks. A task is 
independent of other tasks but may establish relationships with other tasks.    These relationships may 
exist in the form of data structures, input, output, or other constructs.

A task executes when the RTXC task scheduler determines that the resources required by the task are 
available and that no other task of higher priority is also ready to run. Once it begins running, the task has
control of all of the system's resources. But as there are other tasks in the system, a running task cannot 
be allowed to control all of the resources all of the time. Thus, RTXC implements the policy of 
multitasking.



Null Task
The Null Task is a special task in RTXC and performs a vital service. During system initialization, the Null 
Task is inserted into the READY List as the first Ready task, and having the lowest possible priority. The 
Null Task acts as a list terminator because the RTXC Task Dispatcher knows that there is always at least 
one Ready task in the READY List. All other tasks will be of higher priority than the Null Task; therefore, 
when they become Ready, their position in the READY List will be higher than that of the Null Task.



Priority and Preemption
A multitasking real-time executive promotes an orderly transfer of control from one task to another such 
that efficient usage of the computer's resources is achieved. Orderly transfers require that the executive 
keep track of the needed resources and the execution state of each task so that they can be granted to 
each task in a timely manner.

The key word is timely. A real-time system which does not perform a required operation at the correct time
has failed. That failure can have consequences which range from the benign to the catastrophic. 
Response time to a need for executive services and the execution time of such services must be 
sufficiently fast and predictable. With such an executive, application code can be designed such that no 
need goes undetected.

Real-time systems usually consist of several processes, or tasks, which need to have control of the 
system resources at varying times due to the occurrence of external events. These tasks are at various 
times competing for system resources such as memory, execution time, or peripheral devices. They 
range from being compute bound to I/O bound.

Tasks which are I/O or compute bound    cannot be allowed to monopolize a system resource if a more 
important function requires the same resource. There must be a way of interrupting the operation of the 
task of lesser importance and granting the needed resource to the more important task.

One way to achieve timeliness is the assignment of a priority to each task. The priority of a task is then 
used to determine its place within the sequence of execution of other runnable tasks. Tasks of low priority 
may have their execution preempted by a task of higher priority so that the latter can perform some time 
critical function.



Event Driven Operation
An event can be any stimulus which requires a reaction from the executive or a task. Examples of an 
event would include a timer interrupt, an alarm condition, or a keyboard input. Events may originate 
externally to the processor or internally from within the software. An executive which responds to these 
events as the stimuli for allocating system resources is said to be event driven.

If the response time of the system to any event    occurs within a period of time which can be accurately 
predicted and guaranteed, the executive can be said to be deterministic. By these definitions, RTXC is a 
deterministic, event driven, multitasking, real-time executive.

The RTXC construct associated with an event is the Semaphore. An RTXC semaphore is not a counting 
semaphore as defined by Dijkstra nor is it a simple binary event flag. An RTXC semaphore is a tri-state 
device capable of containing information about its associated event and the task waiting on the event.

It is considered a design error if a task attempts to synchronize with an event using a semaphore which is 
already in use by another task for the same purpose. The offending task receives an indication of the 
error and it is up to the task to handle the situation. Rather than spending programming time to adjust for 
the error, a better solution would be to adjust the design of the task to prevent the error.



Task Scheduling
The policy of multitasking in RTXC is realized by the manner in which the various tasks are scheduled for 
operation. As previously stated, the RTXC Basic Rules do not enforce any specific task scheduling 
protocol. They only state general rules regarding preemption, CPU control, and Current Task definition.

Over many years of real-time systems development there have been three basic means (or protocols) of 
scheduling tasks within a multitasking policy. In fact, it could be said that there are actually only two 
methods with one of them having a variant. These protocols are usually called Round Robin, Time-Sliced,
and Preemptive scheduling.

Related Topics:
Round Robin
Time-Sliced
Preemptive



Round Robin
 scheduling is probably the oldest of the three multitasking methods and is also very simple in that it is 
essentially a polling protocol. As RTXC grants control to each such task, it is the responsibility of the task 
to determine if the conditions are correct for it to run and for how far. Once the Round Robin task 
determines that it can progress no farther due to the unavailability of some system element, it must yield 
control of the CPU or become blocked. If it becomes blocked, RTXC removes it from the READY List. If it 
yields, it can yield control only to another task of the same priority. 

It is permissible in RTXC to have only some of the tasks in the application using Round Robin scheduling.
Those that use the protocol must follow the priority rule above, but those not using it may have different 
priorities. While there may be a mixture of scheduling protocols, the RTXC Basic Rules regarding 
preemption still apply to Round Robin tasks. 

It is important to note that because of the way Round Robin scheduling is performed, any task of lower 
priority cannot gain control of the CPU while Round Robin tasks are in the READY List. Therefore, the 
possibility exists that a task so positioned in the READY List might never gain control of the CPU.

Consider the scenario where the READY List contains four tasks, A, B, C, and D, where A, B, and C are 
Round Robin tasks having the same priority, and task D is lower priority. RTXC grants task A control and, 
following the second Basic RTXC Rule, controls the CPU until it voluntarily yields control to task B. Since 
there is no higher priority task in the READY List, the possibility of preemption is eliminated.

Even though it is yielding control, task A remains in a READY state and is thus reinserted into the READY
List at a position following the last task, task C, having the same priority. The READY List then contains 
tasks B, C, A, and D respectively.

Continuing with the scenario, task B runs and yields to task C leaving the READY List containing tasks C, 
A, B, and D. Task C gains control, runs for a while, and then yields control to task A. The READY List 
resumes its original form, which is tasks A, B, C, and D. From here on the cycle repeats.

Throughout the process, task D never gets a chance to execute because it never becomes the highest 
priority task in the READY List. The situation will persist until all of the Round Robin tasks, A, B, and C, 
become blocked.

It would be logical to assume that, at some point, only one of the Round Robin tasks, task B for example, 
will remain in the READY List with task D. Task D would still not be scheduled when task B attempts to 
yield control because of the second rule concerning Round Robin scheduling:The Current Task 
attempting to yield control will remain the Current Task unless it and the next task in the Ready List have 
the same priority.

By this rule, task B will remain the Current Task forcing task D to remain waiting for CPU control until 
tasks A, B, and C are blocked and no longer in the READY List.

The use of Round Robin scheduling, while quite simple, has important ramifications in a real-time system 
and should be used judiciously. Of primary importance is the fact that the tasks execute sequentially 
because they lack a priority differentiation. The time through any Round Robin cycle varies according to 
the amount of code executed in each task. Similarly, the time from when an event occurs until it is 
serviced or used is unpredictable because it varies according to which task is executing at the time of the 
event's occurrence. Thus, this method of task scheduling can be very nondeterministic. In hard real-time 
applications, this method should be used cautiously.

The advantage of Round Robin scheduling, however, also lies in its simplicity. With the complexity of 



preemption eliminated, the relationships between tasks are usually predictable.



Time-Sliced
Time-Sliced scheduling can be considered a variant of Round Robin scheduling. The difference between 
the two protocols is that the Time-Sliced task may only execute for some predefined quantum of time. If 
the task remains in control of the CPU long enough for the time quantum to expire, RTXC automatically 
forces the task to yield. The task may also voluntarily yield (or block) prior to the expiration of the time 
quantum.

RTXC does not enforce a global specification of a time quantum for all tasks. Instead, RTXC time 
quantums follow the rule that: Each task using Time-Sliced scheduling must have its own non-zero time 
quantum. The amount of each time quantum can be tuned for the specific task thus making the overall 
system response better than for a single global specification.

Because Time-Slicing is a variant of Round Robin scheduling, RTXC has a similar rule regarding task 
priorities.

All tasks at the same priority are not necessarily scheduled by a Time-Sliced protocol. RTXC permits 
there to be a mix of Time-Sliced tasks and Round-Robin tasks at the same priority. Using a mixture of 
scheduling protocols within the same priority level can have some pitfalls and should be employed with 
care.

For example, consider two tasks, A and B, to be equal priority. Task A uses Time-Slicing but task B does 
not. When task A exhausts its Time-Slice quantum or voluntarily yields, RTXC passes control to task B.    
It is possible in this example that task B may never pass control back to task A.    This is a conscious 
decision in the design of RTXC to allow for such a case. It is deemed the designer's choice to make, not 
the kernel's.

The Current Task being forced to yield control will remain the Current Task unless it and the next task in 
the READY List have the same priority.    This functions exactly as it does for Round Robin scheduling. 
Whether the yield is made voluntarily or is forced by RTXC, the above rule applies.

Another important fact regarding the time quantum concerns the preservation of time during a preemption
or blockage. If a Time-Sliced task is preempted or blocked, the amount of time remaining on the current 
quantum is preserved.    The time quantum for a Time-Sliced task is activated when the task is initially 
executed. It is reset to the current time quantum amount whenever it expires. If the task is preempted or 
blocked as the result of an RTXC Kernel Service request, RTXC does not subtract the duration of the 
preemption from the task's time quantum. Instead, the remaining time is simply preserved at the time of 
preemption or blockage, and that same amount of time is given to the task when it resumes.

If a task's time quantum is changed from a non-zero value to zero, Time-Slicing is disabled for that task 
effective the next time the task is granted CPU control. If    a time quantum is changed from zero 
(disabled) to non-zero (enabled), then Time-Slicing is enabled with the new time slice value the next time 
the task is scheduled. If a time quantum is changed from a non-zero value to a different non-zero value, 
the new time quantum value is not effective until the old value expires. If an immediate time quantum 
change is required, change the time quantum value to zero, and then change it to the desired value.

Like Round Robin, Time-Sliced scheduling carries some of its own caveats. Time-Slicing should be used 
when it is well suited to the physical process of the application. Proper usage of Time-Sliced scheduling 
requires a thorough understanding of the physical processes of the application and how the various tasks 
in the system operate on the process.

The ability to tune the time quantum on each task can be an important element in a successful application



implementation, but it can also be easily abused. Each time a Time-Sliced task's time quantum expires it 
requires some activity in RTXC necessary to process the forced yield. Proper selection of time quanta 
based on a knowledge of the process can produce a resonsive system capable of producing good results 
even though it cannot be said to be strictly deterministic.

It is quite common to try to improve the responsiveness of individual tasks by selectively adjusting 
upstream time quanta, usually by making them smaller. However, if those time quanta are improperly 
chosen and become too small, the amount of time spent in RTXC servicing expired time quanta can 
become excessive, and overall system performance can degrade. This is one of the fundamental 
behavior characteristics of Time-Sliced scheduling.



Preemptive
Most users of RTXC will select the Preemptive protocol as the preferred method of scheduling tasks. 
While it supports both Round Robin and Time-Sliced scheduling, the design of RTXC's suite of Kernel 
Services primarily supports Preemptive task scheduling as the normal protocol. Through the use of task 
priorities and event driven operation, RTXC provides the basis for successful, responsive, and 
deterministic system design.

Unless specifically noted, the descriptions in this manual of the various functions of RTXC and its support 
services imply applicability to usage within a Preemptive scheduling protocol.



Kernel Services
Except for the selection and dispatching of the ready tasks, as performed by the RTXC Task Dispatcher, 
most of the code in RTXC is that necessary for Kernel Services. The Kernel Services are the various 
functions which RTXC performs when requested by an application task.

RTXC Kernel Services exist as routines which are executed by the Kernel Service Dispatcher. When a 
task needs some function which the kernel performs, it makes a Kernel Service Request. A Kernel 
Service Request takes the form of a C function call to a function which resides in the RTXC Application 
Program Interface Library. The purpose of the API Library is to structure the function arguments and to 
call the Kernel Services Dispatcher. Once there, the requested service is determined, and the 
corresponding kernel library function is executed to perform the requested operation.

After completing the function, control usually returns to the requesting task. However, there are 
circumstances during the course of performing the service where a higher priority task becomes Ready, 
or some system element needed by the Current Task is unavailable. If so, the Kernel Service functions 
may preempt the Current Task or block it and make another task the Current Task. After such an 
occurrence, RTXC grants control to the new Current Task instead of the one which made the Kernel 
Service Request.

Tasks become Ready at varying rates and are inserted into the READY List as they do so. Once there, 
they execute in accordance with their respective priorities. Higher priority tasks are run before of those of 
lower priority. Just as they are put into the READY List when they become Ready, tasks also are removed
from the READY List when they become blocked. Thus, the scheduling of tasks is very dynamic and 
closely related to the functions performed by the various Kernel Services.



Data Movement
RTXC supports two primary methods of moving data from task to task: chronological and with respect to 
priority. Both methods require intervening constructs to provide a standard interface between the sending 
and receiving tasks.

For chronological data movement, the interface construct is a FIFO Queue. For movements with respect 
to priority, RTXC provides for bi-directional message transmission.

Related Topics:
FIFO Queues
Mailboxes
Messages
Synchronous Transmission
Asynchronous Transmission



FIFO Queues
Queues are circular buffers which hold data entries of one or more bytes. A queue has a capacity (Depth) 
of a predefined number of entries and within the queue, an entry has a predefined size (Width). When a 
queue has no entries, it is in an EMPTY state. When a queue has all entries occupied, it is in a FULL 
state.

Entries are put into a queue by moving the data from the source into an entry slot in the queue. RTXC 
keeps track of the available free entry slots in the queue as it must know whether the queue is EMPTY, 
FULL, or in between. As the insertion procedure is chronological, the newest entry is at the end of the 
queue while the oldest entry is at the head of the queue. Attempting to put an entry into a FULL queue 
causes a condition which requires attention by the requesting task or by RTXC.

Removal of an entry from a queue involves locating the oldest entry in the queue and moving the data 
therein to a given destination location supplied by the requesting task. An attempt to remove data from an 
EMPTY queue requires extraordinary action by either the Kernel Service or by the requesting task.



Mailboxes
The interface between a message sender and the receiver task is a Mailbox. A Mailbox is a construct 
which promotes the orderly accumulation of messages from various senders. RTXC supports a variable 
number of independent mailboxes capable of containing mail from multiple senders. RTXC mail is always 
in the form of a message and is inserted into the mailbox according to the it's priority.

A task may own none, one, or many mailboxes. While more than one task may send messages to a given
mailbox, the mailbox should be considered to be owned by a single receiver task. The analogy would be 
similar to your personal mailbox. You receive mail from many senders, but only you read your mail. By the
same token, you don't look in your neighbor's mailbox.



Messages
Messages are unlike queues in that the data in the messages is not moved about. Instead, pointers to the
data are passed. This makes for a very efficient way to move about large volumes of data without actually
having to load and store individual bytes or words of data. A task may be both a message sender and a 
message receiver. 

Each message has two parts: an associated envelope and a message body, both of which must be 
located in RAM. Each message has a user-defined priority. There is no defined format for a message 
body other than that upon which the sender and the receiver agree.

A message may be sent synchronously or asynchronously. For best control, a message should be 
acknowledged and the acknowledgement treated as an Event. 



Synchronous Transmission
Messages may be sent synchronously, that is, with an automatic wait until there is an acknowledgement 
response from the receiver. When a task wants to send a message synchronously, it must specify a 
semaphore number as one of the arguments in the Kernel Service request. The reference associates the 
semaphore with a message acknowledgement performed by the receiver.

Once the message is linked into the specified mailbox, RTXC blocks the sender by changing its state and 
removes it from the READY List. With the removal of the sender task (which was the Current Task) from 
the READY List, the next task in the READY List becomes the Current Task.

The receiver removes the message from the mailbox and processes it according to the content of the 
message body. When the receiver no longer needs the data in the body of the message, it acknowledges 
the message thereby making the sender task runnable again and allowing it to continue its operation.

The body of the message can also be used by the receiver to return a response to the sender. This is a 
very efficient way of passing data bi-directionally between two tasks with little overhead. The mechanism 
is quite simple.

The sender sends the message and waits for the receiver to acknowledge the message. The receiver 
task receives the message and, at some point in its processing, inserts a response into the message 
body. It acknowledges the message at an appropriate point. When the acknowledgement occurs, the 
sender task resumes and examines the response information in the message body as returned from the 
receiver. The sender then continues with its processing based on the indicated response.



Asynchronous Transmission
If the sending task does not wish to wait on the action of the receiver or if there is no response required, it
may send a message without waiting for receipt or completion of processing to be acknowledged. This 
makes it possible for a sender to send multiple messages to a receiver, or, simply do something else 
while the receiver processes the message.

Even though a task sends a message without waiting for the response, a semaphore can still be 
associated with the message. Doing so makes it possible    for the sender to wait for the message 
acknowledgement event at some point subsequent to the send operation.

If the receiver completes use of the message by the time the sender waits for that event, the sending task
continues operation without interruption. If the receiver has not yet completed processing of the message,
the sender must wait for the event to occur. When it does occur, the sender's operation is resumed.

As for synchronous transmissions, the message body may also be used to transfer information bi-
directionally between the sender and receiver tasks.



Time
Managing time is fundamental to a real-time kernel. In RTXC, time is evidenced by the receipt of periodic 
interrupts from a system time base.    The interrupts are referred to as ticks and constitute the period 
granularity of the device which generates the interrupts. Timer granularity, specified during system 
generation, may be fixed or configurable. However, once configuration of the timer device takes place 
during system initialization, it must not change during RTXC operation.

Timer ticks serve three purposes in RTXC:Timingpurposes

· General purpose timing

· Timeout timing

· Elapsed time counting

General purpose timing serves to synchronize a task with an event which takes place after a certain 
amount of time passes.

Timeout timing permits tasks using certain Kernel Services to be blocked for a limited amount of time. 
This facility is quite useful in certain applications where it may be necessary to ensure that a task is not 
blocked for a long period of time.

Elapsed time counting permits RTXC to provide the elapsed time between any two events. There may be 
any number of elapsed time intervals being counted at any given moment.

In RTXC time management, all RTXC time is measured in timer ticks. The period between timer ticks is 
fixed once RTXC is initialized. The period between timer ticks is configurable if permitted by the physical 
timer device. Expiration of a general purpose timer is an Event.

Related Topics:
Timer Devices
Timer Ticks



Timer Devices
The device which generates the interrupts is particular to the hardware implementation. It may be an 
external timer or a timer which is "on-chip". Whatever the source, the device must provide an interrupt (a 
tick) at a fixed interval.



Timer Ticks
Timer ticks represent time since they occur at a fixed frequency. By counting ticks, one may calculate time
with an error of less than one tick. Actual time may be reduced to RTXC ticks by a simple multiplication or 
division depending on the granularity of the time base device.



Memory Management
RTXC manages RAM memory through a mapping scheme which employs a system of memory partitions.
RTXC can support any number of static or dynamic memory partitions. Static memory partitions must be 
fully defined while dynamic partitions need only be enumerated during system generation. Dynamic 
memory partitions reside in a free pool until such time as they are allocated for use.Each partition is 
composed of any number of blocks. Within a single partition, all blocks are of the same size. While 
different partitions will likely employ different size blocks, more than one partition may use the same size 
block.

Within a memory partition, the blocks are initially threaded together in a singly linked list. RTXC allocates 
a block from a memory partition by unlinking it from the thread. The reverse process is used when freeing 
a block by inserting it back into the linked list.

The purpose of such a memory management scheme is to prevent fragmentation of RAM. Fragmentation 
is a situation which results when arbitrarily sized amounts of memory are allocated and freed from the 
heap. If this is permitted, at some point the heap will become so fragmented that there will not be enough 
contiguous memory available to fulfill a request. At that point, the system becomes non-deterministic if the
request is to be fulfilled.

By definition, if a process is not predictable, it is not deterministic. The routine to reform the heap may 
take an indeterminable amount of time depending of the severity of the fragmentation. If a time critical 
process were waiting for that memory space to be allocated, an event could be missed with adverse 
consequences.

RTXC cannot prevent an application task from using all of the blocks in a map and asking for more. 
However, RTXC does provide Kernel Services which return an indication that there are no blocks 
available. It then becomes the responsibility of the programmer or system designer to provide the 
program steps which deal with the situation.

All blocks within a given memory partition must be the same size. A block within a memory partition can 
be no smaller than the size of a pointer.



Exclusive Access
Exclusive access to some physical device, application construct, or system element is permitted by RTXC
through the use of RTXC Resources. These kernel objects are similar to Dijkstra's mutex semaphores 
and perform the same function. The first rule concerning exclusive access defines a resource as a logical 
construct associated with some entity.

Such a broad definition allows anything to be treated as a resource. Because the resource is a logical 
construct, there need be no physical means of seizing the entity during the period in which exclusive 
access is required. This introduces the concept of ownership of the entity such that only the owner of a 
resource can access the associated entity to the exclusion of other users.

In RTXC, exclusive access to an entity is granted to a task; therefore, the owner of a resource is a task. In
a multitasking environment, it is quite likely that two or more tasks may attempt to gain exclusive access 
to an entity. Assuming that the associated resource is unowned, ownership will be granted to the task 
whose request occurs first, regardless of its priority with respect to other requesting tasks. Thus, a 
resource can be owned by only one task at any given time. However, a task may own more than one 
resource at any given time. Ownership of a resource remains with the task until such time as it voluntarily 
releases it.

However, assuming that the resource is owned when ownership requests are made by two or more tasks,
the possibility exists that the designer may wish the tasks to wait for access to the entity before 
continuing. At some point, the owning task will release the resource, and RTXC will grant ownership to the
waiting task having the highest priority. 

The rules concerning resources describe a software protocol to gain exclusive access to and to release 
the entity associated with the resource. A task needing an entity must first become owner of its associated
resource. During the period of ownership, the entity can be used exclusively by its owner. When its need 
for exclusive access is finished, the owning task must then release the resource.

Related Topics:
Priority Inversion



Priority Inversion
There is another topic to present regarding exclusive access and RTXC resources: priority inversion. The 
owner of a resource retains control of it until such time as the owner determines that exclusive access is 
no longer needed. If another task of higher priority than the owner attempts to use the resource, it is 
blocked from doing so. This results in a higher priority task awaiting one of lower priority to complete its 
use of the resource before the higher priority task can continue. This is a priority inversion. RTXC 
provides a mechanism to handle this situation should it arise. 



RTXC Functional Overview
Introduction
TASKS
INTERTASK COMMUNICATION AND SYNCHRONIZATION
SEMAPHORES
MAILBOXES
MESSAGES
QUEUES
RESOURCES
MEMORY PARTITIONS
TIMERS
SYSTEM TIME
INTERRUPT SERVICE



Introduction
In the previous section, the policies and rules which constitute the theory of operation of RTXC were 
presented. This section puts those theories into the context of actual system function by presenting how 
RTXC uses its various control and kernel objects. These control and kernel objects are data structures 
which serve as interfaces between the kernel and the application. Knowledge of how they work is 
fundamental to building real-time application systems around RTXC.

This section describes these kernel objects and their interrelationships. The descriptions will include:

· TASKS

· SEMAPHORES

· MAILBOXES

· MESSAGES

· QUEUES

· TIMERS

· SYSTEM TIME

Mention will also be made of the RTXC Kernel Services which deal with these data structures. A complete
presentation of the Kernel Services is found in Section 4.



TASKS
In a real-time embedded system, the system designer decomposes the overall function of the application 
into smaller functional entities called tasks. The nature of each task is, of course, application dependent 
and left to the imagination of the system designer. Tasks are the workhorse program elements as they 
implement the design policies about management of the application processes.

The primary purpose of a real-time kernel is to serve those tasks. The kernel provides a set of services so
that tasks may react to or synchronize with events and pass data between each other. RTXC provides a 
complete set of functions for dealing with tasks, from their definition to the various Kernel Services on 
through to system level debugging.

Related Topics:
Task Definition
Number of Tasks
Task Organization
Task Attributes
Task Execution
READY List
Task States
Task Termination



Task Definition
Before a task may execute, it must be defined to the system along with all of its attributes. RTXC supports
both static and dynamic tasks. Static tasks are those whose attributes are known before the system 
executes and which remain fixed for the life of the configuration. Dynamic tasks are those whose TCBs 
are allocated and whose attributes are defined as the result of some situation in the process which 
requires their existence. 

Static Tasks
RTXC employs the concept of predefinition of most kernel objects among which are the various static 
tasks constituting all, or part, of the application.    For static tasks, TCB allocation and task definition occur 
through use of the system generation utility, RTXCgen.

With RTXCgen, the user defines a new static task or changes a characteristic or attribute of an existing 
static task. Information about each static task includes the various task attributes which are put into 
several tables. Among these tables is a task definition block which RTXC uses to build a Task Control 
Block when a KS_execute() request is made to execute a given static task. RTXC uses the TCB to 
manage the task while it is executing.

In addition to the task information needed for TCB, RTXCgen also permits the user to specify whether or 
not the task is to be started automatically and to specify its position in the starting sequence. The starting 
sequence number is not related to the task's identifier number or its priority. The user may also specify 
whether the task requires an extended context.

Dynamic Tasks
In applications where the behavior of the process requires tasks to be created or defined dynamically, the 
attributes of such tasks are not known before the system is generated. Instead, such tasks are created 
"on-the-fly" by another task, or tasks, which also specifies via RTXC Kernel Services the task's attributes 
and environment.

For dynamic tasks, TCB allocation and attribute definition occurs under program control. To use dynamic 
tasks, the user must first employ RTXC Kernel Services to allocate a Task Control Block. Because 
dynamic task's TCBs are allocated from a pool of free TCBs with the KS_alloc_task() Kernel Service, 
such a task may use one TCB in one instance and a different TCB in another.

After allocating a TCB for the dynamic task, the user again must define the task's attributes through the 
RTXC Kernel Service, KS_deftask(). Once the attributes are defined, execution of the task may be 
invoked by KS_execute() in the same manner as for a static task.



Number of Tasks
The number of tasks which RTXC supports is determined by the system designer. Through definition of 
the storage quantum used for    data of type TASK, the user defines the maximum possible number of 
tasks permitted in the system. Thus, in a large system, TASK may define a 16-bit entity theoretically 
permitting up to 32,766 tasks. On the other end of the scale, a microcontroller may use an 8-bit field 
which permits up to 126 tasks in a single system.



Task Organization
RTXC treats a task as though it were a C function. Consequently, tasks should be written as a function 
called by the RTXC Task Dispatcher. There is one main difference between an RTXC and a C function, 
however. In RTXC, the task (i.e., function) never returns to its caller.

There are two basic code models for RTXC tasks. In the first, a task begins execution at its entry point 
after being invoked by a KS_execute() function, performs its required operations, and terminates using 
the KS_terminate() Kernel Service. This "once-only" design assumes the following code model:
void taskname(void)
{
   ... Data declarations
   ... Task initialization

   ... Task operations

   KS_terminate(SELF);
}

In the second model, a task never terminates but executes forever in a loop architecture. When using a 
loop architecture, a task assumes the following code model. Notice that there is no request to terminate 
the task as in the first example.
void taskname(void)
{
   ... Data declarations

   ... Task initialization

   for (;;)
   {

      ... Task operations

   }
}



Task Attributes
Each task has a purpose which is application specific thereby making it unique. However, in order to 
provide a consistent interface between the programmer and the operating environment, all tasks must 
share a common set of attributes. These attributes define all the information about a task the kernel 
needs to manage it properly. They include:

· Task Identifier

· Priority

· Task Control Block

· Entry Point

· Stack

· Processor Context

· Extended Context (optional)

Task Identifier
Each task is identified by a numerical identifier. For example, if you have defined the system to have 12 
tasks, all task numbers must be between 1 and 12 inclusively. The task identifier, or number, provides a 
reference during executive operations and is associated with the TCB. The task number serves no 
purpose other than as a means of determining which task is being referenced.

Task numbers for statically defined tasks will range from 1 to the number of static tasks, NTASKS, as 
defined during system generation. If dynamically allocatable TCBs are defined, their numbering begins at 
the number of static tasks plus 1 (NTASKS+1). They also have a maximum number of 
DNTASKS+NTASKS, where DNTASKS is the number of dynamic tasks.

Task Priority 
The priority of a task is indicative of the relative importance of the task with respect to the other tasks and,
indirectly, to time. Normally, each task has a unique priority but RTXC also allows multiple tasks to have 
the same priority.

The Task    is considered a signed number. It may be any value between 1, the highest priority, and one 
less than the largest possible positive number in a data quantum of type PRIORITY. If a 16-bit value, the 
maximum task priority is 32,766. If an 8-bit number, the maximum priority is 126. Whatever the size of the 
PRIORITY type data definition, the largest value (all one bits) is the priority reserved for the Null Task. 
Remember that a low numerical value of the task priority number is a high priority.

A task's priority is inversely related to the numeric value of the priority. The lower the value of the priority 
number, the higher the task's priority. A task having priority 1 is executed before a task at priority 2 which 
is executed prior to a task at priority 3 and so on. The higher the priority, the more critical the timely 
execution of the task when it is Ready. 

Execution control is granted in descending order of priority only to those tasks which are Ready. To 
reiterate the Rule previously stated, the Current Task, by definition, is the highest priority Ready task in 
the system. A task having a higher priority than the current task may exist, but if it is not Ready, it cannot 
be considered for execution.



Task Control Block
The task's state table is commonly referred to as a Task Control Block (TCB). A TCB in RTXC is located 
entirely in RAM and contains those data about the execution state of the task. All of the TCBs in a system 
are kept in an array which allows direct access to the data based on the task number. This makes for very
quick access without wasting time searching a linked list for a task name match.

The TCB contents include the following data about the task:

· the Execution State containing a number which the kernel interprets as the state of the task. A 
value of zero ($00) indicates that the task is Ready, or runnable. Any nonzero content in the task's
execution state indicates the task is blocked and will prevent it from running.

· the Task Number (identifier)

· the Task Priority

· the Initial Entry Point specifying the address where the task is to begin executing.

· the Stack Pointer containing the address of the task's current top-of-stack.

· the Environment Agruments Pointer containing the address, if any, of a structure holding 
parameters which define the task's runtime environment. This member of the TCB is most often 
associated with dynamic tasks.

Task Stack
The policy of multitasking requires that each task have a stack on which are stored local variables, return 
addresses from subroutine calls, and the context of the preempted task. The base address of the stack is 
stored when the task is created for execution.

For static tasks, you must specify the size of the stack when you define the system configuration. Stack 
sizes of dynamic tasks are defined when the KS_deftask() Kernel Service is invoked. The size of each 
task's stack is dependent on many things such as the maximum depth of nested subroutines calls, the 
maximum amount of working space needed for temporary variables, and the size of any stack frames 
used by the task. At minimum, the size of the stack must allow for the storage of a complete processor 
context.

In addition to the stacks needed by the tasks, there is also the need for a stack for the kernel. This 
system, or kernel, stack must have sufficient space to handle the processor contexts for the maximum 
number of interrupts possible at any given time, less one context. 

The sum of all of the stack requirements must not be allowed to exceed available RAM.

 Processor Context
The amount of space required to store a processor context varies between processor types and models. 
You should consult reference manuals pertaining to your processor to determine the size of a processor 
context. 

Extended Context
Some tasks, regardless of type, may make use of an extended context involving more than the standard 
processor registers. A common example would be the use of a math coprocessor which contains its own 



set of registers. The extended context, like the basic context, also needs to be preserved in certain task 
preemption conditions. The definition of the task as one which employs an extended context causes 
storage to be allocated for that purpose.

Environment Arguments
Dynamically created tasks are often an instance of another task already running. In order to distinguish 
one from another, RTXC uses a structure to contain information that the task needs to define its runtime 
environment. Hence, the name, Environment Arguments.

RTXC makes no specification about the organization or content of the Environment Arguments structure. 
RTXC only uses pointers to the structure; thus, its organization needs to be known only by the defining 
task and the using task. RTXC provides a Kernel Service, KS_deftask_arg(), to define the address of the 
structure to the object task. An additional Kernel Service, KS_inqtask_arg(), is available to the using task 
to retrieve the address of the structure.



Task Execution
A task begins execution only when it is instructed to do so by the automatic startup procedure or upon 
command. Because a task is a function to the RTXC Task Dispatcher, a task can only begin execution 
from its starting address.

Static Tasks
Execution of a static task begins when the task is made runnable and is inserted into the READY List by 
another task using a KS_execute() function. Static tasks do not necessarily need Environment 
Arguments. However, RTXC permits static tasks to have defined Environment Arguments if they are 
defined prior to execution of the task.

Dynamic Tasks
Execution of a dynamically created task must follow a particular sequence in order for it to run. The 
sequence is:

1. Allocation of the Task Control Block

2. Definition of Attributes

3. Definition of Environment Arguments(if any)

4. Execution

Allocation of the TCB assigns to the task the next available TCB from the free pool with the 
KS_alloc_task() function. Having the TCB, the task creating the dynamic task must use the KS_deftask() 
Kernel Service to define the task's attributes. Next, the created task's Environment Arguments, if any, may
be defined. The KS_deftask_args() Kernel Service is used to set up the pointer to the task's Environment 
Arguments. Finally, the task may be invoked by the KS_execute() Kernel Service.



READY List
The READY List is a doubly linked list linking together the TCBs of those tasks which are capable of 
execution once they gain access to the CPU. The list is arranged in descending order of task priority. 
Thus, the highest priority task capable of receiving CPU control is always at the head of the READY List. 
The RTXC Task Dispatcher never needs to search for the highest priority task.

A task may share the same priority with one or more other tasks. If there is at least one more task at the 
same priority, the second TCB is inserted after the first task at that priority, the third after the second, and 
so on. 

When a task becomes blocked, for whatever reason, it is no longer capable of receiving control of the 
CPU. Thus, a blocked task must be removed from the READY List.



Task States
A task is always in one of two basic states: runnable or blocked. When runnable, a task has been 
readied for execution either by the automatic startup procedure or by request from another task. There 
are no impediments to its execution other than its gaining control of the CPU. A runnable task is always 
placed in the READY List at a position relative to its priority and that of the other tasks in the READY List.

A blocked task is not found in the READY List. It is not capable of receiving CPU control as it is waiting for
some external event to occur which will remove the blocking condition. RTXC blockages occur for the 
following conditions:

· INACTIVE - Inactive (Idle)

· QUEUE_WAIT - Waiting on a queue condition Queue_not_Full or Queue_not_Empty to occur

· SEMAPHORE_WAIT - Waiting for a semaphore to be signaled

· MSG_WAIT - Waiting to receive mail

· BLOCK_WAIT - Blocked by RTXCbug

· RESOURCE_WAIT - Waiting for a resource to become available

· DELAY_WAIT - Waiting for a delay period to expire

· PARTITION_WAIT - Waiting for a memory partition to have a block available

· SUSPFLG - Suspended



Task Termination
A task should never execute a return statement, explicitly or implicitly. The proper way to terminate 
execution of an RTXC task is through use of the KS_terminate() Kernel Service.

The following code model constitutes improper coding of an RTXC task and should, therefore, be 
avoided.
void taskname(void)
{
   ... Data declarations
   ... Task initialization

   ... Task operations

}



INTERTASK COMMUNICATION AND SYNCHRONIZATION
The policy of having an event driven multitasking system requires flexible means of intertask 
communication and synchronization. The capability of RTXC to synchronize tasks with events and to 
move data from task to task is at the heart of system functionality. 

RTXC provides a rich set of services whereby two or more tasks can synchronize or communicate with 
one another. There are three major mechanisms through which this is accomplished:

· SEMAPHORES

· MESSAGES and MAILBOXES

· FIFO QUEUES

Since some events are likely to be of an external origin, another important system capability is its 
handling of interrupts.



SEMAPHORES
There are several forms that a semaphore may take in the design of a real-time kernel.    RTXC uses a 
semaphore construct that is known to handle most events and is low in operational overhead and RAM 
requirements.

RTXC semaphores are the primary mechanism of synchronizing a task with an event. Each semaphore 
contains information about the state of the associated event and any task trying to synchronize with the 
event. RTXC provides several Kernel Services to deal with processing events using semaphores. Such 
Kernel Services are associated with one of the possible state transitions of a semaphore. 

The use of an RTXC semaphore is quite simple. For instance, one task may need to wait for the other to 
reach a certain point before continuing. Input/output operations are examples of this type of 
synchronization.

Consider a driver task which inputs data from an external device. The device driver task must wait for the 
input event to occur.    When the input operation happens and causes an interrupt, the device driver's 
interrupt service routine reads the device and signals that the event has occurred. Signaling the 
semaphore causes the waiting device driver task to resume, presumably to process the input data. The 
synchronization of the task with the event is done with the use of a semaphore.

Related Topics:
Semaphore Definition
Semaphore Identifiers
Semaphore States
State Transitions
Using Semaphores
Event Waiting
Event Signaling
State Forcing



Semaphore Definition
The system designer defines all semaphores via RTXCgen during the system generation process. 
Semaphores are assigned names which equate to numbers. The semaphore name or number is its 
identifier. The semaphore number is assigned in the order of its appearance in the list of all semaphores. 
No special significance is implied by a semaphore's identifier. It is simply an index into the RTXC 
semaphore table defined during the system generation process. RTXC expects all semaphore references 
to be by the semaphore identifier.



Semaphore Identifiers
The user specifies the size of the data quantum needed for a semaphore identifier through definition of 
data type Data typedefSEMA. The size of the defined data type determines the maximum number of 
semaphores that are possible. An 8-bit definition has a maximum of 254 semaphores while a 16-bit 
definition limits a design to 65,534.



Semaphore States
An RTXC semaphore contains a value representing one of the three possible states in which it can exist.   
These states are:

· PENDING

· WAITING

· DONE

APENDING state indicates that the event associated with the semaphore has not yet occurred and is 
therefore pending.

The WAITING state shows that not only has the event not yet occurred, but a task is waiting for it to 
happen.

The DONE state tells that the event has occurred.

RTXC startup code initializes all semaphores to the PENDING state. 



State Transitions
RTXC semaphores have a very strict state transition protocol which is automatically managed by RTXC.    
The permissible state changes are shown in Figure 3-1.

Figure 3-1

Semaphore State Transitions



Using Semaphores
RTXC semaphores provide the fundamental tools for providing a means of external event and intertask 
synchronization. The basic use of semaphores is that of a "handshake" in which one task waits for a 
signal and another provides the signal. While there are also indirect uses of semaphores in RTXC, as in 
messages and timers, all RTXC semaphore usage reduces to this simple relationship.

Because semaphores are always associated with an event, the use of semaphore and event are 
interchangeable. In fact, it sometimes makes for a better explanation to speak in terms of events rather 
than of semaphores, as that more closely corresponds to the real world.



Event Waiting
For a task to synchronize with an event it must first wait for the event to occur. To do this, the task waits 
on an RTXC semaphore using one of three basic Kernel Services, KS_wait(), KS_waitm(), or KS_waitt(). 
Each will change the state of a given semaphore according to its content at the time of the wait request.

If a task attempts to wait on a semaphore in the PENDING state, the state of the semaphore is changed 
to WAITING. The Current Task will be blocked with SEMAPHORE_WAIT and removed from the READY 
List. Additionally, the task's execution is suspended until the event occurs.

If the Current Task attempts to wait on a semaphore which is in the DONE state, the wait does not occur 
(since the desired event has already happened), and the task is immediately resumed. RTXC 
automatically changes the semaphore state back to PENDING.

An attempt to wait on a semaphore which is already in the WAITING state can cause unpredictable 
results and should not be attempted. Although the Kernel Service KS_wait() returns an indication in this 
situation, it should be considered a design error.



Event Signaling
Signaling a semaphore constitutes the second action in the handshake. The occurrence of a specific 
event can be indicated by signaling the semaphore associated with that event. For tasks performing a 
signal, RTXC provides the Kernel Services, KS_signal() and KS_signalm() for that purpose. It is also 
possible to signal one or more semaphores from an interrupt service routine.

Thus, a signal may originate in either a task or in an interrupt service routine. Regardless of the signal 
origin, the state transition of the semaphore and any further action taken by RTXC depends on the state 
of the semaphore after the signal.

When signaling a semaphore in a PENDING state, the semaphore goes to the DONE state.    As this 
action does not concern any task, RTXC takes no further action. If signaled from the Current Task, it 
remains in control and continues processing. 

However, the signaling procedure gets more complex if the semaphore is in a WAITING state. The state 
of the semaphore does not go to DONE but instead returns to PENDING. This action saves the 
application software from the chore of maintaining the state of the semaphore.

Next, the RTXC signaling function determines the identity of the waiting task and unblocks it by removing 
the SEMAPHORE_WAIT condition. Once the waiting task is unblocked, and found to be runnable, RTXC 
inserts it into the READY List. If it is of higher priority than the signaling task, it becomes the new Current 
Task. Thus, synchronization of a task to an event can occur with a simple semaphore.

Signaling a semaphore which is already in the DONE state indicates that the previous event has not been
processed. It is also indicative that no task has issued a wait request for that event since its last 
occurrence. Simply put, there is something wrong because the system is not able to keep up with events.



State Forcing
The third set of Kernel Services dealing with semaphores are those intended to preset the state of one or 
more semaphores, KS_pend() and KS_pendm(). These Kernel Services force the state of a semaphore to
PENDING. As the system maintains semaphore states automatically, there is little use for these services 
except in very specific circumstances.

There are times when it may be necessary to ensure that a wait will occur. If you are uncertain about the 
state of the semaphore, simply precede the wait request by a call to one of the semaphore 
KS_pend/KS_pendm Kernel Services above.



MAILBOXES
Mailboxes are the interface between tasks which send messages to each other. Consequently, it is not 
necessary for a sender task to know anything about a receiver task's internal structure, or vice versa. This
promotes a very clean and efficient mechanism for passing data.

Related Topics:
Mailbox Definition
Mailbox References
Mailbox Structure
Using Mailboxes
Using a Mailbox Semaphore



Mailbox Definition
Definition of each mailbox occurs during system generation. You define a symbolic name for each 
mailbox, and that name becomes the mailbox identifier. The name is equated to a number based upon 
the position of the mailbox in the list of mailboxes. There is no priority inherent in the mailbox name or 
number.



Mailbox References
Mailboxes are identified by a number which has a value between 1 and the maximum number of 
mailboxes specified in the system configuration. A mailbox identifier is a data value of type Data 
typedefMBOX. You should define MBOX as either an 8-bit or 16-bit value in accordance with your system 
needs.



Mailbox Structure
A mailbox resides in RAM and includes the head link of a singly linked list. The list threads together all of 
the messages currently in the mailbox in descending order of message priority as defined by the senders.
The head link in a mailbox contains the address of the highest priority message waiting to be received by 
the mailbox owner.

The highest priority message is linked to the next highest priority message, and it in turn is linked to the 
third highest priority message, and so on until the end of the thread. The last message in a mailbox will 
contain a NULL link.

If no message is waiting in the mailbox, the head link contains a NULL.

The mailbox also contains an element which optionally defines a semaphore. RTXC does not make an 
assignment of a semaphore to the mailbox but does provide a Kernel Service, KS_defmboxsema(), for 
doing so.



Using Mailboxes
Mailbox usage is directly associated with the transmission of messages between tasks. The description of
message transmission will also serve to show how mailboxes operate.



Using a Mailbox Semaphore
The structure of a mailbox includes an element for a semaphore assignment. The semaphore has an 
implicit association with the event occurring when a message arrives at an empty mailbox. In normal 
operation where a task uses a conditional or unconditional message receive, this semaphore is not 
necessary. RTXC performs all of the necessary functions to ensure that a waiting receiver task becomes 
runnable when the message arrives.

However, a task may need to receive mail from multiple mailboxes or need to synchronize with other 
events as well as the arrival of mail. To accomplish such a feat, the task must know not only when an 
event occurs but also the identity of the event.

RTXC provides two Kernel Services which accomplish this quite easily. The task must first assign a 
semaphore to each event on which it must wait. A special Kernel Service, KS_defmboxsema(), associates
a semaphore with mail arriving at an empty mailbox.

Having defined a null terminated list of semaphores on which it is to wait, the task invokes the KS_waitm()
Kernel Service using a list of semaphores. All of the semaphores in the list are set to a WAITING state if 
they are all PENDING. Any semaphore found in a DONE state will cause the immediate resumption of the
task. If all are PENDING, RTXC blocks the task and removes it from the READY List.

When an event associated with one of the semaphores in the list occurs, RTXC resumes the waiting task 
and returns the identity of the semaphore which was signaled. In this manner, the task knows the identity 
of the event and takes action accordingly.

For example, KS_waitm(), used with a list of mailbox semaphores, will block the Current Task if all of the 
mailbox semaphores are PENDING. When mail arrives at any of the mailboxes associated with the listed 
semaphores, the Current Task resumes. KS_waitm() returns the number of the semaphore associated 
with the event which occurred. Having the semaphore number, it is quite simple to derive the identity of 
the mailbox with mail. The task would then use a KS_receive() request to receive the mail directly from 
the specific mailbox.

A code model for handling multiple mailboxes through the use of mailbox semaphores is illustrated below.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cmbox.h"

void taskname(void)
{
   RTXCMSG *msg;
   SEMA cause;
   SEMA semalist[] =
   {
      MBXSEMA1,           /* Mailbox 1 semaphore */
      MBXSEMA2,           /* Mailbox 2 semaphore */
      0                   /* null terminator */
   };

   for (;;)
   {
      /* wait for either of 2 events */
      cause = KS_waitm(semalist);
      switch(cause)
      {
         case MBX1SEMA:
           msg = KS_receive(MBOX1, (TASK)0);



            ... process msg ...
            break;

         case MBX2SEMA:
           msg = KS_receive(MBOX2, (TASK)0);
            ... process msg ...
            break;
      }  /* end of switch */
      KS_ack(msg)
   }  /* end of forever */
}



MESSAGES
Messages are one of the means by which data moves from a sender to a receiver task. Every task 
running under RTXC is capable of being both a message sender and receiver. Message transmission 
involves the transfer of data packets from one task to another via mailboxes. Messages are transmitted 
from a task by being placed in a mailbox used by a receiving task.

RTXC does not actually move the content of a message from the sender to the receiver. Instead, RTXC 
puts the address of the message into a singly linked list found in the receiving mailbox. Placement of 
messages in the mailbox list is in a descending order of message priority. The sender assigns the 
message priority. When the receiver requests receipt of the next message, RTXC returns the address of 
the message which has the highest priority of all current mail in the mailbox.

It is possible, however, to temporarily suspend this order of receipt by requesting only those messages 
from a particular sender task. This can be useful when it is desirable not to mix messages on a shared 
resource, for example, a printer.

Related Topics:
Message Structure
Message Priority
Using Messages
Sending Messages
Receiving Messages
Message Responses



Message Structure
A message is a two-part construct residing in RAM and consisting of a message envelope and the 
message body. RTXC maintains the content of the message envelope. The task is responsible for the 
message body. The message body may be of any format recognizable by the sender and receiver. Using 
the message body, data may be passed in either direction between sender and receiver.

The message body is contiguous to the envelope. The message body may be a simple pointer to another 
area located in either RAM or ROM. It may also be part of a single message structure enclosing both the 
message envelope and the message body. To reiterate, the content of the message can be anything 
mutually agreed upon by the sender and the receiver.



Message Priority
Each message has a priority assigned by the sender task when the message is sent. The message 
priority has no explicit relationship with the sender's task priority. It is simply a number between 1 and the 
maximum priority inclusively. However, a message may be sent with a priority of zero (0) which causes 
RTXC to assign the message a priority equal to the sender's task priority. RTXC uses the message 
priority as the key in inserting the message into the thread of the specified mailbox. Different tasks may 
use the same message priority without problem.

Note that if all senders use a fixed priority for all messages sent to a given mailbox, the result is a FIFO.



Using Messages
Messages are sent from one task and received by another. Like any postal service, RTXC takes the 
message from the sender and puts it into a mailbox. The mailbox is known by the sender to be used by 
the receiver. There is a direct analogy with a letter being mailed.

The letter's sender puts the letter (the message body) into an envelope and puts the recipient's address 
on the envelope. The letter is then posted (sent) to the postal service. The postal service delivers the 
letter to the mailbox at the address given on the envelope. At some time subsequent to delivery, the 
recipient checks the mailbox and retrieves the letter.

If the recipient were especially anxious to receive the mail, he might have checked the mailbox before the 
letter was delivered only to find the mailbox was empty. This corresponds to the situation of a receiver 
task checking a mailbox by trying to receive mail only to find the empty mailbox. Like the anxious 
recipient, the task must decide what to do if the mailbox is empty.

Since the recipient is a proper soul, he acknowledges receipt of the letter by sending a reply by a similar 
process. The sender of the original letter receives the reply acknowledging his letter. The transaction is 
then complete.



Sending Messages
RTXC provides two ways to send a message - asynchronously and synchronously. When sending a 
message synchronously, the sender sends the message and does not proceed until it gets an 
acknowledgement from the receiver task. In sending asynchronously, the message is sent and the sender
task proceeds without waiting for an acknowledgement. However, the asynchronous sender may later 
choose to wait for an acknowledgement.

Asynchronous Messages
Asynchronous message transmission uses the KS_send() Kernel Service. The use of KS_send() may 
result in a context switch if the receiving mailbox has a task waiting for mail, and that task is of higher 
priority than the Current Task. Whether or not there is a context switch, the sender of an asynchronous 
message always remains in the READY List. When the message is sent, the task resumes processing 
immediately following the KS_send() Kernel Service request.

It may be the design of the task to continue processing after sending the message. If so, the task may 
choose synchronization with the message acknowledgement at a later time. To accomplish that, the task 
should simply invoke the KS_wait() Kernel Service using the message semaphore named in the 
KS_send() call.

An example is given below of a code model for a task using a loop architecture and sending asyn-
chronous messages.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"            /* defines MSGSEMA */
#include "cmbox.h"           /* defines MAILBOX3 */

void taskname(void)
{
   struct {
   RTXCMSG msghdr;    /* Message envelope (req.) */
   char data[10];     /* Message body
   } mymessage;

   for(;;)
   {

      ... set up content of the message body

      KS_send(MAILBOX3, &mymessage.msghdr,
              (PRIORITY)4, MSGSEMA);

      ... do some more processing and then wait
          for the message acknowledgement

      KS_wait(MSGSEMA);         /* wait for ack */

      ... finish processing within the loop
   }
}

Synchronous Unconditional Messages
Tasks sending synchronous messages use either KS_sendw() or KS_sendt(). These two Kernel Services 



are functionally equivalent to KS_send() immediately followed by KS_wait(). A context switch always 
occurs with the use of KS_sendw() or KS_sendt() because the Current Task becomes blocked while 
waiting to synchronize with the message acknowledgement.

KS_sendw() will wait unconditionally until it receives the message acknowledgement. The following code 
example shows a task model using a loop architecture while sending synchronous messages with 
KS_sendw().
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cmbox.h"

void taskname(void)
{
   struct {
   RTXCMSG msghdr;    /* Message envelope (req.) */
   char data[10];     /* Message body
   } mymessage;

   for(;;)
   {

      ... set up content of the message body

      KS_sendw(MAILBOX3, &mymessage.msghdr,
              (PRIORITY)4, MSGSEMA);

      ... continue processing after ack

   }
}

Synchronous Conditional Messages
Like KS_sendw(), the other synchronous message sending Kernel Service, KS_sendt(), also waits for 
receipt of the message acknowledgement. However, it also starts a timeout timer within which the task 
expects to receive the acknowledgement. If not, the timeout expires and the task will have to execute 
code to deal with the situation. An example of a task sending messages in this manner follows.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"
#include "cmbox.h"
#include "cclock.h"

void taskname(void)
{
   TICKS timeout = 250/CLKTICK;      /* 250 msec */

   struct {
      RTXCMSG msghdr;   /* Message header (req.) */
      char data[10];    /* message body */
      } mymessage;

   for(;;)
   {

      ... set up content of the message body

      if (KS_sendt(MAILBOX3, &mymessage.msghdr,
                   (PRIORITY)4, GRAFSEMA,



                   timeout) == RC_TIMEOUT)
      {
         ... message not completed within timeout
             period. Deal with it with special code
      }
      ... message sent and acknowledged
   }
}



Receiving Messages
The Kernel Services KS_receive(), KS_receivew(), and KS_receivet() will fetch mail from a mailbox if 
present. If there is mail present when a receive request is made, all of the RTXC Kernel Services for 
receiving mail are identical. Each of the functions returns a pointer to the retrieved message envelope of 
the requesting task.

However, if no mail is present, the functions will either report the empty condition or will block the Current 
Task until mail arrives. A receiver task attempting to receive mail always has to deal with the problem of 
what to do if the mailbox is empty. Depending on the Kernel Service used in the attempt to receive the 
message, RTXC will:

a) notify the receiver task that the mailbox is empty and let the task deal with it through special 
program logic, or

b) block the receiving task until a message is sent to the mailbox, or

c) block the receiving task until either a message is sent to the mailbox or a defined period of time 
elapses.

Polled Receipt
The first case is obvious. The task polls the mailbox using the KS_receive() Kernel Service. If the mailbox 
is empty, it is up to the system designer as to how to proceed at that point. An example of a task receiving
mail in a loop-based task architecture follows.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"             /* defines MYMAIL */

void taskname(void)
{
   RTXCMSG *msg;

   for (;;)
   {
      /* receive next message from any task */
      while (msg = KS_receive(MYMAIL,(TASK)0) ==
                  (RTXCMSG *)0 )
      {
         ... Deal with empty mailbox with special
             logic here
      }

      ... message received, process it

      KS_ack(msg);  /* ack completion of message */
   }
}

Unconditional Receive
In the second case, the receiver task uses the KS_receivew() Kernel Service. It will remain blocked until 
another task sends a message to the empty mailbox. That event causes the waiting receiver task to 
become runnable again and inserted into the READY List. RTXC returns the address of the message to 
the receiver task which continues operation.



A code model for a task using KS_receivew() follows.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"             /* defines MYMAIL */

void taskname(void)
{
   RTXCMSG *msg;

   ... task initialization

   for(;;)
   {
      /* receive next message from any task */
      msg = KS_receivew(MYMAIL, (TASK)0);

      ... process the message

   }
}

Conditional Receive
In the third case, the task uses the KS_receivet() Kernel Service which combines elements of the first two
receiving functions. Like KS_receivew(), RTXC blocks the receiver task but only until a message arrives 
or the timeout elapses. If the former, it is treated exactly as in the second case for KS_receivew(). 
However, if the timeout expires, the system designer must provide special code to handle it. The 
procedure to follow, as in the first case, is up to the system designer.

A code example of a task using KS_receivet() follows.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"             /* defines MYMAIL */
#include "cclock.h"           /* defines CLKTICK */

void taskname(void)
{
   RTXCMSG *msg;
   TICKS timeout = 500/CLKTICK;      /* 500 msec */
   KSRC ccode;

   ... Task initialization

   for(;;)
   {
      /* receive next message from any task */
      while( (msg = KS_receivet(MYMAIL, (TASK)0,
                               timeout, &ccode)) ==
                                (RTXCMSG *)0 )
      {
         ... timeout occurred or there were no
             timer blocks available. Look at ccode
             to find out and then deal with the
             situation here.
      }

      ... message received, process it.

      KS_ack(msg);            /* ack the message */
   }
}



Message Acknowledge
A sender task may need to synchronize with the receiver task's receipt or processing of a message. 
RTXC makes it easy to do this through the synchronous message sending services, KS_sendw() and 
KS_sendt(). These two services automatically block the sending task by performing an implicit KS_wait() 
using the message semaphore. In the use of KS_send() to send a message asynchronously, the sending 
task is not blocked but continues processing. It may eventually issue an explicit KS_wait() using the 
message semaphore.

In the scenarios above, the sender task, having assigned a message semaphore, sends the message to 
the receiver and then, implicitly or explicitly, waits for the message to be acknowledged. The wait occurs 
in association with the given message semaphore.

When the receiver receives or completes processing of the message, it acknowledges the message using
the KS_ack() Kernel Service. This action amounts to signaling the message semaphore. Thus, the 
handshake with the waiting sender task is complete. RTXC removes the SEMAPHORE_WAIT block on 
the sender task to make it runnable again and puts it back in the READY List.



Message Responses
If it had been necessary, the receiver task could have stored a response in the message body. By doing 
so, RTXC permits a simple but rapid means of passing data bi-directionally between two tasks. This 
feature makes it possible for two tasks to alternate the roles of sender and receiver.

When returning a response to the message sender, the receiving task should put the response in the 
message body prior to invoking RTXC to acknowledge the message.



QUEUES
A third technique whereby two tasks can communicate and synchronize is via FIFO queues.    Queues are
usually used to handle such operations as character stream input/output or other data buffering. RTXC 
provides a simple way of putting data into and getting data from a queue.

RTXC queues differ from messages in that the actual data rather than an address is entered or removed 
from the queue. By definition, all RTXC queues use a FIFO model. Thus, the queue content represents 
the chronological order of data entry and extraction. There is no priority considered with respect to the 
order of entry as is the case with messages.

The system designer determines the number of queues needed for the application as well as the sizes of 
each. Each RTXC queue may be defined as having a single or multiple bytes per entry.    RTXC queues 
support a model allowing more than one task to put data into a queue (Queuesmultiple producers) and 
more than one task to remove data from a queue (Queuesmultiple consumers).

The queueing techniques used by RTXC involve the copying of data from a producer task into a FIFO 
queue and thence to a consumer task. Two basic Kernel Services are supplied, and each has two 
possible variants. RTXC performs any necessary synchronization between a queue's producer and 
consumer tasks.

Related Topics:
Queue Definition
Queue Identifiers
Queue Structure
Queue States
Using Queues
Producer and Consumer Task Synchronization
Synchronization with Multiple Events
Queue Semaphores
Purging a Queue



Queue Definition
The system designer defines all queues during the system generation process using RTXCgen. Like 
other system elements, queues are assigned names which equate to numbers. The queue number is its 
position in the list of all queues. There is no special significance given to a queue identifier.



Queue Identifiers
The system designer specifies the size of the data quantum needed for a queue identifier. Queue 
identifiers are numerical values of type QUEUE. The size of a value of type QUEUE defines the maximum
theoretical number of queues in a system. An 8-bit signed quantity permits up to 127 queues.



Queue Structure
An RTXC queue has two parts: the header and the body. Both parts of a queue must reside in RAM. The 
queue header contains information needed by the RTXC Kernel Services to move data into and out of the
queues properly. The queue body is simply an area of RAM which is organized as an array.

The queue body array contains a specified number of entries having a specified size. All of the entries in a
given queue are the same size.

The organization of the queue header includes two elements which are defined during system 
configuration:

· Width, queue entry size (in bytes)

· Depth, maximum length (in entries)

The size of the queue body is determined from the Width and Depth definitions. The other elements of the
queue header are maintained internally by RTXC. The queue header should never be manipulated by a 
task.



Queue States
Each queue must always exist in one of three possible states:

· Empty - There are no entries in the queue.

· not_Empty_not_Full - There is at least one but less than the maximum number of entries in the 
queue.

· Full - All of the possible entries in the queue are used.

RTXC initializes all queues to the QueuesstatesEmpty state during system startup. Additionally, RTXC 
maintains the queue state automatically and provides all synchronization between producer and 
consumer tasks.



Using Queues
Queues provide an easy way of moving data between tasks so that the data may be processed in 
chronological order. Unlike messages, there is no priority assigned to a FIFO queue entry.

RTXC queue operations fall into two basic categories: putting data into queues, enqueueing, and getting 
data out of queues, dequeueing.    RTXC provides one basic Kernel Service for each queue operation, 
and each of those has two possible variants.

Enqueueing Data
The basic Kernel Service for putting data into a queue is KS_enqueue(). The possible variants are 
KS_enqueuew() and KS_enqueuet(). In order for data to be put into a queue, there must be at least one 
entry in the queue body which is unused and able to receive the data. If the queue state is Full, all entries 
in the queue are occupied, and there is no place to put a new entry.

KS_enqueue() moves data from a source location specified by the producer task, the Current Task, and 
moves it into the next free entry in the queue. The Kernel Service determines where the next free entry is 
located by examining information in the queue header about current usage. If the queue is 
QueuesstatesFull, the task is notified of the situation and must deal with it in whatever manner is required 
by the application.

KS_enqueuew() and KS_enqueuet() operate in exactly the same way as KS_enqueue() when the state of
the queue is either Empty or not_Empty_not_Full. In other words, when there is room in the queue, it may
receive new data. However, functional differences occur when the queue is Full and an attempt is made 
to put a new entry into the queue.

When the producer, the , attempts to put data into a full queue while using the KS_enqueuew() Kernel 
Service, RTXC will block the task. It will also remove the task from the READY List, and make it wait until 
a consumer task removes data from the queue thereby opening a slot to receive the new data. When the 
slot becomes open, the producer task is automatically returned to the READY List and allowed to 
continue its operation. Thus, the synchronization between the producer and consumer is performed 
without direct program intervention.

The use of the KS_enqueuet() Kernel Service is exactly like that of KS_enqueuew() except that the 
duration of the wait is limited by a user defined period of time. The blocked producer task will remain 
blocked until either a free slot becomes available or until the specified time period elapses. If the timeout 
occurs, the application program will be so notified and must deal with the situation in a manner consistent 
with the system design.

Dequeueing Data
RTXC provides one main Kernel Service to get data from a queue, KS_dequeue(), and two possible 
variants, KS_dequeuew(), and KS_dequeuet(). All of these services operate in the same manner when 
the state of the queue is either Full or not_Empty_not_Full. The function locates the oldest entry in the 
queue and moves it to a destination specified in one of the calling arguments.

When the state of the queue is Empty, the dequeueing functions operate slightly differently. 
KS_dequeue() returns a function value to indicate the Empty state situation. The consumer task must 
recognize that return value and handle the situation with program logic.

The variant, KS_dequeuew(), acts much like the basic service except when the queue is Empty. In that 



situation, it blocks the Current Task, removes it from the READY List, and makes it wait for a producer 
task to put data into the queue. When data is put into the queue by another task, the consumer task will 
be unblocked, reinserted into the READY List, and allowed to continue. As in the basic service, the data is
moved from the queue to the destination location specified by the consumer.

KS_dequeuet() is the same as KS_dequeuew() except that the duration of the wait on an empty queue is 
limited by a time period specified in the function call. The blocked task will wait until either an entry is put 
into the queue or until the timeout elapses. If the entry is made within the timeout period, the Kernel 
Service returns a value to indicate success. If the timeout occurred, the returned value will so indicate. 
Application code using the KS_enqueuet() Kernel Service will have to provide code to check on and 
handle these various return values.



Producer and Consumer Task Synchronization
Queueing operation can result in a context switch under certain circumstances. The obvious cases occur 
when a wait occurs as the result of using KS_dequeuew() or KS_dequeuet() on an Empty queue or an 
KS_enqueuew() or KS_enqueuet() on a Full queue. Less obvious cases occur when a queue is Full and 
already has a producer task waiting or when an Empty queue has a consumer task waiting.

Whenever a task invokes a queueing operation or is forced to wait, the task is inserted into a list of waiter 
tasks associated with the particular queue. The order of insertion is by descending order of their 
respective priorities. There may be more than one task waiting to complete some activity on the queue.

As soon as the operation occurs which removes the condition on which the waiter task is blocked, the 
highest priority task is taken from the list of waiters, unblocked, made Ready, and inserted into the 
READY List. If the waiter task is of higher priority than the , a context switch will result. In this manner, 
RTXC maintains synchronization between the producer and the consumer tasks when they use queues.



Synchronization with Multiple Events
There are certain cases in which the producer or consumer may wish to override the automatic RTXC 
synchronization methods. This is most likely to happen when the task design requires it to be 
synchronized with any of several events. RTXC provides the KS_waitm() Kernel Service to allow a task to
wait on the logical OR condition of several events. By using KS_waitm(), a task may easily wait on the 
occurrence of any event associated with a set of semaphores.

An example of this facility might be a task which must synchronize with data arriving at any of three 
different queues. One possible solution would be to poll each queue periodically to determine if it has 
data.

Another example might be a task which needs to synchronize with an external event but also needs to 
know whenever a particular queue gets full. Depending on the time criticality of handling the two possible 
events, a possible solution might be to wait for the external event and then check the queue size. 
Alternatively, another solution might be to check the queue states periodically.

In an event driven system, none of these solutions is necessarily a good design. It would be better, in the 
first example, to have RTXC determine when data arrives and inform the task as to which queue has the 
data. In the second example, the kernel could determine when the queue becomes full or when the 
external event occurs and inform the waiting task accordingly.    Both examples would benefit from the use
of the KS_waitm() Kernel Service. This method would free the CPU to do other chores until such time as 
any of the blocking conditions is removed.

Consider the following code example.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"

void taskname(void)
{
   SEMA cause;
   SEMA semalist[] =
   {
      Q3NESEMA,      /* Queue 3 QNE semaphore */
      EXTEVENT,      /* External event semaphore */
      0              /* null terminator */
   };

   KS_defqsema(QUE3,Q3NESEMA,QNE)

   for (;;)
   {
      /* wait for either of 2 events */
      cause = KS_waitm(semalist);
      switch(cause)
      {
         case Q3NESEMA:
            ... process event by getting data...
                from the queue.
            break;

         case EXTEVENT:
            ... process the external event...
            break;
      }  /* end of switch */
   }  /* end of forever */
}



The key to making these scenarios possible is the definition of semaphores associated with different 
queue events and the multiple event wait Kernel Service, KS_waitm().



Queue Semaphores
There are four possible queue conditions (or events) with which to associate semaphores. The purpose of
these semaphores is to provide a mechanism by which task synchronization may occur as a result of 
certain changes in the queue state. In normal queue usage, there is no real need for synchronization with 
queue related events other than those already provided by RTXC. However, it is sometimes 
advantageous to use queue event semaphores for special synchronization purposes. Almost without 
exception, queue semaphores will be used in conjunction with KS_waitm() Kernel Service. 

All four semaphores relate to the four possible changes-of-state events or conditions through which a 
queue may transition. These four conditions and their RTXC abbreviation codes are:

· Queue_Empty (QE) - The event which occurs when a queue state changes from 
not_Empty_not_Full to Empty.

· Queue_not_Empty (QNE) - The event which occurs when a queue state changes from Empty to 
not_Empty_not_Full.

· Queue_Full (QF) - The event which occurs when a queue state changes from 
not_Empty_not_Full to Full.

· Queue_not_Full (QNF) - The event which occurs when a queue state changes from Full to 
not_Empty_not_Full.

RTXC does not automatically associate any semaphores with these possible queue conditions. During 
system operation, the application tasks may use the KS_defqsema() Kernel Service to perform the 
associations. The associated semaphore is not predefined and may be any semaphore from those 
configured by the system designer.

If it becomes necessary to disassociate a queue event from a semaphore, you may do so with the 
KS_defqsema() function called with a semaphore of zero ((SEMA)0).

Queue_Empty (QE)
The QE semaphore is associated with the next occurrence of the transition from not_Empty_not_Full to 
Empty. If the state of the queue is Empty when the QE semaphore is defined, the semaphore is set to a 
DONE state. Otherwise, the QE semaphore will be set to a PENDING state.

The following example, albeit contrived, illustrates a simple use for the QE semaphore in a producer task. 
This might be useful if the consumer task is at a lower priority. Whenever the consumer removes an entry 
from DATAQ, the producer task would be allowed to put another entry in the queue. This might lead to 
some undesired "thrashing" between the two tasks. The thrashing could be prevented by having the 
producer task fill the queue and then wait for the consumer task to empty it. The producer task could 
synchronize with the transition to Empty and then continue.
#include "rtxcapi.h"
#include "csema.h"
#include "cqueue.h"

char source;

KS_defqsema (DATAQ, EMPTYSEM, QE);

... new data is stored in source variable



while (KS_enqueue(DATAQ, &source) == RC_QUEUE_FULL)
{
   KS_wait(EMPTYSEM); /* task waits here until */
                      /* queue goes empty      */
}

Queue_not_Empty (QNE)
When an entry is put into an empty queue, the state of the queue changes from Empty to 
not_Empty_not_Full. This is the Queue_not_Empty (QNE) event. When KS_defqsema() is used to 
associate a semaphore with the QNE condition, the state of the semaphore follows the state of the queue.

If the queue is Empty, the QNE semaphore is set PENDING. While the queue remains Empty, a task 
making a subsequent attempt to wait on the QNE condition would be blocked and the semaphore 
changed to a WAITING state.

If the queue state is not_Empty_not_Full when the QNE semaphore is defined, the semaphore state is set
to DONE. This setting indicates that the associated event has already occurred, i.e., the queue is no 
longer empty. A task which attempts to wait for the QNE event would be allowed to continue without being
blocked because the event has occurred. Unlike other semaphores, however, RTXC ensures that the 
QNE semaphore remains in the DONE state as long as the queue is neither Empty nor Full.

The following example illustrates how a consumer task can process data from multiple queues without 
resorting to polling.
#include "rtxcapi.h"
#include "csema.h"
#include "cqueue.h"

char dest;
SEMA semalist[] = {EMPTYSM1, EMPTYSM2, 0};
SEMA cause;

KS_defqsema(DATAQ1, EMPTYSM1, QNE);
KS_defqsema(DATAQ2, EMPTYSM2, QNE);

cause = KS_waitm(&semalist);
switch(cause)
{
   case EMPTYSM1:
      KS_dequeue(DATAQ1, &dest);
      break;

   case EMPTYSM2:
      KS_dequeue(DATAQ2, &dest);
      break;
}

Queue_Full (QF)
The QF semaphore operates as a mirror image of the QE semaphore. The QF event occurs when the 
queue state changes from not_Empty_not_Full to Full. The KS_defqsema() Kernel Service defines the 
initial state of the semaphore. It is set to a PENDING state when the queue is not full or to DONE when it 
is Full.



Queue_not_Full (QNF)
The QNF semaphore operates in a mirror image fashion to the QNE semaphore. The QNF event occurs 
when data is removed from a full queue, thereby making it not_Empty_not_Full. This transition may be 
signaled if a QNF semaphore has been previously defined with the KS_defqsema() Kernel Service. Like 
the QNE semaphore, the QNF semaphore is set to PENDING if the queue is Full when the definition 
occurs. It is set to DONE if the queue state is not_Empty_not_Full when QNF is defined. If a full queue 
has an entry removed, the QNF semaphore will be signaled.



Purging a Queue
Sometimes it is necessary to reset an RTXC queue so that it is considered empty.    In RTXC, this action 
is referred to as purging the queue. It is not an action done frequently, but it can be useful at times. It is 
accomplished by the KS_purgequeue() Kernel Service.



RESOURCES
RTXC permits a task to gain exclusive access to some system component or element. This is especially 
useful where it is necessary to guarantee that one and only one user has control of an entity. Any entity, 
logical or physical, may be defined as one which requires restricted access. A database, a special 
software function, or a printer are a few examples.

In a multitasking system, it is often necessary to have different tasks make use of a common entity. It is 
also common to have a requirement that no task shall be able to preempt the use of certain entities by 
other tasks. Since an event driven design permits the preemption of a task at any time by one of higher 
priority, it is necessary to provide a mechanism for preventing uncontrolled access to a common entity. 
RTXC provides such a mechanism, a resource, for doing this. 

Use of a resource is simple.    are associated with entities during the system generation process. The 
association is purely logical since the entity may itself be logical rather than physical. Whenever a task 
wants to use a common entity with a guarantee of exclusive access, it simply locks the resource. Locking 
the resource prevents other tasks from gaining access to the entity while another task has access control.

After locking the resource, the task may use the associated entity to whatever extent is necessary to 
perform its functions. When the task has completed its use of the entity, it reverses the process by 
unlocking the resource. Unlocking the resource permits another task to gain access control of the entity.

Related Topics:
Resource Definition
Resource Identifiers
Resource Structure
Resource States
Using Resources
Priority Inversion



Resource Definition
The system designer defines all resources during the system generation process using . Resources, like 
other system elements, are assigned names which equate to numbers. The resource number is its 
position in the list of all resources. There is no special significance given to a resource identifier.



Resource Identifiers
The system designer specifies the size of the data quantum needed for a resource identifier. These 
identifiers are numerical values of type Data typedefRESOURCE. The size of a value of type 
RESOURCE defines the maximum theoretical number of resources in a system. An 8-bit signed quantity 
permits up to 127 resources.



Resource Structure
An RTXC resource contains two basic components, the resource state and the list of waiters. The state of
the resource defines whether or not the resource is "locked" (or owned). If locked, it also contains the 
identity of its owner task.

Only one task at a time may be the owner of the resource. After a resource becomes owned, any other 
task attempting to lock the resource will be prevented from doing so regardless of the task's priority 
relative to that of the resource's owner.

RTXC provides one basic Kernel Service to lock a resource and one to unlock. The locking function has 
two possible variants, both of which involve waiting for the resource if it is owned at the time of the 
request. With the variants, a lock request made to a resource which is already owned will cause the 
requesting task to be blocked, removed from the READY List, and added to the resource's list of waiters.

The resource's waiter list is a doubly linked list in which new waiter tasks are inserted in descending 
priority order. The highest priority task waiting for a resource is always the first task in the list. When a 
locked resource is unlocked, the highest priority waiting task, if any, will gain access control of the 
resource.



Resource States
A resource always exists in one of two possible states, Free and Locked. A task may become the owner 
of a resource only when the resource is Free. If there are no waiters for a Locked resource, unlocking the 
resource by its owner changes the resource state to Free.

RTXC supports locking of a resource by its owner. Nested locks might occur if a task, which has locked a 
resource, calls a function in which the resource is locked again. Such a situation does not cause a 
conflict. However, for correct operation, RTXC expects that for each lock there is an unlock.



Using Resources
A task wanting to use an entity associated with an RTXC resource must first lock the resource. When it is 
finished with the resource, it must unlock it. RTXC provides a basic Kernel Service for each of these 
operations, KS_lock() and KS_unlock(). The KS_lock() Kernel Services can be augmented by two more 
functions which will block the requesting task until the resource becomes Free. Unlocking is universal and
has no variants to the basic function.

Resource Locking
The basic Kernel Service used to lock a resource is KS_lock(). If a requesting task uses KS_lock() to lock 
a resource and the resource is Free, the task becomes the owner of the resource. If the resource is 
already in a Locked state, the requesting task is so informed by a value returned by RTXC. The task must
have the required program segment to detect the returned value as well as deal with it according to the 
task's function.

If the programmer does not want to have to write that extra code segment to deal with the locked 
resource, RTXC has two other Kernel Services which will reduce the code burden. Both KS_lockw() and 
KS_lockt() will block the requesting task if the given resource is already in a Locked state.

KS_lockw(), upon finding the resource to be Locked, unconditionally blocks the task, removes it from the 
READY List and inserts the task into the resource's list of waiters. The task will remain in this condition 
until it becomes the highest priority task waiting for the resource when its current owner unlocks the 
resource. The unlocking will cause the waiting task to become unblocked and to be reinserted into the 
READY List. The unblocked task then becomes the resource's owner.

The KS_lockt() Kernel Service is much like that of KS_lockw() except that the duration of the wait is 
limited by a user definable time period. The task will remain blocked until either the task gains access to 
the resource or the timeout occurs. Both conditions return a value which must be detected and handled 
by the requesting task.

Resource Unlocking
RTXC provides only one Kernel Service, KS_unlock(), for unlocking a locked resource. There are no 
variants. Besides the obvious function of unlocking the resource, it will automatically lock the resource for 
the highest priority waiting task, if any. The new owner task will automatically be unblocked and inserted 
into the READY List to resume its operation.



Priority Inversion
While use of resources is simple, the rule that only one task may own a resource can lead to an 
undesirable situation known as priority inversion. Priority inversion occurs when a lower priority task 
blocks execution of a higher priority task.

Consider the scenario in which there are two tasks, A and B, where task A is higher priority. Task A is 
temporarily blocked and task B is the Current Task. As part of its execution, task B locks Resource R and 
continues. The event blocking task A occurs causing task A to be returned to the READY List preempting 
task B, since task A is higher priority. Once it is in control, task A attempts to lock Resource R and fails 
because the resource is owned by task B.

The system now has a priority inversion dilemma - a lower priority task, because of its ownership of the 
resource, is blocking execution of a higher priority task which also needs the resource. This situation can 
lead to undesirable results if not handled.

RTXC provides a mechanism to handle priority inversions that may be invoked at the discretion of the 
system designer. Many tasks which use resources do not encounter the possibility that a priority inversion
can occur. It would be counterproductive to require that such a task be forced through the priority 
inversion detection logic. To prevent this, each resource can be given an attribute indicating that it faces 
possible priority inversions or not. A task using a resource with the attribute enabled will exercise the 
priority inversion detection and handling logic whenever it attempts to lock the resource.

The priority inversion attribute of a resource may be enabled or disabled at any time through the use of 
the KS_defres() kernel service. Initially, all priority inversion attributes of all resources are disabled.

There is one final note of caution regarding usage of resources. A task using a resource common to one 
or more other tasks should not issue Kernel Service requests to functions which result in the task 
becoming blocked while it has locked the common resource. RTXC does not prevent such an occurrence,
but it is not considered good design as it can lead to a resource being locked for extended periods of time
and, hence, to undesirable results.



MEMORY PARTITIONS
RTXC supports a memory management concept which features the use of predefined memory partitions 
to prevent fragmentation. The system designer may specify as many memory partitions as needed to 
accomplish the system's functions. Memory partitions may be statically or dynamically defined according 
to the needs of the application.

Each memory partition, also called a Map, contains one or more blocks, all of which are the same size. 
Tasks allocate memory from various Maps as needed to perform their assigned jobs. When they are 
finished with a memory block, they release it by freeing it to the Map from which it was allocated.

RTXC provides two basic Kernel Services to perform the operations of allocation and freeing of blocks 
from memory partitions. Additionally, three variants of the allocation function are possible.

Related Topics:
Memory Partition Definition
Number of Memory Partitions
Memory Partition Organization
Memory Partition Attributes
Using Memory Partitions



Memory Partition Definition
RTXC supports both static and dynamically defined Memory Partitions. Static memory partitions have 
their attributes defined during system generation. The number of dynamic memory partitions is also 
declared during system generation. In use, dynamic memory partitions are allocated and have their 
attributes defined during runtime. Regardless of its type, a Memory Partition must exist and all of its 
attributes be defined in order for a task to make use of it.

The number of blocks defined in a Memory Partition is limited only by the amount of RAM available. It is 
not necessary that the number of blocks in a Memory Partition be a power-of-two or any particular 
number.

 All blocks in a Memory Partition must be the same size and must be at least the size of a pointer. 
However, blocks whose size is an odd number of bytes may be less efficient on processors that require at
least 16-bit (word) access. You should consult your processor's reference manual to determine if odd 
number block sizes are efficient.

Static Memory Partitions
In keeping with the concept of predefinition, the system designer defines all static Memory Partitions 
during system generation using RTXCgen. Through an interactive dialog with RTXCgen, the user 
specifies the various attributes of each static Map including its name, the number of blocks it is to contain,
and its block size. RTXCgen computes how much memory to allocate and produces the C structures and 
memory arrays to accommodate the specification. After compiling the C code produced by RTXCgen, the 
linking process establishes the actual address of the RAM so that RTXC will know where it is located.

Normal usage of static Memory Partitions keep their attributes fixed during the life of the application. 
However, RTXC does permit attribute redefinition for a static Memory Partition through the use of the 
Kernel Service KS_defpart(). If this capability is employed, it should be done with caution.

Dynamic Memory Partitions
Dynamically defined Memory Partitions are slightly different. Some applications, while knowing the 
number of Memory Partitions needed, defy accurate specification of their sizes until runtime when 
operating conditions are known. This leads to a problem with RTXC's concept of predefinition. The 
solution is for the system designer to specify undefinable Memory Partitions as being dynamically defined.
The number of dynamic Memory Partitions is specified via RTXCgen but no attributes about them are 
given at that time.

When a particular need arises during system operation for a dynamic Map, a task can create one via 
appropriate RTXC Kernel Services. Allocation of the Map control block is the first step in creating a 
dynamic Memory Partition. The task issues a KS_alloc_part() Kernel Service to allocate an unused Map 
control block from the pool of free Map control blocks.

Having successfully allocated the control block, the task then must define the Map's attributes through the
KS_defpart() Kernel Service. The dynamic Memory Partition is then usable as though it had been 
statically defined.

The task may choose to combine allocation of the dynamic Map control block and attribute definition into 
a single Kernel Service request, KS_create_part().

If a dynamic Memory Partition no longer has utility to the application, it may be released. The 



KS_free_part() Kernel Service will release the Map control block to the pool of free Map control blocks. 
You should exercise care to ensure that all of a Map's memory blocks are freed to the Map prior to using 
KS_free_part(). Release of a dynamic Map's control block could leave any allocated memory blocks in 
limbo and potentially lost.



Number of Memory Partitions
The number of RTXC Memory Partitions is determined by the system designer according to the needs of 
the application. You may define the size of the storage quantum of type MAP. An 8-bit quantum is 
normally sufficient, permitting up to 127 Memory Partitions regardless of type.



Memory Partition Organization
A Memory Partition is an area of RAM consisting of one or more blocks of the same size. Each Memory 
Partition consists of a Partition Header and the Partition Array. Collectively, they are referenced by a 
single Memory Partition identifier.

The Partition Header contains information needed by RTXC to manage the Memory Partition including the
size of a RAM block and a pointer to the next available block. The Header may also contain other 
information about the usage of the Partition Array.

The Partition Array contains the actual memory blocks. While Memory Partitions may be either statically 
or dynamically created, the organization of the Memory Partition is the same. RAM blocks in the Memory 
Partition are contiguous and are linked together in a singly linked list.



Memory Partition Attributes
Each Memory Partition serves some purpose needed by the application and thus has unique attributes. 
These attributes are stored in the Map Control Block for use by RTXC during kernel services related to 
the Map. The attributes include:

· Memory Partition Identifier

· Block Size

· Number of Blocks

· RAM Area Address

Memory Partition Identifier
The system designer may specify the size of the data quantum needed for a Memory Partition identifier. 
These identifiers are numerical values of type Data typedefMAP. The size of a value of type MAP defines 
the maximum theoretical number of Memory Partitions in a system. An 8-bit signed quantity permits up to 
127 Maps.

The Partition, or Map, number is its position in the list of all Memory Partitions. There is no special 
significance given to a Memory Partition identifier.

Block Size
The block size of a given Memory Partition is fixed and all blocks in that Map are initialized as having that 
size. Once defined, the Map's block size may not be varied. RTXC imposes no restriction on the size of a 
block other than it must be at least the size of a data pointer.

Number of Blocks
Each Memory Partition is created with a given number of fixed-size blocks. The product of the block size 
and the number of blocks determine the amount of RAM needed for the Map.

RAM Area Address
The address of the RAM area used for the blocks in a static Memory Partition is defined by the linker. The
RAM area address for a dynamic Map is defined at runtime.



Using Memory Partitions
The RTXC initialization procedure links all of the blocks within each static Map. The blocks of Dynamic 
Memory Partitions are linked by the KS_defpart() or KS_create_part() kernel services when the Map is 
created. During operation, a request to allocate a memory block returns the address of the next available 
block in the map. When the block is released, RTXC puts it back into the list of available blocks so that it 
will be the next block to be allocated.

RTXC also makes provisions for empty Memory Partitions. Tasks which attempt to allocate memory from 
an empty Map are informed of the conflict.

RTXC provides one basic Kernel Service for allocating memory, KS_alloc(), and one function for releasing
memory, KS_free(). Three possible variants of the basic allocation function, KS_allocw(), KS_alloct(), and 
KS_ISRalloc() also provide kernel level support for handling empty Map conditions. The last variant, 
KS_ISRalloc(), is used by interrupt service routines to allocate a block of memory.

Allocation of a memory block, if successful, always yields the address of the allocated block. The task 
uses that address as a pointer to the block. The pointer to the block also serves as an argument for the 
KS_free() Kernel Service when it is time to release the block. 

When using dynamic Memory Partitions, you may use a static area for the RAM or you may choose to 
allocate memory from the heap at runtime. The latter case should be used with caution as improper use 
of the heap can cause memory fragmentation. A third technique for acquiring the RAM needed for a 
dynamic Memory Partition is to allocate a RAM block from an existing Map.

This last technique can be quite powerful as it permits a nested definition of a RAM block. For example, a 
16K byte block from a static Memory Partition can be allocated and used to define a new dynamic Map 
having eight blocks of 2K bytes each. In turn, one of those 2K blocks could be allocated and used to 
define yet another dynamic Memory Partition having eight 256 byte blocks. The subdivision can proceed 
to whatever depths you need for your application without the downside of fragmentation that exists with 
the second technique above which uses the heap.

Allocating Memory
The basic Kernel Service to allocate a block of memory from an RTXC Memory Partition is KS_alloc(). If 
there is a block available in the given Map, RTXC will allocate it and return a pointer to it. If there are no 
free blocks in the Map, RTXC will return a value indicating the empty Map condition. The task will have to 
recognize the special return value and then deal with the situation with an appropriate program segment. 
KS_ISRalloc() operates exactly like KS_alloc() except it is intended for use by interrupt service routines 
instead of by tasks.

The use of KS_allocw() operates exactly like KS_alloc() as long as there are free blocks to allocate. 
However, when the given Map is empty, the Kernel Service does not return a value but instead blocks the 
requesting task, removes it from the READY List, and adds it to the Map's list of waiters. Waiting tasks 
are inserted into the waiter list in descending order of their priorities. The Map's highest priority waiting 
task will remain blocked until another task frees a memory block to the Map. When a block becomes 
available, it is allocated to the waiting task. The task is resumed with RTXC returning the pointer to the 
newly allocated block.

KS_alloct() operates exactly like KS_allocw() except that the duration of the wait is limited by a user 
defined timeout period. Instead of waiting indefinitely for a block, the task will wait until either a block 



becomes available or until the timeout expires. If the former, KS_alloct() returns the pointer to the 
allocated block and resumes the requesting task. If the timeout occurs, the requesting task resumes with 
a return value from KS_alloct() indicating the timeout condition. The task must then recognize the 
condition and deal with it in a special code segment.

Freeing Memory
RTXC provides one service to release a previously allocated block of memory, KS_free(). There are no 
variants of the KS_free() function. The Current Task need only provide the Memory Partition identifier to 
which the block will be released and the pointer to the block. RTXC makes no attempt to verify that the 
block was originally allocated from the designated Map receiving the freed block; so care must be taken 
lest the maps become corrupted with blocks of different sizes.



TIMERS
An RTXC system is usually configured with a time base using some periodic interrupt on the target 
processor as a clock. The clock permits task control on a timed basis.    RTXC uses a generalized scheme
using one-shot and cyclic timers in conjunction with semaphores. Multiple timers are managed 
simultaneously using an ordered list of pending timer events. Regardless of their number, the time to 
service all active timers is fixed.

A timer for an event is inserted into the Timersactive timer list in accordance with its duration. Insertion 
uses a technique that puts the timer with the shortest time to expiration is at the head of the list. RTXC 
allows one timed event to be co-terminous with another timed event. Kernel Services for scheduling and 
cancelling timed events are an integral part of the executive.

Related Topics:
Timer Definition
Timer Structure
Timer TICKS
Using General Timers
Using Timeout Timers
Timer Interrupts



Timer Definition
RTXC uses two types of timers--General Timers and Timeout Timers. General Timers time system events 
such as the periodicity of a task's cyclic operation or the operation of some mechanical device in the 
physical process. Timeout Timers are a special type of timer used in limiting the duration of certain Kernel 
Services in blocking the requesting task.

It is during the system generation process that the system designer defines the Timersclock interrupt 
frequency and the number of timers. The number of timers defined is the number of general timers 
needed by the application. Timeout timers are not included in the set of defined timers because they are 
allocated and freed via a different mechanism.

At the end of the system generation process, RTXCgen produces an array of timer blocks called the Free 
Timer Pool. RTXC will create a linked list of the timer blocks in the Free Timer Pool during system 
initialization. General Timers are allocated from the Free Timer Pool by removing the next available timer 
block in the list. Similarly, timer blocks are freed by putting them back into the Free Timer Pool.



Timer Structure
Both General Timers and Timeout Timers have a common component of the remaining time counter. The 
remaining time counter is the amount of time remaining before the timer expires. General Timers have an 
additional component in a recycle count which, if non-zero, defines the amount of time with which to reset 
the timer when the current time remaining expires. RTXC time period values are defined to be of type 
TICKS.

If only the initial period is defined, the timer is said to be a one-shot timer. If it has an initial period and a 
non-zero cyclic period defined, the timer is cyclic. The initial period may or may not be equal to the 
recycle time. Only General Timers may be either cyclic or one-shot. Timeout Timers are one-shot timers 
only.

Each General Timer also has a semaphore associated with its expiration event. The association of the 
semaphore to the timer expiration is made when the task issues a Kernel Service request to start the 
timer. The semaphore is signaled when the timer expires.



Timer TICKS
The basic time unit used internally by RTXC is a TICK. A TICK defines the amount of time between 
interrupts generated by the system clock, or equivalently, the period between clock interrupt service 
requests. The frequency and Tick granularity of the system clock is hardware dependent and is usually 
defined during system generation.

Timer values are equivalent to the number of clock Ticks required to form the needed amount of real time.
For example, if a system clock operates at 64 Hz (15.625 msec per Tick), a one-shot timer of 2 seconds 
has an initial period specification of 128 TICKS (2 x 64). 

All timed event operations and data structures are handled by RTXC. While a timer is active, a task 
should not attempt to manipulate any of its control or data structures.



Using General Timers
General Timers are suitable for general purpose timing, including such uses as timing events and 
establishing periodic task activation. General Timers may be one-shot or cyclic and may be allocated, 
started, restarted, stopped, and freed.

RTXC requires that a timer be allocated before it can be used. Once allocated, it remains so until it is 
released by the owning task. While it is allocated, it may be started and restarted as many times as 
required by the application. And more than one timer may be allocated to the same task at the same time.
When the task no longer needs a timer, it may release the timer to the Free Timer Pool where it can be 
reused by other tasks.

General Timer Allocation
RTXC uses a concept of allocation of timer blocks prior to their use. This provides for very deterministic 
operation in that a task attempting to allocate a timer knows immediately whether the operation was 
successful. Without preallocation, a task could attempt to perform a timer management operation at a 
critical point and fail because a timer was unavailable.

The preferred design for an RTXC task using timers is to have it allocate all of its needed timer blocks 
before starting the main body of the task. Allocation prior to use guarantees the task that the necessary 
system resources will be available when needed. An added benefit of timer allocation prior to main body 
operation is that an unsuccessful allocation attempt can indicate the presence of a problem elsewhere in 
the system.

Allocation of a timer is accomplished by unlinking the next available timer from the Free Timer Pool and 
returning its handle to the requesting task. KS_alloc_timer(), the RTXC timer allocation Kernel Service, 
performs that operation. The function does not create the timer nor does it start a timer. Instead, a 
successful allocation returns the handle of a timer block to the Current Task.

Having the timer handle, the task may use it in subsequent timer management Kernel Services. A task 
may allocate and use more than one timer concurrently. Any task using timers should maintain the handle
of each timer block allocated until such time as the block is to be freed, if ever.

Even with a design which uses allocation prior to use, a condition may arise in which there are no timer 
blocks in the Free Timer Pool when a new timer allocation attempt is made. This condition is indicated by 
the function value returned from the KS_alloc_timer() Kernel Service. It is the responsibility of the task to 
deal with the situation should it occur.

Automatic Timer Allocation
The concept of timer block preallocation prior to first use is the preferred method. However, it requires an 
explicit request which may not be acceptable for all system designs. RTXC provides for an alternative 
method of timer allocation by which the allocation of a timer is implicit. Under ordinary circumstances, this 
technique is just as good as the preferred method. Nevertheless, there are some caveats associated with 
its use.

The function KS_start_timer() is used to start a timer whose handle is provided as an argument to the 
Kernel Service request. But, RTXC allows KS_start_timer() to be called in a manner to indicate that RTXC
is to allocate and create and start the timer. This technique is referred to as automatic, or implicit, timer 
allocation.



If KS_start_timer() is successfully used in automatically allocating a timer, it will return the handle of the 
timer to the requesting task. Likewise, a failure to allocate a timer will cause the Kernel Service to return a
function value indicating that no timer blocks were available. A task using this Kernel Service with 
automatic timer allocation should be able to detect successful or failed attempts. For successful attempts, 
the task should maintain the handle of any timer block allocated implicitly.

When using automatic timer allocation, care must be taken to prevent a task from unwittingly misusing 
KS_start_timer(). Improper use would include using the same storage variable to save an allocated 
timer's handle while making repeated calls to the function. Each call would cause the unrecoverable loss 
of the timer handle from the previous call. Eventually this kind of improper use will exhaust the Free Timer
Pool as evidenced by a NULL handle being returned. If the task is not monitoring the returned value from 
KS_start_timer(), it might try to use the returned NULL handle later on.

Reading Time Remaining
RTXC provides the services to read the time remaining on any active General Timer provided the timer's 
handle is known. The KS_inqtimer() Kernel Service will return the amount of time remaining on the object 
timer in units of TICKS.

Stopping and Restarting
Sometimes it is necessary to abort an active timing operation prematurely. RTXC permits this through use
of the KS_stop_timer() Kernel Service. The Current Task must provide the handle of the active timer to be
stopped as part of making the request. If the task attempts to stop an inactive timer, nothing happens 
except that RTXC returns a value which indicates that the specified timer was inactive. The task can 
check for that occurrence if it is important.

Another use of the active timer's handle is found when attempting to change the expiration time of an 
active timer. The KS_restart_timer() Kernel Service performs such an operation when called with the 
active timer's handle and the new duration of the initial timer period. The timer is stopped at the time of 
the function request and the new time value replaces whatever remains in the remaining time field.

Freeing Timers
A task may determine at some point that it no longer needs a General Timer it had previously allocated. A 
good design philosophy is to release the unneeded timer. RTXC provides a simple Kernel Service, 
KS_free_timer(), for doing that. The task need only provide the function with the handle of the timer block 
to be released and put back into the Free Timer Pool.



Using Timeout Timers
Another type of timer used by RTXC is the Timeout Timer. These are timers which are used by tasks 
which invoke Kernel Services using timeouts. Timeout Timers, unlike General Timers, need not be 
allocated and released by the tasks that use them. Instead, RTXC performs those actions automatically 
as part of its operations. Only one Timeout Timer will be allocated to a task at a time because a timeout 
may only occur for one Kernel Service at a time.

Timeout Timer Allocation
The processing of Timeout Timers is completely automatic and transparent to the user. Timeout Timers 
are allocated when the task requests Kernel Services which need to block the task only for a limited time. 

Freeing Timeout Timers
The area used by the Timeout Timer is released automatically by RTXC when either the expected event 
occurs or the timeout expires. Either situation will cause the waiting task to resume.



Timer Interrupts
When there is an active timer, each interrupt of the system clock causes the active timer values to be 
reduced by one TICK. When a timer expires, its timer block is removed from the Active Timer List and the 
semaphore associated with the timed event is signaled.    A task waiting on the event will be unblocked 
and inserted into the READY List if it has no other blocking conditions. The timer block is set to an 
inactive state but is not returned to the Free Timer Pool. It remains available to the task for subsequent 
timer management operations. A context switch can occur if the unblocked task is of higher priority than 
the interrupted task.



SYSTEM TIME
RTXC maintains system time as a 32-bit datum of type Data typedeftime_t that is incremented once each 
second after the system is initialized. In this manner, a very deterministic means of maintaining time-of-
day and date is available. The calendar may be defined with the current date and time expressed as the 
elapsed number of seconds since January 1, 1970. If defined with a valid date on or after January 1, 
1970, the calendar is accurate through the year 2037. It is not required, however, that the calendar be 
defined with a date and time in order for RTXC to operate properly. 

The RTXC distribution provides two functions, User Utilitiesdate2systime() and User 
Utilitiessystime2date(), which can convert standard calendar data (Year, Month, and Day) and clock data 
(Hours, Minutes, and Seconds) to the system time of type time_t and back again. These functions are 
general utilities and are not part of the RTXC API.

Related Topics:
Conversion to System Time from Calendar Date
Conversion from System Time to Calendar Date



Conversion to System Time from Calendar Date
Function User Utilitiesdate2systime() is provided to convert a calendar date and clock data to the internal 
system time of elapsed seconds since January 1, 1970. The function requires a single argument which is 
the address of a structure containing:

· Year

· Month

· Date

· Hours

· Minutes

· Seconds

· Daylight Savings Time Flag



Conversion from System Time to Calendar Date
Function User Utilitiessystime2date() converts the internal system time value to the corresponding 
calendar date and time in terms of year, month, day, hours, minutes, and seconds. The function requires 
an argument that is the address of a structure of type time_tm containing the calendar and clock 
members:

· Year

· Month

· Day

· Hours

· Minutes

· Seconds

· Day-of-Week

The function returns the numerical values for the calendar as year, month (1-12), day (1-31), and day-of-
week (1-7, where Monday = 1). For clock data, the function returns hours (0-23), minutes (0-59), and 
seconds (0-59). 



INTERRUPT SERVICE
This Evaluation Kit does not make provisions for you to develop Interrupt Service Routines of your own. 
However, the following description of interrupt processing is intended to provide you with sufficient 
information to understand how the process works.

RTXC provides for a generalized interrupt service scheme. Because Interrupt Service Routine (ISR) code 
is specific to both the particular device and the method of use in the application, it must be provided by 
the User.    Fortunately, the rules for writing RTXC interrupt service routines are quite simple. 

While the hardware specifics of interrupt recognition and acknowledgement vary from CPU to CPU, 
software handling of interrupts is more consistent. In RTXC, there are three basic parts to all ISRs:

· Prologue

· Device servicing

· Epilogue

The prologue begins the processing of the interrupt. The device servicing section deals with the particular 
device. The epilogue is the end action performed to finish interrupt processing and continue with the 
application. More complete descriptions of these sections follow in the paragraphs below.

Related Topics:
Prologue
Device Servicing
Epilogue
TICK Processing



Prologue
When the ISR is entered after acknowledgement of the interrupt, it begins a code section called the ISR 
prologue. The prologue is usually written in assembly language and may be either straight-line code or a 
macro. Whichever the case, it is a normal part of the RTXC distribution. Unless it is necessary to perform 
some additional operation during an ISR prologue, this code, as distributed, should not require 
modification.

The purpose of the ISR prologue code is to save the processor context plus any extended context 
necessary to preserve the interrupted environment. The processor context is stored on the task's stack 
while any extended context is stored in a special area. The state of the CPU interrupt facility may or may 
not be enabled throughout this storage process depending on the specifics of the CPU.



Device Servicing
After storing the context, the ISR prologue transfers control to the main function of the ISR to service the 
interrupting device. This is usually a C function which performs some device specific operation in order to 
clear the source of the interrupt request. As it deals with application specific devices, this code must be 
furnished by the user.

Because the prologue is written in assembly language and the device servicing function is written in C, 
the prologue code must pass any arguments in a manner consistent with the conventions of the compiler 
for argument passing between C and assembly language. 

As part of its operation, it is quite common that the device servicing function will need to signal one or 
more semaphores associated with the interrupt in order to announce the event to the application tasks.

RTXC provides two special services to deal with commonly encountered requirements of interrupt 
processing. The function Interrupt Service Routinesemaphore signal function KS_ISRsignal() should be 
called to signal a semaphore from the ISR while Interrupt Service Routineclock tick processing 
KS_ISRtick() provides RTXC required processing for a clock tick.

An ISR should not make calls to RTXC Kernel Services other than those above. The RTXC kernel is not 
reentrant and calls from an ISR to kernel services other than Interrupt Service Routinesemaphore signal 
function KS_ISRsignal() orInterrupt Service Routineclock tick processing KS_ISRtick() will yield 
unpredictable results.

When its device specific operations are complete, the device servicing function indicates that fact by 
calling the third special interrupt service function, Interrupt Service Routineexit function KS_ISRexit(). One
of the arguments to the function provides a convenient way of combining the exit logic with signaling a 
semaphore associated with the interrupt. KS_ISRexit() will also arbitrate the priorities of any tasks made 
Ready by that signaling. When KS_ISRexit() is finished, the highest priority Ready task will be at the head
of the READY List. Function KS_ISRexit() returns a pointer to the stacked context of the highest priority 
Ready task. Having that datum, the next step in an Interrupt Service Routine is to enter the ISR epilogue.



Epilogue
The ISR epilogue code, like the prologue, is usually in assembly language. It sole function is to restore 
the context of the highest priority Ready task and grant it control of the CPU. The highest priority Ready 
task may or may not be the task that was interrupted. Code for the ISR epilogue is included in the RTXC 
distribution and should not require changing.



TICK Processing
Most real-time systems employ a device which interrupts the CPU at regular intervals to provide a time 
base to the system. Naturally, there are many ways to implement such a timing device, or clock, but the 
design is immaterial to the use of RTXC. It is sufficient to say that such a device may exist in an RTXC-
based real-time system. Because of the diversity of hardware designs for such a timer, it is possible to 
conclude that there would be at least an equal number of ways to handle a clock interrupt.

That's the bad news. The good news is that the way that the interrupt needs to be handled with respect to
the needs of RTXC is quite regular. In recognition of that regularity, the RTXC distribution includes a 
special purpose function, KS_ISRtick(), that performs all of the necessary processing required for a clock 
interrupt (i.e., a TICK). There would be only one instance of this function's use in the system - in the ISR 
of the driver for the system's periodic time device.

The function requires no argument as it is dealing with known objects but it returns a single value to 
indicate that a timer expired or not. If no timer expired, the clock ISR (which called KS_ISRtick()) should 
call KS_ISRexit() to conclude its processing. If KS_ISRtick() should return a value indicating there is an 
expired timer, RTXC will announce the event by signaling the appropriate semaphore.



RTXC Kernel Services - Overview
Introduction
Classes
Prototypes
General Form of Kernel Service Request
Arguments to Kernel Services
Task Management Services
ISR Services
Intertask Communication and Synchronization Services
Resource Management Services
Timer Management Services
Memory Partition Management Services
Special Services



Introduction
Kernel Services (KS) are the functions that a real time kernel performs and serve to give it its flavor. This 
section will describe the complete set of the RTXC directives in two manners.

The first is an enumeration of each Kernel Service according to the class to which it belongs. Included in 
each description is a generalized C language prototype of the Kernel Service function's calling sequence.

The second description of Kernel Service will be in alphabetical order and will include a complete 
explanation of each Kernel Service function and an example of its usage.



Classes
The Kernel Services of RTXC are divided into the seven basic classes of:

Task Management Kernel Services deal with starting, stopping, and otherwise maintaining information 
about task states.

ISR Services perform a limited number of special operations while CPU control is in an interrupt service 
routine.

Intertask Communication and Synchronization functions provide the services by which Tasks pass data to
other tasks via messages and queues. This class also is responsible for the primary synchronization 
services of RTXC.

Timer Management services deal with the RTXC Timer facility so that tasks may perform their operations 
with respect to time as an event.

Memory Partition Management Kernel Services deal with the maintenance of the RTXC memory 
partitions to ensure orderly usage of the system's RAM.

Resource Management services provide an orderly means to gain and release exclusive control of an 
RTXC resource.

Special Kernel Services provide for user defined extensions to RTXC which can be application 
dependent.



Prototypes
Each RTXC port includes a file, RTXCAPI.H, which defines an ANSI C prototype for each Kernel Service.
Because RTXC is designed with portability in mind, the API defined by RTXCAPI.H is essentially identical
for all ports of RTXC. However, there are differences between some of the processors on which RTXC 
operates which lead to variations in sizes of certain parameters used by the Kernel Services. Similarly, 
there may be syntactical differences between C compilers of different manufacture.

For example, a C compiler may use the key words near and far to permit different memory models due to 
the processor's architecture. Another C compiler targeted to a different processor may not make use of a 
memory model requiring near and far.

Another example might be the size of an integer on a 8-bit microcontroller versus that on a 32-bit high 
performance processor.

You should refer to the RTXC header files, in particular, RTXCARG.H, for actual sizes of the data 
elements if you are uncertain about a particular size.



General Form of Kernel Service Request
The general form of an RTXC Kernel Service function call is:

KS_name([arg1][,arg2]...[,argn])

Where the character string "KS_" identifies name as an RTXC Kernel Service. This prefix should prevent 
name from being misidentified by a linker with some similarly named function in the runtime library of the 
compiler.



Arguments to Kernel Services
The RTXC Kernel Service descriptions to follow will show the function prototypes with generalized RTXC 
arguments. Similarly, values returned from Kernel Service functions are shown symbolically.    The list 
below is a brief description of those symbols:

SYMBOL DESCRIPTION

CLKBLK Address of a timer (clock) block

DATETIME Current date and time in seconds since January 1, 1970

FRAME Address of the stack frame of an interrupted process

ENTRY Entry address of a task

QCOND Condition code

int Integer, single precision

MBOX A mailbox identifier

PRIORITY The priority of a task or a message

RESATTR The priority inversion attribute code of a resource

RTXCMSG Address of an RTXC message envelope

SEMA A semaphore identifier

SEMALIST A NULL terminated list of one or more semaphore 
identifiers.

STACK Address of a task's stack

TASK A task identifier (not the task's priority)

TICKS Units of time maintained by RTXC system time base

void No value returned or no argument required

KSRC Kernel Service Return Code

size_t ANSI C compiler defined

char character

time_t ANSI C compiler defined structure



Task Management Services
The task management services provided by RTXC allow for complete control of tasks and their respective
interactions.

KS_alloc_task(void)

Allocate a TCB from the Pool of Free TCBs

KS_block(TASK, TASK)

Block a Range of Tasks from Running

KS_defpriority(TASK, PRIORITY)

Define Task Priority

KS_defslice(TASK, TICKS)

Define Task's Time-Slice Time Quantum

KS_deftask(TASK, PRIORITY, STACK *, int, ENTRY *)

Define the Attributes of a Task

KS_deftask_arg(TASK, void *)

Define the Environment Arguments for a Task

KS_delay(TASK, TICKS)

Delay a Task for a Period of Time

KS_execute(TASK)

Execute a Task

KS_inqpriority(TASK)

Inquire on a Task's Priority

KS_inqslice(TASK)

Get the Task's Time-Slice Quantum

KS_inqtask(void)

Get Task Number of Current Task

KS_inqtask_arg(TASK)

Get the Current Task's Environment Arguments

KS_resume(TASK)

Resume a Task

KS_suspend(TASK)

Suspend a Task

KS_terminate(TASK)

Terminate a Task

KS_unblock(TASK, TASK)



Unblock a Range of Tasks

KS_yield(void)

Yield to Next Runnable Task



ISR Services
ISR services provide a means of performing certain operations while in an interrupt service routine. These
functions include allocating a block from a Memory Partition, signaling a semaphore to announce the 
occurrence of an event, processing a clock tick, and terminating an ISR.

KS_ISRalloc(MAP)

Allocate a Block of Memory from the Given Memory Partition.

KS_ISRexit(FRAME, SEMA)

Exit Current Interrupt Service Routine and Optionally Signal Given Semaphore

KS_ISRsignal(SEMA)

Signal Given Semaphore from an Interrupt Service Routine

KS_ISRtick(void)

Perform System Required Processing for a Clock Tick Interrupt



Intertask Communication and Synchronization Services
There are three subclasses of Kernel Services within this class. The subclasses consist of those functions
which deal with RTXC Semaphores, RTXC Messages, and RTXC Queues respectively.

Related Topics:
Semaphore Based Services
Message Based Services
Queue Based Services



Semaphore Based Services
A complete set of directives for managing semaphores is provided by RTXC. The C calling sequences for 
each directive will be described in the section that follows. The definition of a semaphore specification and
prototyped functions are noted in C idiom below.

KS_inqsema(SEMA)

Return Current State of Semaphore

KS_pend(SEMA)

Force a Semaphore to a Pending State

KS_pendm(SEMALIST *)

Force Multiple Semaphores to Pending State

KS_signal(SEMA)

Signal a Semaphore

KS_signalm(SEMALIST *)

Signal Multiple Semaphores

KS_wait(SEMA)

Wait on Event

KS_waitm(SEMALIST *)

Wait on Multiple Events

KS_waitt(SEMA, TICK)

Time Limited Wait on Event



Message Based Services
The message directives provide a means of transferring large amounts of data between tasks with 
minimal overhead since only pointers (addresses) are passed. Message receipt acknowledgment is also 
provided for task synchronization. The format of a RTXC message and function prototypes are noted.

KS_ack(RTXCMSG *)

Acknowledge Message

KS_defmboxsema (MBOX, SEMA)

Define Mailbox Semaphore

KS_receive(MBOX, TASK)

Receive a Message

KS_receivet(MBOX, TASK, TICKS)

Receive a Message, Limit Duration of Wait if Mailbox Empty

KS_receivew(MBOX, TASK)

Receive a Message, Wait if Mailbox Empty

KS_send(MBOX, RTXCMSG *, PRIORITY, SEMA)

Send a Message Asynchronously

KS_sendt(MBOX, RTXCMSG *, PRIORITY, SEMA, TICKS)

Send a Message Synchronously and Time Limit Duration of Wait

KS_sendw(MBOX, RTXCMSG *, PRIORITY, SEMA)

Send a Message Synchronously



Queue Based Services
Queue directives provide a means of passing multiple byte packets of information between tasks with 
automatic task synchronization of queue full and empty conditions.

KS_defqsema(QUEUE, SEMA, QCOND)

Define Queue Semaphore

KS_defqueue(QUEUE, size_t, int, void *, size_t)

Define Queue Attributes

KS_dequeue(QUEUE, void *)

Get Entry from a FIFO Queue

KS_dequeuet(QUEUE, void *, TICKS)

Get Entry from a FIFO Queue, Time Limited Wait if Queue Empty

KS_dequeuew(QUEUE, void *)

Get Entry from a FIFO Queue, Wait if Queue is Empty

KS_enqueue(QUEUE, void *)

Put Entry into FIFO Queue

KS_enqueuet(QUEUE, void *, TICKS)

Put Entry into FIFO Queue, Time Limited Wait if Queue is Full

KS_enqueuew(QUEUE, void *)

Put Entry into FIFO Queue, Wait if Queue is Full

KS_inqqueue(QUEUE)

Inquire on Number of Entries in Queue

KS_purgequeue(QUEUE)

Reset Queue to Empty State



Resource Management Services
Resource directives provide a means of managing and protecting logical resources.    Typical resources 
might include a shared database, non-reentrant code modules, specialized hardware, or an expensive 
laser printer.

KS_defres(RESOURCE, RESATTR)

Define Priority Inversion Attribute for a Resource

KS_inqres(RESOURCE)

Inquire on the Owner of a Resource

KS_lock(RESOURCE)

Request Exclusive Use of a Resource

KS_lockt(RESOURCE, TICKS)

Request Exclusive Use of a Resource, Time Limited Wait if Busy

KS_lockw(RESOURCE)

Request Exclusive Use of a Resource, Wait if Busy

KS_unlock(RESOURCE)

Release Logical Resource



Timer Management Services
The time based directives provide for the synchronization of tasks with timed events.    In addition, a 
generalized time based semaphore scheme for more advanced time based requirements is provided.

KS_alloc_timer(void)

Allocate a Timer

KS_elapse(TICKS *)

Compute Elapsed Time

KS_free_timer (CLKBLK *)

Free a Timer Block

KS_inqtimer(CLKBLK *)

Get Time Remaining on a Specified Timer

KS_restart_timer(CLKBLK *, TICKS, TICKS)

Restart an Active Timer

KS_start_timer(CLKBLK *, TICKS, TICKS, SEMA)

Start a Timer

KS_stop_timer(CLKBLK *)

Stop an Active Timer



Memory Partition Management Services
The memory management directives provide a system-wide means of dynamically allocating and 
deallocating memory blocks to tasks on an as needed basis.    Multiple tasks can thus share a common 
pool of memory.    The basic unit of memory managed by these directives is noted below in C idiom.

KS_alloc(MAP)

Allocate a Block of Memory

KS_alloc_part(void)

Allocate a Memory Partition Header

KS_alloct(MAP, TICKS)

Allocate a Block of Memory with Time
Limited Wait

KS_allocw(MAP)

Allocate a Block of Memory with Wait

KS_create_part(*RAM, blksize, n_blks)

Create a Dynamic Memory Partition with Given Attributes

KS_defpart(MAP, *RAM, blksize, n_blks)

Define Attributes of a Memory Partition

KS_free(MAP, void *p)

Free a Block of Memory

KS_free_part(MAP)

Free a Dynamic Memory Partition Header

KS_inqmap(MAP)

Returns Size of Block in a Partition



Special Services
This is a class of directives which are included for special purposes.

KS_deftime(DATETIME)

Define Current Date/Time

KS_inqtime(void)

Get Current Date/Time

KS_nop(void)

No Operation

KS_user(int (*) (void *), void *)

User Defined Kernel Service



RTXC Kernel Services - Alphabetical Listing
Layout of Kernel Service Description
KS_ack
KS_alloc
KS_alloc_part
KS_alloc_task
KS_alloc_timer
KS_alloct
KS_allocw
KS_block
KS_create_part
KS_defmboxsema
KS_defpart
KS_defpriority
KS_defqsema
KS_defqueue
KS_defres
KS_defslice
KS_deftask
KS_deftask_arg
KS_deftime
KS_delay
KS_dequeue
KS_dequeuet
KS_dequeuew
KS_elapse
KS_enqueue
KS_enqueuet
KS_enqueuew
KS_execute
KS_free
KS_free_part
KS_free_timer
KS_inqmap
KS_inqpriority
KS_inqqueue
KS_inqres
KS_inqsema



KS_inqslice
KS_inqtask
KS_inqtask_arg
KS_inqtime
KS_inqtimer
KS_ISRalloc
KS_ISRexit
KS_ISRsignal
KS_ISRtick
KS_lock
KS_lockt
KS_lockw
KS_nop
KS_pend
KS_pendm
KS_purgequeue
KS_receive
KS_receivet
KS_receivew
KS_restart_timer
KS_resume
KS_send
KS_sendt
KS_sendw
KS_signal
KS_signalm
KS_start_timer
KS_stop_timer
KS_suspend
KS_terminate
KS_unblock
KS_unlock
KS_user
KS_wait
KS_waitm
KS_waitt
KS_yield



Layout of Kernel Service Description

Name
brief functional description

CLASS
One of the 7 KS classes of which it is a member.

SYNOPSIS
The formal C declaration including argument prototyping.

DESCRIPTION
A description of what the KS does, data types used, etc.

RETURN VALUE
A description of the return values from the KS.

EXAMPLE
One or more typical KS uses. The examples assume the syntax of ANSI Standard C. 

SEE ALSO
List of related Kernel Services that could be examined in conjunction with the current KS.

SPECIAL NOTES
Assorted notes and technical comments.



KS_ack

KS_ack
Acknowledge Message

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_ack(RTXCMSG *message);

DESCRIPTION
When a task receives a message and finishes processing the message, it is good practice to let the task 
which sent the message know that it has been processed. The message acknowledge function is 
intended to perform that service. The receiving task has the address of the message envelope which was 
returned by a prior KS_receive, KS_receivet, or KS_receivew function call. The KS_ack function performs
the signalling of the message semaphore specified by the sending task.

RETURN VALUE
The function returns no value.

EXAMPLE
Receive a message and save the pointer to the message envelope in pointer p. When finished processing
the message body, inform the sending task of the event.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"              /* defines EMAIL */
#include "rtxstruc.h"         /* defines RTXCMSG */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;

MYMSG *p;

/* get next message from mailbox EMAIL */
p = (MYMSG *)KS_receivew(EMAIL,(TASK)0);

... Perform message processing

KS_ack(p);     /* signal message processing done */

SEE ALSO



KS_receive, KS_receivet, KS_receivew, KS_send, KS_sendt, 
KS_sendw



KS_alloc

KS_alloc
Allocate a Block of Memory

CLASS
Memory Partition Management

SYNOPSIS

void *KS_alloc(MAP map)

DESCRIPTION
The KS_alloc Kernel Service function locates the next free block in the given RTXC Memory Partition 
specified by map and returns its address to the calling task as the value of the function. If no block is 
available in the specified partition, a value of NULL is returned.

RETURN VALUE
The function returns a pointer to the memory block if successful. If there are no available blocks in the 
given partition, the map is said to be empty and a NULL pointer (void *(0)) is returned.

EXAMPLE
In this example, a block of memory from one of the RTXC memory partitions, MAP1, is needed. If the 
allocation is successful, the pointer to the block is to be stored in a character pointer p. If there are no free
blocks in the partition, the task is to output an appropriate message.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines MAP1 */

char *p;

if ( (p = (char *)KS_alloc(MAP1)) == NULL)
{
   ... Deal with no memory available
}
else
{
   ... Allocation was successful
}

SEE ALSO

KS_alloct, KS_allocw, KS_free, KS_inqmap



KS_alloc_part

KS_alloc_part
Allocate a Memory Partition Header

CLASS
Memory Partition Management

SYNOPSIS

MAP  KS_alloc_part (void)

DESCRIPTION
The KS_alloc_part Kernel Service function locates the next free Memory Partition header in the list of 
dynamic Memory Partitions and returns its map identifier to the calling task as the value of the function. 
No definition of the Map's attributes is done by this Kernel Service.

RETURN VALUE
The function returns a Map identifier of a dynamic Memory Partition if successful. If no dynamic Memory 
Partition header is available, function value of zero (0) is returned.

EXAMPLE
In this example, a task allocates a Memory Partition dynamically and then defines its attributes using 
some data values acquired during its operation. If the allocation is successful, the Map's identifier is to be 
stored in a variable, map1, of type MAP. If there are no free dynamic Memory Partitions available, the task
is to output an appropriate message.

#include "rtxcapi.h"       /* RTXC KS prototypes */

MAP map1;

if ( (map1 = KS_alloc_part()) == (MAP)0)
{
   ... Deal with no dynamic Maps available
}
else
{
   ... Allocation was successful
       Now define the Map's attributes
}

SEE ALSO
KS_create_part, KS_defpart, KS_free_part





KS_alloc_task

KS_alloc_task
Allocate a Task Control Block

CLASS
Task Management

SYNOPSIS

TASK KS_alloc_task(void)

DESCRIPTION
The KS_alloc_task kernel service allocates the next available Task Control Block from the pool of free 
TCBs. The allocated TCB will be used in a dynamic task allocation and will be followed at some point by a
request to define the allocated task's attributes prior to its execution.

RETURN VALUE
The function returns the value of the identifier of the allocated Task Control Block if the allocation is 
successful.

If there are no available Task Control Blocks, the function returns a value of zero (0).

EXAMPLE
In this example, the current task determines from the state of the system that it needs to spawn another 
task. It first allocates a TCB for the task to be spawned, then it defines the task's attributes. Optionally, it 
defines the new task's environment arguments, and finally, executes the task. If there are no available 
TCBs, the requesting task must handle the condition with special program logic.
#include "rtxcapi.h"       /* RTXC KS prototypes */

extern void (*taskA)(void);
struct newenvrg   /* taskA environment arguments */
{
   char arg1;
   int  arg2;
.   ..etc
}
TASK newtaskA;
PRIORITY newpri;
char *pstk;
int stksz;

if ((newtaskA = KS_alloc_task()) == (TASK)0)
{
   ... Deal with no TCBs available
}
else        /* TCB allocated. Okay to use it */



{
 - determine size of stack to allocate (stksz)
 - allocate space for task's stack (pstk)
 - assign a priority of the new task (newpri)
 - then define the task attributes as follows:
   KS_deftask(newtaskA,newpri,stksz,pstk,
              void(* taskA)(void));

 - optionally define any environment arguments for
   the task as follows:
   KS_deftask_arg(newtask,&newenvrg);

 - once that is all done, start the task executing:
   KS_execute(newtaskA);
}

SEE ALSO

KS_deftask_arg, KS_execute, KS_terminate



KS_alloc_timer

KS_alloc_timer
Allocate a Timer

CLASS
Timer Management

SYNOPSIS

CLKBLK *KS_alloc_timer(void)

DESCRIPTION
The KS_alloc_timer kernel service function allocates the next available timer from the pool of free timers 
and returns its address to the calling task. If no timer is available, a value of NULL (0) is returned. The 
address, or handle, of the timer will be used in subsequent RTXC kernel services when dealing with timer 
functions. A task may allocate more than one timer before one is deallocated. 

RETURN VALUE
The function returns a pointer to the timer block if successful.

If there are no available timers, a NULL pointer (void *(0)) is returned.

EXAMPLE
In this example, a timer block is allocated and then a cyclic timer is started using the allocated timer. If the
allocation is successful, the pointer to the timer block is returned and stored in a pointer p. If there are no 
free timer blocks, the task must handle the condition with special program logic.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "csema.h"         /* defines AISEMA */

CLKBLK *p;

p = (CLKBLK *)KS_alloc_timer();
if (p == (CLKBLK *)0)
{
   ... Deal with no timers available
}
else
   KS_start_timer(p, 250/CLKTICK,
                  1000/CLKTICK, AISEMA);

SEE ALSO

KS_free_timer, KS_restart_timer, KS_start_timer, KS_stop_timer





KS_alloct

KS_alloct
Allocate a Block of Memory,

wait for limited time
if memory unavailable

CLASS
Memory Partition Management

SYNOPSIS

void *KS_alloct(MAP map, TICKS ticks, KSRC *ret_code)

DESCRIPTION
The memory allocation function allocates the next available block of memory from the specified partition 
and returns its address. If there is a block available in the specified memory partition, the function returns 
its address immediately to the requesting task. In addition, a value of RC_GOOD will be stored at the 
address indicated by the pointer to ret_code.

If there is no available block in the memory partition, the requesting task is blocked, removed from the 
READY List, and put into a WAIT state until memory in the requested partition becomes available. At the 
same time, a timeout timer is started to limit the duration of the task's wait to the period defined by ticks in
the calling arguments to KS_alloct.

Either the timeout timer expiring or a block becoming available in the partition will cause the waiting task 
to be resumed. The latter cause returns the address of the allocated memory block. If, however, the 
timeout occurs and causes the task to be resumed, a NULL pointer (0) will be returned as the function 
value to indicate there was no block available within the specified timeout period. The function will store a 
value of RC_TIMEOUT at the ret_code parameter.

If there are multiple tasks waiting for memory from the same partition, the highest priority waiting task will 
get the first available block.

RETURN VALUE
The function returns a pointer to the memory block.

If the timeout occurs before there is memory to allocate, the function returns a NULL pointer (void *(0)) 
and RC_TIMEOUT via ret_code.

EXAMPLE
Allocate a block of memory from MAP1 to be used for a character buffer. Store the address of the string in
the character pointer p. If there is no memory available at the time of the request, wait for a period of 500 
msec for a block to become available before proceeding. If there is no memory available and the timed 



wait expires, handle the situation with a special segment.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "cpart.h"         /* defines MAP1 */

char *p;
KSRC code;

/* no return until requested memory is available */
/* or until timeout occurs. */
p = (char *)KS_alloct(MAP1, 500/CLKTICK, &code);
if (p == ((char *)0))
{
         ... Handle no memory availability here
}
else
{
   ... Memory allocated. Proceed.
}

SEE ALSO

KS_alloc, KS_allocw, KS_free, KS_inqmap



KS_allocw

KS_allocw
Allocate a Block of Memory,

 Wait if none available

CLASS
Memory Partition Management

SYNOPSIS

void *KS_allocw(MAP map)

DESCRIPTION
The allocate memory with wait service function allocates the next available block of memory from the 
specified partition and returns its address. If there is no available memory, the requesting task is removed 
from the READY List, blocked, and put into a WAIT state until memory in the requested partition becomes
available.

If there are multiple tasks waiting for memory from the same partition, the highest priority waiting task will 
get the first available block.

RETURN VALUE
The function returns a pointer to the memory block.

EXAMPLE
Allocate a block of memory from MAP1 to be used for a character buffer. Store the address of the string in
the character pointer p. If there is no memory available at the time of the request, wait for it to become 
available before proceeding.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines MAP1 */

char *p;

p = (char *)KS_allocw(MAP1); /* no return until */
                             /* requested memory */
                             /* is available */

SEE ALSO

KS_alloc, KS_alloct, KS_free, KS_inqmap



KS_block

KS_block
Block a Range of Tasks

CLASS
Task Management

SYNOPSIS

void KS_block(TASK start, TASK end)

DESCRIPTION
The KS_block function provides a means of selectively blocking one or more tasks from running. This 
function implements another means to block a task in a manner similar to KS_suspend. The primary 
purpose of KS_block is to provide RTXCbug with a single call which blocks all other tasks. This function 
should be used with caution and critical tasks should never be blocked.

A runnable task to be blocked will be removed from the READY List. A task which is not currently 
runnable will be blocked again by this service. Once a task is blocked by this service, it will become 
runnable again only by invocation of the KS_unblock or KS_execute kernel services.

The range of specified tasks to be blocked may include the current task but RTXC guarantees the current 
task will not be blocked.    A starting task number of 0 will block those tasks having a higher task number 
than the current task up to and including the specified end task. An end task specification of 0 will block all
tasks beginning with the start task up to, but not including, the current task. It is not legal to specify start 
task and end task as both having a value of 0.

RETURN VALUE
The function returns no value.

EXAMPLE
1. Block tasks 5 through 8 inclusive.
#include "rtxcapi.h"      /* RTXC KS prototypes */

KS_block(5,8);          /* block 4 tasks, 5 -> 8 */

2. Block from task 5 up to but not including the current task.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#define SELFTASK (TASK(0))

KS_block(5,SELFTASK); /* block tasks 5 -> self-1 */

SEE ALSO



KS_unblock



KS_create_part

KS_create_part
Create a Dynamic Memory Partition

CLASS
Memory Partition Management

SYNOPSIS

MAP  KS_create_part(void *body,
                    size_t blksize,
                    size_t n_blks)

DESCRIPTION
The KS_create_part() function provides a means of combining the two Basic Library Kernel Services, 
KS_alloc_part() and KS_defpart() into a single function. The function requires three arguments specifying 
the address of the RAM area to be used as the body of the Memory Partition (i.e. the blocks), the size of 
the blocks in the Map, blksize, and the number of blocks, n_blks.

If the Kernel Service finds an available dynamic Memory Partition header, it will use the function 
arguments to define the Map's attributes and then link all of the blocks in the Map.

The value of the block size argument, blksize, must be at least the size of a data pointer.

RETURN VALUE
If the function is successful, it will return the identifier of the allocated dynamic Memory Partition.

If the Kernel Service is unsuccessful, it returns a value of zero (0).

EXAMPLE
A task creates a dynamic Memory Partition having a block size of 18 bytes and 24 blocks. The body of the
partition is a block of RAM allocated from another Memory Partition whose block size is 512 bytes. If 
successful, the Map's identifier will be stored in the variable of type MAP, map1.



#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cpart.h"            /* defines MAP512 */

MAP map1;
char *body;
size_t blksize, n_blks;

   ... blksize and n_blks defined by some means

if ( (body = (char *)KS_alloc(MAP512)) == NULL )
{
   ... Deal with no block available for dynamic
       Map's body. Maybe try another Map?
}

if ( (map1 = KS_create_part(body, blksize,n_blks) == (MAP)0 )
{
   /* the attempt to create a dynamic Map failed */
   /* free the unused RAM block */
   KS_free(MAP512, body); 

   ... Then deal with the failure of the dynamic
       Memory Partition creation
}
else
{
   ... Creation was successful
}

SEE ALSO
KS_alloc_part, KS_defpart, KS_free_part



KS_defmboxsema

KS_defmboxsema
Define Mailbox Semaphore

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_defmboxsema(MBOX mailbox, SEMA sema)

DESCRIPTION
The KS_defmboxsema permits the association of the Not_Empty condition of a mailbox with a 
semaphore. The association permits a task to use the KS_waitm Kernel Service to wait for the occurrence
of that condition or other events with a single request.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task is servicing two mailboxes, HPMAIL and LPMAIL. It needs to synchronize with the next 
message being sent to either mailbox, both of which are currently empty. It uses the KS_waitm Kernel 
Service to wait for mail to be sent to either mailbox. When the task continues upon detecting the presence
of mail, it identifies the mailbox having the mail, receives it, and processes it. Upon completion of its 
processing, the task signals the message sender that processing is finished.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"  /* defines HPMAIL and LPMAIL */
#include "csema.h"    /* defines GOTHP and GOTLP */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;

MYMSG *msg;
SEMA sema;
SEMA semalist[] =
{
    GOTHP, GOTLP, 0
};

KS_defmboxsema(HPMAIL,GOTHP);/* define semas for */
KS_defmboxsema(LPMAIL,GOTLP);  /* both mailboxes */
sema = KS_waitm(&semalist); /* wait for mail */
switch (sema)
{



   case GOTHP:
      /* receive message in HPMAIL from any task */
      msg = (MYMSG *)KS_receive(HPMAIL,(TASK)0);
      ... process received message
      break;

   case GOTLP:
      /* receive message in LPMAIL from any task */
      msg = (MYMSG *)KS_receive(LPMAIL,(TASK)0);
      ... process received message
      break;
}
/* acknowledge message receipt and processing */
KS_ack(msg);

SEE ALSO

KS_receive, KS_receivet, KS_receivew, KS_send, KS_sendt, 
KS_sendw



KS_defpart

KS_defpart
Define Memory Partition Attributes

CLASS
Memory Partition Management

SYNOPSIS

void  KS_defpart(MAP map,
                 void *body,
                 size_t blksize,
                 size_t n_blks)

DESCRIPTION
The KS_defpart() function provides the means to define the attributes of a new Memory Partition or to 
redefine those of an existing Map.    The function requires four arguments including the Map identifier, 
map, the address of the RAM area to be used as the body of the Memory Partition (i.e. the blocks), the 
size of the blocks in the Map, blksize, and the number of blocks, n_blks.

Upon defining the Map's attributes, the function will link all of the blocks in the Map.

The value of the block size argument, blksize, must be at least the size of a data pointer.

RETURN VALUE
The function returns no value.

EXAMPLE
A task allocates a dynamic Memory Partition header and, if successful, stores the Map's identifier in the 
variable of type MAP, map1. It then allocates the body of the partition from another Memory Partition 
whose block size is 512 bytes. Having all the necessary objects, the task uses KS_defpart() to define the 
Map's attributes.



#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cpart.h"            /* defines MAP512 */

MAP map1;
char *body;
size_t blksize, n_blks;

   ... blksize and n_blks defined by some means

if ( (map1 = KS_alloc_part()) == (MAP)0 )
{
   ... Deal with no dynamic Map available
}
else
{
   if ( (body = (char *)KS_alloc(MAP512)) == NULL )
   {
      ... Deal with no block available for dynamic
          Map's body. Maybe try another Map?
   }
   else
      KS_defpart(map1, body, blksize, n_blks);
}

SEE ALSO
KS_alloc_part, KS_defpart, KS_free_part



KS_defpriority

KS_defpriority
Define Task Priority

CLASS
Task Management

SYNOPSIS

void KS_defpriority (TASK task, PRIORITY priority)

DESCRIPTION
This function permits a task to define (or change) the priority of itself or another task. The definition may 
be any legal priority be it higher or lower than the task's current priority.

For the current task, a change to a higher priority will not cause a context switch. If the change is to a 
lower priority, the current task may be preempted if another task in the READY List has a higher priority.

The current task may specify itself by the value of zero (0) in the task argument field in the calling 
sequence.

If the task whose priority is being changed is not the current task, a preemption will occur if the new 
priority of the object task becomes higher than the requesting task.

The priority of a task may be changed before it is referenced in a KS_execute request. This may be used 
to override the default priority setting which is set equal to the task number during system initialization and
during the KS_terminate function.

RETURN VALUE
The function returns no value.

EXAMPLE
Change the priority of task SERIALIN from its current level to priority 3. Then change calling task to 
priority 6.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"         /* defines SERIALIN */

KS_defpriority(SERIALIN, 3); /* new priority = 3 */

KS_defpriority(SELFTASK, 6); /* new priority = 6 */

SEE ALSO

KS_execute, KS_terminate





KS_defqsema

KS_defqsema
Define Queue Semaphore

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_defqsema(QUEUE queue, SEMA sema, QCOND condition)

DESCRIPTION
The KS_defqsema service provides the ability to assign a semaphore to one of four conditions associated
with a FIFO queue. The possible conditions are:

Queue_not_Empty,
Queue_not_Full,
Queue_Empty, and
Queue_Full.

These conditions have enumerated values of QNE, QNF, QE, and QF respectively. The specification in 
the calling arguments for the queue event, condition, should be given as one of these four values.

Defining a queue semaphore establishes a relationship with a queue condition. This association permits a
task to wait on a condition of the queue to occur. This ability is most useful when a task needs to 
synchronize with a given condition. When several queues are being used, a KS_waitm kernel service can 
be used to synchronize with any of the events associated with the specified queue conditions.

RETURN VALUE
The function returns no value.

EXAMPLE
A task needs to associate the Queue_not_Empty condition on queue DATAQ with semaphore GOT1 so 
that it can synchronize with the event.
#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cqueue.h"       /* defines DATAQ */
#include "csema.h"        /* defines GOT1 */
struct entry
{
   int count;
   int values[8];
};

KS_defqsema(DATAQ,GOT1,QNE);



KS_wait(GOT1);
KS_dequeue(DATAQ, &entry)

SEE ALSO

KS_defqueue, KS_dequeue, KS_dequeuet, KS_dequeuew, 
KS_enqueue, KS_enqueuet, KS_enqueuew, KS_inqqueue, 
KS_purgequeue



KS_defqueue

KS_defqueue
Define Queue Attributes

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC  KS_defqueue(QUEUE queue,
                  size_t width,
                  int depth,
                  void *body,
                  size_t currsize)

DESCRIPTION
The KS_defqueue service provides dynamic definition of a queue's attributes including width (entry size), 
depth (number of entries), address of queue body (array of entries), and the number of entries in the 
queue.    This function does not create a new queue but rather modifies those queue attributes specified 
at system generation time.

The queue may be defined as containing the number of entries given by the value of currsize which may 
be zero, for an empty queue, or any number less than or equal to its defined depth. If currsize is equal to 
depth, the queue is full.

Once defined, the queue may be used in any RTXC queueing operation.    KS_defqueue is intended to 
allow flexible queue sizing in environments where RAM memory is precious and buffering requirements 
are dynamic and/or unknown until system operation is underway.

RETURN VALUE
The function returns two possible KSRC values.

If the function is performed successfully, a KSRC value of RC_GOOD is returned.

If the value of currsize exceeds the value of depth, the function will return RC_ILLEGAL_QUEUE_SIZE.

EXAMPLE
The current task must allocate a block of RAM from a Memory Partition containing a block size of at least 
80 bytes and define new attributes for queue DATAQ.    The queue will be defined as EMPTY.

The width of the entries is to be the size of the structure entry and the depth is to be the value previously 
defined as NUM. The body of the queue will be the allocated block of RAM whose address will be held in 
the pointer pbody.



#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cqueue.h"       /* defines DATAQ */
#include "cpart.h"        /* defines MAP128 */

#define NUM 10

void *pbody;
struct entry
{
   int count;
   int values[8];
};

/* allocate RAM for queue body */
pbody = KS_allocw(BUFFPART);

KS_defqueue(DATAQ,sizeof(struct entry),NUM,pbody,0);

SEE ALSO
KS_dequeue, KS_dequeuet, KS_dequeuew, KS_enqueue, KS_enqueuet, KS_enqueuew, KS_inqqueue, 
KS_purgequeue

SPECIAL NOTE
Any task(s) waiting on queue availability conditions (full, empty, not full, or not empty)    at the time of the 
KS_defqueue may be left in an indeterminate state.

To minimize RAM usage, a queue that is to be redefined at runtime, should be defined as having a width 
of 1 byte and a depth of 1 entry during system generation. During the redefinition process, memory 
occupied by the original queue body is not reclaimed.



KS_defres

KS_defres
Define Priority Inversion

Attribute for a resource

CLASS
Resource Management

SYNOPSIS

KSRC KS_defres(RESOURCE resource, RESATTR condition)

DESCRIPTION
The KS_defres kernel service defines the priority inversion attribute of the specified resource. This 
attribute determines if an attempt to lock a resource can result in a priority inversion and if RTXC is to 
handle the inversion. When enabled by ON as the condition, the attribute will cause RTXC to check for a 
priority inversion if an attempt to lock the resource fails. When the attribute is disabled, no such checking 
occurs. The default condition of the attribute is OFF.

The function requires a resource identifier and the condition of the priority inversion processing attribute. 
To enable the attribute, the condition is PRIORITY_INVERSION_ON while a value of 
PRIORITY_INVERSION_OFF disables it.

Defining the state of the resource's priority inversion attribute is only possible during the time when the 
resource is not busy. If the resource is busy, an attempt to define the attribute will fail and the function will 
return a value of RC_BUSY.

WARNING: This kernel service is not intended to permit unrestricted enabling and disabling of a 
resource's priority inversion attribute. Because of the way RTXC allocates ownership of a resource, such 
actions could lead to undesirable results. Rather, the intent of this service is to provide a means by which 
a resource can be identified as one that requires priority inversion processing whenever a lock attempt 
fails. While no restrictions are placed on its frequency of use, the best policy is to use this kernel service 
prior to the first usage of the resource.

RETURN VALUE
The function returns a value of RC_GOOD if successful.

A value of RC_BUSY is returned if the resource is busy when this kernel service is attempted.

EXAMPLE
The current task wants to enable the priority inversion processing for resource ALARM_LIST. Once the 
resource atttribute is defined the task will lock the resource, use it, and then release the resource.
#include "rtxcapi.h" /* RTXC KS prototypes */
#include "cres.h    "/* defines ALARM_LIST */



/* enable priority inversion processing */
while(KS_defres(ALARM_LIST, PRIORITY_INVERSION_ON)
                == RC_BUSY)
{
   ... handle resource Busy condition
}
/* here when resource priority inversion ON */
KS_lockw(ALARM_LIST);  /* lock the resource */

... use the resource for something

KS_unlock(ALARM_LIST); /* release resource */

}

SEE ALSO
KS_lock, KS_lockt, KS_lockw, KS_unlock



KS_defslice

KS_defslice
Define a Task's Time-Slice Quantum

CLASS
Task Management

SYNOPSIS

void KS_defslice(TASK task, TICKS slice)

DESCRIPTION
The KS_defslice kernel service defines the amount of time the specified task is permitted to run before it 
is forced to yield in a time-sliced scheduling situation.

The function requires a task number and a time-slice time quantum as arguments. The time quantum 
period is specified as the number of RTXC clock ticks approximating the desired duration of the time-slice
quantum. A task number of zero (0) has special significance as it indicates the calling task.

If time-slicing is not in operation for the specified task and the time quantum value is non-zero, the task 
will be readied for time-sliced operation. The task will begin time-sliced operation only when there is 
another task in the Ready List having the same priority and also ready for time-sliced operation. 

If the task is either ready for time-slice operation or is in active time-slice operation, its time quantum can 
be changed at any time. However, the new time quantum will not be put into force until the expiration of 
the time quantum currently in force.

A time quantum value of zero (0) causes time-sliced operation to cease on the specified task. The 
cessation will not go into effect until the expiration of the time quantum currently active.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task is to begin time-sliced operation with a time quantum of 100 msec. After some period of 
time-sliced operation, the task will cease time-sliced operation.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"            /* defines CLKTICK*/

/* delay SELF task for 100 ms */
KS_defslice(SELFTASK,100/CLKTICK);

   ... Task now in time-sliced operation

/* turn off time-sliced operation */



KS_defslice(SELFTASK,(TICKS)0);
}

SEE ALSO
KS_inqslice



KS_deftask

KS_deftask
Define a Task's Attributes

CLASS
Task Management

SYNOPSIS

KSRC KS_deftask(TASK task, PRIORITY priority, char *stack, 
size_t

  stacksize, void entry(void))

DESCRIPTION
The KS_deftask kernel service defines the attributes of an inactive task. While it can be used on both 
static and dynamically allocated tasks, it is generally found in association with the latter whose TCB has 
been allocated with the KS_alloc_task kernel service. The purpose of the service is to prepare the task for
execution by establishing the attributes necessary for operation. The attributes include a task number, a 
priority, a stack, and a task entry address.

The definition of attributes may only occur under certain conditions. First of all, a definition may only take 
place on a task whose state is INACTIVE. Secondly, it is not permissible for a task to define its own 
attributes. Therefore, the use of a task number argument of zero (0) will be in error.

RETURN VALUE
The function returns a value of RC_GOOD if the definition is successful.

The function returns a value of RC_ILLEGAL_TASK if an attempt is made to specify the object task's 
identifier with a value of zero (0).

If the object task's state is not INACTIVE, the function returns a value of RC_ACTIVE_TASK.

EXAMPLE
The Current Task needs to spawn another task, newtaskA, whose TCB it must allocate. The task's entry 
address is taskA, and the task requires a stack size of 256 bytes which the Current Task allocates from 
memory partition MAP256. The task will run at priority 14. After defining the task's attributes, the Current 
Task starts newtaskA executing without defining any environment arguments for it.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"          /* Memory Partitions */

extern void taskA(void);

TASK newtaskA;
PRIORITY newpri = 14;



char *pstk;
int stksz = 256;

newtaskA = KS_alloc_task();

pstk = KS_allocw(MAP256); /* allocate space for
                          /* task's stack */
KS_deftask(newtaskA,newpri,pstk,stksz,
            taskA);

KS_execute(newtaskA);
}

SEE ALSO

KS_alloc_task, KS_deftask_arg, KS_execute



KS_deftask_arg

KS_deftask_arg
Define a Task's Environment Arguments

CLASS
Task Management

SYNOPSIS

void KS_deftask_arg(TASK task, void *arg)

DESCRIPTION
The KS_deftask_arg establishes a pointer to a structure containing parameters which define the 
environment of the specified task. The content of the structure may be anything required by the 
application. Normal use of this kernel service would be preceeded by a section of code which defines 
each member of the structure.

The function requires a task number and a pointer to the environment arguments structure of the 
specified task. 

RETURN VALUE
The function returns no value.

EXAMPLE
The Current Task needs to spawn another task which is to operate on the port and channel specified by 
the content of two variables, port and chnl, which have been determined elsewhere. The task is an 
instance of taskA whose TCB must be allocated dynamically and whose identifier is in newtaskA. The 
task's entry address is taskA and the task requires a stack size of 256 bytes which the Current Task 
allocates from memory partition MAP256. The task will run at priority 14. After defining the task's 
attributes, the Current Task defines two environment arguments, channel and port, in a structure and 
makes that structure known to taskA. Having done so, the Current Task then starts taskA executing.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"          /* Memory Partitions */

extern void taskA(void);

struct envargA /* environment argument structure */
{
   int port;
   int channel;
};

struct envarg envargA;
TASK newtaskA;
PRIORITY newpri = 14;



char *pstk;
int stksz = 256;
int port, chnl;

newtaskA = KS_alloc_task();
pstk = KS_allocw(MAP256); /* allocate space for
                          /* task's stack */
KS_deftask(newtaskA,newpri,pstk,stksz,
              taskA);

envargA.port = port
envargA.channel = chnl

KS_deftask_arg(newtaskA,&envargA);
KS_execute(newtaskA);

SEE ALSO

KS_alloc_task, KS_deftask, KS_execute, KS_inqtask_arg



KS_deftime

KS_deftime
Define System Time-of-Day and Date

CLASS
Special

SYNOPSIS

void KS_deftime(time_t time)

DESCRIPTION
The KS_deftime() service defines the Date and Time-of-Day for the system. The function requires a single
argument which is a value of type time_t containing the date and time as the number of seconds since 
January 1, 1970. A function, date2systime() is provided in the RTXC distribution to convert from 
conventional calendar dates and clock times to a value of type time_t. Documentation on the uses of 
date2systime() is found in the Binding Manual.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task needs to define the Time-of-Day which it gets from an ASCII buffer which was input from 
the system console.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cvtdate.h" /* defines time_tm & proto- */
                      /* type for date2systime() */

struct time_tm d;

sscanf(buffer,"%d/%d/%d %d:%d:%d",
               &d.tm_yr, &d.tm_mon, &d.tm_day,
               &d.tm_hr, &d.tm_min, &d.tm_sec);

KS_deftime(date2systime(&d));

SEE ALSO

KS_inqtime, date2systime



KS_delay

KS_delay
Delay a Task for a Period of Time

CLASS
Timer Management

SYNOPSIS

void  KS_delay(TASK task,
               TICKS period)

DESCRIPTION
The KS_delay service blocks the specified task for a period of time. The delayed task may be the current 
task or another task and the object task may or may not be in the READY List. If the task is in the READY
List when delayed, the function removes it from the READY List. If a task is not in the READY List, it will 
remain blocked at least until the delay period elapses. Once the task is blocked, a timeout timer is 
established for the specified delay period.

The function requires a task number and a delay period as arguments. The delay period is specified as 
the number of RTXC clock ticks approximating the desired time of the delay. A task number of zero (0) 
has special significance as it indicates the calling task.    Thus, a task need not know its own task number 
to schedule a delay for itself.

If the current task uses delay time of zero (0) ticks, there will be no delay and the calling task will 
immediately resume. A delay in progress on a task other than the current task can be terminated by 
calling KS_delay() using the delayed task's identifier and a delay time of zero (0) ticks. 

Caution should be exercised when scheduling or canceling delays for other tasks.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task is to delay itself for a period of 100 msec. After some processing, the task is to be again 
delayed for a period of 50 msec. Note the two methods of defining the time period of the delay.



#include "rtxcapi.h" /* RTXC KS prototypes */
#include "cclock.h"  /* defines CLKTICK */
#include "ctask.h"   /* defines SCANR */

/* delay SELF task for 100 ms */
/* clktick is defined as extern in cclock.c */
/* 100/clktick calc done at run time (Slower) */
KS_delay(SCANR,100/clktick);

... continue processing after delay

/* then do another delay */
/* CLKTICK is system wide #define in cclock.h */
/* 50/CLKTICK calculation done at compile */
/* time because it is Fast */
KS_delay(SELFTASK,50/CLKTICK);  /* delay SELF */
                                /* for 50 ms */



KS_dequeue

KS_dequeue
Get Entry from a FIFO Queue

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_dequeue(QUEUE queue, void *dest)

DESCRIPTION
Dequeue is used to get the oldest entry from a FIFO queue. If the queue is not empty, the oldest entry in 
the queue is removed and stored at the destination address given in the calling sequence. When the 
dequeueing operation is successful, the function returns a value of RC_GOOD.

If the queue is empty, no entry can be dequeued. The function immediately returns a function value of 
RC_QUEUE_EMPTY indicating the function failed to dequeue an entry.

If the queue becomes empty as a result of the KS_dequeue request and if there is a semaphore 
previously associated with the given queue's Queue_Empty event (see KS_defqsema), and if there is a 
task waiting for that event, the associated semaphore will be signalled to notify the waiting task of the 
occurrence of the event.

RETURN VALUE
The oldest entry in the queue is placed at the address specified by the argument in the calling sequence.

The Kernel Service function returns a value of RC_GOOD if the dequeue is successful and a value of 
RC_QUEUE_EMPTY if it is not.

EXAMPLE
Dequeue an entry from DATAQ and store it in the structure called entry.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */

struct            /* structure for receiving the */
{                 /* dequeued entry */
   int type;
   int value;
} entry;

/* get data from DATAQ until it is empty*/
while (KS_dequeue(DATAQ,&entry) == RC_GOOD)
{
   ... do something with the entry just dequeued
}



... DATAQ was empty, deal with it here ...

SEE ALSO

KS_defqsema, KS_dequeuet, KS_dequeuew, KS_enqueue, 
KS_enqueuet, KS_enqueuew



KS_dequeuet

KS_dequeuet
Get Entry from a FIFO Queue,

 WAIT for Limited time
IF QUEUE EMPTY

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_dequeuet(QUEUE queue, void *dest, TICKS timeout)

DESCRIPTION
KS_dequeuet is like KS_dequeuew except that any blockage of the requesting task due to a 
Queue_Empty condition is limited to the time period specified by the timeout argument in the calling 
sequence. 

If the queue is not empty, the oldest entry in the queue is removed and stored at the destination address 
given in the calling sequence. The Kernel Service function returns a value of RC_GOOD when the 
dequeueing operation is successful.

An empty queue causes the current task to be blocked and removed from the READY List. After the task 
is removed from the READY List, a timeout timer is established with a duration as defined by the timeout 
argument of the function call. The task will remain blocked until such time as either of two conditions 
occurs:

· Another task puts an entry into the queue via one of the kernel 
services which performs an enqueue function, or,

· The timeout period elapses.
If the queue becomes empty as a result of the KS_dequeuet request, and there is a task waiting on the 
Queue_Empty event, then the associated semaphore is signalled to notify the task of the occurrence of 
the event.

RETURN VALUE
The oldest entry in the queue is placed at the address specified by the argument in the calling sequence.

The Kernel Service function returns a value of RC_GOOD if the dequeue is successful.

If the timeout occurs, the function returns a value of RC_TIMEOUT.

EXAMPLE
Dequeue an entry from DATAQ and store it in the structure called entry. If DATAQ is empty, wait no longer



than 250 msec for data to become available before proceeding.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */
#include "cclock.h"        /* defines CLKTICK */
struct            /* structure for receiving the */
{                 /* dequeued entry */
   int type;
   int value;
} entry;

/* get data from DATAQ */
if (KS_dequeuet(DATAQ,&entry,
                250/CLKTICK) == RC_GOOD)
{
   ... do something here with queue entry
}
else
{
   ... timeout occurred. Deal with it here.
}

Note that the units of timeout are milliseconds. The number of milliseconds in the timeout is divided by the
number of milliseconds per RTXC timer tick. The quotient is the number of RTXC timer ticks required to 
approximate the defined timeout.

SEE ALSO

KS_dequeue, KS_dequeuew, KS_enqueue, KS_enqueuet, 
KS_enqueuew



KS_dequeuew

KS_dequeuew
Get Entry from a FIFO Queue,

 WAIT IF EMPTY

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_dequeuew(QUEUE queue, void *dest)

DESCRIPTION
KS_dequeuew, like KS_dequeue, is also used to get the oldest entry from a FIFO queue. If the queue is 
not empty, the oldest entry in the queue is removed and stored at the destination address given in the 
calling sequence. The Kernel Service function does not return a value when the dequeueing operation is 
successful.

Unlike KS_dequeue, however, an empty queue causes the requesting task to be blocked and removed 
from the READY List until such time when another task puts an entry into the queue via one of the kernel 
services which performs an enqueue function.

If the queue becomes empty as a result of the KS_dequeue request, and if there is a semaphore 
previously associated with the given queue's Queue_Empty condition, and if there is a task waiting for the
Queue_Empty condition, that semaphore is signalled to notify the task of the occurrence of the event.

RETURN VALUE
The function returns no value. The oldest entry in the queue is placed at the address specified by the 
argument in the calling sequence.

EXAMPLE
Dequeue an entry from DATAQ and store it in the structure called entry. If DATAQ is empty, wait for data 
to become available before proceeding.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */

struct            /* structure for receiving the */
{                 /* dequeued entry */
   int type;
   int value;
} entry;

KS_dequeuew(DATAQ,&entry);/* get data from DATAQ */

SEE ALSO



KS_dequeue, KS_dequeuet, KS_enqueue, KS_enqueuet, 
KS_enqueuew



KS_elapse

KS_elapse
Compute Elapsed Time

CLASS
Timer Management

SYNOPSIS

TICKS KS_elapse(TICKS *etime)

DESCRIPTION
The KS_elapse function returns the elapsed time between two events.    Correct calculation of an elapse 
time requires two calls to KS_elapse.    The first sets the beginning time into the time marker, etime. The 
value returned by the first kernel service function is worthless and should be discarded.    The second call 
is issued at the time of the event which marks the end of the period being measured.    The value returned
by the kernel service function after the second invocation will be the elapsed time of the period.

The elapsed time is computed as the number of RTXC clock ticks between the initial time marker as 
contained in etime and the current system time at the end of the period.

At the same time that the function is calculating the difference between the two times to get the elapsed 
time, the current system time is moved to the time marker, etime, so that serial events can be timed.

If the elapsed time of a set of serial events needs to be measured, the first period is measured as 
described. However, since etime is updated to the current system time at the end of the previous event, it 
is also the starting time of the next event. Consequently, the elapsed times of the second and successive 
events can each be obtained by a single call to KS_elapse.

Resolution of the elapsed time is limited only by the RTXC base clock frequency and is guaranteed to be 
less than 1 clock period (TICK).

RETURN VALUE
The function returns the elapsed time in system clock ticks.

EXAMPLE
Calculate the elapsed time of two changes of state on a switch, where the change-of-state event is 
associated with the semaphore, SWITCH.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "csema.h"         /* defines SWITCH */

TICKS timestamp, diff;

KS_wait(SWITCH);           /* wait for the first */



                           /* change of state */

KS_elapse(&timestamp);     /* determine t(0) */

KS_wait(SWITCH); /* wait for switch change event */

diff = KS_elapse(&timestamp);/* get elapsed time */
                             /* since t(0) */

... use the elapsed time for something ...

KS_wait(SWITCH);  /* wait for next switch change */

diff = KS_elapse(&timestamp);/* get elapsed time */
                  /* since start of period known */
... Use the second period's elapsed time



KS_enqueue

KS_enqueue
Put Entry into FIFO Queue

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_enqueue(QUEUE queue, void *entry)

DESCRIPTION
KS_enqueue inserts an entry into a FIFO queue.    If there is room in the queue for at least one entry, the 
operation will succeed. If the queue is full, there is no room to insert the desired entry and the function 
cannot proceed normally. Consequently, it returns control to the requesting task with a value indicating the
insertion did not happen.

If the entry inserted into the queue causes the queue to reach the Queue_Full condition, and if there is a 
semaphore associated with the Queue_Full condition on the given queue, and if there is a task waiting for
the queue to become Full, the Queue_Full semaphore is signalled to notify the waiting task.

RETURN VALUE
The function returns a value of RC_GOOD if the enqueueing operation is successful.

A returned value of RC_QUEUE_FULL indicates the function failed to insert the data into the given 
queue.

EXAMPLE
Insert data found in the structure named entry into queue DATAQ making sure that the operation 
succeeded.
#include "rtxcapi.h"     /* RTXC KS prototypes */
#include "cqueue.h"      /* defines DATAQ */

struct
{
   int type;
   int value;
} entry;

/* enqueue packet of data into DATAQ */
if (KS_enqueue(DATAQ, &entry) == RC_GOOD)
{
   ... operation successful
}
else
{



   ... queue is FULL. Deal with it here.
}

SEE ALSO

KS_dequeue, KS_dequeuet, KS_dequeuew, KS_enqueuet, 
KS_enqueuew



KS_enqueuet

KS_enqueuet
Put Entry into FIFO Queue,

 WAIT for Limited time
IF QUEUE FULL

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_enqueuet(QUEUE queue, void *entry, TICKS timeout)

DESCRIPTION
KS_enqueuet inserts an entry into a FIFO queue.    If there is room in the queue for at least one entry, the 
operation will succeed and return to the requesting task. If the queue state is Full, the function cannot 
proceed normally and will cause RTXC to remove the current task from the READY List and block it.

The duration of the task's blocking, unlike KS_enqueuew, is limited by the period of time specified by the 
timeout argument in the calling sequence, or the Queue_Full condition being removed, whichever occurs 
first. When the Queue_Full condition is cleared by another task removing an entry from the queue via a 
dequeueing operation, the entry is inserted into the queue and the waiting task unblocked.

If the queue reaches the Queue_Full condition, and there is a semaphore associated with its Queue_Full 
event, and if there is a task waiting for the queue to become Full, the semaphore associated with 
Queue_Full is signalled to notify the waiting task.

RETURN VALUE
The function returns a value of RC_GOOD if it completes successfully.

If the Queue_Full condition persists longer than the timeout period, the function returns a value of 
RC_TIMEOUT.

EXAMPLE
Insert data found in the structure named entry into queue DATAQ. If the queue is Full, wait for 500 msec 
or until the enqueue operation is successful.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"
#include "cclock.h"

struct
{   int type;
    int value;
} entry;



/* enqueue packet of info into DATAQ */
if (KS_enqueuet(DATAQ,&entry,500/CLKTICK) ==
    RC_GOOD)
{
   ... enqueue operation was successful
}
else
{
... Timeout. Queue was full longer than 500 ms.
}

SEE ALSO

KS_dequeue, KS_dequeuet, KS_dequeuew, KS_enqueue, 
KS_enqueuew



KS_enqueuew

KS_enqueuew
PUT Entry into FIFO Queue,

 WAit if Queue Full

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_enqueuew(QUEUE queue, void *entry)

DESCRIPTION
KS_enqueuew inserts an entry into a FIFO queue.    If there is room in the queue for at least one entry, 
the operation will succeed and return to the requesting task.    No function value is returned.    If the queue 
is full, the function cannot proceed normally causing it to remove the current task from the READY List 
and block it until the Queue_Full condition is removed.    When the Queue_Full condition is cleared by 
another task removing an entry from the queue via a dequeue operation, the entry is inserted into the 
queue and the requesting task unblocked.

If the entry inserted into the queue causes the queue to reach the Queue_Full condition, and if there is a 
semaphore associated with the Queue_Full condition on the given queue, and if there is a task waiting for
the queue to become FULL, the Queue_Full semaphore is signalled to notify the waiting task.

RETURN VALUE
The function returns no value.

EXAMPLE
Insert data found in the structure named entry into queue DATAQ. If the queue is full, wait until the 
enqueue operation can succeed.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"        /* defines DATAQ */

struct
{
   int type;
   int value;
} entry;

KS_enqueuew(DATAQ,&entry);  /* enqueue packet of */
                            /* info into DATAQ */

SEE ALSO



KS_dequeue, KS_dequeuet, KS_dequeuew, KS_enqueue, 
KS_enqueuet



KS_execute

KS_execute
Execute a Task

CLASS
Task Management

SYNOPSIS

void KS_execute(TASK task)

DESCRIPTION
The KS_execute function starts a task from its beginning address. The task may be idle or it may already 
be running. If the latter, it is removed from the READY List. The task is inserted into the READY List with 
its program counter (PC) and stack pointer (SP) initialized to their starting values. The task's starting 
address, priority, and stack pointer are specified during system generation or dynamically with the 
KS_deftask Kernel Service.

If the new task is of higher priority than the requesting (current) task, a context switch is performed and 
the new task runs. If the requesting task is of higher priority, control is returned to the caller.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task starts task SHUTDOWN from its starting address.
#include "rtxcapi.h"    /* RTXC KS prototypes */
#include "ctask.h"      /* defines task SHUTDOWN */

KS_execute(SHUTDOWN);   /* execute SHUTDOWN task */

SEE ALSO

KS_terminate, KS_deftask



KS_free

KS_free
Free a Block of Memory

CLASS
Memory Partition Management

SYNOPSIS

void KS_free(MAP map, void *p)

DESCRIPTION
The free memory kernel service returns a block of memory at a specified address to the free pool for the 
given memory partition.

WARNING: No checks are performed to determine that the specified memory block to be released 
"belongs" in the designated partition.

It is the programmer's responsibility to ensure adherence to the rule that a block is freed ONLY to the 
partition from which it was allocated. If this rule is violated, a partition's content can become corrupted 
with blocks of memory from other partitions.

However, this rule has at least one exception which can prove useful. It is possible during system 
generation to define more than one partition having the same size blocks. One large virtual partition can 
then be constructed dynamically by allocating the blocks from one partition and freeing them into another 
partition which will then contain the aggregate number of blocks. This technique can overcome certain 
addressing limitations of segmented architecture computers that limit the size of a single RTXC memory 
partition.

Likewise, a partition may also be extended by allocating similarly sized blocks of memory from the heap 
or from another RAM area within the system's address space and freeing them to a given partition.

RETURN VALUE
The function returns no value.

EXAMPLE
Allocate a block of memory from the BUFFMAP partition, use it for a while as a character buffer and then 
return it to BUFFMAP.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines BUFFMAP */

char *p;

p = (char *)KS_alloc(BUFFMAP);  /* get block for */
                                /* temporary use */



... /* use block for some operation */

KS_free(BUFFMAP,p); /* return block to BUFFMAP*/

SEE ALSO

KS_alloc, KS_alloct, KS_allocw, KS_inqmap



KS_free_part

KS_free_part
Free a Dynamic Memory Partition Header

CLASS
Memory Partition Management

SYNOPSIS

void  *KS_free_part(MAP map)

DESCRIPTION
The free dynamic memory partition header kernel service returns a dynamic partition header to the free 
pool of dynamic partition headers.

RETURN VALUE
The function returns a pointer to the block of memory that was passed to KS_alloc_part or 
KS_create_part when the dynamic memory partition was created.

EXAMPLE
Allocate a block of memory from the MAP512 partition, create a dynamic partition with it, use it for a while 
then free the dynamic partition header.



#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "cpart.h"            /* defines MAP512 */

MAP map1;
char *body;
size_t blksize, n_blks;

   ... blksize and n_blks defined by some means

if ( (body = KS_alloc(MAP512)) == (char *)0 )
{
   ... Deal with no block available for dynamic
       Map's body. Maybe try another Map?
}

if ( (map1 = KS_create_part(body, blksize,n_blks) == (MAP)0 )
{
   /* the attempt to create a dynamic Map failed */
   /* free the unused RAM block */
   KS_free(MAP512, body); 

   ... Then deal with the failure of the dynamic
       Memory Partition creation
}
else
{
   ... Creation was successful
   ... Use the partition a while
   ... Then free it
   body = KS_free_part(map1);
   ... Body may be used for another
   ...... dynamic partition
   ... Or released back to MAP512
}

SEE ALSO
KS_alloc_part, KS_create_part, KS_defpart



KS_free_timer

KS_free_timer
Free a Timer Block

CLASS
Timer Management

SYNOPSIS

void KS_free_timer(CLKBLK *timer)

DESCRIPTION
KS_free_timer returns a given timer block to the pool of free timers. The calling argument timer is a 
pointer to the timer to be released. The function will stop an active timer prior to freeing it.

RETURN VALUE
The function returns no value.

EXAMPLE
Allocate a timer block and store its address in pointer p. Start a 250 msec timer using that timer block, 
and then free it when the timer expires.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"        /* defines CLKTICK */
#include "csema.h"         /* defines AISEMA */

CLKBLK *p;

p = (CLKBLK *)KS_alloc_timer();
if (p == (CLKBLK *)0)
{
   ... Deal with no timers available here
}
else
{
   KS_start_timer(p, 250/CLKTICK, 1000/CLKTICK,
                  AISEMA);

   ... do some processing ...

   KS_free_timer(p);        /* release the timer */
}

SEE ALSO

KS_alloc_timer, KS_start_timer





KS_inqmap

KS_inqmap
Returns Size of Block in A PARTITION

CLASS
Memory Partition Management

SYNOPSIS

size_t KS_inqmap(MAP map)

DESCRIPTION
KS_inqmap returns a value equal to the size of each block in the specified partition. This function is 
intended for applications using blocks from multiple partitions or those having no prior knowledge of the 
block sizes in the system.

RETURN VALUE
The function returns a number equal to the size of a block in the specified memory partition.

EXAMPLE
A task needs to compute the blocking factor for data to be packed into a block of memory from partition 
MAPVCT. It first inquires about the size of the block and then computes the blocking factor by dividing the
block size by the size of the structure, entry, being used for one data packet.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"

size_t size;
int bfactor;         /* computed blocking factor */
struct entry
{
   int len;
   char data[10];
}

size = KS_inqmap(MAPVCT);   /* get size of block */
         /* calculate block factor for structure */
bfactor = size / sizeof(struct entry);

SEE ALSO

KS_alloc, KS_alloct, KS_allocw, KS_free



KS_inqpriority

KS_inqpriority
Inquire on a Task's Priority

CLASS
Task Management

SYNOPSIS

PRIORITY KS_inqpriority(TASK task)

DESCRIPTION
The KS_inqpriority function allows the calling task to make a direct inquiry about the priority of a task. A 
task value of zero (0) specifies the current task.

RETURN VALUE
The function returns the priority of the specified task.

EXAMPLE
Look at the priority of the current task and reduce its priority by 2.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"            /* defines HISTASK */
#define SELF (TASK(0))  /* Used for Current Task */

PRIORITY mypri, hispri;

mypri = KS_inqpriority(SELF);

/* raise Current Task's priority by 2 */
KS_defpriority(SELF, mypri-2);

hispri = KS_inqpriority(HISTASK);

... Do something with the other task's priority

SEE ALSO

KS_defpriority



KS_inqqueue

KS_inqqueue
Inquire About Number

 of Entries in Queue

CLASS
Intertask Communication and Synchronization

SYNOPSIS

int KS_inqqueue(QUEUE queue)

DESCRIPTION
The KS_inqqueue function allows the calling task to make a direct inquiry about a queue's current size.    
The current size is expressed in terms of entries in the queue rather than the number of bytes.

RETURN VALUE
The function returns the number of entries currently in queue.

EXAMPLE
Look at the current size of CHARQ and signal the XOFF semaphore if the queue contains more than 20 
entries. Signal the XON semaphore if the current size of the queue is less than 4 entries.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"             /* defines CHARQ */
#include "csema.h"       /* defines XOFF and XON */

int depth;

depth = KS_inqqueue(CHARQ);/* get depth of CHARQ */
if (depth > 20)
  KS_signal(XOFF);
if (depth < 4)
  KS_signal(XON);

SEE ALSO

KS_dequeue, KS_dequeuet, KS_dequeuew, KS_enqueue, 
KS_enqueuet, KS_enqueuew

SPECIAL NOTE
The current queue size may change between the time the task calls the KS_inqqueue service and its next
request for an enqueue or dequeue service.



KS_inqres

KS_inqres
Inquire on the Owner of a Resource

CLASS
Resource Management

SYNOPSIS

TASK KS_inqres(RESOURCE resource)

DESCRIPTION
The KS_inqres function allows the calling task to determine the owner, if any, of a specified resource.

RETURN VALUE
The function returns the identifier of the task that currently owns the given resource or a value of zero (0) 
if the resource is unlocked.

EXAMPLE
Determine the owner of the PRINTER resource and see if is is owned by the Alarm Output task, 
ALRMTASK.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */
#include "ctask.h"         /* defines ALRMTASK */

if (KS_inqres(PRINTER) == ALRMTASK) 
{
   ... do something 
}
else
{
   ... do something else if resource is unlocked
}

SEE ALSO

KS_lock, KS_lockt, KS_lockw



KS_inqsema

KS_inqsema
Return CUrrent state of Semaphore

CLASS
Intertask Communication and Synchronization

SYNOPSIS

SSTATE KS_inqsema(SEMA semaphore)

DESCRIPTION
KS_inqsema returns a value indicating the state of the given semaphore. It should be noted that the state 
of the semaphore may actually change between the time the request is issued and the time the 
semaphore state is returned, due to an exception which interrupts the kernel service and alters the state 
of the semaphore.

RETURN VALUE
The function returns a number equivalent to the state of the semaphore as follows:

· SEMA_DONE

· SEMA_PENDING

EXAMPLE
The current task wants to determine if semaphore AIDONE is in a DONE state. If so, it is to perform some
processing.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines AIDONE */

if (KS_inqsema(AIDONE) == SEMA_DONE)
{
   ... semaphore is DONE, process something
};

SEE ALSO

KS_pend, KS_signal, KS_wait, KS_waitm, KS_waitt



KS_inqslice

KS_inqslice
GET Time-Slice Time Quantum

CLASS
Task Management

SYNOPSIS

TICKS KS_inqslice(TASK task)

DESCRIPTION
The KS_inqslice function allows the calling task to obtain the value of the time-slice time quantum for the 
object task. If there has been no time-slice time quantum defined for the specified task, the function 
returns a value of zero (0).

RETURN VALUE
The function returns the value of the specified task's time-slice time quantum in units of system clock 
ticks.

EXAMPLE
Get the time-slice time quantum for the task SCANR and see if it has been defined. If not, define the 
task's time quantum at 100 msec.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"              /* defines SCANR */
#include "cclock.h"           /* defines CLKTICK */

if( (KS_inqslice(SCANR) == (TICKS)0)
   KS_defslice(SCANR,100/CLKTICK);

SEE ALSO

KS_defslice



KS_inqtask

KS_inqtask
GET NUMBER OF CURRENT TASK

CLASS
Task Management

SYNOPSIS

TASK KS_inqtask(void)

DESCRIPTION
The KS_inqtask function allows the calling task to obtain its task identifier.

RETURN VALUE
The function returns the task number of the Current Task.

EXAMPLE
Get the task number of the Current Task and use it as an argument in changing the priority of the task to 
10.
#include "rtxcapi.h"       /* RTXC KS prototypes */

TASK mytaskid;

mytaskid = KS_inqtask();

KS_defpriority(mytaskid, 10);

SEE ALSO

KS_defpriority



KS_inqtask_arg

KS_inqtask_arg
GET Address of Task's

 Environment Arguments

CLASS
Task Management

SYNOPSIS

void *KS_inqtask_arg(TASK task)

DESCRIPTION
The KS_inqtask_arg function allows the calling task to obtain a pointer to the structure containing the 
environment arguments for the specified task. The task argument may be zero (0) to indicate that the 
request is made for the calling task's environment arguments.

This call may be used by any task whose environment arguments have been previously defined to RTXC 
by the KS_deftask_arg function. Normally, the function will be used by tasks which have been dynamically
defined by the KS_deftask function. Those tasks would likely have an associated environment argument 
structure in order to determine the parameters they need to operate.

RETURN VALUE
The function returns a pointer to the specified task's environment argument structure. If no such definition 
has been made, the function returns a NULL pointer.

EXAMPLE
The Current Task is a communications channel driver and is an instance of a task which may have clones
also in operation. In order to run, it needs to determine the operational parameters, the communications 
port and channel, on which it will operate. It will do that by getting the data from its environment argument 
structure which contains the port and channel identifiers. The environment argument structure has been 
previously defined.

While the example below is simple, it demonstrates some of the basic concepts in organizing a task which
is dynamically allocated, defined, and executed. In contrast to a static task, the dynamic task is normally 
used in situations where each instance of the task serves one particular purpose. In the example to follow,
the purpose is to handle a single communications port and the channel on that port.

Other instances of the same task may already be in operation on other port/channels. Thus it is 
necessary for the task to determine which it is and the critical data it needs in order to operate. That data 
should be found in the task's environment argument structure, the content of which was probably filled by 
the task that spawned the Current Task.
#include "rtxcapi.h"       /* RTXC KS prototypes */



#define SELF (TASK(0))    /* define Current Task */

void commchnl(void)
{
   struct myargs
   {
      short port;  /* port number */
      short chnl;  /* channel number */
   };
   struct myargs *envargs;
   int chnlstat;          /* port/channel status */

   /* first find out which we are by getting the */
   /* environment arguments */
   envargs = KS_inqtask_args(SELF);

   while((chnlstat = get_chnl_stat(envargs->port,
                     envargs->chnl)) != 0)
   {
      ... while the status is non zero, do some
          work with the port and channel to 
          process the data stream
   }
   KS_terminate(SELF); /* terminate when the */
                              /* status is 0 */
}

SEE ALSO

KS_deftask, KS_deftask_arg



KS_inqtime

KS_inqtime
GET Current Time-of-Day and Date

CLASS
Special

SYNOPSIS

time_t KS_inqtime(void)

DESCRIPTION
A task needing to determine the current time-of-day and/or date can use the KS_inqtime Kernel Service. 
The function returns the System Calendar as a value of type time_t. If the task needs to present the 
System Time as normal calendar and clock data, the value returned by the function should be passed to 
the systime2date() function. Documentation on systime2date() is found in the Binding Manual.

RETURN VALUE
The function returns System Time as a single value of type time_t. If there has been no definition of an 
actual date, the returned value represents the number of seconds that have elapsed since the system 
was initialized. If there has been a date defined, the returned value represents the number of seconds 
that have elapsed from January 1, 1970 to the present time. 

EXAMPLE
The Current Task wants to output the current date and time-of-day to the console via the Console Output 
Queue.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cqueue.h"             /* defines CONOQ */
#include "cvtdate.h" /* defines time_tm & proto- */
                      /* type for systime2date() */

struct time_tm timenow;
char buffer[40];

systime2date(KS_inqtime(), &timenow);            
                 /*get the date*/* & time-of-day */
/* now prepare the output string */
sprintf(&buffer,"DATE: %d/%d/%d TIME: %d:%d:%d\n",\
        timenow.tm_mon, timenow.tm_day,
        timenow.tm_yr, timenow.tm_hr,
        timenow.tm_min, timenow.tm_sec)



/* send string to console */
printl(&buffer,0,CONOQ);

SEE ALSO

KS_deftime, systime2date



KS_inqtimer

KS_inqtimer
GET Time Remaining on a Timer

CLASS
Timer Management

SYNOPSIS

TICKS KS_inqtimer(CLKBLK *timer)

DESCRIPTION
The KS_inqtimer function allows the calling task to obtain the time remaining on a specified timer, the 
pointer to which is passed as an argument to the function. If the specified timer is in an ACTIVE state, the 
remining time will be returned in units of RTXC clock ticks. If the timer status is not ACTIVE, the function 
will return a value of zero (0).

Return Value
The function returns the number of ticks remaining on the given timer if the timer is ACTIVE. Otherwise, it 
returns a value of zero (0).

EXAMPLE
The Current Task starts a 500 msec timer and then waits on TMRSEMA, the timer expiration, or another 
event using semaphore INTSEMA. When either event occurs, the task determines which event happened
and sets up a variable, remainder, that contains the time remaining on the active timer. If the event 
associated with INTSEMA occurred, the remaining time is obtained and the timer is stopped. Otherwise, 
the value of remainder will be zero (0).
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"  /* defines INTSEMA & TMRSEMA */
#include "cclock.h"           /* defines CLKTICK */

TICKS remainder;
CLKBLK *pclkblk;
SEMA sema;
SEMA *semalist[] =
{
   INTSEMA, TMRSEMA, 0
};
/* allocate a timer and start it */
pclkblk = KS_alloc_timer();
KS_start_timer(pclkblk,500/CLKTICK,0,TMRSEMA);

/* now wait for either the event or the timer */
sema = KS_waitm(semalist);
switch (sema)



{
   case INTSEMA:               /* event occurred */
      remainder = KS_inqtimer(pclkblk);
      KS_stop_timer(pclkblk);
      break

   case TMRSEMA:               /* timer occurred */
      remainder = 0;
      ... timer elapsed before envent occurred
          at this point both semaphores are back
          in a PENDING state and the timer is in
          an INACTIVE state.
      break:
}
... now do something with the remainder

SEE ALSO

KS_start_timer, KS_stop_timer



KS_ISRalloc

KS_ISRalloc
Allocate a Block of Memory from an isr

CLASS
ISR Services

SYNOPSIS

void  *KS_ISRalloc(MAP map)

DESCRIPTION
The KS_ISRalloc Kernel Service function allows an interrupt service routine to allocate a block of 
memory. The function locates the next free block in the given RTXC Memory Partition specified by map 
and returns its address to the calling interrupt service routine as the value of the function. If no block is 
available in the specified partition, a value of NULL is returned. Interrupts are disabled while the function 
is executing and a context switch during the kernel call is not possible.

RETURN VALUE
The function returns a pointer to the memory block if successful. If there are no available blocks in the 
given partition, the map is said to be empty and a NULL pointer (void *(0)) is returned.

EXAMPLE
In this example, a block of memory from one of the RTXC memory partitions, MAP1, is needed. If the 
allocation is successful, the pointer to the block is to be stored in a character pointer p. If there are no free
blocks in the partition, the interrupt service routine must take the appropriate action.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cpart.h"         /* defines MAP1 */

char *p;

if ( (p = (char *)KS_ISRalloc(MAP1)) == NULL)
{
   ... Deal with no memory available
}
else
{
   ... Allocation was successful
}

SEE ALSO



KS_ISRexit, KS_ISRsignal, KS_ISRtick



KS_ISRexit

KS_ISRexit
Exit an Interrupt Service Routine

CLASS
ISR Services

SYNOPSIS

FRAME *KS_ISRexit(FRAME *frame, SEMA sema)

DESCRIPTION
The KS_ISRexit service provides a generalized means of terminating an interrupt service routine and 
informing RTXC of the event. The function requires that the pointer to the interrupted context be passed 
to RTXC. Optionally, a semaphore may also be signalled as part of this function. If no semaphore is to be 
signalled, the semaphore identifier should be passed as a value of zero (0).

RETURN VALUE
The service returns a pointer to the stack frame of the highest priority task in the Ready List. The stack 
frame pointer is used by the ISR epilogue to restore the context of the highest priority task.

EXAMPLE
When a Push Button is pressed it causes an interrupt. Upon acknowledgement of the request, the Current
Task is interrupted and CPU control is granted to the associated Interrupt Service Routine (ISR). After 
clearing the source of the interrupt, the device servicing routine needs to inform RTXC of the Push Button 
event by exiting the ISR and signalling semaphore PBISEMA. The value returned by the function points to
the context of the highest priority task in the Ready List.
/* Interrupt service example - Push Button input
*/
/* C level Push Button device service function */
FRAME *pbic(FRAME *frame)
{
... clear the interrupt source

return(KS_ISRexit(frame, PBISEMA));
}

SEE ALSO

KS_ISRsignal, KS_ISRtick



KS_ISRsignal

KS_ISRsignal
Signal Semaphore from an
Interrupt Service Routine

CLASS
ISR Services

SYNOPSIS

void KS_ISRsignal(SEMA sema)

DESCRIPTION
The KS_ISRsignal provides a means by which an interrupt service routine may signal a semaphore. This 
function supplements the semaphore signalling capability of KS_ISRexit() and is intended for use when 
the ISR needs to signal more than one semaphore.

RETURN VALUE
The service returns no value. 

EXAMPLE
In an interrupt service routine for a full duplex serial I/O driver, it is possible that two events can be 
detected during the course of servicing the UART device. If such a situation occurs, signal both.
FRAME *uartc(FRAME *frame)
{
   /* test source of interrupt */
   if (USART_STATUS == TX_BUFF_EMPTY)
   {
      ... Output: clear output interrupt here
      /* now see if input also happened */
      if (USART_STATUS == RX_READY)
      {
         /* input is also READY */
         ... read character and clear interrupt
         /* signal serial input semaphore */
         KS_ISRsignal(SERINSEMA);
      }
      /* exit and signal serial output semaphore */
      return(KS_ISRexit(frame, SEROUTSEMA));
   }
   else  /* if here it is USART input */
   {
      ... Input: read character and clear interrupt
      /* now see if output happened
      if (USART_STATUS == TX_BUFF_EMPTY)
      {
         /* output DONE */



         ... clear interrupt source
         KS_ISRsignal(SEROUTSEMA); /*signal event*/
      }
      /* signal input semaphore and end ISR */
      return(KS_ISRexit(frame,SERINSEMA));
   }
}

SEE ALSO

KS_ISRexit, KS_ISRtick



KS_ISRtick

KS_ISRtick
Process a Clock TICK Interrupt

CLASS
ISR Services

SYNOPSIS

int KS_ISRtick(void)

DESCRIPTION
The KS_ISRtick service provides a means of performing all of the RTXC dependent functions necessary 
when a clock TICK interrupt occurs. 

RETURN VALUE
The kernel service returns an integer value of 1 if the function determines that a timer has expired and 
needs to be signalled. 

It returns a value of 0 if no timer expired as a result of the clock TICK.

EXAMPLE
A model for the device servicing function of a clock driver is the only place where KS_ISRtick() should 
appear.
FRAME *clkc(FRAME *frame)
{
... clear device specific interrupt

... do any application specific processing

if (KS_ISRtick()) /* process the clock tick */
   /* signal semaphore if timer expired */
   return(KS_ISRexit(frame, TICKSEMA));
else
   /* otherwise, just return from interrupt */
   return(KS_ISRexit(frame, (SEMA)0));
}

SEE ALSO

KS_ISRexit, KS_ISTsignal



KS_lock

KS_lock
Request Exclusive Use of a Resource

CLASS
Resource Management

SYNOPSIS

KSRC  KS_lock(RESOURCE resource)

DESCRIPTION
The KS_lock service provides a generalized means of requesting or managing a logical resource during a
period of exclusive use. A logical resource can be anything, such as a shared database, non-reentrant 
code (i.e., BIOS/DOS), math coprocessor or emulator library, etc. Nested lock requests by the current 
owner are supported. However, unlock requests by non-owners are ignored.

If the specified resource is idle, it is marked BUSY to prevent other tasks from using it, and a function 
value of RC_GOOD is returned. If the resource is owned at the time of request, the calling task resumes 
with a function value of RC_BUSY being returned from KS_lock.

RETURN VALUE
The kernel service returns a value of RC_GOOD if the lock attempt succeeds for the initial lock. A value of
RC_NESTED is returned if the resource is already owned by the caller.

It returns a value of RC_BUSY if the specified resource is owned by another task.

EXAMPLE
The current task wants to output a system status report to the system printer without interspersed 
messages from other system monitors. When the report is finished, exclusive use of the printer is to be 
released.

If the printer is unavailable, perform a code segment to handle the situation.

In this example it is known that the current task does not own the resource prior to the call to KS_lock.



#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */

if (KS_lock(PRINTER) == RC_GOOD)
{
   ... PRINTER is now locked for exclusive use
       during printing of status report

   KS_unlock(PRINTER);   /* release PRINTER lock */
}
else
{
...PRINTER is locked by another task. Deal with it.
}

SEE ALSO
KS_lockt, KS_lockw, KS_unlock



KS_lockt

KS_lockt
Request Exclusive Use of a Resource,

WAit for Limited Time if BUSY

CLASS
Resource Management

SYNOPSIS

KSRC  KS_lockt(RESOURCE resource,
               TICKS timeout)

DESCRIPTION
KS_lockt operates like the KS_lockw kernel service except that it limits the duration of the waiting period 
should the object resource be busy. It provides a generalized means of requesting or managing a logical 
resource to be used for exclusive use. A logical resource can be anything, such as a shared database, 
non-reentrant code (i.e., BIOS/DOS), math coprocessor or emulator library, etc. Nested lock requests by 
the current owner are supported. However, unlock requests by non-owners are ignored.

If the specified resource is inactive, it is marked BUSY to prevent other tasks from using it. If the resource 
is BUSY at the time of request, the calling task is blocked and removed from the READY List until the task
currently using the resource unlocks it. A timeout timer is started with a duration as specified by the 
timeout argument in the calling sequence.

RETURN VALUE
If the calling task already owns the resource, a timeout timer is not started and a value of RC_NESTED is 
returned immediately.

If the ownership of the resource is gained before the timeout expires, the function returns a value of 
RC_GOOD.

If the timeout occurs, the function returns a value of RC_TIMEOUT.

EXAMPLE
The current task wants to output a system status report to the system printer without interspersed 
messages from other system monitors. When the report is finished, exclusive use of the printer is to be 
released.

If the printer is unavailable for a period of 5 seconds, perform a code segment to handle the situation and 
then try it again.



#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */
#include "cclock.h"

/* lock the Printer resource. */
/* Limit WAIT to 5 sec. */
while ((KS_lockt(PRINTER, 5000/CLKTICK)) == RC_TIMEOUT)
{
   ... Resource unavailable. Timeout occurred.
}
...PRINTER resource is now locked and no other
   task may gain access to it. Print report.

KS_unlock(PRINTER);     /* release PRINTER lock */

SEE ALSO
KS_lock, KS_lockw, KS_unlock



KS_lockw

KS_lockw
Request Exclusive Use of a Resource,

 Wait if BUSY

CLASS
Resource Management

SYNOPSIS

KSRC  KS_lockw(RESOURCE resource)

DESCRIPTION
The KS_lockw service provides a generalized means of requesting or managing    exclusive use of a 
logical resource. A logical resource can be anything, such as a shared database, non-reentrant code (i.e., 
BIOS/DOS), math coprocessor or emulator library, etc. Nested lock requests by the current owner are 
supported. However, unlock requests by non-owners are ignored.

If the specified resource is idle, it is marked BUSY to prevent other tasks from using it. If the resource is 
BUSY at the time of the request and is not owned by the calling task, the calling task is blocked and 
removed from the READY List until the task currently using the resource unlocks it.

RETURN VALUE
The function returns a value of RC_GOOD for the initial KS_lock call by a task.

A value of RC_NESTED is returned if the calling task already owns the resource.

EXAMPLE
The current task wants to output a system status report to the system printer without interspersed 
messages from other system monitors. When the report is finished, exclusive use of the printer is to be 
released.

If the printer is busy, do not proceed. Wait for it to become available.

#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cres.h"          /* defines PRINTER */

KS_lockw(PRINTER);

...PRINTER resource is now locked and no other task
   may gain access to it

KS_unlock(PRINTER); /* release PRINTER lock */

SEE ALSO



KS_lock, KS_lockt, KS_unlock



KS_nop

KS_nop
No Operation

CLASS
Special

SYNOPSIS

void KS_nop(void);

DESCRIPTION
The KS_nop function is included in the set of kernel services for completeness.    It can serve as a means 
of benchmarking performance for entry into and exit from the kernel.

RETURN VALUE
The function returns no value.

EXAMPLE
Perform 10,000 iterations of the KS_nop kernel service and compute the elapsed time of those calls in 
units of system clock ticks.
#include "rtxcapi.h"       /* RTXC KS prototypes */

int i;
TICKS timestamp, et;

KS_elapse(&timestamp);        /* dummy for setup */
for (i = 0; i < 10000; i++) 
   KS_nop();

et = KS_elapse(&timestamp); /* read elapsed time */
                            /* after 10000 loops */
printf("10000 KS_nops in %d ticks\n",et);



KS_pend

KS_pend
Force a DONE Semaphore

 to a PENDING State

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_pend(SEMA sema)

DESCRIPTION
KS_pend forces the state of a semaphore to PENDING if the state is currently DONE. If it is WAITING, no
change is made. Normally, the state of a semaphore is automatically maintained by RTXC. However, 
there may be a requirement to wait on some event unconditionally, regardless of whether it has previously
occurred. In other words, disregard prior occurrences of the event and wait for the next instance of the 
event. Forcing the semaphore associated with the event to a PENDING state, followed closely by a call to
an event wait function, will achieve that result.

RETURN VALUE
The function returns no value.

EXAMPLE
Force semaphore SWITCH to the PENDING state before waiting on the event associated with it.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"   /* defines SWITCH semaphore */

KS_pend(SWITCH);      /* force semaphore PENDING */
KS_wait(SWITCH);      /* wait on change-of-state */

SEE ALSO

KS_wait, KS_waitm, KS_waitt, KS_pendm



KS_pendm

KS_pendm
Force Multiple DONE Semaphores

 to PENDING State

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_pendm(SEMA *semalist)

DESCRIPTION
The KS_pendm function performs the same operation as done by the KS_pend function except that it 
operates on a list containing one or more semaphores. All semaphores in the list which are in a DONE 
state will be set to a PENDING state. This directive reduces the number of kernel calls when multiple 
semaphores must be set to PENDING.

A semaphore list is a null terminated array of semaphore identifiers.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task needs to set the semaphores associated with the change-of-state events on two 
pushbuttons. The semaphores are named SWITCH1 and SWITCH2. After forcing the PENDING state, 
the task is to wait for either event to occur.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"  /* defines SWITCH1 & SWITCH2 */

SEMA semalist[] =
{
   SWITCH1,
   SWITCH2,
   0                 /* list terminator */
};

SEMA event;

KS_pendm(semalist);   /* forget switch histories */
event = KS_waitm(semalist);   /* wait for either */
                             /* switch to change */

SEE ALSO



KS_pend, KS_wait, KS_waitm, KS_waitt



KS_purgequeue

KS_purgequeue
Reset Queue to Empty State

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_purgequeue(QUEUE queue)

DESCRIPTION
The KS_purgequeue service forces a queue to a known virgin condition (empty, no waiting tasks for any 
full/empty conditions).    Note, any tasks waiting to enqueue (due to Queue_Full condition) or dequeue 
(due to Queue_Empty condition) will be at risk.

RETURN VALUE
The function returns no value.

EXAMPLE
Two tasks, PUTTER and GETTER, need to begin execution knowing that queue DATAQ is empty. Before 
starting the tasks, DATAQ is cleared.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"    /* defines PUTTER & GETTER */
#include "cqueue.h"             /* defines DATAQ */

KS_purgequeue(DATAQ);    /* reset DATAQ to empty */

KS_execute(PUTTER);       /* start producer task */
KS_execute(GETTER);       /* start consumer task */

SEE ALSO

KS_dequeue, KS_dequeuet, KS_dequeuew, KS_enqueue, 
KS_enqueuet, KS_enqueuew



KS_receive

KS_receive
Receive a Message

CLASS
Intertask Communication and Synchronization

SYNOPSIS

RTXCMSG *KS_receive(MBOX mailbox, TASK task)

DESCRIPTION
The KS_receive function fetches messages from a specified mailbox and returns the pointer to the 
message. If there are no messages in the mailbox, the function returns a NULL pointer to indicate the 
empty condition.

If the TASK argument contains a value of zero, the first message in the mailbox, from any sender, is 
returned.    Because the messages are placed in the mailbox in priority order as specified by the sender, 
they are processed in the same sequence.

It is possible, however, to override the strict priority processing. If the receiving task specifies a non-zero 
task number in the calling sequence, the first message in the mailbox from that task will be returned.

RETURN VALUE
The function returns a pointer to message if a message was received.

If no message was available, the function returns a NULL pointer.

EXAMPLE
A task wants to receive the next message in its mailbox, MYMAIL, from any sender. If a message is 
received, it will be processed and at the conclusion of processing, the sending task will be notified. If no 
message is in the mailbox, the task will execute special code to deal with the situation.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"            /* defines MYMAIL  */
#include "rtxstruc.h"         /* defines RTXCMSG */
struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;
MYMSG *msg;

/* receive next message from any task */
msg = (MYMSG *)KS_receive(MYMAIL,(TASK)0);
if (msg != (MYMSG *)0 )
{
   ... message received, process it ...



   KS_ack(msg); /* acknowledge message processed */
}
else {
        ... Deal with no message available
     }

SEE ALSO

KS_ack, KS_receivet, KS_receivew, KS_send, KS_sendt, KS_sendw



KS_receivet

KS_receivet
Receive a Message,

Wait for Limited Time
if Mailbox EmptY

CLASS
Intertask Communication and Synchronization

SYNOPSIS

RTXCMSG *KS_receivet(MBOX mailbox, TASK task,
                     TICKS timeout, KSRC *ret_code)

DESCRIPTION
The KS_receivet function fetches messages from a specified mailbox and returns the pointer to the 
message. If there are no messages in the mailbox, the requesting task is blocked and removed from the 
READY List. The task will remain blocked until another task sends a message to the specified mailbox or 
until the expiration of a period of time defined by the timeout argument in the calling sequence.

When either the next message is sent to the mailbox, or the timeout occurs, the waiting receiver task will 
be unblocked and inserted into the READY List. The function also returns a value indicative of how it 
processed the request. This value is stored in the address pointed to by the ret_code parameter in the 
calling arguments. It is useful in determining which event caused the resumption of the requesting task.

If the task argument contains a value of zero, the first message in the mailbox, from any sender, is 
returned.    Because the messages are placed in the mailbox in priority order as specified by the sender, 
they are processed in the same sequence. It is possible, however, to override the strict priority 
processing. If the receiving task specifies a non-zero task number in the calling sequence, the first 
message in the mailbox from that task will be returned.

If a message was received, the task is resumed with a pointer to the message returned as the value of 
the function. If the timeout occurred, the function returns a NULL pointer as the value of the function and 
stores the value RC_TIMEOUT via ret_code.

RETURN VALUE
The function returns a pointer to the received message if one was found in the mailbox. The value 
RC_GOOD is also stored via ret_code.

If the timeout timer expires before there is any mail sent to the mailbox, the function returns a NULL 
pointer and stores the value RC_TIMEOUT via ret_code.

EXAMPLE



The current task is to receive the next message from its mailbox, MYMAIL. If there is no mail in the 
mailbox, the task is to wait for a period of up to 500 msec for something to arrive. If the 500 msec period 
elapses without receipt of mail, the task is to resume and perform a special code segment to handle the 
timeout situation.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"            /* defines MYMAIL  */
#include "cclock.h"           /* defines CLKTICK */
#include "rtxstruc.h"         /* defines RTXCMSG */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;
MYMSG *msg;
TICKS timeout = 500/CLKTICK;
KSRC ccode;

/* receive next message from any task */
if ( (msg = (MYMSG *)KS_receivet(MYMAIL,
                        (TASK)0,
                        timeout,
                        &ccode) == (RTXCMSG *)0 )
{
   ... timeout occurred or there were no timer
       blocks available. Deal with it here.
}
else
{
   ... message received, process it.

   KS_ack(msg);               /* signal sender */
}

SEE ALSO

KS_ack, KS_receive, KS_receivew, KS_send, KS_sendt, KS_sendw



KS_receivew

KS_receivew
Receive a Message,

 Wait if Mailbox Empty

CLASS
Intertask Communication and Synchronization

SYNOPSIS

RTXCMSG *KS_receivew(MBOX mailbox, TASK task)

DESCRIPTION
The KS_receivew function fetches messages from a specified mailbox and returns the pointer to the 
message. If there are no messages in the mailbox, the requesting task is blocked and removed from the 
READY List. The task will remain blocked until another task sends a message to the specified mailbox. 
When the next message is sent to the mailbox, the waiting receiver task will be unblocked and inserted 
into the READY List. The function will return a pointer to the received message. 

With a zero task number in the calling sequence, the first message in the mailbox from any sender is 
returned.    Because the messages are placed in the mailbox in priority order as specified by the sender, 
they are processed in the same sequence. It is possible, however, to override the strict priority 
processing. If the receiving task specifies a non-zero task number in the calling sequence, the first 
message in the mailbox from that task will be returned.

RETURN VALUE
The function returns a pointer to the received message.

EXAMPLE
The task is to receive the next available message from its mailbox MYMAIL. If there is no mail available, 
the task is to wait until a message is sent to the mailbox.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cmbox.h"            /* defines MYMAIL  */
#include "rtxstruct.h"        /* defines RTXCMSG */

struct{
   RTXCMSG msghdr;  /* Message header (required) */
   char data[10];       /* start of message body */
} MYMSG;
MYMSG *msg;

/* receive next message from any task */
msg = (MYMSG *)KS_receivew(MYMAIL, (TASK)0);



SEE ALSO

KS_ack, KS_receive, KS_receivet, KS_send, KS_sendt, KS_sendw



KS_restart_timer

KS_restart_timer
Restart an Active Timer

CLASS
Timer Management

SYNOPSIS

KSRC KS_restart_timer(CLKBLK *timer,
                      TICKS period,
                      TICKS cycle_period)

DESCRIPTION
The purpose of KS_restart_timer is to change the initial or recycle period of an active timer. The function 
is equivalent to a KS_stop_timer function call followed by a KS_start_timer function. KS_restart_timer 
combines both operations into a single kernel service. It does not affect the status of a PENDING 
semaphore associated with the timed event. If the associated semaphore is in a DONE state, however, it 
is set PENDING.

RETURN VALUE
The function returns a value of RC_GOOD if the timer was restarted without a problem.

A value of RC_TIMER_ILLEGAL is returned if the timer does not have a valid clock block.

EXAMPLE
Having previously allocated a timer block, a task starts a one-shot timer with a duration of 250 msec and 
associates the expiration of the time with semaphore SWITCH. During the timer's initial period, it restarts 
it as a 1 second cyclic timer with a new initial period of 1500 msec.



#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "cclock.h"           /* defines CLKTICK */
#include "csema.h"             /* defines SWITCH */

CLKBLK *timer;

/* allocate timer block for task */
timer = KS_alloc_timer();

/* start a one-shot timer of 250 msec */
KS_start_timer(timer,250/CLKTICK,(TICKS)0,SWITCH);

... do some processing 

/* then restart the timer as a 1-sec cyclic */
/* timer following a 1.5 second delay */
KS_restart_timer(timer, 1500/CLKTICK,
                        1000/CLKTICK);

SEE ALSO
KS_alloc_timer, KS_free_timer, KS_start_timer, KS_stop_timer



KS_resume

KS_resume
Resume a Task

CLASS
Task Management

SYNOPSIS

void KS_resume(TASK task)

DESCRIPTION
KS_resume clears the suspended state of a task caused by a prior KS_suspend operation.    If the 
resumed task becomes runnable it is inserted into the READY List at a position dependent upon its 
priority. If the resumed task is of higher priority than the requesting task, a context switch is performed. 
Otherwise, control is returned to the requesting task.

RETURN VALUE
The function returns no value.

EXAMPLE
A task suspends the analog input task, AIREADER, performs some operations, and then resumes the 
analog input task.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"           /* defines AIREADER */

KS_suspend(AIREADER);   /* suspend task AIREADER */

... perform some operations

KS_resume(AIREADER);     /* resume task AIREADER */

SEE ALSO

KS_suspend



KS_send

KS_send
Send a Message Asynchronously

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_send(MBOX mailbox, RTXCMSG *msghdr, PRIORITY priority,
SEMA sema)

DESCRIPTION
KS_send sends a message asynchronously to the specified mailbox. There may or may not be a task 
waiting to receive the message from the specified mailbox. If there is no waiting receiver task, the 
message is inserted into the mailbox at a position with respect to the priority given in the kernel service 
function call.

If there is a receiving task waiting to receive a message, the message is passed directly to the receiver 
task. The receiver task is then unblocked and, if found to be runnable, is placed into the READY List at a 
position dependent on its priority.

If the receiving task is of higher priority than the sending task, a task switch is performed.

If the receiving task is of lower priority than the sending task, control is returned to the sending task.

RETURN VALUE
The function returns no value.

EXAMPLE
Send a message asynchronously at priority 4 to mailbox MAILBOX3. The message is in a structure 
named mymessage. Associate the semaphore GRAFSEMA with the completion of message processing. 
After sending the message, perform some other operations and then wait for the completion of processing
of the message.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"           /* defines GRAFSEMA */
#include "cmbox.h"           /* defines MAILBOX3 */
#include "rtxstruc.h"        /* defines RTXCMSG  */

struct {
   RTXCMSG msghdr;  /* Message header (required) */
   int command;         /* start of message body */
   char data[10];
} mymessage;



/* send msg to MAILBOX3 at a priority of 4 and */
/* associate semaphore GRAFSEMA with the message */
KS_send(MAILBOX3, &mymessage.msghdr,
        (PRIORITY)4, GRAFSEMA);
... do some more processing and then wait for
    the event associated with completion of
    message processing

KS_wait(GRAFSEMA);

SEE ALSO

KS_receive, KS_receivet, KS_receivew, KS_sendt, KS_sendw



KS_sendt

KS_sendt
Send a Message Synchronously

With Time Limited
Wait For Acknowledgement

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_sendt(MBOX mailbox, RTXCMSG *msghdr,
              PRIORITY priority, SEMA sema,
              TICKS timeout)

DESCRIPTION
KS_sendt sends a message synchronously to the specified mailbox. There may or may not be a task 
waiting to receive the message from the specified mailbox. If there is no waiting receiver task, the 
message is inserted into the mailbox at a position with respect to the message priority given in the kernel 
service function call.

The sending task is removed from the READY List and blocked by a wait on the message semaphore 
specified in the function call. Simultaneously, a timeout timer is established to limit the duration of the wait
to that amount of time specified by the timeout argument in the function call. A duration of zero (0) will not 
cause a timer to be started and is thus equivalent to the kernel service KS_sendw.

If there is a receiving task waiting to receive a message, the message is passed to the receiver. The 
receiver task is then unblocked and, if found to be runnable, is placed into the READY List at a position 
dependent on its priority.

The sending task will resume operation when it receives either the acknowledgement that the receiver 
task has completed processing the message or the expiration of the timeout period occurs. The function 
returns a value indicative of the form of completion.

RETURN VALUE
The function returns a value of RC_GOOD when the message is successfully sent and processed within 
the specified timeout duration.

If the timeout occurs, the function returns a value of RC_TIMEOUT.

EXAMPLE
The task synchronously sends a message located in the structure mymessage to the mailbox MAILBOX3.
The priority of the message is to be 4 and the completion event is associated with semaphore 



GRAFSEMA. A timeout period of 250 msec is to be used for the duration of the waiting period. If the wait 
for acknowledgement of processing exceeds 250 msec, handle the situation with a special code segment.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines GRAFSEMA */
#include "cmbox.h"         /* defines MAILBOX3 */
#include "cclock.h"        /* defines CLKTICK  */
#include "rtxstruc.h"      /* defines RTXCMSG  */

TICKS timeout = 250/CLKTICK;

struct {
   RTXCMSG msghdr;  /* Message header (required) */
   int command;     /* start of message body */
   char data[10];
} mymessage;

/* send message msg synchronously to MAILBOX3 at */
/* priority 4. Associate semaphore GRAFSEMA with */
/* the message. Wait up to 250 ms for message to */
/* be processed */
if (KS_sendt(MAILBOX3, &mymessage.msghdr,
             (PRIORITY)4, GRAFSEMA,
              timeout) == RC_GOOD)
{
   ... message sent and processed successfully
}
else
{
   ... message not completed within timeout period
}

SEE ALSO

KS_ack, KS_receive, KS_receivet, KS_receivew, KS_send, 
KS_sendw



KS_sendw

KS_sendw
Send a Message Synchronously,

Wait for Acknowledgement

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_sendw(MBOX mailbox, RTXCMSG *msghdr,
              PRIORITY priority, SEMA sema)

DESCRIPTION
KS_sendw sends a message synchronously to the specified mailbox. There may or may not be a task 
waiting to receive the message from the specified mailbox. If there is no waiting receiver task, the 
message is inserted into the mailbox at a position with respect to the priority given in the kernel service 
function call.

The sending task is removed from the READY List and blocked by a wait on the message semaphore 
specified in the function call. If there is a receiving task waiting to receive a message, the message is 
passed to the receiver task. The receiver task is then unblocked and, if found to be runnable, is placed 
into the READY List at a position dependent on its priority.

The sending task will resume operation when it receives the signal that the receiver task has completed 
processing the message.

RETURN VALUE
The function returns no value.

EXAMPLE
The task synchronously sends a message located in the structure mymessage to the mailbox MAILBOX3.
The priority of the message is to be 4, and the completion event is associated with semaphore 
GRAFSEMA. After sending the message, the task waits for the signal that the message has been 
processed. 
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"         /* defines GRAFSEMA */
#include "cmbox.h"         /* defines MAILBOX3 */
#include "rtxstruc.h"      /* defines RTXCMSG  */
struct {
   RTXCMSG msghdr;  /* Message header (required) */
   int command;     /* start of message body */
   char data[10];
} mymessage;



/* send message msg synchronously to MAILBOX3 at */
/* priority 4. Associate semaphore GRAFSEMA with */
/* message. Wait for the message to be processed */
KS_sendw(MAILBOX3, &mymessage.msghdr,
         (PRIORITY)4, GRAFSEMA);

SEE ALSO

KS_receive, KS_receivet, KS_receivew, KS_send, KS_sendt



KS_signal

KS_signal
Signal a Semaphore

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_signal(SEMA sema)

DESCRIPTION
KS_signal sets the state of a specified semaphore to DONE.    If the semaphore is currently in a WAIT 
state, the Event Wait state of the waiting task is removed, and the semaphore is set PENDING.    If the 
waiting task becomes runnable, it is inserted into the READY List at a position dependent on its current 
priority. A context switch will occur if the task which was waiting on the signalled semaphore is of higher 
priority than the signalling task.

If the state of the semaphore was either PENDING or DONE, the semaphore is placed in the DONE state,
and the current task is resumed following the KS_signal function call.

RETURN VALUE
The function returns a value of RC_MISSED_EVENT if the semaphore is already in the DONE state.

EXAMPLE
The task signals semaphore SWITCH to indicate that the associated event has occurred.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"       /* defines SWITCH */

KS_signal(SWITCH);       /* signal sema SWITCH */

SEE ALSO

KS_pend, KS_pendm, KS_signalm, KS_wait, KS_waitm, KS_waitt



KS_signalm

KS_signalm
Signal Multiple Semaphores

CLASS
Intertask Communication and Synchronization

SYNOPSIS

void KS_signalm(SEMA *semalist)

DESCRIPTION
The KS_signal functions performs like the KS_signal kernel service except that it signals all semaphores 
found in a list of semaphores provided as an argument to the function. The list must be null terminated. Its
intent is to minimize RTXC kernel calls and context switching when multiple semaphores need to be 
signalled as one logical operation.

Unlike KS_signal, KS_signalm does not return a value when signalling a semaphore which is already in a 
DONE state.

RETURN VALUE
The function returns no value.

EXAMPLE
The task signals semaphores ISWITCH and RESTART that a particular event has occurred.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "csema.h"   /* defines ISWITCH, RESTART */

SEMA semalist[] =
{
   ISWITCH,
   RESTART,
   0                     /* null terminated list */
};

KS_signalm(semalist);

SEE ALSO

KS_pend, KS_pendm, KS_signalm, KS_wait, KS_waitm, KS_waitt



KS_start_timer

KS_start_timer
Start a Timer

CLASS
Timer Management

SYNOPSIS

CLKBLK  *KS_start_timer(
                    CLKBLK *timer,
                    TICKS initial_period,
                    TICKS cycle_time,
                    SEMA sema)

DESCRIPTION
The KS_start_timer function starts a timer whose handle is given in the argument list to the function. The 
timer can be cyclic or one-shot. A one-shot timer has an initial_period argument greater than zero (>0) 
and a cycle_time argument value of zero (0). A cyclic timer will have both the initial_period and cycle_time
argument values greater than zero (>0). The duration of the timer's initial_period and the cycle_time 
period are specified in terms of the system clock ticks.

The timer expiration event is associated with a semaphore as defined in the arguments of the function 
call. At the time of the function call, the semaphore is forced to a PENDING state so that the task may 
subsequently call a blocking function such as KS_wait to await the event. After the timer is inserted into 
the Active Timer List, the current task is resumed.

A NULL pointer can be passed in place of the CLKBLK pointer and the function will automatically assign 
the timer block and return a pointer to the timer. If no timer blocks are available, the function returns a 
NULL pointer and the task will have to deal with that situation with special code.

Two special features of the KS_start_timer function are as follows. If the function is called with an 
initial_period of zero (0) and a cycle_time greater than zero (>0), the associated semaphore will be 
signaled and a cyclic timer will be started. When KS_start_timer is called with both the initial_period and 
cycle_time equal to zero (0), the only action taken is that the associated semaphore will be signaled.

RETURN VALUE
The function returns the pointer to the timer block used for the timer.

The function returns a NULL pointer if an attempt was made to do an automatic allocation of a timer block
and there were none available.

EXAMPLE



A task wants to start a timer using a previously allocated timer block timer1. The timer is to have an initial 
period of 150 msec and a cyclic period of 100 msec. The time expiration event is associated with 
semaphore SEMA6. After starting the timer, the task waits for the timer to expire.

After the first timer's initial period expires, a second timer having only an initial period of 150 msec is also 
started but the timer block is to be automatically allocated. The second timer is associated with 
semaphore SEMA7. After the second timer is started, the task is to wait for either timer to expire.

#include "rtxcapi.h"     /* RTXC KS prototypes */
#include "cclock.h"      /* defines CLKTICK */
#include "csema.h"       /* defines SEMA6, SEMA7 */

SEMA semalist[] =
{
   SEMA6, SEMA7,
   0                     /* null terminated list */
};
SEMA sema;
CLKBLK *timer1, *timer2;

timer1 = KS_alloc_timer();

/* start timer with initial period of 150 ms and */
/* cyclic period of 100 ms. */
KS_start_timer(timer1, 150/CLKTICK, 100/CLKTICK, SEMA6);

KS_wait(SEMA6);     /* wait for timer to expire */

... Do some more processing, then

/* start one shot timer with duration of 150 ms */
/* have system automatically allocate timer block*/
timer2 = KS_start_timer((CLKBLK *)0, 150/CLKTICK, (TICKS)0, SEMA7);
if (timer2 == (CLKBLK *(0)))
{
   ... No timer blocks available. Deal with it here
}
else
{
   sema = KS_waitm(semalist); /* wait for either */
                              /* timer to expire */
}

SEE ALSO
KS_alloc_timer, KS_restart_timer, KS_stop_timer



KS_stop_timer

KS_stop_timer
Stop an Active Timer

CLASS
Timer Management

SYNOPSIS

KSRC  KS_stop_timer(CLKBLK *timer)

DESCRIPTION
The KS_stop_timer service function stops the specified timer, the pointer to which is provided as the 
function argument, and removes it from the list of active timers.

NOTE: A task may stop only those timers which it has initiated via a prior KS_start_timer() or 
KS_restart_timer().

RETURN VALUE
If the timer was active when stopped, the function returns a value of RC_GOOD.

If timer was inactive, the function returns a value of RC_TIMER_INACTIVE.

If the task attempts to stop a timer it does not own, the function returns a value of RC_TIMER_ILLEGAL.

EXAMPLE
A task allocates a timer block and stores the handle to it in pointer p. If there is a timer block available, the
task needs to wait no longer than 250 msec for the occurrence of either of two switch closure events 
associated with semaphores SWITCH1 and SWITCH2. After starting a 250 msec one-shot timer, the task 
waits for the occurrence of either event or the expiration of the timer. The timer expiration is associated 
with semaphore WATCHDOG. If the task continues as a result of a switch closure, the task is to stop the 
one-shot timer and free it.

If there are no timer blocks available when attempting to assign pointer p, the task must execute special 
code to deal with the situation.



#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"
#include "cclock.h"
#include "csema.h"

CLKBLK *p;
TICKS period = 0;          /* one-shot timer */
TICKS initial = 250/CLKTICK;

SEMA semalist[] = {
   WATCHDOG,
   SWITCH1,
   SWITCH2,
   0                      /* list terminator */
}

if ((p = KS_alloc_timer()) != (CLKBLK)0)
{
   KS_start_timer(p, initial, period, WATCHDOG);

   sema = KS_waitm(semalist); /* wait for switch */
   if (sema != WATCHDOG)
      KS_stop_timer(p);       /* stop timer */

   ... continue processing
}
else
{
   ... no timer available. Deal with it here
}

SEE ALSO
KS_alloc_timer, KS_restart_timer, KS_start_timer



KS_suspend

KS_suspend
Suspend a Task

CLASS
Task Management

SYNOPSIS

void KS_suspend(TASK task)

DESCRIPTION
The KS_suspend directive causes the specified task to be placed into a suspended state and removed 
from the READY List.    The suspended state will remain in force until it is removed by a KS_resume or 
KS_execute kernel service function invoked by another task. A task may suspend itself.    An argument 
value of 0 indicates the SELF task.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task suspends another task, LKDETECT, and then suspend itself.
#include "rtxcapi.h"      /* RTXC KS prototypes */
#include "ctask.h"      /* defines LKDETECT */

KS_suspend(LKDETECT);   /* suspend LKDETECT task */

KS_suspend(TASK(0));    /* suspend self */

SEE ALSO

KS_resume



KS_terminate

KS_terminate
Terminate a Task

CLASS
Task Management

SYNOPSIS

void KS_terminate(TASK task)

DESCRIPTION
KS_terminate stops a task's operation by removing the task from the READY List if it is runnable and by 
setting its status to INACTIVE. A task number of zero (0) indicates self-termination. This is the normal 
mode of use for this kernel service. While it is possible to terminate another task, such usage should only 
be done under circumstances where the terminator knows that the act will not jeopardize system integrity.

In all cases following self-termination, the next highest priority task in a runnable state will execute next. If 
a task has an active timeout timer, it is stopped and removed from the list of active timers. If the task is a 
waiter on some kernel object, it will be removed from that object's list of waiters. If the task's Task Control 
Block was dynamically allocated, the TCB is returned to the Free TCB Pool.

WARNING: Other than the items mentioned above, tasks that are currently using, or have allocated, 
kernel objects are not "cleaned up" by the termination process. It is the programmer's responsibility to 
ensure that all such system elements are released to the system prior to the act of termination.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task terminates another task, TASKBX, and then terminates itself.
#include "rtxcapi.h"       /* RTXC KS prototypes */
#include "ctask.h"             /* defines TASKBX */
#defines SELFTASK (TASK(0)) /* defines this task */

KS_terminate(TASKBX);   /* terminate task TASKBX */

KS_terminate(SELFTASK);  /* now terminate self */

SEE ALSO

KS_execute





KS_unblock

KS_unblock
UNBLOCK a Range of Tasks

CLASS
Task Management

SYNOPSIS

void KS_unblock(TASK start, TASK end)

DESCRIPTION
The KS_unblock directive is the opposite of the KS_block kernel service function. It may be used to 
enable the operation of one or more tasks, the range of which is specified by the starting and ending task 
numbers in the function arguments.    The range of tasks to be unblocked begins with the specified start 
task and includes the specified end task.    If the specified end task of the range is the current task (end 
task = 0), the unblocking action will range from the start task up to, but not including the current task.

RETURN VALUE
The function returns no value.

EXAMPLE
The current task unblocks tasks 5 through 10 inclusively.
#include "rtxcapi.h"       /* RTXC KS prototypes */

KS_unblock(5,10);/* remove blocks for tasks 5-10 */

SEE ALSO

KS_block



KS_unlock

KS_unlock
Release Logical Resource

CLASS
Resource Management

SYNOPSIS

KSRC  KS_unlock(RESOURCE resource)

DESCRIPTION
The KS_unlock kernel service is the opposite of the KS_lock function.    KS_unlock releases a logical 
resource previously locked by the requesting task.    Only the task which locked the resource, i.e., the 
resource "owner",    may unlock that resource. Unlocking a resource which is not currently owned causes 
no change in the state of the resource and a value of RC_BUSY will be returned to the caller.

Normally, locks and unlocks of a resource will occur in pairs. That is, for each KS_lock of a specific 
resource, there will be a corresponding KS_unlock of that same resource by the locking task. However, 
RTXC supports nested locks of a resource by the same task. Nesting occurs when a resource owner 
locks the resource again, be it deliberately or inadvertently. When unnesting, the owner task must issue 
the same number of unlocks as there were locks in the nest. A return value of RC_NESTED will be 
returned until the resource is no longer nested. Then, RC_GOOD will be returned for the final unlock.

RETURN VALUE
The function returns RC_GOOD when the resource is unlocked and not nested.
A value of RC_NESTED is returned if the calling task has not issued as many unlocks as locks.

If the resource is owned by another task, a value of RC_BUSY is returned to the calling task.

EXAMPLE
The current task needs to update a resident database, and it must be done without other tasks 
preempting the operation. Thus, exclusive access to the database is necessary during the update 
operation. The database is associated with resource DATABASE. After performing the update, the task 
will permit other tasks to access the database.

#include "rtxcapi.h"     /* RTXC KS prototypes */
#include "cres.h"        /* defines DATABASE */

KS_lockw(DATABASE);     /* grab resource */
update_db();           /* update shared database */
while(KS_unlock(DATABASE) == RC_NESTED)
       /* release resource */



SEE ALSO
KS_lock, KS_lockt, KS_lockw



KS_user

KS_user
User Defined Kernel Service

CLASS
Special

SYNOPSIS

int KS_user(int (*func) (void *), void *arg)

DESCRIPTION
The user may execute the specified function, func, as if it were an RTXC kernel service function. This 
basically defines the function to be indivisible with respect to preemption. Interrupts are permitted and 
serviced during execution of the function.

The KS_user calling sequence requires a pointer to the function, func, and a pointer to an arbitrary 
structure, arg, which will be passed to function, func, when invoked. The return value from the specified 
function, func, will be returned to the caller as the value of the kernel service, KS_user.

RETURN VALUE
The KS_user function returns the return value of the specified function.

EXAMPLE
The task wants to call a function, foobar, so that it can execute as though it were a kernel service. 
Arguments to the function are found in the structure, args, the pointer to which is passed in the calling 
arguments to the function.
#include "rtxcapi.h"       /* RTXC KS prototypes */

int status;
struct fooarg
{
   int opcode;
   int val;
} args;

extern int foobar(struct fooarg *);

/* execute function foobar as a KS */
status = KS_user(foobar, &args);



KS_wait

KS_wait
Wait on EVENT

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_wait(SEMA sema)

DESCRIPTION
The KS_wait function is a fundamental function in RTXC.    It is used to block a task for a specified event 
to occur.    The event must be associated with the given semaphore.    If the semaphore is found to be in a 
PENDING state, the task is placed into an Event Wait state and removed from the READY List. The 
semaphore state is changed to WAITING.

If the semaphore is in a DONE state, no wait occurs nor is the task blocked. Instead, the task resumes 
immediately returning a code indicative of the success of the wait.

The state of the given semaphore should be either in a PENDING or DONE state when KS_wait is called.
If it is already in a WAITING state, the function returns immediately with a value indicating the conflicting 
semaphore usage. In this conflict situation the function does not change the semaphore state. It will be 
the responsibility of the user to resolve the conflict.

RETURN VALUE
The function returns a value of RC_GOOD if the wait was successful.

If the semaphore was already in a WAITING state, the function returns a value of RC_WAIT_CONFLICT.

EXAMPLE
The current task needs to synchronize its operation with the occurrence of a keypad character being 
pressed. The event is associated with semaphore KEYPAD.
#include "rtxcapi.h"   /* RTXC KS prototypes */
#include "csema.h"   /* defines KEYPAD */

KS_wait(KEYPAD);     /* wait for KEYPAD hit sema */

SEE ALSO

KS_pend, KS_pendm, KS_signal, KS_signalm, KS_waitm, KS_waitt



KS_waitm

KS_waitm
Wait on Multiple EVENTS

CLASS
Intertask Communication and Synchronization

SYNOPSIS

SEMA KS_waitm(SEMA *semalist)

DESCRIPTION
The KS_waitm service performs the same function as the KS_wait directive, except that it uses a list of 
semaphores associated with the various events. The states of the listed semaphores must follow the 
same rules as for KS_wait. The KS_waitm function operates as a logical OR, in that the occurrence of an 
event associated with any one of the semaphores in the list will cause resumption of the waiting task.

RETURN VALUE
The function returns the identifier of the semaphore associated with the event which occurred.

Note: In the situation where multiple events simultaneously occur, the function returns the semaphore 
number of the first event serviced. The semaphores associated with the other events which occurred will 
be in a DONE state. Each subsequent call to the KS_waitm service will immediately return the identity of 
the next semaphore in the list which is in a DONE state. In this manner all events will be correctly 
processed.

EXAMPLE
The current task needs to know when any of three events occurs. Two of the events, SWITCH1 and 
SWITCH2, are associated with switch closures while the third is associated with a timer, TIMERA. When 
any one happens, the task performs a code segment specific to that event.
#include "rtxcapi.h" /* RTXC KS prototypes */
#include "csema.h"   /* defines SWITCH1, SWITCH2,
                                          TIMERA */
SEMA cause;
SEMA semalist[] =
{
   SWITCH1,
   SWITCH2,
   TIMERA,
   0             /* null terminated list */
};
for (;;)
{
   /* wait for any of 3 events */
   cause = KS_waitm(semalist);



   switch(cause)
   {
      case SWITCH1:
         ... process SWITCH1 event...
         break;

      case SWITCH2:
         ... process SWITCH2 event...
         break;

      case TIMERA:
         ... process TIMERA event...
         break;

   }  /* end of switch */
}  /* end of forever */

SEE ALSO

KS_wait, KS_signal



KS_waitt

KS_waitt
Time Limited Wait on EVENT

CLASS
Intertask Communication and Synchronization

SYNOPSIS

KSRC KS_waitt(SEMA sema, TICKS timeout)

DESCRIPTION
The KS_waitt is used to block a task for a limited period of time while waiting for a specified event to 
occur. The event must be associated with the given semaphore. The state of the given semaphore should
be either in a PENDING or DONE state when KS_waitt is called.

If the semaphore is found to be in a PENDING state, the task is placed into an Event Wait state and 
removed from the READY List. The semaphore state is changed to WAITING. At the same time, a timeout
timer is started with a period defined by the calling argument, timeout.

If the semaphore is in a DONE state at the time of the function call, no wait occurs nor is the task blocked.
Instead, the task resumes immediately.

Either the occurrence of the timeout or the event will cause the requesting task to resume. The function 
returns a value indicative of the cause of the task's resumption.

The state of the given semaphore should be either in a PENDING or DONE state when KS_wait is called.
If it is already in a WAITING state, the function returns immediately with a value indicating the conflicting 
semaphore usage. In this conflict situation the function does not change the semaphore state. It will be 
the responsibility of the user to resolve the conflict.

RETURN VALUE
The function returns a value of RC_GOOD if the expected event occurs within the time of the timeout 
duration.

If a timeout occurs, the function returns a value of RC_TIMEOUT.

If the semaphore is already in a WAITING state at the time of the function call, the function returns a value
of RC_WAIT_CONFLICT.

EXAMPLE
The current task needs to wait for a keypad character to be pressed, but it can't wait for more than 100 
msec as it has other jobs to do. It uses the KS_waitt kernel service to perform a time limited wait on the 
event, KEYPAD.
#include "rtxcapi.h"       /* RTXC KS prototypes */



#include "csema.h"         /* defines KEYPAD */
#include "cclock.h"        /* defines CLKTICK */

/* wait 100 msec for KEYPAD to be hit */
if(KS_waitt(KEYPAD, 100/CLKTICK) == RC_GOOD)
{
   ... keypad was hit, process the event
}
else
{
   ... keypad not hit and timeout happened
       or no timers were available, or
       a Wait Conflict exists
}

SEE ALSO

KS_pend, KS_signal, KS_wait



KS_yield

KS_yield
Yield CPU Control

CLASS
Task Management

SYNOPSIS

KSRC KS_yield(void)

DESCRIPTION
The KS_yield function permits a voluntary release of control by a task without violating the policy of the 
highest priority runnable task being the current task. This service is of use only when there are two or 
more tasks operating at the same priority. When KS_yield is invoked and there is at least one more task 
in the Ready List at the same priority, the calling task is removed from the READY List and reinserted into
the READY List immediately following the last runnable task having the same priority. The task remains 
unblocked.

Yielding when there is no other task at the same priority causes no change in the READY List, and the 
calling task is immediately resumed.

RETURN VALUE
If there is another task at the same priority, the function yields CPU control to it and returns a value of 
RC_GOOD. If no yield can occur, the function returns a value of RC_NO_YIELD. 

EXAMPLE
The current task has reached a point in its processing where it will yield to another task if that task is 
running at the same priority as the current task. If not, this kernel service operates without changing the 
READY List.
#include "rtxcapi.h"     /* RTXC KS prototypes */

/* yield to next READY task at same priority */
if (KS_yield() == RC_NO_YIELD)
{
   ... no READY task exists at same priority level
       take whatever action is required
}
/* otherwise, the yield was successful */

SEE ALSO



KS_defpriority
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Introduction
RTXCbug is the system level debugging tool for RTXC. Its purpose is to provide snapshots of RTXC 
internal data structures as well as perform some limited task control. RTXCbug operates as a task and is 
usually set up as the highest priority task. Whenever RTXCbug runs, it freezes the rest of the system, 
thereby permitting coherent snapshots of RTXC system data components. RTXCbug is not intended as a 
replacement for other debugging tools but is meant to assist the user in tuning the performance of or 
checking out problems within the RTXC environment.

RTXCbug uses the input and output ports of a user-defined console device. The console device is usually
a keyboard and a CRT display. Commands are given to RTXCbug via the console input port, and output 
from RTXCbug is displayed on the console output device. These devices may be reassigned during a 
system generation procedure.

Because RTXCbug usually operates as the highest priority task in the system, all other tasks are blocked 
except for the console input and output drivers. All interrupts are serviced as usual while RTXCbug is 
active, but lower priority tasks, including the clock driver, are not dispatched. Active timers are not 
adjusted while RTXCbug is active, as that could cause the timer to behave improperly.



Entry into RTXCbug
RTXCbug is designed to be entered through two different mechanisms.

1. The user entering an exclamation point (!) on the console input device.

2. By a task calling a special function within RTXCbug.

Once RTXCbug is entered, the version of RTXC is displayed as:

** RTXCbug - RTXC x.xx   mm/dd/yy 

where x.xx is the version number and mm/dd/yy is the date of that version. The version line is followed by 
the RTXCbug command prompt:

RTXCbug>

From the command prompt, you may enter any of the primary RTXCbug commands. All commands must 
be terminated by an Enter (<cr>) key.



RTXCbug Commands
Whenever you wish to review the RTXCbug command options, you may display the RTXCbug Command 
Menu by entering an "H" (or "h") followed by an Enter (<cr>) key in response to the RTXCbug prompt. 
The Command Menu appears as:

T - Tasks
M - Mailboxes
P - Partitions
Q - Queues
R - Resources
S - Semaphores
C - Clock/Timers
K - Stack Limits
Z - Zero Partition/Queue/Resource Statistics
$ - Enter Task Manager Mode
# - Task Registers
G - Go to Multitasking Mode
H - Help
X - Exit to RTXCbug



Tasks
Selection of this option produces a snapshot of the state of all the tasks in the system as shown below. 
The snapshot contains four columns of information:

· Task Number

· Task Name

· Task Priority

· Task State

Task Number
The task number is the numerical equivalent of the task's name.

Task Name
The task name shows the symbol associated with the task number as defined during the configuration 
process.

Task Priority
The priority column shows the task's current priority.

Task State
The task state column shows the current state of the task and some related information. For instance, if a 
task is blocked, the state column shows the cause of the blockage. The possible state conditions are:

· INACTIVE - The task has not been executed.

· READY - The task is active and is in the READY List. A minus sign in front (-READY) indicates 
that the task is Ready but is being blocked by RTXCbug.

· DELAY - The task is delayed for a period of time. The amount of time remaining in the delay 
period is shown adjacent to the task state.

· SUSPENDED - The task is suspended.

· Semaphore - The task is waiting on one or more events using semaphore whose name(s) 
appear(s) adjacently. If the event is associated with a timeout, the amount of time remaining is 
shown adjacent to the semaphore name.

· QueueEmpty - The task is waiting because a queue is Empty. The name of the queue is shown 
adjacent to the task state. If the task is in a time limited wait, the amount of time remaining in the 
timeout period is shown adjacent to the queue name.

· QueueFull - The task is waiting because a queue is Full. The name of the queue is shown 
adjacent to the task state. If the task is in a time limited wait, the amount of time remaining in the 
timeout period is shown adjacent to the queue name.

· Mailbox - The task is waiting because a mailbox is empty. The name of the mailbox is shown 
adjacent to the task state. If the task is in a time limited wait, the amount of time remaining in the 



timeout period is shown adjacent to the mailbox name.

· Resource - The task is waiting because a resource is Locked. The name of the resource is 
shown adjacent to the task state. If the task is in a time limited wait, the amount of time remaining 
in the timeout period is shown adjacent to the resource name.

· Partition - The task is waiting because a Partition is empty. The name of the partition is shown 
adjacent to the task state. If the task is in a time limited wait, the amount of time remaining in the 
timeout period is shown adjacent to the partition name.

A sample Task snapshot is shown below.
** Task Snapshot **
  #   Name    Priority  State
  1  RTXCBUG     1      READY
  2  CLKDRV      2      Semaphore TICKSEMA
  3  PRTSC       9      -READY
  4  CONODRV     6      READY
  5  CONIDRV     5      READY
  6  HISTASK    12      INACTIVE
  7  COMODRV    10      QueueEmpty COMOQ
  8  CAL         8      Semaphore ONESEC <500 ms>
  9  DINP        8      Semaphore DINTSEMA SDINSEMA

In the example, tasks 1, 4, and 5 are active and in the READY List reflecting RTXCbug's use of the 
console input driver (CONIDRV) and the console output driver (CONODRV). Task 3 is not used by 
RTXCbug and, while ready to run, is blocked by RTXCbug. The minus sign prefix on READY indicates the
task is blocked by RTXCbug.

Task 6 has not been started and is idle. Tasks 2, 7, 8, and 9 are waiting for certain events to occur. Task 
2, the clock driver, is waiting for the semaphore associated with a clock tick interval, TICKSEMA, to be 
signalled. Task 7 waits for something to be put into the COM Output Queue, COMOQ. Task 8 is waiting 
for a timer to expire which has another 500 milliseconds to run. The timed event is associated with 
semaphore ONESEC. Task 9 is waiting for either one of two events to occur. One is associated with the 
semaphore DINTSEMA and the other with semaphore SDINSEMA. 



Queues
This command produces a snapshot of the queues in the system as shown below. Seven columns are 
used in the snapshot. The first two, queue number and name, are self-explanatory.

Current Size & Maximum Depth
The columns for Current/Depth show the current sizes of the queues and their maximum depths.

Worst Case Usage
The column entitled "Worst" shows the worst case usage, i.e., largest current size, of the queue.

Total Usage
The "Count" column shows the total number of entries that have been put (enqueued) into the queue.

Waiters
The "Waiters" column shows the name of the tasks, if any, which are waiting on the queue.

The Queue snapshot appears as:

** Queue Snapshot **
  #   Name  Current/Depth   Worst   Count   Waiters
  1 CONIQ         0/   16       1      19
  2 CONOQ       108/ 1024     546    3413
  3 COMOQ         0/  128       0       0   COMODRV

If there are condition semaphores defined for a given queue, they are shown adjacent to the column for 
Waiter tasks. The code for the queue condition associated with the semaphore is also displayed next to 
the semaphore name. The queue condition codes are as follows:

· Empty

· Full

· <NE> Not Empty

· <NF> Not Full



Semaphores
The four-column snapshot of the RTXC semaphores is shown below. The first two columns give the 
semaphore number and its symbolic name.

State
Column three, labeled "State" shows one of the three possible states in which a semaphore can exist:

· PEND - Pending (Not yet happened and no waiter)

· WAIT - Waiting (Not yet happened and a task is waiting for it)

· DONE - Done (Event has happened)

Waiters
The last column shows the name of the tasks waiting for the semaphores.

An example of the snapshot appears as:

** Semaphore Snapshot **
  #    Name      State    Waiter
  1  TOCKSEMA    WAIT     CLKDRV
  2  PRNSEMA     PEND
  3  PRTSCSEM    DONE
  4  COMISEMA    WAIT     COMIDRV



Resources
RTXCbug produces a Resource Snapshot such as that shown below when the R command is entered. 
Six columns of status information are displayed. The first two, resource number and name, need no 
explanation.

Lock/Unlock Cycles
The third column shows the total number of times the given resource has been locked and unlocked.

Lock Conflicts
The "Conflicts" column shows the number of times there has been an attempt to lock the resource when it
was already locked by another user.

Owner
The name of the task which is currently locked on the resource is shown in the column entitled "Owner".

Waiters
The names of any tasks which are waiting to use the resource are shown in the last column, "Waiters".

The Resource snapshot appears as:

** Resource Snapshot **
  #   Name    Count   Conflicts    Owner    Waiters
  1  PRNRES   36742       0
  2  DOSRES       1       1       PRTSCRN   FILMGR



Memory Partitions
The Memory Partition Snapshot produced by the P command is shown below. Eight columns of 
information make up the snapshot. The memory partition number and name are the first two columns.

Current Available & Total Available
The next two columns are headed "Avail/Total" and show the available number of blocks and the total 
number of blocks in the map.

Worst Case Usage
The column titled "Worst" show the worst case usage of blocks in terms of the maximum number of 
blocks allocated at any one time.

Total Usage
The "Count" column shows the total number of block allocations processed by RTXC.

Block Size
The size of each block in the partition is shown in the column entitled "Bytes".

Waiters
The last column shows the name of any task waiting on the availability of memory.

An example of a Partition snapshot appears below.

** Partition Snapshot **
 #  Name   Avail/Total  Worst Count  Bytes  Waiters
 1 PRTSCMAP    3/    4      1     0   2010
 2 AIMAP       0/   20     20   482     64  AINP



Mailboxes
The Mailbox Snapshot produced by the M command is shown below. Five columns of information make 
up the snapshot. The mailbox number and name are the first two columns.

Current Content
The next column, headed "Current", shows the number of messages currently in the mailbox.

Total Usage
The column labeled "Count" displays the number of messages sent to the mailbox.

Waiters
The last column, "Waiters", shows the name of any task waiting for messages to arrive at the mailbox.

A sample Mailbox Snapshot is shown below.

** Mailbox Snapshot **
  #    Name     Current    Count    Waiters
  1  FSRVMBOX         0    31472    FILESRVR
  2  PRNMSG           0     3720    PRNDRV



Clock/Timers
This command produces a display of the Clock Snapshot such as that shown in the example below. The 
five columns of the snapshot show all the information about each active timer.

Time Remaining
The first column, titled "Time Remaining", shows the amount of time remaining on each active timer in 
units of milliseconds.

Cyclic Value
The "Cyclic Value" column contains a value if the timer is cyclic in nature. The value shown defines the 
cyclic period of the timer in milliseconds. A period of 0 msec indicates a one-shot timer.

Task
The "Task" column shows the name of the task waiting for the timer to expire.

Timer Type and Object
The fourth and fifth columns, "Timer Type" and "Object" are associated. Timer Type shows the type of 
timer being used while the Object column shows the name of the associated object. The permissible 
types are:

· Timer - A general purpose timer. A blank field following the word "Timer" indicates no semaphore 
is associated with the timer.

· Delay - A task delay

· Partition - A timeout on allocation from an empty memory partition. The partition name appears 
adjacently.

· Semaphore - A timed wait for an event. The name of the semaphore appears adjacently.

· QueueEmpty - A timed wait for data to be put into an empty queue. The name of the queue is 
shown also.

· QueueFull - A timed wait for data to be removed from a full queue. The name of the queue is 
shown also.

· Resource - A timed wait before gaining ownership of a currently locked resource. The name of 
the resource is also shown.

· Mailbox - A timed wait for mail to arrive at an empty mailbox. The name of the mailbox is shown 
adjacently.

In addition to the columnar information about the timers, there is some general information about the 
clock. Specifically, its rate in Hertz, its time granularity expressed as a tick interval in msec., and the 
maximum number of timers in the system are shown also in the snapshot. Due to space limitations, this 
general clock information is not shown in their exact columnar locations.



** Clock Snapshot **
Clock rate is xxxx Hz, Tick interval is xxx ms,
Maximum of xx timers. Tick timer is    37046,
ET is     126 ticks, RTC time is    486
   Time       Cyclic     Task       Timer    Object
Remaining     Value      Name       Type      Name
   500        1000       CAL       Timer    CALSEMA

The Tick timer shown in the example above represents the number of Ticks since the system was started.
The term ET is the number of Ticks which have elapsed since the last entry into RTXCbug.



Stack Limits
This function is intended to assist the user in tuning the use of RAM needed for stack space by tasks as 
well as by RTXC. The snapshot, as shown in the example below, consists of five columns.

Task Number & Task Name
The first two columns are used to identify the task number and name.

Stack Size
The third column shows the "Size" of the stack, in bytes, as allocated during the system generation 
procedure.

Used
The fourth column shows how much of that allocated stack has been used during the course of operation.

Spare
The fifth column shows how much of that allocated stack has been unused during the course of operation.
(Size = Used + Spare)

The stack snapshot appears as:

** Stack Snapshot **
  #    Task     Size    Used    Spare
  1  RTXCBUG     768     610      158
  2  CLKDRV      512     122      390
  3  PRTSC       512     124      388
  4  CONODRV     512     250      262
RTXC Kernel      256      68      188
Worst case interrupt nesting = 3
Worst case Signal List Size = 2

The snapshot also shows the usage of the RTXC system stack under the same columns (Size, Used, and
Spare) as for the task stacks. The worst case levels of interrupt nesting and ISR semaphore signalling are
also shown.



Zero Queue, Partition, and Resource Statistics
This command will cause all of the usage statistics for queues, memory partitions, mailboxes, and 
resources to be reset. The worst case levels for interrupt nesting depth and ISR semaphore signalling are
also reset. No other user input is required.



Task Manager Mode ($)
Task Manager Mode allows the user to do some types of task management operations via the debug 
console. Selection of this command causes a special prompt to indicate that RTXCbug is in Task 
Manager Mode. The prompt appears as:

$RTXCbug> 

The Task Manager Mode menu may be displayed by responding to the prompt with an "H" (or "h") 
followed by an Enter (<cr>) key. The Task Manager Mode menu is shown below.

S - Suspend
R - Resume
T - Terminate
E - Execute
C - Change task priority
B - Block (-1=All)
U - Unblock (-1=All)
/ - Time slice
H - Help
X - Exit Task Manager Mode

Except for the Exit (X) command, all of the commands in the Task Manager Mode require that a task 
number or name be entered. The task identifier prompt appears as:

Task>

The user's response to the prompt is a decimal task number or the task's symbolic identifier as defined 
during the system generation procedure. The entry is terminated by an Enter (<cr>) key.

Suspend
Execution of this command causes the specified task to be suspended. The task cannot be restarted until 
it is resumed by another task or by operator command via RTXCbug.

Resume
This command removes the state of suspension on the specified task. If no other blocking condition 
exists, the task is made ready to run.

Terminate
This command causes the specified task to cease operation. All active timers associated with the task are
purged.

Execute



A task may be started by the selection of this command. The specified task is started at the entry point 
specified during the system generation procedure.

Change task priority
The priority of the specified task is changed by the selection of this command with immediate effect.

Block
A task may be blocked by the selection of this command. If the special task identifier of -1 is given, it 
causes all tasks to be blocked with the exception of RTXCbug and its supporting input and output tasks.

Unblock
This command is used to remove the blocking condition set by the RTXCbug Block command on a 
specific task. The task identifier is entered in the same manner as on the Block command. The special 
task identifier of -1 also applies to the unblock command.

Time slice
This command is used to define the time slice time quantum for a specified task. A time quantum value 
greater than zero enables time slicing and a value of 0 disables it. 

Help
This command causes the RTXCbug Command Menu to be displayed.

Exit Task Manager Mode
This command causes the Task Manager Mode to terminate and to return to RTXCbug snapshot mode. 
The standard RTXCbug command prompt is reissued.



Task Registers (#)
This command displays the processor register context for a given task. You must enter the desired task 
number in response to a query from RTXCbug.

Task>

Enter the task number and terminate the entry by pressing the Enter (<cr>) key. RTXCbug will 
immediately display the register context for the indicated task. The display format of the registers is 
processor dependent.



Go to Multitasking Mode
When you have finished your session with RTXCbug and you wish to resume normal system operations, 
select this menu option.



Help
To display the RTXCbug Command Menu, select this option. The Command Menu appears as:

T - Tasks
M - Mailboxes
P - Partitions
Q - Queues
R - Resources
S - Semaphores
C - Clock/Timers
K - Stack Limits
Z - Zero Partition/Queue/Resource Statistics
$ - Enter Task Manager Mode
# - Task Registers
G - Go to Multitasking Mode
H - Help
X - Exit to RTXCbug



Exit to RTXCbug
If you wish to terminate RTXC operations, select this option from the Command Menu. If your RTXCbug 
terminal is a workstation with an operating system, selecting this option will cause the return to that 
environment. For a system without an operating system, this option has no effect.




