
IMAGE HANDLER - LEADTOOLS Demonstration Programs

Summary of LEADTOOLS Features LEADTOOLS Products
Summary of All Supported Image File Formats About LEAD Technologies, Inc.
Introduction To Image Processing with LEADTOOLS User Interface for Annotations

These programs demonstrate many of the features of the LEADTOOLS 6.1 imaging toolkits. The toolkits
include 16- and 32-bit ActiveXs (OCXs), a 16-bit VBX, and 16- and 32-bit DLLs, which are available in
various bundled combinations described in LEADTOOLS Products.

These programs are taken directly from the example programs for the LEADTOOLS API. The various
toolkits include these and many other examples, with source code. For a summary, refer to Example
Programs.

Some of the features in these demonstration programs, such as annotations and region processing, are
available only in the Express editions. Also, some significant features, such as data binding, are not
demonstrated in these programs. To review all of the available features in various toolkits, refer to
Summary of LEADTOOLS Features.

 The following demonstration programs are for WIN32 platforms. They use the LEADTOOLS WIN32
DLLs, and therefore, will only run under Win32s, NT, or Win95.

WIN32 Demonstration shows most of the features of the LEADTOOLS API in a 32-bit environment.
Demonstrated features include file format support, image processing, region processing, and display
options.

WIN32 Annotations demonstrates the high-level annotation features of the LEADTOOLS API in a 32-
bit environment. Most of the demonstrated features are automated and require very little programming.
Refer to User Interface for Annotations.

 The following demonstration programs are for WIN16 platforms. They use the LEADTOOLS WIN16
DLLs, and therefore, will run under Windows 3.x.

WIN16 Demonstration shows most of the features of the LEADTOOLS API in a 16-bit environment.
Demonstrated features include file format support, image processing, region processing, and display
options.

WIN16 Annotations demonstrates the high-level annotation features of the LEADTOOLS API in a 16-
bit environment. Most of the demonstrated features are automated and require very little programming.
User Interface for Annotations.

All of the demonstration programs were compiled with the LEADTOOLS Pro Express product. To achieve
the same performance in your code, you should purchase LEADTOOLS Pro Express.

Copyright notice License Agreement

Other Products from LEAD Technologies

LEAD Technologies, Inc.
900 Baxter Street
Charlotte, NC 28204

Sales@Leadtools.com
www.leadtools.com

(704) 332-5532
FAX: (704) 372-8161
BBS: (704) 334-9045
Tech Support: (704) 372-9681

CompuServe: 71333,2237 or GO LEADTECH

LEADVIEW 3 for Windows: An end-user product for handling images. LEADVIEW is a complete imaging
file management system. Built-in features include: photo album with extensive search capabilities, image
processing, draw, special paint effects, image enhancement, slide show, screen capture, file conversion,
archiving, printing, and OLE and DDE support. LEADVIEW was developed using LEADTOOLS Pro
Express. It supports all the formats listed in Summary of All Supported Image File Formats. (GIF and TIFF
LZW are read-only.) LEADVIEW recently was recognized by Windows Magazine Top 100, 1995 and PC
Graphics and Video Highly recommended awards.

LEADTOOLS DATA Compression Toolkit: A toolkit for creating installation disks and archives. This
toolkit can save up to 50 percent in disk space over other compression methods used with MSSETUP,
InstallShield, or proprietary installation packages. It is an easy-to-integrate16/32 bit
compression/decompression system with an in-line encoder/decoder API, file encoder/decoder API, an
archive encoder/decoder API, an MSSETUP enhancer, and an InstallShield enhancer. It ships with full on-
line documentation, API examples in C, an MSSETUP installation example, and an InstallShield
installation example.

Call for details on custom applications, operating system ports and licensing fees.

All products are sold in the U.S. and Canada with a 30-day money back guarantee.

About LEAD Technologies, Inc.

LEAD Technologies is an industry leader in the field of compression, image compression and image
processing technology, licensing technology to thousands of developers, software publishers and OEMs,
including Corel Corporation for use in CorelDRAW products and Inset Systems for use in Hijaak. Other
customers include AT&T, Canon, Delrina, Intel, Intuit, Kodak, Martin Marietta, MicroGraFix, Microsoft,
Olympus, Prodigy, Reuters International, Rockwell, Sharp Electronics, 3M, Upjohn and Xerox
Corporation.

LEAD's products include LEADVIEW for Windows, an image management tool aimed at end-users,
LEADTOOLS, a family of imaging software development toolkits and LEADTOOLS Data, a data
compression technology aimed at OEMs. Founded in 1990, LEAD is headquartered in Charlotte, North
Carolina.

General Information

Technical Support: As a registered user, free technical support is available. You must register your
product to receive technical support. Technical support is available 9:00 AM through 6:00 PM Eastern
Standard Time.

MONEY BACK GUARANTEE ON ALL PRODUCTS: In the U.S. and Canada LEAD offers an
unconditional 30 day money-back guarantee on all products. Try our toolkit - risk free - and we
guarantee that you will select LEAD as your partner in development.

For more Information, please contact:

Sales.@Leadtools.com
Home page: http://www.leadtools.com

LEAD Technologies, Inc.
900 Baxter Street
Charlotte, NC 28204

Main: (704) 332-5532
Sales: (800)-637-4699

Technical support: (704) 372-9681
Fax: (704)372-8161
BBS: (704) 334-9045
CompuServe: 71333,2237 or GO LEADTECH

Example Programs

These are descriptions of the example programs that ship with the LEADTOOLS toolkits.

API Example Programs

ActiveX (OCX) Example Programs

VBX Example Programs

API Example Programs

These are descriptions of the DLL example programs that ship with the LEADTOOLS toolkits.

ANNOTATE Annotations demonstrates the annotation capabilities of the express toolkit.
CLRSPACE Color Space loads and displays the image file specified on the command line, then uses

the L_ConvertColorSpace function to convert from RGB to YUV, CMYK, and other
formats, redisplaying the image after all conversions are complete.

COLOR Color Resolution loads the 24-bit image file specified on the command line and calls
L_ColorResBitmap to optimize and dither the image to 8 bits per pixel.

COMPCB Compress CB loads the image file specified on the command line, then displays the
image, compresses the bitmap to file using a callback function, clears the bitmap, loads
the compressed image, and displays the newly loaded image.

DELPHI Delphi Demo demonstrates the use of LEADTOOLS with the Borland Delphi
development system.

DEMO Main Demo is the main example program. It uses pull-down menus to demonstrate most
of the LEADTOOLS features in one application.

DIBDDB DIBDDB Demo demonstrates the functions that translate to and from Windows device
independent bitmaps (DIBs) and device dependent bitmaps (DDBs).

DRAW Draw Demo uses pull-down menus to show some of the drawing capabilities available
with LEADTOOLS.

EZFUNC Simple Load uses simple LEADTOOLS functions to load an image file specified on the
command line and display the bitmap in a window.

EZREGC Reg. Class Load uses the L_BITMAPCLASS registered class to load an image file
specified on the command line and display the bitmap in a window.

FEATURE1 Some Basic Features loads and displays the 24-bit image file specified on the command
line, then makes the following changes, redisplaying the image after each change:
optimize to 8 bits per pixel, flip, lighten, resize, and rotate.

FEATURE2 More Basic Features loads and displays the 24-bit image file specified on the command
line, then makes the following changes, redisplaying the image after each change: dither
to 8 bits per pixel, reverse, grayscale, resize, and fill with one color.

FEATURE3 A Few More Features loads and displays the image file specified on the command line,
copies the image data to a different bitmap, halftones the original image, restores the
image by copying the handle of the new bitmap, then redisplays the image.

FEEDLOAD Feed Load demonstrates how to use L_FeedLoad and related functions by simulating
the receipt of a transmitted image.

GETROW Get Row loads the 24-bit image file specified on the command line, then rotates the
image 90 degrees using L_GetBitmapRow and L_PutBitmapRowCol, and redisplays the
image.

INFO Info displays image information from the file specified on the command line.
LOADCB Load CB loads the image file specified on the command line, using a callback function to

display the image as it is loaded.
LOADSAVE Load and Save uses pull-down menus to let the user load an image file, display the

image in a window, and save the image to a specified file name, format, and bits per
pixel. The options are implemented using a Windows common dialog box.

MEMORY Load Memory demonstrates the ability load a file from memory. It allocates memory,
loads the image file specified on the command line into the allocated memory, then loads
the image from memory to a bitmap using L_LoadBitmapMemory and displays the image.

MEMORYCB Load Memory CB demonstrates the ability use a callback function when loading a file
from memory. It allocates memory, loads the image file specified on the command line

into the allocated memory, then loads the image from memory to a bitmap using
L_LoadMemory and a callback function, and displays the image.

MFCDEMO MFC Demo demonstrates the use of LEADTOOLS with the Microsoft Foundation Class
(MFC). This example includes a C++ wrapper for the LEADTOOLS API.

OFFSET Save w/ Offset demonstrates the ability to load an image file that is embedded in a larger
file. It does so by using the L_LoadFileOffset function, which lets you specify the offset
and the size of the embedded file. This example first loads the normal image file specified
on the command line. It embeds the image in a second file, which is specified in the
second command line argument. It then loads and displays the embedded file.

PAINTDC Paint DC loads the image file specified on the command line, and displays the image.
The user can then choose a menu option to modify the source and display rectangles,
and redisplay the image to see the changes.

PAINTEFF Paint Effect Demo uses pull-down menus to demonstrate the various transitional
painting effects that are available with LEADTOOLS.

REDIRECT Redirect I/O demonstrates how to use the L_RedirectIO function. It redirects the
standard I/O functions so that they read and seek into the allocated memory rather than a
file.

REGCLASS Registered Class Demo demonstrates most of the capabilities of L_BITMAPCLASS
registered class.

RESIZE Resize loads the image file specified on the command line, resizing the image while
loading it. It then places the resized image over the original and displays the combined
image.

SAVECB Save CB loads the image file specified on the command line, then displays the image
and saves it to the current directory using a callback and status window.

SAVEMEM Save to Memory demonstrates the ability to save a file in memory. It lets the user load
an image file, display the image in a window, and save the image to a file in memory.

SCRLZOOM Scroll & Zoom Demo uses pull-down menus to let the user load an image file, display
the image in a window, and use zooming and scrolling features. In doing so, it also
demonstrates the ability of the L_PaintDC function to automatically dither a 16-, 24-, or
32-bit image when displaying on a 4- or 8-bit device.

STAMPGET Get Stamp reads a thumbnail (stamp) image stored in a compressed file that the user
selects; then displays the image in a window. The only valid input file is a LEAD or JPEG
file that is compressed with a stamp image. (Use the STAMPPUT example first to create
an image file that contains a thumbnail.)

STAMPPUT Put Stamp loads the image file specified on the command line, calls L_ColorResBitmap
(if necessary) to obtain a 24 bit image, calls L_CompressBitmapWithStamp to compress
the image to STAMP.CMP (a LEAD CMP compressed file format), then loads the stamp
to a bitmap and displays the stamp.

UNDERLAY Underlay demonstrates the L_UnderlayBitmap function. It loads two images specified on
the command line and displays the first one. It then combines the images using the
second one as an underlying image, and displays the combined image.

ActiveX (OCX) Example Programs

These are descriptions of the ActiveX (OCX) example programs that ship with the LEADTOOLS toolkits.

Visual Basic
 EXAMPLES\OCX\VB\DEMO contains a sample application that demonstrates most of the ActiveX

capabilities in Visual Basic 4.0. To run the sample application, you can run the EXE file in the LEAD62\
BIN directory.

 EXAMPLES\OCX\VB\ANNOTATE contains a sample application that demonstrates the annotation
capabilities. To run the sample application, you can run the EXE file in the LEAD62\BIN directory.

 EXAMPLES\OCX\VB\BIND contains a sample database application implemented using data binding.
For WIN32 systems, this example references the IMAGES\LEADPIC.MDB database. For WIN16
systems, it references the IMAGES\LDPIC16.MDB database. To run the sample application, you can run
the EXE file in the LEAD62\BIN directory, specifying the correct database as a command-line argument.

 (32-bit editions only) EXAMPLES\OCX\VB\DB contains sample project code for an ODBC database
example in Visual Basic 4.0. To use the DB demo, you must first do the following:

1. Specify an ODBC data source named LEADACCESS that references the IMAGES\
LEADPIC.MDB database.

2. Open the project in Visual Basic and modify the Dpeople data control's DatabaseName
property to reference the IMAGES\LEADPIC.MDB database.

 EXAMPLES\OCX\VB\DRAW uses the LEADTOOLS ActiveX to load an image, to demonstrate graphics
functions, and to save the modified image. This program calls several Windows GDI functions using the
bitmap as a drawing surface. To run the sample application, you can run the EXE file in the LEAD62\BIN
directory.

 EXAMPLES\OCX\VB\MAGNIFY uses two LEAD controls. The first control displays the unmagnified
image. The second control, when enabled, can be dragged across the first one to magnify the covered
portion of the image. To run the sample application, you can run the EXE file in the LEAD62\BIN directory.

Visual C++
 EXAMPLES\OCX\MFC\DEMO contains sample project code for Visual C++ 1.0 and later (16- or 32-

bit). To run the sample application, you can run the EXE file in the LEAD62\BIN directory.
 (16-bit editions only) EXAMPLES\OCX\MFC\ANNOTATE demonstrates the LEADTOOLS annotation

capabilities. To run the sample application, you can run the EXE file in the LEAD62\BIN directory.
 (16-bit editions only) EXAMPLES\OCX\MFC\DRAW uses the LEADTOOLS ActiveX to load an image,

to demonstrate graphics functions, and to save the modified image. This program calls several Windows
GDI functions using the bitmap as a drawing surface. To run the sample application, you can run the EXE
file in the LEAD62\BIN directory.

 (16-bit editions only) EXAMPLES\OCX\MFC\MAGNIFY uses two LEAD controls. The first control
displays the unmagnified image. The second control, when enabled, can be dragged across the first one
to magnify the covered portion of the image. To run the sample application, you can run the EXE file in the
LEAD62\BIN directory.

Visual C++ 4.0
 (32-bit editions only) EXAMPLES\OCX\MFC40\DEMO contains sample project code for Visual C++

4.0. You can then open the project in Visual C++; then compile and run it.
 (32-bit editions only) EXAMPLES\OCX\MFC40\ANNOTATE demonstrates the LEADTOOLS annotation

capabilities. To run the sample application, you can run the EXE file in the LEAD62\BIN directory.
 (32-bit editions only) EXAMPLES\OCX\MFC40\DB contains sample project code for a database

example in Visual C++ 4.0. To use the DB demo, you must first do the following:
1. Specify an ODBC data source named LEADACCESS that references the IMAGES\

LEADPIC.MDB database.
2. Open the project in Visual C++ and modify the GetDefaultDBName function to reference the

IMAGES\LEADPIC.MDB database.
 (32-bit editions only) EXAMPLES\OCX\MFC40\DRAW uses the LEADTOOLS ActiveX to load an

image, to demonstrate graphics functions, and to save the modified image. This program calls several
Windows GDI functions using the bitmap as a drawing surface. To run the sample application, you can
run the EXE file in the LEAD62\BIN directory.

 (32-bit editions only) EXAMPLES\OCX\MFC40\MAGNIFY uses two LEAD controls. The first control
displays the unmagnified image. The second control, when enabled, can be dragged across the first one
to magnify the covered portion of the image. To run the sample application, you can run the EXE file in the
LEAD62\BIN directory.

Visual FoxPro
 (32-bit editions only) EXAMPLES\OCX\FOX contains sample project code for Visual FoxPro 3.0. To run

the sample application from FoxPro, use the Program > Do option, and select the \EXAMPLES\OCX\
FOX\DEMO.APP application.

To implement the database capabilities in the DEMO.APP application, specify the current (\FOX)
directory as an ODBC data source. Then when you run the application, use the File > Open Database
option to open the ODBC data source.

Access 7.0
 (32-bit editions only) EXAMPLES\OCX\ACCESS7\DEMO contains sample project code for Microsoft

Access 7.0. To run the sample application from Access, open the sample database, then open the MAIN
form. To avoid ODBC setup issues, this demo does not add images to a database.

 (32-bit editions only) EXAMPLES\OCX\ACCESS7\DB contains sample project code for a database
example in Access 7.0. To use the DB demo, you must do the following:

1. Specify an ODBC data source named LEADACCESS that references the IMAGES\
LEADPIC.MDB database.

2. Open the project in Access 7.0 and modify Query1 to reference the IMAGES\LEADPIC.MDB
database.

3. Run the sample application from Access by opening the MAIN form.

Access 2.0
 (16-bit editions only) EXAMPLES\OCX\ACCESS contains sample project code for Microsoft Access

2.0. To run the sample application from Access, open the MAIN form.

Delphi 2.0
 EXAMPLES\OCX\DELPHI\DEMO contains sample project code for Delphi 2.0. To run the sample

application, you can run the EXE file in the LEAD62\BIN directory.
 EXAMPLES\OCX\DELPHI\DRAW uses the LEADTOOLS ActiveX to load an image, to demonstrate

graphics functions, and to save the modified image. This program calls several Windows GDI functions
using the bitmap as a drawing surface. To run the sample application, you can run the EXE file in the
LEAD62\BIN directory.

VBX Example Programs

These are descriptions of the VBX example programs that ship with the LEADTOOLS toolkits.

Main Demo

VBXDEMO.EXE is a demonstration program that uses the LEADTOOLS VBX for displaying and
manipulating images. Most of the properties of the LEAD Control are demonstrated at some point
in this program. The project that created this .EXE is DEMO.MAK, which is in the DEMO
subdirectory.

Generally, the menu options reflect the programming capabilities, which you can find by searching
in the online help. Options on the Preferences menu do the following:
Dithering sets the PaintDither property.

Bitonal Scaling sets the BitonalScaling property.

Paint With Fixed Palette sets the PaintPalette property.

Paint While Load sets the PaintWhileLoad property.

Show Open Options implements a dialogue box for opening a file. The dialogue box lets you
select the bits per pixel to load and the page number (for multi-page files). It also lets you access
file information using the InfoFile property.

Show Progress sets the EnableStatus property, and uses the status event to show completion
percentages, as described in Detecting Events.

Draw Example
VBXDRAW.EXE is a demonstration program that uses the LEADTOOLS VBX to load an image,
to demonstrate graphics functions, and to save the modified image. This program calls several
Windows GDI functions using the bitmap as a drawing surface. The project that created this .EXE
is DRAW.MAK, which is in the DRAW subdirectory.

Database Example

VBXDBASE.EXE is a demonstration program that uses the LEAD Visual Basic Control for
displaying, adding, and updating images in an ACCESS database. The project that created
this .EXE is DATABASE.MAK, which is in the DATABASE subdirectory.

A command line argument specifying the full name of the database is required. The command line
argument can be set from the project by selecting the following sequence of options from the
main VB Window after opening the project: Options, Project, Command Line Arguments.

If you are running the example .EXE, the full name of the database should follow the .EXE name
on the command line. One database is provided by LEAD. It is an .MDB file in the IMAGES
subdirectory of the main installation directory.

Magnify Example

VBXMAGN.EXE is a demonstration program that uses two LEAD Visual Basic Controls. The first
control displays the unmagnified image. The second control, when enabled, can be dragged
across the first one to magnify the covered portion of the image. The project that created
this .EXE is MAGNIFY.MAK, which is in the MAGNIFY subdirectory.

Delphi Example
DPDEMO.EXE demonstrates the use of the LEADTOOLS VBX with Borland Delphi. The project

that created this .EXE is DPDEMO.DPR, which is in the DELPHI subdirectory.

License Agreement

This is a copy of the license agreement that appears when you install IMAGE HANDLER.

DEMO LICENSE AGREEMENT FOR LEADTOOLS IMAGE HANDLER

BEFORE YOU CLICK ON THE "ACCEPT" BUTTON AT THE END OF THIS DOCUMENT, CAREFULLY
READ THE TERMS AND CONDITIONS OF THIS AGREEMENT. BY CLICKING ON THE "ACCEPT"
BUTTON, YOU ARE CONSENTING TO BE BOUND BY AND ARE BECOMING A PARTY TO THIS
AGREEMENT. IF YOU DO NOT AGREE TO ALL OF THE TERMS OF THIS AGREEMENT, CLICK THE
"DO NOT ACCEPT" BUTTON AND DO NOT USE THE SOFTWARE.
1. LEAD Technologies, Inc. ("LEAD") hereby grants you a nonexclusive, non-sublicensable license to

use this LEADTOOLS IMAGE HANDLER software ("Software") in binary executable form for
evaluation and trial use purposes only. You may only use the Software, including, without
limitation, all underlying .dlls, .exes and other files comprising the Software, for the purpose of
evaluating its functionality and performance to determine whether you desire to obtain a
development license to a product in the LEADTOOLS' family of developer toolkits, and for no other
purpose. To obtain a development license, contact LEAD or one of our authorized resellers.

2. Except for the limited rights granted to you, LEAD and/or its suppliers retain all ownership and other
proprietary rights in the Software. You may not modify, reverse engineer, decompile, disassemble
or copy (except for backup purposes) the Software nor may you redistribute the Software or any
portion thereof.

3. The Software is being provided to you "as is", without warranty of any kind.

LEADTOOLS and IMAGE HANDLER are registered trademarks of LEAD Technologies, Inc.

Copyright 1991-1996 LEAD Technologies, Inc. ALL RIGHTS RESERVED

User Interface for Annotations

The Edit > User Mode option lets you select design or run mode for annotations.

In design mode, you can select tools using the Edit > Tool option and draw annotation objects over the
image in the window. You can then use the right mouse button to get a pop-up menu that is tailored to
each object type. The pop-up menu appears as shown in the following example:

The popup menu is context sensitive. It lists only the properties that can be changed on the selected
object or objects. If you use the popup menu to change a property, the value that you specify is applied to
the current selection, and it becomes the default for the next object.
The following topics describe the automated annotation features for particular objects and tools:

 Setting Defaults
 Selection Pointer Tool
 Line Tool
 Rectangle Tool
 Ellipse Tool
 Polyline Tool
 Polygon Tool
 Pointer Tool
 Freehand Line Tool
 Highlight Tool
 Redaction Tool
 Text Tool
 Note Tool
 Stamp Tool
 Hot spot Tool
 Button Tool
 Audio Clip Tool

Setting Defaults

Note: This topic is for Express editions only.

When using annotations in design mode, you can change the default properties by clicking with the right
mouse button on an empty spot (a place on the image without any annotations). The popup menu lets
you do the following:

 Undo the last user action.
 Select all annotation objects in the container.
 Delete all selected objects.
 Change the default line width and style properties. See Line Dialog Box for Annotations.
 Change the default fill mode (transparent, translucent, or opaque) and the fill pattern. See Fill Dialog

Box for Annotations.
 Change the polygonal fill mode, which controls which areas are filled when lines cross. See Fill Dialog

Box for Annotations.
 Change the default foreground and background colors. See Color Dialog Box for Annotations.
 Change the font selection and font characteristics. See Font Dialog Box for Annotations.

The default background color does not affect highlight, redaction, and note objects.

 Selection Pointer Tool
Note: This topic is for Express editions only.

The selection pointer is the mouse pointer for selecting and manipulating annotation objects in design
mode.

With the selection pointer, you can select one or more objects as follows:
 You can select a single object by clicking on the object.
 You can click and drag to form a rectangular selection area that will select all objects that are

completely contained within it.
 You can hold down the shift key and click on several objects one-at-a-time to select them all.

When an object is selected, handles appear on the corners of its bounding rectangle. You can click on the
body of the object and drag it to another position. You can click on a handle and drag to resize the object.
If more than one object is selected, all of them are moved or resized.

In addition, you can use this pointer to rotate an object. If you hold down the shift key, click on a handle,
and drag the mouse, the object rotates. If more than one object is selected, all of them are rotated, using
the center of the group as the center of rotation. You cannot rotate a note, button, or audio clip. If you
rotate a group that includes one of these objects, the object will move to the new position, but will retain
its orientation.

The popup menu is also affected if more than one object is selected. In that case, when you click the right
mouse button, the popup menu lets you change the properties of all the selected objects, and it lets you
delete all the selected objects.

 Line Tool
Note: This topic is for Express editions only.

The line annotation object is a simple line. In design mode, the line is started on a mouse-down event and
completed on a mouse-up event.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the foreground color. See Color Dialog Box for Annotations.

 Rectangle Tool
Note: This topic is for Express editions only.

The rectangle annotation object is a simple rectangle. In design mode, you can click and drag to specify
the rectangle in the current window.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the fill mode (transparent, translucent, or opaque) and the fill pattern. See Fill Dialog Box for

Annotations.
 Change the foreground and background colors. See Color Dialog Box for Annotations.

 Ellipse Tool
Note: This topic is for Express editions only.

The ellipse annotation object is a simple ellipse. In design mode, the you click and drag to specify the
ellipse in the current window.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the fill mode (transparent, translucent, or opaque) and the fill pattern. See Fill Dialog Box for

Annotations.
 Change the foreground and background colors. See Color Dialog Box for Annotations.

 Polyline Tool
Note: This topic is for Express editions only.

The polyline annotation object is an array of points that create a sequence of joined lines. In design mode,
each line segment is formed with a mouse click, and the object is completed on a double click.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the foreground color. See Color Dialog Box for Annotations.

 Polygon Tool
Note: This topic is for Express editions only.

The polygon annotation object is an array of points that define the vertices of a polygon. In design mode,
each line segment is formed with a mouse click, and the object is completed on a double click, which
closes the polygon with a line from the last point to the first point.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the fill mode (transparent, translucent, or opaque) and the fill pattern. See Fill Dialog Box for

Annotations.
 Change the polygonal fill mode, which controls which areas are filled when lines cross. See Fill Dialog

Box for Annotations.
 Change the foreground and background colors. See Color Dialog Box for Annotations.

 Pointer Tool
Note: This topic is for Express editions only.

The pointer annotation object is defined by two points, with the an arrow at the first point. In design mode,
you can click and drag to specify the points in the current window.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the foreground color. See Color Dialog Box for Annotations.

 Freehand Line Tool
Note: This topic is for Express editions only.

The freehand line annotation object is an array of points that create a sequence of joined lines. In design
mode, each line segment is formed with a mouse move event when the left button is down, and the object
is completed on a mouse up event.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the line width and style properties. See Line Dialog Box for Annotations.
 Change the foreground color. See Color Dialog Box for Annotations.

 Highlight Tool
Note: This topic is for Express editions only.

The highlight annotation object is a rectangle with default properties that are appropriate for highlighting
an area. In design mode, you can click and drag to specify the rectangle in the current window.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the background color. See Color Dialog Box for Annotations.

 Redaction Tool
Note: This topic is for Express editions only.

The redaction annotation object is a rectangle with default properties that are appropriate for blacking out
an area. In design mode, you can click and drag to specify the rectangle in the current window.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the background color. See Color Dialog Box for Annotations.

 Text Tool
Note: This topic is for Express editions only.

The text annotation object is a rectangle containing a character string with font properties. The text will
wrap on word breaks within the object's specified rectangle. In design mode, you can click and drag to
specify the rectangle in the current window. A dialog box then lets you enter the text.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the fill mode (transparent, translucent, or opaque). See Fill Dialog Box for Annotations.
 Change the background color. See Color Dialog Box for Annotations.
 Change the font selection and font characteristics. See Font Dialog Box for Annotations.
 Edit the text. See Text Dialog Box for Annotations.

You cannot flip or reverse a text object, but you can rotate it. If you flip or reverse a container that includes
a text object, the text will move to the new position, but will retain its orientation.

 Note Tool
Note: This topic is for Express editions only.

The note annotation object is a rectangle with a shadow border and color background (yellow by default).
It contains a character string with font properties. The text will wrap on word breaks within the object's
specified rectangle. In design mode, you can click and drag to specify the rectangle in the current window.
A dialog box then lets the user enter the text.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the background color. See Color Dialog Box for Annotations.
 Change the font selection and font characteristics. See Font Dialog Box for Annotations.
 Edit the text .See Text Dialog Box for Annotations.

You cannot flip, reverse, or rotate a note. If you flip, reverse, or rotate a container that includes a note, the
note will move to the new position, but will retain its orientation.

 Stamp Tool
Note: This topic is for Express editions only.

The stamp annotation object is a bitmap image. In design mode, you can click and drag to specify a
rectangle. The bitmap is scaled to fit the rectangle.

You can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Select an image file to load into the stamp. See Stamp Bitmap Dialog Box for Annotations.

On a device that displays 256 colors or less, you should use a fixed palette when displaying bitmaps.
Otherwise, a palette shift will occur on stamp objects.

You cannot flip, reverse, or rotate a stamp object. If you flip, reverse, or rotate a container that includes a
stamp, the object will move to the new position, but will retain its orientation.

 Button Tool
Note: This topic is for Express editions only.

The button annotation object is an image of a standard Windows button that can be activated. In design
mode, you can click and drag to specify the size of the button in the current window. A dialog box then lets
you enter the text for the button. In run mode, clicking on the button triggers an AnnClicked event. You
can add code to process the event. (The example program merely pops up a message box.)

In design mode, you can then click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Change the foreground color. See Color Dialog Box for Annotations.
 Edit the text. See Text Dialog Box for Annotations.

You cannot flip, reverse, or rotate a button. If you flip, reverse, or rotate a container that includes a button,
the button will move to the new position, but will retain its orientation.

 Hot Spot Tool
Note: This topic is for Express editions only.

The hot spot annotation object is a rectangle that can be activated for an application-defined purpose. In
design mode, the rectangle contains a scaled image. You can click and drag to specify the rectangle. In
run mode, the object is transparent, but the mouse pointer changes to a hand when it is over the object.
In run mode, clicking on the button triggers an AnnClicked event. You can add code to process the event.
(The example program merely pops up a message box.)

In design mode, you can click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.

You cannot flip, reverse, or rotate a hot spot. If you flip, reverse, or rotate a container that includes a hot
spot, the object will move to the new position, but will retain its orientation.

 Audio Clip Tool
Note: This topic is for Express editions only.

The audio clip annotation object is a rectangle containing a scaled image that can be activated to play a
WAV file. In design mode, you can click and drag to specify the rectangle in the current window. A dialog
box then lets you specify the WAV file. In run mode, clicking on the icon plays the WAV file.

In design mode, you can click on the object with the right mouse button to do the following:
 Undo the last user action.
 Cut or copy the object to the clipboard.
 Delete the object.
 Bring the object to the front or send it to the back.
 Select a WAV file to load into the object. See Audio File Dialog Box for Annotations.

You cannot flip, reverse, or rotate an audio clip. If you flip, reverse, or rotate a container that includes an
audio clip, the object will move to the new position, but will retain its orientation.

Line Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you change the line properties of an
annotation object. The line width is based on the associated bitmap's physical resolution (DPI), so that it
matches the scale of the original scanned image. Setting the width to a small number will not make the
line disappear. On any output device, lines will always be at least one pixel wide. To see the possible line
styles, refer to Illustration of Line Styles for Annotations.

Fill Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you change the fill properties of an
annotation object. To see the possible modes and patterns, refer to Illustration of Fill Options for
Annotations. For possible polygon fill modes, refer to Illustration of the Polygon Fill Mode for Annotations.

Color Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you change the foreground or background
color property of an annotation object. It is implemented using the Windows common dialog box. To see
how the foreground and background colors affect the appearance of an object, refer to Illustration of Fill
Options for Annotations.

Font Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you change the font properties of an
annotation object. It is implemented using the Windows common dialog box. The font size is based on the
associated bitmap's physical resolution (DPI), so that it matches the scale of the original scanned image.

Text Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you change the text property of an annotation
object. Word wrap is implemented in the dialog box and in the rectangle that defines the annotation
object.

Stamp Bitmap Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you update the bitmap property of a stamp
annotation object. It is implemented using the Windows common dialog box. (The style of this dialog box
is different on WIN16 and WIN32 systems. This is the WIN16 version.)

Audio File Dialog Box for Annotations

Note: This topic is for Express editions only.

The following dialog box appears in automation mode when you specify the WAV file for an audio clip
annotation object. It is implemented using the Windows common dialog box. (The style of this dialog box
is different on WIN16 and WIN32 systems. This is the WIN16 version.)

Illustration of Line Styles for Annotations

Note: This topic is for Express editions only.

The following rectangle annotation objects illustrate the available line styles. Note that Windows displays
all lines greater than 1 pixel as solid.

Back row: Solid Dash Dot
Front row: Dash-dot Dash-dot-dot Null

Illustration of Fill Options for Annotations

Note: This topic is for Express editions only.

The following rectangle annotation objects illustrate the available fill modes and patterns. The foreground
and background colors help to illustrate the effects.

Back row:
Fill mode: Opaque
Fill pattern: Solid
Fore color: Black
Back color: Yellow

Fill mode: Opaque
Fill pattern: Cross
Fore color: Black
Back color: Yellow

Fill mode: Opaque
Fill pattern: Backward diagonal
Fore color: Black
Back color: Yellow

Fill mode: Opaque
Fill pattern: Vertical
Fore color: Black
Back color: Yellow

Front row:
Fill mode: Translucent
Fill pattern: Forward diagonal
Fore color: Black
Back color: Green

Fill mode: Transparent
Fill pattern: Diagonal cross
Fore color: Black
Back color: Green

Fill mode: Opaque
Fill pattern: Horizontal
Fore color: Red
Back color: Green

Illustration of the Polygon Fill Mode for Annotations

Note: This topic is for Express editions only.

The following polygon annotation objects illustrate the available polygon fill modes.
Winding The area inside the resulting exterior lines is filled.
Alternate The filled area includes the area between odd-numbered and even-

numbered polygon sides on each scan line.

Summary of LEADTOOLS Features

This is a summary of LEADTOOLS features for all components:
 DLL functions and Windows messages in the API
 ActiveX (OCX) methods, properties and events
 VBX properties and events

You can use these topics to explore the full range of possibilities for implementing LEADTOOLS
capabilies.

General Features

Working with Files

Working with Image Data

Working with the Images in Bitmaps

Working with Palettes

Working with Displays

Working with Regions [Express Editions Only]

Working with Annotations [Express Editions Only]

Working with Databases

Working with Other Input and Output

Working with Events and Callbacks

Working with Raw Image Data [DLL Only]

Working with Image Descriptions and Other Information

General Features

You can use LEADTOOLS to enhance applications such as image databases, printing and drawing
programs, video production systems, FAX systems, and systems for transmitting high quality compressed
images using phone lines or networks.

Note: Some of the toolkits have more features than others, because of limitations in the development
environment, version updates, and edition differences (Express or not). This chapter includes tags (such
as [DLL only]) to mark any features that are not available in all toolkits.

The following are general features of the LEADTOOLS toolkits:
 Scanning. LEADTOOLS supports 16- and 32-bit TWAIN interfaces for driving the most popular

scanning devices. Refer to Working with Other Input and Output.
 Compression and file format support. LEADTOOLS supports most popular raster image formats, in

different flavors and color depths, and with various compression options. LEAD's own compressed format
(LEAD CMP) results in smaller files and better image quality than industry-standard formats. Simple
functions let you load from, save to, and convert between the various formats. Refer to Summary of All
Supported Image File Formats and Working with Files.

 Displaying images. LEADTOOLS renders an image of any color depth (1 to 32 bit) to any display
device. You can position the displayed image, and zoom in or out by scaling and cropping the display. On
a 256-color device, you can use a fixed palette option to eliminate palette shifting when displaying more
than one image at a time. Refer to Working with Displays.

 Image processing. LEADTOOLS provides many image processing functions, common ones such as
rotating or inverting an image, and sophisticated ones such as edge-detection filters and histogram
equalization. For a complete list, refer to Working with the Images in Bitmaps.

 Color conversion. LEADTOOLS lets you expand or reduce an images color depth with multiple
dithering methods, using customized or optimized palettes. You can separate an image into individual
RGB, CMYK, CMY, HSV, and HSL color planes, and you can reconstruct the original image from the
separated planes. LEADTOOLS also supports grayscale conversion, and halftoning with rotated screens.
Refer to Working with Image Data.

 [Express editions only] Region processing. LEADTOOLS lets you apply image processing functions
to a portion of a bitmap by specifying a rectangular, polygonal, or elliptical region within the bitmap. Refer
to Working with Regions [Express Editions Only].

 [Express editions only] Annotation. LEADTOOLS supports annotation of images by letting you
overlay images with text, lines, shapes, arrows, buttons, highlights, hot spots, sticky notes, stamps,
buttons, and sounds. Refer to Working with Annotations [Express Editions Only].

 [Express editions only] Special functions for bitonal images. The LEADTOOLS functions for
bitonal images are especially useful for working with images from black-and-white scanners or FAX
machines. These functions let you do things such as automatically straighten (deskew) an image, remove
spots (despeckle), or clarify a scaled display (using scale-to-gray and favor-black features). Refer to
Working with Displays and Working with the Images in Bitmaps.

 Printing. LEADTOOLS performs all the image processing necessary to print to any printer with the
highest quality, and it can print multiple images on the same page. Refer to Working with Other Input and
Output.

 High-level and low-level functions. LEADTOOLS lets you choose the level of control you want. You
can implement most LEADTOOLS features using high-level functions. With the DLLs, you can go to the
lowest level, redirecting the standard input and output, and processing image data line-by-line or pixel-by-
pixel.

 Modular design. LEADTOOLS provides need-specific DLLs that let you limit the size of your
application by including only the applicable DLLs. For example, each supported file format has its own
DLL; so you can leave out the formats that you do not wish to support.

 Multi-thread support. LEADTOOLS fully supports the development of multi-threaded applications for
Windows NT and Windows 95.

 Code examples. The LEADTOOLS toolkits have many code examples in the online documentation
and in working demonstration programs. You can copy code from the example programs and paste it
directly into your application.

Working with Files

LEADTOOLS lets you do the following when working with files on disk and in memory:
 Get information about the image in a file, and set information about how to handle the input.

DLL functions: L_FileInfo, L_FileInfoMemory, L_ReadFileComment, L_GetPCDResolution,
L_SetPCDResolution, L_GetWMFResolution, L_SetWMFResolution, L_SetLoadInfoCallback

ActiveX elements: GetFileInfo method, InfoBits property, InfoCompress property, InfoFormat
property, InfoHeight property, InfoPage property, InfoPCDRes property, InfoSizeDisk property,
InfoSizeMem property, InfoWidth property, PCDRes property, PaintWhileLoad property, LoadInfo
event, LoadInfoBits property, LoadInfoFlags property, LoadInfoFormat property, LoadInfoHeight
property, LoadInfoOffset property, LoadInfoWidth property, LoadInfoXRes property, LoadInfoYRes
property

VBX properties: InfoPage, InfoFile, InfoBits, InfoCompress, InfoFormat, InfoHeight,
InfoPCDResolution, InfoScaleHeight, InfoScaleWidth, InfoSizeDisk, InfoSizeMem, InfoWidth,
PaintWhileLoad, FilePage, PCDResolution

 Set information about how to save an image to a file.

DLL functions: L_GetComment, L_SetComment, L_SetExtFileOption

ActiveX properties: BitmapXRes property, BitmapYRes property

VBX properties: BitmapXRes, BitmapYRes, SaveBits, SaveFormat, SaveQFactor, SaveMulti
 Load an image from a file into memory as a bitmap, or save a bitmap to a file. The image can be one of

several in a multipage file. In a JFIF or LEAD CMP file, it can be either the main image or a thumbnail
stored in the same file.

DLL functions: L_LoadBitmap, L_LoadFile, L_LoadFileOffset, L_GetCompressFileStamp,
L_SaveBitmap, L_SaveFile, L_SaveFileOffset, L_CompressBitmapWithStamp

Windows messages: L_BM_LOAD, L_BM_SAVE

ActiveX methods: Load method, LoadStamp method, Save method, SaveWithStamp method

VBX properties: File, LoadStamp, SaveFile, SaveBits, SaveFormat, SaveQFactor, SaveStamp,
SaveStampBits, SaveStampHeight, SaveStampWidth

 Convert a file from one format to another.

DLL functions: The load and save functions, plus L_FileConvert

ActiveX elements: Implemented with load and save.

VBX properties: Implemented with load and save.
 [DLL and ActiveX only] Load a file, as is, into memory (to take advantage of file compression), then use

the file in memory (to take advantage of memory speed).

DLL functions: L_FileInfoMemory, L_LoadBitmapMemory, L_LoadMemory,
L_SaveBitmapMemory, L_DecompressBitmapMemory, L_DecompressMemory

ActiveX methods: GetMemoryInfo method, LoadMemory method, SaveMemory method
 [DLL and ActiveX only] Control how data is fed to a load routine. This is useful when receiving

transmitted images, such as those on the Internet.

DLL functions: L_StartFeedLoad, L_FeedLoad, L_StopFeedLoad

ActiveX methods: StartFeedLoad method, FeedLoad method, StopFeedLoad method

Working with Image Data

LEADTOOLS uses a structure called a bitmap handle to manage image data in memory. The bitmap
handle has several fields, one of which is an internal pointer to the bitmap (the actual image data). In the
DLL toolkit, your code references the structure directly; in the ActiveX or VBX your code references the
LEAD control.

To work with bitmaps and bitmap handles, you can do the following:
 Manipulate the bitmap storage.

DLL functions: L_ClearBitmap, L_FreeBitmap, L_AccessBitmap, L_ReleaseBitmap

Windows messages: L_BM_CLEAR, L_BM_FREE

ActiveX properties: Bitmap property

VBX properties: Bitmap
 Load a bitmap from a file or other input source. (Refer to Working with Files and Working with Other

Input and Output.)
 Obtain or update the information in a bitmap handle. (For palette information, refer to Working with

Palettes.)

DLL functions: L_IsGrayScaleBitmap, and access the bitmap handle structure directly.

Windows messages: L_BM_INFO, L_BM_GETBITMAP, L_BM_SETBITMAP

ActiveX properties: BitmapBits property, BitmapHeight property, BitmapWidth property,
BitmapXRes property, BitmapYRes property, IsGrayScale property

VBX properties: BitmapXRes, BitmapYRes, BitmapHeight, BitmapScaleHeight,
BitmapScaleWidth, BitmapWidth

 Create a bitmap from scratch.

DLL functions: L_CreateBitmap, L_InitBitmap, L_AllocateBitmap

ActiveX elements: BitmapXRes property, BitmapYRes property, CreateBitmap method

VBX properties: BitmapXRes, BitmapYRes, CreateBitmap, CreateBits, CreateHeight,
CreateWidth

 Copy a bitmap to or from the clipboard.

DLL functions: L_ClipboardReady, L_CopyFromClipboard, L_CopyToClipboard,
L_CopyToClipboardExt

Windows messages: L_BM_COPY, L_BM_PASTE

ActiveX methods: Copy method, Paste method

VBX properties: Copy, Paste
 Make a copy of a bitmap handle, or its bitmap, or both.

DLL functions: L_CopyBitmap, L_CopyBitmapData, L_CopyBitmapHandle, L_CopyBitmapRect

Windows messages: L_BM_COPYBITMAP

ActiveX properties: Bitmap property

VBX properties: Bitmap
 Convert or copy a bitmap to or from a device independent bitmap (DIB) or a device dependent bitmap

(DDB).

DLL functions: L_ConvertFromDDB, L_ConvertFromDIB, L_ConvertToDDB, L_ConvertToDIB,
L_ChangeFromDDB, L_ChangeFromDIB, L_ChangeToDDB, L_ChangeToDIB

ActiveX methods: GetDDB method, GetDIB method, SetDDB method, SetDIB method

VBX properties: DDB, DIB
 [In Visual Basic only] Copy a bitmap to or from a picture object.

ActiveX methods: GetPicture method, SetPicture method

VBX properties: PictureCreate, Picture
 Resize a bitmap, with or without resampling.

DLL functions: L_ResampleBitmap, L_ResizeBitmap, L_SizeBitmap

Windows messages: L_BM_RESIZE, L_BM_RESAMPLE

ActiveX methods: Size method

VBX properties: ResizeType, ResizeHeight, ResizeWidth, Resize
 Trim a bitmap.

DLL functions: L_CopyBitmapRect

ActiveX methods: Trim method

VBX properties: TrimHeight, TrimLeft, TrimTop, TrimWidth, Trim
 Change the bits per pixel or color order of a bitmap (with several possible dithering methods used for

color reduction).

DLL functions: L_ColorResBitmap, L_DefaultDithering

Windows messages: L_BM_COLORRES

ActiveX methods: ColorRes method

VBX properties: BitChgDither, BitChgOrder, BitChgPalette, BitChgUserPal, BitmapBits
 Specify a bitmaps palette. (Refer to Working with Palettes.)
 Change a bitmap to grayscale.

DLL functions: L_GrayScaleBitmap

Windows messages: L_BM_GRAYSCALE

ActiveX methods: Grayscale method

VBX properties: GrayScale
 Create and merge color separations. A color separation is a set of grayscale images, one for each

plane of the color-space model. The supported color-space models are RGB, CMYK, CMY, HSV, and
HLS.

DLL functions: L_ColorSeparateBitmap, L_ColorMergeBitmap

ActiveX elements: ColorSeparate method, ColorMerge method, ColorPlanes property

VBX properties: ColorSeparate, ColorPlanes, ColorMerge
 Modify the appearance of a bitmap image, as described in Working with the Images in Bitmaps.
 Display a bitmap image, with options for dithering, positioning, and zooming, as described in Working

with Displays.

Working with the Images in Bitmaps

Most of the LEADTOOLS functions that change the appearance of an image act on the bitmap (not just
the display). This is an important distinction, because the changes become permanent when the bitmap is
saved to a file.

To change the appearance of the image in a bitmap, you can do the following:
 Define the bitmap as a display surface where you can use Windows graphics device interface (GDI)

functions for drawing or adding text.

DLL functions: L_CreateLeadDC, L_DeleteLeadDC

ActiveX methods: GetBitmapDC method, ReleaseBitmapDC method

VBX properties: BitmapDC
 [Express editions only] Automatically straighten (deskew) a 1-bit image.

DLL functions: L_DeskewBitmap

Windows messages: L_BM_DESKEW

ActiveX methods: Deskew method

VBX properties: Deskew
 [Express editions only] Remove specks (despeckle) a 1-bit image.

DLL functions: L_DespeckleBitmap

Windows messages: L_BM_DESPECKLE

ActiveX methods: Despeckle method

VBX properties: Despeckle
 Rotate the image. (Angles can be precise to 100th of a degree.)

DLL functions: L_RotateBitmap, L_RotateBitmapFine

Windows messages: L_BM_ROTATE

ActiveX methods: Rotate method

VBX properties: Rotate, RotateFine
 Shear the image in the fashion of a parallelogram. (Angles are precise to 100th of a degree.)

DLL functions: L_ShearBitmap

Windows messages: L_BM_SHEAR

ActiveX methods: Shear method

VBX properties: ShearX, ShearY
 Change the orientation by flipping the image horizontally or vertically.

DLL functions: L_FlipBitmap, L_ReverseBitmap

Windows messages: L_BM_FLIP, L_BM_REVERSE

ActiveX methods: Flip method, Reverse method

VBX properties: Flip, Reverse
 Adjust colors and intensities as follows:

Change brightness using a flat scale.
Change brightness using gamma correction.
Change contrast.
Stretch the range of intensities.
Remap intensities using a lookup table.

Invert colors.
Change hue and saturation.
Histogram equalize.
Fill with a specified color.
[DLL only] Get and put colors of individual pixels.

DLL functions: L_ChangeBitmapIntensity, L_GammaCorrectBitmap, L_ChangeBitmapContrast,
L_HistoContrastBitmap, L_StretchBitmapIntensity, L_RemapBitmapIntensity, L_InvertBitmap,
L_ChangeBitmapHue, L_ChangeBitmapSaturation, L_HistoEqualizeBitmap, L_FillBitmap,
L_GetPixelColor, L_PutPixelColor

Windows messages: L_BM_INTENSITY, L_BM_GAMMACORRECT, L_BM_CONTRAST,
L_BM_INVERT, L_BM_HUE, L_BM_SATURATION, L_BM_HISTOEQ, L_BM_FILL

ActiveX elements: Intensity method, GammaCorrect method, Contrast method, HistoContrast
method, StretchIntensity method, RemapIntensity method, RemapTable property, Invert method,
Hue method, Saturation method, HistoEqualize method, Fill method

VBX properties: Intensity, GammaCorrect, Contrast, HistoContrast, StretchIntensity,
RemapTable, RemapChannel, RemapIntensity, Invert, Hue, Saturation, HistoEq, Fill

 Apply the following kinds of conversions:
Halftone for display or printing.
Sharpen or blur.
Posterize, specifying the number of color planes.
Mosaic, specifying the tile size.
Emboss, specifying the lighting direction.
Soften an image using an average filter.
Reduce noise using a median filter.
Add noise in any or all color planes.

DLL functions: L_HalfToneBitmap, L_HalftoneBitmapExt, L_SharpenBitmap, L_PosterizeBitmap,
L_MosaicBitmap, L_EmbossBitmap, L_AverageFilterBitmap, L_MedianFilterBitmap,
L_AddBitmapNoise

Windows messages: L_BM_HALFTONE, L_BM_SHARPEN, L_BM_POSTERIZE,
L_BM_MOSAIC, L_BM_AVERAGE, L_BM_MEDIAN, L_BM_ADDNOISE

ActiveX methods: Halftone method, Sharpen method, Posterize method, Mosaic method,
Emboss method, Average method, Median method, AddNoise method

VBX properties: HalftoneAngle, HalfTone, Sharpness, Posterize, Mosaic, FltEmbossDepth,
FltEmboss, Average, Median, AddNoiseChannel, AddNoise

 Apply filters to do the following:
Detect ranges of intensity.
Detect edges using gradient or Laplacian edge detection.
Detect lines using Sobel, Prewitt, shift and difference, or line segment detection.

DLL functions: L_IntensityDetectBitmap, L_SpatialFilterBitmap

Windows messages: L_BM_INTENSITYDETECT, L_BM_SPATIALFLT

ActiveX methods: IntensityDetect method, SpatialFilter method

VBX properties: IntensityDetectHigh, IntensityDetectLow, IntensityDetect, FltGradient, FltLaplace,
FltLineSeg, FltPrewitt, FltShiftDiff, FltSobel

 [Express editions only] Apply morphological (binary) filters to erode or dilate black objects.

DLL functions: L_BinaryFilterBitmap

Windows messages: L_BM_BINARYFLT

ActiveX methods: BinaryFilter method

VBX properties: FltDilation, FltErosion
 [DLL only] Implement your own spatial filters.

DLL functions: L_SpatialFilterBitmap
 Combine images using boolean and arithmetic operators, and color masking. (This is useful for

combining filtered images with originals.)

DLL functions: L_CombineBitmap

ActiveX methods: Combine method

VBX properties: CombineDstLeft, CombineDstTop, CombineHeight, CombineOp,
CombineSrcLeft, CombineSrcTop, CombineWidth, Combine

 Combine two images so that one appears to be an underlying texture of the other.

DLL functions: L_UnderlayBitmap

ActiveX methods: Underlay method

VBX properties: UnderlayType, Underlay
 [DLL only] Use low-level functions to change parts of an image as follows:

Get and put rows of image data.
Get and put parts of rows.
Get and put the colors of individual pixels.

DLL functions: L_GetBitmapRow, L_PutBitmapRow, L_GetBitmapRowCol, L_PutBitmapRowCol,
L_GetPixelColor, L_PutPixelColor

 [Express Editions Only] Process a region within a bitmap, as described in Working with Regions
[Express Editions Only].

Working with Palettes

Images that are less than 16 bits per pixel require a palette, which is an array of color values. The value
of each pixel in one of these images is an index into the palette. (Images that are 16 bits per pixel or
higher store the color values directly in the image, as pixel values.)

The number of colors in a palette is limited to the highest possible index value. For example, if an image
is 8 bits per pixel, it can have a palette of 256 colors, which is the number of different colors that can be
referenced by using the pixel values as 8-bit indexes.

If an image file is less than 16 bits per pixel, the file contains a palette, and when you load the image into
a bitmap, the palette is also loaded into the bitmap handle.

Whenever you reduce a bitmap to less than 16 bits per pixel, a palette must be specified or created. You
can do any of the following:

 Let LEADTOOLS create a palette that is optimized for the particular image. (As an option, this palette
can include the system identity palette.)

DLL functions: The load functions, plus L_ColorResBitmap

Windows messages: L_BM_COLORRES

ActiveX elements: ColorRes method, UserPalette property

VBX properties: BitChgPalette, BitmapBits
 Specify a fixed palette, which is the same for all images that use it.

DLL functions: The load functions, plus L_GetFixedPalette, L_ColorResBitmap

Windows messages: L_BM_COLORRES

ActiveX methods: ColorRes method

VBX properties: BitChgPalette, BitmapBits
 Specify a palette of any size that you have created. In creating your own palette, you can let

LEADTOOLS do part of the work. For example, you can fill in part of the palette, and let LEADTOOLS fill
the rest with optimized colors.

DLL functions: L_CreatePaintPalette

ActiveX properties: UserPalette property

VBX properties: BitChgPalette, BitChgUserPal, BitmapBits
 Modify the colors in the bitmap palette.

DLL functions: L_GetBitmapColors, L_PutBitmapColors

Windows messages: L_BM_GETPALETTE

ActiveX properties: BitmapPalette property

VBX properties: BitmapPalette
 [DLL and ActiveX only] Copy a palette from a device context.

DLL functions: L_GetFixedPalette, L_DupPalette

ActiveX methods: GetPalette method
 [DLL only] Use a table to increase the efficiency of the palette that you define.

DLL functions: L_CreateUserMatchTable, L_SetUserMatchTable, L_FreeUserMatchTable

Working with Displays

When painting images on any video device, you can do the following:
 Get and set properties that control the behavior of the LEAD control.

Windows messages: L_BM_SETSTYLE

ActiveX properties: Standard control properties, plus AutoRepaint property, AutoScroll property,
AutoSetRects property, BackColor property, BackErase property, BorderStyle property, ForePalette
property, MouseIcon property, MousePointer property, Enabled property, hWnd property

VBX properties: Align, AutoRepaint, AutoScroll, BackColor, BackErase, BorderStyle, DragIcon,
DragMode, Enabled, MousePointer, hWnd, HelpContextID, Index, Name, Parent, PropertySet,
TabIndex, TabStop, Tag, Visible

 Get the client area of the LEAD control.

DLL functions: Implemented using Windows functions.

ActiveX properties: ScaleMode property, ScaleHeight property, ScaleLeft property, ScaleTop
property, ScaleWidth property

VBX properties: Height, Left, Top, Width
 Define the client area as a display surface where you can use Windows graphics device interface (GDI)

functions for drawing or adding text.

DLL functions: Implemented using Windows functions.

ActiveX methods: GetClientDC method, ReleaseClientDC method

VBX properties: hDC
 [ActiveX only] Display a rubberband to mark an area.

ActiveX elements: SetRubberBandRect method, RubberBandVisible property,
RubberBandHeight property, RubberBandLeft property, RubberBandTop property,
RubberBandWidth property

 Force repainting of the image in a LEAD control.

DLL functions: Implemented using Windows functions.
Windows messages: L_BM_BITMAPCHANGED

ActiveX methods: ForceRepaint method

VBX properties: Repaint
 Scale and position the image. This lets you zoom in or out, fit the image to a window, and position the

image in a window.

DLL functions: L_PaintDC, L_PaintDCBuffer, L_PaintDCEffect

Windows messages: L_BM_SETIMAGERECT, L_BM_SETZOOM, L_BM_FOCUSEDZOOM,
L_BM_SETBITMAPCLIP

ActiveX elements: SetDstRect method, SetSrcRect method, DstHeight property, DstLeft property,
DstTop property, DstWidth property, SrcHeight property, SrcLeft property, SrcTop property, SrcWidth
property

VBX properties: ImageHeight, ImageLeft, ImageTop, ImageWidth
 Limit the area to be painted by specifying the source and destination cropping areas.

DLL functions: L_PaintDC, L_PaintDCBuffer, L_PaintDCEffect

ActiveX elements: SetDstClipRect method, SetSrcClipRect method, DstClipHeight property,
DstClipLeft property, DstClipTop property, DstClipWidth property, SrcClipHeight property, SrcClipLeft
property, SrcClipTop property, SrcClipWidth property

VBX properties: CropHeight, CropLeft, CropTop, CropWidth, Crop
 Apply transitional effects, commonly used in slide presentations.

DLL functions: L_PaintDCEffect

ActiveX properties: PaintEffect property

VBX properties: Effect
 Apply ROP codes, which determine how to interact with the existing image on the screen.

DLL functions: L_PaintDC, L_PaintDCBuffer, L_PaintDCEffect

ActiveX properties: PaintROP3 property

VBX properties: PaintRop3
 [DLL only] Use a buffer as the source to paint from.

DLL functions: L_PaintDCBuffer
 [DLL only] Specify an option for fast painting (without device error checking).

DLL functions: L_GetDisplayMode, L_SetDisplayMode

If the display mode is 256 colors or less, you can do the following:
 Use the palette in the bitmap handle or use the system fixed palette.

DLL functions: L_GetDisplayMode, L_SetDisplayMode

ActiveX properties: PaintPalette property

VBX properties: PaintPalette
 Specify the dithering method, for images that have more bits per pixel than the current video mode.

The following are possible options:
Normal dithering (using error diffusion).
Ordered dithering, which is faster but less accurate than normal.
[DLL only] No dithering, which relies on the display device for color reduction.

DLL functions: L_GetDisplayMode, L_SetDisplayMode

ActiveX properties: PaintDither property

VBX properties: PaintDither

For displaying 1-bit (black-and-white) images, you can do the following to enhance the quality of
display:

 [Express editions only] Specify a scale-to-gray option, which increases the clarity of the 1-bit images
when they are scaled (zoomed in or zoomed out).

DLL functions: L_GetDisplayMode, L_SetDisplayMode

ActiveX properties: BitonalScaling property

VBX properties: PaintBwAsGray, BitonalScaling
 [Express editions only] Specify a favor-black option, which prevents loss of details, such as fine lines,

when an image is scaled down (zoomed out).

DLL functions: L_GetDisplayMode, L_SetDisplayMode

ActiveX properties: BitonalScaling property

VBX properties: BitonalScaling

Working with Regions [Express Editions Only]

You can create and maintain shapes, position a shape on a bitmap to define a region to be processed,
and use image-processing functions to modify the region. Specifically, you can do the following.

 [ActiveX only] Automate the creation and display of a region.

ActiveX elements: RgnMarkingMode property, RgnChange event, RgnFrameType property
 [DLL and ActiveX only] Copy and paste a region using a floating bitmap.

DLL functions: Implemented using lower-level functions.

ActiveX elements: Floater property, FloaterVisible property, IsPtInFloater method,
SetFloaterDstRect method, SetFloaterDstClipRect method, FloaterDstHeight property,
FloaterDstLeft property, FloaterDstTop property, FloaterDstWidth property, FloaterDstClipHeight
property, FloaterDstClipLeft property, FloaterDstClipTop property, FloaterDstClipWidth property,
FloaterHeight property, FloaterWidth property, GetFloaterHandle method

 [DLL and ActiveX only] Create a shape using a rectangle, ellipse, polygon, or specified color.

DLL functions: L_SetBitmapRgnColor, L_SetBitmapRgnEllipse, L_SetBitmapRgnPolygon,
L_SetBitmapRgnRect, L_SetBitmapRgnRoundRect

ActiveX elements: SetRgnEllipse method, SetRgnRect method, SetRgnRoundRect method,
SetRgnColor method, PolygonSize property, PolygonX property, PolygonY property, SetRgnPolygon
method

 [DLL and ActiveX only] Size and position the region on the bitmap.

DLL functions: L_GetBitmapRgnBounds, L_OffsetBitmapRgn

ActiveX elements: RgnHeight property, RgnLeft property, RgnTop property, RgnWidth property,
OffsetRgn method

 [DLL and ActiveX only] Manage the bitmap's region.

DLL functions: L_FrameBitmapRgn, L_BitmapHasRgn, L_FreeBitmapRgn,
L_GetBitmapRgnArea, L_IsPtInBitmapRgn

ActiveX elements: HasRgn property, IsPtInRgn method, FreeRgn method, GetRgnArea method,
RepaintRect method, RgnFrameType property

 [DLL and ActiveX only] Copy to and from standard Windows regions.

DLL functions: L_GetBitmapRgnHandle, L_SetBitmapRgnHandle

ActiveX elements: GetRgnHandle method, GetFloaterHandle method, SetRgnHandle method,
DeleteRgnHandle method

 [DLL only] Paint only the bitmap's region.

DLL functions: L_PaintRgnDC, L_PaintRgnDCBuffer, L_PaintRgnDCEffect
 [DLL and ActiveX only] Process the region using any of the appropriate functions described in Working

with the Images in Bitmaps.

Working with Annotations [Express Editions Only]

You can create a wide range annotation objects, group them, store them in files, apply them to bitmaps,
size and position them, and rotate them. Specifically, you can do the following.

 [DLL and ActiveX only] Create any of the following objects: line, arrow, rectangle, ellipse, polygon,
freehand line, text, highlighter, hot spot, note, stamp, redaction, button, or audio clip.

DLL functions: L_AnnDraw, L_AnnCreate, L_AnnCreateContainer, L_AnnCreateItem, L_AnnCopy,
L_AnnDestroy, L_AnnResize, L_AnnSetVisible, L_AnnGetVisible, L_AnnSetSelected,
L_AnnGetSelected, L_AnnSetWnd, L_AnnGetWnd, L_AnnGetType, L_AnnGetActiveState,
L_AnnSetActiveState, L_AnnSetText, L_AnnGetText, L_AnnGetTextLen, L_AnnSetFontName,
L_AnnGetFontName, L_AnnGetFontNameLen, L_AnnSetFontSize, L_AnnGetFontSize,
L_AnnSetFontUnderline, L_AnnGetFontUnderline, L_AnnSetFontStrikeThrough,
L_AnnGetFontStrikeThrough, L_AnnSetFontItalic, L_AnnGetFontItalic, L_AnnSetFontBold,
L_AnnGetFontBold, L_AnnSetForeColor, L_AnnGetForeColor, L_AnnSetBackColor,
L_AnnGetBackColor, L_AnnSetLineWidth, L_AnnGetLineWidth, L_AnnSetLineStyle,
L_AnnGetLineStyle, L_AnnSetFillPattern, L_AnnGetFillPattern, L_AnnSetFillMode,
L_AnnGetFillMode, L_AnnGetPolyFillMode, L_AnnSetPolyFillMode, L_AnnSetBitmap,
L_AnnGetBitmap, L_AnnSetTag, L_AnnGetTag

ActiveX elements: Automated support, plus AnnSetTag method, AnnGetTag method, AnnGetType
method, AnnContainer property

 [DLL and ActiveX only] Implement automated annotation support.

DLL functions: L_AnnCreateContainer, L_AnnCreate, L_AnnSetAutoContainer,
L_AnnGetAutoContainer, L_AnnSetDpiX, L_AnnSetDpiY, L_AnnGetDpiX, L_AnnGetDpiY,
L_AnnSetTool, L_AnnGetTool, L_AnnGetUserMode, L_AnnSetUserMode, L_AnnSetUndoDepth,
L_AnnUndo, L_AnnCreateToolBar, L_AnnGetToolBarChecked, L_AnnSetToolBarChecked,
L_AnnSelectRect, L_AnnGetSelectCount, L_AnnSelectPoint, L_AnnHitTest, L_AnnDefine,
L_AnnGetBoundingRect, L_AnnGetSelectRect

ActiveX elements: AnnUserMode property, AnnTool property, AnnClicked event, AnnCreate event,
AnnDestroy event, AnnDrawn event

 [DLL and ActiveX only] Scale and position a group to fit the displayed bitmap.

DLL functions: L_AnnSetScalarX, L_AnnSetScalarY, L_AnnGetScalarX, L_AnnGetScalarY,
L_AnnSetOffsetX, L_AnnSetOffsetY, L_AnnGetOffsetX

ActiveX elements: Implemented with automated annotation.
 [DLL and ActiveX only] Group and ungroup objects.

DLL functions: L_AnnInsert, L_AnnRemove, L_AnnGetContainer, L_AnnGetTopContainer,
L_AnnEnumerate

ActiveX elements: Implemented with automated annotation.
 [DLL and ActiveX only] Apply an object or group to a bitmap.

DLL functions: L_AnnRealize

ActiveX elements: AnnRealize method
 [DLL and ActiveX only] Size and position an object or group.

DLL functions: L_AnnBringToFront, L_AnnSendToBack, L_AnnSetRect, L_AnnGetRect,
L_AnnSetPoints, L_AnnGetPointCount, L_AnnGetPoints

ActiveX elements: Implemented with automated annotation.
 [DLL and ActiveX only] Rotate an object or group.

DLL functions: L_AnnRotate, L_AnnMove

ActiveX elements: Automated annotation, plus AnnRotate method
 [DLL and ActiveX only] Flip, reverse, or shear an object or group.

DLL functions: L_AnnFlip, L_AnnReverse, L_AnnSetPoints, L_AnnGetPointCount,
L_AnnGetPoints

ActiveX elements: Automated annotation, plus AnnFlip method, AnnReverse method
 [DLL and ActiveX only] Save an object or group on the Windows clipboard.

DLL functions: L_AnnCopyFromClipboard, L_AnnCopyToClipboard, L_AnnCutToClipboard,
L_AnnClipboardReady

ActiveX elements: AnnCopy method, AnnPasteReady property, AnnPaste method
 [DLL and ActiveX only] Print an object or group.

DLL functions: L_AnnPrint

ActiveX elements: Implemented with automated annotation.
 [DLL and ActiveX only] Save an object or group in a file.

DLL functions: L_AnnSave, L_AnnSaveMemory, L_AnnSaveOffset, L_AnnLoad,
L_AnnLoadMemory, L_AnnLoadOffset

ActiveX elements: AnnLoad method, AnnSave method
 [DLL only] Save an object or group as a file in memory. (This is useful for database support.)

DLL functions: L_AnnSaveMemory, L_AnnLoadMemory
 [ActiveX only] Save an object or group in a database using ODBC or Visual Basic data binding.

ActiveX elements: Implemented with automated annotation.

Working with Databases

You can maintain images in a database, using any valid file format to store an image in a long binary field.
You can do so as follows:

 [ActiveX32 only] Use Open Database Connectivity (ODBC).

ActiveX elements: dbOpen method, dbClose method, dbMove method, dbMoveFirst method,
dbMoveLast method, dbMoveNext method, dbMovePrev method, dbLoadBits property, dbAddNew
method, dbEdit method, dbLockingMode property, dbUpdate method, dbDelete method, dbRequery
method, dbCanAppend property, dbCanRestart property, dbCanScroll property, dbCanUpdate
property, dbCurrentRecord property, dbEditMode property, dbIsBOF property, dbIsDeleted property,
dbIsEOF property, dbIsOpen property, dbRecordCount property

 [ActiveX and VBX with Visual Basic only] Use data binding.

ActiveX properties: DataSource property, DataField property, DataSaveBits property,
DataSaveFormat property, DataSaveQuality property, DataLoadBits property, DataChanged
property

VBX properties: DataChanged, DataField, DataSource
 [DLL and ActiveX only] Use functions to read files from memory and write files to memory.

DLL functions: L_FileInfoMemory, L_LoadBitmapMemory, L_LoadMemory,
L_SaveBitmapMemory, L_DecompressBitmapMemory, L_DecompressMemory

ActiveX methods: GetMemoryInfo method, LoadMemory method, SaveMemory method

Working with Other Input and Output

For additional input and output, you can do the following:
 Load a bitmap from a TWAIN device. TWAIN is an industry standard interface used with scanners,

digital cameras, and frame grabbers. LEADTOOLS supports device selection and multipage scanning.

DLL functions: L_TwainAcquire, L_TwainAcquireExt, L_TwainEnumSources, L_TwainSelect,
L_TwainSetProps

Windows messages: L_BM_TWAINSELECT, L_BM_TWAINACQUIRE

ActiveX elements: TwainAcquire method, TwainSelect method, EnableTwainEvent property,
TwainPage event, TwainFlags property, TwainEnumSources method, TwainSourceCount property,
TwainSourceList property, TwainAppAuthor property, TwainAppFamily property, TwainAppName
property, TwainBits property, TwainFrameHeight property, TwainFrameLeft property,
TwainFrameTop property, TwainFrameWidth property, TwainMaxPages property, TwainPixelType
property, TwainRes property, TwainSourceName property, TwainRealize method

VBX properties: EnableTwainMulti, TwainAcquire, TwainSelect, TwainFlags, TwainImage event
 Print one or more bitmaps on a page, positioning, scaling, and cropping the images as necessary.

DLL functions: L_PrintBitmap, L_PrintBitmapExt, L_PrintBitmapFast

Windows messages: L_BM_PRINT

ActiveX methods: Render method, PrintStart method, PrintEnd method

VBX properties: PrintHeight, PrintLeft, PrintTop, PrintWidth, PrintCrop, PrintCropHeight,
PrintCropLeft, PrintCropTop, PrintCropWidth, PrintBitmap

 Capture an image from a screen.

DLL functions: L_ScreenCaptureBitmap

ActiveX methods: Capture method

VBX properties: CaptureHeight, CaptureLeft, CaptureTop, CaptureWidth, Capture
 [VBX only] Share data with other applications using DDE links.

VBX properties: LinkItem, LinkMode, LinkTimeout, LinkTopic
 [DLL only] Redirect the standard input and output functions so that you can replace the low-level file

I/O with your own input and output streams.

DLL functions: L_RedirectIO

Working with Events and Callbacks

To detect user interrupts or add other processing to the LEADTOOLS internal loops, you can write code
for events in the ActiveX and VBX, and for callback functions in the DLL. Specifically, you can do the
following:

 Provide a generic function for detecting user interrupts and updating a status bar.

DLL functions: L_SetStatusCallBack

ActiveX elements: EnableProgressEvent property, ProgressStatus event

VBX properties: EnableStatus, Status event
 Handle multipage scanning.

DLL functions: L_TwainAcquireExt

ActiveX elements: EnableTwainEvent property, TwainPage event

VBX properties and events: EnableTwainMulti, TwainImage event
 [DLL only] Provide other function-specific callbacks.

DLL functions: L_ColorResBitmap, L_DecompressMemory, L_LoadFile, L_LoadFileOffset,
L_LoadMemory, L_SaveFile, L_SaveFile, L_SaveFileOffset, L_SetLoadInfoCallback,
L_StartCompressBuffer, L_TwainEnumSources

 [ActiveX only] Detect changes in regions.

ActiveX event: RgnChange event
 [ActiveX only] Turn on or turn off the generation of error events.

ActiveX properties: EnableMethodErrors property
 Detect standard events.

DLL functions: Implemented using Windows messages.

Windows messages: L_BN_CHANGE, L_BN_CLICKED, L_BN_DBLCLK, L_BN_HSCROLL,
L_BN_KILLFOCUS, L_BN_PAINTED, L_BN_SETFOCUS, L_BN_UPDATE, L_BN_VSCROLL

ActiveX events: Change event, Click event, DblClick event, KeyDown event, KeyPress event,
KeyUp event, MouseDown event, MouseMove event, MouseUp event, Paint event, Resize event,
Scroll event

VBX events: Change, Click, DblClick, DragDrop, DragOver, GotFocus, KeyDown, KeyPress,
KeyUp, LinkChange, LinkClose, LinkError, LinkNotify, LinkOpen, LostFocus, MouseDown,
MouseMove, MouseUp, Paint, Resize, Scroll

Working with Raw Image Data [DLL Only]

LEADTOOLS provides low-level functions that you can use to process image data in a buffer. You can
use these functions to create your own image processing functions. For example, you can write a callback
function that paints an image while it is loading by processing and painting one line at a time.

To work with raw image data, you can do the following:
 Paint a buffer to a device context.

DLL functions: L_PaintDCBuffer
 Change the bits per pixel.

DLL functions: L_ConvertBuffer, L_StartDithering, L_DitherLine, L_StopDithering
 Change the color order.

DLL functions: L_ConvertBuffer
 Compress or decompress the data when working with LEAD CMP or JPEG files.

DLL functions: L_StartCompressBuffer, L_CompressBuffer, L_EndCompressBuffer,
L_DecompressMemory

 Process the data for buffered resizing of the bitmap.

DLL functions: L_StartResize, L_Resize, L_StopResize
 Change the color-space model to or from any of the following: RGB, YUV, CMYK, CMY, YIQ, HSV, or

HLS.

DLL functions: L_ConvertColorSpace
 Modify the allocated height of a bitmap for mid-stream adjustments.

DLL functions: L_ChangeBitmapHeight

Working with Image Descriptions and Other Information

LEADTOOLS lets you get information as follows:
 You can get the information you need about an image in a file, such as its format, size, bits per pixel,

compression method, size on disk, and size in memory. Refer to Working with Files.
 You can get information about a bitmap in memory, such as its width, height, bits per pixel, memory

allocation, and palette usage. Refer to Working with Image Data.
 You can create a histogram that maps the frequency of occurrence of each color in a bitmap.

DLL functions: L_GetBitmapHistogram

ActiveX elements: HistogramTable property, GetHistogram method

VBX properties: Histogram, HistogramAcquire, HistogramChannel
 You can get information about the current version of your toolkit.

DLL functions: L_VersionInfo

ActiveX elements: AboutBox method, VersionDate property, VersionLevel property, VersionMajor
property, VersionMinor property, VersionProduct property, VersionTime property

 You can get and set information about optional features (such as GIF or TIFF LZW file support or
Express capabilities) that you are licensed to use.

DLL functions: L_IsSupportLocked, L_UnlockSupport

ActiveX methods: IsSupportLocked method, UnlockSupport method

VBX properties: SupportType, IsSupportLocked, UnlockSupport

Express Editions

Many functions in the LEADTOOLS toolkits are faster in the express editions than in the professional
editions, especially when compressing and decompressing CMP, JPEG, or CCITT images.

Some functions and features are available only in the express editions. They are labeled as [Express
editions only] in the documentation.

If you redistribute an application created with an express edition, you must negotiate an individual
contract (such as a royalty contract) with LEAD. Contact LEAD for more information.

LZW License Instructions

Warning

Use of this software for providing LZW capability for any purpose is not authorized unless user first enters
into a license agreement with Unisys under U.S. Patent No. 4,558,302 and foreign counterparts. For
information concerning licensing, please contact:

Unisys Corporation
Welch Licensing Department - C1SW19
Township Line & Union Meeting Roads
P.O. Box 500
Blue Bell, PA 19424
Phone: (215) 986-4411

Introduction To Image Processing with LEADTOOLS

The following topics provide general information about image processing, and where appropriate, they
describe the related LEADTOOLS capabilities. These topics build up concepts and terminology; so if you
are new to image processing, it is best to read them in order.

Bits Per Pixel and Related Ideas

Color Resolution and Dithering

Palette Handling

Image Manipulation and Analysis

Image Display

Bitmaps in Memory and in Files

DIBs, DDBs, and the Clipboard

Printing

TWAIN Input

Database Interaction

Data Transfer

Introduction: Bits Per Pixel and Related Ideas

The terminology for image formats can be confusing because there are often several ways of describing
the same format. This topic explains what the terms mean.

If an image is 24 bits per pixel, it is also called a 24-bit image, a true color image, or a 16M color image.
Sixteen million is roughly the number of different colors that can be represented by 24 bits, where there
are 8 bits for each of the red, green, and blue (RGB) values.

A 32-bit image is a specialized true-color format used in image files, where the extra byte carries
information that is either converted or ignored when the file is loaded. The extra byte is used for an
additional color plane in CMYK files, which are specialized files for color printing. In that case,
LEADTOOLS, by default, converts the values to 24-bit RGB values when loading the image. The
additional byte may also be used for an Alpha channel, which carries extra information such as a
transparency indicator. Since the kind of information that an Alpha channel contains is outside the scope
of normal image processing, some LEADTOOLS functions will fill the Alpha channel with zeros. Generally,
functions such as reversing or resizing a bitmap will preserve the Alpha channel.

If an image is 16 bits per pixel, it is also called a 16-bit image, a high color image, or a 32K color image.
Thirty-two thousand is roughly the number of different colors that can be represented by 16 bits, where
there are 5 bits for each of the red, green, and blue values. (Devices that specify 64K color support are
also referring to 16-bit images, but they are counting the left-over bit.)

If an image is 8 bits per pixel, it is also called an 8-bit image or a 256-color image. Two hundred fifty-six is
the number of different colors that can be achieved by using the image data as 8-bit indexes to an array
of colors called a palette.

If an image is 4 bits per pixel, it is also called a 4-bit image or a 16-color image. Sixteen is the number of
different colors that can be achieved by using the image data as 4-bit indexes to a palette.

If an image is 1 bit per pixel, it is also called a 1-bit image, a black and white image, a 2-color image, or a
bitonal image. Two is the number of different colors that can be achieved by using the image data as 1-bit
indexes to a palette. The palette can contain colors other than black and white, although black and white
are most common.

If an image is grayscale, its red, green, and blue values are all the same, and the values are incremented
from the lowest to the highest. For example, an 8-bit grayscale image has 256 shades of gray, with values
from 0 to 255. LEADTOOLS supports 4- and 8-bit grayscale.

Most of this same terminology is applied to video cards. For example, an 8-bit card is one that is capable
of displaying 256 colors.

Introduction: Color Resolution and Dithering

Color resolution (also called color depth) refers to the number of possible colors in an image, as
determined by the bits-per-pixel. If an image in your computer is loaded from a FAX scanner or received
as a FAX transmission, it is a black-and-white (1-bit) image. If it is loaded from a color scanner or a JPEG
file, it can have 16 million colors. If it is loaded from a GIF file, it is likely to have 256 colors. There are
many possibilities, ranging from two colors to 16 million.

LEADTOOLS lets you manipulate an image and display it on any Windows-compatible device, regardless
of the image's color resolution. Therefore, in most cases you can load, display, modify, and save an image
without ever changing its color resolution. Nevertheless, in some cases you may need to increase or
decrease the color resolution. Here are some examples:

 Suppose you need to load a large 24-bit image on a computer that does not have much memory. You
can conserve memory by loading it as an 8-bit image. Then, if you were using an 8-bit display device, you
would not see any difference in the quality of the image. Of course, there would be some loss of quality
on a 24-bit display device, and the loss would be permanent if you then saved the image in the same file.

 Suppose you want to save an image in a different file format. If the new file format does not support the
original color resolution, you can specify a different color resolution when you save the image.

 Suppose you want to combine one 8-bit image with another one. To combine two images, they must
have the same color resolution, and if they are less than 16 bits per pixel, they must use the same palette.
The simplest solution is to convert both to 24 bits per pixel before combining them. Then, if necessary,
you can reduce the color resolution of the combined image.

Whenever you reduce an image's color resolution to 8 bits per pixel or less, a dithering method comes
into play. One alternative is to use a nearest-color match (no dithering), which means that the color of
each pixel is changed to the palette color that most closely matches it. If the original image contains
subtle color details, the result of a nearest-color match may have large blotches of color that are not very
pleasing.

Dithering methods create the appearance of more subtle shades by mixing in pixels of different colors.
This is similar to the way newspaper pictures produce the appearance of shades of gray, even though the
only actual colors are black and white.

Ordered dithering is the fastest method. It is the default dithering method when painting to a display
device that is 256 colors or less. Ordered dithering takes advantage of the fact that the colors in most
palettes are ordered so that similar shades are next to each other in the palette. This method avoids
blotches of color by adding to or subtracting from the nearest-color value of each pixel to ensure that
adjacent pixels do not have exactly the same color. (If the colors in the palette are not ordered, the results
are not good.)

All of the other dithering methods in LEADTOOLS use error-diffusion algorithms. In error diffusion, the
error is the difference between the original pixel color and the nearest match, and diffusion of this error is
what the algorithm accomplishes. Floyd-Steinberg is a high-quality, fast error-diffusion method. It is the
default method that LEADTOOLS uses if you reduce the color resolution when loading or saving an
image, or if you specify error diffusion as the dithering method when painting to a display device that is
256 colors or less.

If you use a LEADTOOLS function to change the color resolution of a bitmap in memory, you can choose
from a list of possible dithering methods. All of the alternative error-diffusion methods are slower than
Floyd-Steinberg, and the quality may or may not be better, depending on the original image, and
depending on whether the resulting image is to be displayed or printed. Choosing an alternative dithering
method is a subjective, trial-and-error decision. Stevenson and Arce dithering, the slowest of the
alternatives, is most likely to produce a higher quality result.

Introduction: Palette Handling

Any image that is 8 bits per pixel or less must have a palette. The palette is an array that contains the
colors for displaying the image. The pixel values are indexes into the array. An image can have its own
unique palette or it can share a common fixed palette. In either case, every bitmap in memory that is 8
bits per pixel or less has its own copy of a palette (even if it is a common fixed palette).

One way for a bitmap to have a unique palette is to load an image from a file that is 8 bits per pixel or
less. In that case, the file contains a palette for the image, and you can assume that the palette is unique.
By default, LEADTOOLS loads the palette that is stored in the file and associates it with the bitmap in
memory.

Another way for a bitmap to get a unique palette is to create the palette. For example, if you reduce a 24-
bit image to 8 bits per pixel, you can let LEADTOOLS create an optimized palette for the image.

By using a unique, optimized palette, you get the best possible image quality, but there is a drawback.
When a display device uses a palette (for example, when it is in 256-color mode), it can only use one
palette at a time to display colors. Therefore, if you are displaying more than one image at the same time,
the current image may look perfect, while all of the others look bad, because they are mapped to the
wrong palette. This is called palette shift.

Using a fixed palette solves these palette-shift problems. The best approach is to specify the fixed palette
as a display option. Then, LEADTOOLS remaps each image to the fixed palette when it is displayed,
without disturbing the individual image's palette. (When displaying 16-, 24-, or 32-bit images on a device
with 256 colors or less, LEADTOOLS always uses the fixed palette.)

Alternatively, you can use a color resolution function to specify a fixed palette for each individual image.
But then, when you save the image to a file, the fixed palette is saved in the file, and any unique palette
information is lost.

Introduction: Image Manipulation and Analysis

Most LEADTOOLS functions for image manipulation and analysis act on the bitmap in memory. It is
important to keep this in mind, because the changes become permanent when you save the bitmap in a
file. Sometimes you want the changes to be permanent, and sometimes you do not. It all depends on the
reason for making the changes.

Sometimes, you start with an image that has some undesirable qualities. For example, if the original
image is too flat, you may want to use one of the contrast enhancement functions to make permanent
improvements.

At other times, you may need to compensate for the display device. For example, an image may appear
too dark on a particular monitor. In that case, setting the gamma correction is a good way to improve the
brightness. But if you save the modified image, it might then appear too bright on another monitor. In this
kind of situation, a good strategy is to modify a copy of the image, and give the user the ability to undo
changes. The undo strategy also makes sense with a manipulation, such as a mosaic effect, that
intentionally distorts an image.

Some image manipulations, such as edge-detection filters, are commonly used to analyze an image,
rather than to improve it. For example, in an industrial quality-assurance application, defects in a machine
part may be easier to detect if an image of the part is processed with an edge-detection filter. Similarly,
the creation of a histogram (an array that charts the frequency of color usage in an image) can be of value
in an analytical situation.

Edge detection and histogram creation can also be used as steps in improving an image. For example,
creating a histogram is a necessary step, internally, in some of the contrast-improvement functions. Also,
an image created with an edge detection filter can be combined with the original image to harden or
soften the original's edges.

Introduction: Image Display

When you display an image, the following things come into play:
 Sizing and positioning the display.
 Adapting the image to the color resolution of the display device.
 Making other refinements that affect the display but not the bitmap in memory.

The LEADTOOLS paint functions let you specify which part of an image to display, how big to make the
display, and where to position the origin (for scrolling and zooming). In the ActiveX (OCX) and VBX, the
origin defaults to 0,0 and the size defaults to the bitmap size. This is arbitrary, and even with automatic
scroll bars, it is unlikely to be what a user wants to see. Instead, the typical user either wants to see the
whole image or wants to select a portion of the image to view.

Fortunately, LEADTOOLS makes it easy to show the user exactly what he wants to see. LEADTOOLS
lets you control the size and position of the display without resizing or trimming the bitmap. In fact, it
usually is best to think of the bitmap size as a measure of resolution, rather than a measure of size. The
larger the bitmap, the more you can zoom in without losing detail.

As for adapting to the color resolution of the display device, if the color resolution of your device is greater
than 256 colors, no adaptation is necessary; images are displayed using their own color values. Of
course, if a 24-bit image is displayed on a 16-bit device, there is some loss, but there are still no
programming issues, since the only remedy is to change the display mode.

If the color resolution of your display device is 256 colors or less, you have to make some programming
decisions regarding dithering and palette selection. When displaying 16-, 24-, or 32-bit images, you can
determine whether LEADTOOLS uses ordered dithering or error diffusion to handle the color reduction.
(LEADTOOLS uses a fixed palette for these images.) When displaying 8-, 4-, or 1-bit images, you must
decide whether to use a fixed palette or the individual image's palette. Using the fixed palette avoids
palette shifting when more than one images is displayed at the same time. Using the image's original
palette produces the best possible display of the image's colors.

Other LEADTOOLS functions let you determine how the new display interacts with whatever is already on
the display device. For example, you can use Windows ROP codes to combine the displayed images.
Also, when displaying 1-bit images, you can set scale-to-gray or favor-black options that can improve the
readability of scaled images (images that are zoomed in or out to fit the available space).

Introduction: Bitmaps in Memory and in Files

The size of a bitmap in memory is determined strictly by its dimensions and its color resolution. For
example, to calculate the number of bytes for a 500-by-500 pixel, 24-bit image, you multiply 500 * 500 * 3.
(Multiply by 3 because there are 3 bytes in 24 bits.) For an 8-bit image, it would be 500 * 500, plus the
size of its palette, which is about 1K.

For any color image, whether the color values are in a palette or in the image data, the color of each pixel
in the bitmap consists of red, green, and blue values. They always use the RGB color-space model, which
means that red, green, and blue values are combined to represent a color.

The size of the same color image when it is stored in a file is often much smaller, and the color-space
model is not always RGB. For example, JPEG and LEAD CMP files both use a YUV color-space model,
where Y is a luminance value, and the U and V values are chrominance values. In this color-space model,
brightness information is stored in the luminance value, and color information is stored in the chrominance
values. JPEG and LEAD CMP achieve data compression through sampling techniques that can affect the
accuracy of the YUV values. This kind of compression is sometimes referred to as lossy compression,
because you can manipulate the compression parameters to choose between greater compression or
greater accuracy.

Another color-space model used in image files is CMYK (designed for color printing using cyan, magenta,
yellow, and blackness). Other compression techniques include RLE (run-length encoding) and LZW
(Lempel-Ziv and Welch). Both of these techniques preserve the accuracy of the image data, and they
achieve compression solely by identifying repetitions of data. Some grayscale and 1-bit image file formats
also use RLE and LZW compression techniques.

The image file formats are not only used for storage in the computer's file system, but are also used for
database storage and for transmission of images. Furthermore, some applications keep frequently-used
images in memory in a compressed file format. Thus, they can take advantage of memory speed when
loading bitmaps from these files.

Introduction: DIBs, DDBs, and the Clipboard

A DIB (device independent bitmap) is a standard Windows representation of a bitmap. It is similar to the
LEADTOOLS representation of a bitmap in that it includes palette information. A DDB (device dependent
bitmap) is a hardware-specific representation that does not include palette information. Sometimes, you
may need to manipulate a bitmap using Windows functions that work with DIBs or DDBs. For example,
you may need to interact with an existing application that uses those functions. For that purpose,
LEADTOOLS functions let you convert or copy to and from DIBs or DDBs. Of course, when converting to
and from a DDB, you must preserve the palette information separately.

The clipboard is a standard Windows object for copying data from one application to another.
LEADTOOLS lets you copy images to the clipboard and paste images from the clipboard. When copying
to the clipboard, most LEADTOOLS functions clear the existing data from the clipboard, and copy image
data to it in the form of a DIB, a DDB, and a palette (if one is needed). If that is not what you want, you
can use a LEADTOOLS DLL function to specify exactly which actions to take.

Introduction: Printing

LEADTOOLS printing functions are designed to work with Windows printing functions. Normally, you use
Windows to select a device context (DC) and start the print job. LEADTOOLS functions let you scale and
position one or more images in the printer DC. You use Windows functions to get the available page
dimensions. You also use Windows functions to eject each page and to end the print job.

In most cases, you can scale and position an image on a printer DC with the same flexibility as when you
display an image on a computer screen. You can let the printer handle any dithering or halftoning.
However, if you halftone a bitmap, yourself, before sending it to a printer, you should resize the bitmap to
the desired height and width, then use the halftone function, then send the image to the printer without
scaling it. (You get bad results if you scale a halftoned image.)

In C, C++, Visual Basic, and Delphi, you can use the actual Windows printing functions, or their
equivalents in the development system. However, printing with Microsoft Access and FoxPro is more
limited, because they do not give you direct access to the printer DC. The LEADTOOLS ActiveX (OCX)
handles this problem by providing methods to start and stop the print job. Because of limitations in the
current interfaces for ActiveX controls, LEADTOOLS does not support inclusion of images in Access or
FoxPro reports.

Introduction: TWAIN Input

TWAIN is a standard for image input devices, such as scanners and digital cameras. Getting an image
from a TWAIN device can be very simple. First, there is a standard facility for selecting the input device. It
is similar to selecting a default printer, and you can skip this step if you know that the default is right.
Then, each TWAIN device has its own user interface, which you invoke to acquire an image.

Some complexity is introduced only when acquiring multiple images or when bypassing the user interface.
If you acquire multiple images, you must code a callback function or event procedure to handle each
image. If you bypass the user interface, you must set some standard TWAIN parameters to provide the
information that the TWAIN driver would normally get from the user interface. The tricky part is that some
TWAIN drivers implement the standard more fully than others. If you do not know in advance how the
TWAIN device will behave, it is a good idea to add logic to your program to test the success of setting the
TWAIN parameters. LEADTOOLS provides functions for all of this.

Introduction: Database Interaction

With LEADTOOLS, you can use a variety of strategies to maintain images in a database. This variety is
necessary because of the uneven support for storing images using different development and database
systems.

The simplest database support is with Visual Basic, where you can bind a LEAD control (ActiveX or VBX)
to a data control. You can associate the LEAD control with a long binary field in the database, and let the
data control handle all of the database maintenance and navigation.

For other systems with ActiveX support, you may be able to use ODBC (Open Database Connectivity).
ODBC is a standard interface for accessing local and remote databases. To use it, you define a data
source that is implemented with an ODBC driver; then you access the data source in the same way you
would a local database. LEADTOOLS provides ActiveX methods and properties that let you directly
access image data through an ODBC data source. There are a couple of limitations in this approach.
First, since the ActiveX accesses the image data directly and does not access any other data in the
record, you must deal with the problem of identifying the image. To solve this problem, you can use
another means of selecting records; then synchronize the ActiveX's view, so that it is always accessing
the same record. (The ActiveX tutorials describe how to do this.) The second limitation is with ODBC
drivers. Most of the available ODBC drivers do not properly support access to long binary fields. (The
ACCESS 7.0 and FoxPro 2.x drivers have been tested successfully and are described in the ActiveX
tutorials.)

A more flexible approach on lower-level development systems, such as C, C++, and Delphi, is to use the
ability of LEADTOOLS to save a file in memory. Once the image is available in memory in a compressed
file format, you can use your choice of database engines to store and retrieve the data.

Finally, you may want to consider using your computer's or network's file system to store the images, use
a database to store the file paths as strings, and write your own code to do the synchronization. In some
cases, this could be a better solution than storing the images directly in the database.

Introduction: Data Transfer

When receiving transferred data, as in an Internet application or a FAX modem transmission, you often
want to display the image as it is received.

To meet that need, LEADTOOLS provides simple functions that let you load image data into a bitmap as it
is received. You can also use the LEADTOOLS paint-while-load feature to display the bitmap as it is
received.

Summary of All Supported Image File Formats

Format
Read
Bits per pixel

Write
Bits per pixel

LEAD. This is the LEAD CMP compressed format
for grayscale and color images. This format results
in smaller files and better image quality than
industry-standard formats.

8 for grayscale,
24 for color

8 for grayscale,
24 for color

JFIF. This is the JPEG File Interchange Format.
LEADTOOLS supports YUV 4:4:4, 4:2:2, and 4:1:1
color spacing, and YUV 4:0:0 for grayscale.

8 for grayscale,
24 for color

8 for grayscale,
24 for color

Progressive JPEG. This is a JFIF format that is
useful for transmitting images, because the first
part of the file contains the full dimensions of the
image. Therefore, in a paint-while-load routine, you
can display the whole image, then progressively
clarify it as the rest of the file loads. LEADTOOLS
supports YUV 4:4:4, 4:2:2, and 4:1:1 color spacing,
and YUV 4:0:0 for grayscale.

8 for grayscale,
24 for color

Read only

JTIF. This is the JPEG Tagged Interchange
Format. LEADTOOLS supports YUV 4:4:4, 4:2:2,
and 4:1:1 color spacing, and YUV 4:0:0 for
grayscale.

8 for grayscale,
24 for color

8 for grayscale,
24 for color

TIFF. This is a tag-based file format designed to
promote universal interchanges of digital image
data. Because TIFF files do not have a single way
to store image data, there are many versions of
TIFF. LEADTOOLS supports the most common
TIFF formats.

1, 4, 8, 16, 24, 32

also including

CMYK (LZW) and RLE
(LZW)

1, 4, 8, 16, 24

MPT. This is a multipage TIFF format that enables
a file to contain more than one image. It is handled
the same as a regular TIFF file, except for the
multipage feature.

1, 4, 8, 16, 24, 32

also including

CMYK (LZW) and RLE
(LZW)

1, 4, 8, 16, 24

TIFF LZW. These files use the Tagged Image File
Format with LZW compression. Refer to LZW
License Instructions.

1, 4, 8, 16, 24, 32 1, 8, 16, 24

TIFF CCITT. These are compressed TIFF files that
are commonly used for FAX transmission and
document imaging.

1 1

TIFF CCITT Group 3. These are TIFF CCITT files
in a format that is more advanced and more
compressed than TIFF CCITT. LEADTOOLS
supports both 1-dimension and 2-dimension
variations of this format.

1 1

TIFF CCITT Group 4. These are TIFF CCITT files
in a format that is more advanced and more
compressed than TIFF CCITT Group 3.

1 1

IOCA (ICA). This is the Image Object Content 1 1

Architecture developed by IBM. LEADTOOLS
supports these files in an MO:DCA wrapper with
embedded 1-bit CCITT Group 3 or Group 4
images. LEADTOOLS also supports IOCA files
without an MO:DCA wrapper.

WinFax Group 3. This is a FAX format created by
Delrina for Group 3 support.

1 1

WinFax Group 4. This is a FAX format created by
Delrina for Group 4 support.

1 1

FAX Group 3. This is a raw FAX format (without a
header) for Group 3 support. LEADTOOLS
supports both 1-dimension and 2-dimension
variations of this format.

1 1

FAX Group 4. This is a raw FAX format (without a
header) for Group 4 support.

1 1

Truevision TGA (TARGA). This is a file format
created by Truevision Inc. LEADTOOLS supports
all uncompressed and RLE compressed TGA file
formats.

8, 16, 24, 32 8, 16, 24, 32

GIF. This is the Graphics Interchange Format
created by CompuServe for storing and
exchanging color raster images. This format
compresses its image data with the LZW
compression technique. Refer to LZW License
Instructions.

1, 4, 8 8

PNG (Portable Network Graphics). This is a
replacement for the GIF format. It is a full-featured
(non-LZW) compressed format intended for
widespread use without legal restraints.

1, 4, 8, 16, 24, 32 1, 4, 8, 24

Photoshop 3.0 (PSD). This is the format produced
by the Adobe Photoshop graphics editor.

1, 8, 24 1, 8, 24

Windows Bitmap (BMP). This is a file format
created by Microsoft. Some BMP images are
compressed with an RLE type compression.

1, 4, 8, 16, 24, 32

and

1, 4, 8 RLE

1, 4, 8, 16, 24, 32

Windows Metafile (WMF). These files are not
bitmap based images. A Windows metafile consists
of a collection of device independent functions that
represents an image. When a program loads a
metafile, these functions are executed to obtain the
image.

8, 24 8, 24

PCX. This is a file format created by ZSoft. This
format compresses its image data with the RLE
type compression.

1, 4, 8, 24 1, 4, 8, 24

DCX. This is a multipage PCX format that enables
a file to contain more than one image. It is handled
the same as a regular PCX file, except for the
multipage feature.

1, 4, 8, 24 1, 4, 8, 24

PostScript Raster (Encapsulated PostScript). 1, 8 (raster) 8 grayscale (raster)

These files are used primarily on PostScript
printers. These printers usually offer more variety
of fonts and higher resolution than standard laser
printers. EPS files will work on any PostScript
compatible printer and any end user application
that supports placement of EPS files in its work
space.

and

1, 4, 8, 16, 24, 32
(embedded TIFF)

OS/2 Bitmap (OS/2 BMP). These are files created
on an OS/2 operating system. LEADTOOLS
supports both 1.x and 2.x formats.

1, 4, 8, 24

and

1, 4, 8 RLE

1, 4, 8, 24

CALS Raster. These are 1-bit CCITT Group 4
CALS raster files. CALS is a United States
government standard.

1 1

MacPaint (MAC). These Macintosh Paint files are
commonly used for monochrome clip art.

1 1

GEM Image (IMG). These files are native to the
Graphical Environment Manager developed by
Digital Research.

1 1

Microsoft Paint (MSP). These files from early
versions of Windows are used for black-and-white
drawings and clip art.

1 1

WordPerfect (WPG). These are WordPerfect
raster files.

1, 4, 8 (raster) 1, 4, 8 (raster)

SUN Raster (RAS). These files are native to Sun
UNIX platforms.

1, 4, 8, 24, 32 1, 4, 8, 24, 32

Macintosh Pict (PCT). These files, produced
using Macintosh QuickDraw, are used in desktop
publishing and imaging applications.

1, 4, 8, 24 1, 4, 8, 24

LEAD 1BIT. These are 1-bit LEAD compressed
files.

1 1

PCD. These are Kodak PhotoCD files. All Read only

Copyright Notice

©Copyright LEAD Technologies, Inc. 1991-1996. ALL RIGHTS RESERVED

LEAD product specifications are subject to change without notice.

Trademarks

LEAD and LEADTOOLS are registered trademarks of LEAD Technologies, Inc.
Windows is a trademark of the Microsoft Corporation.
OS/2 is a registered trademark of International Business Machines Corporation.

All other brand or product names used in this online help are trademarks of their respective holders.

LEAD Technologies, Inc.
900 Baxter Street
Charlotte, NC 28204

(704) 332-5532
FAX: (704) 372-8161
BBS: (704) 334-9045
Tech Support: (704) 372-9681
CompuServe: 71333,2237 or GO LEADTECH
Home page: http://www.leadtools.com

Summary of LEADTOOLS Products

LEAD Technologies, Inc.
900 Baxter Street
Charlotte, NC 28204

Sales@Leadtools.com
www.leadtools.com

(704) 332-5532
FAX: (704) 372-8161
BBS: (704) 334-9045
Tech Support: (704) 372-9681

CompuServe: 71333,2237 or GO LEADTECH

LEADTOOLS VBX Pro: Visual Basic custom control for adding LEADTOOLS capabilities to 16-bit
development systems such as Visual Basic 3.0, Visual Basic 4.0 (16-bit), and Borland Delphi (16-bit).

LEADTOOLS ActiveX16 (OCX) Pro: OLE custom control for adding LEADTOOLS capabilities in a
Windows 3.x environment. You can use this toolkit with Microsoft Access 2.0, Visual Basic 4.0 (16-bit),
and other 16-bit development systems that support OLE custom controls.

LEADTOOLS ActiveX32 (OCX) Pro: OLE custom control for adding LEADTOOLS capabilities in a
WIN32 environment such as NT, Windows 95, or Win32s. You can use this toolkit with 32-bit development
systems such as Visual Basic 4.0 (32-bit), Microsoft Access 95, Visual FoxPro, and Borland Delphi (32-
bit).

LEADTOOLS ActiveX16/32 (OCX) Pro: Two OLE custom controls, combining the features of the
ActiveX16 and ActiveX32 products. The LEADTOOLS syntax is the same for both 16- and 32-bit
environments. Therefore, if you are using a development system such as Visual Basic 4.0, you can easily
write code that compiles in both environments.

LEADTOOLS WIN16 Pro: API for the LEADTOOLS WIN16 DLLs, plus LEADTOOLS VBX Pro and
ActiveX16 Pro (which are included to give you the full range of WIN16 development options). The
ActiveX16 product is upgraded to include Visual C++ examples and tutorials.

The API for the LEADTOOLS DLLs provides a complete set of compression and manipulation functions.
You can use the API with any development system that supports DLLs in the Windows 3.x environment.
For example: Microsoft C and Borland C.

LEADTOOLS WIN32 Pro: API for the LEADTOOLS WIN32 DLLs, plus LEADTOOLS ActiveX32 Pro
(which is included to give you the full range of WIN32 development options). The ActiveX32 product is
upgraded to include Visual C++ examples and tutorials.

The API for the LEADTOOLS DLLs provides a complete set of compression and manipulation functions.
You can use the API with any development system that supports DLLs in the WIN32 environment. For
example: Microsoft C and Borland C.

LEADTOOLS WIN16/WIN32 Pro: APIs for the LEADTOOLS WIN16 and WIN32 DLLs; plus LEADTOOLS
VBX Pro, ActiveX16 Pro, and ActiveX32 Pro. In effect, this product combines LEADTOOLS WIN16 Pro
and LEADTOOLS WIN32 Pro.

LEADTOOLS Pro Express: All the features of LEADTOOLS WIN16/WIN32 Pro; plus the additional
features and faster performance of the Express editions.

LEADTOOLS OS/2 Pro: API for the LEADTOOLS OS/2 DLLs. The API provides a complete set of
compression and manipulation functions. You can use the API with any development system that supports
DLLs for OS/2 version 2.1 or later (including OS/2 Warp). For example: IBM C Set++ and Borland C++ for
OS/2.

LEADTOOLS OS/2 Pro Express: All the features of LEADTOOLS OS/2 Pro; plus the additional features
and faster performance of the Express editions.

For more products, refer to Other Products from LEAD Technologies.

Call for details on custom applications, operating system ports and licensing fees.

All products are sold in the U.S. and Canada with a 30-day money back guarantee.

