Contents - SftTabs/DLL Version 2.1

r | ‘

1~ 1

‘ I J © Copyright 1994, 1996 Softel vdm

Introduction

What is SftTabs/DLL

Using SftTabs/DLL

SftTabs/DLL Demo

SftTabs/DLL Wizard Application
Ordering Additional Copies

Using Resource Editors

Resource Workshop

Borland C++

AppStudio, Visual C++
Dialog Editor (Windows SDK)

Programming
Using C
Using C++ and the Microsoft Foundation Class library
Using C++ and the ObjectWindows Library

Rebuilding the DLLs

Reference

Definitions and Structures
Messages and Functions
Tab Control Styles
Notifications

Windows Messages
SoftelGrayDialog Dialog Class

MFC
CSftTabs Class

CSftTabsDialog Class

CSftTabsPage Class
CSftTabsWindowSheet Class

CSftTabsWindowPage Class
Notifications

OWL
TSftTabs Class
TSftTabsDialog Class

TSftTabsPage Class
TSftTabsWindowSheet Class

TSftTabsWindowPage Class
Notifications

Support
Contacting Softel vdm

Can't load file filename. or File filename does not contain tab
definitions.

The SftTabs/DLL Wizard cannot open the specified file. Make sure the file exists and that the
file was created using the SftTabs/DLL Wizard.

Can't save filename.

The SftTabs/DLL Wizard cannot save the specified file. Make sure the target disk/drive is not
write protected and that there is sufficient space available.

File filename has been modified. Do you want to save the changes?

The SftTabs/DLL Wizard is about to end. The current tab settings being edited have not yet
been saved. Click Yes to save the current settings, No to skip saving the settings or Cancel

to prevent the application from ending.

This is an incorrectly licensed version of SftTabs/DLL. Please
contact Softel vdm for a replacement.

The product you have received has been created incorrectly. The licensing information is
missing. Please contact Softel vdm for a replacement.

An unexpected application error has occurred.

The application has encountered a condition which was not anticipated. This could indicate
a programming error or an error caused by an unsupported environment. An additional
error message may precede this error, which explains the problem in more detail. If you
need assistance resolving this problem, please contact Softel vdm.

SftTabs/DLL Overview

SftTabs/DLL is a custom control for the Windows operating system, offering an alternative
method of displaying multiple dialogs or cascading menu selections, by displaying tabs as
found in a file cabinet or a notebook.

Tab Control

SftTabs/DLL offers many features; from a simple, single-row tab control to a multi-row, multi-
color tab control in a notebook style.

¢ SftTabs/DLL Wizard

® Single or multiple tab rows

¢ Different color tabs

® |cons or bitmaps on each tab

* Enabled/disabled tabs

® Single or multiline tab labels

® Selectable tab label text alignment (left, right, center)

® "Wizard" style dialogs

® Tabbed dialogs and tabbed windows

* Up to 16 rows of tabs

® Up to 128 tabs per tab control

® Multiple tab styles

® Tab colors can change based on tab status

® Fixed or variable width tabs

® Tab control with or without client area

® ToolTips (32-bit applications)

e Scrollable tabs

® User-customizable scroll button bitmaps

¢ All icons/bitmaps fully customizable

® Reduced menu complexity by using tab controls

® Support for SDK dialog editors, AppStudio, Resource Workshop

® Supports C, C++ with MFC and C++ with OWL

® Compatible with the standard Windows color scheme and the 3D look provided by
CTL3DV2.DLL and CTL3D32.DLL

SftTabs/DLL Wizard Application

The SftTabs/DLL Wizard allows you to design and test a tab control without any
programming. Tab labels, the number of tab rows, tab colors, icon and bitmap locations are
just a few of the items you can customize. Once you are satisfied with your tab control
look, the SftTabs/DLL Wizard can even generate the required run-time code for C, C++ with
MFC and C++ with OWL. So your programming effort is kept to a minimum.

Source Code

The source code for the MFC and OWL C++ classes for tab control access and tabbed
dialogs and tabbed windows are supplied. The DLL source code (written in C) is available.
Any application that you develop can use SftTabs/DLL royalty-free as long as none of our
source code is shipped with your application.

Languages Supported

SftTabs/DLL supports C, C++ and other languages when using the standard SendMessage
Windows API. The DLLs can be called using the definitions provided in the supplied header
file. For languages other than C or C++, the user can translate these definitions. In
addition, SftTabs/DLL is shipped with class definitions which support the Microsoft Foundation
Class Library (MFC) and the Borland ObjectWindows Library (OWL).

Environments Supported

SftTabs/DLL supports Windows 3.1, Windows NT and Windows 95 using the same easy to use
API. Special UNICODE support is also available when running on Windows NT.

Using SftTabs/DLL

Depending on the programming language used, the steps necessary to add a tab control to
an application differ somewhat, but the following steps outline the basic method:

First, a tab control is added to a dialog using a resource editor. The sections Resource
Workshop, Borland C++, AppStudio, Visual C++ and Dialog Editor (Windows SDK) outline
the process for each of the supported resource editors. When the dialog is later used in an
application, the tab control is automatically created and can be accessed using the supplied
API. A tab control can also be created outside of a dialog. This is documented in the
language specific programming sections Using C, Using C++ and the Microsoft Foundation

Class library and Using C++ and the ObjectWindows Library.

Once the tab control has been created, the API functions documented in section Messages
and Functions can be used to add tabs, define attributes, respond to events, etc. The
following samples create a very minimal tab control with three tabs as pictured below. This
example can easily be extended by adding a few calls to define tab bitmaps or icons and
change other tab components to alter the appearance of the tab control.

l'._.'i
Fal
G- J

Sample Code

C Sample
C++/MEC Sample

C++/OWL Sample

Using SftTabs/DLL - C Sample
The following code has been created using the SftTabs/DLL Wizard application.

/*— Tab Control Initialization Data -—————=———-=———=——"—"—"—"—"—"—\—"—"—"—"—"—"—"—"~—~"—~—~—~—~\—————— */

static const SFTTABS CONTROL CtlInit = {

SEFTTABSSTYLE SIMPLE, /* tab style */
1, /* number of rows */
0, /* number of tabs per row (if fFixed) */
10, /* width of left margin */
10, /* width of right margin */
FALSE, /* same width for all tabs */
TRUE, /* Client area wanted */
FALSE, /* allow multiline label text */
TRUE, /* use with dialog */
FALSE, /* use specified background color only for
text */
FALSE, /* scrollable tabs */
FALSE, /* hide scroll buttons */
FALSE, /* bold font for active tab wanted */
FALSE, /* fill rows completely */
NULL, /* scroll button bitmap */
NULL, /* Dialog data associated with active tab */
NULL, /* Dialog window handle associated with
NULL, /* Frame, used as client area */
TRUE, /* Tooltips wanted */
FALSE, /* drop text if it doesn't fit */
FALSE, /* conditional scroll buttons */
}i
static const SFTTABS TAB Tab0 = { /*&First */
SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */
SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0, /* userdata */
// (DWORD) Page callback /* user supplied tab callback */

}i
static const SFTTABS TAB Tabl = { /*&Second */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */
SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0}, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0, /* userdata */
// (DWORD) Page callback /* user supplied tab callback */
}i
static const SFTTABS TAB Tab2 = { /*&Third */
SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */
SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0, /* userdata */
// (DWORD) Page callback /* user supplied tab callback */
}i
/* Replace "Page callback" with the names of the actual */
/* callback routines once they have been implemented and */
/* remove the comment marks. */

/*= Initialize Tab Control ———=—————————— - */

it.

Usually added to the WM INITDIALOG or WM CREATE message handler of the tab
control's parent window (i.e., the tabbed dialog)

int index;
HWND hwndTab;

hwndTab = GetDlgItem (hwndParent, IDC TAB);
/* get the window handle */

/* Initialization is faster if we set redraw off */
SendMessage (hwndTab, WM SETREDRAW, (WPARAM)FALSE, O);

/* We are using new features */
SftTabs SetVersion (hwndTab, SFTTABS 2 1);

index = SftTabs AddTab (hwndTab, TEXT ("&First")):;
SftTabs SetTabInfo (hwndTab, index, &Tab0);

index = SftTabs AddTab (hwndTab, TEXT ("&Second"));
SftTabs SetTablInfo (hwndTab, index, &Tabl);

index = SftTabs AddTab (hwndTab, TEXT ("&Third")):;
SftTabs SetTabInfo (hwndTab, index, &Tab2);

SftTabs SetControlInfo (hwndTab, &CtlInit);

// Make sure to turn redraw back on
SendMessage (hwndTab, WM SETREDRAW, (WPARAM)TRUE, 0);
InvalidateRect (hwndTab, NULL, TRUE);

// Activate current page.
SftTabs ActivatePage (hwndParent, hwndTab, NULL, TRUE) ;

*/
*/

// Mark the window as a main, tabbed dialog (so accel. keys work) by registering

// Register the dialog AFTER activating the current page
SftTabs RegisterDialog (hwndParent) ;

return FALSE; // WM_INITDIALOG, input focus already set

Using SftTabs - C++/MFC Sample

The following code has been created using the SftTabs/DLL Wizard application.

/*- Tab Control Initialization Data

static const SFTTABS CONTROL CtlInit = {
SFTTABSSTYLE SIMPLE,

1, /*
0, /*
10, /*
10, /*
FALSE, /*
TRUE, /*
FALSE, /*
TRUE, /*
FALSE, /*

text */

FALSE, /*
FALSE, /*
FALSE, /*
FALSE, /*
NULL, /*
NULL, /*
NULL, /*
NULL, /*
TRUE, /*
FALSE, /*
FALSE, /*

}i
static const SFTTABS TAB Tab0 = {

____________________________________ */
tab style */

number of rows */

number of tabs per row (if fFixed) */

width of left margin */

width of right margin */

same width for all tabs */

Client area wanted */

allow multiline label text */

use with dialog */

use specified background color only for

scrollable tabs */

hide scroll buttons */

bold font for active tab wanted */
fill rows completely */

scroll button bitmap */

Dialog data associated with active tab */
Dialog window handle associated with
Frame, used as client area */
Tooltips wanted */

drop text if it doesn't fit */
conditional scroll buttons */

/*&First */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
static const SFTTABS TAB Tabl = ({ /*&Second */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
static const SFTTABS TAB Tab2 = { /*&Third */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
2 */
/* This sample code can be used to initialize the tab control. */
/* This code is usually used in an OnInitDialog (WM INITDIALOG), OnCreate */
/* (WM_CREATE) or OnInitialUpdate member function of the tab control's parent */
/* dialog or window. */
/* __ */

int index;

/* Associate the tab control created from the dialog */
/* resource with the C++ object. */
m_Tab.SubclassDlgItem(IDC TAB, this /* parent window */);

/* You could use DDX/DDV instead and add the following */
/* line to the DoDataExchange function of the tab */
/* control's parent window (remove the //). */

// DDX Control (pDX, IDC_TAB, m Tab);

/* Initialization is faster if we set redraw off */
m Tab.SetRedraw (FALSE) ;

/* We are using new features */
m Tab.SetVersion (SFTTABS 2 1);

index = m Tab.AddTab(T ("&First"));

m Tab.SetTablInfo (index, &Tab0);

// If you don't want to attach a page to the tab, the following is optional
m_Tab.SetTabDialog(index, new an_object based on CSftTabsPage (this)); // tab page

index = m Tab.AddTab(T("&Second"));

m Tab.SetTabInfo (index, &Tabl);

// If you don't want to attach a page to the tab, the following is optional

m Tab.SetTabDialog(index, new an object based on CSftTabsPage(this)); // tab page

index = m Tab.AddTab(T ("&Third"));

m Tab.SetTablInfo (index, &Tab2);

// If you don't want to attach a page to the tab, the following is optional
m_Tab.SetTabDialog(index, new an_object based on CSftTabsPage (this)); // tab page

m Tab.SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
m Tab.SetRedraw (TRUE) ;
m_Tab.InvalidateRect(NULL, TRUE) ;

// If you are not using the sheet/page classes, remove

// Initialize tab control

InitializeTabControl (0, &m Tab, NULL);

// return FALSE; if this is a dialog's OnInitDialog member function

Using SftTabs - C++/OWL Sample

The following code has been created using the SftTabs/DLL Wizard application.

/*- Tab Control Initialization Data

static const SFTTABS CONTROL CtlInit
SFTTABSSTYLE SIMPLE,
1,
0,
10,
10,
FALSE,
TRUE,
FALSE,
TRUE,
FALSE,

text */
FALSE,
FALSE,
FALSE,
FALSE,
NULL,
NULL,
NULL,
NULL,
TRUE,
FALSE,
FALSE,

= {

}i

static const SFTTABS TAB Tab0 = {

__ */
tab style */
number of rows */
number of tabs per row (if fFixed) */

width of left margin */

width of right margin */

same width for all tabs */

Client area wanted */

allow multiline label text */

use with dialog */

use specified background color only for

scrollable tabs */

hide scroll buttons */

bold font for active tab wanted */
fill rows completely */

scroll button bitmap */

Dialog data associated with active tab */
Dialog window handle associated
Frame, used as client area */
Tooltips wanted */

drop text if it doesn't fit */
conditional scroll buttons */

/*&First */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
static const SFTTABS TAB Tabl = ({ /*&Second */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
static const SFTTABS TAB Tab2 = { /*&Third */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
2 */
/* This sample code can be used to initialize the tab control. */
/* This code is usually used in an EvInitDialog (WM INITDIALOG) or EvCreate */
/* member function of the tab control's parent dialog or window. */
2 */

int index;

//

//

//

/* Initialization is faster if we set redraw off */
pTab->SetRedraw (false);

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("&First"));

pTab->SetTabInfo (index, &Tab0);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog(index, new an object based on TSftTabsPage (this)); // tab page

index = pTab->AddTab (TEXT ("&Second")) ;

pTab->SetTabInfo (index, &Tabl);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog(index, new an object based on TSftTabsPage (this)); // tab page

index = pTab->AddTab (TEXT ("&Third"));

pTab->SetTabInfo (index, &Tab2);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog(index, new an object based on TSftTabsPage (this)); // tab page

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;
pTab->Invalidate (true);

// If you are not using the sheet/page classes, remove

// Initialize tab control

InitializeTabControl (0, pTab, NULL);

// return false; if this is a dialog's OnInitDialog member function

Order Form

When ordering by mail or fax, please use this order form. Print this help topic using the File,
Print Topic menu command.

Call: (201) 366-9618 Mail to: Softel vdm
or 11 Michigan Ave
FAX: (201) 366-3984 Wharton, NJ 07885

NamMeE
COMPANY e e e
Street
City, State, ZIP
COUN Y

Payment Method []Visa [] Mastercard []American
Express
[1Check enclosed

Card NUMbDEr e
Expiration Date .
SIgNAature e

Phone NUMDEr e
FAX NUM DB e
EMail AdOreSS

Please include your phone number so we can contact you if there is a problem filling your
order.

Site licensing available - please call for more information.

Prices as of October 10, 1996. Subject to change.

....... SftTabs/DLL 2.1, 16- & 32-bit, without DLL source code $.o
$389 each Single developer license
....... SftTabs/DLL 2.1, 16- & 32-bit, including DLL source code $.in.
$578 each Single developer license
6% Sales Tax (NJ residents only) $ e,
Shipping & Handling ($10.00 per copy, $15.00 $..
international)

Total $

Tab Bitmap

The tab bitmap is an optional bitmap, displayed on a tab next to the tab text. The exact
location of the tab bitmap depends on the selected picture location (defined using the
SftTabs/DLL Wizard). If a tab bitmap is used, a tab icon cannot be displayed at the same
time.

Tab Icon

The tab icon is an optional icon, displayed on a tab next to the tab text. The exact location
of the tab icon depends on the selected picture location (defined using the SftTabs/DLL
Wizard). If a tab icon is used, a tab bitmap cannot be displayed at the same time.

Tab Picture

The tab picture is the term used to refer to a tab's icon or a tab's bitmap.

Tab Text
The text portion of the tab label.

Tab Label

The tab label is the term used to refer to the collection of the tab picture and the tab text,
the entire visual representation of a tab.

Tab Rows

A tab control can have up to 16 rows of tabs. The number of rows is defined using the
SftTabs/DLL Wizard.

Left/Right Margin

A tab control can have a left margin, which is the area between the left side of the tab
control and the first tab. Setting the left margin to 0 positions the first tab at the left edge
of the tab control. Some tab styles have a built-in left margin, so tabs cannot start at the left
edge of the control. The SftTabs/DLL Wizard can be used to determine which tab styles
support tabs at the left edge of the control. If tab rows are displayed vertically, the left
margin defined is used as the top margin.

Client Area

A tab control can optionally contain a client area. This area is typically used to display
dialogs or Windows controls, which are associated with a given tab.

Scroll Button

A scrollable tab control offers scroll buttons. These scroll buttons are used by the user to
make currently obscured tabs visible.

Page

Each tab can have a page attached to it. A page is a window (or dialog) which is normally
displayed in the tab control's client area.

Active Tab

The active tab is the tab that is currently the selected tab, usually in the front row. The tab
text also receives a focus rectangle when the tab control has the input focus.

Mouse and Keyboard Interface

Tabs in a tab control can be activated using the left mouse button. By clicking on a
currently inactive tab, that tab will become the active tab. This takes place under program
control. The application receives a SFTTABSN SWITCHING and SFTTABSN SWITCHED
WM_COMMAND notification.

Tabs can also be made active using the keyboard. Just as regular Windows controls, such as
buttons respond to an Alt + key combination, the tab control responds to keyboard
accelerators, if any one of the tab labels has been defined to support this. When defining
tab text, the & character indicates that the following character is to be recognized by an Alt
+ key combination, e.g., the tab with the tab label "&First" will be made active when the
user presses Alt-F. The & character will never be shown, the following character will be
underlined instead. Switching tabs using Alt-key combinations is always supported when
the tab control has the input focus. For cases where other windows have the input focus,
the enclosing window or dialog has to be registered for keyboard accelerators to be
recognized by the tab control (see SftTabs RegisterDialog or SftTabs RegisterWindow for
more information).

Control + Tab key combinations and Control + Shift + Tab key combinations are used to
switch to the next (or previous) tab. That tab will become the new active tab.

Control + arrow key key combinations can be used to scroll in a scrollable tab control. For
Control + arrow key key combinations to have an effect, the tab control must be the active
control, i.e., the control which currently has the input focus.

"Wizard" Style Dialogs

With SftTabs/DLL it is very easy to implement wizard-style dialogs. SftTabs/DLL offers a
special tab control style that does not display any tabs, but still manages all required
attached pages. Because the tab control doesn't offer any tabs, an external event such as a
button click has to be used to change the tab control's current tab (using SetCurrentTab).
The application has to explicitly control the current tab.

During development of an application, it may be easier to use a regular tab style, so the
programmer can test the pages simply by clicking on a tab. Once the pages have been
debugged and tested, the tab control style can be changed to a wizard-style tab control.

Demo Application

Click here to run the Demo application. If the application cannot be started, please reinstall
SftTabs/DLL from the installation disks.

Overview
During the installation of SftTabs/DLL, an icon for the demo application "DLL Demo" is
installed in the Program Manager group SftTabs 2.1.

The source code for the demo application DEMO32.EXE is included with SftTabs/DLL. The
source code can be found in the directory C:\SFTTABS\SAMPLES\C\DEMO.

Product Support

Before Contacting Product Support

A comprehensive user guide and on-line help can assist you in using SftTabs/DLL. If you
have difficulties using SftTabs/DLL, please use the following sources of information:

® Obtain help using the on-line help files provided
® Review this user's guide

If this does not resolve your problem, please contact Softel vdm Product Support.
Contacting Product Support

If you have reviewed the on-line help and your manual, please contact Softel vdm Product
Support using any of the following methods:

Telephone (201) 366-9618

Make sure you have your license number ready when calling.
Fax (201) 366-3984
Www http://www.softelvdm.com

Download up-to-date bug descriptions, solutions, samples
Internet support@softelvdm.com
Mail Softel vdm

11 Michigan Ave
Wharton, NJ 07885-2540

Please include your license number in all cases. Without your license number, we will not
be able to help you. Your license number is printed on your installation diskette label or can
be found by using the About SftTabs/DLL menu command of the SftTabs/DLL Wizard
application.

SftTabs/DLL Wizard

Click here to run the SftTabs/DLL Wizard application. If the application cannot be started,
please reinstall SftTabs/DLL from the installation disks.

Overview

During the installation of SftTabs/DLL, an icon for the application "SftTabs/DLL Wizard" is
installed in the program group SftTabs 2.1.

The SftTabs/DLL Wizard is a tool to assist the developer in creating a tab control layout and
in populating the tab control with suitable tab labels. The SftTabs/DLL Wizard can generate
the necessary run-time source code in C, C++ for MFC and C++ for OWL, which can then be
copied into an application. The source code does require minor modifications once it has
been copied into an application. A tab layout can be saved in tab files (*.TAB), which can be
further edited at a later time using the SftTabs/DLL Wizard.

The SftTabs/DLL Wizard has access to all supported SftTabs/DLL styles and tab control
features.

The SftTabs/DLL Wizard's main window can be used to select a tab style, change tab control
attributes, add or delete tabs, set tab attributes and much more. Any changes made to a
tab layout are immediately reflected in the Sample window.

The Sample window can be resized to adjust the size of the control. If a tab control doesn't
provide a client area, the sample window cannot be resized. When switching between tab
styles or changing tab control attributes, the SftTabs/DLL Wizard automatically resizes the
sample window if necessary.

The SftTabs/DLL Wizard can be used to generate the source code for the current tab control
attributes, by using the C, C++/MFC and C++/OWL tabs.

The SftTabs/DLL Wizard can also provide an immediate view of the main tab control structure
SFTTABS CONTROL. This control information is accessible by clicking on the Control button
of the main window. All members of the SFTTABS_CONTROL structure are shown and are
immediately updated when changes are made to the tab control.

When a new tab is created (using the File, New menu command or by clicking on the Tab
Gallery... button), the SftTabs/DLL Style Gallery dialog is presented. This dialog offers a
variety of tab styles to chose from as a basis for the tab control to be created. The
developer can then refine the control attributes, add or delete tabs, change tab labels, etc.

Rebuilding the DLLs

Warning: If you rebuild the DLL(s) and have made changes to the source code which could
potentially make the resulting DLL(s) incompatible with the DLL(s) as supplied with
SftTabs/DLL, you must rename the DLL(s). Make sure to also update the LIBRARY statement
in the module definition file(s) to reflect the new DLL name(s).

Note: If you need to modify the SftTabs/DLL source code, please make sure to test the
resulting DLL with the SftTabs/DLL Wizard.

If you wish to rebuild the DLL, please follow these steps. Use your development
environment to create a new project and set desired project options. Make sure the target
is a DLL (as opposed to an EXE). The source files for the DLL can be found in the directory
C:\SFTTABS\SOURCE (unless changed during the installation).

The following files have to be added to your project:

DLL for DLL for DLL for Windows
Windows 3.1 Windows NT 95, Win32s,
(with UNICODE Windows NT (incl.
support) Windows NT
without UNICODE
support)
Target SFTTB.DLL SFTTB32U.DLL SFTTB32.DLL
BCT1TABS.C
BMBUTTON.C BMBUTTON.C BMBUTTON.C
HELPER.C HELPER.C HELPER.C
Required MCT1TABS.C
Source MCT2TABS.C MCT2TABS.C
Files SFTTABS.C SFTTABS.C SFTTABS.C
STYLE*.C STYLE*.C STYLE*.C
(multiple) (multiple) (multiple)
TABSINIT.C TABSINIT.C TABSINIT.C
SFTTABS.RC SFTTABS.RC SFTTABS.RC
SFTTABS.DEF SFTTB32U.DEF SFTTB32.DEF

Note: If you do not include a DEF file above, your DLL may be built correctly, but
applications will fail to load or execute properly.

Special Considerations

By defining the DEBUG preprocessor symbol, tracing options are enabled for the DLL. For
certain error conditions the SftTabs/DLL will send messages to a debugging terminal or the
debugger using the OutputDebugString Windows API function. For more information, see
the Windows OutputDebugString documentation. The DLLs shipped with SftTabs/DLL do not
have this tracing facility enabled.

Special Considerations for Windows 3.1

When rebuilding the Windows 3.1 version, choose the LARGE memory model.

When creating a debugging version for Windows 3.1, the project has to linked with
TOOLHELP.LIB and the TOOLHELP.DLL has to be available at run-time.

Special Considerations for Windows NT

To rebuild the UNICODE version of SftTabs/DLL (Windows NT only), make sure to define the

following preprocessor symbols:

UNICODE
_UNICODE

If these symbols are not defined, the resulting DLL will not support UNICODE. The DLL
supporting UNICODE is named SFTTB32U.DLL, the non-UNICODE DLL is named SFTTB32.DLL.

Special Considerations using Borland C++ 32-bit compiler

When creating a DLL, a LIB file is automatically created or can be created using the IMPLIB
utility. The LIB files created by the Borland 32-bit compiler are incompatible with the LIB
files created by the Microsoft compiler. For this reason, the LIB file created when using
Borland C++ should be renamed according to the following table. The DLLs created with
Borland C++ and Microsoft Visual C++ are interchangeable, however, the LIB files are not.

Target DLL for DLL for DLL for
Windows 3.1 Windows NT WIN32/s/c (incl.
(with UNICODE Windows NT
support) without UNICODE
support)

LIB file SFTTB.LIB SFTTB32V.LIB SFTTB32B.LIB

C Programming

This section describes how to use SftTabs/DLL with an application written using the C
programming language.

Building an Application

A)

B)

Every source program making use of a SftTabs/DLL control must include the required
header file SFTTB.H by using the #include directive.

#include "sfttb.h" /* SftTabs/DLL required header file */

This include statement should appear after the #include <windows.h> statement. The
file is located in the directory C:\SFTTABS\INCLUDE (unless changed during the

installation).

In order to use SftTabs/DLL controls, an application must call the SftTabs RegisterApp
function. The call to this function is required so that SftTabs/DLL window classes can be
registered. This call has to be made before any SftTabs/DLL controls are created. Add
the following statement to your source code, where your application registers its window
classes (normally during application initialization):

SftTabs RegisterApp (hInstance); /* Use SftTabs/DLL with this application */

Once SftTabs/DLL controls are no longer needed, an application must call the

SftTabs UnregisterApp function. The call to this function is required so that SftTabs/DLL
window classes can be unregistered and cleanup processing can take place. This call
has to be made after all SftTabs/DLL controls have been destroyed (normally during
application termination).

SftTabs UnregisterApp (hInstance); /* No longer use SftTabs/DLL */

The application's executable (EXE or DLL) must be linked with the correct LIB file,
depending on the target environment and the compiler used. The DLL must be available
and accessible at run-time for proper execution. The DLL used at run-time depends on
the LIB file used at link time.

Target Environment LIB File for LIB File for DLL File
Applications Applications Required at
developed developed Run-Time
using MS C using
or Visual C+ Borland C++
+

Windows 3.1 SFTTB.LIB SFTTB.LIB SFTTB.DLL

16-bit applications

WIN32, all 32-bit SFTTB32.LIB SFTTB32B.LIB SFTTB32.DLL

environments

including Windows

NT

(without UNICODE

support)

Windows NT only SFTTB32U.LIB SFTTB32V.LIB SFTTB32U.DLL

(with UNICODE
support

All required files can be found in the directory C:\SFTTABS\LIB and C:\SFTTABS\BIN, unless
changed during the installation.

Adding a Tab Control
There are two methods to add a tab control to an application:

® using dialog resources

® using CreateWindow(Ex)

Adding a tab control using dialog resources is accomplished by using a resource editor to
design a dialog. Once a tab control is created, its window handle can be obtained by using
the Windows GetDlgltem function. For more information on the different resource editors
supported by SftTabs/DLL, see Resource Workshop, Borland C++, AppStudio, Visual C++ and
Dialog Editor (Windows SDK).

Another method to create a tab control is by using the CreateWindow(Ex) Windows calls.

hwndTab = CreateWindow (SFTTABS CLASS, "", // Window class and caption
style, x, y, cx, cy, // location
hwndParent, // parent window
IDC_TABS, // tab control ID
hInst, // application instance
NULL) ;

For more information on the various parameters used, see the Windows APl documentation.
The tab control class is defined by the SFTTABS _CLASS constant (SFTTB.H). The window
class is SoftelTabControl (Windows 3.1) or SoftelTabControl32 (for Windows NT, 95,
Win32s).

Handling Notifications

As with standard Windows controls, applications must respond to events and messages to
cause controls to respond to user requests. For additional information see Notifications.

Switching Between Tabs

Switching between tabs is fully automatic, however, an application may wish to prevent a
user from switching to another tab. By responding to the WM_COMMAND,

SFTTABSN SWITCHING notification, an application can prevent completion of the tab switch
by sending a WM_CANCELMODE message to the tab control.

case WM COMMAND: {
// Parameter packing differs between 16-bit and 32-bit Windows
#if defined(WIN32) || defined(WIN32)
HWND hwndCtl = (HWND) lParam;
int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;

#else
HWND hwndCtl = (HWND) LOWORD (1lParam);
int id = (int) wParam;
int code = HIWORD (lParam) ;

fendif

if (hwndCtl) {
switch (id) {
case IDC TAB:
switch (code) {
case SFTTABSN SWITCHING:// we're about to switch away from
// the current page. If you need to know what the new
// page will be use SftTabs GetNextTab (hwndCtl) .
if (!IsOKToSwitch())
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
break;
case SFTTABSN SWITCHED:// we switched to a new page
SftTabs ActivatePage (hwndParent, hwndCtl, NULL, FALSE);
break;

}

break;

case IDOK:
case IDCANCEL:
if (code == BN CLICKED)
SendMessage (hwndParent, WM COMMAND, id, 0);

break;
}
}

break;

}
An application has to make attached controls or dialogs visible when switching between

tabs. The SftTabs/DLL API offers functions to manage dialogs and Windows controls that are
attached to tabs. See Implementing Tabbed Dialogs and Implementing Tabbed Windows for

more information.
3D and Colors

SftTabs/DLL offers many tab control styles which look best on a gray background. For
dialogs, the gray background can be achieved using the SoftelGrayDialog or
SoftelGrayDialog32 window class or using one of the following methods:

CTL3DV2 or CTL3D32

The tab control can be used with CTL3DV2 (or CTL3D32). Any dialogs attached to a tab
control can use the 3D display, if properly enabled (usually using CtI3dAutoSubclass). For
more information on CTL3DV2 or CTL3D32, see the Microsoft documentation.

WM_CTLCOLOR, WM_CTLCOLORSTATIC

This message is generated by the tab control for compatibility with SftTabs 2.0 only. When
developing new applications, please use SftTabs SetCtlColors instead.

The background color of the tab control can be modified by handling the WM _CTLCOLOR
message. The parent window can override the default window background color used by
the tab control by handling the WM_CTLCOLOR message.

case WM CTLCOLOR:
if (HIWORD (lParam)== CTLCOLOR_STZ—\TIC) {
SetBkColor (hdec, (HDC) wParam, RGB(192,192,192)); // on gray background
return GetStockObject (LTGRAY BRUSH) ;

}

Implementing Tabbed Dialogs

A tabbed dialog is created just like any other dialog. A tabbed dialog has a tab control with
an available client area. In this client area, pages are displayed. Each tab has an attached
page (although during development of a tabbed dialog, a tab doesn't require an attached
page). As the user switches between tabs, the appropriate page is created, displayed and
destroyed.

A tabbed dialog and each page have a dialog procedure. This makes conversion of existing
dialogs and development of new pages very easy. Tabbed dialogs and pages are first
designed using a resource editor. The sections Resource Workshop, Borland C++,
AppStudio, Visual C++ and Dialog Editor (Windows SDK) describe how the necessary tabbed
dialog and page (dialog) resources are created.

Once the necessary dialogs have been designed, the tab control layout can be defined using
the SftTabs/DLL Wizard. The SftTabs/DLL Wizard also creates much of the code required to
initialize the tab control. This code should be copied to the application (with possibly minor
modifications).

Creating a Tabbed Dialog Dialog Procedure

The following code sample (from C:\SFTTABS\SAMPLES\CSAM1\CSAM1.C) shows a typical
dialog procedure used for a tabbed dialog. Most of the code has been created using the
SftTabs/DLL Wizard and then copied into the application.
/**/

/* Frame Dialog Proc */

/***********************************

/*- Tab Control Initialization Data

static const SFTTABS CONTROL CtlInit
SFTTABSSTYLE MODERN T,

FALSE,
TRUE,
FALSE,
TRUE,
FALSE,
text */
FALSE,
FALSE,
TRUE,
TRUE,
NULL,
NULL,
NULL,
NULL,
TRUE,
FALSE,
FALSE,
}i

static const SEFTTABS TAB TabO
SFTTABS NOCOLOR, RGB (0,0, 255
SFTTABS NOCOLOR, RGB (0,0, 255
selected) */
{ SFTTABS_GRAPH_LEFT,

{
)y
)y

TRUE,
0,
(DWORD) Pagel Callback

}i

static const SFTTABS TAB Tabl
SFTTABS NOCOLOR, RGB (255,0,0
SFTTABS NOCOLOR, RGB(255,0,0
selected) */
{ SFTTABSiGRAPHiRIGHT,

{
),
)y

TRUE,
0,
(DWORD) Page2 Callback

}i

static const SFTTABS TAB Tab2 {
SFTTABS NOCOLOR, RGB (128,128,0),
SFTTABS NOCOLOR, RGB(128,128,0),

selected) */
{ SFTTABS GRAPH NONE,
TRUE,
0,
(DWORD)

01},

Page3 Callback
b

static const SFTTABS TAB Tab3 {
SFTTABS NOCOLOR, RGB(0,255,255),
SFTTABS NOCOLOR, RGB (0,255, 255),
selected) */
{ SFTTABS GRAPH NONE,

0},

***********************************/

tab style */

number of rows */
number of tabs per row
width of left margin */
width of right margin */

same width for all tabs */

Client area wanted */

allow multiline label text */

use with dialog */

use specified background color only for

(if fFixed) */

/* scrollable tabs */

/* hide scroll buttons */

/* bold font for active tab wanted */
/* fill rows completely */

/* scroll button bitmap */

/* Dialog data associated with active tab */
/* Dialog window handle associated with
/* Frame, used as client area */

/* Tooltips wanted */

/* drop text if it doesn't fit */

/* conditional scroll buttons */

/*The First One */
/* background, foreground color */
/* background, foreground color (when

SFTTABS GRAPH BITMAP },

/* Bitmap, Icon */

/* enabled/disabled */

/* userdata */

/* user supplied tab callback */

/*&Second */
/* background, foreground color */
/* background, foreground color (when

SFTTABS GRAPH ICON },

/* Bitmap, Icon */

/* enabled/disabled */
/* userdata */
/* user supplied tab callback */

/*&Third */

/* background, foreground color */

/* background, foreground color (when
/* Bitmap, Icon */

/* enabled/disabled */

/* userdata */

/* user supplied tab callback */

/*Fgourth */
/* background, foreground color */
/* background, foreground color (when

/* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page4 Callback /* user supplied tab callback */
}i

static const SFTTABS TAB Tab4 = { /*F&ifth */
SFTTABS NOCOLOR, RGB(0,0,128), /* background, foreground color */
SFTTABS NOCOLOR, RGB(0,0,128), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page5 Callback /* user supplied tab callback */

}7

static const SEFTTABS TAB Tab5 = { /*Si&xth */
SFTTABS NOCOLOR, RGB(128,0,0), /* background, foreground color */
SFTTABS NOCOLOR, RGB(128,0,0), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, O }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page6 Callback /* user supplied tab callback */

}i

The dialog procedure shown here initializes the tab control in its WM_INITDIALOG message
handler.

BOOL export CALLBACK MainDialogProc (HWND hwndDlg, UINT msg, WPARAM wParam, LPARAM
1Param)

{
switch (msg) {

case WM INITDIALOG: ({
int index;
HWND hwndTab;
SFTTABS TAB Tab;

// Center this dialog
CenterWindow (hwndDlg) ;

hwndTab = GetDlgItem(hwndDlg, IDC TAB);
/* get the window handle */
/* load the bitmaps/icons */
m_hSampleBitmap = LoadBitmap(g_hInst, MAKEINTRESOURCE (IDB BITMAP)) ;
m hSampleIcon = LoadIcon(g hInst, MAKEINTRESOURCE (IDI ICON)) ;

/* Initialization is faster if we set redraw off */
SendMessage (hwndTab, WM SETREDRAW, (WPARAM)FALSE, O);

/* We are using new features */
SftTabs SetVersion (hwndTab, SFTTABS 2 1);

index = SftTabs AddTab (hwndTab, TEXT ("The First One"));

SftTabs SetToolTip (hwndTab, index, TEXT ("Demonstrates tabbing into and
Tab = Tab0;

Tab.graph.item.hBitmap = m_hSampleBitmap;

SftTabs SetTabInfo (hwndTab, index, &Tab);

index = SftTabs AddTab (hwndTab, TEXT ("&Second"));

SftTabs SetToolTip (hwndTab, index, TEXT ("Demonstrates how an
Tab = Tabl;

Tab.graph.item.hIcon = m hSampleIcon;

SftTabs SetTabInfo (hwndTab, index, &Tab);

index = SftTabs AddTab (hwndTab, TEXT ("&Third")):;
SftTabs SetToolTip (hwndTab, index, TEXT ("This page is reset everytime
SftTabs SetTabInfo (hwndTab, index, &Tab2);

index = SftTabs AddTab (hwndTab, TEXT ("F&ourth")):;
SftTabs SetToolTip (hwndTab, index, TEXT ("A page with private OK,
SftTabs SetTablInfo (hwndTab, index, &Tab3);

index = SftTabs AddTab (hwndTab, TEXT ("F&ifth"));
SftTabs SetToolTip (hwndTab, index, TEXT("A page that has not ...
SftTabs SetTabInfo (hwndTab, index, &Tabi4);

index = SftTabs AddTab (hwndTab, TEXT ("Si&xth"));
SftTabs SetToolTip (hwndTab, index, TEXT ("A page with nested tab ...
SftTabs SetTabInfo (hwndTab, index, &Tabb);

SftTabs SetControlInfo (hwndTab, &CtlInit);

// Make sure to turn redraw back on
SendMessage (hwndTab, WM SETREDRAW, (WPARAM)TRUE, 0);
InvalidateRect (hwndTab, NULL, TRUE);

// tab 0 is automatically made the current tab by SftTabs ActivatePage
// Make a different tab active before calling SftTabs ActivatePage
// SftTabs SetCurrentTab (hwndTab, 1);

// Activate current page
SftTabs ActivatePage (hwndDlg, hwndTab, NULL, TRUE);

// Mark the window as a main, tabbed dialog (so accel. keys work) by ...
// Register the dialog AFTER activating the current page
SftTabs RegisterDialog (hwndDlg) ;

return FALSE; // WM_INITDIALOG, input focus already set
}

The call to SftTabs ActivatePage makes the current page active. The SftTabs RegisterDialog
call registers the dialog for special tabbed dialog handling by the DLL. After registering the

dialog, TAB and ESCAPE key handling, default button setting and keyboard accelerator keys

(Alt-x) will be performed by SftTabs/DLL.

A tabbed dialog should always return FALSE when handling the WM_INITDIALOG message.
The focus has been set already by SftTabs/DLL, so returning FALSE will prevent Windows
from setting the focus (to the wrong control).

The following WM_DESTROY message handler shows the required cleanup calls to delete all
bitmaps that the application has loaded, and also unregisters the dialog from the DLL.

case WM DESTROY:
/* delete the bitmaps/icons */
DeleteObject (m hSampleBitmap) ;

// Unregister, or the window properties used won't be removed
SftTabs UnregisterDialog (hwndDlg) ;

// destroy all pages
SftTabs Destroy (hwndDlg, GetDlgItem(hwndDlg, IDC TAB));
break;

}

The following WM_COMMAND message handler responds to notifications sent to the tabbed
dialog by the tab control. When the user attempts to switch to another page by clicking a
tab using the left mouse button or by using the keyboard, a SETTABSN SWITCHING
notification is sent to the tabbed dialog. The dialog then calls SftTabs_DeactivatePage to
test if the active page can be left. This call to SftTabs_DeactivatePage results in a

WM QUERYENDSESSION message being sent to the page's dialog procedure. Based on the
dialog procedure's response, the page may or may not be deactivated. By handling the
WM_QUERYENDSESSION message, a page can prevent a user from switching away from a
tab.

If a new tab has become active, the tabbed dialog receives a SFTTABSN _SWITCHED

notification, so the associated page can be made active by the call to SftTabs_ActivatePage.
case WM COMMAND: {

// Parameter packing differs between 16-bit and 32-bit Windows

#if defined(WIN32) || defined(_ WIN32)

#else

#endif

}
}

HWND hwndCtl = (HWND) lParam;
int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;

HWND hwndCtl = (HWND) LOWORD (lParam);
int id = (int) wParam;
int code = HIWORD (lParam) ;

if (hwndCtl) {
switch (id) {
case IDC TAB:
switch (code) {
case SETTABSN SWITCHING:// we're about to switch away from
// the current page. If you need to know what the new
// page will be use SftTabs GetNextTab (hwndCtl) .
if (!SftTabs DeactivatePage (hwndDlg, hwndCtl))
// couldn't deactivate current page, so don't switch
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
break;
case SETTABSN SWITCHED:// we switched to a new page
SftTabs ActivatePage (hwndDlg, hwndCtl, NULL, FALSE);

break;
}
break;
case IDOK:
case IDCANCEL:
if (code == BN_CLICKED)
SendMessage (hwndDlg, WM COMMAND, id, 0);
break;
}
} else {
switch (id) {
case IDOK:

// The currently active page will be called with a
// WM _QUERYENDSESSION message to determined if it can be closed
if (SftTabs ClosePossible (hwndDlg, GetDlgItem(hwndDlg, IDC TAB)))
EndDialog (hwndDlg, TRUE) ;
break;
case IDCANCEL:
EndDialog (hwndDlg, FALSE);
break;

}
// The above assumes that this is a modal dialog. If it is a modeless
// don't use EndDialog, use DestroyWindow instead.

}

break;

At the end of the dialog procedure, a call to SftTabs HandleDialogMessage should be made
to allow SftTabs/DLL to process any messages. Without this call, SftTabs/DLL may not be
able to provide the tabbed dialog handling, such as TAB and ESCAPE key processing, etc.

if

(SftTabs HandleDialogMessage (hwndDlg, msg, wParam, lParam))
return TRUE;

return FALSE;

The SFTTABS_TAB structures used to define each tab in the tab control, also define a
callback routine of type SFTTABS TABCALLBACK. This callback routine is responsible for
creating and destroying the dialog which represents the page. SftTabs/DLL will hide and
disable a dialog, but it is up to this callback routine to create and destroy the dialog. The
following tab definition is repeated here so it can be shown next to the callback function:

static const SETTABS TAB Tab2 = { /*&Third */

SFTTABS NOCOLOR, RGB(128,128,0), /* background, foreground color */

SFTTABS NOCOLOR, RGB(128,128,0), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 1}, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page3 Callback, /* create/destroy callback */

}i

HWND export CALLBACK Page3 Callback (BOOL fCreate, HWND hwndOwner,
HWND hwndPage, HWND hwndTab)
{
if (fCreate) { // creating a new page
if (hwndPage) {
// already created, we could do some initialization here.
// this will be called every time the page becomes active
// The WM CREATE/WM INITDIALOG/WM DESTROY messages are also sent to
// the page and could be used to determine activation/deactivation.
// of the page.
// optional, set the main window's title to the window title
SftTabs CopyWindowTitle (hwndPage, hwndOwner) ;
return NULL;
} else {
// Create the page.
// You can create and initialize any type of window here, not Jjust

dialogs.
// Use CreateWindow to create other windows. Don't specify WS VISIBLE, but
// make sure you use WS _TABSTOP.
// When creating a non-dialog window, make sure to call
SftTabs SetPageActive
// after the page has been created.
HWND hwnd = CreateDialogParam(g_hInst, MAKEINTRESOURCE(IDD_PAGE3),
hwndOwner, (DLGPROC)Page3 DialogProc,
(LPARAM) (UINT)hwndTab) ;// pass tab control as data
// optional, set the main window's title to the window title defined
SftTabs CopyWindowTitle (hwnd, hwndOwner) ;
return hwnd;

}

} else { // destroying page
// We'll always destroy this page (to save resources)
DestroyWindow (hwndPage) ;
return NULL;

}

This callback routine is called by SftTabs/DLL to perform certain functions, based on the
parameters passed.

The callback routine creates the dialog (page) using CreateDialogParam. The window
handle of the tab control is passed as the last parameter to CreateDialogParam. The
WM_INITDIALOG processing of the page's dialog procedure needs access to the tab control's
window handle for the call to SftTabs SetPageActive. This is a convenient way to pass it to
the dialog procedure. Of course, it could also be passed using other mechanisms.

Creating a Page Dialog Procedure

Once the page is created, all Windows messages are sent to the page's dialog procedure.
Any messages that the page doesn't handle should be passed to SftTabs/DLL by using a call
to SftTabs HandleDialogMessage.

BOOL _export CALLBACK Page3 DialogProc (HWND hwndDlg, UINT msg,
WPARAM wParam, LPARAM lParam)
{
switch (msg) {
case WM INITDIALOG:
SetWindowText (GetDlgItem (hwndDlg, IDC P3 EDIT1), TEXT("Type Here"));
// initialize page
SftTabs SetPageActive (hwndDlg, (HWND) lParam, NULL);
return !SftTabs IsRegisteredDialog(GetParent (hwndDlg)) ;

}

if (SftTabs HandleDialogMessage (hwndDlg, msg, wParam, lParam))
return TRUE;

return FALSE;
}

When the page is initialized and handles the WM_INITDIALOG message, it must call
SftTabs SetPageActive to notify SftTabs/DLL that this page is the active page. SftTabs/DLL
will at this time resize the page to fit into the tab control's client area, override certain
incompatible window styles and make the page visible.

When the very first page is initialized, the focus should be on the first control in that page.
Otherwise, when other pages have been active before, the focus should remain on the
control which currently has the focus (usually the tab control). The return value of the
WM_INITDIALOG message handler determines the focus handling. GetParent below returns
the window handle of the page's parent window, which should be the tabbed dialog. This
window handle can be tested to find out if the dialog has been registered with SftTabs/DLL.
When the very first page is activating, the tabbed dialog has not yet been registered,
SftTabs IsRegisteredDialog would return FALSE and the dialog procedure would subsequently
return TRUE, allowing the focus to be set to the first control. Otherwise, if this is not the
very first page, FALSE would be returned, and the focus would remain on the control that
currently has the focus.

return !SftTabs IsRegisteredDialog(GetParent (hwndDlg)) ;

Implementing Tabbed Windows

A tabbed window is created just like a regular window. A tabbed window has at least one
tab control as its child window (with or without a client area). Each tab has an attached
page (although during development of a tabbed dialog, a tab doesn't require an attached
page). As the user switches between tabs, the appropriate page is created, displayed and
destroyed.

Creating a Tabbed Window Window Procedure

The following code sample (from C\SFTTABS\SAMPLES\CSAM2\CSAM2.C) shows a typical
window procedure used for a tabbed window. Most of the code has been created using the
SftTabs/DLL Wizard and then copied into the application.

/**/

/* Frame Window */
/‘k*/

/*- Tab Control Initialization Data ——=——--——=—=——————--———————— */

static const SFTTABS CONTROL CtlInit = {

SFTTABSSTYLE SIMPLE, /* tab style */
1, /* number of rows */
0, /* number of tabs per row (if fFixed) */

0, /* width of left margin */

0, /* width of right margin */

FALSE, /* same width for all tabs */

FALSE, /* Client area wanted */

FALSE, /* allow multiline label text */

FALSE, /* use with dialog */

FALSE, /* use specified background color only for
text */

TRUE, /* scrollable tabs */

FALSE, /* hide scroll buttons */

TRUE, /* bold font for active tab wanted */

FALSE, /* f£ill rows completely */

NULL, /* scroll button bitmap */

NULL, /* Dialog data associated with active tab */

NULL, /* Dialog window handle associated with

NULL, /* Frame, used as client area */

TRUE, /* Tooltips wanted */

FALSE, /* drop text if it doesn't fit */

FALSE, /* conditional scroll buttons */

}i

static const SFTTABS TAB Tab0 = { /*&Listbox */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 1}, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Pagel Callback, /* create/destroy callback */
}i
static const SEFTTABS TAB Tabl = { /*&Edit Control */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page2 Callback, /* create/destroy callback */

}i

static const SETTABS TAB Tab2 = ({ /*&Dialog */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, O 1}, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page3 Callback, /* create/destroy callback */

}i

The window procedure shown here initializes the tab control in its WM_CREATE message

handler.

LRESULT EXP CALLBACK Frame WndProc (HWND hwnd, UINT msg, WPARAM wParam, LPARAM lParam)

{

other source code removed

switch (msg) {

case WM CREATE: ({

int index;

/* This static window is just a filler window above the tab control */
/* We only need it to get the right background color above the tab control */
pfrm->hwndStatic = CreateWindow (/* Create a static window */

TEXT ("STATIC"), /* Window Class */

TEXT (""), /* Window Title (not used) */

WS CHILD|WS VISIBLE, /* Window Style */
0, O, /* x, y */
0, 0, /* cx, cy */
hwnd, /* Parent Window */
NULL, /* control ID */
g hInst, /* Application Instance */
NULL) ; /* creation data */
if (pfrm->hwndStatic == NULL) /* create failed */

return -1;

/* Create the tab control */

pfrm->hwndTab = CreateWindow (/* Create the tab control */
TEXT (SETTABS CLASS), /* Window Class */
TEXT (""), /* Window Title (not used) */
WS CHILD|WS VISIBLE | /* Window Style */

WS CLIPCHILDREN|WS TABSTOP |
SETTABSSTYLE STANDARD,

0, 0, /*x, y %/
0, O, /* cx, cy */
hwnd, /* Parent Window */
(HMENU) IDC TAB, /* Tab control ID */
g hlnst, /* Application Instance */
NULL) ; /* creation data */

if (pfrm->hwndTab == NULL) /* create failed */

return -1;

/* Create a frame window. This frame window will be used by SftTabs/DLL */
/* to resize the pages that are attached to the tabs */

pfrm->hwndFrame = CreateWindow(/* Create a static window */
TEXT ("STATIC"), /* Window Class */
TEXT (""), /* Window Title (not used) */
WS_CHILD, /* Window Style NOTE: IT'S NOT VISIBLE */
0, 0O, /* %,y %/
0, 0, /* cx, cy */
hwnd, /* Parent Window */
NULL, /* control ID */
g _hInst, /* Application Instance */
NULL) ; /* creation data */

if (pfrm->hwndFrame == NULL) /* create failed */

return -1;

// Initialization is faster if we set redraw off
SendMessage (pfrm->hwndTab, WM SETREDRAW, (WPARAM)FALSE, 0);

/* We are using new features */
SftTabs SetVersion (pfrm->hwndTab, SFTTABS 2 1); // exploit 2.1 functions

index = SftTabs AddTab (pfrm->hwndTab, TEXT ("&Listbox"));
SftTabs SetToolTip (pfrm->hwndTab, index, TEXT("A standard listbox is
SftTabs SetTabInfo (pfrm->hwndTab, index, &Tab0);

index = SftTabs AddTab (pfrm->hwndTab, TEXT ("&Edit Control"));
SftTabs SetToolTip (pfrm->hwndTab, index, TEXT("A standard edit control
SftTabs SetTabInfo (pfrm->hwndTab, index, &Tabl);

index = SftTabs AddTab (pfrm->hwndTab, TEXT ("&Dialog"));

SftTabs SetToolTip (pfrm->hwndTab, index, TEXT("A dialog is attached to this
tab"));

SftTabs SetTabInfo (pfrm->hwndTab, index, &Tab2);

SftTabs SetControllInfo (pfrm->hwndTab, &CtlInit);

// Make sure to turn redraw back on
SendMessage (pfrm->hwndTab, WM SETREDRAW, (WPARAM)TRUE, 0);
InvalidateRect (pfrm->hwndTab, NULL, TRUE);

// Activate current page. Note the frame window is supplied in this example.
// if your tab control has a client area (see fClientArea), you don't need a
// frame window

SftTabs ActivatePage (hwnd, pfrm->hwndTab, pfrm->hwndFrame, TRUE) ;

// Mark the window as a main, tabbed windows (so accel. keys work) by
// Register the window AFTER activating the current page
SftTabs RegisterWindow (hwnd) ;

return 0L;

}

The call to SftTabs_ActivatePage makes the current page active. The

SftTabs RegisterWindow call registers the window for special tabbed window handling by the
DLL. After registering the window keyboard accelerator keys (Alt-x) handling will be
performed by SftTabs/DLL.

The following WM_SIZE message handler resizes the tabbed window's child windows.

case WM SIZE: {
RECT rect;
HWND hwndCtl;

// resize all child windows

// get frame window dimension
GetClientRect (hwnd, &rect);

// calculate position of tab control
if (pfrm->hwndTab) {
SFTTABS CONTROL Ctl;
// Get tab control info
SftTabs GetControlInfo (pfrm->hwndTab, &Ctl);
// Ctl.naturalSize has best height for this tab control

rect.top += 5+Ctl.naturalSize;

// reposition static control which serves as a filler window above the tab
control
if (pfrm->hwndStatic)
MoveWindow (pfrm->hwndStatic, rect.left, 0, rect.right-rect.left, 5, TRUE);

// now reposition tab control
if (pfrm->hwndTab)
MoveWindow (pfrm->hwndTab, 0, 5, rect.right-rect.left, rect.top-5, TRUE);

// reposition the frame window
if (pfrm->hwndFrame)
MoveWindow (pfrm->hwndFrame, rect.left, rect.top, rect.right-rect.left,
rect.bottom-rect.top, TRUE) ;
// now that the frame window has the right size, resize all pages
if (pfrm->hwndTab)
SftTabs ResizePages (pfrm->hwndTab) ;

return O0L;

}

The following WM_DESTROY message handler shows the required cleanup calls and also
unregisters the dialog from the DLL.

case WM DESTROY:
// Unregister, or the window properties used won't be removed
SftTabs UnregisterWindow (hwnd) ;
// destroy all pages (BEFORE destroying tab control)
SftTabs Destroy (hwnd, pfrm->hwndTab);

if (pfrm->hwndStatic)

DestroyWindow (pfrm->hwndStatic) ;
if (pfrm->hwndFrame)

DestroyWindow (pfrm->hwndFrame) ;
if (pfrm->hwndTab)

DestroyWindow (pfrm->hwndTab) ;
break;

The following WM_COMMAND message handler responds to notifications sent to the tabbed
window by the tab control. When the user attempts to switch to another page by clicking a
tab using the left mouse button or by using the keyboard, a SFTTABSN SWITCHING
notification is sent to the tabbed window. The window then calls SftTabs DeactivatePage to
test if the active page can be left. This call to SftTabs _DeactivatePage results in a

WM _QUERYENDSESSION message being sent to the page's dialog or window procedure.
Based on the window procedure's response, the page may or may not be deactivated. By
handling the WM_QUERYENDSESSION message, a page can prevent a user from switching
away from a tab.

If a new tab has become active, the tabbed window receives a SFTTABSN SWITCHED
notification, so the associated page can be made active by the call to SftTabs ActivatePage.

case WM COMMAND: {
|

#1if defined(WIN32) || defined(WIN32)
HWND hwndCtl (HWND) lParam;
int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;

#else
HWND hwndCtl = (HWND) LOWORD (lParam);
int id = (int) wParam;
int code = HIWORD (lParam) ;

fendif

if (hwndCtl) {
switch (id) {
case IDC TAB:
switch (code) {
case SFTTABSN SWITCHING:// we're about to switch away from
// the current page. If you need to know what the new
// page will be use SftTabs GetNextTab (hwndCtl) .
if (!SftTabs DeactivatePage (hwnd, hwndCtl))
// couldn't deactivate current page, so don't switch
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
break;
case SFTTABSN SWITCHED:// we switched to a new page
SftTabs ActivatePage (hwnd, hwndCtl, NULL, FALSE);
break;

}
break;
case IDOK:
case IDCANCEL:
if (code == BN CLICKED)
SendMessage (hwnd, WM COMMAND, id, O0);
break;
}
} else {
switch (id) {
case IDM EXIT:
// The currently active page will be called with a
// WM _QUERYENDSESSION message to determine if it can be closed
if (SftTabs ClosePossible (hwnd, GetDlgItem(hwnd, IDC TAB))) {
DestroyWindow (hwnd) ;
PostQuitMessage (0) ;

}

break;

}
}

break;

}

At the end of the window procedure, a call to SftTabs HandleDialogMessage should be made
to allow SftTabs/DLL to process any messages. Without this call, SftTabs/DLL may not be
able to provide the tabbed dialog handling.

// Call SftTabs/DLL to let it handle some messages (mostly for keyboard accel.
keys)
{
LRESULT 1Res;
if (SftTabs HandleWindowMessage (hwnd, msg, wParam, lParam, &lRes))
return 1lRes;

}

return DefWindowProc (hwnd, msg, wParam, lParam);

}

The SFTTABS TAB structures used to define each tab in the tab control, also define a
callback routine of type SFTTABS TABCALLBACK. This callback routine is responsible for
creating and destroying the window which represents the page. SftTabs/DLL will hide and
disable a window, but it is up to this callback routine to create and destroy the window. The
following tab definition is repeated here so it can be shown next to the callback function:

static const SFTTABS TAB Tabl = { /*&Edit Control */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0, /* userdata */

(DWORD) Page2 Callback, /* create/destroy callback */

}i

HWND export CALLBACK Page2 Callback (BOOL fCreate, HWND hwndOwner,
HWND hwndPage, HWND hwndTab)
{
if (fCreate) { // creating a new page
if (hwndPage) {
// already created, we could do some initialization here.
// this will be called every time the page becomes active.
// The WM SHOWWINDOW message is also sent to the page and could
// be used to determine activation/deactivation of the page.
SetWindowText (hwndPage, TEXT ("Thank you for coming back."));
return NULL; // return NULL, ignored
} else {
// create the window
HWND hwnd;
// Create the edit control
// You can create and initialize any type of window here, not just
dialogs.
// Use CreateWindow to create other windows. Don't specify WS VISIBLE, but
// make sure you use WS _TABSTOP.
hwnd = CreateWindow(/* Create the list box */

"EDIT", /* Window Class */

TEXT (""), /* Window Title (not used) */
WS_CHILD]| /* Window Style */

WS TABSTOP|ES MULTILINE|ES WANTRETURN,

0, O, /* %,y */

0, 0, /* cx, cy */

hwndOwner, /* Parent Window */

(HMENU) IDC EDIT, /* control ID */

g hInst, /* Application Instance */

NULL) ; /* creation data */
if (hwnd == NULL) /* create failed */

return NULL;
SetWindowText (hwnd, TEXT ("This is an edit control.\r\nClick a

SftTabs SetPageActive (hwnd, hwndTab, NULL);
return hwnd;

}

} else { // destroying page
if (hwndOwner) // - because we're switching away
return hwndPage; // keep the window handle, don't destroy it
else { // - because we're closing the main dialog

DestroyWindow (hwndPage) ;
return NULL;

}
This callback routine is called by SftTabs/DLL to perform certain functions, based on the
parameters passed.

The callback routine creates the window (page) using CreateWindow.

C++/MFC Programming

This section describes how to use SftTabs with an application written using C++ and the
Microsoft Foundation Class library (MFC).

Building an Application

A)

B)

Every source program making use of a SftTabs/DLL control must include the required
header file SFTTB.H by using the #include directive.

#include "sfttb.h" /* SftTabs/DLL required header file */

This include statement should appear after the #include <windows.h> statement. The
file is located in the directory C:\SFTTABS\INCLUDE (unless changed during the
installation).

One source program must include the CSftTabs class implementation, using the #include
directive.

#include "sfttbm.cpp" /* SftTabs/DLL implementation */

This include statement should appear after the #include "sfttb.h" statement. This is the
preferred method to include the implementation of the CSftTabs class. Adding the file
SFTTBM.CPP to your project is not recommended because it will complicate the use of
pre-compiled header files. The file is located in the directory C:\SFTTABS\INCLUDE
(unless changed during the installation).

In order to use SftTabs/DLL controls, an application must call the CSftTabs::RegisterApp
function. The call to this function is required so that SftTabs/DLL window classes can be
registered. This call has to be made before any SftTabs/DLL controls are created. Add
the following statement to your source code, the preferred location is the Initinstance
member function of your CWinApp based application object:

CSftTabs: :RegisterApp () ; /* Use SftTabs/DLL with this application

*/

Once SftTabs/DLL controls are no longer needed, an application must call the
CSftTabs::UnregisterApp function. The call to this function is required so that
SftTabs/DLL window classes can be unregistered and cleanup processing can take place.
This call has to be made after all SftTabs/DLL controls have been destroyed. The
preferred location is the Exitinstance member function of your CWinApp based
application object:

CSftTabs: :UnregisterApp () ; /* No longer use SftTabs/DLL */

The application's executable (EXE or DLL) must be linked with the correct LIB file,
depending on the target environment. The DLL must be available and accessible at run-
time for proper execution. The DLL used at run-time depends on the LIB file used at link
time.

Target Environment LIB File DLL File
Required Required at
when Run-Time
Linking

Windows 3.1, 16-bit SFTTB.LIB SFTTB.DLL

applications

WIN32, all 32-bit SFTTB32.LIB SFTTB32.DLL

environments
including Windows
NT

(without UNICODE
support

Windows NT only SFTTB32U.LIB SFTTB32U.DL
(with UNICODE L
support

All required files can be found in the directory C:\SFTTABS\LIB and C:\SFTTABS\BIN, unless
changed during the installation.

Adding a Tab Control

ClassWizard does not support new classes such as CSftTabs, so any tab control instance
variables, notification handlers, message map entries, etc., have to be added manually. To
simplify this process, you can copy these items that are generated by ClassWizard for other
"standard" Windows controls.

There are two methods to add a tab control to an application:

® using dialog resources

e using CSftTabs::Create

Adding a tab control using dialog resources is accomplished by using a resource editor to
design a dialog. For more information on the different resource editors supported by
SftTabs/DLL, see Resource Workshop, Borland C++, AppStudio, Visual C++ and Dialog Editor
(Windows SDK). Once a tab control is created, its CSftTabs based object can be obtained by
using the Windows GetDlgltem function or attached to a CSftTabs object using
SubclassWindow.

CSftTabs * pTabControl;

pTabControl = (CSftTabs *) GetDlgItem(IDC TAB);
or

CSftTabs m Tab;

m Tab.SubclassDlgItem(IDC TABS, this);

Another method to create a tab control is by using the CSftTabs::Create member function.

CSftTabs m Tab;
m Tab.Create (WS CHILD | WS VISIBLE, CRect(250,200,400,700), pParentWnd, IDC TABS);

For more information on the various parameters used, see the Create member function
documentation.

Handling Notifications

As with standard Windows controls, applications must respond to events and messages to
cause controls to respond to user requests. For additional information see Notifications.

ClassWizard does not support new classes such as CSftTabs, so any tab control instance
variables, notification handlers, message map entries, etc., have to be added manually. To
simplify this process, you can copy these items that are generated by ClassWizard for other
"standard" Windows controls.

Switching Between Tabs

Switching between tabs is fully automatic, however, an application may wish to prevent a
user from switching to another tab. By responding to the WM_COMMAND,

SFTTABSN SWITCHING notification, an application can prevent completion of the tab switch
by sending a WM_CANCELMODE message to the tab control.

// Event handler prototype added to dialog/window class
afx_msg void OnTabSwitching() ;

// Event handler (s) added to message map
BEGINiMESSAGEiMAP(CSampleView, CView)

ON SFTTABSN SWITCHING(IDC_TAB, OnTabSwitching)
END MESSAGE_MAP ()

// Event handler implementation

void CSampleView: :0OnTabSwitching ()

{
if (YouDontLikeThisUser ())
m_Tab.SendMessage (WM CANCELMODE) ; // cancel switching

}

An application has to make attached controls or dialogs visible when switching between
tabs. The SftTabs/DLL API offers functions to manage dialogs and Windows controls that are

attached to tabs. See Implementing Tabbed Dialogs and Implementing Tabbed Windows for
more information.
3D and Colors

SftTabs/DLL offers many tab control styles which look best on a gray background, using one
of the following methods:

CTL3DV2 or CTL3D32

The tab control can be used with CTL3DV2 (or CTL3D32). Any dialogs attached to a tab
control can use the 3D display, if properly enabled (usually using CtI3dAutoSubclass). For
more information on CTL3DV2 or CTL3D32, see the Microsoft documentation.

WM_CTLCOLOR, WM_CTLCOLORSTATIC

This message is generated by the tab control for compatibility with SftTabs 2.0 only. When
developing new applications, please use CSftTabs::SetCtlColors instead.

The appearance of the tab control can be modified by handling the WM _CTLCOLOR message.
The parent window can override the background color used by the tab control by defining a
WM_CTLCOLOR message handler.

// Event handler definition added to dialog class
afx msg HBRUSH OnCtlColorTab(CDC* pDC, CWnd* pWnd, UINT nCtlColor);

// Event handler added to parent window message map
ON WM CTLCOLOR (OnCtlColorTab)

// Event handler implementation
HBRUSH CYourDialog::0nCtlColorTab (CDC* pDC, CWnd* pWnd, UINT nCtlColor)

{
if (nCtlColor == CTLCOLOR_STATIC) {
pDC->SetBkColor (RGB(192,192,192)); // on gray background
return (HBRUSH)::GetStOCkObjeCt(LTGRAY_BRUSH);

}

Implementing Tabbed Dialogs

A tabbed dialog is created just like any other dialog. A tabbed dialog has a tab control with
an available client area. In this client area, pages are displayed. Each tab has an attached
page (although during development of a tabbed dialog, a tab doesn't require an attached
page). As the user switches between tabs, the appropriate page is created, displayed and
destroyed.

A tabbed dialog and each page are based on the class CSftTabsDialog and CSftTabsPage,
which are both derived from the MFC class CDialog. This makes conversion of existing
dialogs and development of new pages very easy. Tabbed dialogs and pages are first
designed using a resource editor. The sections Resource Workshop, Borland C++,

AppStudio, Visual C++ and Dialog Editor (Windows SDK) describe how the necessary tabbed
dialog and page (dialog) resources are created.

ClassWizard can be used to create the dialogs and pages. However, ClassWizard can only
create new classes based on CDialog (not CSftTabsDialog or CSftTabsPage). After
ClassWizard generates a new class derived from CDialog, you have to manually change

references to CDialog to the classes CSftTabsDialog and CSftTabsPage. When adding new
member functions, make sure to call the CSftTabsDialog and CSftTabsPage base classes
instead of CDialog.

Once the necessary dialogs have been designed, the tab control layout can be defined using
the SftTabs/DLL Wizard. The SftTabs/DLL Wizard also creates much of the code required to
initialize the tab control. This code should be copied to the application (with possibly minor
modifications).

Creating a Tabbed Dialog

The following code sample (from C:\SFTTABS\SAMPLES\MFCSAM1\MAINDLG.CPP) shows a
typical implementation of a tabbed dialog. Most of the code has been created using the
SftTabs/DLL Wizard and then copied into the application. The code that was copied is
marked by a vertical line on the side. The majority of the code is used to initialize the tab
control.

/*- Tab Control Initialization Data ——=——--——=—=——————-————————— */

static const SETTABS CONTROL CtlInit = {

SFTTABSSTYLE MODERN I, /* tab style */

2, /* number of rows */

0, /* number of tabs per row (if fFixed) */

0, /* width of left margin */

0, /* width of right margin */

FALSE, /* same width for all tabs */

TRUE, /* Client area wanted */

FALSE, /* allow multiline label text */

TRUE, /* use with dialog */

FALSE, /* use specified background color only for
text */

FALSE, /* scrollable tabs */

FALSE, /* hide scroll buttons */

TRUE, /* bold font for active tab wanted */

TRUE, /* f£ill rows completely */

NULL, /* scroll button bitmap */

NULL, /* Dialog data associated with active tab */

NULL, /* Dialog window handle associated with

NULL, /* Frame, used as client area */

TRUE, /* Tooltips wanted */

FALSE, /* drop text if it doesn't fit */

FALSE, /* conditional scroll buttons */

}i

static const SFTTABS TAB Tab0 = { /*The First One */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH LEFT, SFTTABS GRAPH BITMAP },

/* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i

static const SFTTABS TAB Tabl = { /*&Second */

SFTTABS NOCOLOR, RGB(255,0,0), /* background, foreground color */

SFTTABS NOCOLOR, RGB(255,0,0), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH RIGHT, SFTTABS GRAPH ICON },

/* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i

static const SFTTABS TAB Tab2 = { /*&Third */

SFTTABS NOCOLOR, RGB(128,128,0), /* background, foreground color */

SFTTABS NOCOLOR, RGB(128,128,0), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */

}i

static const SFTTABS TAB Tab3 = { /*F&ourth */

SFTTABS NOCOLOR, RGB(0,255,255), /* background, foreground color */
SFTTABS NOCOLOR, RGB(0,255,255), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */
}i
static const SFTTABS TAB Tab4 = { /*F&ifth */
SFTTABS NOCOLOR, RGB(0,0,128), /* background, foreground color */
SFTTABS NOCOLOR, RGB(0,0,128), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */

}i

static const SFTTABS TAB Tab5 =

{ /*Si&xth */
SFTTABS NOCOLOR, RGB(128,0,0), /* background, foreground color */
SFTTABS NOCOLOR, RGB(128,0,0), /* background, foreground color (when

selected) */

}i

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */

The OnlInitDialog message handler of the tabbed dialog initializes the tab control and
associates CSftTabsPage based objects to each tab.

BOOL CMainDlg::0nInitDialog()

{

int index;
SFTTABS TAB Tab;

/* Associate the tab control created from the dialog */
/* resource with the C++ object. */
m Tab.SubclassDlgItem(IDC TAB, this /* parent window */);

/* You could use DDX/DDV instead and add the following */
/* line to the DoDataExchange function of the tab */
/* control's parent window (remove the //). */

// DDX Control (pDX, IDC_TAB, m Tab);

/* Initialization is faster if we set redraw off */
m_Tab.SetRedraw (FALSE) ;

/* We are using new features */
m Tab.SetVersion (SFTTABS 2 1);

index = m Tab.AddTab(T("The First One"));
m Tab.SetToolTip(index, T ("Demonstrates tabbing into and out of the tab page"));
Tab = Tab0;

Tab.graph.item.hBitmap = (HBITMAP) m SampleBitmap.m hObject;
m Tab.SetTabInfo (index, &Tab);
m_Tab.SetTabDialog(index, new CPagel (this)); /* tab page */

index = m Tab.AddTab(T ("&Second"));
m Tab.SetToolTip (index, T ("Demonstrates how an application can
Tab = Tabl;

Tab.graph.item.hIcon = m hSampleIcon;
m Tab.SetTabInfo (index, &Tab);
m Tab.SetTabDialog(index, new CPage2(this)); /* tab page */

index = m Tab.AddTab(T ("&Third"));

m Tab.SetToolTip(index, T("This page is reset everytime you switch to it"));
m Tab.SetTablInfo (index, &Tab2);

m Tab.SetTabDialog(index, new CPage3(this)); /* tab page */

index = m Tab.AddTab(T ("F&ourth"));

m Tab.SetToolTip (index, T("A page with private OK, Cancel, Next and ...
m Tab.SetTabInfo (index, &Tab3);

m_Tab.SetTabDialog(index, new CPage4 (this)); /* tab page */

index = m Tab.AddTab(T("F&ifth"));

m Tab.SetToolTip(index, T("A page that has not yet been implemented")) :;

m Tab.SetTabInfo (index, &Tab4);

// If you don't want to attach a page to the tab, the following is optional
// m Tab.SetTabDialog(index, new an object based on CSftTabsPage(this)); /* tab page
*/

index = m Tab.AddTab(T("Si&xth"));

m Tab.SetToolTip(index, T("A page with nested tab controls and pages"));

m Tab.SetTabInfo (index, &Tab));

m Tab.SetTabDialog(index, new CPage6(this)); /* tab page */

m Tab.SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
m Tab.SetRedraw (TRUE) ;
m Tab.InvalidateRect (NULL, TRUE);

// If you are not using the sheet/page classes, remove the call

// Initialize tab control

InitializeTabControl (0, &m Tab, NULL);

return FALSE; // if this is a dialog's OnInitDialog member function

}

Each call to CSftTabs::SetTabDialog associates a CSftTabsPage based dialog to a tab.
Cleanup of all resources, including the dynamically allocated pages is done automatically
when the tabbed dialog is destroyed.

The call to InitializeTabControl starts the tabbed dialog handling and creates the current
page.
A tabbed dialog should always return FALSE from the OnlInitDialog member function. The

input focus has already been set by SftTabs/DLL, so returning FALSE will prevent Windows
from setting the focus (to the wrong control).

Creating a Page

The implementation of a page is identical to a regular dialog, except that the base class is
CSftTabsPage instead of CDialog.

Implementing Tabbed Windows

A tabbed window is created just like a regular window. A tabbed window has at least one
tab control as its child window (with or without a client area). Each tab has an attached
page (although during development of a tabbed window, a tab doesn't require an attached
page). As the user switches between tabs, the appropriate page is created, displayed and
destroyed.

A tabbed window and each page are based on the class CWnd or any of its derived classes,
such as CView, CFormView, etc. Using multiple inheritance, a window can inherit the
required support to make into a tabbed window or a page. This makes conversion of
existing windows and development of new pages very easy.

ClassWizard can be used to create the tabbed window and the pages initially. By using
multiple inheritance, the classes CSftTabsWindowSheet and CSftTabsWindowPage are used
to add tabbed window and page support to the new classes.

Creating a Tabbed Window

Most CWnd based classes are suitable to be used as a tabbed window. By using multiple
inheritance, a class can be used as a tabbed window by inheriting the required support from
the class CSftTabsWindowSheet.

class CSampleView : public CView, public CSftTabsWindowSheet
{

class definitions

}

The following code sample (from C:\SFTTABS\SAMPLES\MFCSAM2\SAMPLVW.CPP) shows a
typical implementation of a tabbed window. Most of the code has been created using the
SftTabs/DLL Wizard and then copied into the application.

/*— Tab Control Initialization Data -———-——=—-———————-———"—"—"—"—"—\—"——"—"—"—"—~"—"—~\—~—~\—~—~—~\—~—~\————— */

static const SFTTABS CONTROL CtlInit = {

SFTTABSSTYLE SIMPLE, /* tab style */
1, /* number of rows */
0, /* number of tabs per row (if fFixed) */
5, /* width of left margin */
5, /* width of right margin */
FALSE, /* same width for all tabs */
#1if defined (TAB_CONTROL WITH CLIENTAREA)
TRUE, /* Client area wanted */
felse
FALSE, /* Client area not wanted */
#endif
FALSE, /* allow multiline label text */
TRUE, /* use with dialog */
FALSE, /* use specified background color only for
text */
TRUE, /* scrollable tabs */
FALSE, /* hide scroll buttons */
TRUE, /* bold font for active tab wanted */
FALSE, /* fill rows completely */
NULL, /* scroll button bitmap */
NULL, /* Dialog data associated with active tab */
NULL, /* Dialog window handle associated with
NULL, /* Frame, used as client area */
TRUE, /* Tooltips wanted */
FALSE, /* drop text if it doesn't fit */
TRUE, /* conditional scroll buttons */

}i
static const SFTTABS TAB Tab0 = { /*&Listbox */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */
SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 1}, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */
}i
static const SFTTABS TAB Tabl = { /*&Edit Control */
SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */
SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i
static const SEFTTABS TAB Tab2 = { /*&0ther Listbox */

SFTTABS NOCOLOR, SFTTABS NOCOLOR, /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */

}i

The OnCreate message handler of the tabbed window initializes the tab control and
associates CSftTabsWindowPage based objects to each tab.

int CSampleView::0nCreate (LPCREATESTRUCT lpCreateStruct)
{
if (CView::0OnCreate (lpCreateStruct) == -1)
return -1;

// Create a static control that we can place above the tab control.
// This is just used to cover the parent window in that area.
if (!m Gap.Create(T(""), SS SIMPLE | WS VISIBLE | WS CHILD,
CRect (0, 0, 0, 0), /* position */
this))
return -1;

#1if !defined(TAB_CONTROL_WITH_CLIENTAREA)
// Create a static control that we can use as a frame window for the tab control's

// pages. This window is not visible and is just used to indicate the page
position
if (!m Frame.Create(T(""), SS SIMPLE | WS CHILD,
CRect (0, 0, 0, 0), /* position */
this))

return -1;
#endif

// Create the tab control
if (!m Tab.Create(
WS VISIBLE | WS CHILD | /* Visible, child window */
W57CLIPCHILDREN | WSiTABSTOP |
/* Clip child windows, tabstop */

WS_GROUP, /* Group */

CRect (0, 0, 0, 0), /* position */
this, /* Parent window */
IDC_TAB)) /* tab control ID */

return -1;
int index;

/* Initialization is faster if we set redraw off */
m Tab.SetRedraw (FALSE) ;

/* Create the font used for the tab control. */
/* Fonts are owned by the application and have to remain */
/* valid as long as the tab control uses the font. */
int height; /* Height in pixels */

HDC hDC; /* Device context */

/* Create the font to be used for the tab control. */
hDC = ::GetDC (NULL) ; /* Get a device context */

height = MulDiv (12, ::GetDeviceCaps (hDC, LOGPIXELSY), 72);/* Convert point-...

m Font.CreateFont (-height, 0, 0, 0, FW NORMAL, 0, O, O, O, O, O, O, O,
_T("Arial"));

::ReleaseDC (NULL, hDC); /* Release device context */

m Tab.SetFont (&m_Font, FALSE); /* Set tab control font */

/* We are using new features */
m Tab.SetVersion (SFTTABS 2 1);

index = m Tab.AddTab(T ("&Listbox"));

m Tab.SetToolTip (index, T ("ToolTip for the ListBox tab"));
m Tab.SetTabInfo (index, &Tab0);
m_Tab.SetTabWindowPage (index, &m ListBox); /* tab page */

index = m Tab.AddTab(T("&Edit Control"));

m Tab.SetToolTip(index, T ("ToolTip for the Edit Control tab")):;
m Tab.SetTabInfo (index, &Tabl);

m Tab.SetTabWindowPage (index, &m Edit); /* tab page */

index = m Tab.AddTab(T("&Other Listbox")):;

m Tab.SetToolTip(index, T("ToolTip for the Other ListBox tab"));
m Tab.SetTabInfo (index, &Tab2);

m_ Tab.SetTabWindowPage (index, &m OtherListBox); /* tab page *x/

m Tab.SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
m Tab.SetRedraw (TRUE) ;
m_Tab.InvalidateRect(NULL, TRUE) ;

// If you are not using the sheet/page classes, remove the call
#1if defined(TAB_CONTROL_WITH_CLIENTAREA)
// Initialize tab control
InitializeTabControl (this, 0, &m Tab, NULL);
#else
// Initialize tab control. An invisible, disabled frame window is used
InitializeTabControl (this, 0, &m Tab, &m Frame);
fendif

// Mark the view as a main, tabbed window (so accel. keys work) by registering it.
SftTabs RegisterWindow (m hWnd) ;

return 0;

}

Each call to CSftTabs::SetTabWindowPage associates a CSftTabsWindowPage based window
with a tab.

The call to CSftTabsWindowSheet::InitializeTabControl starts the tabbed window handling and
creates the current page.

Cleanup of all resources is accomplished by the call to
CSftTabsWindowSheet::TerminateTabControl.

void CSampleView: :0OnDestroy ()
{

// Remove all pages from the tab control
TerminateTabControl (this, &m Tab);

// Unregister, or the window properties used won't be removed
SftTabs UnregisterWindow (m hWnd) ;

CView: :OnDestroy () ;

The following WM_SIZE message handler OnSize resizes the tabbed window's child windows.

void CSampleView::0nSize (UINT nType, int cx, int cy)
{

CView: :0nSize (nType, cx, cy);

// get frame window dimension
RECT rect;
GetClientRect (&rect) ;

// Reposition the gap window, Jjust to cover the 5 pixels above the tab control.

m Gap.MoveWindow (0, 0, rect.right-rect.left, 5, TRUE);

#1if defined(TAB CONTROL WITH CLIENTAREA)
// Use the whole space if the tab control has a client area
// Reposition the tab control, this will also resize any attached dialog(s)
m Tab.MoveWindow (0, 5, rect.right-rect.left, rect.bottom-rect.top-5, TRUE);

#else
// There is no client area
// Use the space that is left over for the frame window

SFTTABS CONTROL Ctl;
// Get tab control info
m Tab.GetControlInfo (&Ctl);

// Reposition the tab control
m_Tab.MoveWindow (0, 5, rect.right-rect.left, Ctl.naturalSize, TRUE);

// Reposition the frame window

// Ctl.naturalSize has best height for this tab control

m_Frame.MoveWindow (0, 5+Ctl.naturalSize, rect.right-rect.left,
rect.bottom-rect.top-Ctl.naturalSize-5, TRUE)

m Tab.ResizePages(); // let the tab control know to resize all
pages
fendif

}

As the main tabbed window receives notifications from the tab control that the user is
switching to another page, it has to handle these notifications using the
CSftTabsWindowSheet::TabSwitching and CSftTabsWindowSheet::TabSwitched member
functions.

By calling the CSftTabsWindowSheet::TabSwitching member function, the class
implementation then calls CSftTabsWindowPage::AllowSwitch to determine if the current
page can be left, giving the application the opportunity to cancel tab switching.

// Switching away from the current tab

void CSampleView: :0OnTabSwitching ()

{
// You have to handle this event, so the tab pages are switched

TabSwitching(this, &m Tab);
}

// Switching to a new tab

void CSampleView::0nTabSwitched()
{

// You have to handle this event, so the tab pages are switched
TabSwitched (this, &m Tab);
}

Creating a Page

Most CWnd based classes are suitable to become a page in a tabbed window. By using
multiple inheritance, a class can be used as a page by inheriting the required support from

the class CSftTabsWindowPage.

class CSamplelListBox : public CListBox, public CSftTabsWindowPage
{

class definitions

}

The following code sample (from C\SFTTABS\SAMPLES\MFCSAM2\LISTBOX.CPP) shows a
typical implementation of a page. Most of the code has been created using SftTabs/DLL
Wizard.

// create/attach window

BOOL CSampleListBox::ActivatePage (CWnd* pParent, CSftTabs* pTabCtl)
{
if (!m_hWnd) {
// The window doesn't exist, create it now
if (!Create (WS CHILD| /* Window Style */
WS_TABSTOP|
LBS NOTIFY|LBS NOINTEGRALHEIGHT,

CRect (0,0,0,0), /* location */
pParent, /* Parent Window */
IDC _LIST)) /* control ID */
return FALSE;

AddString(T("Item 1"));

AddString(T("Item 2"));

AddString (T ("Item 3"));

AddString (T ("Item 4"));

AddString(T("Item 5"));

AddString(T("Item 6"));

AddString(T("This is a listbox."));

AddString(_T("Click a tab or use Alt-xxx to"));

AddString(T ("switch to another tab."));

SetCurSel (0) ;

} else {

// The user switched back to this page
}

// This page is now active

SftTabs SetPageActive (m hWnd, pTabCtl->m hWnd, NULL);

// Enable + show it, its size is 0,0,0,0, it will be resized by the tab control
EnableWindow (TRUE) ;

ShowWindow(SW_SHOW);

return TRUE;
}

// destroy/detach window

void CSamplelListBox::DeactivatePage (CWnd* pParent, CSftTabs* pTabCtl, BOOL fFinal)
{

if (fFinal)
DestroyWindow () ;
else {

// hide the page

ShowWindow(SW_HIDE);

EnableWindow (FALSE) ;
}
// clear associated page in tab's control structure
SftTabs SetPaqunactive(pTathl—>m_hWnd);

}

The CSftTabsWindowPage::ActivatePage and CSftTabsWindowPage::DeactivatePage member
functions must be implemented by a page. SftTabs/DLL Wizard generates the required
sample code.

These functions allow the application to do initialization and termination processing for each
page.

C++/OWL Programming

This section describes how to use SftTabs/DLL with an application written using C++ and the
Borland ObjectWindows Library (OWL).

Building an Application

A)

B)

Every source program making use of a SftTabs/DLL control must include the required
header file SFTTB.H by using the #include directive.

#include "sfttb.h" /* SftTabs/DLL required header file */

This include statement should appear after any OWL- and Windows-related #include
statements. The file is located in the directory C:\SFTTABS\INCLUDE (unless changed
during the installation).

One source program must include the TSftTabs class implementation, using the #include
directive.

#include "sfttbb.cpp" /* SftTabs/DLL implementation */

This include statement should appear after the #include "sfttb.h" statement. This is the
preferred method to include the implementation of the TSftTabs class. Adding the file
SFTTBB.CPP to your project is not recommended because it will complicate the use of
pre-compiled header files. The file is located in the directory C:\SFTTABS\INCLUDE
(unless changed during the installation).

In order to use SftTabs/DLL controls, an application must call the TSftTabs::RegisterApp
function. The call to this function is required so that SftTabs/DLL window classes can be
registered. This call has to be made before any SftTabs/DLL controls are created. Add
the following statement to your source code, the preferred location is the Initinstance
member function of your TApplication based application object:

TSftTabs: :RegisterApp () ; /* Use SftTabs/DLL with this application

*/

Once SftTabs/DLL controls are no longer needed, an application must call the
TSftTabs::UnregisterApp function. The call to this function is required so that SftTabs/DLL
window classes can be unregistered and cleanup processing can take place. This call
has to be made after all SftTabs/DLL controls have been destroyed. The preferred
location is the Terminstance member function of your TApplication based application
object:

TSftTabs: :UnregisterApp () ; /* No longer use SftTabs/DLL */

The application's executable (EXE or DLL) must be linked with the correct LIB file,
depending on the target environment. The DLL must be available and accessible at run-
time for proper execution. The DLL used at run-time depends on the LIB file used at link
time.

Target Environment LIB File Required DLL File

when Linking Required at Run-
Time
Windows 3.1, 16-bit SFTTB.LIB SFTTB.DLL
applications
WIN32, all 32-bit SFTTB32B.LIB SFTTB32.DLL

environments

including Windows

NT

(without UNICODE

support

Windows NT only SFTTB32V.LIB SFTTB32U.DLL

(with UNICODE
support

All required files can be found in the directories C:\SFTTABS\LIB and C:\SFTTABS\BIN,
unless changed during the installation.

Adding a Tab Control

ClassExpert does not support new classes such as TSftTabs, so any tab control instance
variables, notification handlers, message map entries, etc., have to be added manually. To
simplify this process, you can copy these items that are generated by ClassExpert for other
"standard" Windows controls (such as a list box).

There are two methods to add a tab control to an application:

® using dialog resources
® using the TWindow::Create function

Adding a tab control using dialog resources is accomplished by using a resource editor to
design a dialog. For more information on the different resource editors supported by
SftTabs/DLL, see Resource Workshop, Borland C++, AppStudio, Visual C++ and Dialog Editor
(Windows SDK). Once a tab control is created by creating the dialog, the TSftTabs based
object can be constructed by using the TSftTabs constructor.

pTab = new TSftTabs (this, IDC TAB);

Another method to create a tab control is by using the TSftTabs constructor and the
TWindow::Create function:

pTab = new ISftTabs (parentWindow, IDC TAB, 250,200,400,400);
pTab->Create () ;

The constructor creates the tab control object. The arguments define the position of the tab
control window once it is created using the Create function.

Handling Notifications

As with standard Windows controls, applications must respond to events and messages to
cause controls to respond to user requests. For additional information see Notifications.

ClassExpert does not support new classes such as TSftTabs, so any tab control instance
variables, notification handlers, message map entries, etc., have to be added manually. To
simplify this process, you can copy these items that are generated by ClassExpert for other
"standard" Windows controls.

Switching Between Tabs

Switching between tabs is fully automatic, however, an application may wish to prevent a
user from switching to another tab. By responding to the WM_COMMAND,

SFTTABSN SWITCHING notification, an application can prevent completion of the tab switch
by sending a WM_CANCELMODE message to the tab control.

// Event handler prototype added to dialog/window class
void EvTabSwitching () ;

// Response table

DEFINE RESPONSE TABLEI (TMainWin, TLayoutWindow)
EV_SFTTABSN SWITCHING(IDC TAB, EvTabSwitching),

END_ RESPONSE TABLE;

// Event handler implementation
void TMainWin::EvTabSwitching()
{
if (YouDontLikeThisUser())
pTabCtl->SendMessage (WM _CANCELMODE) ; // cancel switching

}

An application has to make attached controls or dialogs visible when switching between
tabs. The SftTabs/DLL API offers functions to manage dialogs and Windows controls that are

attached to tabs. See Implementing Tabbed Dialogs and Implementing Tabbed Windows for
more information.

3D and Colors

SftTabs/DLL offers many tab control styles which look best on a gray background. For
dialogs, the gray background can be achieved using the SoftelGrayDialog or
SoftelGrayDialog32 window class or using one of the following methods:

CTL3DV2 or CTL3D32

The tab control can be used with CTL3DV2 (or CTL3D32). Any dialogs attached to a tab
control can use the 3D display, if properly enabled (usually using CtI3dAutoSubclass). For
more information on CTL3DV2 or CTL3D32, see the Microsoft documentation. For more
information on CTL3DV2 or CTL3D32, see the documentation supplied with Borland C++.

WM_CTLCOLOR, WM_CTLCOLORSTATIC

This message is generated by the tab control for compatibility with SftTabs 2.0 only. When
developing new applications, please use TSftTabs::SetCtlColors instead.

The appearance of the tab control can be modified by handling the WM _CTLCOLOR message.
The parent window can override the background color used by the tab control by defining a
WM_CTLCOLOR message handler.

// Pointer to tab object added to dialog class

TSftTabs* pTab;

// Event handler definition added to dialog class

HBRUSH EvCtlColorTab (HDC dc, HWND hWndChild, uint ctlType);
// Event handler added to parent window response table

EV WM CTLCOLOR,

// Event handler implementation
HBRUSH TYourDialog::EvCtlColorTab (HDC dc, HWND hWndChild, uint ctlType)
{
if (ctlType == CTLCOLOR STATIC) ({
::SetBkColor (dc, RGB(192,192,192)); // on gray background
return (HBRUSH) ::GetStockObject (LTGRAY BRUSH) ;

}

Implementing Tabbed Dialogs

A tabbed dialog is created just like any other dialog. A tabbed dialog has a tab control with
an available client area. In this client area, pages are displayed. Each tab has an attached
page (although during development of a tabbed dialog, a tab doesn't require an attached
page). As the user switches between tabs, the appropriate page is created, displayed and
destroyed.

A tabbed dialog and each page are based on the class TSftTabsDialog and TSftTabsPage,
which are both derived from the OWL class TDialog. This makes conversion of existing
dialogs and development of new pages very easy. Tabbed dialogs and pages are first
designed using a resource editor. The sections Resource Workshop, Borland C++,
AppStudio, Visual C++ and Dialog Editor (Windows SDK) describe how the necessary tabbed
dialog and page (dialog) resources are created.

ClassExpert can be used to create the dialogs and pages. However, ClassExpert can only
create new classes based on TDialog (not TSftTabsDialog or TSftTabsPage). After
ClassExpert generates a new class derived from TDialog, you have to manually change
references to TDialog to the classes TSftTabsDialog and TSftTabsPage. When adding new

member functions, make sure to call the TSftTabsDialog and TSftTabsPage base classes
instead of TDialog. The Rescan function of the Borland IDE no longer recognizes classes
which have been manually edited to TSftTabsDialog and TSftTabsPage. The samples
included with SftTabs/DLL show how using '#define TDialog TSftTabsDialog' and '#undef
TDialog' in the header file of a dialog can bypass this problem. See MAINDLG.H and
PAGE1.H of the sample found in the directory C:\SFTTABS\SAMPLES\OWLSAM1.

Once the necessary dialogs have been designed, the tab control layout can be defined using
the SftTabs/DLL Wizard. The SftTabs/DLL Wizard also creates much of the code required to
initialize the tab control. This code should be copied to the application (with possibly minor
modifications).

Creating a Tabbed Dialog

The following code sample (from C:\SFTTABS\SAMPLES\OWLSAM1\MAINDLG.CPP) shows a
typical implementation of a tabbed dialog. Most of the code has been created using the
SftTabs/DLL Wizard and then copied into the application. The code that was copied is
marked by a vertical line on the side. The majority of the code is used to initialize the tab
control.

/*— Tab Control Initialization Data -———=—-—=————————————"——"—"—"—\—"—\—"——"—~—"—~—~\—~—~—(—(—~——————— */

static const SFTTABS CONTROL CtlInit = ({

SFTTABSSTYLE MODERN I, /* tab style */

2, /* number of rows */

0, /* number of tabs per row (if fFixed) */

0, /* width of left margin */

0, /* width of right margin */

FALSE, /* same width for all tabs */

TRUE, /* Client area wanted */

FALSE, /* allow multiline label text */

TRUE, /* use with dialog */

FALSE, /* use specified background color only for
text */

FALSE, /* scrollable tabs */

FALSE, /* hide scroll buttons */

TRUE, /* bold font for active tab wanted */

TRUE, /* £ill rows completely */

NULL, /* scroll button bitmap */

NULL, /* Dialog data associated with active tab */

NULL, /* Dialog window handle associated with

NULL, /* Frame, used as client area */

TRUE, /* Tooltips wanted */

FALSE, /* drop text if it doesn't fit */

FALSE, /* conditional scroll buttons */

}i

static const SFTTABS TAB Tab0 = { /*The First One */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color */

SFTTABS NOCOLOR, RGB(0,0,255), /* background, foreground color (when
selected) */

{ SFTTABS GRAPH LEFT, SFTTABS GRAPH BITMAP },

/* Bitmap, Icon */

TRUE, /* enabled/disabled */

0 /* userdata */
}i

static const SFTTABS TAB Tabl = { /*&Second */
SFTTABS NOCOLOR, RGB(255,0,0), /* background, foreground color */
SFTTABS NOCOLOR, RGB(255,0,0), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH RIGHT, SFTTABS GRAPH ICON },
/* Bitmap, Icon */
TRUE, /* enabled/disabled */

}i

static const SFTTABS TAB Tab2 = {
SFTTABS NOCOLOR, RGB(128,128,0),
SFTTABS_NOCOLOR, RGB(128,128,0),
selected) */
{ SFTTABS GRAPH NONE, 0
TRUE,
0

by

}i

static const SFTTABS TAB Tab3 = {
SFTTABS NOCOLOR, RGB (0,255, 255),
SFTTABS NOCOLOR, RGB(0,255,255),
selected) */
{ SFTTABS GRAPH NONE,
TRUE,
0

0 1},

}i

static const SFTTABS TAB Tab4 = {
SFTTABS NOCOLOR, RGB(0,0,128),
SFTTABS NOCOLOR, RGB(0,0,128),
selected) */
{ SFTTABS GRAPH NONE, 0
TRUE,
0

b

}i

static const SFTTABS TAB Tabb = {
SFTTABS NOCOLOR, RGB (128,0,0),
SFTTABS NOCOLOR, RGB(128,0,0),
selected) */
{ SFTTABS GRAPH NONE, 0
TRUE,
0

by

}i

/* userdata */

/*&Third */
/* background, foreground
/* background, foreground

/*
/*
/*

Bitmap, Icon */
enabled/disabled */
userdata */

/*F&ourth */
/* background, foreground
/* background, foreground

/*
/*
/*

Bitmap, Icon */
enabled/disabled */
userdata */

/*F&ifth */
/* background, foreground
/* background, foreground

/* Bitmap, Icon */
/* enabled/disabled */
/* userdata */

/*Si&xth */
/* background, foreground
/* background, foreground

/* Bitmap, Icon */
/* enabled/disabled */
/* userdata */

color
color

color
color

color
color

color
color

*/

(when

*/

(when

*/

(when

*/

(when

The EvinitDialog message handler of the tabbed dialog initializes the tab control and
associates TSftTabsPage based objects to each tab.

bool TMainDialog::EvInitDialog
{

(HWND hWndFocus)

TSftTabsDialog: :EvInitDialog (hWndFocus) ;

int index;
SFTTABS TAB Tab;

/* Initialization is faster if we set redraw off */

pTab->SetRedraw (false);

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("The First One"));
pTab->SetToolTip (index,

page"));
Tab = Tab0;

Tab.graph.item.hBitmap =

pTab->SetTabInfo (index, &Tab);

*m_pSampleBitmap;

pTab->SetTabDialog (index, new TPagel (this));

index = pTab->AddTab (TEXT ("&Second")) ;
pTab->SetToolTip (index,
Tab = Tabl;

Tab.graph.item.hIcon =

pTab->SetTabInfo (index, &Tab);

*m pSampleIcon;

TEXT ("Demonstrates how an application can

TEXT ("Demonstrates tabbing into and out of the tab

pTab->SetTabDialog(index, new TPage?2 (this));

index = pTab->AddTab (TEXT ("&Third")) ;

pTab->SetToolTip (index, TEXT ("This page is reset everytime you switch to it"));
pTab->SetTabInfo (index, &Tab2);

pTab->SetTabDialog (index, new TPage3(this));

index = pTab->AddTab (TEXT ("F&ourth")) ;

pTab->SetToolTip (index, TEXT("A page with private OK, Cancel, Next and ...
pTab->SetTabInfo (index, &Tab3);

pTab->SetTabDialog(index, new TPage4 (this));

index = pTab->AddTab (TEXT ("F&ifth"));

pTab->SetToolTip (index, TEXT ("A page that has not yet been implemented"));
pTab->SetTablInfo (index, &Tab4);

// no page attached

index = pTab->AddTab (TEXT ("Si&xth"));

pTab->SetToolTip (index, TEXT ("A page with nested tab controls and pages"));
pTab->SetTabInfo (index, &Tabb);

pTab->SetTabDialog (index, new TPage6 (this));

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;
pTab->Invalidate (true);

// If you are not using the sheet/page classes, remove the ...
// Initialize tab control

InitializeTabControl (0, pTab, NULL);

return false;

}

Each call to TSftTabs::SetTabDialog associates a TSftTabsPage based dialog to a tab.
Cleanup of all resources, including the dynamically allocated pages is done automatically
when the tabbed dialog is destroyed.

The call to TSftTabsDialog::InitializeTabControl starts the tabbed dialog handling and creates
the current page.

A tabbed dialog should always return FALSE from the EvinitDialog member function. The
input focus has already been set by SftTabs/DLL, so returning FALSE will prevent Windows
from setting the focus (to the wrong control).

Creating a Page

The implementation of a page is identical to a regular dialog, except that the base class is
TSftTabsPage instead of TDialog.

Implementing Tabbed Windows

A tabbed window is created just like a regular window. A tabbed window has at least one
tab control as its child window (with or without a client area). Each tab has an attached
page (although during development of a tabbed window, a tab doesn't require an attached
page). As the user switches between tabs, the appropriate page is created, displayed and
destroyed.

A tabbed window and each page are based on the class TWindow or any of its derived
classes, such as TListBox, TEdit, etc. Using multiple inheritance, a window can inherit the
required support to make into a tabbed window or a page. This makes conversion of
existing windows and development of new pages very easy.

ClassExpert can be used to create the tabbed window and the pages initially. By using
multiple inheritance, the classes TSftTabsWindowSheet and TSftTabsWindowPage are used to
add tabbed window and page support to the new classes.

Creating a Tabbed Window

Most TWindow based classes are suitable to be used as a tabbed window. By using multiple
inheritance, a class can be used as a tabbed window by inheriting the required support from
the class TSftTabsWindowSheet.

class TMainWin : public TLayoutWindow, public TSftTabsWindowSheet {
class definitions

}i

The following code sample (from C:\SFTTABS\SAMPLES\OWLSAM2\MAINWIN.CPP) shows a
typical implementation of a tabbed window. Most of the code has been created using the
SftTabs/DLL Wizard and then copied into the application.

/*— Tab Control Initialization Data —-———-——=————————————"———"—"—\—"—\—"——"—~—\—~—~\—~—~\—~—~—(——————— */

static const SFTTABS CONTROL CtlInit = {

SFTTABSSTYLE SIMPLE, /* tab style */
1, /* number of rows */
0, /* number of tabs per row (if fFixed) */
0, /* width of left margin */
0, /* width of right margin */
FALSE, /* same width for all tabs */
#1if defined (TAB _CONTROL WITH CLIENTAREA)
TRUE, /* Client area wanted */
#else
FALSE, /* Client area not wanted */
#endif
FALSE, /* allow multiline label text */
FALSE, /* use with dialog */
FALSE, /* use specified background color only for
text */
TRUE, /* scrollable tabs */
FALSE, /* hide scroll buttons */
TRUE, /* bold font for active tab wanted */
FALSE, /* fill rows completely */
NULL, /* scroll button bitmap */
NULL, /* Dialog data associated with active tab */
NULL, /* Dialog window handle associated with
NULL, /* Frame, used as client area */
TRUE, /* Tooltips wanted */
FALSE, /* drop text if it doesn't fit */
TRUE, /* conditional scroll buttons */

}i
static const SFTTABS TAB Tab0 = { /*&Listbox */

RGB(0,0,255), RGB(0,255,255), /* background, foreground color */
RGB (0,0,255), RGB(0,255,255), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */
}i
static const SFTTABS TAB Tabl = { /*&Edit Control */
RGB (255, 255,0), RGB(0,0,0), /* background, foreground color */
RGB (255, 255,0), RGB(0,0,0), /* background, foreground color (when
selected) */
{ SFTTABS GRAPH NONE, 0 }, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */

}i

static const SFTTABS TAB Tab2 = { /*&Dialog */
RGB (255,0,0), RGB(255,255,0), /* background, foreground color */
RGB (255,0,0), RGB(255,255,0), /* background, foreground color (when

selected) */

{ SFTTABS GRAPH NONE, 0}, /* Bitmap, Icon */
TRUE, /* enabled/disabled */
0 /* userdata */

}i

The EvCreate message handler of the tabbed window initializes the tab control and
associates TSftTabsWindowPage based objects to each tab.

int TMainWin::EvCreate (CREATESTRUCT far& createStruct)

{
if (TLayoutWindow: :EvCreate (createStruct) != 0)
return -1;

// Create the tab control

pTab = new TSftTabs (this, // 'this' is the parent window
IDC_TAB, // tab control ID
0, 0, /* X,y */
0, 0); /* width, height */
pTab->Attr.Style |= WS_CLIPCHILDREN | WS_TABSTOP | WS_GROUP |
WS_VISIBLE | WS CHILD; // Visible, child window

if (!pTab->Create())
return -1;

#1if !defined(TAB_CONTROL_WITH_CLIENTAREA)
// Create the frame window (which will hold the pages)

m pFrame = new TStatic(this, -1, TEXT(""), 0, 0, 0, 0);

m pFrame->Attr.Style &= ~WS_VISIBLE; // not visible

m pFrame->Attr.Style |= WS _DISABLED; // and disabled

// Create a static control that we can use as a frame window for the tab control's

// pages. This window is not visible and is just used to indicate the page
position

if (!m pFrame->Create())
return -1;
#endif

int index;

/* Initialization is faster if we set redraw off */
pTab->SetRedraw (false) ;

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("&Listbox")) ;

pTab->SetToolTip (index, TEXT ("A standard listbox is attached to this tab")):;
pTab->SetTabInfo (index, &Tabl);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabWindowPage (index, m pList); // tab page

index = pTab->AddTab (TEXT ("&Edit Control"));

pTab->SetToolTip (index, TEXT("A standard edit control is attached to this tab"));
pTab->SetTabInfo (index, &Tabl);

pTab->SetTabWindowPage (index, m pEdit); // tab page

index = pTab->AddTab (TEXT ("&Dialog")) ;

pTab->SetToolTip (index, TEXT ("A dialog is attached to this tab"));
pTab->SetTabInfo (index, &Tab2);

pTab->SetTabWindowPage (index, m _pDlg); // tab page

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;
pTab->Invalidate (true);

// If you are not using the sheet/page classes, remove the call
#1f defined(TAB CONTROL WITH CLIENTAREA)

// Initialize tab control
InitializeTabControl (this, 0, pTab, NULL);

#else
// Initialize tab control. An invisible, disabled frame window is used to
InitializeTabControl (this, 0, pTab, m pFrame);

#endif
// Mark the view as a main, tabbed window (so accel. keys work) by registering it.
SftTabs RegisterWindow (HWindow) ;

return 0;

}

Each call to TSftTabs::SetTabWindowPage associates a TSftTabsWindowPage based window
with a tab.

The call to ISftTabsWindowSheet::InitializeTabControl starts the tabbed window handling and
creates the current page.

Cleanup of all resources is accomplished by the call to
TSftTabsWindowSheet:: TerminateTabControl.

void TMainWin::EvDestroy ()

{
TLayoutWindow: :EvDestroy () ;

// Remove all pages from the tab control
TerminateTabControl (this, pTab);

// Unregister, or the window properties used won't be removed
SftTabs UnregisterWindow (HWindow) ;

}
The following WM_SIZE message handler EvSize resizes the tabbed window's child windows.

void TMainWin::EvSize (uint sizeType, TSizeé& size)

{

TLayoutWindow: :EvSize (sizeType, size);

TRect rect;
// resize all child windows. You could also use TLayoutMetrics and Layout ().
// Here we "manually" calculate the window sizes.

// get frame window dimension
rect = GetClientRect () ;

#if defined (TAB _CONTROL WITH CLIENTAREA)
// Use the whole space if the tab control has a client area
// Reposition the tab control, this will also resize any attached dialog(s)
pTab->MoveWindow (0, 0, rect.right-rect.left, rect.bottom, TRUE);

#else
// There is no client area
// Use the space that is left over for the frame window

// calculate position of tab control
SETTABS CONTROL Ctl;

// Get tab control info
pTab->GetControlInfo (&Ctl) ;

// Reposition the tab control
pTab->MoveWindow (0, 0, rect.right-rect.left, Ctl.naturalSize, TRUE);

// Reposition the frame window
// Ctl.naturalSize has best height for this tab control
m_pFrame->MoveWindow (0, Ctl.naturalSize, rect.right-rect.left,
rect.bottom-rect.top-Ctl.naturalSize, TRUE);
pTab->ResizePages () ; // let the tab control know to resize all
pages
#endif
}

As the main tabbed window receives notifications from the tab control that the user is
switching to another page, it has to handle these notifications using the
TSftTabsWindowSheet::TabSwitching and TSftTabsWindowSheet::TabSwitched member
functions.

By calling the TSftTabsWindowSheet::TabSwitching member function, the class
implementation then calls TSftTabsWindowPage::AllowSwitch to determine if the current
page can be left, giving the application the opportunity to cancel tab switching.

void TMainWin: :EvTabSwitching()
{
TabSwitching (this, pTab);
}
void TMainWin: :EvTabSwitched ()

{
TabSwitched (this, pTab);

}
Creating a Page

Most TWindow based classes are suitable to become a page in a tabbed window. By using
multiple inheritance, a class can be used as a page by inheriting the required support from

the class TSftTabsWindowPage.

class TSamplelList : public TListBox, public TISftTabsWindowPage {
class definitions

}

As a page is allocated by the tabbed window, it is important that
TWindow::DisableAutoCreate is called for each page before the tabbed window is created.
Without the call to DisableAutoCreate, all pages would be created automatically as soon as
the tabbed window is created, which interferes with the processing offered by SftTabs/DLL
and the C++ class implementations.

TMainWin: :TMainWin (TWindow* parent, const char far* title, TModule* module) :
TLayoutWindow (parent, title, module)

{
pTab = NULL; // tab control

// Construct an edit control (one of the pages)

m pEdit = new TSampleEdit (this, IDC EDIT, TEXT(""), O, O, 0, 0, 0, true);

// Make sure the control/window isn't automatically created when the parent is
created

m pEdit->DisableAutoCreate();

// Construct a listbox

m pList = new TSamplelist(this, IDC LIST, 0, 0, O, O0, 0);

// Make sure the control/window isn't automatically created when the parent is
created.

m pList->DisableAutoCreate();

// Construct a dialog

m pDlg = new TLastDialog(this);

// Make sure the control/window isn't automatically created when the parent is
created.

m_pDlg->DisableAutoCreate () ;
}

The following code sample (from C:\SFTTABS\SAMPLES\OWLSAM2\LISTBOX.CPP) shows a
typical implementation of a page. Most of the code has been created using SftTabs/DLL
Wizard.

bool TSamplelList::ActivatePage (TWindow* pParent, TSftTabs* pTabCtl)
{

// This is called when the user switches to a page

}

if (!'HWindow) {
// The window doesn't exist, create it now. Make sure it's NOT VISIBLE.
// You can modify this to create another type of window instead.
Attr.Style &= ~ (WS BORDER|WS VISIBLE) ; // turn these off
// you may need to add/remove additional styles
Attr.Style |= WS_TABSTOP; // turn these styles on
if (!Create())
return false;
// Additional initialization if desired
AddString ("Item 1");
AddString ("Item 2
AddString("Item 3
AddString ("Item 4
AddString("Item 5
(6
(i
(

’
v

")
')7
") ;
ll)
")

’
v

AddString ("Item
AddString ("This is a listbox.");
AddString("Click a tab or use Alt-xxx to");
AddString("switch to another tab.");
SetSelIndex (0);

} else {
// The user switched back to this page

’

}

// This page is now active

SftTabs SetPageActive (HWindow, pTabCtl->HWindow, NULL) ;

// Enable + show it, its size is 0,0,0,0, it will be resized by the tab control
EnableWindow (true) ;

ShowWindow (SW_SHOW) ;

return true;

void TSamplelList::DeactivatePage (TWindow* pParent, TSftTabs* pTabCtl, bool fFinal)

{

}

if (fFinal) {
// You must destroy the window, the tabbed window (parent) is going away
Destroy () ;
} else {
// Hide the page. If you want, you could use Destroy here too.
// In that case you save resources and the window will be recreated
// when the user switches back to this page
ShowWindow (SW_HIDE) ;
EnableWindow (false) ;
}
// clear associated page in tab's control structure
SftTabs SetPagelnactive (pTabCtl->HWindow) ;

The TSftTabsWindowPage::ActivatePage and TSftTabsWindowPage::DeactivatePage member
functions must be implemented by a page. SftTabs/DLL Wizard generates the required
sample code.

These functions allow the application to do initialization and termination processing for each

page.

Resource Workshop

Resource Workshop is part of Borland C++ 4.5. If you are using Borland C++ 5.0, see
section Borland C++ for more information.

First Time

In order to make SftTabs/DLL available to Resource Workshop, use its File, Install control
library... menu command to define SftTabs/DLL to Resource Workshop. This has to be done
only once. Locate the DLL using the dialog shown. The file SFTTB.DLL can be found in the
directory C:\SFTTABS\BIN (unless changed during the installation). Do not install the 32-bit
version of the DLL. Borland C++ Resource Workshop does not support 32-bit custom
control DLLs, even when running in a 32-bit environment. By installing the 16-bit version of
SftTabs/DLL, Resource Workshop will be able to display and modify SftTabs/DLL attributes as
expected. The resource script can be compiled using 32-bit (or 16-bit) tools and linked with
the appropriate 32-bit or 16-bit version of SftTabs/DLL.

New Project

Whenever you create a project which is to include a SftTabs/DLL control, make sure to add
the C and C++ header file SFTTB.H to your project. This file can be found in the directory
C:\SFTTABS\INCLUDE (unless changed during the installation). Use the File, Add to project...
menu command to display the Add file to project dialog. Adding the SftTabs/DLL header file
insures that your resource definitions for the SftTabs/DLL control can be compiled correctly.
The SFTTB.H header file has to be accessible to Resource Workshop and the resource
compiler. If the header file is not added to your project you will get the error message
"Resource Workshop 197: Compile Error, Expecting control window style" when editing a
dialog containing a SftTabs/DLL control.

Adding a Tab Control to a Dialog

To add a SftTabs/DLL control to a dialog, use the SftTabs/DLL toolbar button. Click on the
button and then on the dialog being designed to add a control. Once a SftTabs/DLL control
has been added to a dialog, you can edit the window styles by double-clicking anywhere
within the control, or by using the Control, Style... menu command. This dialog can only be
used to manipulate a few very basic styles. More styles are available through the C and C+
+ API.

SftTabs/DLL Control Styles Dialog
The SftTabs/DLL Styles dialog allows you to manipulate the following tab control attributes:

Item Description

Control ID Enter the control's identifier in the Control ID input box. Control IDs can
be a short integer such as 201, or an integer expression, such as
IDC_TABS=201. In both cases the value 201 is assigned to the control
as control ID, the second example also defines IDC_TABS as an
alphanumeric identifier. If you enter an alphanumeric identifier,
Resource Workshop checks to see if a #define or a constant
declaration has already been created for that identifier. If not, Resource
Workshop will create the identifier.

Visible The Visible check box determines whether the control is visible when
the dialog box is first displayed. If the option is not checked, the
control does not appear. The application can call the ShowWindow
function at run-time to make the control appear. Equivalent to the
WS _VISIBLE style.

Disabled The Disabled check box disables the control by graying it. This
prevents the control from responding to user input. Equivalent to the
WS _DISABLED style.

Border Turn the Border check box on to draw a border around the control. The
border is a dark line. Equivalent to the WS_BORDER style.

Group Turn the Group check box on to indicate the first control within a group
of controls. The user can then press the arrow keys to access all
controls in the group. Equivalent to the WS_GROUP style.

Tab Stop Turn the Tab Stop check box on if you want the user to be able to press
Tab to access this control. Equivalent to the WS_TABSTOP style.

oK Click the OK button to accept all style settings and end the SftTabs/DLL
Styles dialog.

Cancel Click the Cancel button to abandon all (modified) style settings and
end the SftTabs/DLL Styles dialog.

Help Click the Help button for on-line help information on the SftTabs/DLL
Styles dialog.

Design Click Click the Design button to open or create a tab layout file (*.TAB).

This invokes the SftTabs/DLL Wizard application, which allows you to
define a tab layout and generates the required C or C++ run-time
source code.

Designing a Tabbed Dialog

A tabbed dialog is designed just like a regular dialog. The only difference is the tab control,
which is added to make it a tabbed dialog. The tab control has to be designed using the
SftTabs/DLL Wizard application and the resulting source code can then be copied to your
application.

A tab control used with a tabbed dialog must provide a client area or a frame window has to
be defined when calling SftTabs_SetControlinfo, CSftTabsDialog::InitializeTabControl or
TSftTabsDialog::InitializeTabControl.

The size of the tab control's client area must be large enough to accommodate all pages.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows. To make
tabbed dialog versus page size consistent, make sure to always specify the same font to be
used for all dialogs.

Designing a Page
A page is a modeless dialog which is placed in the tab control's client area.

The size of the tab control's client area must be large enough to accommodate a page.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows.

A tab page is designed just like a regular dialog with a few minor restrictions. A page is
always a modeless dialog which has a tabbed dialog as its parent window. For that reason,
the window style of a page has to be defined as "Child". The dialog should be defined
without frame, border or other decoration. A system menu may be defined so a dialog
caption can be entered. Both the system menu and the dialog caption will be removed by
SftTabs before the page is shown. The page's caption will be used as the dialog caption for
the main, tabbed dialog. This offers an easy way to change the tabbed dialog's window title
when switching between pages.

To make tabbed dialog versus page size consistent, make sure to always specify the same
font to be used for all dialogs.

Test Mode

In the dialog test mode offered by Resource Workshop, a SftTabs/DLL control will be
displayed in the location specified. The tab control will not reflect any settings you may
have defined using the SftTabs/DLL Wizard application. The tab control shown will always
be of the "Standard" style with four tabs, labeled 1,2,3 and 4.

Borland C++

Borland C++ 5.x does not support custom control DLLs (Resource Workshop, shipped with
Borland C++ 4.x fully supports custom controls). It is still possible to use SftTabs/DLL with
Borland C++, but the easy design-time interface that is provided by other resource editors is
not available.

Adding a Tab Control to a Dialog

To add a SftTabs/DLL control to a dialog, use the Dialog, Insert New Control menu command.
Enter the class SoftelTabControl (Windows 3.1) or SoftelTabControl32 (for Windows NT,
95, Win32s) in the New Control dialog.

Once a custom control has been added to a dialog, you can edit the control properties by
double-clicking anywhere within the control. A window caption is not necessary, so the edit
field marked Caption can be left blank.

SftTabs/DLL Control Styles

To enter a SftTabs/DLL window style in the User Control Properties dialog, use the following
list to add the desired style values and enter the resulting hexadecimal value in the field
marked Style. For detailed information, see Tab Control Styles.

Style
ValueDescription
WS BORDER
0x00800000 Draw a border around the control. The border is a dark line.
WS _CHILD
0x40000000 Create a child window.
WS _DISABLED
0x08000000 Create a tab control that is initially disabled. A disabled tab control
cannot receive input from the user.
WS _GROUP
0x00020000 Specifies the first control of a group of controls. All controls defined
with the WS_GROUP style after the first control belong to the same
group. The next control with the WS_GROUP style ends the group
and starts the next group.
WS TABSTOP
0x00010000 Specifies a control that can receive the keyboard focus when the user
presses the TAB key. Pressing the TAB key changes the keyboard
focus to the next control with the WS_TABSTOP style.
WS VISIBLE

0x10000000 Create a tab control that is initially visible.

Designing a Tabbed Dialog

A tabbed dialog is designed just like a regular dialog. The only difference is the tab control,
which is added to make it a tabbed dialog. The tab control has to be designed using the
SftTabs/DLL Wizard and the resulting source code can then be copied to your application..

A tab control used with a tabbed dialog must provide a client area or a frame window has to
be defined when calling SftTabs ActivatePage, CSftTabsDialog::InitializeTabControl or

TSftTabsDialog::InitializeTabControl.

The size of the tab control's client area must be large enough to accommodate all pages.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows. To make
tabbed dialog versus page size consistent, make sure to always specify the same font to be
used for all dialogs.

Designing a Page

A page is a modeless dialog which is placed in the tab control's client area.

The size of the tab control's client area must be large enough to accommodate a page.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows.

A tab page is designed just like a regular dialog with a few minor restrictions. A page is
always a modeless dialog which has a tabbed dialog as its parent window. For that reason,
the window style of a page has to be defined as "Child". The dialog should be defined
without frame, border or other decoration. A system menu may be defined so a dialog
caption can be entered. Both the system menu and the dialog caption will be removed by
SftTabs/DLL before the page is shown. The page's caption will be used as the dialog caption
for the main, tabbed dialog. This offers an easy way to change the tabbed dialog's window
title when switching between pages.

To make tabbed dialog versus page size consistent, make sure to always specify the same
font to be used for all dialogs.

Test Mode
The dialog test mode offered by Borland C++ does not support custom controls.

AppStudio, Visual C++

AppStudio and Visual C++ do not support custom control DLLs (AppStudio supports only
VBX controls). It is still possible to use SftTabs/DLL with AppStudio or Visual C++, but the
easy interface that is provided by other resource editors is not available.

New Project

Whenever you create a resource script (*.RC) with dialogs which are to include a SftTabs/DLL
control, make sure to include the C and C++ header file SFTTB.H. This insures that your
resource definitions for the SftTabs/DLL control can be compiled correctly. Add the following
statement to your resource script:

#include "sfttb.h" // SftTabs/DLL header file (for style bits)

The SFTTB.H header file has to be accessible to the resource compiler. This file can be
found in the directory C:\SFTTABS\INCLUDE (unless changed during the installation).

Adding a Tab Control to a Dialog

To add a SftTabs/DLL control to a dialog, use the custom control toolbar button. Click on the
button and then the dialog being designed to add a control.

Once a custom control has been added to a dialog, you can edit the control properties by
double-clicking anywhere within the control, or by using the Resource, Properties... menu
command. To define a SftTabs/DLL control, enter the class SoftelTabControl (Windows
3.1) or SoftelTabControl32 (for Windows NT, 95, Win32s) in the edit field labeled Class. A
window caption is not necessary, so the edit field marked Caption can be left blank.

SftTabs/DLL Control Styles

To enter a SftTabs/DLL window style in the User Control Properties dialog, use the following
list to add the desired style values and enter the resulting hexadecimal value in the field
marked Style. For detailed information, see Tab Control Styles.

Style/Value Description

WS BORDER / 0x00800000
Draw a border around the control. The border is a dark line.

The tab control can be customized using run-time code, which can be created using the

SftTabs/DLL Wizard application.

Designing a Tabbed Dialog

A tabbed dialog is designed just like a regular dialog. The only difference is the tab control,
which is added to make it a tabbed dialog. The tab control has to be designed using the
SftTabs/DLL Wizard application and the resulting source code can then be copied to your
application.

A tab control used with a tabbed dialog must provide a client area or a frame window has to
be defined when calling SftTabs SetControlinfo, CSftTabsDialog::InitializeTabControl or
TSftTabsDialog::InitializeTabControl.

The size of the tab control's client area must be large enough to accommodate all pages.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows. To make
tabbed dialog versus page size consistent, make sure to always specify the same font to be
used for all dialogs.

Designing a Page
A page is a modeless dialog which is placed in the tab control's client area.

The size of the tab control's client area must be large enough to accommodate a page.
Differences in font sizes and display resolutions may cause problems if the client area is not

large enough. A page will always be sized as large as the client area allows.

A tab page is designed just like a regular dialog with a few minor restrictions. A page is
always a modeless dialog which has a tabbed dialog as its parent window. For that reason,
the window style of a page has to be defined as "Child". The dialog should be defined
without frame, border or other decoration. A system menu and title bar may be defined so
a dialog caption can be entered. The system menu, title bar and the dialog caption will be
removed by SftTabs/DLL before the page is shown. The page's caption will be used as the
dialog caption for the main, tabbed dialog. This offers an easy way to change the tabbed
dialog's window title when switching between pages.

To make tabbed dialog versus page size consistent, make sure to always specify the same
font to be used for all dialogs.

Test Mode

In the dialog test mode offered by AppStudio and Visual C++, the SftTabs/DLL control will
not be displayed. Instead, a gray box will show the location of the control. When using the
tab key to test the tab stops, the simulated SftTabs/DLL control will not receive the input
focus and appear not to have a tab stop defined.

SDK Dialog Editor

This section applies to the Windows SDK dialog editor for Windows 3.1, Windows 95 and the
Windows SDK dialog editor for Windows NT.

First Time

In order to make SftTabs/DLL available to the dialog editor, use its File, Open Custom... menu
command to define SftTabs/DLL to the dialog editor. This has to be done only once.

Locate the DLL using the dialog shown. The DLL can be found in the directory C:\SFTTABS\
BIN (unless changed during the installation). Use the following table to select the correct
DLL.

Dialog Editor Environment DLL Required

Windows 3.1, Windows 95 SFTTB.DLL
Windows NT (DLL w/o UNICODE support) SFTTB32.DLL
Windows NT (DLL with UNICODE support) SFTTB32U.DLL

Note: Do not install the 32-bit version in a 16-bit dialog editor or vice versa.

Once the DLL is installed, the SftTabs/DLL control is installed and SftTabs/DLL controls can
now be added to your dialogs just like a standard Windows control.

New Project

Whenever you create a resource script (*.RC) with dialogs which are to include a SftTabs/DLL
control, make sure to include the C and C++ header file SFTTB.H. This insures that your
resource definitions for the SftTabs/DLL control can be compiled correctly. Add the following
statement to your resource script:

#include "sfttb.h" // SftTabs/DLL header file (for style bits)

The SFTTB.H header file has to be accessible to the resource compiler. This file can be
found in the directory C:\SFTTABS\INCLUDE (unless changed during the installation).

Adding a Tab Control to a Dialog

To add a SftTabs/DLL control to a dialog, use the custom control toolbar button. Click on the
button and then on the dialog being designed to add a control. Once a SftTabs/DLL control
has been added to a dialog, you can edit the window styles by double-clicking anywhere
within the control, or by using the Edit, Styles... menu command. This dialog can only be
used to manipulate a few very basic styles. More styles are available through the C and C+
+ API.

SftTabs/DLL Control Styles
The SftTabs/DLL Styles dialog allows you to manipulate the following tab control attributes.

Item Description

Border Turn the Border check box on to draw a border around the control. The
border is a dark line. Equivalent to the WS_BORDER style.

Visible The Visible check box determines whether the control is visible when

the dialog box is first displayed. If the option is not checked, the
control does not appear. The application can call the ShowWindow
function at run-time to make the control appear. Equivalent to the
WS_VISIBLE style.

Disabled The Disabled check box disables the control by graying it. This
prevents the control from responding to user input. Equivalent to the
WS _DISABLED style.

Group Turn the Group check box on to indicate the first control within a group
of controls. The user can then press the arrow keys to access all
controls in the group. Equivalent to the WS_GROUP style.

Tab Stop Turn the Tab Stop check box on if you want the user to be able to press
Tab to access this control. Equivalent to the WS_TABSTOP style.

OK Click the OK button to accept all style settings and end the SftTabs/DLL
Styles dialog.

Cancel Click the Cancel button to abandon all (modified) style settings and
end the SftTabs/DLL Styles dialog.

Help Click the Help button for on-line help information on the SftTabs/DLL
Styles dialoqg.

Design Click the Design button to open or create a tab layout file (*.TAB). This

invokes the SftTabs/DLL Wizard application, which allows you to define
a tab layout and generates the required C or C++ run-time source
code.

Designing a Tabbed Dialog

A tabbed dialog is designed just like a regular dialog. The only difference is the tab control,
which is added to make it a tabbed dialog. The tab control has to be designed using the
SftTabs/DLL Wizard application and the resulting source code can then be copied to your
application.

A tab control used with a tabbed dialog must provide a client area or a frame window has to
be defined when calling SftTabs ActivatePage, CSftTabsDialog::InitializeTabControl or

TSftTabsDialog::InitializeTabControl.

The size of the tab control's client area must be large enough to accommodate all pages.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows. To make
tabbed dialog versus page size consistent, make sure to always specify the same font to be
used for all dialogs.

Designing a Page
A page is a modeless dialog which is placed in the tab control's client area.

The size of the tab control's client area must be large enough to accommodate a page.
Differences in font sizes and display resolutions may cause problems if the client area is not
large enough. A page will always be sized as large as the client area allows.

A tab page is designed just like a regular dialog with a few minor restrictions. A page is
always a modeless dialog which has a tabbed dialog as its parent window. For that reason,
the window style of a page has to be defined as "Child". The dialog should be defined
without frame, border or other decoration. A system menu and caption may be defined.
The system menu, title bar and the dialog caption will be removed by SftTabs/DLL before the
page is shown. The page's caption will be used as the dialog caption for the main, tabbed
dialog. This offers an easy way to change the tabbed dialog's window title when switching
between pages.

To make tabbed dialog versus page size consistent, make sure to always specify the same
font to be used for all dialogs.

Test Mode

In the dialog test mode offered by the dialog editor, a SftTabs/DLL control will be displayed in
the location specified. The tab control will not reflect any settings you may have defined
using the SftTabs/DLL Wizard application. The tab control shown will always be of the
"Standard" style with four tabs.

SoftelGrayDialog Dialog Class

Most of the tab controls offered with SftTabs/DLL look best on a gray background, rather than
the standard window background (usually white). While Windows 95 offers a 3D look and
applications running on Windows 3.1 and Windows NT can use CTL3DV2.DLL or
CTL3D32.DLL to achieve a similar result, these may not always be available to provide the
gray background.

In order to achieve a gray background, dialogs can be defined using the included
SoftelGrayDialog and SoftelGrayDialog32 window classes. Please note that these are
window classes, not C++ classes. These window classes can be used when defining a
dialog resource. At run-time, the dialog's background will automatically be gray, without
the use of CTL3DV2 or other DLLs. Other than the background color, the
SoftelGrayDialog(32) class behaves just like a regular dialog.

The SoftelGrayDialog and SoftelGrayDialog32 classes are only available if the DLL is linked
to an application. RegisterApp has to be called to insure that the DLL is linked, even if the
application doesn't use a tab control.

The class SoftelGrayDialog is used for Windows 3.1 (16-bit) applications. The class
SoftelGrayDialog32 is used for all 32-bit applications (Windows NT, Windows 95 and Win32s).

Using AppStudio, Visual C++

The Microsoft Foundation Class library uses a gray background color for dialogs if enabled
using CWinApp::SetDialogBkColor. In that case there is no need to use the
SoftelGrayDialog(32) class. When developing non-MFC applications, dialogs can be defined
using the window class SoftelGrayDialog or SoftelGrayDialog32. The application itself does
not need any changes. A dialog can use the SoftelGrayDialog or SoftelGrayDialog32 class
by entering the class name in the Dialog Properties dialog. The dialog can be invoked by
double-clicking on the background of the dialog being edited or by using the Resource,
Properties... menu command.

Note: If a resource file of an MFC project is edited, the Registered Class edit control is
disabled and the SoftelGrayDialog(32) window class cannot be used.

Using Resource Workshop

When developing applications, dialogs can be defined using the window classes
SoftelGrayDialog and SoftelGrayDialog32. The application itself does not need any
changes. A dialog can use the SoftelGrayDialog(32) class by entering the class name in the
Window Style dialog. The dialog can be invoked by double-clicking on the border of the
dialog being edited or by using the Control, Properties... menu command.

Note: Resource Workshop also offers "bordlg" and "BorDlg_Gray" as window class names.
Neither is compatible with SftTabs/DLL. SftTabs/DLL doesn't support dialogs with a dithered
background color (only solid colors are supported).

Using the Windows SDK Dialog Editor

When developing applications, dialogs can be defined using the window classes
SoftelGrayDialog and SoftelGrayDialog32. The application itself does not need any
changes. A dialog can use the SoftelGrayDialog(32) class by entering the class name in the
Dialog Styles dialog. The dialog can be invoked by double-clicking on the background of the
dialog being edited or by using the Edit, Styles... menu command.

Tab Control Styles

The following tab control window styles are available in addition to the standard window
styles (such as WS_BORDER, WS_TABSTOP, etc.). The tab control styles can be retrieved
using GetWindowLong. It is not possible to set the styles using SetWindowLong. These
styles are used to describe the features available with the current tab control.
SetControlinfo can be used to change tab control attributes.

Once a tab style has been defined (using SetControlinfo, by supplying a style value in the
SFTTABS CONTROL structure, the tab control sets the window style bits listed below, to
indicate what features the current tab control supports. The actual tab style
(SFTTABSSTYLE_xxx) can also be found in the window's style information. For an up-to-date
list of style values, see the header file SFTTB.H in the directory C:\SFTTABS\INCLUDE (unless
changed during installation).

SFTTABSSTYLE_CLIENTAREA (0x2000L)

This style bit is used to determine if the current tab control supports a client area. If this
style bit is on, the tab control can be defined as having a client area (using
SFTTABS CONTROL, fClientArea).

SFTTABSSTYLE_HORIZONTAL (0x1000L)

This style bit is used to determine the basic orientation of tab rows. If this style bit is on,
the tab control's tabs are arranged horizontally within one row, otherwise they are arranged
vertically.

SFTTABSSTYLE_MARGIN (0x0400L)

The tab control supports left and right margins between the tab control border and the first
tab.

SFTTABSSTYLE_MULTILINE (0x0100L)

The tab control supports multiline tab labels if this style bit is on, otherwise only single line
labels are available.

SFTTABSSTYLE_MULTIROW (0x0800L)
The tab control supports more than one row of tabs if this style bit is on.

SFTTABSSTYLE_SCROLLABLE (0x0200L)
The tab control supports scrollable tabs if this style bit is on.

Notifications

The parent window of a tab control can receive the following event notifications using the
WM_COMMAND message.

Note: The WM_COMMAND message parameter packing is environment specific.

WIN16:
NotifyCode = HIWORD(IParam);
idltem = wParam;
hwndCtl = (HWND) LOWORD(IParam);

WIN32:
NotifyCode = HIWORD(wParam);
idltem = LOWORD(wParam);
hwndCtl = (HWND) IParam;

NotifyCode Description

SFTTABSN_KILLFOCUS The tab control lost the input focus.
SFTTABSN_SETFOCUS The tab control received the input focus.
SFTTABSN_SWITCHING The user has initiated a switch to another tab. This

notification signals that the tab control is about to switch
away from the current tab to a new tab. The application can
cancel switching to the new tab by sending a

WM _CANCELMODE message to the tab control. If the
application doesn't cancel the switching, the new tab will be
activated and a SFTTABSN_SWITCHED notification sent to the
parent window.

SFTTABSN_SWITCHED The tab control has been switched to a new tab, which is now
active.

SFTTABSN_SCROLLED The user has caused scrolling of the tabs shown, by pressing
a scroll button or by using the keyboard interface.

SFTTABSN_MOUSEMOVE The tab control received a WM_MOUSEMOVE message.

SFTTABSN_SIZECHANGED The tab control received a WM_SIZE message or the tab

control's client area has been resized.
SFTTABSN_MBUTTONDOWN The tab control received a WM_MBUTTONDOWN message
which it doesn't process. This notification is only generated
if the mouse cursor is located on a tab.
SFTTABSN_MBUTTONDBLCLK The tab control received a WM_MBUTTONDBLCLK message
which it doesn't process. This notification is only generated
if the mouse cursor is located on a tab.
SFTTABSN_RBUTTONDOWN The tab control received a WM_RBUTTONDOWN message
which it doesn't process. This notification is only generated
if the mouse cursor is located on a tab.
SFTTABSN_RBUTTONDBLCLK The tab control received a WM_RBUTTONDBLCLK message
which it doesn't process. This notification is only generated
if the mouse cursor is located on a tab.
SFTTABSN_TTSHOW The tab control is about to display a tooltip for a tab.
SFTTABSN_TTPOP The tab control is about to hide the tooltip currently shown
for a tab.

MFC and Notifications

Notifications can be handled by a tab control's parent window or directly by the tab control
itself (in a derived class).

Parent Window

If you want to handle Windows notification messages sent by a tab control to its parent
(usually a class derived from CDialog), add a message-map entry and a message-handler
member function to the parent class for each notification.

Message-map entries take the following form:
ON Notification(id, memberFxn)

The parent's function prototype is as follows:
afx msg void memberFxn();

Notification specifies one of the available notification codes listed in Notifications. id
specifies the child window ID of the control sending the notification and memberFxn is the
name of the parent member function in your application which handles the notification.

Example:

// Event handler prototype added to dialog/window class
afx msg void OnTabSwitching();

// Event handler (s) added to message map
BEGIN MESSAGE MAP (CSampleView, CView)

ON_ SFTTABSN SWITCHING (IDC TAB, OnTabSwitching)
END MESSAGE MAP ()

// Event handler implementation
void CSampleView: :0nTabSwitching ()

{
if (!SwitchingOK())
m Tab.SendMessage (WM _CANCELMODE) ; // cancel switching

Derived Objects

By overriding the OnChildNotify function of an object derived from CSftTabs, you can handle
messages in the object's class. The parameters are as documented in Notifications. Please
see the Visual C++ documentation for additional information regarding the OnChildNotify
function.

Starting with Visual C++ 4.0, MFC defines the ON_CONTROL_REFLECT macro which allows

adding notifications directly to the message map. OnChildNotify doesn't have to be used

any longer. SftTabs/DLL implements all required macros based on ON_CONTROL_REFLECT.
See the MFC documentation for more information on message reflection.

Message-map entries take the following form:
ON Notification REFLECT (memberFxn)

The function prototype is as follows:

afx msg void memberFxn();

Notification specifies one of the available notification codes listed in Notifications.
memberFxn is the name of the member function in your object's class which handles the
notification.

BEGIN MESSAGE MAP (CYourTabControl, CSftTabs)

//{{AFX _MSG MAP (CYourTabControl)

ON_WM_ CREATE ()
ON_SFTTABSN SWITCHING REFLECT (OnTabSwitching)

ON SETTABSN SWITCHED REFLECT (OnTabSwitched)
END MESSAGE_ MAP ()

OWL and Notifications

Notifications can be handled by a tab control's parent window or directly by the tab control
itself (in a derived class).

Parent Window

If you want to handle Windows notification messages sent by a tab control to its parent
(usually a class derived from TDialog), add a response table entry and a response function to
the parent class for each notification.

Response table entries take the following form:

EV Notification(id, memberFxn),

The parent's response function (event handler) prototype is as follows:

void memberFxn();

Notification specifies one of the available notification codes listed in Notifications. id
specifies the child window ID of the control sending the notification and memberFxn is the
name of the parent response function in your application which handles the notification.

Example:

// Event handler prototype added to dialog/window class
void EvTabSwitching () ;

// Response table

DEFINE RESPONSE TABLEI (TMainWin, TLayoutWindow)
EV_SFTTABSN SWITCHING(IDC TAB, EvTabSwitching),

END RESPONSE TABLE;

// Event handler implementation
void TMainWin::EvTabSwitching()

{
if (YouDontLikeThisUser())
pTabCtl->SendMessage (WM _CANCELMODE) ; // cancel switching

}
Derived Objects

OWL defines the EV_NOTIFY_AT_CHILD macro which allows adding notifications directly to
the response table of an object derived from TSftTabs. SftTabs/DLL implements all required
macros based on EV_NOTIFY_AT CHILD. See the OWL documentation for more information
on event handlers.

Response table entries take the following form:

EV Notification AT CHILD(memberFxn),

The response function (event handler) prototype is as follows:

void memberFxn();

Notification specifies one of the available notification codes listed in Notifications.
memberFxn is the name of the member function in your object's class which handles the
notification.

// response table

DEFINE RESPONSE TABLEI (TYourTabControl, ISftTabs)
EV SFTTABSN SWITCHING AT7CHILD(EVTabSWitChing),
EV_SEFTTABSN SWITCHED AT CHILD (EvTabSwitched),

END RESPONSE TABLE;

Windows Messages

WM_CONTEXTMENU

The WM_CONTEXTMENU message notifies a window that the user clicked the right mouse
button in the tab control.

Parameters:
hwnd = (HWND) wParam;
Window handle of the tab control.
xPos = LOWORD(IParam);
Horizontal position of the cursor, in screen coordinates, at the time of the mouse click.
yPos = HIWORD(IParam);
Vertical position of the cursor, in screen coordinates, at the time of the mouse click.

Comments
A window can process this message by displaying a context menu using the
TrackPopupMenu or TrackPopupMenuEx function.

The WM_CONTEXTMENU message is only generated by Windows 95, Windows NT 3.51
and above.

WM_CTLCOLOR, WM_CTLCOLORSTATIC

The WM_CTLCOLOR (or WM_CTLCOLORSTATIC) message is sent to the parent window of a
tab control. A parent window can set the tab control's background color as described in the
programming sections Using C, Using C++ and the Microsoft Foundation Class library and
Using C++ and the ObjectWindows Library.

Using GetCtlColors and SetCtlColors is the preferred method to change color attributes.
Although a tab control generates WM_CTLCOLOR messages, the WM_CTLCOLOR message
handling is provided for compatibility with SftTabs 2.0 only.

WM_QUERYENDSESSION

The WM_QUERYENDSESSION message is sent to a page of a tabbed dialog, when the user
chooses to switch to another page or to end the tabbed dialog.

Returns
The return value specifies what action is to be taken. Return TRUE to prevent the tab
control from switching to another page, or return FALSE to allow switching to another tab.

Comments
This message is only used for tabbed dialogs implemented using the C APl and the
techniques shown in Implementing Tabbed Dialogs. The C++ implementation of tabbed
dialogs does not generate or use this message.

If a page (or dialog procedure) doesn't handle this message, tab switching is automatic
and always possible.

MFC/C++ SftTabs/DLL Classes

Class
CSftTabs
CSftTabsDialog
CSftTabsPage

CSftTabsWindowSheet
CSftTabsWindowPage

Description

Tab Control

Tabbed dialogs

Page of a tabbed dialog
Tabbed window

Page of a tabbed window

CSftTabs Class, Member Functions
CSftTabs is derived from CWnd.

AddTab
AdjustClientRect

DeleteTab
GetControllnfo
GetCount
GetCtlColors
GetCurrentTab
GetNextTab
GetTabDialog
GetTablnfo
GetTablabel
GetTablabellen
GetTabText
GetTabWindowPage

GetToolTip
GetToolTipLen

InsertTab
QueryChar
ReqgisterApp
ResetContent
ResizePages
ScrollTabs
SetControllnfo
SetCtlColors
SetCurrentTab
SetTabDialog
SetTablnfo
SetTabLabel
SetTabWindowPage
SetToolTip
SetVersion

UnregisterApp

Adds a tab

Calculates the tab control size based on client area size
Creates a tab control

Constructor

Deletes a tab

Retrieves all attributes of a tab control

Retrieves the number of tabs in a tab control
Retrieves the tab control's color attributes
Retrieves the index of the currently active tab
Retrieves the index of the next tab about to become active
Retrieves the page object attached to a tab
Retrieves all attributes of a tab

Retrieves a tab's text

Retrieves a tab's text length

Retrieves a tab's text

Retrieves the page object attached to a tab
Retrieves a tab's tooltip text

Retrieves a tab's tooltip text length

Inserts a tab

Tests if a character is processed by the tab control
Registers an application with SftTabs/DLL

Deletes all tabs

Resizes attached pages when using a frame window
Scrolls tabs in a scrollable tab control

Sets all attributes of a tab control

Sets the tab control's color attributes

Sets the index of the currently active tab

Sets a page object attached to a tab

Retrieves all attributes of a tab

Sets a tab's text

Sets a page object attached to a tab

Sets a tab's tooltip text

Sets the SftTabs/DLL version an application requires
Unregisters an application from SftTabs/DLL

CSftTabsDialog Class, Member Functions

The class CSftTabsDialog describes a main, tabbed dialog. A CSftTabsDialog based dialog is
created using a dialog resource defined using a resource editor such as AppStudio, Resource

Workshop or other dialog editors.

A CSftTabsDialog based dialog contains at least one tab

control (CSftTabs based) and optionally buttons, such as OK, Cancel, and other Windows

controls.

CSftTabsDialog is derived from CDialog.

ClosePossible

CSftTabsDialog
GetModified

InitializeTabControl

Tests if a tabbed dialog can be closed

Constructor

Returns the current data modification flag

Initializes a tab control and activates the current page

OnCancel Called for Cancel button handling

OnOK Called for OK button handling
SetClose Signals that data has been permanently altered
SetModified Sets the current data modification flag

CSftTabsPage Class, Member Functions

The class CSftTabsPage describes a dialog (called page) attached to a tab control, which is
embedded in a CSftTabsDialog based dialog. A CSftTabsPage based dialog is created using
a dialog resource defined using a resource editor such as AppStudio, Resource Workshop or
other dialog editors. A CSftTabsPage based dialog contains Windows controls and may
optionally also include a tab control with nested CSftTabsPage objects attached to the tab
control.

CSftTabsPage is derived from CDialog.

AllowDestroy Tests if a page can be destroyed

AllowSwitch Tests if a page can be left

ClosePossible Tests if a page can be closed

CSftTabsPage Constructor

GetModified Returns the current data modification flag
GetParentDialog Returns the parent's CSftTabsDialog based object
InitializeTabControl Initializes a tab control and activates the current page
OnCancel Called for Cancel button handling

OnOK Called for OK button handling

SetClose Signals that data has been permanently altered
SetModified Sets the current data modification flag

CSftTabsWindowSheet Class, Member Functions

The class CSftTabsWindowSheet describes the support necessary for a tabbed, main window.
A tabbed window is usually created dynamically using the CWnd::Create function. A tabbed
window contains at least one tab control (CSftTabs based) and optionally other Windows
controls.

The class CSftTabsWindowSheet is used to add tabbed window support to most CWnd-
derived classes. This is accomplished using multiple inheritance. You supply the CWnd-
derived class, and through multiple inheritance, the class can then be used as a tabbed
window, containing one or more tab controls with attached pages.

ClosePossible Tests if a tabbed window can be closed

CSftTabsWindowSheet Constructor

InitializeTabControl Initializes a tab control and activates the current page

TabSwitched Called by application to handle the SFTTABSN SWITCHED notification
TabSwitching Called by application to handle the SFTTABSN SWITCHING notification

TerminateTabControl Terminates a tab control and deactivates all pages
CSftTabsWindowPage Class, Member Functions

The class CSftTabsWindowPage describes the support necessary for a window to be used as
a page in a tabbed window. A CSftTabsWindowPage based window is typically created
dynamically (at run-time) when the user switches to a tab.

The class CSftTabsWindowPage is used to add support to most CWnd-derived classes so they
can be used as pages in a tabbed window. This is accomplished using multiple inheritance.

You supply the CWnd-derived class, and through multiple inheritance, the class can then be

used as a page in a tabbed window.

ActivatePage Creates or activates a page
AllowSwitch Tests if a page can be left

CSftTabsWindowPage Constructor
DeactivatePage Deactivates or destroys a page

OWL/C++ SftTabs/DLL Classes

Class
TSftTabs
TSftTabsDialog
TSftTabsPage

TSftTabsWindowSheet

TSftTabsWindowPage

Description

Tab Control

Tabbed dialogs

Page of a tabbed dialog
Tabbed window

Page of a tabbed window

TSftTabs Class, Member Functions
TSftTabs is derived from TControl.

AddTab
AdjustClientRect
DeleteTab
GetControllnfo
GetCount
GetCtlColors
GetCurrentTab
GetNextTab
GetTabDialog
GetTablnfo
GetTablabel
GetTablabellen
GetTabWindowPage
GetToolTip
GetToolTipLen
InsertTab
QueryChar
RegisterApp
ResetContent
ResizePages
ScrollTabs
SetControllnfo
SetCtlColors
SetCurrentTab
SetTabDialog
SetTablnfo
SetTabl abel

SetTabWindowPage

SetToolTi
SetVersion

TSftTabs
UnregisterApp

Adds a tab

Calculates the tab control size based on client area size
Deletes a tab

Retrieves all attributes of a tab control

Retrieves the number of tabs in a tab control
Retrieves the tab control's color attributes
Retrieves the index of the currently active tab
Retrieves the index of the next tab about to become active
Retrieves the page object attached to a tab
Retrieves all attributes of a tab

Retrieves a tab's text

Retrieves a tab's text length

Retrieves the page object attached to a tab
Retrieves a tab's tooltip text

Retrieves a tab's tooltip text length

Inserts a tab

Tests if a character is processed by the tab control
Registers an application with SftTabs/DLL

Deletes all tabs

Resizes attached pages when using a frame window
Scrolls tabs in a scrollable tab control

Sets all attributes of a tab control

Sets the tab control's color attributes

Sets the index of the currently active tab

Sets a page object attached to a tab

Retrieves all attributes of a tab

Sets a tab's text

Sets a page object attached to a tab

Sets a tab's tooltip text

Sets the SftTabs/DLL version an application requires
Constructor

Unregisters an application from SftTabs/DLL

TSftTabsDialog Class, Member Functions

The class TSftTabsDialog describes a main, tabbed dialog. A TSftTabsDialog based dialog is
created using a dialog resource defined using a resource editor such as Resource Workshop,
AppStudio or other dialog editors. A TSftTabsDialog based dialog contains at least one tab
control (TSftTabs based) and optionally buttons, such as OK, Cancel, and other Windows
controls.

TSftTabsDialog is derived from TDialog.

CanClose Tests if a dialog can be closed

GetModified Returns the current data modification flag
InitializeTabControl Initializes a tab control and activates the current page
SetClose Signals that data has been permanently altered
SetModified Sets the current data modification flag

TSftTabsDialog Constructor

TSftTabsPage Class, Member Functions

The class TSftTabsPage describes a dialog (called page) attached to a tab control, which is
embedded in a TSftTabsDialog based dialog. A TSftTabsPage based dialog is created using a
dialog resource defined using a resource editor such as Resource Workshop, AppStudio or
other dialog editors. A TSftTabsPage based dialog contains Windows controls and may
optionally also include a tab control with nested TSftTabsPage objects attached to the tab
control.

TSftTabsPage is derived from TDialog.

AllowDestroy Tests if a page can be destroyed

CanClose Tests if a dialog can be closed

CloseWindow Close the tabbed dialog

CmcCancel Called for Cancel button handling

CmOk Called for OK button handling

GetModified Returns the current data modification flag
GetParentDialog Returns the parent's TSftTabsDialog based object
InitializeTabControl Initializes a tab control and activates the current page
SetClose Signals that data has been permanently altered
SetModified Sets the current data modification flag
TSftTabsPage Constructor

TSftTabsWindowSheet Class, Member Functions

The class TSftTabsWindowSheet describes the support necessary for a tabbed, main window.
A tabbed window is usually created dynamically using the Create function. A tabbed
window contains at least one tab control (TSftTabs based) and optionally other Windows
controls.

The class TSftTabsWindowSheet is used to add tabbed window support to most TWindow-
derived classes. This is accomplished using multiple inheritance. You supply the TWindow-
derived class, and through multiple inheritance, the class can then be used as a tabbed
window, containing one or more tab controls with attached pages.

CanClose Tests if a tabbed window can be closed

InitializeTabControl Initializes a tab control and activates the current page

TabSwitched Called by application to handle the SETTABSN SWITCHED notification
TabSwitching Called by application to handle the SFTTABSN SWITCHING notification

TerminateTabControl Terminates a tab control and deactivates all pages
TSftTabsWindowSheet Constructor

TSftTabsWindowPage Class, Member Functions

The class TSftTabsWindowPage describes the support necessary for a window to be used as
a page in a tabbed window. A TSftTabsWindowPage based window is typically created
dynamically (at run-time) when the user switches to a tab.

The class TSftTabsWindowPage is used to add support to most TWindow-derived classes so
they can be used as pages in a tabbed window. This is accomplished using multiple
inheritance. You supply the TWindow-derived class, and through multiple inheritance, the
class can then be used as a page in a tabbed window.

ActivatePage Creates or activates a page
AllowSwitch Tests if a page can be left
DeactivatePage Deactivates or destroys a page

TSftTabsWindowPage Constructor

C, C++ API

An application communicates with the SftTabs/DLL tab control by sending messages using

the Windows SendMessage function.

To simplify the process, SftTabs/DLL offers not only the

direct SendMessage interface, but also a predefined "message-cracker" macro for each
message. This eliminates the casting of parameters when using SendMessage, and is more
efficient than a SendMessage call, because the macro expands into a direct call to

SftTabs/DLL.
Definitions and Structures

SFTTABS CLASS

SFTTABS COLORS

SFTTABS CONTROL
SFTTABS GRAPH

SFTTABS GRAYDIALOGCLASS

SFTTABS MAXROWS
SFTTABS MAXTABS
SFTTABS STYLETABLEA
SFTTABS TAB

SFTTABS TABCALLBACK

Messages and Functions

SftTabs ActivatePage
SftTabs AddTab

SftTabs AdjustClientRect
SftTabs ClosePossible
SftTabs CopyWindowTitle

SftTabs DeactivatePage
SftTabs DeleteTab

SftTabs Destroy
SftTabs GetControllnfo
SftTabs GetCount
SftTabs GetCtlColors
SftTabs GetCurrentTab
SftTabs GetNextTab

SftTabs GetStyleTable
SftTabs GetTabControlFromPage

SftTabs GetTablnfo

SftTabs GetTablabel

SftTabs GetTablabellen
SftTabs GetToolTip

SftTabs GetToolTipHandle
SftTabs GetToolTiplen

SftTabs HandleDialogMessage
SftTabs HandleWindowMessage
SftTabs InsertTab

SftTabs IsRegisteredDialog
SftTabs IsRegisteredWindow
SftTabs IsTabControl

SftTabs IsTabControlWithDialog

SftTabs IsTabControlWithPage
SftTabs QueryChar

SftTabs RegisterApp
SftTabs RegisterDialog

Tab control window class name

Color information

Tab control structure describing tab layout and attributes
Structure used to describe a tab's picture component
Window class name supporting gray dialog background
color

Maximum number of tab rows

Maximum number of tabs per tab control

Tab control style table entry for resource editors
Structure describing one tab

C callback function associated with a tab, manages an
attached page (dialog)

Activates a page

Adds a tab

Calculates the tab control size based on client area size
Tests if a page can be closed

Copies the window caption of a window to another
window

Deactivates the current page

Deletes a tab

Cleanup processing for tabbed dialogs and windows
Retrieves all attributes of a tab control

Retrieves the number of tabs in a tab control

Retrieves the tab control's color attributes

Retrieves the index of the currently active tab
Retrieves the index of the next tab about to become
active

Retrieves the style table for use by resource editors
Returns the tab control window handle associated with a
given page

Retrieves all attributes of a tab

Retrieves a tab's text

Retrieves a tab's text length

Retrieves a tab's tooltip text

Retrieves the tooltip control window handle

Retrieves a tab's tooltip text length

Message handling for tabbed dialogs

Message handling for tabbed windows

Inserts a tab

Tests if a dialog is a registered tabbed dialog

Tests if a dialog is a registered tabbed window

Tests if a window is a tab control

Tests if a window is a tab control with an attached page
Tests if a window is a tab control with an attached page
Tests if a character is processed by the tab control
Registers an application with SftTabs/DLL

Registers a dialog as a tabbed dialog

SftTabs RegisterWindow
SftTabs ResetContent
SftTabs ResizePages
SftTabs ScrollTabs
SftTabs SetControllnfo
SftTabs SetCtlColors
SftTabs SetCurrentTab
SftTabs SetPageActive
SftTabs SetPagelnactive
SftTabs SetTablnfo
SftTabs SetTablabel
SftTabs SetToolTip
SftTabs SetVersion
SftTabs UnregisterApp
SftTabs UnregisterDialog
SftTabs UnregisterWindow

Registers a window as a tabbed window

Deletes all tabs

Resizes attached pages when using a frame window
Scrolls tabs in a scrollable tab control

Sets all attributes of a tab control

Sets the tab control's color attributes

Sets the index of the currently active tab

Notifies tabbed dialog that a page is active

Notifies tabbed dialog that a page is no longer active
Sets all attributes of a tab

Sets a tab's text

Sets a tab's tooltip text

Sets the SftTabs/DLL version an application requires
Unregisters an application from SftTabs/DLL
Unregisters a registered tabbed dialog

Unregisters a registered tabbed window

SFTTABS_CLASS

WIN16

#define SFTTABS CLASS "SoftelTabControl"
WIN32

#define SFTTABS CLASS "SoftelTabControl32"

The SFTTABS_CLASS constant can be used when the SftTabs/DLL control class name is
required.

SFTTABS_COLORS

typedef struct tagTabsColors {

COLORREF colorBg; /* background color */

COLORREF colorFg; /* foreground color */

COLORREF colorl; /* usually used for black border */

COLORREF color2; /* usually used for shadow lines */

COLORREF color3; /* usually used for highlight lines */

COLORREF color4; /* usually used for somewhat highlight'ed
lines */

DWORD resl, res2, res3, res4; /* reserved */

DWORD res5, res6, res7, resS§;
DWORD res9, resl0, resll, resl2;
DWORD resl3, resléd4, resl5, reslo;

} SFTTABS COLORS, FAR * LPSFTTABS COLORS;

The SFTTABS_COLORS structure is used with GetCtlColors and SetCtiColors to retrieve and
set a tab control's color attributes.

Members
colorBg
The default background color used for the tab control. Tabs can override the default
background color using SFTTABS TAB colorBg or colorBgSel.
colorFg
The default foreground color used to draw tab label text. Tabs can override the
default foreground color using SFTTABS TAB colorFg or colorFgSel.
colorl
The color used to draw the lines indicating the tab control border, preferably the
darkest color.
color2
The color used to draw the lines away from the light source, indicating a shadow,
preferably a dark color.
color3
The color used to draw the lines directly exposed to the light source, indicating a
highlight, preferably a bright color.
color4
The color used to draw the lines somewhat exposed to the light source, preferably a
bright color, but of lesser intensity than color3. This color value is not used by all tab
styles.

Comments
Not all color values are used by all the tab styles. Some tab styles do not honor colorl -
color4 settings. To determine support for a particular color setting, use the SftTabs/DLL
Wizard application.

Example
This example changes the tab control's foreground and background colors.
C
SFTTABS COLORS Colors;
SftTabs GetCtlColors (hwndTab, &Colors); /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */
SftTab SetCtlColors (hwndTab, &Colors); /* Set new colors */
C++/MFC
SFTTABS COLORS Colors;
m Tab.GetCtlColors (&Colors); /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */
m Tab.SetCtlColors(&Colors); /* Set new colors */
C++/OWL

SFTTABS COLORS Colors;

pTab->GetCtlColors (&Colors) ;
Colors.colorBg = RGB(0,255,255);
Colors.colorFg = RGB(0,0,128);
pTab->SetCtlColors (&Colors) ;

/*
/*
/*

Get current color settings */
Background color */
Foreground color */

Set new colors */

SFTTABS_CONTROL

typedef struct tagSftTabsControl {

/* Modifiable fields */

int style; /* tab style */

int nRows; /* number of rows */

int nRowTabs; /* number of tabs per row (if fFixed) */

int leftMargin; /* width of left margin */

int rightMargin; /* width of right margin */

BOOL fFixed; /* same width for all tabs */

BOOL fClientArea; /* Client area wanted */

BOOL fMultiline; /* allow multiline label text */

BOOL fDialog; /* use with dialog */

BOOL fTextOnly; /* use specified background color only for
text */

BOOL fScrollable; /* scrollable tabs */

BOOL fHideScrollButtons; /* hide scroll buttons */

BOOL fBoldFont; /* use bold font for active tab */

BOOL fFillComplete; /* f£ill rows completely */

HBITMAP hButtonBitmap; /* Scroll Button bitmap */

LPVOID lpTabData; /* Data/Dialog associated with active tab */

HWND hwndSubDlg; /* Subdialog associated with active tab */

HWND hwndFrame; /* Frame, used as client area */

short fToolTips; /* Tooltips wanted (formerly DWORD resl) */

short fDropText; /* drop text if it doesn't fit

short fCondScrollButtons; /* conditional scroll buttons

short res2s; /* reserved (formerly DWORD res2) */

*/

DWORD res3, res4, resb5, resob6;

/* read/only fields */

int nTabs; /* number of tabs */

RECT ClientRect; /* Area useable by application */

BOOL fLeftButton, fRightButton; /* TRUE if scrolling in that direction
possible */

int visibleLeftTab; /* leftmost tab in first row (if fScrollable)

int naturalSize; /* Best height/width depending on tab style */

DWORD resll, resl2, resl3, resld4d, resl5, reslo6;

} SFTTABS CONTROL, FAR * LPSFTTABS CONTROL;

The SFTTABS_CONTROL structure is used to describe a tab control's layout and attributes.

Members

style
The tab control style. This value defines the basic look of the tab control. This value
can be modified using SetControlinfo.

nRows
The number of tab rows. This value can be modified using SetControlinfo.

nRowTabs
if fFixed is TRUE, nRowTabs is used to set the number of tabs per row. If fewer tabs
are available than specified in nRowTabs, the remainder of each row is left blank
(fFillComplete == FALSE) or filled with disabled tabs (fFillComplete == TRUE), if
fFixed is FALSE, this field should be set to 0. This value can be modified using
SetControlinfo.

leftMargin
The number of pixels reserved for the left margin. This value can be modified using
SetControlinfo.

rightMargin

The number of pixels reserved for the right margin. This value can be modified using
SetControlinfo.

fFixed
The width of all tabs. If this set to TRUE, all tabs will be of the same width (or height
for vertical rows). If set to FALSE, tabs will be sized proportionally to their text and
picture size and the available space. This value can be modified using SetControlinfo.

fClientArea
The availability of a client area, normally used for pages or Windows controls attached
to tabs. If this is set to TRUE, a client area is available. The client area size can be
found in clientRect. If this field is set to FALSE, a client area is not available. Not all
tab styles support a client area. The SftTabs/DLL Wizard can be used to determine
which tab styles support a client area. This value can be modified using
SetControlinfo.

fMultiline
TRUE if multiline tab text is available, other FALSE. When this field is TRUE, tab text
can contain newline characters ("\r\n") to signal a new line. Not all tab styles support
multiline tab text. The SftTabs/DLL Wizard can be used to determine which tab styles
support multiline tab text. This value can be modified using SetControlinfo.

fDialog
TRUE if the tab control is used in a dialog, instead of a window. This field determines
some of the colors used for the tab control. Setting this field to FALSE and still using
the tab control in a dialog doesn't cause any adverse effects. This field only
determines the colors used by the tab control. If a tab control will be placed on a
background that is not gray (see SoftelGrayDialog Dialog Class), this field should be
set to FALSE. The SftTabs/DLL Wizard can be used to determine the effect of this
value. This value can be modified using SetControlinfo.

flextOnly
TRUE if the tab background colors are used for the tab text only, otherwise the tab
background colors (colorBg and colorBgSel in SETTABS TAB) are used to fill the entire
tab. This value can be modified using SetControlinfo.

fScrollable
TRUE if the tab control offers scrollable tabs (and is restricted to one row of tabs).
This value can be modified using SetControlinfo.

fHideScrollButtons
TRUE if the buttons used for tab scrolling are to be made invisible. If the scroll
buttons are hidden, the only method to scroll the tabs is by using the keyboard
interface or under program control. This value can be modified using SetControlinfo.

fBoldFont
TRUE if the tab text of the currently active tab should be bold, FALSE if the same font
should be used for active and inactive tabs. The tab text font can be set using the
Windows WM_SETFONT message. if fBoldFont is TRUE and the default font for the tab
control is already bold, the weight of the font used for inactive tabs will be reduced.
This value can be modified using SetControlinfo.

fFillComplete
TRUE if the tab control should attempt to fill each tab row completely so the left and
right margins are minimized. For fixed width tabs (fFixed is TRUE), additional blank,
disabled tabs are added, for variable width tabs (fFixed is FALSE), the available space
is distributed equally among all tabs so they grow (or shrink) proportionally. This
value can be modified using SetControlinfo.

hButtonBitmap
A bitmap handle. The bitmap is used to display the graphics of the left and right (or
up and down) scroll buttons. The bitmap should contain two equal-sized images,
arranged horizontally, so the height of the bitmap is the height of a button's bitmap
and the width of the supplied bitmap is twice the width of a button's bitmap. The
button size is automatically determined based on the bitmap size. The top left pixel of

each button bitmap must contain the background color. This color will be replaced by
the actual window background color when the bitmap is displayed. This parameter
may be NULL. Default scroll button bitmaps are provided by SftTabs/DLL and can be
seen using the SftTabs/DLL Wizard. This value can be modified using SetControlinfo.

IpTabData
Stores a 32-bit pointer, used for the C++ implementation of tabbed dialogs. For C,
the member is not used, but reserved. For C++, the pointer points to the C++ object
based on CSftTabsPage or TSftTabsPage. This value can be modified using
SftTabs SetPageActive or SetControlinfo.

hwndSubDlg
Stores a window handle, used for the C and C++ implementation of tabbed dialogs.
The window handle describes the page attached to the active tab. This value can be
modified using SetTabinfo.

hwndFrame
Stores a window handle, used by SftTabs/DLL as client area for pages attached to the
tab control. SftTabs/DLL uses this window's client area size and location as a
replacement for the tab control's client area. The window described by hwndFrame
may be hidden and/or disabled. If an application resizes or moves the frame window,
the dependent page or Windows control also has to be resized by the application. The
dependent page can be found in hwndSubDIlg. Using this frame window handle, the
client area of a tab control can be located anywhere in relation to the tab control, even
on a different dialog or window. This value can be modified using
SftTabs ActivatePage, SetControlinfo, CSftTabsDialog::InitializeTabControl,
TSftTabsDialog::InitializeTabControl, CSftTabsWindowSheet::InitializeTabControl or
TSftTabsWindowSheet::InitializeTabControl.

res2s, res3 - res6
Reserved. Not Used.

fToolTips
TRUE if the tab control should display tooltips. Tooltip text for each tab has to be
added using SetToolTip. This value can be modified using SetControlinfo.

fDropText
TRUE if the tab control should drop tab labels, if the labels don't fit vertically and/or
horizontally. This option should only be used if all tabs have a graphic component. If
the tab label of any tab would be clipped, all tabs will drop the tab label temporarily.
This is most useful with resizable tab controls where the user could potentially make
the tab control very small, so that tab labels would be clipped. This value can be
modified using SetControlinfo.

fToolTips
TRUE if the tab control should hide the scroll buttons, when scrolling isn't possible
because all tabs are visible. This is most useful with resizable tab controls where the
user could potentially make the tab control very large, so that all tab labels can be
displayed. This value can be modified using SetControllnfo.

nTabs
The currently defined number of tabs.

ClientRect
The location of the client area in tab control coordinates, where the top left corner of
the tab control is at 0,0. if fClientArea is FALSE, an empty rectangle is returned.

fLeftButton
TRUE if the tab control supports scrolling and scrolling left (or up in a vertical tab
control) is currently possible. This member can be used when an application provides
its own scrolling mechanism, to query the tab control if scrolling is possible in this
direction.

fRightButton
TRUE if the tab control supports scrolling and scrolling right (or down in a vertical tab
control) is currently possible. This member can be used when an application provides

its own scrolling mechanism, to query the tab control if scrolling is possible in this
direction.

visibleLeftTab
The index of the leftmost tab (or topmost in a vertical tab control) currently visible in a
scrollable tab control.

naturalSize
The ideal height of a tab control (or width of a vertical tab control). This field is only
valid for tab controls that do not offer a client area (fClientArea == FALSE). This value
can be used to determine the best height for a tab control with horizontal tab rows (or
width for vertical rows).

resll -reslé
Reserved. Not Used.

Comments
The SFTTABS_CONTROL structure can be defined using the SftTabs/DLL Wizard.

SFTTABS_GRAPH

typedef struct tagSftTabsGraph {
WORD location;
WORD type;
union {
HICON hIcon;
HBITMAP hBitmap;
} item;

} SFTTABS GRAPH, FAR * LPSFTTABS GRAPH;

The SFTTABS_GRAPH structure is used to describe a tab's picture component and its

location.

Members
location

Describes the location of the bitmap, relative to the tab text. The following values can

be used:
SFTTABS_GRAPH_NONE

SFTTABS_LEFTVALIGN

SFTTABS_RIGHTVALIGN

SFTTABS_GRAPH_LEFTVALIGN

SFTTABS_GRAPH_RIGHTVALIGN

SFTTABS_GRAPH_TOP
SFTTABS_GRAPH_BOTTOM
SFTTABS_GRAPH_LEFT

SFTTABS_GRAPH_RIGHT

No bitmap or icon, text is centered horizontally
and vertically.

No bitmap or icon, text is left aligned. Use this
option for tab controls with a vertical orientation
to line up the tab text on the left side. The text
is centered vertically.

No bitmap or icon, text is right aligned. Use this
option for tab controls with a vertical orientation
to line up the tab text on the right side. The text
is centered vertically.

Bitmap or icon, tab picture is left aligned,
followed by the tab text. Use this option for tab
controls with a vertical orientation to line up the
tab picture on the left side. The text and picture
are centered vertically.

Bitmap or icon, tab picture is right aligned, the
tab text is located to the left of the tab picture.
Use this option for tab controls with a vertical
orientation to line up the tab picture on the right
side. The text and picture are centered
vertically.

Bitmap or icon, tab picture is above the tab text.
The text and picture are centered horizontally.
Bitmap or icon, tab picture is below the tab text.
The text and picture are centered horizontally.
Bitmap or icon, tab picture is on the left of the tab
text. The text and picture are centered
horizontally and vertically.

Bitmap or icon, tab picture is on the right of the
tab text. The text and picture are centered
horizontally and vertically.

If a rotated font is used, the orientation of the font's base line is used to determine the

actual location of the bitmap or icon.

type

Describes the type of tab picture.

The following values can be used:

0 No tab picture

SFTTABS_GRAPH_ICON Tab picture is an icon. The hicon field of the item union
contains a valid icon handle.

SFTTABS _GRAPH BITMAP Tab picture is a bitmap. The hBitmap field of the item
union contains a valid bitmap handle.

hicon

An icon handle, used as tab picture if type is defined as SFTTABS_GRAPH_ICON.
hBitmap

A bitmap handle, used as tab picture if type is defined as SFTTABS_GRAPH_BITMAP.

The top, left pixel of the bitmap must contain the image's background color. This color

will be replaced by the actual window background color when the bitmap is displayed.

Comments

There are no default tab bitmaps or icons. Bitmap and icon handles are owned by the
application. The handles have to remain valid until they are no longer used by the tab

control, usually until the tab control is destroyed. The application is responsible for
deleting the handles when they are no longer used.

SFTTABS_GRAYDIALOGCLASS

WIN16
#define SFTTABS GRAYDIALOGCLASS "SoftelGrayDialog"

WIN32
#define SFTTABS GRAYDIALOGCLASS "SoftelGrayDialog32"

The SFTTABS_GRAYDIALOGCLASS constant can be used when the dialog class supplied with
SftTabs/DLL is required. This dialog class implements a special dialog class, which offers a
gray window background, which provides a more pleasing look for many of SftTabs' tab
styles. See SoftelGrayDialog Dialog Class for more information.

SFTTABS_MAXROWS

#define SFTTABS MAXROWS 16

SFTTABS_MAXROWS defines the theoretical maximum number of tab rows supported by any
tab control. Some tab styles may restrict the maximum rows to a lower number. The

SftTabs/DLL Wizard can be used to determine the maximum based on the tab style selected.

SFTTABS_MAXTABS

#define SFTTABS MAXTABS 128

SFTTABS_MAXTABS defines the theoretical maximum number of tabs supported by any tab
control. Some tab styles may restrict the maximum number of tabs to a lower number.
The SftTabs/DLL Wizard can be used to determine the maximum based on the tab style
selected.

SFTTABS_STYLETABLEA

typedef struct tagSftTabsStyleTableA {
/* Notice, these strings are always ANSI strings */

LPCSTR lpszDesc; /* Style description */
LPCSTR lpszStyle; /* style ID */

DWORD style;

short fAvailable; /* True if available */
short resls; /* reserved */

} SFTTABS STYLETABLEA, FAR * LPSFTTABS STYLETABLEA;

The SFTTABS_STYLETABLEA structure describes each available tab style.

Members

IpszDesc
The text description of the tab style. This is always an ANSI string, even when using
the SftTabs/DLL DLL with UNICODE support.

IpszStyle
The text literal of the selected tab style. This can be used by a resource editor to
translate the tab control style into a textual representation of the value, using the
predefined symbols for tab styles.

style
The supported attributes of the tab style. Once a tab control is created, this style
information can also be retrieved using GetWindowWord(hwnd, GWL _STYLE).

fAvailable
TRUE if the style described by the current entry is available. When using the DLLs as
shipped with SftTabs/DLL, this field is always TRUE for all styles.

resls
Reserved. Not Used.

Comments
The SFTTABS _STYLETABLEA structure is used by the SftTabs/DLL Wizard to display all

available tab styles. The style table can be retrieved using the SftTabs GetStyleTable
function.

SFTTABS_TAB

typedef struct tagSftTabsTab {
/* modifiable fields */

COLORREF colorBg, colorFg; /* color */

COLORREF colorBgSel, colorFgSel;

SFTTABS GRAPH graph; /* graphics */

BOOL fEnabled; /* enabled/disabled status */

DWORD userData; /* userdata */

DWORD lpTabData; /* reserved for C, C++ class implementation */
HWND hwndSubDlg; /* reserved for C, C++ class implementation */

DWORD resl, res2;

/* read/only information */

int x, y; /* position (top left corner) */

int cx, cy; /* width and height */

int cxVis, cyVis; /* width and height of visible portion */
#if defined (UNICODE) || defined(UNICODE)

LPWSTR lpszText; /* label text */

LPWSTR lpszToolTip; /* tool tip text (formerly reslQ) */
#else

LPSTR lpszText; /* label text */

LPSTR 1lpszToolTip; /* tool tip text */
#endif

DWORD resl0, resll;

} SFTTABS TAB, FAR * LPSFTTABS TAB;

The SFTTABS_TAB structure is used to describe one tab label, including its colors, picture and
text components.

Members

colorBg
The background color of the tab, when the tab is not the active tab. Use any solid
color or SFTTABS_NOCOLOR, the default window background color. If flextOnly is
TRUE (see SFTTABS CONTROL), this background color is only used as background color
of the tab text, the remainder of the tab will be filled with the tab control's background
color. This value can be modified using SetTablnfo.

colorFg
The foreground, text color of the tab, when the tab is not the active tab. Use any solid
color or SFTTABS_NOCOLOR, the default window text color. This value can be modified
using SetTablnfo.

colorBgSel
The background color of the tab, when the tab is the active tab. Use any solid color or
SFTTABS_NOCOLOR, the default window background color. If flextOnly is TRUE (see
SFTTABS _CONTROL), this background color is only used as background color of the tab
text, the remainder of the tab will be filled with the tab control's background color.
This value can be modified using SetTablnfo.

colorFgSel
The foreground, text color of the tab, when the tab is the active tab. Use any solid
color or SFTTABS_NOCOLOR, the default window text color. This value can be modified
using SetTablnfo.

graph
The picture component. See SFTTABS _GRAPH for more information. This value can
be modified using SetTablnfo.

fEnabled
The tab status. Set to TRUE to enable the tab or FALSE to disable. A disabled tab will
be shown with its picture bitmap component drawn in a "grayed" fashion, icons are
always drawn with their original colors, never grayed. The text portion will be shown
grayed if the default colors (SFTTABS_NOCOLOR) are defined, otherwise the specified
colors will be used. This value can be modified using SetTablnfo.

userData
A 32-bit application defined value associated with the tab. This value can be modified
using SetTablnfo.

IpTabData
Stores a 32-bit pointer, used for the C and C++ implementation of tabbed dialogs.
For C, the pointer points to a function of type SETTABS TABCALLBACK. This callback
routine is called by SftTabs/DLL to create and destroy the page associated with this
tab. For C++, the pointer points to the C++ object based on CSftTabsPage or
TSftTabsPage. This value can be modified using SetTabinfo, SetTabDialog or
SetTabWindowPage.

hwndSubDlg
Stores a window handle, used for the C and C++ implementation of tabbed dialogs.
The window handle describes the page attached to the tab. This value can be
modified using SetTabinfo.

resl, res2

Reserved. Not Used.
X,y

Current location of the tab.
cx, cy

Current theoretical width and height of the tab. A tab may be truncated in a scrollable
tab control. In this case the cx and cy members hold the full, untruncated size of the
tab.

cxVis, cyVis
Current actual width and height of the tab. A tab may be truncated in a scrollable tab
control. In this case the cxVis and cyVis members hold the size of the visible portion
of the tab.

IpszText
The tab text. This value can be modified using SetTabLabel.

IpszToolTip
The tabs tooltip text. This value can be modified using SetToolTip.

reslo0, resll
Reserved. Not Used.

Comments
The SFTTABS_TAB structure can be defined using the SftTabs/DLL Wizard.

SFTTABS_TABCALLBACK

C, not used with C++
typedef HWND (CALLBACK* SFTTABS TABCALLBACK) (BOOL fCreate, HWND hwndOwner,
HWND hwndPage, HWND hwndTab) ;

Defines the callback function associated with a tab. This callback routine is called by
SftTabs/DLL to create and destroy the page associated with a tab.

Parameters

fCreate
TRUE if creating a new page. If hwndPage is NULL, the page is created for the first
time, otherwise the page already exists. When creating a new page, the application
should create a modeless dialog. fCreate is FALSE when destroying a page or
switching away from a page.

hwndOwner
The window handle of the tab control's parent window. This window should be the
owner of any pages created by this callback function. If fCreate is FALSE, hwndOwner
can be NULL, in this case the page hwndPage should be destroyed unconditionally. If
hwndOwner is not NULL, the window may be left intact, the tab control is merely
switching away from the current page. By returning the page's window handle, the
callback can indicate that the window wasn't destroyed. Returning NULL indicates
that the page was destroyed.

hwndPage
The window handle of the page to create or destroy. hwndPage may be NULL when
the page is created for the first time.

hwndTab
The window handle of the tab control.

Returns
The return value is the new page's window handle if fCreate is TRUE. If fCreate is FALSE,
hwndOwner is not NULL and the callback hasn't destroyed the page, the return value is
the window handle of the page. Otherwise NULL should be returned.

Comments
For more information on tabbed dialogs and windows, see Implementing Tabbed Dialogs

and Implementing Tabbed Windows

Under Windows 3.1, the function has to be exported. If certain compiler switches
and/or (older) compiler versions are used, the function must also be listed in the EXPORTS
section of the application's module definition file (*.DEF) and the MakeProcinstance
function call may have to be used.

Example
This example supports a page, which is kept when switching away from the active tab:

C
HWND export CALLBACK Page Callback (BOOL fCreate, HWND hwndOwner, HWND hwndPage,
HWND hwndTab)
{
if (fCreate) { // creating a new page
if (hwndPage) {
// already created, we could do some initialization here.
// this will be called every time the page becomes active.
// The WM SHOWWINDOW message is also sent to the page and could
// be used to determine activation/deactivation of the page.

// optional, set the main window's title to the window title defined ...
SftTabs CopyWindowTitle (hwndPage, hwndOwner) ;
return NULL; // return NULL, ignored
} else {
// Create the page.

// You can create and initialize any type of window here, not Jjust
dialogs.
// Use CreateWindow to create other windows. Don't specify WS VISIBLE, but
// make sure you use WS_TABSTOP.
// When creating a non-dialog window, make sure to call
SftTabs SetPageActive
// after the page has been created.
HWND hwnd = CreateDialogParam(g hInst,
MAKEINTRESOURCE (IDD your dialog ID),
hwndOwner, (DLGPROC)Page_yourDialogProc,
(LPARAM) (UINT)hwndTab);// pass tab control as data
// optional, set the main window's title to the window title defined
SftTabs CopyWindowTitle (hwnd, hwndOwner) ;
return hwnd;

}

} else { // destroying page
if (hwndOwner) // - because we're switching away
return hwndPage; // keep the window handle, don't destroy it
else { // - because we're closing the main dialog

DestroyWindow (hwndPage) ;
return NULL;

This example supports a page, which is destroyed every time when switching away from
the active tab:

C
HWND export CALLBACK Page Callback (BOOL fCreate, HWND hwndOwner, HWND hwndPage,
HWND hwndTab)
{
if (fCreate) { // creating a new page
if (hwndPage) {

// already created, we could do some initialization here.
// this will be called every time the page becomes active
// The WM CREATE/WM INITDIALOG/WM DESTROY messages are also sent to
// the page and could be used to determine activation/deactivation.

// of the page.

// optional, set the main window's title to the window title defined
SftTabs CopyWindowTitle (hwndPage, hwndOwner) ;
return NULL;
} else {
// Create the page.
// You can create and initialize any type of window here, not just

dialogs.
// Use CreateWindow to create other windows. Don't specify WS VISIBLE, but
// make sure you use WS TABSTOP.
// When creating a non-dialog window, make sure to call
SftTabs SetPageActive
// after the page has been created.
HWND hwnd = CreateDialogParam(g hInst,
MAKEINTRESOURCE (IDD your dialog ID),
hwndOwner, (DLGPROC)Page yourDialogProc,
(LPARAM) (UINT) hwndTab) ;// pass tab control as data
// optional, set the main window's title to the window title defined
SftTabs CopyWindowTitle (hwnd, hwndOwner) ;
return hwnd;

}

} else { // destroying page
// We'll always destroy this page (to save resources)
DestroyWindow (hwndPage) ;
return NULL;

SftTabs_ActivatePage

BOOL WINAPI SftTabs ActivatePage (HWND hwndParent, HWND hwndTab,

HWND hwndFrame, BOOL fInitializing);

The parent window of a tab control calls the SftTabs_ActivatePage function after a new page
has been activated or to activate the initial page.

Parameters

hwndParent
The window handle of the tab control's parent window.

hwndTab
The window handle of the tab control.

hwndFrame
The window handle of a window to be used by SftTabs/DLL as client area for tabbed
dialogs. This parameter should be NULL to use a tab control's built-in client area. If a
window handle is specified, SftTabs/DLL uses the client area size and location as a
replacement for the tab control's client area. The window described by hwndFrame
may be hidden and/or disabled. If an application resizes or moves the frame window,
the dependent page or windows control also has to be resized by using the
ResizePages function. Using this frame window handle, the client area of a tab control
can be located anywhere in relation to the tab control, even on a different dialog or
window.

finitializing
Set to TRUE when the tabbed dialog is being created and is not yet visible (usually
during WM_INITDIALOG or WM_CREATE message handling), set to FALSE when the tab
control is already visible.

Comments

The SftTabs_ActivatePage function causes the tab callback routine
SFTTABS TABCALLBACK, responsible for the current tab, to be called to create or initialize
the new page.

If a page is already active, SftTabs DeactivatePage should be used first to deactivate that
page, before calling SftTabs_ActivatePage.

Example

it.

This C example shows the end of a typical tabbed dialog WM_INITDIALOG message
handler:

. additional initialization code ...

index = SftTabs AddTab (hwndTab, TEXT ("&Six"));
SftTabs SetTabInfo (hwndTab, index, &Tabb);

SftTabs SetControlInfo (hwndTab, &CtlInit);

// Make sure to turn redraw back on
SendMessage (hwndTab, WM SETREDRAW, (WPARAM)TRUE, 0);
InvalidateRect (hwndTab, NULL, TRUE) ;

// Activate current page.
SftTabs ActivatePage (hwndParent, hwndTab, NULL, TRUE);

// Mark the window as a main, tabbed dialog (so accel. keys work) by registering

// Register the dialog AFTER activating the current page
SftTabs RegisterDialog(hwndParent) ;

return FALSE; // WM_INITDIALOG, input focus already set

AddTab

C, WIN16, SFTTABSM_ADDTAB

int SftTabs AddTab (HWND hwnd, LPCSTR lpsz);

C, WIN32, SFTTABSM_ADDTAB, _A, W

int SftTabs AddTab (HWND hwnd, LPCTSTR lpsz);
int SftTabs AddTab A (HWND hwnd, LPCSTR lpsz);
int SftTabs AddTab W (HWND hwnd, LPCWSTR lpsz);

C++, WIN16, CSftTabs::AddTab, TSftTabs::AddTab
int AddTab (LPCSTR lpsz);

C++, WIN32, CSftTabs::AddTab, TSftTabs::AddTab
int AddTab (LPCTSTR lpsz);

Adds a new tab to a tab control. The new tab will be added as the last tab.

Parameters
Ipsz
Points to the null-terminated string that is to be used as text for the tab label.
Returns

The return value is the zero-based index of the newly added tab. The return value is -1 if
an error occurred.

Comments
The tab control creates a copy of the string supplied.

The WM_SETREDRAW Windows message can be used to suppress the tab control from
being redrawn when many tabs are added.

Tabs can be deleted using DeleteTab. New tabs can be inserted at a specific location
using InsertTab.

Example
This example adds a tab with the text "A Test" to a tab control:
C
index = SftTabs AddTab (hwndTab, "A Test");
C++/MFC
index = m Tab.AddTab ("A Test");
C++/OWL

index = pTab->AddTab ("A Test");

AdjustClientRect

C, SFTTABSM_ADJUSTCLIENTRECT
BOOL SftTabs AdjustClientRect (HWND hwnd, LPRECT lpRect);

C++, CSftTabs::AdjustClientRect, TSftTabs::AdjustClientRect
BOOL AdjustClientRect (LPRECT lpRect);

Calculates a tab control size, which will provide a client area of the given size.

Parameters
IpRect
Points to a RECT structure containing the desired client area size. The values in the
RECT structure will be updated to contain the required tab control size to
accommodate the desired client area size.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
This function can only be used with tab control styles that provide a client area
(fClientArea of the SFTTABS CONTROL structure is TRUE).

Example
This example calculates the tab control size necessary to fit a client area size of 100
pixels in width and 50 pixels in height:

RECT rect;

SetRect (&rect, 0, 0, 100, 50);

SftTabs AdjustClientRect (hwndTab, &rect);
C++/MFC

CRect rect(0,0,100,50);

m Tab.AdjustClientRect (&rect);
C++/OWL

RECT rect;

SetRect (&rect, 0, 0, 100, 50);

pTab->AdjustClientRect (&rect) ;

SftTabs_ClosePossible

BOOL WINAPI SftTab37ClosePossible(HWND hwndParent, HWND hwndTab) ;

The parent window of a tab control calls the SftTabs _ClosePossible function to test if a page
can be ended.

Parameters
hwndParent
The window handle of the tab control's parent window.
hwndTab
The window handle of the tab control.

Returns
The return value is TRUE if the current page can be ended, otherwise the return value is
FALSE.

Comments
The SftTabs_ClosePossible function sends a WM _QUERYENDSESSION message to the
currently active tab and its associated page, to determine if the page can be deactivated.

Example
This C example shows the end of a typical tabbed dialog WM_COMMAND message
handler:

case WM COMMAND: {
// Parameter packing differs between 16-bit and 32-bit Windows
#i1if defined(WIN32) || defined(WIN32)
HWND hwndCtl = (HWND) lParam;
int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;

#else
HWND hwndCtl = (HWND) LOWORD (lParam);
int id = (int) wParam;
int code = HIWORD (lParam) ;

fendif

if (hwndCtl) {
switch (id) {
case IDC TAB:
switch (code) {
case SFTTABSN SWITCHING:// we're about to switch away from
// the current page. If you need to know what the new
// page will be use SftTabs GetNextTab (hwndCtl) .
if (!SftTabs DeactivatePage (hwndParent, hwndCtl))
// couldn't deactivate current page, so don't switch
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
break;
case SFTTABSN SWITCHED:// we switched to a new page
SftTabs ActivatePage (hwndParent, hwndCtl, NULL, FALSE);
break;

}
break;
case IDOK:
case IDCANCEL:
if (code == BN CLICKED)
SendMessage (hwndParent, WM COMMAND, id, 0);
break;
}
} else {
switch (id) {
case IDOK:
// The currently active page will be called with a
// WM _QUERYENDSESSION message to determine if it can be closed
if (SftTabs ClosePossible (hwndParent, GetDlgItem(hwndParent,

IDC_TAB)))
EndDialog (hwndParent, TRUE);
break;
case IDCANCEL:
EndDialog (hwndParent, FALSE);
break;
// The above assumes that this is a modal dialog.

If it is a modeless
// don't use EndDialog, use DestroyWindow instead.

break;

SftTabs_CopyWindowTitle

void WINAPI SftTabs CopyWindowTitle (HWND hwndFrom, HWND hwndTo) ;
Copies the window caption of a window to another window.

Parameters
hwndFrom
The window handle of the window whose caption is to be copied to hwndTo.
hwndTo
The window handle of the window which is to receive the window caption copied from
hwndFrom.

Comments
SftTabs_CopyWindowTitle is typically used in a SETTABS TABCALLBACK function to copy a
page's caption to the enclosing dialog.

If the window caption described by hwndFrom is an empty string, the caption of the
window described by hwndTo is not changed.

Create

C++, MFC only, CSftTabs::Create
BOOL Create (DWORD dwStyle, const RECT& rect, CWnd* pParentWnd, UINT nID);

Creates a tab control window and attaches it to the CSftTabs object.

Parameters
dwStyle
Specifies the window style of the tab control.
rect

Specifies the tab control size and location. Can be a CRect object or a RECT structure.
pParentWnd

Specifies the tab control's parent window (usually a CDialog or a CView object).
niD

Specifies the tab control's ID.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
A CSftTabs object is created in two steps. First the constructor CSftTabs is called, then the
CSftTabs::Create member function, which initializes the tab control window and attaches
it to the CSftTabs object.

Example
This example creates a tab control:

C++/MFC
CsftTabs Tab;
Tab.Create (WS CHILD|WS VISIBLE|SETTABSSTYLE STANDARD LEFT,
CRect (250, 200, 400, 700),
pParentWnd,
IDC_TAB) ;

CSftTabs::CSftTabs

C++, MFC only, CSftTabs::CSftTabs
CSftTabs () ;

Standard constructor.

Comments
A CSftTabs object is created in two steps. First the constructor CSftTabs is called, then
the CSftTabs::Create member function, which initializes the tab control window and
attaches it to the CSftTabs object.

SftTabs_DeactivatePage

BOOL WINAPI SftTabs DeactivatePage (HWND hwndParent, HWND hwndTab)

The parent window of a tab control calls the SftTabs DeactivatePage function to signal that a
page is no longer the active page.

Parameters
hwndParent
The window handle of the tab control's parent window.
hwndTab
The window handle of the tab control.

Returns
The return value is TRUE if the current page was deactivated, otherwise the return value
is FALSE.

Comments
The SftTabs_DeactivatePage function sends a WM _QUERYENDSESSION message to the
currently active tab and its associated dialog procedure, to determine if the page can be
deactivated. It also causes the tab callback routine SFTTABS TABCALLBACK responsible
for the current tab to be called to destroy the page.

Example
This C example shows a typical tabbed dialog WM_COMMAND message handler:

case WM COMMAND: {
// Parameter packing differs between 16-bit and 32-bit Windows
#if defined(WIN32) || defined(WIN32)
HWND hwndCtl = (HWND) lParam;
int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;

#else
HWND hwndCtl = (HWND) LOWORD (lParam) ;
int id = (int) wParam;
int code = HIWORD (lParam);

#endif

if (hwndCtl) {
switch (id) {
case IDC_TAB:
switch (code) {
case SETTABSN SWITCHING:// we're about to switch away from
// the current page. If you need to know what the new
// page will be use SftTabs GetNextTab (hwndCtl) .
if (!SftTabs DeactivatePage (hwndParent, hwndCtl))
// couldn't deactivate current page, so don't switch
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
break;
case SFTTABSN SWITCHED:// we switched to a new page
SftTabs ActivatePage (hwndParent, hwndCtl, NULL, FALSE);
break;

}
break;

case IDOK:

case IDCANCEL:
if (code == BN _CLICKED)

SendMessage (hwndParent, WM COMMAND, id, 0);

break;

}

} else {

switch (id) {

case IDOK:
// The currently active page will be called with a
// WM_QUERYENDSESSION message to determine if it can be closed

if (SftTabs ClosePossible (hwndParent, GetDlgltem(hwndParent,

IDC_TAB)))
EndDialog (hwndParent, TRUE) ;
break;
case IDCANCEL:
EndDialog (hwndParent, FALSE);
break;
// The above assumes that this is a modal dialog.

If it is a modeless
// don't use EndDialog, use DestroyWindow instead.

}

break;

}

DeleteTab

C, SFTTABSM_DELETETAB
int SftTabs DeleteTab (HWND hwnd, int iTab);

C++, CSftTabs::DeleteTab, TSftTabs::DeleteTab
int DeleteTab (int iTab);

Deletes a tab from the tab control.

Parameters
iTab
Specifies the zero-based index of the tab to be deleted.

Returns
The return value is the number of tabs remaining in the tab control. The return value is -
1 if an error occurred.

Comments
The WM_SETREDRAW Windows message can be used to suppress the tab control from
being redrawn when many tabs are deleted.

Deleting an active tab can cause unpredictable results. Switch to another tab first using
SetCurrentTab.

Example
This example deletes the tenth tab from the tab control:

C

total = SftTabs DeleteTab (hwndTab, 9);
C++/MFC

total = m Tab.DeleteTab (9);
C++/OWL

total = pTab->DeleteTab (9);

SftTabs_Destroy

BOOL WINAPI SftTabs Destroy (HWND hwndParent, HWND hwndTab) ;

The parent window of a tab control calls SftTabs_Destroy when the parent window is about to
be destroyed.

Parameters
hwndParent
The window handle of the tab control's parent window.
hwndTab
The window handle of the tab control.

Returns
The return value is TRUE if the function was successful.

Comments
The SftTabs_Destroy function ends and destroys all pages that may still exist (even
though not active) by calling the tab callback routines SFTTABS TABCALLBACK responsible
for each tab page.

Example
This C example shows a typical tabbed dialog WM_DESTROY message handler:

/* Unregister, or the window properties used won't be removed */
SftTabs UnregisterDialog (hwndParent) ;

/* destroy all pages */

SftTabs Destroy(hwndParent, GetDlgltem(hwndParent, IDC TAB));

GetControlinfo

C, SFTTABSM_GETCONTROLINFO

BOOL SftTabs GetControlInfo (HWND hwnd, LPSETTABS CONTROL 1pCtl);
C++, CSftTabs::GetControlinfo, TSftTabs::GetControlinfo

BOOL GetControlInfo (LPSETTABS CONTROL 1pCtl) const;

Retrieves tab control attributes.

Parameters
IpCtl
A pointer to a SFTTABS CONTROL structure. This structure will be updated with the
current tab control attributes.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
Some of the structure values returned can be modified and updated using SetControlinfo.
See SFTTABS CONTROL for more information.

Example
This example retrieves the current tab control attributes and modifies the number of tab
ToOws:

SFTTABS CONTROL Ctl;
SftTabs GetControlInfo (hwndTab, &Ctl);
Ctl.nRows = 1;
SftTabs SetControlInfo (hwndTab, &Ctl);
C++/MFC
SFTTABS CONTROL Ctl;
m Tab.GetControlInfo (&Ctl);
Ctl.nRows = 1;
m Tab.SetControlInfo (&Ctl);
C++/OWL
SETTABS CONTROL Ctl;
pTab->GetControlInfo (&Ctl);
Ctl.nRows = 1;
pTab->SetControlInfo (&Ctl);

GetCount

C, SFTTABSM_GETCOUNT
int SftTabs GetCount (HWND hwnd) ;

C++, CSftTabs::GetCount, TSftTabs::GetCount
int GetCount () const;

Retrieves the number of tabs in a tab control.

Returns
The return value is the number of tabs defined in the tab control. The return value is -1 if
an error occurred.

Example
This example retrieves the number of tabs:
C
total = SftTabs GetCount (hwndTab) ;
C++/MFC
total = m Tab.GetCount () ;
C++/OWL

total = pTab->GetCount () ;

GetCtlColors

C, SFTTABSM_GETCTLCOLORS
void SftTabs GetCtlColors (HWND hwnd, LPSFTTABS COLORS 1lpColors);

C++, CSftTabs::GetCtIColors, TSftTabs::GetCtiColors
void GetCtlColors (LPSETTABS COLORS lpColors) const;

Returns or sets the tab control's color attributes.

Parameters
IpColors
A pointer to a SFTTABS COLORS structure containing the color definitions.
GetCtlColors uses this structure to return the current color settings.

Comments
Using GetCtlColors and SetCtlColors is the preferred method to change color attributes.
Although a tab control generates WM _CTLCOLOR messages, the WM_CTLCOLOR message
handling is provided for compatibility with SftTabs 2.0 only.

Example
This example changes the tab control's foreground and background colors.
C
SFTTABS COLORS Colors;
SftTabs GetCtlColors (hwndTab, &Colors); /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */
SftTabs SetCtlColors (hwndTab, &Colors); /* Set new colors */
C++/MFC
SFTTABS COLORS Colors;
m Tabs.GetCtlColors (&Colors) ; /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */
m Tabs.SetCtlColors (&Colors); /* Set new colors */
C++/OWL
SFTTABS COLORS Colors;
pTab->GetCtlColors (&Colors) ; /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */

pTab->SetCtlColors (&Colors) ; /* Set new colors */

GetCurrentTab

C, SFTTABSM_GETCURRENTTAB
int SftTabs GetCurrentTab (HWND hwnd) ;

C++, CSftTabs::GetCurrentTab, TSftTabs::GetCurrentTab
int GetCurrentTab () const;

Retrieves the index of the currently active tab.

Returns
The return value is the index of the currently active tab, otherwise -1 is returned.

Comments
The currently active tab can be set using SetCurrentTab.

Example
This example retrieves the index of the current tab:
C
iTab = SftTabs GetCurrentTab (hwndTab) ;
C++/MFC
iTab = m Tab.GetCurrentTab () ;
C++/OWL

iTab = pTab->GetCurrentTab () ;

GetNextTab

C, SFTTABSM_GETNEXTTAB
int SftTabs GetNextTab (HWND hwnd) ;

C++, CSftTabs::GetNextTab, TSftTabs::GetNextTab
int GetNextTab () const;

Retrieves the index of the next tab about to become active.

Returns
The return value is the index of the next tab about to become active.

Comments
GetNextTab returns the index of the tab about to become active while processing a
SFTTABSN SWITCHING notification. The application can prevent the new tab from
becoming active by sending a WM_CANCELMODE message to the tab control.

GetNextTab can also be used in a CSftTabsPage::AllowSwitch,
CSftTabsWindowPage::AllowSwitch, TSftTabsDialog::CanClose, TSftTabsPage::CanClose or
TSftTabsWindowPage::AllowSwitch function, because these are called by the C++ class
implementations while a SFTTABSN SWITCHING notification is being processed.

GetNextTab can only be used while processing a SFTTABSN SWITCHING notification.

Example
This example prevents the user from switching to tab O:

Cc

case WM COMMAND: {
// Parameter packing differs between 16-bit and 32-bit Windows
#if defined(WIN32) || defined(WIN32)
HWND hwndCtl = (HWND) lParam;
int id = LOWORD (wParam) ;
int code = HIWORD (wParam) ;

#else
HWND hwndCtl = (HWND) LOWORD (l1Param) ;
int id = (int) wParam;
int code = HIWORD (lParam) ;
#endif
if (hwndCtl) {
switch (id) {
case IDC TAB:
switch (code) {
case SEFTTABSN SWITCHING:// we're about to switch away from
// the current page. If you need to know what the new
// padge will be use SftTabs_ GetNextTab (hwndCtl) .
if (SftTabs GetNextTab (hwndCtl) == 0)
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
if (!SftTabs DeactivatePage (hwndParent, hwndCtl))
// couldn't deactivate current page, so don't switch
SendMessage (hwndCtl, WM CANCELMODE, 0, 0);
break;
case SFTTABSN SWITCHED:// we switched to a new page
SftTabs ActivatePage (hwndParent, hwndCtl, NULL, FALSE);
break;
}
break;
}
}
break;
}
C++/MFC

BOOL CPage2::AllowSwitch ()
{

if (m pTabCtl->GetNextTab () == 0))
return FALSE;

return TRUE; // Allow switching away from this page

}
C++/OWL
bool TPage2::CanClose ()

{
if (m_pTabCtl->GetNextTab () == 0))

return false;

return true; // Allow switching away from this page

SftTabs_GetStyleTable

LPSFTTABS STYLETABLEA WINAPI SftTabs GetStyleTable(void);

This function returns a pointer to the first entry in the SftTabs DLL's style table. The style
table describes all available tab styles, suitable for use by a resource editor.

Returns
The return value is a pointer to the first entry in the SftTabs DLL's style table. Each entry

is of type SFTTABS STYLETABLEA. The IpszDesc member of the last entry in the table is
NULL.

SftTabs_GetTabControlFromPage

HWND WINAPI SftTabs GetTabControlFromPage (HWND hwndPage) ;

This function returns the tab control window handle, given the window handle of a window
attached to a tab.

Parameters
hwndPage
The window handle of the window attached to a tab.

Returns
The return value is the window handle of the tab control if successful, otherwise NULL is
returned.

GetTabDialog

C++, MFC, CSftTabs::GetTabDialog

CSftTabsPage* GetTabDialog(int iTab = -1) const;
C++, OWL, TSftTabs::GetTabDialog
TSftTabsPage* GetTabDialog(int iTab = -1) const;

Retrieves the CSftTabsPage or TSftTabsPage based object attached to the specified tab.

Parameters
iTab
The zero-based index of the tab for which information is to be retrieved. If-1is
specified, the information for the currently active tab is retrieved.

Returns
The return value is a pointer to the CSftTabsPage or TSftTabsPage based object, attached
to the specified tab or NULL if no page is attached. The CSftTabsPage or TSftTabsPage
based object is set using SetTabDialog.

GetTabinfo

C, SFTTABSM_GETTABINFO
BOOL SftTabs GetTabInfo (HWND hwnd, int iTab, LPSFTTABS TAB lpTab);

C++, CSftTabs::GetTabinfo, TSftTabs::GetTablInfo
BOOL GetTabInfo(int iTab, LPSFTTABS TAB lpTab) const;

Retrieves tab control attributes.

Parameters
iTab
The zero-based index of the tab for which information is to be retrieved.
IpTab
A pointer to a SFTTABS TAB structure. This structure will be updated with the
specified tab's attributes.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
Some of the structure values returned can be modified and updated using SetTablnfo.
See SFTTABS TAB for more information.

Example
This example retrieves the tab attributes for the third tab and modifies the background
color:

SFTTABS TAB Tab;
SftTabs GetTabInfo (hwndTab, 2, &Tab);
Tab.colorBg = RGB (255, 0, 0);
SftTabs SetTabInfo (hwndTab, 2, &Tab);
C++/MFC
SFTTABS TAB Tab;
m Tab.GetTabInfo (2, &Tab);
Tab.colorBg = RGB (255, 0, 0);
m Tab.SetTabInfo (2, &Tab);
C++/OWL
SFTTABS TAB Tab;
pTab->GetTabInfo (2, &Tab);
Tab.colorBg = RGB (255, 0, 0);
pTab->SetTabInfo (2, &Tab);

GetTabLabel

C, WIN16, SFTTABSM_GETTABLABEL
int SftTabs GetTabLabel (HWND hwnd, int iTab, LPSTR lpsz);

C, WIN32, SFTTABSM_GETTABLABEL, _A, W

int SftTabs GetTabLabel (HWND hwnd, int iTab, LPTSTR lpsz);
int SftTabs GetTabLabel A(HWND hwnd, int iTab, LPSTR lpsz);
int SftTabs GetTabLabel W(HWND hwnd, int iTab, LPWSTR lpsz);

C++, WIN16, CSftTabs::GetTabLabel, TSftTabs::GetTabLabel
int GetTabLabel (int iTab, LPSTR lpsz) const;

C++, WIN32, CSftTabs::GetTabLabel, TSftTabs::GetTabLabel
int GetTabLlabel (int iTab, LPTSTR lpsz) const;

Retrieves a tab's text.

Parameters
iTab
The zero-based index of the tab for which information is to be retrieved.
Ipsz
A pointer to a buffer where the tab's text will be returned.

Returns
The return value is the number of characters returned in the buffer, not including the
terminating \0'. The buffer must be large enough to receive the complete text.
GetTablLabellLen can be used to determine the buffer length needed. -1 is returned if an
error occurred.

Comments
A tab's text can be changed using SetTabLabel.

Example
This example retrieves the text of the second tab:

C

char szBuffer([80];

SftTabs GetTabLabel (hwndTab, 1, szBuffer);
C++/MFC

char szBuffer([80];

m_Tab.GetTabLabel (1, szBuffer);
C++/OWL

char szBuffer[80];

pTab->GetTabLabel (hwndTab, 1, szBuffer);

GetTabLabellLen

C, SFTTABSM_GETTABLABELLEN
int SftTabs GetTabLabelLen (HWND hwnd, int iTab);

C++, CSftTabs::GetTabLabelLen, TSftTabs::GetTabLabelLen
int GetTablabellen (int iTab) const;

Retrieves the length of a tab's text.
Parameters
iTab
The zero-based index of the tab for which the text length is to be retrieved.
Returns
The return value is the length of the tab's text, not including the terminating \0' or -1 if
an error occurred.
Comments

When using the UNICODE-enabled DLL SFTTB32U.DLL, the number returned is the
number of wide characters, not the number of bytes.

Example
This example retrieves the length of the tenth tab's text:
C
len = SftTabs GetTabLabellen (hwndTab, 9);
C++/MFC
len = m Tab.GetTabLabelLen (9) ;
C++/OWL

len = pTab->GetTabLabellen (9);

GetTabText

C++, MFC only, CSftTabs::GetTabText
void GetTabText (int iTab, CStringé& string) const;

Retrieves a tab's text.

Parameters
iTab
The zero-based index of the tab for which information is to be retrieved.
string
A reference to a CString object, where the text will be returned.

Comments
A tab's text can be changed using SetTabLabel.

Example
This example retrieves the text of the second tab:

C++/MFC
CString str;
m Tab.GetTabText (1, &str);

GetTabWindowPage

C++, MFC, CSftTabs::GetTabWindowPage

CSftTabsWindowPage* GetTabWindowPage (int iTab = -1) const;
C++, OWL, TSftTabs::GetTabWindowPage
TSftTabsWindowPage* GetTabWindowPage (int iTab = -1) const;

Retrieves the CSftTabsWindowPage or TSftTabsWindowPage based object attached to the
specified tab.

Parameters
iTab
The zero-based index of the tab for which information is to be retrieved. If-1is
specified, the information for the currently active tab is retrieved.

Returns
The return value is a pointer to the CSftTabsWindowPage or TSftTabsWindowPage based
object, attached to the specified tab or NULL if no page is attached. The
CSftTabsWindowPage or TSftTabsWindowPage based object is set using
SetTabWindowPage.

GetToolTip

C, WIN16, SFTTABSM_GETTOOLTIP

int SftTabs GetToolTip (HWND hwnd, int iTab, LPSTR lpsz);

C, WIN32, SFTTABSM_GETTOOLTIP, _A, W

int SftTabs GetToolTip (HWND hwnd, int iTab, LPTSTR lpsz);
int SftTabs GetToolTip A (HWND hwnd, int iTab, LPSTR lpsz);
int SftTabs GetToolTip W(HWND hwnd, int iTab, LPWSTR lpsz);

C++, MFC only, CSftTabs::GetToolTip
void GetToolTip(int iTab, CString& string) const;

C++, WIN16, CSftTabs::GetToolTip, TSftTabs::GetToolTip
int GetToolTip (int iTab, LPSTR lpsz) const;

C++, WIN32, CSftTabs::GetToolTip, TSftTabs::GetToolTip
int GetToolTip (int iTab, LPTSTR lpsz) const;

Retrieves a tab's tooltip text.

Parameters
iTab
The zero-based index of the tab for which information is to be retrieved.
Ipsz
A pointer to a buffer where the tab's tooltip text will be returned.

Returns
The return value is the number of characters returned in the buffer, not including the
terminating "\O'. The buffer must be large enough to receive the complete text.
GetToolTipLen can be used to determine the buffer length needed. -1 is returned if an
error occurred.

Comments
A tab's tooltip text can be changed using SetToolTip.

Example
This example retrieves the text of the second tab's tooltip:

C

char szBuffer([80];

SftTabs GetToolTip (hwndTab, 1, szBuffer);
C++/MFC

char szBuffer[80];

m Tab.GetToolTip(l, szBuffer);
C++/OWL

char szBuffer([80];

pTab->GetToolTip (hwndTab, 1, szBuffer);

SftTabs_GetToolTipHandle

C, SFTTABSM_GETTOOLTIPHANDLE
HWND SftTabs_GetToolTipHandle(HWND hwnd) ;

Retrieves the tooltip control window handle.

Returns
The return value is the window handle of the tooltip control which was created by the tab
control to display tooltips for each tab.. NULL is returned if no tooltip control has been
created.

Comments
Tooltips are only available in 32-bit applications running on Windows 95 or Windows NT
3.51 and higher.

Example
This example retrieves the window handle of the tooltip control:

C
HWND hwndCtl;
hwndCtl = SftTabsiGetToolTipHandle(hwndTab);

GetToolTipLen

C, SFTTABSM_GETTOOLTIPLEN
int SftTabs GetToolTipLen (HWND hwnd, int iTab);

C++, CSftTabs::GetToolTipLen, TSftTabs::GetToolTipLen
int GetToolTipLen (int iTab) const;

Retrieves the length of a tab's tooltip text.

Parameters
iTab
The zero-based index of the tab for which the tooltip text length is to be retrieved.

Returns
The return value is the length of the tab's tooltip text, not including the terminating "\0' or
-1 if an error occurred.

Comments
When using the UNICODE-enabled DLL SFTTB32U.DLL, the number returned is the
number of wide characters, not the number of bytes.

Example
This example retrieves the length of the tenth tab's tooltip text:
C
len = SftTabs GetToolTipLen (hwndTab, 9);
C++/MFC
len = m Tab.GetToolTipLen(9);
C++/OWL

len = pTab->GetToolTipLen (9);

SftTabs_HandleDialogMessage

BOOL WINAPI SftTabs HandleDialogMessage (HWND hwnd, UINT msg,
WPARAM wParam, LPARAM lParam);

The parent dialog window of a tab control and the dialogs used as pages of a tab control call
SftTabs_HandleDialogMessage to pass messages on to SftTabs/DLL so they can be
processed.

Parameters
hwnd
The window handle of the destination window.
msg
Message ID.
wParam, IParam
Message parameters.

Returns
The return value is TRUE if the message was processed by SftTabs/DLL, otherwise FALSE.

Comments
If this function is not called, certain features of SftTabs/DLL may not appear to be working
correctly, such as accelerator keys, tab switching, ESCAPE and TAB key handling, etc.
For windows (as opposed to dialogs) with tab controls, use the

SftTabs HandleWindowMessage function instead.

Example
This C example shows a dialog procedure for a dialog page:

BOOL export CALLBACK Pagel DialogProc (HWND hwndDlg, UINT msg,
WPARAM wParam, LPARAM lParam)
{
switch (msg) {
case WM INITDIALOG:
SetWindowText (GetDlgItem (hwndDlg, IDC P1 EDITI1), TEXT("Click another tab"));
SendMessage (GetDlgItem (hwndDlg, IDC Pl CHECK1l), BM SETCHECK, 1, 0);
// initialize page
SftTabs SetPageActive (hwndDlg, (HWND) lParam, NULL);
return !SftTabs IsRegisteredDialog(GetParent (hwndDlg)) ;

}

// Any message your dialog procedure doesn't handle, must come here

if (SftTabs HandleDialogMessage (hwndDlg, msg, wParam, lParam))
return TRUE;

return FALSE;

SftTabs_HandleWindowMessage

BOOL WINAPI SftTabs HandleWindowMessage (HWND hwnd, UINT message,
WPARAM wParam, LPARAM lParam, LRESULT FAR* lplResult);

The parent window of a tab control and the windows or dialogs used as pages of a tab
control call SftTabs_HandleWindowMessage to pass messages on to SftTabs/DLL so they can
be processed.

Parameters

hwnd
The window handle of the destination window.

msg
Message ID.

wParam, IParam
Message parameters.

IpIResult
Pointer to an LRESULT value. This field will be set to the result of the processed
message.

Returns
The return value is TRUE if the message was processed by SftTabs/DLL, otherwise FALSE.

Comments
If this function is not called, certain features of SftTabs/DLL may not appear to be working
correctly, such as accelerator keys, tab switching, ESCAPE and TAB key handling, etc.
For dialogs (as opposed to windows) with tab controls, use the
SftTabs HandleDialogMessage function instead.

Example
This C++4/MFC example handles unprocessed messages for a CView based window
containing a tab control:

LRESULT CSampleView::WindowProc (UINT message, WPARAM wParam, LPARAM lParam)
{
LRESULT 1Res;

if (SftTabs HandleWindowMessage (m_hWnd, message, wParam, lParam, &lRes))
return lRes;

// call base class

return CView::WindowProc (message, wParam, lParam);

InsertTab

C, WIN16, SFTTABSM_INSERTTAB
int SftTabs InsertTab (HWND hwnd, int iTab, LPCSTR lpsz);

C, WIN32, SFTTABSM_INSERTTAB, _A, W

int SftTabs InsertTab (HWND hwnd, int iTab, LPCTSTR lpsz);
int SftTabs InsertTab A (HWND hwnd, int iTab, LPCSTR lpsz);
int SftTabs InsertTab W (HWND hwnd, int iTab, LPCWSTR lpsz);

C++, WIN16, CSftTabs::InsertTab, TSftTabs::InsertTab
int InsertTab (int iTab, LPCSTR lpszText);

C++, WIN32, CSftTabs::InsertTab, TSftTabs::InsertTab
int InsertTab(int iTab, LPCTSTR lpszText);

Adds a new tab at the specified position.

Parameters
iTab
The zero-based index of the tab to be added. If -1 is specified, the tab will be added at
the end.
Ipsz
Points to the null-terminated string that is to be used as text for the tab [abel.

Returns
The return value is the zero-based index of the newly added tab. The return value is -1 if
an error occurred.

Comments
The tab control creates a copy of the string supplied.

The WM_SETREDRAW Windows message can be used to suppress the tab control from
being redrawn when many tabs are added.

Tabs can be deleted using DeleteTab. Tabs can be added using AddTab.

Example
This example inserts a tab with the text "A Test" at the third position:

C

index = SftTabs InsertTab (hwndTab, 2, "A Test");
C++/MFC

index = m Tab.InsertTab (2, "A Test");
C++/OWL

index = pTab->InsertTab (2, "A Test");

SftTabs_IsRegisteredDialog / -Window

BOOL WINAPI SftTabs IsRegisteredDialog (HWND hwndDialog) ;
BOOL WINAPI SftTabs_IsRegisteredWindow(HWND hwndWnd) ;

This function determines if a given window or dialog is registered with SftTabs/DLL for special
tabbed dialog or tabbed window handling, such as accelerator key handling, ESCAPE and
TAB key processing, etc.

Parameters
hwndDialog, hwndWnd
The window handle of the window or dialog to be tested.

Returns
The return value is TRUE if the window is registered with SftTabs/DLL for special tabbed
dialog or window handling, otherwise FALSE is returned.

Comments
A main tabbed dialog or window containing a tab control is registered using
SftTabs RegisterWindow or SftTabs RegisterDialog. Windows and dialogs based on the
C++ classes CSftTabsDialog and TSftTabsDialog are automatically registered.

SftTabs_IsTabControl
BOOL WINAPI SftTabs IsTabControl (HWND hwndCtl) ;
This function determines if a given window is a tab control.

Parameters

hwndCtl
The window handle of the window to be tested.

Returns
The return value is TRUE if the window is a tab control, otherwise FALSE is returned.

SftTabs_IsTabControlWithDialog / -Page

BOOL WINAPI SftTabs IsTabControlWithDialog (HWND hwndCtl);
BOOL WINAPI SftTabs_IsTabControlWithPage(HWND hwndCtl) ;

This function determines if a given window is a tab control with an attached page.

Parameters

hwndCtl
The window handle of the window to be tested.

Returns
The return value is TRUE if the window hwndCtl is a tab control with an attached page
(hwndSubDlIg in SFTTABS CONTROL is not NULL), otherwise FALSE is returned.

Comments
SftTabs_IsTabControlWithPage is a synonym for SftTabs_IsTabControlWithDialog and works

the same way for tab controls in a tabbed dialog or a tabbed window.

QueryChar

C, WIN16, SFTTABSM_QUERYCHAR

BOOL SftTabs QueryChar (HWND hwnd, int ch);

C, WIN32, SFTTABSM_QUERYCHAR, _A, W

BOOL SftTabs QueryChar (HWND hwnd, TCHAR ch);
BOOL SftTabs QueryChar A (HWND hwnd, int ch);
BOOL SftTabs QueryChar W(HWND hwnd, WCHAR ch);
C++, WIN16, CSftTabs::QueryChar, TSftTabs::QueryChar
int QueryChar (int ch) const;

C++, WIN32, CSftTabs::QueryChar, TSftTabs::QueryChar
int QueryChar (TCHAR ch) const;

Tests if a tab control responds to the specified character, i.e. the character is an accelerator
key which the tab control processes.

Parameters
ch
The character to be tested.

Returns
The return value is TRUE if the tab control responds to the specified character, otherwise
FALSE.

RegisterApp
C, SftTabs_RegisterApp

BOOL WINAPI SftTabs RegisterApp (HINSTANCE hInst);

C++, CSftTabs::RegisterApp, TSftTabs::RegisterApp
static BOOL RegisterApp() ;

An application calls this function to register the application for use of SftTabs/DLL controls.

Parameters
hinst
The instance handle of the application, which will use SftTabs/DLL controls.

Returns
The return value is TRUE if SftTabs/DLL has been initialized for this application, otherwise
FALSE is returned.

Comments
This call allows SftTabs/DLL to register all required window classes for the calling
application. This call has to be made before any SftTabs/DLL controls are created.

An application should call UnregisterApp once the application no longer uses SftTabs/DLL
controls.

The call to this function should be made during application initialization.

Example
This example registers an application with SftTabs/DLL:

C
int PASCAL WinMain (HINSTANCE hinst, HINSTANCE hinstPrev, LPSTR Cmd, int cmdShow)

{
SftTabs RegisterApp (hinst) ; // Register application

application message loop

SftTabs UnregisterApp (hinst) ; // Unregister application
return msg.wParam;

}
C++/MFC
BOOL CSampleApp::InitInstance () // based on CWinApp
{
CSftTabs::Registerlpp () ; // Register to use SftTabs/DLL
other initialization
return TRUE;
}
C++/OWL
void TApp::InitInstance () // based on TApplicaton
{
// Register to use SftTabs/DLL
TSftTabs::RegisterApp();
// call base class
TApplication::InitInstance();

SftTabs_RegisterDialog / -Window

BOOL WINAPI SftTabs RegisterDialog (HWND hwndDialog) ;
BOOL WINAPI SftTabs_RegisterWindow(HWND hwndWnd) ;

An application can call this function to register a window or dialog containing a tab control.
Once registered, SftTabs/DLL will perform special tabbed dialog handling, such as accelerator
key handling, ESCAPE and TAB key processing, etc.

Parameters
hwndDialog, hwndWnd
The window handle of the window or dialog to be registered.

Returns
The return value is TRUE if the window is successfully registered with SftTabs/DLL.

Comments
If this function is not called, certain features of SftTabs/DLL may not appear to be working
correctly, such as accelerator keys, tab switching, ESCAPE key handling, etc.

A window or dialog registered using this function, must also be unregistered using
SftTabs UnregisterDialog or SftTabs UnregisterWindow.

Example
This C example shows the end of a typical tabbed dialog WM_INITDIALOG message
handler:

additional initialization code

index = SftTabs AddTab (hwndTab, TEXT ("&Six"));
SftTabs SetTabInfo (hwndTab, index, &Tabb);

SftTabs SetControlInfo (hwndTab, &CtlInit);

// Make sure to turn redraw back on
SendMessage (hwndTab, WM SETREDRAW, (WPARAM)TRUE, 0);
InvalidateRect (hwndTab, NULL, TRUE);

// Activate current page.
SftTabs ActivatePage (hwndParent, hwndTab, NULL, TRUE);

// Mark the window as a main, tabbed dialog (so accel. keys work) by registering
it.

// Register the dialog AFTER activating the current page

SftTabs RegisterDialog (hwndParent) ;

return FALSE; // WM_INITDIALOG, input focus already set

ResetContent

C, SFTTABSM_RESETCONTENT
void SftTabs ResetContent (HWND hwnd) ;

C++, CSftTabs::ResetContent, TSftTabs::ResetContent
void ResetContent () ;

Removes all tabs from a tab control.

Comments
A tab control without tabs no longer paints a tab border or client area and becomes

transparent.

ResizePages

C, SFTTABSM_RESIZEPAGES
void SftTabs ResizePages (HWND hwnd) ;

C++, CSftTabs::ResizePages, TSftTabs::ResizePages
void ResizePages();

Resizes attached pages when using a frame window.

Comments
ResizePages should be used whenever a frame window has been resized. A frame

window is used when a tab control does not have a client area. That frame window
"holds" the pages that are attached to a tab control. If the user or the application resizes
this frame window, ResizePages must be called so the tab control can adjust the sizes of
all attached pages.

A frame window is defined using SftTabs ActivatePage, SetControlinfo,

CSftTabsDialog::InitializeTabControl, TSftTabsDialog::InitializeTabControl,
CSftTabsWindowSheet::InitializeTabControl or TSftTabsWindowSheet::InitializeTabControl.

ScrollTabs

C, SFTTABSM_SCROLLTABS
int SftTabs ScrollTabs (HWND hwnd, BOOL fUpOrLeft) ;

C++, CSftTabs::ScrollTabs, TSftTabs::ScrollTabs
int ScrollTabs (BOOL fUpOrLeft);

Scrolls tabs in the direction specified.

Parameters
fUpOrLeft
TRUE to scroll left (or up in a vertical tab control), FALSE to scroll right or down.

Returns
The return value is the index of the new leftmost (topmost) tab visible, or -1 if an error
occurred.

Comments
SftTabs_ScrollTabs can only be used with scrollable tab controls. The members
fLeftButton and fRightButton of the SFTTABS _CONTROL structure can be tested to see if
scrolling in either direction is currently possible.

Example
This example scrolls all tabs left by one position:
C
SftTabs ScrollTabs (hwndTab, TRUE);
C++/MFC
m Tab.ScrollTabs (TRUE) ;
C++/OWL

pTab->ScrollTabs (TRUE) ;

SetControlinfo

SetControlinfo

C, SFTTABSM_SETCONTROLINFO
BOOL SftTabs SetControlInfo (HWND hwnd, LPCSFTTABS CONTROL lpCtl);

C++, CSftTabs::SetControlinfo, TSftTabs::SetControlinfo
BOOL SetControlInfo (LPCSEFTTABS CONTROL 1pCtl);

Sets tab control attributes.

Parameters
IpCtl
A pointer to a SFTTABS _CONTROL structure. This structure will be used to define the
new tab control attributes.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
If the SFTTABS CONTROL structure defines a tab control that is invalid, the current tab
control settings remain unchanged and the function returns FALSE. The following
validations take place to insure that a tab control is valid:

the style specified in style has to be valid

nRows must be at least 1 and less or equal to the number of tabs

if nRows is > 1, the new tab style must support multiple rows of tabs

if leftMargin or rightMargin is > 1, the new tab style must support margins

if a specific number of tabs per row is defined (nRowTabs), tabs must be defined as

fixed width tabs (fFixed)

if a client area is requested (fClientArea), the new tab style must support a client area

e if a scrollable tab control is requested (fScrollable), the new tab style must support
scrollable tabs

e if a scrollable tab control is requested (fScrollable), the number of tab rows requested
must be one (nRows)

e if a scrollable tab control is requested (fScrollable), the tab rows cannot be filled
completely (fFillComplete)

* if a scroll button bitmap handle is supplied (hButtonBitmap), the handle must be valid

¢ if hidden scroll buttons are requested (fHideScrollButtons), the tab control must be
defined as scrollable (fScrollable)

e if multiline tab text is requested, the new tab style must support multiline tab text

® if conditional scroll buttons are requested (fCondScrollButtons), the tab control must
be defined as scrollable (fScrollable)

® conditional scroll buttons (fCondScrollButtons) and hidden scroll buttons

(fHideScrolIButtons) are mutually exclusive

Example
This example retrieves the current tab control attributes and modifies the number of tab
rOws:

SFTTABS CONTROL Ctl;
SftTabs GetControlInfo (hwndTab, &Ctl);
Ctl.nRows = 1;
SftTabs SetControlInfo (hwndTab, &Ctl);
C++/MFC
SFTTABS CONTROL Ctl;
m Tab.GetControlInfo (&Ctl);
Ctl.nRows = 1;
m Tab.SetControlInfo (&Ctl);
C++/OWL
SETTABS CONTROL Ctl;
pTab->GetControlInfo (&Ctl);

Ctl.nRows = 1;
pTab->SetControlInfo (&Ctl);

SetCtiColors

C, SFTTABSM_SETCTLCOLORS

void SftTabs SetCtlColors (HWND hwnd, LPCSEFTTABS COLORS lpColors);
C++, CSftTabs::SetCtIiColors, TSftTabs::SetCtiColors

void SetCtlColors (LPCSEFTTABS COLORS 1lpColors) const;

Sets the tab control's color attributes.

Parameters
IpColors
A pointer to a SFTTABS COLORS structure containing the color definitions.

Comments
Using GetCtlColors and SetCtlColors is the preferred method to change color attributes.
Although a tab control generates WM _CTLCOLOR messages, the WM_CTLCOLOR message
handling is provided for compatibility with SftTabs 2.0 only.

Example
This example changes the tab control's foreground and background colors.
C
SFTTABS COLORS Colors;
SftTabs GetCtlColors (hwndTab, &Colors); /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */
SftTabs SetCtlColors (hwndTab, &Colors); /* Set new colors */
C++/MFC
SFTTABS COLORS Colors;
m Tabs.GetCtlColors (&Colors) ; /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */
m_Tabs.SetCtlColors (&Colors); /* Set new colors */
C++/OWL
SFTTABS COLORS Colors;
pTab->GetCtlColors (&Colors) ; /* Get current color settings */
Colors.colorBg = RGB(0,255,255); /* Background color */
Colors.colorFg = RGB(0,0,128); /* Foreground color */

pTab->SetCtlColors (&Colors) ; /* Set new colors */

SetCurrentTab

C, SFTTABSM_SETCURRENTTAB
int SftTabs SetCurrentTab (HWND hwnd, int iTab);

C++, CSftTabs::SetCurrentTab, TSftTabs::SetCurrentTab
int SetCurrentTab (int iTab) ;

Makes the specified tab the new active tab.

Returns
The return value is the index of the new active tab, otherwise -1 is returned.

Comments
When using this function to activate a new tab, the normal tab switching mechanism
takes place, such as calling the SFTTABS TABCALLBACK tab callback function, the
CSftTabsPage::AllowSwitch, CSftTabsWindowPage::AllowSwitch, TSftTabsPage::CanClose or
TSftTabsWindowPage::AllowSwitch member functions of the C++ based implementation
of tabbed dialog.

Example
This example makes the third tab the new active tab:

Cc

SftTabs SetCurrentTab (hwndTab, 2);
C++/MFC

m Tab.SetCurrentTab (2) ;
C++/OWL

pTab->SetCurrentTab (2) ;

SftTabs_SetPageActive

void WINAPI SftTabs SetPageActive (HWND hwndPage, HWND hwndTab, LPVOID lpTabData);

An application calls the SftTabs SetPageActive function to notify SftTabs/DLL that the page
attached to the currently active tab has been activated.

Parameters

hwndPage
The window handle of the page attached to the currently active tab. This value is
saved in the hwndSubDIlg member of the SFTTABS CONTROL structure.

hwndTab
The window handle of the tab control.

IpTabData
An application defined 32-bit value. This value is saved in the IpTabData member of
the SFTTABS_CONTROL structure. For the C++ tabbed dialog and window
implementation, this is the page object, otherwise this parameter should be NULL.

Comments
The page is automatically resized to fit inside the tab control's client area (or a supplied
frame window, see SFTTABS CONTROL), certain incompatible window styles are changed
and the page is made visible. The call to SftTabs_SetPageActive should always be
performed in the page's WM_INITDIALOG message handler. For C++, the call is
automatic when using the supplied classes.

Example
This C example shows a page (subdialog) about to become active:

switch (msg) {
case WM INITDIALOG: ({
HWND hwndTab = (HWND) lParam;// get the associated tab control
// initialize page
SftTabs SetPageActive (hwndDlg, (HWND) lParam, NULL);
return FALSE;

SftTabs_SetPagelnactive

void WINAPI SftTabs SetPageInactive (HWND hwndTab) ;

An application calls the SftTabs_SetPagelnactive function to notify SftTabs/DLL that the page
attached to the currently active tab has been deactivated.

Parameters
hwndTab
The window handle of the tab control.

SetTabDialog

C++, MFC, CSftTabs::SetTabDialog
void SetTabDialog(int iTab, CSftTabsPage* pPage);

C++, OWL, TSftTabs::SetTabDialog
void SetTabDialog(int iTab, TSftTabsPage* pPage);

Sets the CSftTabsPage or TSftTabsPage based object pointer attached to the specified tab.

Parameters
iTab
The zero-based index of the tab for which information is to be set.
pPage
A pointer to the CSftTabsPage or TSftTabsPage based object representing the page
attached to the tab specified.

Comments
This function is used by the CSftTabsDialog and CSftTabsPage, TSftTabsDialog and
TSftTabsPage class implementation. When a tab is made the active tab, the
CSftTabsPage or TSftTabsPage based dialog is created or made visible.

SetTabinfo

C, SFTTABSM_SETTABINFO
BOOL SftTabs SetTabInfo (HWND hwnd, int iTab, LPSFTTABS TAB lpTab);

C++, CSftTabs::SetTabinfo, TSftTabs::SetTabinfo
BOOL SetTabInfo(int iTab, LPCSFTTABS TAB lpTab);

Sets the tab information for the specified tab.

Parameters
iTab
The zero-based index of the tab for which attributes are to be defined.
IpTab
A pointer to a SFTTABS TAB structure. This structure will be used to define the tab
attributes.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
If the SFTTABS TAB structure defines invalid tab attributes, the current tab settings
remain unchanged and the function returns FALSE.

Example
This example retrieves the tab attributes for the third tab and modifies the background
color:

SFTTABS TAB Tab;
SftTabs GetTabInfo (hwndTab, 2, &Tab);
Tab.colorBg = RGB (255, 0, 0);
SftTabs SetTabInfo (hwndTab, 2, &Tab);
C++/MFC
SFTTABS TAB Tab;
m Tab.GetTabInfo (2, &Tab);
Tab.colorBg = RGB (255, 0, 0);
m Tab.SetTabInfo (2, &Tab);
C++/OWL
SFTTABS TAB Tab;
pTab->GetTabInfo (2, &Tab);
Tab.colorBg = RGB (255, 0, 0);
pTab->SetTabInfo (2, &Tab);

SetTabLabel

C, WIN16, SFTTABSM_SETTABLABEL
BOOL SftTabs SetTabLabel (HWND hwnd, int iTab, LPCSTR lpsz);

C, WIN32, SFTTABSM_SETTABLABEL, _A, W

BOOL SftTabs SetTabLabel (HWND hwnd, int iTab, LPCTSTR lpsz);
BOOL SftTabs SetTabLabel A(HWND hwnd, int iTab, LPCSTR lpsz);
BOOL SftTabs SetTabLabel W(HWND hwnd, int iTab, LPCWSTR lpsz);
C++, WIN16, CSftTabs::SetTabLabel, TSftTabs::SetTabLabel

BOOL SetTabLabel (int iTab, LPCSTR lpsz);

C++, WIN32, CSftTabs::SetTabLabel, TSftTabs::SetTabLabel

BOOL SetTabLabel (int iTab, LPCTSTR lpsz);

Sets a tab's text.

Parameters
iTab
The zero-based index of the tab for which the tab text is to be set.
Ipsz
A pointer to a buffer containing the tab's text.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
The tab control creates a copy of the string supplied.

A tab's text can be retrieved using GetTablLabel.

Example
This example sets the text of the second tab:
C
SftTabs SetTabLabel (hwndTab, 1, "New Text");
C++/MFC
m Tab.SetTabLabel (1, "New Text");
C++/OWL

pTab->SetTabLabel (1, "New Text");

SetTabWindowPage

C++, MFC, CSftTabs::SetTabWindowPage
void SetTabWindowPage (int iTab, CSftTabsWindowPage* pPage, HWND hwnd = NULL) ;
C++, OWL, TSftTabs::SetTabWindowPage
void SetTabWindowPage (int iTab, TSftTabsWindowPage* pPage, HWND hwnd = NULL);

Sets the CSftTabsWindowPage or TSftTabsWindowPage based object pointer attached to the
specified tab.

Parameters
iTab
The zero-based index of the tab for which information is to be set.
pPage
A pointer to the CSftTabsWindowPage or TSftTabsWindowPage based object
representing the page attached to the tab specified.

Comments
This function is used by the CSftTabsWindowSheet and CSftTabsWindowPage,
TSftTabsWindowSheet and TSftTabsWindowPage class implementation. When a tab is
made the active tab, the CSftTabsWindowPage or TSftTabsWindowPage based dialog is
created or made visible.

SetToolTip

C, WIN16, SFTTABSM_SETTOOLTIP

BOOL SftTabs SetToolTip (HWND hwnd, int iTab, LPCSTR lpsz);

C, WIN32, SFTTABSM_SETTOOLTIP, _A, _ W

BOOL SftTabs SetToolTip (HWND hwnd, int iTab, LPCTSTR lpsz);
BOOL SftTabs SetToolTip A (HWND hwnd, int iTab, LPCSTR lpsz);
BOOL SftTabs SetToolTip W(HWND hwnd, int iTab, LPCWSTR lpsz);

C++, WIN16, CSftTabs::SetToolTip, TSftTabs::SetToolTip
BOOL SetToolTip(int iTab, LPCSTR lpsz);

C++, WIN32, CSftTabs::SetToolTip, TSftTabs::SetToolTip
BOOL SetToolTip(int iTab, LPCTSTR lpsz);

Sets a tab's tooltip text.

Parameters
iTab
The zero-based index of the tab for which the tooltip text is to be set.
Ipsz
A pointer to a buffer containing the tab's tooltip text.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
The tab control creates a copy of the string supplied.

A tab's text can be retrieved using GetToolTip.

Example
This example sets the text of the second tab's tooltip:
C
SftTabs SetToolTip (hwndTab, 1, "New Text");
C++/MFC
m Tab.SetToolTip(l, "New Text");
C++/OWL

pTab->SetToolTip (1, "New Text");

SetVersion

C, WIN16, SFTTABSM_SETVERSION
BOOL SftTabs SetVersion (HWND hwnd, int version);

C++, CSftTabs::SetVersion, TSftTabs::SetVersion
BOOL SetVersion (int version);

Sets a SftTabs/DLL version an application requires.

Parameters
version
A value indicating for which SftTabs/DLL version the application was developed.

SFTTABS 2 0 The application was developed for use with SftTabs 2.0
SFTTABS 2 1 The application was developed for use with SftTabs/DLL 2.1

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
When developing new applications, always use SetVersion(SFTTABS 2 1) to be
compatible with SftTabs/DLL as documented in this reference.

If SetVersion is not used, compatibility with version 2.0 is the default.

Most features that were introduced with version 2.1 are available even if
SetVersion(SFTTABS 2 0) is used. SetVersion cannot be used to disable new features, its
purpose is to make sure that certain API calls have the correct result. Certain features
have been modified between 2.0 and 2.1 so the calls actually behave differently.

New behavior with SFTTABS 2 1:

* |f the tab control is resized, pages attached to the tab control are resized even if they
are controlled via a frame window (see SftTabs ActivatePage, SetControlinfo,
CSftTabsDialog::InitializeTabControl, TSftTabsDialog::InitializeTabControl,
CSftTabsWindowSheet::InitializeTabControl or
TSftTabsWindowSheet::InitializeTabControl for more information on frame windows).

® The SFTTABS CONTROL structure members fToolTips, fDropText and
fCondScrollButtons are honored.

® Ctrl+Tab and Ctrl+Shift+Tab select the next or previous tab.

® SftTabs SetPageActive no longer removes the WS _TABSTOP style from an attached

page.
e SftTabs SetPageActive no longer copies a page's window caption to the enclosing
window.

Example
This example sets version 2.1 compatibility:

C

SftTabs SetVersion (hwndTab, SFTTABS 2 1);
C++/MFC

m Tab.SetVersion (SFTTABS 2 1);
C++/OWL

pTab->SetVersion (SFTTABS 2 1);

TSftTabs::TSftTabs
C++, OWL only, TSftTabs::TSftTabs

Syntax 1:
TSftTabs (TWindow* parent, int id, int x, int y, int w, int h, TModule* module = 0);

Standard constructor. Creates a tab control object.

Parameters

parent
Specifies the parent window.

id
Specifies the tab control's ID.

X, ¥, w h
Specifies the tab control's position (x and y coordinates) and its size (width and
height).

module
Specifies the application module.

Example
This example creates a tab control:

pTab = new TSftTabs (parentWindow, IDC TAB, 250, 200, 400, 400);
pTab->Create () ;

Syntax 2:
TSftTabs (TWindow* parent, int resourceld, TModule* module = 0);

Standard constructor. Creates a tab control object based on an already existing window.

Parameters
parent
Specifies the parent window.
resourceld
Specifies the tab control's ID.
module
Specifies the application module.

Comments
If a tab control is part of a dialog, it is created from a Windows resource definition. This
form of the TSftTabs constructor "connects" an existing control to the TSftTabs object.

UnregisterApp

C, SftTabs_UnregisterApp

void WINAPI SftTabs UnregisterApp (HINSTANCE hInst);
C++, CSftTabs::UnregisterApp, TSftTabs::UnregisterApp
static void UnregisterApp () ;

An application calls this function to unregister the application, once SftTabs/DLL controls are
no longer used.

Parameters

hinst

The instance handle of the application.

Comments
This call allows SftTabs/DLL to unregister all window classes used and perform cleanup
processing. This call has to be made after all SftTabs/DLL controls have been destroyed.

The call to this function should be made during application termination.

Example

This example unregisters an application from SftTabs/DLL:

C
int

{

}
C++/MFC
int

{

}

C++/OWL

int

{

PASCAL WinMain (HINSTANCE hinst, HINSTANCE hinstPrev, LPSTR Cmd, int cmdShow)

SftTabs RegisterApp (hinst) ; // Register application

application message loop

SftTabs UnregisterApp (hinst); // Unregister application
return msg.wParam;

CSampleApp: :ExitInstance () // based on CWinApp

// Unregister from SftTabs/DLL
CSftTabs::UnregisterApp() ;

// call base class

return CWinApp::ExitInstance();

TSampleApp: :TermInstance (int status) // based on TApplicaton

// Unregister from SftTabs/DLL
TSftTabs::UnregisterApp () ;

// call base class

return TApplication::TermInstance (status);

SftTabs_UnregisterDialog / -Window

BOOL WINAPI SftTabs UnregisterDialog (HWND hwndDialog) ;
BOOL WINAPI SftTabs_UnregisterWindow(HWND hwndWnd) ;

An application can call this function to unregister a window, which has been previously
registered using SftTabs RegisterDialog or SftTabs RegisterWindow.

Parameters
hwndDialog, hwndWnd
The window handle of the window or dialog to be unregistered.

Returns
The return value is TRUE if the window is successfully unregistered with SftTabs/DLL.

Comments
If this function is not called, resource leaks may be experienced.

Example
This C example shows a typical tabbed dialog WM_DESTROY message handler:

case WM DESTROY: ({
// Unregister, or the window properties used won't be removed
SftTabs UnregisterDialog (hwndDlg) ;
// destroy all pages
SftTabs Destroy(hwndDlg, GetDlgItem(hwndDlg, IDC TAB));
break;

CSftTabsDialog::ClosePossible

virtual BOOL ClosePossible ()
An application can call this function to determine if a tabbed dialog can be closed.

Returns
The return value is TRUE if the dialog can be closed, otherwise FALSE is returned.

Comments
This function calls the CSftTabsPage::AllowSwitch member function of the currently active
tab page. If the currently active page can be closed, the entire tabbed dialog can also be
closed. An application can override this function to perform additional tests, such as
input validation, to determine if the dialog can be closed.

CSftTabsDialog::CSftTabsDialog

CSftTabsDialog (UINT IDD, CWnd* pParent = NULL);

WIN16:

CSftTabsDialog (LPCSTR lpszTemplate, CWnd* pParent = NULL);
WIN32:

CSftTabsDialog (LPCTSTR lpszTemplate, CWnd* pParent = NULL);
protected:

CSftTabsDialog() ;

Standard constructor.

Parameters

IDD
ID of the dialog resource used to create the dialog.

IpszTemplate
A null-terminated string containing the name of the dialog resource used to create the
dialog.

pParent
A pointer to the parent window's CWnd based object. This parameter may be NULL, if
the tabbed dialog doesn't have a parent window.

Comments
A tabbed dialog is created in two steps. First call the constructor CSftTabsDialog, then
use DoModal to create a modal dialog or call Create to create a modeless tabbed dialog.
Override the OnlInitDialog member function to initialize the tab control and associate
CSftTabsPage objects to tabs.

Example
This example invokes a modal tabbed dialog:

CMainDlg MainDlg; // tabbed dialog
MainDlg.DoModal () ;

CSftTabsDialog::GetModified

virtual BOOL GetModified() const;
Used to retrieve the current data modification flag for the tabbed dialog.

Returns
The return value is TRUE if data has been modified, otherwise FALSE is returned.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use CSftTabsDialog::SetModified or
CSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using CSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent CSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the CSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

CSftTabsDialog::InitializeTabControl

BOOL InitializeTabControl (int iTab, CSftTabs* pTabCtl, CWnd* pFrame = NULL);

Used to initialize a tab control in a tabbed dialog. Activates the specified tab and the
associated page.

Parameters

iTab
The zero-based index of the tab to be made the active tab.

pTabCtl
A pointer to the tab control's CSftTabs based object.

pFrame
A pointer to a window's CWnd based object. This window will be used by SftTabs/DLL
as client area for pages attached to the tab control. SftTabs/DLL uses this window's
client area size and location as a replacement for the tab control's client area. The
window described by pFrame may be hidden and/or disabled. If an application resizes
or moves the frame window, the dependent page or Windows control also has to be
resized by using the ResizePages function. Using this frame window, the client area of
a tab control can be located anywhere in relation to the tab control, even on a different
dialog or window. This parameter may be NULL, in which case the tab control's client
area is used for attached pages.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
A tabbed dialog's tab control has to be initialized, which creates the page attached to the
currently active tab. This is typically done in the OnlnitDialog member function of the
tabbed dialog.

When a tabbed dialog is destroyed, all attached CSftTabsPage objects are automatically
destroyed and deleted (using the C++ delete operator).

Example
This example initializes the tab control of a tabbed dialog and activates the second tab:

[T 7777777777777 7777777777777 77
// CMainDlg message handlers

BOOL CMainDlg::0nInitDialog()

{
// call base class
CSftTabsDialog::0OnInitDialog() ;

int index;

/* Associate the tab control created from the dialog */
/* resource with the C++ object. */
m_Tab.SubclassDlgItem(IDC TAB, this /* parent window */);

/* Initialization is faster if we set redraw off */
m_ Tab.SetRedraw (FALSE) ;

/* We are using new features */
m Tab.SetVersion (SFTTABS 2 1);

. additional tab initialization ...

index = m Tab.AddTab(T("&Six"));
m Tab.SetTabInfo (index, &Tab5);
// If you don't want to attach a page to the tab, the following is optional
// m Tab.SetTabDialog(index, new an object based on CSftTabsPage (this)); // tab page

m Tab.SetControlInfo(&CtlInit);

// Make sure to turn redraw back on

m Tab.SetRedraw (TRUE) ;
m_Tab.InvalidateRect(NULL, TRUE) ;

// If you are not using the sheet/page classes,
// Initialize tab control

InitializeTabControl (1, &m Tab, NULL);

remove the

return FALSE;

CSftTabsDialog::OnCancel

virtual void OnCancel () ;

Called when the user hits the ESCAPE key or clicks the Cancel button (the button with an ID
of IDCANCEL).

Comments
Override this member function to perform Cancel button action. The default
implementation terminates a modal dialog box by calling EndDialog and causes DoModal
to return IDCANCEL.

If you implement the Cancel button in a modeless tabbed dialog, you must override the
OnCancel member function and call DestroyWindow. Don't call the base-class member
function because it calls EndDialog, which does not destroy a modeless dialog.

CSftTabsDialog::OnOK

virtual void OnOK() ;

Called when the user clicks the OK button (the button with an ID of IDOK).

Comments
Override this member function to perform the OK button action.

The default implementation of this member function calls CSftTabsDialog::ClosePossible
to make sure that the currently active page can be closed. Then any automatic data
validation and exchange for the tabbed dialog takes place.

If you implement the OK button in a modeless tabbed dialog, you must override the OnOK
member function and call DestroyWindow from within it. Don't call the base-class
member function because it calls EndDialog, which does not destroy a modeless dialog.

CSftTabsDialog::SetClose

virtual void SetClose (BOOL fClose = TRUE);

Called to signal that data has been changed permanently and the tabbed dialog can no
longer be Cancel'ed.

Comments
When input data is altered permanently, the tabbed dialog or page should use
CSftTabsDialog::SetClose or CSftTabsPage::SetClose. An application could override the
CSftTabsDialog::SetClose member function to visually notify the user that data has been
permanently altered. SetClose could be implemented to change the Cancel button's
caption to "Close".

CSftTabsDialog::SetModified

virtual void SetModified (BOOL fModified = TRUE) ;

Used to set the current data modification flag for the tabbed dialog.

Parameters
fModified
The new value to be saved as the data modification flag. TRUE if data has been
modified, FALSE otherwise.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use CSftTabsDialog::SetModified or
CSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using CSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent CSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the CSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

CSftTabsPage::AllowDestroy

virtual BOOL AllowDestroy();

This member function is called to determine if a page should be destroyed when it is no
longer visible, because the associated tab is no longer the currently active tab.

Returns

If TRUE is returned, the page will be destroyed, otherwise the page is disabled and
hidden.

Comments

The default implementation of this member function returns FALSE, after performing
automatic data validation and exchange for the tabbed dialog.

If FALSE is returned, a page and all its associated controls will not be destroyed, which
can cause considerable Windows resources to be allocated to these pages, however, the
data stored in these controls will remain intact and can be accessed until the entire
tabbed dialog is finally destroyed. It is up to the developer to weigh the benefits of data
persistance against additional resource usage. Switching between tabs is also faster if
pages aren't destroyed immediately, because the pages don't have to be recreated from
the dialog resources every time they become active.

Example
This example causes a page to destroyed when the page is no longer the active page:
BOOL CSubPg6::AllowDestroy () // Allow window to be destroyed

{
return TRUE;
}

CSftTabsPage::AllowSwitch

virtual BOOL AllowSwitch () ;

This member function is called to determine if a currently active page can be left, and a new
page be activated.

Returns
If TRUE is returned, the current page will be deactivated and another page will become
active, otherwise the current page (and associated tab) cannot be changed.

Comments
The default implementation of this member function returns TRUE, after performing
automatic data validation and exchange for the page.

An application can override this function to perform additional tests, such as input
validation, to determine if the page can be left.

CSftTabsPage::ClosePossible
virtual BOOL ClosePossible();
An application can call this function to determine if a page can be closed.

Returns
The return value is TRUE if the page can be closed, otherwise FALSE is returned.

Comments
An application can override this function to perform additional tests, such as input
validation, to determine if the dialog can be closed.

The default implementation also tests any nested tab controls and pages. The main
dialog has to be tested using CSftTabsDialog::ClosePossible.

CSftTabsPage::CSftTabsPage

CSftTabsPage (UINT IDD, CWnd* pParent);

WIN16:
CSftTabsPage (LPCSTR lpszTemplate, CWnd* pParent);

WIN32:
CSftTabsPage (LPCTSTR lpszTemplate, CWnd* pParent);

Standard constructor.

Parameters

IDD
ID of the dialog resource used to create the dialog.

IpszTemplate
A null-terminated string containing the name of the dialog resource used to create the
dialog.

pParent
A pointer to the parent window's CWnd based object. This parameter may be not be
NULL. The parent window must be an object derived from CSftTabsPage or
CSftTabsDialog.

Comments
A page attached to a tab control is created automatically by SftTabs/DLL in response to
user input or under program control, by calls such as CSftTabsDialog::InitializeTabControl
or SetCurrentTab. All pages created by SftTabs/DLL are created as modeless dialogs.

Example
This example creates several CSftTabsPage objects which are attached to the tab control:

BOOL CMainDlg::0nInitDialog()
{

int index;

SETTABS TAB Tab;

/* Associate the tab control created from the dialog */
/* resource with the C++ object. */
m Tab.SubclassDlgItem(IDC TAB, this /* parent window */);

/* You could use DDX/DDV instead and add the following */
/* line to the DoDataExchange function of the tab */
/* control's parent window (remove the //). */

// DDX Control (pDX, IDC_TAB, m Tab);

/* Initialization is faster if we set redraw off */
m_ Tab.SetRedraw (FALSE) ;

/* We are using new features */
m Tab.SetVersion (SFTTABS 2 1);

index = m Tab.AddTab(T("The First One"));
m Tab.SetToolTip(index, T ("Demonstrates tabbing into and out of the tab page"));

Tab = TabO0;

Tab.graph.item.hBitmap = (HBITMAP) m SampleBitmap.m hObject;
m Tab.SetTabInfo (index, &Tab);

m_Tab.SetTabDialog(index, new CPagel (this)); /* tab page */

additional tab initialization

index = m Tab.AddTab(T("Si&xth"));

m Tab.SetToolTip(index, T("A page with nested tab controls and pages"));
m Tab.SetTabInfo (index, &Tabb);

m Tab.SetTabDialog(index, new CPage6(this)); /* tab page */

m Tab.SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
m Tab.SetRedraw (TRUE) ;
m Tab.InvalidateRect (NULL, TRUE);

// If you are not using the sheet/page classes, remove the

// Initialize tab control

InitializeTabControl (0, &m Tab, NULL);

return FALSE; // if this is a dialog's OnInitDialog member function

CSftTabsPage::GetModified

virtual BOOL GetModified() const;
Used to retrieve the current data modification flag for the tabbed dialog.

Returns
The return value is TRUE if data has been modified, otherwise FALSE is returned.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use CSftTabsDialog::SetModified or
CSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using CSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent CSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the CSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

CSftTabsPage::GetParentDialog

CSftTabsDialog* GetParentDialog() const;

Used to retrieve the page's parent dialog object.

Returns
The return value is a pointer to the CSftTabsDialog based object, which is the parent
window of the page.

Comments
GetParentDialog retrieves the top-most enclosing CSftTabsDialog based object, in case of
nested tab controls with attached pages.

Example
This example shows an OnOK member function of a CSftTabsPage based object. The
page implements its own OK button. To process the OK button, it calls the parent
dialog's OnOK member function.

void CPage4: :0noOK ()

{
// Send OK to parent
GetParentDialog () ->0On0OK () ;

CSftTabsPage::InitializeTabControl

BOOL InitializeTabControl (int iTab, CSftTabs* pTabCtl, CWnd* pFrame = NULL);

Used to initialize a tab control in a page. Activates the specified tab and the associated
page.
Parameters
iTab
The zero-based index of the tab to be made the active tab.
pTabCtl
A pointer to the tab control's CSftTabs based object.
pFrame
A pointer to a window's CWnd based object. This window will be used by SftTabs/DLL
as client area for pages attached to the tab control. SftTabs/DLL uses this window's
client area size and location as a replacement for the tab control's client area. The
window described by pFrame may be hidden and/or disabled. If an application resizes
or moves the frame window, the dependent page or Windows control also has to be
resized by using the ResizePages function. Using this frame window, the client area of
a tab control can be located anywhere in relation to the tab control, even on a different
dialog or window. This parameter may be NULL, in which case the tab control's client
area is used for attached pages.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
A page's tab control has to be initialized, which creates the page attached to the currently
active tab. This is typically done in the OnlnitDialog member function of the page.

This function is only used for pages which contain tab controls. A main tabbed dialog
would use CSftTabsDialog::InitializeTabControl instead.

When a tabbed dialog is destroyed, all attached CSftTabsPage objects are automatically
destroyed and deleted (using the C++ delete operator).

Example
This example initializes the tab control of a page and activates the second tab:

L1177 77777777 777
// CPageDlg message handlers

BOOL CPageDlg::0nInitDialog()
{

// call base class
CSftTabsPage::0nInitDialog() ;

int index;
SFTTABS TAB Tab;

// Attach the tab control window to the CSftTabs object
m_Tabl.SubclassDlgItem(IDC P6 TABl, this /* parent window */);

. additional tab initialization ...

index = m Tab.AddTab(T("Si&xth"));

m Tab.SetTabInfo (index, &Tabb);

m Tab.SetTabDialog(index, new CPage6 (this));/* tab page */
m Tab.SetControlInfo (&CtlInit);

// Initialize tab control
InitializeTabControl (1, &m Tab, NULL);
return FALSE;

CSftTabsPage::OnCancel

virtual void OnCancel () ;

Called when the user clicks the Cancel button (the button with an ID of IDCANCEL).

Comments
The default implementation of this member function doesn't respond to the button. Itis
up to the application to override this function to do any processing. Usually, the Cancel
button is located on the parent dialog, not on a page attached to a tab, so the
CSftTabsDialog::OnCancel member function would process the Cancel button event.

Example

This example shows an OnCancel member function of a CSftTabsPage based object. The

page implements its own Cancel button. To process the Cancel button, it calls the parent
dialog's OnCancel member function.

void CPage4::0OnCancel ()

{
// Send Cancel to parent
GetParentDialog () ->OnCancel () ;

CSftTabsPage::OnOK

virtual void OnOK() ;

Called when the user clicks the OK button (the button with an ID of IDOK).

Comments
Override this member function to perform the OK button action.

The default implementation of this member function doesn't respond to the button. Itis
up to the application to override this function to do any processing. Usually, the OK
button is located on the parent dialog, not on a page attached to a tab, so the
CSftTabsDialog::OnOK member function would process the OK button event.

Example

This example shows an OnOK member function of a CSftTabsPage based object. The
page implements its own OK button. To process the OK button, it calls the parent
dialog's OnOK member function.

void CPage4d: :0nOK ()

{
// Send OK to parent
GetParentDialog () ->0nOK () ;

CSftTabsPage::SetClose

virtual void SetClose (BOOL fClose = TRUE);

Called to signal that data has been changed permanently and the tabbed dialog can no
longer be Cancel'ed.

Comments
When input data is altered permanently, the tabbed dialog or page should use
CSftTabsDialog::SetClose or CSftTabsPage::SetClose. An application could override the
CSftTabsDialog::SetClose member function to visually notify the user that data has been

permanently altered. SetClose could be implemented to change the Cancel button's
caption to "Close".

CSftTabsPage::SetModified

virtual void SetModified (BOOL fModified = TRUE) ;

Used to set the current data modification flag for the tabbed dialog.

Parameters
fModified
The new value to be saved as the data modification flag. TRUE if data has been
modified, FALSE otherwise.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use CSftTabsDialog::SetModified or
CSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using CSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent CSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the CSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

CSftTabsWindowSheet::ClosePossible

virtual BOOL ClosePossible ()

An application can call this function to determine if a tabbed window can be closed.

Returns
The return value is TRUE if the window can be closed, otherwise FALSE is returned.

Comments
This function calls the CSftTabsWindowPage::AllowSwitch member function of the
currently active tab page. If the currently active page can be closed, the entire tabbed
window can also be closed. An application can override this function to perform
additional tests, such as input validation, to determine if the window can be closed.

CSftTabsWindowSheet::CSftTabsWindowSheet

CSftTabsWindowSheet () ;
Standard constructor.

Comments

The class CSftTabsWindowSheet is never used by itself. It is used to add tabbed window
support to a CWnd-based class.

To avoid problems usually found with MFC and Windows messaging when using multiple
inheritance, the class CSftTabsWindowSheet must be defined as the "right-most" class.

Example

This example adds tabbed window support to the CSampleView class by using multiple
inheritance:

class CSampleView : public CView, public CSftTabsWindowSheet
{

. class definition

}i

CSftTabsWindowSheet::InitializeTabControl

BOOL InitializeTabControl (CWnd* pWnd, int iTab, CSftTabs* pTabCtl,
CWnd* pFrame = NULL) ;

Used to initialize a tab control in a tabbed window. Activates the specified tab and the
associated page.

Parameters

pWnd
The CWnd based object describing the tab control's parent window (usually this).

iTab
The zero-based index of the tab to be made the active tab.

pTabCtl
A pointer to the tab control's CSftTabs based object.

pFrame
A pointer to a window's CWnd based object. This window will be used by SftTabs/DLL
as client area for pages attached to the tab control. SftTabs/DLL uses this window's
client area size and location as a replacement for the tab control's client area. The
window described by pFrame may be hidden and/or disabled. If an application resizes
or moves the frame window, the dependent page or Windows control also has to be
resized by using the ResizePages function. Using this frame window, the client area of
a tab control can be located anywhere in relation to the tab control, even on a different
dialog or window. This parameter may be NULL, in which case the tab control's client
area is used for attached pages.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
A tabbed window's tab control has to be initialized, which creates the page attached to
the currently active tab. This is typically done in the OnCreate member function of the
tabbed window.

When a tabbed window is destroyed, all attached CSftTabsWindowPage objects are
automatically destroyed. However, any dynamically allocated CSftTabsWindowPage
derived objects must be deleted (using the C++ delete operator) by the application.

Example
This example initializes the tab control of a tabbed window and activates the first tab:

int CSampleView: :0OnCreate (LPCREATESTRUCT lpCreateStruct)
{
if (CView::OnCreate (lpCreateStruct) == -1)
return -1;

// Create a static control that we can place above the tab control.
// This is just used to cover the parent window in that area.

if (!m Gap.Create(T(""), SS SIMPLE | WS VISIBLE | WS CHILD,
CRect (0, 0, 0, 0), /* position */
this))

return -1;

#1if !defined(TAB7CONTROL7WITH7CLIENTAREA)
// Create a static control that we can use as a frame window for the tab control's

// pages. This window is not visible and is just used to indicate the page
position
if (!m Frame.Create(T(""), SS_SIMPLE | WS_CHILD,
CRect (0, 0, 0, 0), /* position */
this))

return -1;
#endif

// Create the tab control

if (!m Tab.Create(
WS VISIBLE | WS CHILD | /* Visible, child window */
WS CLIPCHILDREN | WS TABSTOP |
/* Clip child windows, tabstop */

WS_GROUP, /* Group */

CRect (0, 0, 0, 0), /* position */
this, /* Parent window */
IDC_TAB)) /* tab control ID */

return -1;
int index;

/* Initialization is faster if we set redraw off */
m Tab.SetRedraw (FALSE) ;

/* Create the font used for the tab control. */

/* Fonts are owned by the application and have to remain */

/* valid as long as the tab control uses the font. */

int height; /* Height in pixels */

HDC hDC; /* Device context */

/* Create the font to be used for the tab control. */

hDC = ::GetDC (NULL) ; /* Get a device context */
height = MulDiv (12, ::GetDeviceCaps (hDC, LOGPIXELSY), 72);/* Convert

m Font.CreateFont (-height, 0, 0, 0, FW NORMAL, O, O, O, O, O, O, O, O,
_T("Arial"™));

: :ReleaseDC (NULL, hDC) ; /* Release device context */

m Tab.SetFont (&m Font, FALSE); /* Set tab control font */

/* We are using new features */
m Tab.SetVersion (SFTTABS 2 1);

index = m Tab.AddTab(T ("&Listbox"));

m Tab.SetToolTip(index, T ("ToolTip for the ListBox tab"));
m Tab.SetTabInfo (index, &Tab0);

m Tab.SetTabWindowPage (index, &m ListBox); /* tab page */

index = m Tab.AddTab(T("&Edit Control"));

m Tab.SetToolTip(index, T ("ToolTip for the Edit Control tab"));
m Tab.SetTablInfo (index, &Tabl);

m Tab.SetTabWindowPage (index, &m Edit); /* tab page */

index = m Tab.AddTab(T ("&Other Listbox"));

m Tab.SetToolTip(index, T("ToolTip for the Other ListBox tab"));
m Tab.SetTabInfo (index, &Tab2);

m Tab.SetTabWindowPage (index, &m OtherListBox); /* tab page */

m Tab.SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
m_Tab.SetRedraw (TRUE) ;
m_Tab.InvalidateRect(NULL, TRUE) ;

#1if defined(TAB7CONTROL7WITH7CLIENTAREA)
// Initialize tab control
InitializeTabControl (this, 0, &m Tab, NULL);
#else
// Initialize tab control. An invisible, disabled frame window is used to
InitializeTabControl (this, 0, &m Tab, &m Frame);
#endif

// Mark the view as a main, tabbed window (so accel. keys work) by registering it.
SftTabs RegisterWindow (m hWnd) ;
return O;

CSftTabsWindowSheet::TabSwitched

void TabSwitched (CWnd* pParent, CSftTabs* pTabCtl);

Called by an application to handle the SETTABSN SWITCHED notification.

Parameters
pParent
The CWnd based object describing the tab control's parent window (usually this).
pTabCtl
A pointer to the tab control's CSftTabs based object.

Comments
A tabbed window must call this function to process the SFTTABSN SWITCHED notification
that is generated by the tab control to switch between pages.

Message map entries must also be added to the tab control's parent window.

Example

This example implements the suggested OnTabSwitched function that calls TabSwitched
to switch between pages:

// Add the following definitions to the tab control's parent window
// class CYourSheet

afx msg void OnTabSwitching();
afx msg void OnTabSwitched() ;

// Add the following to the parent window's message map

ON SFTTABSN SWITCHING (IDC TAB, OnTabSwitching)
ON_ SFTTABSN SWITCHED (IDC TAB, OnTabSwitched)

// Implement the following functions in CYourSheet

void CYourSheet::0nTabSwitching()
{

TabSwitching(this, &m Tab);
}

void CYourSheet::0nTabSwitched ()
{

TabSwitched (this, &m Tab);
}

CSftTabsWindowSheet::TabSwitching

void TabSwitching (CWnd* pParent, CSftTabs* pTabCtl);

Called by an application to handle the SFTTABSN SWITCHING notification.

Parameters
pParent
The CWnd based object describing the parent window (usually this).
pTabCtl
A pointer to the tab control's CSftTabs based object.

Comments
A tabbed window must call this function to process the SFTTABSN SWITCHING notification
that is generated by the tab control to switch between pages.

TabSwitching calls the CSftTabsWindowPage::AllowSwitch function of the current page to
determine if the next page can be activated. GetNextTab returns the index of the next
tab about to become active. By sending a WM_CANCELMODE message, an application
can prevent the tab control from activating the next page.

Message map entries must also be added to the tab control's parent window.

Example
This example implements the suggested OnTabSwitching function that calls TabSwitching
to switch between pages:

// Add the following definitions to the tab control's parent window
// class CYourSheet

afx msg void OnTabSwitching();
afx msg void OnTabSwitched();

// Add the following to the parent window's message map

ON SFTTABSN SWITCHING (IDC TAB, OnTabSwitching)
ON_SFTTABSN SWITCHED (IDC TAB, OnTabSwitched)

// Implement the following functions in CYourSheet

void CYourSheet::0nTabSwitching()
{

TabSwitching(this, &m Tab);
}

void CYourSheet: :0nTabSwitched ()
{

TabSwitched (this, &m Tab);
}

CSftTabsWindowSheet::TerminateTabControl

void TerminateTabControl (CWnd* pWnd, CSftTabs* pTabCtl);
Terminates a tab control and deactivates all pages.

Parameters
pWnd
The CWnd based object describing the tab control's parent window (usually this).
pTabCtl
A pointer to the tab control's CSftTabs based object.

Comments
A tabbed window's tab control has to be terminated, which deactivates and destroys all
pages attached to the tab control. This is typically done in the OnDestroy member
function of the tabbed window.

When a tabbed window is destroyed, all attached CSftTabsWindowPage objects are
automatically destroyed. However, any dynamically allocated CSftTabsWindowPage
derived objects must be deleted (using the C++ delete operator) by the application.

Example
This example terminates the tab control of a tabbed window:

void CSampleView: :0OnDestroy ()

{
// Remove all pages from the tab control
TerminateTabControl (this, &m Tab);
// Unregister, or the window properties used won't be removed
SftTabs UnregisterWindow(m hWnd) ;

CView: :OnDestroy () ;

CSftTabsWindowPage::ActivatePage

virtual BOOL ActivatePage (CWnd* pParent, CSftTabs* pTabCtl) = 0;

Called to create or activate a page.

Parameters
pParent
The CWnd based object describing the tab control's parent window.
pTabCtl
A pointer to the tab control's CSftTabs based object.

Returns
If TRUE is returned, the page was successfully created and activated, otherwise return
FALSE.

Comments
The CSftTabsWindowSheet class implementation calls this member function to create the
window associated with a page or to make the page visible.

Your CWnd based class must implement ActivatePage.

Example
This example shows the suggested implementation of the ActivatePage function:

BOOL CYourPage::ActivatePage (CWnd* pParent, CSftTabs* pTabCtl)
{
// This is called when the user switches to a page
if (!m_hWnd) {
// The window doesn't exist, create it now. Make sure it's NOT VISIBLE
// You can modify this to create another type of window instead.
// The exact syntax of the Create function used depends on the base
// class used.

if (!Create(.... // Create the window
WS_TABSTOP| // Tabstop style is important
other styles,
CRect (0,0,0,0), // location
pParent, // Parent Window
a_control id)) // control ID

// make sure the above control ID does not collide with
// IDs used by other pages or by the tab control itself
return FALSE;
// Additional initialization if desired
} else {
// The user switched back to this page
}

// This page is now active

SftTabs SetPageActive (m hWnd, pTabCtl->m hWnd, NULL);

// Enable + show it, its size is 0,0,0,0, it will be resized by the tab control
EnableWindow (TRUE) ;

ShowWindow(SW_SHOW);

return TRUE;

CSftTabsWindowPage::AllowSwitch

virtual BOOL AllowSwitch () ;

This member function is called to determine if a currently active page can be left, and a new
page be activated.

Returns
If TRUE is returned, the current page will be deactivated and another page will become
active, otherwise the current page (and associated tab) cannot be changed.

Comments
The default implementation of this member function returns TRUE.

An application can override this function to perform additional tests, such as input
validation, to determine if the page can be left.

CSftTabsWindowPage::CSftTabsWindowPage

CSftTabsWindowPage () ;

Standard constructor.

Comments

The class CSftTabsWindowPage is never used by itself. It is used to add the support
necessary to a CWnd-based class as a page.

To avoid problems usually found with MFC and Windows messaging when using multiple
inheritance, the class CSftTabsWindowSheet must be defined as the "right-most" class.
Example

This example adds tabbed window support to the CSampleView class by using multiple
inheritance:

class CSamplelListBox : public CListBox, public CSftTabsWindowPage
{
. class definition

}i

CSftTabsWindowPage::DeactivatePage

virtual void DeactivatePage (CWnd* pParent, CSftTabs* pTabCtl, BOOL fFinal) = 0;

Called to deactivate or destroy a page.

Parameters
pParent
The CWnd based object describing the tab control's parent window.
pTabCtl
A pointer to the tab control's CSftTabs based object.
fFinal
TRUE if the page must be destroyed, FALSE if the page can be hidden or destroyed.

Comments
The CSftTabsWindowSheet class implementation calls this member function to destroy the
window associated with a page or to make the page invisible.

If the page is destroyed, the page must be recreated when the user switches back to this
page (see CSftTabsWindowPage::ActivatePage). This does save resources but may cause
excessive wait times. It is up to your application to chose the most suitable method.

Not all CWnd derived classes are suitable to be destroyed multiple times while using the
same C++ object. Some classes (once constructed) assume that an attached window is
only created once, not multiple times as it could happen with SftTabs/DLL. If a class
doesn't support multiple creation of its window, you have to use ShowWindow when the
user switches away from the tab page (as shown in the example below).

Your CWnd based class must implement DeactivatePage.

Example
This example shows the suggested implementation of the DeactivatePage function:

void CYourPage::DeactivatePage (CWnd* pParent, CSftTabs* pTabCtl, BOOL fFinal)
{
if (fFinal) {
// You must destroy the window, the tabbed window (parent) is going away
DestroyWindow () ;
} else {
// Hide the page. If you want, you could use DestroyWindow here too.
// In that case you save resources and the window will be recreated
// when the user switches back to this page
ShowWindow (SW_HIDE) ;
EnableWindow (FALSE) ;
}
// clear associated page in tab's control structure
SftTabs SetPagelnactive (pTabCtl->m hWnd) ;

TSftTabsDialog::CanClose

virtual bool CanClose();

This function is called to determine if the tabbed dialog can be closed.

Returns
The return value is TRUE if the dialog can be closed, otherwise FALSE is returned.

Comments
This function calls the CanClose member function of the currently active tab page. If the
currently active page can be closed, the entire tabbed dialog can also be closed. An
application can override this function to perform additional tests, such as input validation,
to determine if the dialog can be closed.

TSftTabsDialog::GetModified

virtual BOOL GetModified() const;

Used to retrieve the current data modification flag for the tabbed dialog.

Returns
The return value is TRUE if data has been modified, otherwise FALSE is returned.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use TSftTabsDialog::SetModified or
TSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using TSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent TSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the TSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

TSftTabsDialog::InitializeTabControl

BOOL InitializeTabControl (int iTab, TSftTabs* pTabCtl, TWindow* pFrame = NULL);

Used to initialize a tab control in a tabbed dialog. Activates the specified tab and the
associated page.

Parameters
iTab
The zero-based index of the tab to be made the active tab.
pTabCtl
A pointer to the tab control's TSftTabs based object.
pFrame
A pointer to a window's TWindow based object. This window will be used by

SftTabs/DLL as client area for pages attached to the tab control. SftTabs/DLL uses this

window's client area size and location as a replacement for the tab control's client
area. The window described by pFrame may be hidden and/or disabled. If an
application resizes or moves the frame window, the dependent page or Windows
control also has to be resized using the ResizePages function. Using this frame

window, the client area of a tab control can be located anywhere in relation to the tab
control, even on a different dialog or window. This parameter may be NULL, in which

case the tab control's client area is used for attached pages.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments

A tabbed dialog's tab control has to be initialized, which creates the page attached to the

currently active tab. This is typically done in the EvinitDialog member function of the
tabbed dialog.

When a tabbed dialog is destroyed, all attached TSftTabsPage objects are automatically
destroyed and deleted (using the C++ delete operator).

Example
This example initializes the tab control of a tabbed dialog and activates the second tab:

bool TMainDialog::EvInitDialog (HWND hWndFocus)

{
TSftTabsDialog: :EvInitDialog (hWndFocus) ;

int index;

/* Initialization is faster if we set redraw off */
pTab->SetRedraw (false) ;

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("&One")) ;

pTab->SetTabInfo (index, &Tab0);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog (index, new TPageO (this));

. additional tab initialization here ...

index = pTab->AddTab (TEXT ("&Six")) ;

pTab->SetTabInfo (index, &Tabb);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog(index, new TPage6 (this));

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;
pTab->Invalidate (true) ;

// If you are not using the sheet/page classes, remove the
// Initialize tab control

InitializeTabControl (1, pTab, NULL);

return false;

TSftTabsDialog::SetClose

virtual void SetClose (BOOL fClose = TRUE);

Called to signal that data has been changed permanently and the tabbed dialog can no
longer be Cancel'ed.

Comments
When input data is altered permanently, the tabbed dialog or page should use
TSftTabsDialog::SetClose or TSftTabsPage::SetClose. An application could override the
TSftTabsDialog::SetClose member function to visually notify the user that data has been

permanently altered. SetClose could be implemented to change the Cancel button's
caption to "Close".

TSftTabsDialog::SetModified

virtual void SetModified (BOOL fModified = TRUE) ;

Used to set the current data modification flag for the tabbed dialog.

Parameters
fModified
The new value to be saved as the data modification flag. TRUE if data has been
modified, FALSE otherwise.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use TSftTabsDialog::SetModified or
TSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using TSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent TSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the TSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

TSftTabsDialog::TSftTabsDialog

TSftTabsDialog (TWindow* parent, TResId resId, TModule* module = 0);
Standard constructor.

Parameters

pParent
A pointer to the parent window's TWindow based object. This parameter may be
NULL, if the tabbed dialog doesn't have a parent window.

resid
The description of the dialog resource used to create the dialog.

module
Specifies the application's module, where the dialog resource can be found.

Comments
A tabbed dialog is created by invoking the constructor TSftTabsDialog. Override the
EvinitDialog member function to initialize the tab control and associate TSftTabsPage
objects to tabs.

Example
This example invokes a modal tabbed dialog:

CMainDlg MainDlg; // tabbed dialog
MainDlg.DoModal () ;

TSftTabsPage::AllowDestroy

virtual BOOL AllowDestroy();

This member function is called to determine if a page should be destroyed when it is no
longer visible, because the associated tab is no longer the currently active tab.

Returns

If TRUE is returned, the page will be destroyed, otherwise the page is disabled and
hidden.

Comments
The default implementation of this member function returns FALSE.

If FALSE is returned, a page and all its associated controls will not be destroyed, which
can cause considerable Windows resources to be allocated to these pages, however, the
data stored in these controls will remain intact and can be accessed until the entire
tabbed dialog is finally destroyed. Itis up to the developer to weigh the benefits of data
persistance against additional resource usage. Switching between tabs is also faster if
pages aren't destroyed immediately, because the pages don't have to be recreated from
the dialog resources every time they become active.

Example
This example causes a page to destroyed when the page is no longer the active page:
BOOL TSubPg6::AllowDestroy () // Allow window to be destroyed

{
return TRUE;

}

TSftTabsPage::CanClose

virtual bool CanClose();

An application can call this function to determine if a page can be closed or made inactive.

Returns
The return value is TRUE if the page can be closed, otherwise FALSE is returned.

Comments
An application can override this function to perform additional tests, such as input
validation, to determine if the dialog can be closed.

The default implementation also tests any nested tab controls and pages. The main
dialog has to be tested using TSftTabsDialog::CanClose.

TSftTabsPage::CloseWindow

virtual void CloseWindow (int retValue = IDCANCEL) ;

An application can call this function to close the entire tabbed dialog.

Parameters
retValue
The value passed to ::EndDialog if the tabbed dialog is a modal dialog.

Comments
An application can override this function to perform additional tests, such as input
validation, to determine if the dialog can be closed.

The default implementation tests any nested tab controls and pages and the main tabbed
dialog using CanClose. If CanClose returns TRUE, the tabbed dialog will be closed.

TSftTabsPage::CmCancel

void CmCancel () ;
Called when the user clicks the Cancel button (the button with an ID of IDCANCEL).

Comments
The default implementation of this member function automatically forwards this
notification to the parent tabbed dialog, by calling the parent dialog's CmCancel member
function. Usually, the Cancel button is located on the parent dialog, not on a page
attached to a tab, so the ISftTabsDialog::CmCancel member function would process the
Cancel button event.

This function is only called if a page has a button control with an ID of IDCANCEL. This
function will not be called for a button with the same ID which is located on the tabbed
dialog (i.e., belongs to the TSftTabsDialog object).

TSftTabsPage::CmOk

void CmOk () ;
Called when the user clicks the OK button (the button with an ID of IDOK).

Comments
The default implementation of this member function automatically forwards this
notification to the parent tabbed dialog, by calling the parent dialog's CmOk member
function Usually, the OK button is located on the parent dialog, not on a page attached
to a tab, so the TSftTabsDialog::CmOk member function would process the OK button
event.

This function is only called if a page has a button control with an ID of IDOK. This
function will not be called for a button with the same ID which is located on the tabbed

dialog (i.e., belongs to the TSftTabsDialog object).

TSftTabsPage::GetModified

virtual BOOL GetModified() const;

Used to retrieve the current data modification flag for the tabbed dialog.

Returns
The return value is TRUE if data has been modified, otherwise FALSE is returned.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use TSftTabsDialog::SetModified or
TSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using TSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent TSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the TSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

TSftTabsPage::GetParentDialog

TSftTabsDialog* GetParentDialog() const;

Used to retrieve the page's parent dialog object.

Returns
The return value is a pointer to the TSftTabsDialog based object, which is the parent
window of the page.

Comments
GetParentDialog is used to retrieve the top-most enclosing TSftTabsDialog based object, in
case of nested tab controls with attached pages.

Example
This example shows a member function of a TSftTabsPage based object, which responds
to a button click. The page implements its own OK button. To process the OK button, it
calls the parent dialog's CmOk member function.

void TPage4::0KClicked ()

{
// Forward to enclosing dialog
GetParentDialog () ->CmOk;

TSftTabsPage::InitializeTabControl

BOOL InitializeTabControl (int iTab, TISftTabs* pTabCtl, TWindow* pFrame) ;

Used to initialize a tab control in a page. Activates the specified tab and the associated
page.
Parameters
iTab
The zero-based index of the tab to be made the active tab.
pTabCtl
A pointer to the tab control's TSftTabs based object.
pFrame
A pointer to a window's TWindow based object. This window will be used by
SftTabs/DLL as client area for pages attached to the tab control. SftTabs/DLL uses this
window's client area size and location as a replacement for the tab control's client
area. The window described by pFrame may be hidden and/or disabled. If an
application resizes or moves the frame window, the dependent page or Windows
control also has to be resized using the ResizePages function. Using this frame
window, the client area of a tab control can be located anywhere in relation to the tab
control, even on a different dialog or window. This parameter may be NULL, in which
case the tab control's client area is used for attached pages.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
A page's tab control has to be initialized, which creates the page attached to the currently
active tab. This is typically done in the EvinitDialog member function of the page.

This function is only used for pages which contain tab controls. A main tabbed dialog
would use TSftTabsDialog::InitializeTabControl instead.

When a tabbed dialog is destroyed, all attached TSftTabsPage objects are automatically
destroyed and deleted (using the C++ delete operator).

Example
This example initializes the tab control of a page and activates the second tab:

bool TMainPage::EvInitDialog (HWND hWndFocus)

{
TSftTabsPage::EvInitDialog (hWndFocus) ;

int index;

/* Initialization is faster if we set redraw off */
pTab->SetRedraw (false);

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("&One")) ;

pTab->SetTabInfo (index, &Tabl);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog (index, new TSubPageO (this));

. additional tab initialization here ...

index = pTab->AddTab (TEXT ("&Six"));

pTab->SetTabInfo (index, &Tabh);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog (index, new TSubPage6 (this));

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;

pTab->Invalidate (true);

// I1f you are not using the sheet/page
// Initialize tab control

InitializeTabControl (1, pTab, NULL);
return false;

classes, remove the

TSftTabsPage::SetClose

virtual void SetClose (BOOL fClose = TRUE);

Called to signal that data has been changed permanently and the tabbed dialog can no
longer be Cancel'ed.

Comments
When input data is altered permanently, the tabbed dialog or page should use
TSftTabsDialog::SetClose or TSftTabsPage::SetClose. An application could override the
TSftTabsDialog::SetClose member function to visually notify the user that data has been

permanently altered. SetClose could be implemented to change the Cancel button's
caption to "Close".

TSftTabsPage::SetModified

virtual void SetModified (BOOL fModified = TRUE) ;

Used to set the current data modification flag for the tabbed dialog.

Parameters
fModified
The new value to be saved as the data modification flag. TRUE if data has been
modified, FALSE otherwise.

Comments
The maintenance of the data modification flag is up to the application. When input data
is altered, the tabbed dialog or page should use TSftTabsDialog::SetModified or
TSftTabsPage::SetModified to mark data as modified. There is only one data modification
flag for a tabbed dialog. When using TSftTabsPage::SetModified (a page), the tabbed
dialogs modification flag is updated, so a subsequent TSftTabsPage::GetModified (by
another page attached to the same tab control), will return the value of the tabbed
dialog's modification flag.

An application could override the TSftTabsDialog::SetModified member function to visually
notify the user that data has been modified. SetModified could be implemented to
change the OK button's caption to "Save".

TSftTabsPage::TSftTabsPage

TSftTabsPage (TWindow* pParent, TResId resId, TModule* module = 0);
Standard constructor.

Parameters

pParent
A pointer to the parent window's TWindow based object. This parameter may be not
be NULL. The parent window must be an object derived from TSftTabsPage or
TSftTabsDialog.

resid
The description of the dialog resource used to create the dialog.

module
Specifies the application's module, where the dialog resource can be found.

Comments
A page attached to a tab control is created automatically by SftTabs/DLL in response to
user input or under program control, by calls such as TSftTabsDialog::InitializeTabControl
or SetCurrentTab. All pages created by SftTabs/DLL are created as modeless dialogs.

Example
This example creates several TSftTabsPage objects which are attached to the tab control:

bool TMainDialog::EvInitDialog (HWND hWndFocus)

{
TSftTabsDialog: :EvInitDialog (hWndFocus) ;

int index;

/* Initialization is faster if we set redraw off */
pTab->SetRedraw (false);

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("&0One")) ;

pTab->SetTabInfo (index, &Tab0);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog(index, new TPageO (this));

additional tab initialization here

index = pTab->AddTab (TEXT ("&Six"));

pTab->SetTabInfo (index, &Tabh);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabDialog(index, new TPage6 (this));

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;
pTab->Invalidate (true);

// If you are not using the sheet/page classes, remove the
// Initialize tab control

InitializeTabControl (1, pTab, NULL);

return false;

TSftTabsWindowSheet::CanClose

virtual bool CanClose();

This function is called to determine if the tabbed window can be closed.

Returns
The return value is TRUE if the window can be closed, otherwise FALSE is returned.

Comments
This function calls the TSftTabsWindowPage::AllowSwitch member function of the
currently active tab page. If the currently active page can be closed, the entire tabbed
window can also be closed. An application can override this function to perform
additional tests, such as input validation, to determine if the window can be closed.

TSftTabsWindowSheet::InitializeTabControl

BOOL InitializeTabControl (TWindow* pWnd, int iTab, TSftTabs* pTabCtl,
TWindow* pFrame = NULL) ;

Used to initialize a tab control in a tabbed window. Activates the specified tab and the
associated page.

Parameters

pWnd
The TWindow based object describing the tab control's parent window (usually this).

iTab
The zero-based index of the tab to be made the active tab.

pTabCtl
A pointer to the tab control's TSftTabs based object.

pFrame
A pointer to a window's TWindow based object. This window will be used by
SftTabs/DLL as client area for pages attached to the tab control. SftTabs/DLL uses this
window's client area size and location as a replacement for the tab control's client
area. The window described by pFrame may be hidden and/or disabled. If an
application resizes or moves the frame window, the dependent page or Windows
control also has to be resized by using the ResizePages function. Using this frame
window, the client area of a tab control can be located anywhere in relation to the tab
control, even on a different dialog or window. This parameter may be NULL, in which
case the tab control's client area is used for attached pages.

Returns
The return value is TRUE if the function was successful, otherwise FALSE is returned.

Comments
A tabbed window's tab control has to be initialized, which creates the page attached to
the currently active tab. This is typically done in the EvCreate member function of the
tabbed window.

When a tabbed window is destroyed, all attached TSftTabsWindowPage objects are
automatically destroyed. However, any dynamically allocated TSftTabsWindowPage
derived objects must be deleted (using the C++ delete operator) by the application.

Example
This example initializes the tab control of a tabbed window and activates the first tab:

int TMainWin::EvCreate (CREATESTRUCT faré& createStruct)
{

if (TLayoutWindow: :EvCreate (createStruct) != 0)
return -1;

// Create the tab control

pTab = new TSftTabs (this, // 'this' is the parent window
IDC TAB, // tab control ID
0, 0, /* x, 0y %/
0, 0); /* width, height */
pTab->Attr.Style |= WS CLIPCHILDREN | WS TABSTOP | WS GROUP |
WS _VISIBLE | WS CHILD; // Visible, child window

if (!pTab->Create())
return -1;

#1if !defined (TAB CONTROL WITH CLIENTAREA)
// Create the frame window (which will hold the pages)

m pFrame = new TStatic(this, -1, TEXT(""), 0, 0, 0, 0);
m pFrame->Attr.Style &= ~WS VISIBLE; // not visible
m_pFrame->Attr.Style |= WS _DISABLED; // and disabled

// Create a static control that we can use as a frame window for the tab control's
// pages. This window is not visible and is just used to indicate the page

position
if (!m pFrame->Create())
return -1;
#endif

int index;

/* Initialization is faster if we set redraw off */
pTab->SetRedraw (false);

/* We are using new features */
pTab->SetVersion (SFTTABS 2 1);

index = pTab->AddTab (TEXT ("&Listbox"));

pTab->SetToolTip (index, TEXT("A standard listbox is attached to this tab"));
pTab->SetTabInfo (index, &Tab0);

// If you don't want to attach a page to the tab, the following is optional
pTab->SetTabWindowPage (index, m pList); // tab page

index = pTab->AddTab (TEXT ("&Edit Control"));

pTab->SetToolTip (index, TEXT ("A standard edit control is attached to this tab"));
pTab->SetTabInfo (index, &Tabl);

pTab->SetTabWindowPage (index, m pEdit); // tab page

index = pTab->AddTab (TEXT ("&Dialog"));

pTab->SetToolTip (index, TEXT ("A dialog is attached to this tab"));
pTab->SetTabInfo (index, &Tab2);

pTab->SetTabWindowPage (index, m_pDlg); // tab page

pTab->SetControlInfo (&CtlInit);

// Make sure to turn redraw back on
pTab->SetRedraw (true) ;
pTab->Invalidate (true);

// If you are not using the sheet/page classes, remove the call to
#1if defined(TAB_CONTROL_WITH_CLIENTAREA)
// Initialize tab control
InitializeTabControl (this, 0, pTab, NULL);
#else
// Initialize tab control. An invisible, disabled frame window is used to
InitializeTabControl (this, 0, pTab, m pFrame);
#endif
// Mark the view as a main, tabbed window (so accel. keys work) by registering it.
SftTabs RegisterWindow (HWindow) ;

return 0;

TSftTabsWindowSheet::TabSwitched

void TabSwitched (TWindow* pParent, TSftTabs* pTabCtl);

Called by an application to handle the SETTABSN SWITCHED notification.

Parameters
pParent
The TWindow based object describing the tab control's parent window (usually this).
pTabCtl
A pointer to the tab control's TSftTabs based object.

Comments
A tabbed window must call this function to process the SFTTABSN SWITCHED notification
that is generated by the tab control to switch between pages.

Response table entries must also be added to the tab control's parent window.

Example

This example implements the suggested EvTabSwitched function that calls TabSwitched to
switch between pages:

// Add the following definitions to the tab control's parent window
// class TYourSheet

void EvTabSwitching() ;
void EvTabSwitched() ;

// Add the following to the parent window's response table
EV_SFTTABSN SWITCHING (IDC TAB, EvTabSwitching),
EV_SEFTTABSN SWITCHED (IDC TAB, EvTabSwitched),

// Implement the following functions in TYourSheet

void TYourSheet::EvTabSwitching ()
{

TabSwitching(this, pTab);
}

void TYourSheet: :EvTabSwitched ()
{

TabSwitched (this, pTab);
}

TSftTabsWindowSheet::TabSwitching

void TabSwitching (TWindow* pParent, TSftTabs* pTabCtl);
Called by an application to handle the SFTTABSN SWITCHING notification.

Parameters
pParent
The TWindow based object describing the parent window (usually this).
pTabCtl
A pointer to the tab control's TSftTabs based object.

Comments
A tabbed window must call this function to process the SFTTABSN SWITCHING notification
that is generated by the tab control to switch between pages.

TabSwitching calls the TSftTabsWindowPage::AllowSwitch function of the current page to
determine if the next page can be activated. GetNextTab returns the index of the next

tab about to become active. By sending a WM_CANCELMODE message, an application

can prevent the tab control from activating the next page.

Message map entries must also be added to the tab control's parent window.

Example
This example implements the suggested EvTabSwitching function that calls TabSwitching
to switch between pages:

// Add the following definitions to the tab control's parent window
// class TYourSheet

void EvTabSwitching() ;
void EvTabSwitched() ;

// Add the following to the parent window's response table
EV SFTTABSN SWITCHING (IDC_TAB, EvTabSwitching),
EV_SFTTABSN SWITCHED (IDC TAB, EvTabSwitched),

// Implement the following functions in TYourSheet

void TYourSheet::EvTabSwitching()
{

TabSwitching(this, pTab);
}

void TYourSheet: :EvTabSwitched ()
{

TabSwitched(this, pTab);
}

TSftTabsWindowSheet::TerminateTabControl

void TerminateTabControl (TWindow* pWnd, TSftTabs* pTabCtl);

Terminates a tab control and deactivates all pages.

Parameters
pWnd
The TWindow based object describing the tab control's parent window (usually this).
pTabCtl
A pointer to the tab control's TSftTabs based object.

Comments
A tabbed window's tab control has to be terminated, which deactivates and destroys all
pages attached to the tab control. This is typically done in the EvDestroy member
function of the tabbed window.

When a tabbed window is destroyed, all attached TSftTabsWindowPage objects are
automatically destroyed. However, any dynamically allocated TSftTabsWindowPage
derived objects must be deleted (using the C++ delete operator) by the application.

Example
This example terminates the tab control of a tabbed window:

void TMainWin::EvDestroy ()

{
TLayoutWindow: :EvDestroy () ;

// Remove all pages from the tab control
TerminateTabControl (this, pTab);

// Unregister, or the window properties used won't be removed
SftTabs UnregisterWindow (HWindow) ;

TSftTabsWindowSheet::TSftTabsWindowSheet

TSftTabsWindowSheet () ;

Standard constructor.

Comments
The class TSftTabsWindowSheet is never used by itself. It is used to add tabbed window
support to a TWindow-based class.

Example
This example adds tabbed window support to the TMainWin class by using multiple
inheritance:

class TMainWin : public TLayoutWindow, public TSftTabsWindowSheet {
. class definition

}i

TSftTabsWindowPage::ActivatePage

virtual bool ActivatePage (TWindow* pParent, TSftTabs* pTabCtl) = 0;

Called to create or activate a page.

Parameters
pParent
The TWindow based object describing the tab control's parent window.
pTabCtl
A pointer to the tab control's TSftTabs based object.

Returns
If true is returned, the page was successfully created and activated, otherwise return

false.

Comments
The TSftTabsWindowSheet class implementation calls this member function to create the

window associated with a page or to make the page visible.

Your TWindow based class must implement ActivatePage.

Example
This example shows the suggested implementation of the ActivatePage function:

bool TYourPage::ActivatePage (TWindow* pParent, TSftTabs* pTabCtl)
{
// This is called when the user switches to a page
if (!HWindow) {
// The window doesn't exist, create it now. Make sure it's NOT VISIBLE.
// You can modify this to create another type of window instead.

Attr.Style &= ~(WS_BORDER|WS VISIBLE); // turn these off
// you may need to add/remove additional styles
Attr.Style |= WS TABSTOP; // turn these styles on

if (!Create())
return false;
// Additional initialization if desired
} else {
// The user switched back to this page
}

// This page is now active

SftTabs SetPageActive (HWindow, pTabCtl->HWindow, NULL) ;

// Enable + show it, its size is 0,0,0,0, it will be resized by the tab control
EnableWindow (true) ;

ShowWindow(SW_SHOW);

return true;

TSftTabsWindowPage::AllowSwitch

virtual bool AllowSwitch () ;

This member function is called to determine if a currently active page can be left, and a new
page be activated.

Returns
If true is returned, the current page will be deactivated and another page will become
active, otherwise the current page (and associated tab) cannot be changed.

Comments
The default implementation of this member function returns true.

An application can override this function to perform additional tests, such as a call to
TWindow::CanClose to determine if the page can be left.

TSftTabsWindowPage::DeactivatePage

virtual void DeactivatePage (TWindow* pParent, TISftTabs* pTabCtl, bool fFinal) = 0;

Called to deactivate or destroy a page.

Parameters
pParent
The TWindow based object describing the tab control's parent window.
pTabCtl
A pointer to the tab control's TSftTabs based object.
fFinal
true if the page must be destroyed, false if the page can be hidden or destroyed.

Comments
The TSftTabsWindowSheet class implementation calls this member function to destroy the

window associated with a page or to make the page invisible.

If the page is destroyed, the page must be recreated when the user switches back to this
page (see TSftTabsWindowPage::ActivatePage). This does save resources but may cause
excessive wait times. It is up to your application to chose the most suitable method.

Not all TWindow derived classes are suitable to be destroyed multiple times while using
the same C++ object. Some classes (once constructed) assume that an attached
window is only created once, not multiple times as it could happen with SftTabs/DLL. If a
class doesn't support multiple creation of its window, you have to use ShowWindow when
the user switches away from the tab page (as shown in the example below).

Your TWindow based class must implement DeactivatePage.

Example
This example shows the suggested implementation of the DeactivatePage function:

void TYourPage::DeactivatePage (TWindow* pParent, TSftTabs* pTabCtl, bool fFinal)
{
if (fFinal) {
// You must destroy the window, the tabbed window (parent) is going away
Destroy () ;
} else {
// Hide the page. If you want, you could use Destroy here too.
// In that case you save resources and the window will be recreated
// when the user switches back to this page
ShowWindow (SW_HIDE) ;
EnableWindow (false) ;
}
// clear associated page in tab's control structure
SftTabs SetPagelnactive (pTabCtl->HWindow) ;

TSftTabsWindowPage::TSftTabsWindowPage

TSftTabsWindowPage () ;

Standard constructor.

Comments
The class TSftTabsWindowPage is never used by itself. It is used to add the support
necessary to a TWindow-based class as a page.

OWL usually creates child windows automatically once a parent window is created. This
would however interfere with the TSftTabsWindowSheet and TSftTabsWindowPage
implementations. Make sure the control/window isn't automatically created when the
parent is created by using the DisableAutoCreate function (see OWL reference for more
information).

pPage->DisableAutoCreate () ;

Example

This example adds tabbed window support to the TSampleListBox class by using multiple
inheritance:

class TSampleListBox : public TListBox, public TSftTabsWindowPage {
. class definition
}i

