
Getting Started with
ShowBasic
We assume here that you are already familiar with the Basic as a language, so we will concentrate on a
specific ShowBasic features mostly leaving aside the Basic's programming concepts.

The world's famous method of learning the new language is to write a "Hello, world" program. Let's do it
first! There are plenty of ways to write such a simple program using ShowBasic - here they are. Study
them one by one.

"Hello, World!" using PAUSE statement.

"Hello, World!" using PRINT statement.

"Hello, World!" using PopupTextBox().

"Hello, World!" using Input Simulations.

"Hello, World!" using Bitmaps and Metafiles.

"Hello, World!" using PopupText() function.

"Hello, World!" using direct drawing.

"Hello, World!" using custom dialog boxes.

"Hello, World!" with multimedia.

"Hello, World!" using Windows API.

"Hello, World!" using PAUSE statement.
Sample p01.sb

pause "Hello, World!"

That's right - this is a complete program. When we run this program, ShowBasic shows the message box
with the text and waits for the user to acknowledge by clicking OK button. That's all. The mission is
accomplished.

"Hello, World!" using PRINT statement.
Sample p02.sb

print "Hello, World!"

As you see, this program is not very complicated, but it allows us to introduce several useful ShowBasic
concepts. When we run this program, ShowBasic shows the Viewport window with the text "Hello,
World!" inside it. What is a Viewport? This is a special window that mostly stays hidden during execution
of any ShowBasic program. The only way to output something into this window is to use ShowBasic's
print statement. Here is the simple rule: when ShowBasic program ends, Viewport will be shown if it is
not empty, i.e. if there was some output into the Viewport using print statement. To completely finish your
program you need to close the Viewport. If Viewport is empty by the time when ShowBasic program ends
- it will not be shown, and ShowBasic engine will terminate silently. You can control the visibility of the
Viewport window explicitly during the program execution using Viewport ON or Viewport OFF
statements. Viewport CLEAR will erase everything from the Viewport whether it is currently visible or
hidden.

Why and when do you need the Viewport? Mostly for debugging your applications. It is very convenient
to use the print statement in the critical points of your program to output the state of the variables and
other information. Viewport can also be used as a standard output stream when you write some utilities
using ShowBasic. Don't forget that using the print statement you can direct your output into some file as
well.

"Hello, World!" using PopupTextBox().
Let's get back to our "Hello, World" program. Let's use a little bit more intelligent way to write this
program… Here it is:

Sample p03.sb

PopupTextBox(SBC_CENTER, SBC_CENTER, 300, 100, "Hello, World!")

What will this program do? It shows a dialog box with the text field and two buttons (Continue and Stop).
The text field has "Hello, World!" text in it. By default, this dialog box is in the modal state, i.e. our
program will wait until the user clicks Continue or Stop button and only then the execution of the
program continues (in our case the program will end because this is the last statement of our program).
This return code of this function allows to detect which button was clicked. Let's modify the program in
order to check it:

Sample p04.sb

ret% = PopupTextBox(SBC_CENTER, SBC_CENTER, 300, 100, "Hello, World!")
If ret% = TRUE Then

print "You clicked Continue"
Else

print "You clicked Stop"
EndIf

PopupTextBox function is a very simple and convenient way to interrupt temporarily execution of
ShowBasic program in order to show some explanatory text and to wait for the response. There are many
ways to customize the appearance of the text box and the behavior of this function, you can:

· control the dialog box position on the screen and its size;
· choose the font and center the text; select the range of font sizes so that the font will be selected

automatically in order to fit all the text in the box; if text will not fit in the box - the scrollbars
will be added automatically;

· select the style of the dialog box (3-D, custom 3-D, plain), colors for the text and the
background;

· show from one to four different buttons (for example, Next, Back, Demo, Stop);
· make the dialog box modeless, control its appearance and interact with the user asynchronously;
· show the box for a limited time and continue execution automatically if the user didn't click any

button; and more…
Let's change, as an example, the appearance of our text box:

Sample p05.sb

SBV_STOPBUTTON = SW_HIDE
SBV_FONTFACE = "Courier New"
SBV_FONTWEIGHT = 700
SBV_FONTSIZE = 48
SBV_MINFONTSIZE = 12
SBV_BGRCOLOR = RGB&(0,128,128)
SBV_BCOLOR = RGB&(255,255,0)
SBV_FCOLOR = RGB&(0,0,255)
PopupTextBox(SBC_CENTER, 30, 500, 250, "Hello, World!", SBC_ALIGNCENTER)

All variables that have SBV_ prefix are global system variables. Their current values affect the behavior
and style of some ShowBasic functions. In our sample we changed the appearance of the text box by
assigning different values to some system variables before calling PopupTextBox() function. Usually you
need to assign values to system variables just at the beginning of your program so that all the dialog boxes
and windows in your program will have a consistent look.

"Hello, World!" using Input Simulations.
Our next example of "Hello, World" program is very important. You know already that the major strength
of ShowBasic is not in its ability to show dialog boxes and other windows - ShowBasic allows to control
other Windows application, in other words we can make other application do what we want them to do.
Let's use Notepad for our famous sample:

Sample p06.sb

Run("notepad.exe", NOWAIT)
Simulate("Hello, World!")

The above program starts Notepad and types "Hello, World!" in it. That's all. Consider now that we want
not only to show "Hello, world" on the screen but also have it copied to the Clipboard. Let's modify our
sample.

Sample p07.sb

Run("notepad.exe", NOWAIT)
wNotepad% = WinActivate("", "Notepad",5)
Simulate("Hello, World!+{Home}")
WinClickMenuChain(wNotepad%, "&Edit|&Copy", 15)
WinClickMenuChain(wNotepad%, "&File|E&xit", 15)
WinActivate("Notepad", "#32770", 2)
WinClickControl("&No", "Button", 50, 50, 15)

The second line of the above sample demonstrates the use of WinActivate() function. This function allows
us to wait until the Notepad starts and makes its main window active, at the same time it returns the
handle of the Notepad window and assigns it to wNotepad% variable. Look at the Simulate() function -
we've changed it a bit, "+{Home}" at the end of its parameter string actually allows us to highlight the
words that we've typed into the Notepad, this is the equivalent of pressing SHIFT-HOME key
combination. The wNotepad% variable is used in the following two functions. WinClickMenuChain()
functions visually simulates selections from the Notepad menu using the mouse. First function selects
Edit->Copy and the next one does File->Exit. Note using the ampersand symbol in words that represent
menu items - you have to use this symbol in front of the underlined letter of a menu item. Now look at the
last statement. When we select File->Exit, Notepad will pop up the dialog box asking whether we want to
save the changes. We don't want it - and our last WinClickControl() function moves the mouse to the
center of "No" button and clicks on it. Now let's concentrate on the previous line - WinActivate() function.
Why do we need to use WinActivate() before simulating the click into "No" button? Because we don't
want to rely on timing, and we'd like to make sure that the required message box is up before clicking into
it.

Note that in the above sample we were using visual simulations with the mouse. This approach is
preferable when you really need to show how you control the application. Sometimes, however, you don't
care about the visualization - if all you need is to automate some application, it may be easier and faster to
use keyboard simulations instead of the mouse simulations. Let's modify our sample:

Sample p08.sb

Run("notepad.exe", NOWAIT)
wNotepad% = WinActivate("", "Notepad",5)
Simulate("Hello, World!+{Home}%ec%fx")
WinActivate("Notepad", "#32770", 2)
Simulate("n")

Look at the last six characters used in the text string passed as a parameter to the first Simulate() function
- "%ec%fx". % is a special prefix that allows to simulate the combination of a character with the Alt key,
so the above sequence means "press Alt-E and then C". When this sequence is played into active Notepad
window, it will select "Edit->Copy" from the Notepad's menu. The next three characters simulate Alt-F

and then X to exit Notepad (File->Exit). The last Simulate() function plays N into the confirmation dialog
box.

Next sample demonstrates more extensive mouse simulations on Paintbrush (or Paint if the user runs
Windows 95).

Sample p09.sb

Const PlayString$ = "{LeftDown 19 19}.....{LeftUp 323 122}"
Const PaintID$ = "#0"
Const BrushID$ = "#1"
Const PaintClass$ = "Afx:8"
Const BrushClass$ = "pbPaint"
Const VirtSize$ = "{VirtSize 699|477}"

DIM sI As SYSTEMINFO

WinInfoSystem(sI)
IF MID$(sI.si_szWinVer,1,3) = "W95" THEN
 ID$ = PaintID$
 Class$ = PaintClass$
ELSE
 ID$ = BrushID$
 Class$ = BrushClass$
ENDIF

Run("pbrush.exe", NOWAIT)

wPaint% = WinActivate("", Class$, 10)
IF wPaint% = 0 THEN
 SBV_CONTBUTTON = SW_HIDE
 PopupTextBox(SBC_CENTER, SBC_CENTER, 250,150, \
 "Sorry, can't start or locate Paintbrush or Paint", \
 SBC_THREED or SBC_ALIGNCENTER or SBC_TOPMOST)
 exit
ENDIF

ret% = PopupTextBox(SBC_CENTER, SBC_CENTER, 350,200, \
"Please select a \"free-hand\" drawing tool \
(pencil, brush or airbrush) and some foreground color.\n\n\
Make sure that the drawing area is big enough and then \
click Continue.", \
SBC_THREED or SBC_ALIGNCENTER or SBC_TOPMOST)

IF ret% = TRUE THEN
 Simulate("{Origin Client Caption|" + ID$ + \
 "}{Origin Client Class|" + Class$ + "}" + \
 VirtSize$ + PlayString$)
ENDIF

SBV_CONTBUTTON = SW_HIDE
PopupTextBox(SBC_CENTER, SBC_CENTER, 250,150, \
"Click Stop to close Paint/Paintbrush and finish.", \
SBC_THREED or SBC_ALIGNCENTER or SBC_TOPMOST)

WinActivate(wPaint%, 1)
Simulate("%fx")
IF WinActivate("", "#32770", 1) Then
 Simulate("n")
ENDIF

There is nothing special in this sample - it demonstrates basically the same techniques which you have

learned already with the previous simpler samples. Please study it, just pay attention to the following
notes:

· The first line in the sample above is incomplete - in reality it is very long, and it was generated using
ShowBasic Recorder. This is a series of a mouse movements that draws "Hello, World!" in
Paintbrush. You can find the complete sample in the source file.

· We expect that this sample can be run in Windows, Windows NT and Windows 95, we know that on
Windows 95 "pbrush.exe" is actually another application - that's why we check the environment (
WinInfoSystem()) and construct the simulation string depending on the operating system in use.

· The parameter for Simulate() function is being constructed from several pieces on the fly - it is using
several pseudo-commands: {Origin Client Caption|XXX}{Origin Client Class|YYY} ensures that the
following mouse movement commands will be played in the window with the specified caption (ID)
and Class-name; {Virtsize W|H} command ensures that the coordinates in the following mouse
movement commands will be converted (scaled)    from the given virtual to the actual window's size.

"Hello, World!" using Bitmaps and Metafiles.
Next version of our "Hello, World" program will use ShowBasic's popup windows. There are many
varieties of this graphical windows in ShowBasic - there are also dozens of different ways to customize
them. We will show here just the basics.

First let's use metafiles and bitmaps to do what we want.

Sample p10.sb

SBV_BORDER = 10
SBV_BORDERSTYLE=SBC_UP
PopupBitmap(SBC_CENTER, SBC_CENTER, 0, 0, "hellow.bmp")

The above sample pops up a modal window (you need to click anywhere inside it to close it and continue)
and shows the image from hellow.bmp file inside this window. The window will be centered on the screen
(first two parameters of the PopupBitmap() control this) and the size of the window will be defined by the
native size of the bitmap image (two next parameters specified as zeros control this). The first two lines
assign values to system variables which control one of the possible popup window decorations - the
border. Note, that our bitmap has black background color. Let's have some fun and show "Hello, World!"
drawn transparently over existing screen image - using the same bitmap:

Sample p11.sb

SBV_TIMER = 5
PopupBitmapTrans(SBC_LEFT, SBC_TOP, 0, 0, "hellow.bmp", RGB&(0,0,0))

When you run this sample, you see the "Hello, World!" text from our bitmap on the upper left of the
screen. This time there is no black background - we defined the black color (RGB&(0,0,0)) as the
"transparent" color - and as a result you see everything whatever happened to be under this color on the
screen. Note that we were using another function - PopupBitmapTrans(). The first line assigns 5 to the
system variable SBV_TIMER - the effect is that if you don't close your popup window by clicking inside
it, it will be closed after 5 seconds automatically.

Metafile images can be used in a similar way - let's demonstrate it in the following sample:

Sample p12.sb

DIM sI As SYSTEMINFO
DIM rc As RECT
WinInfoSystem(sI)
RectSet(rc, sI.si_wXScreen/2, sI.si_wYScreen/2,\
 sI.si_wXScreen/2, sI.si_wYScreen/2)
w% = sI.si_wXScreen/3
h% = sI.si_wYScreen/4
offset% = sI.si_wYScreen/12
SBV_BGRCOLOR = RGB&(0,128,0)
PopupMetafile(offset%, offset%, w%, h%, "hellow.wmf",\
 SBC_FILLBGR or SBC_MODELESS, rc)
SBV_BGRCOLOR = RGB&(0,0,128)
PopupMetafile(-offset%, -offset%, w%, h%,\
 "hellow.wmf", SBC_FILLBGR or SBC_MODELESS, rc)
PopupMetafile(0, 0, sI.si_wXScreen, sI.si_wYScreen,\
 "hellow.wmf", SBC_MODELESS)
WaitInput(SBC_KEYBOARDINPUT or SBC_MOUSEINPUT)

The above sample introduces several more concepts and functions besides the metafile pictures. First two
lines declare two variables of predefined types - SYSTEMINFO is a predifined in ShowBasic type which
is used just by one function - WinInfoSysytem(). This function fills numerous system information data in
the structure passed as a parameter. We are using it here to determine the screen dimensions. We also

define the variable rc of system type RECT. This is a structure which defines the rectangle's dimensions.
We set this dimensions using RectSet() function in the following line (actually, we specify the rectangle
with the zero length and height here, basically this is a point). Then we use the current screen dimensions
to calculate the size for two metafile windows and the offset to show them on the screen.
SBV_BGRCOLOR system variable is used to define the background color for the metafile picture. Now
take a look at the following PopupMetafile() function. The last two parameters are new to us - the first
one defines the style of the popup window as SBC_FILLBGR or SBC_MODELESS. It is quite obvious
what this style is: show the background defined by the current value of SBV_BGRCOLOR variable, and
make this window modeless, i.e. after showing the window do not wait for    click - continue with the
script execution immediately. The last parameter, rc, defines the so-called "focus" rectangle. It allows to
create a special "focus" decoration for our popup window - you will see what it is when you run the
program.

The last (third) PopupMetafile() function is a little bit different - it uses the whole screen for the size of its
popup window and it doesn't use background color and focus decorations. The result you will see when
you run this sample program.

Note that all created modeless windows will be automatically destroyed when the script ends - we would
like to delay this destruction so that we can see the actual output, that's why we use WaitInput() function
at the end. This function stops execution of our script until you click anywhere on the screen or press any
button on the keyboard.

"Hello, World!" using PopupText() function.
PopupText() function allows to create a graphical text window look at the following example:

Sample p13.sb

SBV_FONTFACE = "Times New Roman"
SBV_FONTWEIGHT = 700
SBV_FONTSIZE = 72
SBV_MINFONTSIZE = 10
SBV_BGRCOLOR = RGB&(0,0,255)
SBV_FADECOLOR = RGB&(0,0,128)
SBV_BORDER = 10
SBV_BORDERSTYLE = SBC_FRAMEUP
SBV_FCOLOR = RGB&(255,255,0)
PopupText(SBC_CENTER, SBC_CENTER, 450, 250, "Hello, World!",\
 SBC_ALIGNCENTER or SBC_GRADIENTBGR or SBC_TOPMOST)

The function PopupText() is quite straightforward - it creates a popup window and draws the given text
inside it. There are several interest points in this sample. First, we've created a special "gradient"
background for this window. How? Using the style SBC_GRADIENTBGR and assigning the range of
colors to two system variables: SBV_BGRCOLOR and SBV_FADECOLOR.

Another interest point is defining the font size for the text inside the window. We assign the desirable font
size to SBV_FONTSIZE variable, however we are not sure whether our text will fit into the window. The
function automatically finds the closest to the desired font size so that the whole text will fit. Word wrap
occurs automatically if needed. The range of possible font sizes is limited by the value of
SBV_MINFONTSIZE variable.

One more thing to look at - we use SBC_ALIGNCENTER as one of the flags for the window's style. As a
result, the text inside window is centered.

"Hello, World!" using direct drawing.
One more way to do "Hello, World!" program is to draw directly into the popup window. Here is how it
can be done:

Sample p14.sb

SBV_FONTFACE = "Times New Roman"
SBV_FONTWEIGHT = 700
SBV_FONTSIZE = 48
SBV_BGRCOLOR = RGB&(255,255,0)
SBV_BORDER = 10
SBV_BORDERSTYLE = SBC_FRAMEUP
SBV_SHADOW = 16
hWnd% = PopupWindow(SBC_CENTER,SBC_CENTER,400,300,\
 SBC_MODELESS or SBC_FILLBGR)
PopupString(hWnd%, "Hello,",20, 20, 400, 150, RGB&(128,0,0),\
 SBC_NULLCOLOR, DT_LEFT or DT_VCENTER or DT_SINGLELINE)
PopupString(hWnd%, "Hello,",15, 15, 395, 145, RGB&(255,0,0),\
 SBC_NULLCOLOR, DT_LEFT or DT_VCENTER or DT_SINGLELINE)

PopupString(hWnd%, "World!",5, 170, 380, 300, RGB&(0,0,128),\
 SBC_NULLCOLOR, DT_RIGHT or DT_VCENTER or DT_SINGLELINE)
PopupString(hWnd%, "World!",0, 165, 375, 295, RGB&(0,0,255),\
 SBC_NULLCOLOR, DT_RIGHT or DT_VCENTER or DT_SINGLELINE)

PopupUpdate(hWnd%)
WaitInput(SBC_KEYBOARDINPUT or SBC_MOUSEINPUT or SBC_IGNOREALLINPUT)

Let's see what we do here. First, we assign required values to system variables that control window's
appearance, font etc. The new variable here is SBV_SHADOW - if it's value is not a zero, the special
shadow decoration will be added automatically to popup windows.

PopupWindow() function creates the empty modeless popup window and fills its background. The core of
this sample is PopupString() function - this function allows to draw some text into a popup window (first
parameter specifies such window's handle, and we use the handle returned by our PopupWindow()
function call). This function gives you a pretty good "low-level" control in order to place your text at
some exact position and to choose specific colors, fonts etc. for every piece of text. In our sample we
draw "Hello," in the top part of the window, and "World!" at the bottom. Every string we draw twice in
different colors and using a small offset to the upper-left for the second. This creates a "shadowed-text"
effect.

Note the very important feature of this function: it does not update the image of the window immediately
- you have to call PopupUpdate() function to show all changes to the window's image. Why? Because this
allows to avoid the "flicker" when you construct the window's image in many steps, this feature is also
essential when using special transition effect. PopupString() is just one of several "drawing" functions
which allow you to draw lines, ellipses, rectangles and polygons into the window's image.

Now let's add some "bells & whistles" to our sample, namely let's use a transitions effects. Here is how
we do it.

Sample p15.sb

DIM rc As RECT
SBV_FONTFACE = "Times New Roman"
SBV_FONTWEIGHT = 700
SBV_FONTSIZE = 48
SBV_BGRCOLOR = RGB&(255,255,0)
SBV_BORDER = 10
SBV_BORDERSTYLE = SBC_FRAMEUP
SBV_SHADOW = 16
hWnd% = PopupWindow(SBC_CENTER,SBC_CENTER,400,300,\
 SBC_MODELESS or SBC_FILLBGR)
PopupString(hWnd%, "Hello,",20, 20, 400, 150, RGB&(128,0,0),\
 SBC_NULLCOLOR, DT_LEFT or DT_VCENTER or DT_SINGLELINE)
PopupString(hWnd%, "Hello,",15, 15, 395, 145, RGB&(255,0,0),\
 SBC_NULLCOLOR, DT_LEFT or DT_VCENTER or DT_SINGLELINE)

RectSet(rc, 15,15,400,150)
PopupSetEffect(SBC_EFF_SLIDE, SBC_DIR_R2L, 1, 1, 1)
PopupUpdate(hWnd%, rc, SBC_EFFECT)

PopupString(hWnd%, "World!",5, 170, 380, 300, RGB&(0,0,128),\
 SBC_NULLCOLOR, DT_RIGHT or DT_VCENTER or DT_SINGLELINE)
PopupString(hWnd%, "World!",0, 165, 375, 295, RGB&(0,0,255),\
 SBC_NULLCOLOR, DT_RIGHT or DT_VCENTER or DT_SINGLELINE)

RectSet(rc, 0,165,380,300)
PopupSetEffect(SBC_EFF_SLIDE, SBC_DIR_B2T, 1, 1, 1)
PopupUpdate(hWnd%, rc, SBC_EFFECT)

WaitInput(SBC_KEYBOARDINPUT or SBC_MOUSEINPUT or SBC_IGNOREALLINPUT)

Note that we are using PopupUpdate() function twice here - first, after drawing "Hello," string, and then
after drawing "World!" string. The new feature of the PopupUpdate() function is that it is capable of
updating not the whole window but a particular part of it defined as a rectangle. The last parameter to
PopupUpdate() forces it to use the current transition effect (set by the previous PopupSetEffect()) function
when applying the change. The transition is done between two images: first is the image in the specified
rectangle of the window before any changes by PopupString() and the like functions were applied, and
the second one is the image with all the changes that has to be applied by PopupUpdate(). The result, as
you see, is the transition between the empty yellow rectangle and the similar yellow rectangle with some
extra words drawn inside it.

"Hello, World!" using custom dialog boxes.
Sample p16.sb

SBV_STYLE = SBC_3D or SBC_TOPMOST
DIM editText$, indexVar%
DIALOG DlgDialog SBC_CENTER SBC_CENTER 188 98 "Dialog"

OKBUTTON 39 77 50 14 "Hello,"
CANCELBUTTON 97 77 50 14 "World!"
OPTIONGROUP indexVar%

OPTIONBUTTON 142 41 38 8 "Hello,"
OPTIONBUTTON 142 55 38 8 "World!"

END OPTIONGROUP
EDITTEXT 3 23 72 12 editText$
CTEXT 4 5 180 10 "Hello, World!"

END DIALOG

indexVar% = 1
editText$="Hello, World!"
PopupDialogBox(DlgDialog)

Custom dialog boxes is the most powerful way to provide the interactions with the user. You can use
Popup… set of functions if all you need in terms of interaction is to output information and to request a
simple feedback (like OK or CANCEL, for example). Custom dialog boxes comes handy when you need
a complex interaction with the user like forms, multiple-choice questions etc.

The above sample demonstrates a simple (and useless) dialog box just to introduce the concept. The
template of the dialog box is defined between pair of DIALOG and END DIALOG statements. In our
sample we define two buttons, group of two radio-buttons, edit field and the static text field. Each control
can have a variable associated with it - and this variable always reflects the state of the corresponding
control. If the user types a text into some edit field - the corresponding variable gets changed, and there
are similar rules for all other types of controls.

Dialog boxes can be modal and modeless. There is also event mechanism in ShowBasic that allow you to
react immediately on any change in any control.

There are also many ways to customize the appearance of dialog boxes - the following sample will
demonstrate this.

Sample p17.sb

SBV_STYLE = SBC_TOPMOST
SBV_BGRPICTURE = "hellow.wmf"
SBV_BGRCOLOR = RGB&(128,128,0)
SBV_BCOLOR = SBC_NULLCOLOR
DIM editText$, indexVar%
DIALOG DlgDialog SBC_CENTER SBC_CENTER 188 98 "Hello, World!"
 OKBUTTON 64 77 50 14 "Hello,"
 CANCELBUTTON 122 77 50 14 "World!"
 OPTIONGROUP indexVar%
 OPTIONBUTTON 142 41 38 8 "Hello," 0 13 NULL_EVENT\
 "MS Sans Serif;8;Bold;0;0,255,0;128,128,0"
 OPTIONBUTTON 142 55 38 8 "World!" 0 14 NULL_EVENT\
 "MS Sans Serif;8;Bold;0;0,0,255;128,128,0"
 END OPTIONGROUP
 EDITTEXT 3 23 72 12 editText$ 0 15 NULL_EVENT\
 "Times New Roman;10;Bold;0;128,0,0;255,255,255"
 CTEXT 4 5 100 10 "Hello, World!" 0 16 NULL_EVENT\
 "Courier New;10;Bold;0;255,0,255;128,128,0"
END DIALOG

indexVar% = 1
editText$="Hello, World!"
PopupDialogBox(DlgDialog)

The changes we've done in this sample allowed us to use metafile picture as a dialog box's background
and to use different fonts and colors for dialog controls.

"Hello, World!" with multimedia.
Do you think we've ran out of "Hello, World" samples? No! Here comes yet another one-liner:

Sample p18.sb

PlaySound("hellow.wav")

What else can we say about this sample? Let's move on and make it show something.

Sample p19.sb

DIM rc As RECT
GLOBAL wAvi%
DECLARE Sub OnPlay()
DECLARE SUB OnExit()

SBV_BORDER = 10
SBV_BORDERSTYLE = SBC_BORDERCOLOR
SBV_DARKCOLOR = RGB&(192,192,192)
wAvi% = PopupAvi(SBC_CENTER, SBC_CENTER, 0, 0, "hellow.avi",\
 SBC_FIXEDPOS or SBC_MODELESS or SBC_NOPLAY or SBC_TOPMOST)

ON EVENT SBEP_DLGCONT OnPlay
ON EVENT SBEP_DLGSTOP OnExit

SBV_CONTTEXT = "&Play"
SBV_STOPTEXT = "&Exit"

RectWin(wAvi%, rc)
wText% = PopupTextBox(rc.left, rc.bottom, rc.right-rc.left, 90,\
 "Click Play to watch the movie", SBC_MODELESS or SBC_FIXEDPOS\
 or SBC_3D or SBC_ALIGNCENTER or SBC_TOPMOST)
sleep 0

static SUB OnPlay()
 PopupChangeAvi(wAvi%, SBC_FIRST)
 PopupChangeAvi(wAvi%, SBC_PLAY)
End Sub

static SUB OnExit()
 wakeup
End Sub

The above sample is the most complicated among those we've written so far. Not because it is using the
new functions that allow to work with AVI files, but rather because it is introducing the concepts of
events. ShowBasic events allow your program to react asynchronously to user interactions with the dialog
boxes. Events are also used in some other cases (notably with the group of Wait…() functions), but we
will concentrate on the dialogs here.

Let's recall that dialog boxes (and popup windows) can be shown in two modes: MODAL and
MODELESS. When the dialog box is shown in modal state, ShowBasic delays the execution of your
program until user clicks OK or CANCEL buttons (they can be named differently, of course, like
Continue and Stop, for example). Only after that ShowBasic program continues. With MODELESS
dialogs and windows the things work differently. Immediately after creation of the modeless dialog,
ShowBasic continues to execute your program until it reaches the end of the program or execution is
temporarily delayed somehow. So how to work with the modeless dialogs? Using the events, of course.
Events allow you to execute a ShowBasic procedure (defined by you) when user clicks any control on a
dialog. Now let's look at our sample and see how it works.

First of all, look how two subroutines declared and defined in our program:

DECLARE Sub OnPlay()
DECLARE SUB OnExit()
.
static SUB OnPlay()
 PopupChangeAvi(wAvi%, SBC_FIRST)
 PopupChangeAvi(wAvi%, SBC_PLAY)
End Sub

static SUB OnExit()
 wakeup
End Sub

Subroutines and functions can be used both with events and simply as means of structuring your program
- and you probably know already how they work. The regular subroutines and functions    can be called
from anywhere inside your program. In our case, we use subroutines as the event handlers, i.e. those
procedures that are called automatically when some event is triggered. We need to tell ShowBasic on
which event to call those subroutines - here is how we do it:

ON EVENT SBEP_DLGCONT OnPlay
ON EVENT SBEP_DLGSTOP OnExit

From now on whenever SBEP_DLGCONT event happens, the OnPlay() subroutine will be called, and
whenever SBEP_DLGSTOP event happens, the OnExit() subroutine will be called. The two events we
just mentioned are system events predefined in ShowBasic. The first one is automatically triggered when
OK (Continue) button is clicked on any dialog box, and the second one is triggered when CANCEL
(Stop) button is clicked. In our sample here we use just these two system events, but ShowBasic allows
you to define your own events and to connect them to any control on your custom dialog box - therefore
you'll be able to react an any state change of any dialog box control, and even to any Windows message
processed by a dialog box. Although we never use it in our sample, it is worth mentioning that you can
also disconnect your event handlers from processing the events at some other point of your program. Here
is how you'd do it:

ON EVENT SBEP_DLGCONT
ON EVENT SBEP_DLGSTOP

Now let's talk about one more useful ShowBasic statement:

sleep 0

This statement stops the processing of our program forever. (The parameter passed to sleep is the number
of seconds to delay the execution of the program, but 0 is the special case - it means "forever"). So what
is the use to stop our program forever, we definitely need a way to finish it sooner or later! That is where
one more statement comes to the rescue:

wakeup

This statement simply tells ShowBasic to continue execute our program if it is currently in a "sleeping"
state. You make ask, but how can we execute wakeup when our program is sleeping? Of course, inside the
event handler. The event handlers are called asynchronously, and even though the main program
execution is halted by sleep 0, the event handler will be called and executed when the correspondent
event triggers.

Now, with all this knowledge about the events, you can figure out how our sample works, let us just
comment on some new functions that are used there.

PopupAvi() function allows to create a popup window capable of playing an AVI animation inside it. This
window will play the associated AVI file automatically upon creation, unless the special SBC_NOPLAY
flag is used.

PopupChangeAvi() function allows to control the AVI movie inside the previously created AVI-window.
Using this function, you can start/stop playing the movie, or to control what exactly frame is shown in the
window.

RectWin() function allows to find the coordinates and the dimension of the rectangle occupied by some
window on the screen. We use this function to place our dialog textbox exactly below the window with
the AVI movie.

"Hello, World!" using Windows API.
Our next sample is somewhat artificial, but nevertheless it demonstrates that the full power of Windows
API is in your hands when you program in ShowBasic.

Sample p20.sb

declare function SendMessage lib "User" (hwnd as integer, w as integer,\
 wParam as integer, lp as any) as integer
declare function IsWindow lib "User" (hwnd as integer) as integer

DIM sI As SYSTEMINFO
DIM rc As Rect

WinInfoSystem(sI)

Run("notepad.exe", NOWAIT)
wNotepad% = WinActivate("", "Notepad",5)
RectSet(rc, sI.si_wXScreen/2-200, sI.si_wYScreen/2-60,\
 sI.si_wXScreen/2+200, sI.si_wYScreen/2+60)
WinSetPosSizeState(wNotepad%, rc, SBC_WINPOSSIZE or SBC_WINTOPMOST)
SBV_PLAYTICK = 0
Simulate("Close Notepad to stop this madness.")
While IsWindow(wNotepad%)
 SendMessage(wNotepad%, WM_SETTEXT, 0, "Hello,")
 sleep 1
 If IsWindow(wNotepad%) then
 SendMessage(wNotepad%, WM_SETTEXT, 0, "World!")
 sleep 1
 EndIf
 If IsWindow(wNotepad%) then
 SendMessage(wNotepad%, WM_SETTEXT, 0, "Hello, World!")
 sleep 1
 EndIf
Wend

The above sample starts Notepad and continuously changes its window's caption until is closed. We use
two Windows API functions here: IsWindow() and SendMessage(). You can use any API functions in
ShowBasic using its ability to call functions in any 16-bit or 32-bit external DLL. The whole Windows
API is just a set of functions in several system DLLs - that's why you can use it. The declarations of all
API functions, structures and constants can be found in winapi.inc file supplied with ShowBasic, however
it is not always reasonable to include the whole file into the program using '$INCLUDE statement - this
will slow down the compilation speed. That's why we simply extracted the required declarations from
winapi.inc and included them at the beginning of our sample.

