jade

jade

] COLLABORATORS
TITLE :
jade
ACTION NAME DATE SIGNATURE
WRITTEN BY September 19, 2022
| REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

jade iii

Contents

1 jade 1
1.1 jade.guide 1
1.2 jade.guide/Copying o . e e e 2
1.3 jade.guide/Introduction L e e e e e e 2
1.4 jade.guide/News L e e 3
1.5 jade.guide/Systems Supported L. e 5
1.6 jade.guide/Editor CONCEPLS o i it e e e e e e e e 6
1.7 jade.guide/Key Names 0 e e 7
1.8 jade.guide/Modifiers e e e e 8
1.9 jade.guide/Keys L e 9
1.10 jade.guide/Example Keys e 10
1.11 jade.guide/Starting Jade e e e e e e 11
1.12 jade.guide/Invocation L e 11
1.13 jade.guide/Startup Options oL e e e e e e 12
1.14 jade.guide/Startup Procedure e e 14
1.15 jade.guide/Using Jade 15
1.16 jade.guide/Invoking Commands e e 17
1.17 jade.guide/Command ATEUMENLS v v v vttt e e e e e e e e e e e e e e e 17
1.18 jade.guide/The Help System L . 18
1.19 jade.guide/Loading and Saving Files L 19
1.20 jade.guide/Commands To Load Files e 20
1.21 jade.guide/Commands To Save Files e 20
1.22 jade.guide/File Variables L e 21
1.23 jade.guide/Backup Files e 22
1.24 jade.guide/Auto-Saving Files L 23
1.25 jade.guide/Accessing Compressed Files e 24
1.26 jade.guide/Other File Commands e 24
1.27 jade.guide/Editing Buffers 24
1.28 jade.guide/Moving Around Buffers 26

1.29 jade.guide/Undo L e 27

jade iv

1.30 jade.guide/Editing Units L e e e 28
1.31 jade.guide/Editing Characters o v v i e e e e e e e e e e 29
1.32 jade.guide/Editing Words L 30
1.33 jade.guide/Editing EXpressions e e e e e e e 31
1.34 jade.guide/Editing Lines L e 31
1.35 jade.guide/Cutting And Pasting e e e 32
1.36 jade.guide/Using Blocks 33
1.37 jade.guide/Marking Blocks L e 34
1.38 jade.guide/Commandson Blocks 34
1.39 jade.guide/Rectangular Blocks L e 35
1.40 jade.guide/Killing e 36
1.41 jade.guide/Searching and Replacing e 36
1.42 jade.guide/Regular EXpressions e 37
1.43 jade.guide/Incremental Search L e 39
1.44 jade.guide/Global Replace e 40
1.45 jade.guide/Query Replace L e e e 40
1.46 jade.guide/Editing Modes L 41
1.47 jade.guide/Invoking aMode L e e e e 43
1.48 jade.guide/Genericmode L e 43
1.49 jade.guide/Cmode e e e 43
1.50 jade.guide/Lispmode L e 44
1.51 jade.guide/Asmmode L e e e e e e e e e 46
1.52 jade.guide/Textmode 46
1.53 jade.guide/Indented-Text mode e e e e e e e 47
1.54 jade.guide/Texinfomode 47
1.55 jade.guide/Minor Modes e e e e e e e e 49
1.56 jade.guide/Overwrite mode 49
1.57 jade.guide/Fillmode e e e e e 50
1.58 jade.guide/Auto-Savemode L e 50
1.59 jade.guide/Latin-1 mode e e e e 50
1.60 jade.guide/Using Buffers e 51
1.61 jade.guide/Displaying Buffers e e 52
1.62 jade.guide/Deleting Buffers 52
1.63 jade.guide/Other Buffer Commands e 53
1.64 jade.guide/The Buffer Menu e 53
1.65 jade.guide/Using WIndows L L e e e 55
1.66 jade.guide/Creating Windows L e 56
1.67 jade.guide/Killing Windows L e e 57

1.68 jade.guide/Other Window Commands L e 57

jade v

1.69 jade.guide/Using the Prompt e 58
1.70 jade.guide/The Simple Prompt e e e e 58
1.71 jade.guide/The Buffer Prompt e 59
1.72 jade.guide/Using Marks e e e e e e 59
1.73 jade.guide/Interrupting Jade L. 60
1.74 jade.guide/Recursive Editing e e 61
1.75 jade.guide/Character Images e 62
1.76 jade.guide/Client Editing e e e 63
1.77 jade.guide/Compiling Programs e 64
1.78 jade.guide/Running a Compilation e e e e e e 64
1.79 jade.guide/Finding Errors 65
1.80 jade.guide/Debugging Programs e e e e e 66
1.81 jade.guide/Using Grep i i i i e e e e 67
1.82 jade.guide/Keeping Changelogs e e 68
1.83 jade.guide/Info Mode 68
1.84 jade.guide/Shell 70
1.85 jade.guide/Simple Customisation e e e e e 72
1.86 jade.guide/Programming Jade e e e 73
1.87 jade.guide/Intro L. L e e e 75
1.88 jade.guide/niland t e e e e e e 76
1.89 jade.guide/The Lisp Reader 77
1.90 jade.guide/NOtation i it e e e e e e e e e e e e e e 77
1.91 jade.guide/DesCriptions o v i v it e e e e e e e e e e e e e 77
1.92 jade.guide/Data TYPES o o vt i i e e e e e e e e e e e e e e e 79
1.93 jade.guide/Types Summaryo e 79
1.94 jade.guide/Read Syntax e e e e e e e 82
1.95 jade.guide/Printed Representation L L e 83
1.96 jade.guide/Equality Predicates e e e e e 83
1.97 jade.guide/Comparison Predicates e 85
1.98 jade.guide/Type Predicates e e e e e 85
1.99 jade.guide/Garbage Collection e 86
1.100jade.guide/NUmMDbers o o e e e e e e e e e e e e 87
1.101jade.guide/Arithmetic Functions L e 87
1.102jade.guide/Bitwise Functions L. e e 88
1.103jade.guide/Numeric Predicates L e 89
1.104jade.guide/Characters o L e e e e 90
1.105jade.guide/Sequences L e e e 91
1.106jade.guide/Cons Cells e e e 92

1.107jade.guide/Lists e e e 93

jade vi

1.108jade.guide/List Structure e e e e 94
1.109jade.guide/Building Lists e e e e e e e e 95
1.110jade.guide/Accessing List Elements 98
1.111jade.guide/Modifying Lists o 0 e e e e e e e e e e e 99
1.112jade.guide/Association Lists e 100
1.113jade.guide/Infinite Lists e e e e e 101
1.114jade.guide/Vectors L L e 102
L.115jade.guide/Strings L e e e e e e e e e e 103
1.116jade.guide/Array Functions L. e 105
1.117jade.guide/Sequence Functions e e e e 106
1.118jade.guide/Symbols L L e e 107
1.119jade.guide/Symbol Syntax L e e e e e e e 108
1.120jade.guide/Symbol Attributes L e e 108
1.121jade.guide/Obarrays e e e e e e e e e e e e e e e 109
1.122jade.guide/Creating Symbols L e 110
1.123jade.guide/Interning L e e e e e e e 111
1.124jade.guide/Property Lists L e e e 112
1.125jade.guide/Evaluation e e e e e e e e e e e e e 113
1.126jade.guide/Symbol Forms 114
1.127jade.guide/List Forms e e e e e e 114
1.128jade.guide/Function Call Forms e 115
1.129jade.guide/Macro Call Forms e e e e e e 116
1.130jade.guide/Special Forms 116
1.131jade.guide/Autoload Forms L e e e e 116
1.132jade.guide/Self-Evaluating Forms e 117
1.133jade.guide/QUOting e e e e e e e 117
1.134jade.guide/Control Structures e e e 118
1.135jade.guide/Sequencing StruCtUIes o v v i e e e e e e e e e e e e e 118
1.136jade.guide/Conditional Structures L e e e e 119
1.137jade.guide/Looping StruUCtUIes v v v i i i e e e e e e e e e e e e e e e e 122
1.138jade.guide/Non-Local Exits e 122
1.139jade.guide/Catch and Throw e e e 123
1.140jade.guide/Function EXits e 124
1.141jade.guide/Cleanup Forms L L e 125
1.142jade.guide/Errors L. e 125
1.143jade.guide/Variables e e 126
1.144jade.guide/Local Variables e 127
1.145jade.guide/Setting Variables L L e e 129

1.146jade.guide/Scope and Extent e 130

jade vii

1.147jade.guide/Buffer-Local Variables e 130
1.148jade.guide/Void Variables L e e e e e e 133
1.149jade.guide/Constant Variables e 133
1.150jade.guide/Defining Variables L e e e e e e 134
1.151jade.guide/Functions L e e e 135
1.152jade.guide/Lambda EXpressions oo e e e e e e e e e e e 136
1.153jade.guide/Named Functions e 137
1.154jade.guide/Anonymous Functions L e e e e e 138
1.155jade.guide/Predicate Functions 139
1.156jade.guide/Defining Functions e e e e e e 140
1.157jade.guide/Calling Functions e 141
1.158jade.guide/Mapping Functions e e e e e e e 141
1.159jade.guide/Macrosl e e e e e e e e 142
1.160jade.guide/Defining Macros o i e e e e e e e e e e e 143
1.161jade.guide/Macro Expansion e 143
1.162jade.guide/Compiling Macros o i i e e e e e e e e e e e e 144
1.163jade.guide/Streams L. L L e e e e 145
1.164jade.guide/Input Streams L e e e e e e e e e e e 146
1.165jade.guide/Output Streams e e e e 147
1.166jade.guide/Input Functions e e e e 148
1.167jade.guide/Output Functions e 149
1.168jade.guide/Loading L e e e e e e e e e 151
1.169jade.guide/Load Function e 152
1.170jade.guide/Autoloading e e e e e 153
1.171jade.guide/Features e 155
1.172jade.guide/Compiled LiSp o 0 e e e e e 156
1.173jade.guide/Compilation Functions L e 156
1.174jade.guide/Compilation Tips o e e e e e e 157
1.175jade.guide/Disassembly e 159
1.176jade.guide/HOOKS o e e e e e e 160
1.177jade.guide/Functions As Hooks e 160
1.178jade.guide/Normal HOOKS e e e e 160
1.179jade.guide/Standard Hooks L. e 161
1.180jade.guide/Buffers L. e e 163
1.181jade.guide/Buffer Attributes e 164
1.182jade.guide/Creating Buffers L e 166
1.183jade.guide/Modifications to Buffers oL o 167
1.184jade.guide/Read-Only Buffers e 167

1.185jade.guide/Destroying Buffers oL 167

jade viii

1.186jade.guide/Special Buffers L 168
1.187jade.guide/The Buffer List e e e 169
1.188jade.guide/The Current Buffer e 170
1.189jade.guide/Windows e e e e e e e 171
1.190jade.guide/Opening Windows o oottt e e e e e e e 172
1.191jade.guide/Closing Windows o i it e e e e e e e e e e e 173
1.192jade.guide/Iconifying Windowso e e e 174
1.193jade.guide/Displaying Messages o v v v vt e e e e e e e e e e e e e e e e 174
1.194jade.guide/The Current Window o o i i e 175
1.195jade.guide/Window Font e e 176
1.196jade.guide/Window Information e 177
1.197jade.guide/Rendering e e e e e e e e e 178
1.198jade.guide/Block Marking 179
1.199jade.guide/PoSItions e e e e e e e e e e e e e 180
1.200jade.guide/Position COMPONeNts o v ittt e e e e e e e e e 181
1.201jade.guide/The Cursor Position e e e e 182
1.202jade.guide/Movement Functions 182
1.203jade.guide/Buffer EXtremes e e e e e e 183
1.204jade.guide/Character MOvement i it e e e e e 184
1.205jade.guide/Word Movement o e e e e e e e e e e e e e e 185
1.206jade.guide/Tab Movement o ittt e e e e e e e e 186
1.207jade.guide/Line MOVEMENt o 0 it e e e e e e e e e e e e 186
1.208jade.guide/Expression MOVEMENt vt vv it e e e e e e e e e e e e 187
1.209jade.guide/Positions and Offsets L 187
1.210jade.guide/Markso e 188
1.211jade.guide/Mark COMPONENtS v v v i i e e e e e e e e e e e e e e e e e e e 189
1.212jade.guide/Mark Relocation e 189
1.213jade.guide/Mark Residency e e e e e e 190
1.214jade.guide/Creating Marks L 191
1.215jade.guide/Altering Marks L e e e e e 192
1.216jade.guide/Moving to Marks 192
1.217jade.guide/Glyph Tables o e e e e e 192
1.218jade.guide/Glyph Table Basics e 193
1.219jade.guide/Glyph Positions L e e 194
1.220jade.guide/Creating Glyph Tables e 195
1.221jade.guide/Buffer Glyph Tables e 195
1.222jade.guide/Input Eventso e 196
1.223jade.guide/Keymaps e e e 197

1.224jade.guide/Types of Keymap e 197

jade iX

1.225jade.guide/Creating Keymaps L e 198
1.226jade.guide/Binding Keys e e e e 198
1.227jade.guide/Key Lookup 199
1.228jade.guide/Prefix Keys e e e e e e 200
1.229jade.guide/Standard Keymaps Lo e 201
1.230jade.guide/Event Loop L e e e e 201
1.231jade.guide/Event Loop ACtions e 202
1.232jade.guide/Commands L. e e e e e e e e e 203
1.233jade.guide/Interactive Declarations L e e 204
1.234jade.guide/Prefix Arguments e e e e e e e e e 206
1.235jade.guide/Calling Commands e e 207
1.236jade.guide/Example Commands e e e e e e e e e e 208
1.237jade.guide/Event Loop Info L 209
1.238jade.guide/Recursive Edits L e e e e 209
1.239jade.guide/Reading Events e 210
1.240jade.guide/Idle ACtions L e e e e e e e e 211
1.241jade.guide/Editing Files L e 212
1.242jade.guide/Reading Files Into Buffers e 213
1.243jade.guide/Writing Buffers 215
1.244jade.guide/Buffer Date Stamps e e e e 216
1.245jade.guide/Buffer Modification Counts e e e 217
1.246jade.guide/Making Backups L e e e e 217
1.247jade.guide/Controlling Auto-Saves o e 218
1.248jade.guide/Text e e e e e e 219
1.249jade.guide/Buffer Contents Lo e 219
1.250jade.guide/Insertion Functions e e e e e e 220
1.251jade.guide/Deletion Functions oL e 221
1.252jade.guide/Kill Functions e e e e e e 222
1.253jade.guide/Transpose Functions L e 223
1.254jade.guide/Indentation Functions L e e e e e 224
1.255jade.guide/Translation Functions L e 225
1.256jade.guide/Search and Match Functions e e 226
1.257jade.guide/Searching Buffers oL 227
1.258jade.guide/String Matching L e 228
1.259jade.guide/Replacing Strings e 229
1.260jade.guide/Regexp Functions e 229
1.261jade.guide/Rectangular Editing L e 231
1.262jade.guide/Controlling Undo e 231

1.263jade.guide/Misc Text Functions L e 232

jade X

1.264jade.guide/Writing Modes L e 232
1.265jade.guide/Writing Major Modes o L e e e e 233
1.266jade.guide/Installing Modes e 235
1.267jade.guide/Writing Minor Modes e e e e e 236
1.268jade.guide/Mode-Specific Indentation L 237
1.269jade.guide/Mode-Specific EXpressions e e e e e e 238
1.270jade.guide/Mode-Specific Comments e e 239
1.271jade.guide/Prompting e e e e e e e e e 240
1.272jade.guide/Files L e 242
1.273jade.guide/File Names e e e e e e e e 243
1.274jade.guide/File Objects e e 244
1.275jade.guide/Creating File Objects 0 . i e e e e e e e 245
1.276jade.guide/Destroying File Objects e 245
1.277jade.guide/File Object Predicates e e e e e e 246
1.278jade.guide/Functions on File Objects e 246
1.279jade.guide/File Information e e e e e e 246
1.280jade.guide/Manipulating Files 248
1.281jade.guide/Reading DireCtories o o v v it e e e e e e e e e e e e e e 248
1.282jade.guide/Reading and Writing Files 248
1.283jade.guide/Processes ot e e e e e e e e e e e e e 249
1.284jade.guide/Process ObJECts o v i it e e e e e 249
1.285jade.guide/Asynchronous Processes e e e e e 251
1.286jade.guide/Synchronous Processes 253
1.287jade.guide/Process [-O e e e 254
1.288jade.guide/Process States Lo e 254
1.289jade.guide/Signalling Processes e e e e e e 256
1.290jade.guide/Process Informationo e 256
1.291jade.guide/Interactive Processes e e e e e e 257
1.292jade.guide/Miscellaneous Functions oL Lo 259
1.293jade.guide/System Information e e e e 259
1.294jade.guide/User Information e 260
1.295jade.guide/Environment Variables e e 260
1.296jade.guide/System Time L e 261
1.297jade.guide/Revision Information 261
1.298jade.guide/Debugging e 262
1.299jade.guide/Tips o o e e e 263
1.300jade.guide/Comment Styles e 264
1.301jade.guide/Program Layout L e e e 265

1.302jade.guide/General Tips L e 266

jade xi

1.303jade.guide/Reporting Bugs 267
1.304jade.guide/Function Index L e 268
1.305jade.guide/Variable Index L e e 295
1.306jade.guide/Key Index L e 301

1.307jade.guide/Concept Index L e 316

jade

1/348

Chapter 1

jade

1.1 jade.guide

* Kk Kk Kk

Jade

Jade is a highly flexible Emacs-style text editor for X11 (on Unix)

and AmigaDOS.

This is Edition 1.3 of its documentation, last updated 7 October
1994 for Jade version 3.2.

Copying
Distribution conditions
Introduction
Brief introduction to Jade
News

New features in this release
Systems Supported
The operating systems Jade supports

Editor Concepts
Some ideas you should understand

Key Names
How keys are described in this manual
Starting Jade

How to start the editor

Using Jade
Instructions for using the editor

Programming Jade

jade 2/348

How to extend Jade —-- its Lisp system

Reporting Bugs
How to contact me

Function Index
Menu of all documented functions

Variable Index
All variables which have been mentioned

Key Index
Menu of all key bindings

Concept Index
Main index, references to all sections

1.2 jade.guide/Copying

Copying

* Kk Kk k ok ok k

Jade 1is distributed under the terms of the GNU General Public
License, this basically means that you can give it to anyone for any
price as long as full source code 1is included. For the actual legalese
see the file ‘COPYING’ in the distribution. I reserve the right to use
a different licence in future releases.

The only parts of Jade which are not my own work are the regexp
code, this is by Henry Spencer (though I have made some small
modifications) and is distributed under his conditions, and the ARexx
interface in the Amiga version which is based on 'MinRexx’ by Radical
Eye Software.

Be aware that there is absolutely NO WARRANTY for this program, you
use it at your own risk. Obviously I hope there are no bugs, but I make
no promises regarding the reliability of this software.

1.3 jade.guide/Introduction

Introduction

khkkk kA khkkkKhk

Jade 1s a text editor primarily designed for programmers. It is
easily customised through a Lisp-style extension language and can be
tailored to the user’s own requirements.

jade 3/348

Jade is designed to run under a graphical windowing system, systems
currently supported are the Commodore Amiga and the X Window System
version 11 (but only under Unix).

It is the successor to the editor ‘Jed 2.10’ which I released for the
Amiga in early 1993. I have decided to rename it now that I have made an
X11 version since there is already an editor called ‘Jed’ available
(there is no connection between the two, I haven’t even looked at the
other one). "Jade" is an anagram of "A Jed", if you want an acronym you
could use "Just Another Damn Editor", if you can think of anything
better please tell me.

Jade is compatible with GNU Emacs in terms of key presses and
command names to a certain extent but it is not intended as a simple
copy of Emacs (indeed, when I started this I had never actually used
Emacs!). I have tried to take my favourite aspects of all the editors I
have used as well as adding features that I have not found elsewhere.
Consequently, it is very much the editor that *Ix want —-- you may not
find it so appealing.

1.4 jade.guide/News

News

* Kk Kk %
This chapter lists the major changes to Jade and which release they
occurred in. Only changes relevant to you, the user, are detailed; for

more explicit history see the ‘Changelog’ files with the sources.

Version 3.2

* The programmer’s manual has finally be written.

* Undo; devote as much memory as you want to keep track of all
modifications to a buffer which can then be wound back.

* Arguments can be given to commands as they’re invoked.
* Buffer menu for interactive buffer manipulation.

* An Emacs-style local variables section can be embedded in a file;
replaces the naff ‘::jade-code::’ thing.

* ‘Ctrl-k’” (‘kill-line’) works at last.

* Now possible to interrupt jade while it’s working (i.e. to let you
kill infinite loops).

* The Help system now has commands to list key bindings, display
what is bound to any key sequence.

* Use of the Latin-1 character set is now controlled by the minor
mode ‘latin-l-mode’.

jade

4/348

Can load and save compressed (compress or gzip) files into/out of
buffers transparently when running on Unix.

Transposing commands; ‘transpose-chars’, ‘transpose-words’,
‘transpose—exps’. Bound to ‘Ctrl-t’, ‘Meta-t’ and ‘Ctrl-Meta-t’
respectively.

Can now run a shell in an editor buffer, very basic (no
completion) but it works okay.

Support for using gdb through the shell interface, the current
frame’s source code is highlighted in a separate window.

‘Ctrl-z’ moves to ‘Ctrl-W’ so that ‘Ctrl-z’ can (de)iconify the
current window.

Some programs written for the previous incarnation will need to be
altered; all will have to be recompiled.

Version 3.1

Now properly supports characters which print as more than one
character (i.e. proper tabs, ‘"L’, ‘\123’, etc...). In general any

character can print as any sequence of up to four character-images.

Doesn’t expand tabs to spaces anymore, this means that loading and
saving of largish files is noticeably quicker.

Files containing NUL characters can be edited (more or less)
successfully. Some commands (notably the regexp matcher) still
don’t like these characters but, in the main, binary files can be
edited successfully.

Searching and replacing has changed, it’s easier to use now and
replacing globally is built in.

Many improvements to the Info viewer, not least, the dir file
doesn’t have to have a tag-table anymore.

Client editing. This lets you load files into a running editor
from a shell. For example, if your mailer runs an editor on the
message you’re writing you can use the client to edit the message
in a Jade that you are running.

The buffer prompt’s completion is now controllable by the mouse as
well as the keyboard. Click the right button to complete the
current word. Double-clicking the left mouse button on one of the
lines under the ‘::Completions::’ line selects that completion.

‘text-mode’ and ‘indented-text-mode’ major-modes for editing
English language (as opposed to programming languages) .

Minor-modes. These provide small variations to the major-modes.
For example, ‘overwrite-mode’ makes typed keys overwrite
whatever’s under the cursor. Also included is a minor mode to do

jade 5/348

auto-filling (word wrap) .

* On Unix, a tilde ('~’) in a filename is handled properly in most
cases

x* It is now possible to Meta qualify a key press and it will pretend
that you pressed ESC then the un—-Meta’d key.

1.5 jade.guide/Systems Supported

Requirements
kkhkkkkhkkKhkkhkkKkk*k

Jade will only run on certain operating systems, this chapter
details Jjust what it needs as well as some notes relevant to each
system.

Amiga Jade

The only real requirement for Jade running on an Amiga is that it
must run an operating system revision of at least V37 (thats V2.04) and
have about 300K free memory available.

It also needs more stack than the average Amiga application. For
normal use 20K should be okay. If you want to use the Lisp compiler 50K
would be a better bet.

It assumes that its directory is pointed to by the ‘JADE:’
assignment. This means that the main Lisp files are stored in
‘JADE:1isp/’ and the file of doc-strings is ‘JADE:DOC’.

X11 Jade

Jade will only run on version 11 of X, it has absolutely no support
for character terminals or different windowing systems. As long as it
compiles it should work on your system.

One problem you might find is that the Backspace and Delete keys
don’t work properly. As far as I have been able to find out, most X
terminals map both the Backspace (normally at the top-right of the
alpha-keyboard) and the Delete (normally somewhere above the cursor
keys) keys to the ‘Delete’ keysym. Obviously, since I want these keys
to have different effects (1) this is no good. What I decided to do
about this was two things,

1. Use ‘xmodmap’ to map the Delete key to the ‘Backspace’ keysym.
This may sound backwards but most programs seem to use the
‘Delete’ keysym as what I call ‘Backspace’ so mapping as I
described doesn’t break this.

To do this, I have the following in my ‘.Xmodmap’ file

jade 6/348

keycode 107 = Backspace

Note that the ‘107’ is the Delete key’s key code on *my* keyboard,
your keyboard may, and probably will, be different.

2. In the function which binds descriptions of key presses to Lisp
forms, swap the meanings of the ‘Backspace’ and ‘Delete’ keysyms.

This means that everything works okay! You can bind to Delete key
and it will work properly.

(1) Backspace should rub out the key before the cursor and Delete
should delete the character under the cursor

1.6 jade.guide/Editor Concepts

Editor Concepts

kkkkhkkkkhkhkkkhkkkk kK

Before I describe the editor in detail there are several concepts
which you should be familiar with. Some will be explained in more
detail later.

"buffer"
Buffers are used by the editor to store the text that you are
editing. Broadly speaking, each buffer holds the contents of one
text-file loaded into the editor (it is not necessary for each
buffer to be associated with a file, some buffers exist for other
purposes for example the ‘xjadex’ buffer is used to interact with
the Lisp system).

"current buffer"
The buffer being edited in the current window (see below), most
editor commands work on this buffer unless told otherwise.

"window"
Corresponds to a window in the window-system. Each window can
display one buffer at a single time (although a buffer may be
displayed in more than one window at once).

"current window"
Jade always keeps track of which one of its windows is active. It
is called the current window. Whenever you type a key or press a
mouse button in one of Jade’s windows, that window automatically
becomes the current window. Amongst other things, all messages
from the editor are displayed in the status line of the current
window.

"cursor"
The cursor marks your current position in the current buffer (see
above), when you type something it is inserted into the buffer
between the cursor and the character preceding it (unless you type

jade 7348

a command) .

"status line"
One line in a window is devoted to displaying messages from the
editor,
Using Windows

"Lisp"
The programming language which Jade uses, although the internals
of the editor are written in C, all commands are written in a
dialect of Lisp (even if the command only calls a C function).
Jade contains an interpreter, compiler and debugger for this
language. See
Programming Jade

"variable"
Variables are used to store Lisp values, each variable has a
unique name. Note that unlike many programming languages
variables in Lisp are xnotx* typed, the data values themselves have
a type associated with them.

"form"
A form is a single Lisp expression. For example, all of these are
forms:
foo
42
"hello"
(setqg foo 200)
"command"
A command is a sequence of Lisp forms which may be called
interactively (i.e. from the keyboard). It may be a key sequence
(such as ‘Ctrl-x Ctrl-f’) or a Lisp function to evaluate (such as
‘find-file’).

"regular expression"
A regular expression is a string which is used to match against

other strings. It has a special syntax which allows you to form a
kind of template against which the other strings can be matched.
They are used extensively by the editor, but you -- the user —--
will mainly encounter them when searching and replacing strings in
buffers.

1.7 jade.guide/Key Names

Key Names
XKk Kk kKKK kK

In this manual I have adopted a consistent notation for all key
presses, since most editor commands are invoked via a typed key

jade 8/348

sequence it is very important that you can decipher this notation.

Note that the term ‘input event’ (or ‘event’) and the term ‘key
press’ have been used interchangeably throughout this manual. A ‘key
press’ may mean a mouse event, they don’t always come from the keyboard.

Every key press has a set of "modifiers"; these are the keys such as
"Shift" or "Control" which don’t actually produce a character when
typed, they only effect the rest of the keyboard. Each key, then, can
have one or more modifiers.

The name of an event consists of zero or more hyphen-separated
modifier names, followed by a hyphen and the name of the actual event.

Some commands are triggered by more than one of these key presses;
press each key (or do whatever is necessary to precipitate the input
event) 1in turn to invoke the command.

Note that the case of modifiers is not important, however some of
the keys xarex, so you should always specify them in their correct case.

Modifiers
Names of modifier keys

Keys
Names of actual keys

Example Keys
Some examples and what they mean

1.8 jade.guide/Modifiers

Modifiers

"Shift"
" SFT"
The shift key.

"Ctrl"
"C'I‘L"
The control key, or its equivalent.

"Meta"
This depends on the window-system, on X11 it is the "Modl"
modifier, on the Amiga the "Alt" key. When the ‘meta-sends-esc’
variable is non-nil the Meta modifier is treated specially,

- Variable: meta-sends-esc
When non-nil, any Meta-modified key presses are expanded into
a sequence of two key presses, ESC and the pressed key minus

jade

9/348

its Meta modifier. For example typing ‘Meta-f’ would expand
to ‘ESC f’. This feature is provided for compatibility with
GNU Emacs.

What this really means is that when the option is enabled (it
is by default) you can either type the key sequence ‘ESC X’
or the sequence ‘Meta-X’ (where Meta is your keyboard’s meta
key) to invoke a command described as ‘Meta-X'.

A LMB mw
The left mouse button.

n].\/.[N.[B "
The middle mouse button.

n RMB n
The right mouse button.

As well as these, there are also some others, "Modl" to "Mod5"
represent the X11 modifiers of the same name. "Buttonl" to "Button5"
also correspond to their X11 counterparts (Buttonl to Button3 are LMB
to RMB). For Amiga users, "Amiga" corresponds to the Amiga key (this is
the same as Mod2) .

1.9 jade.guide/Keys

As far as possible each single character key-definition corresponds
to where that character is on the keyboard (a is ‘a’, etc...).

When using an Amiga this should be true for xallx keys since the
Amiga’s "keymap.library" makes it easy to look up what key a character
belongs to. However, this is not so easy on X11. All of the standard
ASCII character set should be okay, but the more esoteric characters
may have to be specified by the names of their X11 keysym (without the
‘XK_' prefix). Look in the <X1ll/keysymdef.h> include file for all
keysyms, for example ‘XK_qgquestion’ would have to be used for ‘?’ if the
editor didn’t treat it, and many others, specially.

Some keys which don’t follow this pattern are

" SPC"
" Space n
The space bar.

n TAB n
The tab key.

" RET "
"Return"
The return key.

jade

10/348

"ESC"
"Escape"
The escape key.

"BS n
"Backspace"
The backspace key.
"DEL n
"Delete"
The delete key.
"Help "
The help key, not all keyboards have this.
"Up"
The cursor up key.
"Down"
The cursor down key
"Left"
The cursor left key.
"Right "
The cursor right key.
"KP_Enter"
"KP_Multiply"
"KP_Divide"
"KP_Minus"
"KP_Add"
"KP_Decimal"
AL KP N"
Keys on the numeric keypad. For
"Clickl"
Single clicking a mouse button.
"Click2"
Double clicking a mouse button.
"Off n
Releasing a mouse button.
"Move"

Moving the mouse. This doesn’t work on X11 yet.

1.10 jade.guide/Example Keys

Example Keys

Some examples of proper key names are,

KP_N, N is a digit.

jade 11/348

‘Ctrl-x’
Hold down Control, type x.

‘Meta-Shift-RET’
Hold down Meta and Shift, then type the Return key, or
alternatively, type the Escape key then hold down Shift and type
Return.

‘LMB-Clickl’
Click the left mouse button once.

‘Ctrl-RMB-Clickl’
Hold down Ctrl then click the right mouse button once.

1.11 jade.guide/Starting Jade

Starting Jade

*hkkkkhkkkkhkkkkkx

This chapter describes Jade’s initialisation process. This includes
how to start it, what options it will accept and what it actually does
after being started.

Invocation
How to start the editor

Startup Options
Arguments specified on the command line

Startup Procedure
What happens on startup

1.12 jade.guide/Invocation

Invocation

Since Jade supports two vastly different operating systems they both
need to be covered separately.

The normal way to start Jade on the Amiga is to type its name at the
Shell (or CLI) together with any options (see
Startup Options

jade

12 /348

) you
want. Note that these options are in the traditional Unix style, a dash
followed by the option name and any arguments, not the standard
AmigaDOS method.

It is also possible to invoke the editor from the Workbench, simply
double clicking on its icon will cause Jade to open its initial window.
Unfortunately there is no support for passing arguments via Tool Types,
nor is there any way to create icons with saved files. This is largely
due to the fact that I rarely use the Workbench -- if enough people
complain about this I will probably fix it. Jade doesn’t have an icon
yvet, you’ll have to make one yourself.

X11

Jade should be started like most other Unix programs, type its name
and any arguments to a shell. It must be able to connect to an X server
(preferably the one controlling your terminal), the ‘-display’ option
can be used if needed.

1.13 jade.guide/Startup Options

Startup Options

The acceptable options can be split into three classes. Note that
they must be specified on the command line in order of their class.
This means that, for example, the ‘-rc’ option must be after the ‘-font’
option.

So, the general usage pattern is
jade [SYSTEM-DEPENDENT-OPTIONS] [STANDARD-OPTIONS] [LISP-OPTIONS]
Note that the LISP-OPTIONS may include files to be loaded.
1. System dependent options.
* Options for the Amiga system.

‘-pubscreen SCREEN-NAME’
Defines the name of the public screen on which the first
window is opened. By default (or if SCREEN-NAME doesn’t
exits) the ‘Workbench’ screen is used.

‘-font FONT-STRING’
Defines the font used in the first window. FONT-STRING
is the font to use, it is the name of the font (for
example, ‘topaz.font’), followed by a hyphen and the
point size to use. For example, a FONT-STRING of
‘topaz.font-8’ gives 8-point topaz. This is the default.

jade 13/348

‘-stack STACK-SIZE’
When this argument is given Jade allocates a new stack.
STACK-SIZE is a decimal number defining the size (in
bytes) of the new stack.

If this argument is not given Jade simply uses the stack
that AmigaDOS gave it.

*+ Options for X11.

There are two types of options to the X11 version of the
editor, those specified on the command line and those defined

in the resource database (i.e. in your ‘.Xdefaults’ file).
Resources are looked for under two names, firstly the name
under which the editor was invoked (normally ‘jade’), if this

fails it tries again with the name ‘Jade’. Naturally, options
specified on the command line override those in the resource
database.

‘-display DISPLAY-NAME’
Defines the name of the X display to open, by default
the contents of the environment variable ‘DISPLAY’. It
is a string of the form ‘HOST-NAME :NUMBER.SCREEN-NUMBER’ .

‘-name NAME’
The name to use when looking up resource values, this
replaces the base name of the executable (normally
‘jade’) .

‘-geometry GEOM-SPEC’
Specifies where to place the first window on the screen.
This is a standard X style geometry specification.

‘-fg FOREGROUND-COLOUR’
Resource: ‘fg: FOREGROUND-COLOUR’
The colour of the window’s foreground (i.e. the text).

‘-bg BACKGROUND-COLOUR’
Resource: ‘bg: BACKGROUND-COLOUR’
The background colour of the window.

‘—-font FONT-NAME'

Resource: ‘font: FONT-NAME'
The name of the font used for all text in the initial
window.

2. Standard options.

‘-rc LISP-FILE’
Load the Lisp script LISP-FILE instead of the normal
initialisation script (‘init’). Warning: the editor depends
heavily on the normal file, if you change this without due
care the editor could be unusable —-- no keys will be bound
and many standard functions won’t exist.

Print the version and revision numbers of this copy of the

jade

14 /348

editor then quit.

‘-log-msgs’
This option makes all messages which are displayed in the
status line also be written to the standard error stream.
This is sometimes useful for debugging purposes.

All other options are passed to the Lisp initialisation process in
the variable ‘command-line-args’, these are available to any Lisp

packages loaded in the initialisation script. Any left after that

are scanned for the following options,

‘—-f FUNCTION'
Call the Lisp function FUNCTION.

‘-1 FILE’
Load the Lisp file FILE.

_ql
Quit cleanly.

‘FILE'
Load the file of text FILE into a new buffer.

An example command line for starting Jade from a Unix shell could be

$ jade -fg white -bg black -log-msgs foo.c bar.jl

This means white text, black background, save messages and load the

files ‘foo.c’ and ‘bar.jl’.

1.14

jade.guide/Startup Procedure

Startup Procedure

This is a description of what happens when the editor initialises

itself.

Firstly lots of internal data structures are created, memory
pools, symbols and their symbol-table (including all the primitive
Lisp functions).

The window-system is initialised (parse the system-dependent
options, and the xrdb resources if in X).

Parse the standard options.

Create the initial window and the first buffer to display in it
(this is the buffer called ‘xjadex’).

Load the initialisation script, this is either the Lisp file
called ‘init’ or whatever was given to the ‘-rc’ command line
option.

jade

15/348

Some selected highlights of what the standard file does are,
*+ Load lots of Lisp files, some notable ones are

‘autoload’
Initialise the autoload stubs.

‘loadkeys’
Creates the standard keymaps and key bindings.

«* Try to find the user’s personal startup file, this is
normally the file ‘.Jjaderc’ in their home directory (1).

+ Load any files which were specified on the command line.

6. Start the top-level recursive edit, this doesn’t exit until the
editor does.

(1) The Amiga has no notion of a user’s home directory, Jade uses
the contents of the environment variable ‘HOME’, or if this doesn’t
exist the ‘SYS:’ assignment.

1.15 jade.guide/Using Jade

Using Jade

* ok ok k ok ok kk kK

This chapter of the manual is meant to teach you to xusex the editor,
because of this I have attempted to reduce references to the Lisp
extension language to an absolute minimum.

Invoking Commands
How to use the commands and key-sequences
described in this manual.

Command Arguments
Many commands can be modified by prefixing
them with a numeric argument

The Help System
Online help facilities

Loading and Saving Files
Manipulating files

Editing Buffers
Simple editing commands

jade

16 /348

Moving Around Buffers
Commands for moving the cursor

Undo
Go back in time
Editing Units
Characters, words, lines, etc...

Cutting And Pasting
How to insert text from the clipboard

Using Blocks
Highlighting regions to manipulate

Killing
Deleting text for later insertion

Searching and Replacing
Searching the buffer for a regexp
Editing Modes
Editing different types of files
Minor Modes
Small alterations to editing modes
Using Buffers

Selecting & deleting buffers

Using Windows
Opening new windows

Using the Prompt
Entering strings and completion

Using Marks
Recording positions in files
Interrupting Jade

Breaking out of commands

Recursive Editing
Editing within a command

Character Images
How to get a Latinl character set

Client Editing
Using Jade from other programs

Compiling Programs

jade

17 /348

Help for developing programs

Info Mode
Reading Info files with Jade

Shell
Using a shell inside a buffer

Simple Customisation
Configuring Jade

1.16 jade.guide/Invoking Commands

Invoking Commands

Throughout this manual I have documented the key sequences you have
to enter to make the editor perform a certain action. In fact, the key
sequences are mapped to "commands" when they are typed and it is the
xcommand* which performs the action.

Commands are simply pieces of Lisp code, usually with a unigque name
associated with that command. If you know the name of a command it is
possible to invoke it using the ‘Meta-x’ key sequence; simply type
‘Meta-x COMMAND RET’ where COMMAND is the name of the command you wish
to invoke.

‘Meta—-x’
Prompt for the name of a command (completion is available) then
invoke it.

For the sake of simplicity I have often referred to key sequences as
commands; what I actually mean is that the key sequence is bound to the
command. For example the key sequence ‘Ctrl-x Ctrl-f’ opens a file, in
fact the key sequence ‘Ctrl-x Ctrl-f’ is bound to the command
‘find-file’, this Lisp function actually loads the file.

More detailed information about commands is available in the

programmer’s manual, see
Programming Jade

1.17 jade.guide/Command Arguments

Command Arguments

The actions of many commands can be altered by giving them a numeric

jade 18/348

argument, this argument is entered immediately prior to invoking the
command (they are technically called prefix arguments) .

Each argument is built using a number of special key sequences,

‘Meta-0’ to ‘Meta-9’
Append a digit to the end of the current prefix argument. Use a
sequence of these keys to build up a decimal number. For example

typing ‘Meta-1 Meta-0 Meta-0’ creates an argument of 100 for the
following command.

‘Meta—-—"'

(That’s ‘Meta-minus’.) Negates the value of current argument, if
the command is invoked after a single ‘Meta—--' prefix the actual
argument is -1.

‘Ctrl-u’
Successive ‘Ctrl-u’ key presses multiply the argument by 4 each
time. ©Note that any existing argument entered by the numeric or

minus commands (described above) is discarded with the first
‘Ctrl-u’.

1.18 jade.guide/The Help System

The Help System

To invoke the help system type the key sequence ‘Ctrl-h’ or if your
keyboard has it the ‘HELP’ key.

A prompt will be displayed in the status line showing you which keys
you can press next to enter one of the main options of the help system
explained below. Alternatively, you can type either ‘Ctrl-h’ or ‘HELP'
again to display some text telling you more about the help system and
how to use it.

The help system is exited after successfully invoking one of the
commands described below or typing anything which is not a recognised
command to the help system.

\al
To list all function names matching REGEXP, type ‘a REGEXP RET’
when in the help system.

\b/
Prints all key bindings and their associated commands which are
installed in the current buffer.

\el
Similarly to the ‘a’ command, to list all variable names matching
REGEXP, type ‘e REGEXP RET’ when in the help system.

\fl

Displays the online documentation for a function. After invoking

jade 19/348
this option type the name of the function.
\hl
Shows some helpful text describing how to use the help system.
\il
Enters the Info viewer. This allows you to browse through files
written in the Info hypertext format. For more information see
Info Mode
, for more information on Info files in general see Info.
\kl
Displays the command (with its documentation) for a key sequence.
After typing ‘Ctrl-h k’ enter the key sequence you want documented
as if you were going to invoke the command.
\ml
Display the documentation for the current major mode.
\Vl

Displays the online documentation and current value of a variable.
Type the name of the variable after invoking this option.

1.19 jade.guide/Loading and Saving Files

Loading and Saving Files

Since ‘Jade’ is a text editor its main function is to edit files of
text. This means that you must be able to read the text contained in a
file into one of the editor’s buffers, then save it back to disk when
you have finished editing it. That is what this section deals with.

Commands To Load Files
Key sequences to load files

Commands To Save Files
How to save a buffer

File Variables
Local variables defined in files

Backup Files
Making backups

Auto-Saving Files
Files can be saved periodically

Accessing Compressed Files
Reading and writing gzipped files

jade 20/ 348

Other File Commands
How to delete, rename or copy files

1.20 jade.guide/Commands To Load Files

Commands To Load Files

There are several commands used to load files into buffers, these
are,

‘Ctrl-x Ctrl-f’
Prompts for the name of a file (using file-completion) and display
the buffer containing that file. If the file has not already been
loaded it will be read into a new buffer.

‘Ctrl-x Ctrl-v’
Prompts for the name of a file, the current buffer is killed and
the buffer in which the prompted-for file is being edited 1is
displayed. As in ‘find-file’ it will be read into a new buffer if
it is not already in memory.

‘Ctrl-x Ctrl-r’
Similar to ‘find-file’ except that the buffer is marked as being

read-only. This means that no modifications can be made to the
buffer.

‘Ctrl-x i’
Prompts for a file, then inserts it into the current buffer at the

cursor position.

You can use the prompt’s completion feature to expand abbreviated
filenames typed to the prompt, for more information see

The Buffer Prompt

1.21 jade.guide/Commands To Save Files

Commands To Save Files

These are the commands used to save buffers and the key sequences
associated with them,

‘Ctrl-x Ctrl-s’
Saves the current buffer to the file that it is associated with

jade 21/348

(this is either the file that it was loaded from or something else
set by the function ‘set-file-name’). If no modifications have
been made to the file since it was loaded it won’t be saved (a
message will be displayed warning you of this).

‘Ctrl-x Ctrl-w’
Prompts for a name to save the file as. The file associated with
this buffer is renamed and the file is saved as its new name.

‘Ctrl-x s’
For each buffer which has been modified since it was loaded, ask
the user if it should be saved or not. If so, the command
‘save-file’ is used to save the file

1.22 jade.guide/File Variables

File Variables

It is often useful to define ‘local’ wvalues of certain variables
which only come into effect when a particular file is being edited.
Jade allows you to include a special section in a file which, when the
file is loaded, is used to give the variables specified buffer-local
values. (For more information about buffer-local variables see

Buffer—-Local Variables

.)

The special section must be somewhere in the last twenty lines of a
file, and must be formatted as in the following example,

XXX Local Variables: YYY
XXX VARIABLE:VALUE YYY

XXX End: YYY

That 1is, the string ‘Local Variables:’ followed by as many lines
defining local values as necessary then the string ‘End:’. The two
strings ‘XXX’ and ‘YYY’ may be anything (even nothing!) as long as they
are the same on each line. They are normally used to put the local
variable section into a comment in a source file.

For example, in a Texinfo source file the following piece of text at
the bottom of the file would set the column at which lines are broken to
74 (note that ‘@c’ introduces a comment in Texinfo).

@c Local Variables:
@c fill-column:74
@c End:

Two pseudo-variables which can be set using a local variables section
are ‘mode’ and ‘eval’. Setting the ‘mode’ variable actually defines the
major mode to use with the file (see

Editing Modes

jade

22/348

) while setting
‘eval’ actually evaluates the Lisp form VALUE then discards its value.

For example,

/* Local Variables: x/

/* mode:C */

/+ eval: (message "How pointless!") «/
/+ End: */

This Forces the file to be edited with the C mode and displays a
pointless message. Note that no variables called ‘mode’ or ‘eval’ are
actually set.

Several variables are used to control how the local variables feature
works.

— Variable: enable-local-variables
Defines how to process the ‘Local Variables:’ section of a file:
‘nil’ means to ignore it, ‘t’ means process it as normal and
anything else means that each variable being set has to be
confirmed by the user. Its default value it ‘t’.

- Variable: enable-local-eval
This variable defines how the pseudo-variable ‘eval’ is treated in
a local variables list, it works in the same way as the
‘enable—local-variables’ variable does. Its default value is
‘maybe’, making each form be confirmed before being evaluated.

— Variable: local-variable-lines
Defines how many lines at the bottom of a file are scanned for the
‘Local Variables:’ marker, by default it is 20.

Note that this feature is compatible with GNU Emacs, and since I have
tried to keep the names of variables compatible as well, there should
be few problems.

1.23 jade.guide/Backup Files

Backup Files

The editor can optionally preserve the previous contents of a file
when it is about to be overwritten by the saving of a buffer. It does
this by renaming the old file, ‘foo’ as ‘foo~’ (the original name plus
a tilde appended to it) before it is obliterated.

— Variable: make-backup-files
This variable controls whether or not backups are made of files
about to overwritten by the function ‘write-buffer’ (i.e. the
commands ‘save-file’ and ‘save-file-as’). When non-nil the old
instance of the file is renamed so that it has a tilde appended to
its old name.

jade

23/348

— Variable: backup-by-copying
When non-nil all backups are made by copying the original file
instead of renaming it as the backup file. This is slower but less
destructive.

- Variable: else-backup-by-copying
If ‘backup-by-copying’ is '‘nil’ and renaming the original file
would not be a good idea (i.e. it might break a link or something)
and this wvariable is non-‘nil’ the backup will be made by copying
the original file.

1.24 jade.guide/Auto-Saving Files

Auto-Saving Files

Jade is able to save snapshots of a buffer’s contents at set time
intervals. When this time interval expires and the buffer has been
modified since it was last (auto-) saved to disk (and the editor is
idle) the buffer is saved to a special file (usually the base component
of the file’s name surrounded by ‘#’ characters in the file’s
directory) .

— Variable: auto-save-p
When non-nil this makes the function ‘open-file’ (and therefore the
commands ‘find-file’, etc) flag that the file it just read should
be auto saved regularly.

— Variable: default-auto-save-interval
This is the default number of seconds between each auto save. This
variable is only referenced when each file is opened.

Its standard value is 120 seconds.

— Variable: auto-save-interval
This buffer-local variable controls the number of seconds between
each auto-save of the buffer it belongs to. A value of zero means
never auto-save.

When the buffer is saved properly (i.e. with ‘save-file’ and
friends) its auto-save file is deleted. Note that this doesn’t happen
when you kill a buffer and an auto-save file exists (in case you didn’t
mean to kill the buffer).

To recover an auto-saved file (i.e. after an editor crash or
something!) use the command ‘recover-file’.

‘Meta-x recover—-file’
Loads the auto-saved copy of the file stored in this buffer
overwriting its current contents (if any changes are to be lost
you will have to agree to losing them).

jade 24 /348

1.25 jade.guide/Accessing Compressed Files

Accessing Compressed Files

Jade contains basic support for reading, inserting and writing
buffers which have been compressed using the ‘gzip’ or ‘compress’
compression programs. When this feature is enabled such files are
transparently decompressed when loaded into the buffer and compressed
when saved back to a file.

Unfortunately this doesn’t work on Amigas yet. To install it the
Lisp form,

(require "gzip)

should be in your ‘.Jjaderc’ file (or you can do this by hand in the
‘xjadex’ buffer if you want).

After the ‘gzip’ package has been installed any files loaded into
buffers whose filename end in ‘.gz’ or ‘.Z’ are uncompressed, this
suffix is stripped when searching for a major mode to install in the
buffer but otherwise the buffer’s filename is left intact.

Any buffer saved whose filename ends in one of the above suffixes is

automatically compressed (‘'.gz’ is compressed by ‘gzip’, ‘.Z’ by
‘compress’) .

1.26 jade.guide/Other File Commands

Other File Commands

‘Meta-x delete-file RET FILE-NAME RET’
Deletes the file called FILE-NAME.

‘Meta-x rename—-file RET SOURCE RET DEST RET’
Renames the file called SOURCE as the file DEST.

‘Meta-x copy-file RET SOURCE RET DEST RET’
Makes a copy of the file called SOURCE as the file DEST.

1.27 jade.guide/Editing Buffers

Editing Buffers

The majority of keys when typed will simply insert themselves into
the buffer (this is not always true but it’s a good assumption) since
they have not been bound. Typically this includes all normal characters

jade 25/348

(i.e. alphanumeric, punctuation, etc) as well as any of the more obtuse
key—-sequences which have not been bound to a function (‘Ctrl-1’ is one
of the more useful of these).

The behaviour of the TAB key is different to many other editors -- it
doesn’t insert anything (unless a specific editing mode has bound it to
something else, like ‘c-mode’ for example), generally it just moves the

cursor to the next tab stop. This is partly because Jade doesn’t use
"proper" tabs and partly because it makes it easier to move around a
line (because the key sequence ‘Shift-TAB’ moves to the previous tab
stop) .

Some miscellaneous editing commands follow.

‘RET’
This generally splits the line into two at the position of the
cursor, some editing modes may provide an option which
automatically indents the line after it’s split.

‘Backspace’
Deletes the character before the cursor.

‘DEL’
‘Ctrl-d’
Deletes the character under the cursor.

‘Shift-Backspace’
Kills the characters between the start of the line and the cursor.
See
Killing

‘Shift-DEL’
Kills the characters from the cursor to the end of the line.

‘Ctrl-DEL’
Kills the whole line.

‘Ctrl-o’
Splits the line in two at the cursor, but leaves the cursor in its
original position.

‘Meta-d’
‘Meta-DEL’
Kills from the cursor to the end of the current word.

‘Ctrl-k’
Kills from the cursor to the end of the line, or if the cursor is
at the end of the line from the cursor to the start of the next
line. Each successive ‘Ctrl-k’ appends to the text in the kill
buffer.

‘Meta-1"
Makes the characters from the cursor to the end of the word lower

case.

‘Meta-u’

jade 26 /348

Upper cases the characters from the cursor to the end of the word.
‘Meta-c’
Capitalises the characters from the cursor to the end of the word,

this means make the first character upper case and the rest lower.

‘Meta—-Backspace’
Kills from the cursor to the beginning of the word.

1.28 jade.guide/Moving Around Buffers

Moving Around Buffers

Here is a selection of the most commonly used commands which move the
cursor around the current buffer.

\Upl
‘Ctrl-p’
Move one line up.
‘Down’
‘Ctrl-n’
Move one line down.
‘Left’
Move one column to the left, stopping at the first column.
‘Ctrl-b’
Move to the previous character, at the beginning of the line moves
to the end of the previous line.
‘Right’
Move one column to the right. This keeps moving past the end of
the line.
‘Ctrl-£f’
Move to the next character, at the end of a line moves to the
start of the next line.
‘Shift-Up’

Move to the first line in the buffer.

‘Shift-Down’
Move to the last line in the buffer.

‘Meta—-<’
Move to the first character in the buffer.

‘Meta—>"'
Move to the last character in the buffer.

‘Shift-Left’

jade

27 /348

‘Ctrl-a’
Move to the

‘Shift-Right’
‘Ctrl-e’
Move to the

‘Ctrl-Up’
‘Meta-v’
Move to the

‘Ctrl-Down’
‘Ctrl-v’/
Move to the

‘Meta-Left’
‘Meta-b’
Move to the

‘Meta-Right’
‘Meta-f’
Move to the

‘Meta-Up’
‘Meta-["
Move to the

‘Meta-Down’
‘Meta-]"’
Move to the

‘TAB'
‘Meta-1i’

beginning of the current line.

last character in the current line.

previous screen of text.

next screen of text.

previous word.

next word.

start of the previous paragraph.

start of the next paragraph.

Insert a tab character, indenting the cursor to the next tab

position.

Note that some editing modes redefine TAB to make it indent the
current line to its correct depth.

‘Shift-TAB’
Move to the

‘Ctrl-TAB’
Move to the

‘Meta-3j’

position of the previous tab.

position of the next tab.

Prompt for a line number and go to it.

‘Meta-m’
Move to the

first non-space character in the current line.

1.29 jade.guide/Undo

28/348

Jade makes it very easy to undo changes to a buffer, this is very
useful when you realise that actually, =*that wasn’tx the part of the
file you wanted to delete!

Basically to undo the last command type either ‘Ctrl-_' or ‘Ctrl-x
u’. If the last thing you did was to type some text into the buffer
all the consecutively-typed characters count as one command.

To undo more than one command, simply type more than one ‘Ctrl-_' (or
‘Ctrl-x u’) consecutively; this will progressively work its way back
through the buffer’s history. The first non-undo command cancels this
effect, so if you undo too far back invoke a command which doesn’t
modify the buffer, then undo whatever you undid.

‘Ctrl-_’

‘Ctrl-x u’
Undo the previous command, or the last block of consecutively
typed characters. Successive undo commands work backwards though

the undo-history until a non-undo command is invoked.

The exact amount of undo-information kept for each buffer is
controlled by the ‘max-undo-size’ wvariable. This defines the maximum
number of bytes which may be devoted to undo-information in a single
buffer, the default is 10000. No matter what this is set to, the last
command is xalways* recoverable.

— Variable: max—-undo-size
The maximum memory which may be devoted to recording
undo-information in each buffer.

1.30 jade.guide/Editing Units

Editing Units

To make it easier to remember which key sequences do what Jade
provides a number of commands which are similar to one another but
operate on different "units" in the buffer. These related-commands are
bound to the same key but with a different prefix or modifier. For
example ‘Ctrl-f’ moves forward one character while ‘Meta-f’ moves
forward one word.

Editing Characters
Commands operating on characters,

Editing Words
words,

Editing Expressions

jade 29/348

expressions,

Editing Lines
and lines.

1.31 jade.guide/Editing Characters

Editing Characters

These are the commands which operate on characters. Note that when an
argument (see
Command Arguments
) i1s given to one of these commands it
actually operates on xnumberx of characters. For example, if you want
to delete the next 5 characters starting at the cursor type ‘Meta-5
Ctrl-d’.

‘Ctrl-£f’
Move forward one character.

‘Ctrl-b’
Move back one character.

‘Right’
Move one character to the right, when the end of the line is
encountered it’s ignored and the cursor keeps moving to the right.

‘Left’

Move one character to the left, stops when the beginning of the
line is reached.

‘Ctrl-d’
‘DEL'
Deletes the character beneath the cursor.

‘Backspace’
Deletes the character before the cursor.

‘Ctrl-t’
Transposes the character before the cursor with the one under the
cursor. When given an argument the character before the cursor is
dragged forward over that many characters.

‘Meta—-SPC’
Delete all white space characters surrounding the cursor leaving a
single space in their place. If a prefix argument is given that
many spaces are left.

‘Meta-\"'
Delete all white space characters surrounding the cursor. This is
equivalent to the key sequence ‘Meta-0 Meta-SPC’.

jade

30/348

1.32 jade.guide/Editing Words

Editing Words

The following commands operate on words. When given a prefix argument
they operate on that number of words all in one go.

The syntax of a word depends largely on the major mode being used to
edit the buffer with, see
Editing Modes

‘Meta-f’
‘Meta-Right’
Move forward one word.

‘Meta-b’
‘Meta-Left’
Move back one word.

‘Meta-d’
‘Meta-DEL’

Kills characters from the cursor to the start of the next word.
See

Killing

‘Meta-Backspace’
Kills characters from the start of the previous word to the cursor
position.

‘Meta-t’
Transpose words: the word before the cursor is dragged over the

following word. An argument means to drag the word over that
number of words.

‘Meta-u’
Convert the characters from the cursor to the start of the next
word to upper-case.

‘Meta-1"
Similar to ‘Meta-u’ but converts to lower-case.

‘Meta-c’
Capitalise the word beginning at the cursor position. What happens
is that the next alphabetic character is converted to upper-case
then the rest of the word is converted to lower—-case. Note that an
argument to this command currently has no effect.

jade

31/348

1.33 jade.guide/Editing Expressions

Editing Expressions

Expressions are used when editing programming languages; the editing
mode for a particular programming language defines the syntax of an
expression element in that language. In other editing modes an
expression is defined as a single word.

These commands use prefix arguments in the normal manner.

‘Ctrl-Meta—-£f’
Move forward over one expression element.

‘Ctrl-Meta-b’
Move backwards over one expression.

‘Ctrl-Meta-k’

Kills the following expression, starting from the current cursor
position. A negative argument means kill backwards. See
Killing

‘Ctrl-Meta-t’
Transpose the previous expression with the following one. An
argument means to drag the previous one over that many expressions.

1.34 jade.guide/Editing Lines

Editing Lines

These commands all operate on one or more lines of text. Most use a

prefix argument (if entered) to define how many lines to move or operate
on.

‘Ctrl-n'
‘Down’
Move down one line.

‘Ctrl-p’
\Upl
Move to the previous line.

‘Ctrl-a’
‘Shift-Left’
Move to the beginning of the current line.

‘Ctrl-e’
‘Shift-Right’
Move to the end of the current line.

jade 32/348
‘Meta-7j’
Prompts for the number of a line to jump to. If a prefix argument
was entered that defines the line number.
‘Ctrl-DEL'
Kill the current line. See
Killing

‘Shift-DEL’
Kill from the cursor to the end of the current line.

‘Shift-Backspace’
Kill from the cursor to the beginning of the line.

‘Ctrl-k’
If the cursor is not at the end of the line kill the text from the
cursor to the end of the line, else kill from the end of the line
to the start of the next line.

If this command is given an argument it kills that number of
*wholex lines, either backwards or forwards from the cursor,
depending on whether or not the argument is negative or positive.
An argument of zero kills from the cursor to the start of the
current line.

‘Ctrl-o’
Create a blank new line, leaving the cursor in its original
position. A prefix argument says to create that many blank lines.

1.35 jade.guide/Cutting And Pasting

Cutting And Pasting

One of the main functions of any editor is to allow you to move
around chunks of text, Jade makes this very easy.

Generally, to paste down some text you have to get the text to be
inserted into the window-system’s clipboard (1). If the text you wish
to paste is in one of the editor’s buffers Jade has a number of
commands for doing this, this is sometimes referred to as "killing" the
text. For details of how to kill a piece of text see

Killing

If the text to be pasted is in the same buffer as the position to
which you want to copy it there is an easier way than putting it into
the clipboard. For more details see

Commands on Blocks
and the command
‘Ctrl-i’.

jade 33/348

Once the text to be pasted is in the clipboard there are two
commands which can be used to insert it into the buffer before the
cursor,

‘Ctrl-y’
Inserts text into the buffer before the cursor. The text inserted
is either the current contents of the kill buffer, or the block
marked in this window, 1f one exists.

‘Ctrl-Y’

This is a variant of ‘Ctrl-y’, it treats the string that it is
pasting as a "rectangle" of text. That is, each successive line in
the string (each separated by a newline character) is inserted on
successive lines in the buffer but at the same column position.
For more details see

Rectangular Blocks

and the function
‘insert-rect’.

(1) When using an Amiga, unit zero of the ‘clipboard.device’ is
used. For X11, the first cut-buffer.

1.36 jade.guide/Using Blocks

Using Blocks

A "block" is a section of a buffer, you mark it by specifying its
edges (i.e. the first and last characters). This part of the buffer can
then have various things done to it, for example insert it somewhere
else.

FEach window can only have a single block marked at any one time, it
will be displayed in the reverse of normal text (i.e. white on black,
not black on white).

Marking Blocks
Commands to define the current block

Commands on Blocks
How to work with blocks

Rectangular Blocks
Columns of text as blocks

jade

34 /348

1.37 jade.guide/Marking Blocks

Marking Blocks

To mark a block you must specify its outermost points, note that the
text marked by the block ends one character before the marked position
(this is so that it easy to mark whole lines).

Rectangular blocks are a bit different for more information, see

Rectangular Blocks

Note also that block marks shrink and grow as text is deleted and
inserted inside them, similar to what normal marks do.

These are the commands used to mark a block,

‘Ctrl-m’

‘Ctrl-SPC’
If a block is currently marked in this window it will unmark it.
Otherwise it will either mark the beginning or end of the block
depending on whether or not a block has previously been partially
marked.

The normal method for marking a few characters is to first make
sure that no block is currently marked (the status line displays
the status of the block marks, a ‘b’ means that one end of a block
has been marked and a ‘B’ means that both ends of a block are
marked in which case it will be highlighted somewhere in the
buffer) then press ‘Ctrl-m’ at one end, move the cursor to the
opposite end and press ‘Ctrl-m’ again.

‘Ctrl-x h'
Mark the whole of the buffer.

‘Meta-—-@’
Mark the current word.

‘Meta-h’
Mark the current paragraph.

Another method for marking a block is to use the mouse, double
clicking the left mouse button on a character has the same effect as
moving to that character and typing ‘Ctrl-m’. Similarly, clicking the
left mouse button while pressing the SHIFT key clears a marked block.

1.38 jade.guide/Commands on Blocks

Commands on Blocks

jade 35/348

‘Ctrl-i’
Inserts the block marked in this window, at the cursor position,
then unmarks the block.

‘Ctrl-w’
Kills the contents of the marked block, for information about
killing see
Killing

‘Meta-w’
Similar to ‘Ctrl-w’ except that the text is not actually deleted,
just stored for later recall.

‘Ctrl-Ww’
Deletes the text in the currently marked block.

‘Ctrl-x Ctrl-1’
Makes all alpha characters in the current block lower case.

‘Ctrl-x Ctrl-u’
Makes all characters in the block upper case.

1.39 jade.guide/Rectangular Blocks

Rectangular Blocks

Normally blocks are thought of sequentially from their first to last
characters. It is also possible to mark rectangular blocks, the block
marks being thought of as the opposite corners of the rectangle.

The commands which operate on blocks automatically check whether the
current block is a rectangle; if so they change their function
accordingly. For example, the ‘Ctrl-i’ command (‘insert-block’)
understands that rectangular blocks have to be inserted in a different
manner to normal, sequential, blocks.

‘Ctrl-M’
Toggle between marking sequential and rectangular blocks, each
window has its own value of this attribute (i.e. one window can be
marking rectangles while the rest don’t).

‘Ctrl-Y’
Similar to ‘Ctrl-y’ except that the string inserted is treated as a
rectangle —-- newline characters don’t get inserted, instead the

next line is inserted in the next line in the buffer at the same
column as that inserted into the previous line. For more details
see the function ‘insert-rect’.

At present there is a problem with changing the case of a
rectangular block with ‘Ctrl-x Ctrl-1' or ‘Ctrl-x Ctrl-u’, they treat

jade 36 /348

it as a sequential block. This will be fixed soon.

1.40 jade.guide/Killing

Killing

"Killing" is the general method for deleting a piece of text so that
it can later be re-inserted into a buffer. Each time you kill some text
it is stored in the window-system’s clipboard (see see

Cutting And Pasting
) where it can be accessed by Jade or other programs.

The text copied by successive kill commands are concatenated
together, this makes it easy to incrementally save text a piece at a
time.

The main commands for killing are as follows, they are only described
in brief since their full descriptions are in other parts of the manual.

‘Ctrl-w’
Kill the current block. See
Using Blocks

‘Meta-w’
Kill the current block without actually deleting it from the
buffer.

‘Ctrl-k’
Kills the current line. See
Editing Lines

‘Meta-d’
Kill the word starting from the cursor. See
Editing Words

‘Meta-Backspace’
Kills from the cursor to the beginning of the current word.

‘Ctrl-Meta-k’

Kill the expression following the cursor. See
Editing Expressions

1.41 jade.guide/Searching and Replacing

jade 37/348

Searching and Replacing

It is very easy to search any of Jade’s buffers for a specific
string, the standard search command will search the current buffer for
a specified regular expression.

Once you have found an occurrence of the string you are looking for
it is then possible to replace it with something else.

Regular Expressions
The syntax of regular expressions

Incremental Search
How to search for regexps

Global Replace
Replacing all occurrences of a regexp

Query Replace
Interactively replacing regexps

1.42 jade.guide/Regular Expressions

Regular Expressions

Jade uses the regexp(3) package by Henry Spencer, with some
modifications that I have added. It comes with this heading:

Copyright (c) 1986 by University of Toronto.
Written by Henry Spencer. Not derived from licensed software.

Permission is granted to anyone to use this software for any
purpose on any computer system, and to redistribute it freely,
subject to the following restrictions:

1. The author is not responsible for the consequences of use of
this software, no matter how awful, even if they arise from
defects in it.

2. The origin of this software must not be misrepresented, either
by explicit claim or by omission.

3. Altered versions must be plainly marked as such, and must not
be misrepresented as being the original software.

The syntax of a regular expression (or regexp) is as follows (this
is quoted from the regexp(3) manual page) :

jade

38/348

A regular expression is zero or more "branches", separated by ‘I|’.
It matches anything that matches one of the branches.

A branch is zero or more "pieces", concatenated. It matches a
match for the first, followed by a match for the second, etc.

A piece is an "atom" possibly followed by ‘x’, ‘+', or ‘?’. An
atom followed by ‘x’ matches a sequence of 0 or more matches of
the atom. An atom followed by '+’ matches a sequence of 1 or more
matches of the atom. An atom followed by '?’ matches a match of
the atom, or the null string.

An atom is a regular expression in parentheses (matching a match
for the regular expression), a "range" (see below), ‘.’ (matching
any single character), '’ (matching the null string at the
beginning of the input string), '$’ (matching the null string at
the end of the input string), a '\’ followed by a single character
(matching that character), or a single character with no other
significance (matching that character).

A "range" is a sequence of characters enclosed in ‘[]’'. It
normally matches any single character from the sequence. If the
sequence begins with '*’, it matches any single character #*notx
from the rest of the sequence. If two characters in the sequence
are separated by ‘-’, this is shorthand for the full list of ASCII
characters between them (e.g. ‘[0-9]’ matches any decimal digit).
To include a literal ‘]’ in the sequence, make it the first
character (following a possible '~’). To include a literal ‘-',
make it the first or last character.

Some example legal regular expressions could be:

‘abxatb’

\

Matches an ‘a’ followed by zero or more ‘b’ characters, followed by
one or more ‘a’ characters, followed by a ‘b’. For example,

‘aaab’, ‘abbbab’, etc...

4

‘(one|two)_three’

Matches ‘one_three’ or ‘two_three’.

““emd_[0-9]+7

Matches ‘cmd_’ followed by one or more digits, it must start at the
beginning of the line.

As well as being matched against, regexps also provide a means of

"remembering" portions of the string that they match. The first nine
parenthesised expressions that are matched and the whole match are
recorded so that they can be used later.

The main use for this is in the command to replace a previously

found regexp with the Lisp functions ‘regexp-expand’,
‘regexp-expand-line’ and ‘replace-regexp’. The string which is given as
the template (i.e. the string that replaces the matched string) is
expanded inserting these recorded strings where asked to.

Each occurrence of ‘\C’ in the template is a candidate for

expansion. C can be one of:

39/348

jade
\&I
\OI

Replaces the whole substring matched by the regular expression.
\1! to \9’

The numbered parenthesised expression.
\\I

The character *\'.

For example, if a regexp of ‘:([0-9]+):’ matches a line

‘foo:123:bar’, the expansion template ‘x_\1’ would produce ‘x_123'.

1.43 jade.guide/Incremental Search

Incremental Search

Jade’s main command for searching buffers is an Emacs-style
incremental search (or "isearch"). This is a subsystem of the editor
which lets you interactively search for regular expressions in a buffer.

‘Ctrl-s’
Start an incremental search, initially searching forwards through
the buffer.

‘Ctrl-r’
Similar to ‘Ctrl-s’ except that searching is initially in the
backwards direction.

When you are in an isearch the general idea is to type in a regular
expression and see what it matches in the buffer. As more characters are
added to the string being searched for the cursor indicates strings
which match. To backtrack your steps (i.e. the characters you have
typed) the backspace key is used.

The special commands which are available when isearching are,

‘Ctrl-s’
Search forwards for another occurrence of the search regexp. This
can also be used to wrap around to the start of the buffer if no
more matches exist between the cursor and the end of the buffer.

‘Ctrl-r’
Search backwards for the regexp.

‘Ctrl-g’
Cancels the isearch. If the search is currently failing (the
string you’ve typed doesn’t match anything) characters are deleted
from the regexp until either a match is found or the original
cursor position is reached. If the search is not failing the
cursor 1is returned to its original position and the isearch is
exited.

jade

40/348

‘Ctrl-w’
Copies the word under the cursor to the regexp being searched for.

‘Ctrl-y’
The rest of the current line is appended to the regexp being
searched for.

‘Ctrl-g’
The next character typed is appended to the regexp no matter what
it is, this can be used to enter control characters. Note that
currently you can’t search for newline characters.

‘RET’

‘ESC’
Accept the cursor’s current position, the isearch is exited
leaving the cursor as it is.

‘Backspace’
Moves back up the stack which represents the current isearch, i.e.
deletes characters from the search regexp or moves the cursor
through the positions it had to reach its current position.

Any other keys are appended to the regular expression being searched
for.

1.44 jade.guide/Global Replace

Global Replace

‘Meta-x replace—-all RET REGEXP RET TEMPLATE’
For all occurrences of the regular expression REGEXP replace it
with the string obtained by expanding TEMPLATE. For details of how
the TEMPLATE works see
Regular Expressions

1.45 jade.guide/Query Replace

Query Replace

The ‘query-replace’ function provides an interactive method of

replacing strings in a buffer which match a specific regular expression.

For each occurrence found you, the user, have a number of options;
for example, you could replace this occurrence with a prespecified
template.

jade

41/348

‘Meta-% REGEXP RET TEMPLATE RET’
Invoke a query-replace, for all occurrences of the regular
expression, REGEXP you will be prompted for what you want to do
with it. Usually this will be to replace it with the expansion
provided by the template (see see
Regular Expressions
) TEMPLATE.

Special commands which come into effect each time the query-replace
finds a match are,

‘SpC’
'y

14

Replace this occurrence with the expansion of TEMPLATE and search
for the next match.

‘Backspace’
\nl
Ignore this match and search for the next.

Replace this occurrence, then wait for another command.

‘RET’
‘ESC’
\ql
Exit this query-replace.

Replace this occurrence then exit.

Replace the current match and all the rest between here and the
end of the buffer.

AT

Retrace your steps through each match which has been found.

‘Ctrl-r’
Enter a recursive-edit, this is allows you to edit this match by
hand. When you exit the recursive-edit (with the ‘Ctrl-Meta-c’
command) the next match is searched for.

‘Ctrl-w’
Delete the current match, then enter a recursive-edit, as in the
‘Ctrl-r’ command.

1.46 jade.guide/Editing Modes

Editing Modes

jade

42 /348

Modes are used to tailor the editor to the xtypex of the file being
edited in a buffer. They are normally a file of Lisp which installs the

buffer-local key bindings and variables which are needed for that type
of file.

For example, C-mode is a mode used to edit C source code, its main
function is to try to indent each line to its correct position
automatically.

The name of the mode active in the current buffer is displayed in the
status line, inside the square brackets.

At present there are only a small number of modes available. It is

fairly straightforward to write a mode for other classes of file though.
See

Writing Modes

Most of the modes for editing programming languages use the command
‘Meta—;’ to insert a comment place-holder, the cursor is moved to where
you should type the body of the comment.

Invoking a Mode
How editing modes are invoked on a buffer

Generic mode

The foundations which all modes build from

—— Modes for editing programming languages —-—

C mode

Mode for C source code

Lisp mode
Mode for Lisp

Asm mode

For generic assembler source

—— Modes for natural language —-—

Text mode
For normal language-based text

Indented-Text mode
Variant of Text-mode

Texinfo mode
Mode for editing Texinfo source

jade

43/348

1.47 jade.guide/Invoking a Mode

Invoking a Mode

When a new file is loaded the function ‘init-mode’ tries to find the
mode that it should be edited with. If it is successful the mode will be
automatically invoked.

It is also possible to install a mode manually, simply invoke the
command which is the name of the mode. For example to install the ‘C
mode’ in a buffer type ‘Meta-x c-mode’.

1.48 jade.guide/Generic mode

Generic mode

This is not a mode as such since there is no Lisp code associated
with it. When no mode is being used to edit the buffer, it is said to
use the "Generic" mode.

This is the base from which all other modes build, it consists of
all the standard key bindings. Words are defined as one or more
alphanumeric characters, paragraphs are separated by a single blank
line.

1.49 jade.guide/C mode

C mode

‘c-mode’ is used for editing C source code files. Any files which
end in ‘.c¢’ or ‘.h'’ are automatically edited in this mode.

It’s one and only function is to try and indent lines to their
correct depth, it doesn’t always get it right but it works fairly well.
The keys that it rebinds to achieve this are,

It also defines the syntax of an expression in the C language for use
with the expression commands, see
Editing Expressions

‘TAB’
Indents the current line to what the editor thinks is the correct
position.

\{’
\}’

jade

44 /348

These keys are handled specially since the indentation of the line
that they are inserted on may have to be adjusted.

‘Ctrl-Meta-\"’
Indents all lines which are marked by the current block.

— Command: c-mode
Editing mode for C source code. Automatically used for files
ending in ‘.c’ or ‘.h'.

- Hook: c—-mode-hook
This hook is called by ‘c-mode’ each time the mode is invoked.

Variable: c-mode-tab
Size of tab stops used by ‘c-mode’.

- Variable: c-mode—auto-indent
When non-nil ‘RET’ will indent the line after splitting it.

1.50 jade.guide/Lisp mode

Lisp mode

‘lisp-mode’ is used to edit files of Lisp intended to be read by the
editor. Its main function is to manage the indentation of Lisp
expressions for you. Each form is regarded as an expression by the
commands which operate on expressions, see

Editing Expressions

There is also support for using a buffer as a simple shell-interface
to the editor’s Lisp subsystem.

The method used for indenting lines of Lisp is fairly
straightforward, the first symbol in the expression containing this
line is found. This symbol’s ‘lisp-indent’ property is then used to
decide which indentation method to apply to this line. It can be one of
the following,

‘nil’
The standard method (also used if the symbol doesn’t have a
‘lisp-indent’ property).

If the first argument to the function is on the same line as the
name of the function then subsequent lines are placed under the
first argument. Otherwise, the following lines are indented to
the same depth as the function name.

For example,

(setg foo 20

jade 45/ 348

bar 1000)

(setg
foo 20
bar 1000)

‘defun’
This method is used for all functions (or special-forms, macros)
whose name begins with ‘def’ and any lambda-expressions.

All arguments to the function are indented ‘lisp-body-indent’
columns from the start of the expression.

For example,

(defun foo (bar)
"A test"
(let
((foo bar))

A number, N
The first N arguments to the function are indented twice the wvalue
of ‘lisp-body-indent’, the remaining arguments are indented by
‘lisp-body-indent’ .

For example the special-form ‘if’ has a ‘lisp-indent’ property of
2,

(1f condition
t-expression
nil-expressions...)

Special commands for Lisp mode are,

‘Ctrl-j’
Evaluates the expression preceding the cursor, prints the value on
the next line. This is designed to be used like a shell, you type
a Lisp expression, press ‘Ctrl-j’ and Jade prints the wvalue for
you.

‘TAB'
Indents the current line.

‘Ctrl-Meta—-\’
Indents all lines which are marked by the current block.

‘Ctrl-Meta-x'
Evaluates the expression before the cursor, prints it’s wvalue in
the status line.

— Command: lisp-mode
Editing mode for Jade’s Lisp. Automatically invoked for files
ending in ‘.jl’.

— Hook: lisp-mode-hook
This hook is evaluated each time ‘lisp-mode’ is invoked.

jade

46 /348

— Variable: lisp-body-indent
The number of characters which the body of a form is indented by,
the default value is 2.

1.51 jade.guide/Asm mode

Asm mode

A basic mode for editing assembler source files with, provides
automatic indentation of labels and instructions.

The special commands are,

‘RET’
Breaks the line as normal, if ‘asm-indent’ is non-nil a tab
characters is inserted as well.

Deletes all indentation from the start of the current line, then
inserts the string ‘:\t’ to move to the next tab stop. This is
used to enter labels.

If the line is not empty, all indentation is deleted from the
start of the line. A dot ('.’) 1is then inserted.

— Command: asm-mode
Major mode for generic assembler source files.

— Hook: asm-mode-hook
The hook which is called when ‘asm-mode’ is entered.

Variable: asm-indent
When this variable is non-nil the RET key inserts the string
‘\n\t’ instead of just ‘\n’. This indents the cursor to the first
tab stop of the new line.

Variable: asm-comment
This variable defines the string which denotes the start of a
comment in the assembler that you are using. By default this is

N7
7 .

1.52 jade.guide/Text mode

Text mode

jade

47 /348

This is the most basic mode for editing English-style text in. The
main difference over ‘generic-mode’ and is that words are allowed to
contain underscores and there are some extra commands,

‘Meta-s’
Centres the current line. The position of the ‘fill-column’ is used
to calculate the centre of the line. For more information on the
‘fill-column’ variable see
Fill mode

‘Meta-S’
Centres the current paragraph.

— Command: text-mode
Major mode for editing English text.

— Hook: text-mode-hook

Evaluated when ‘text-mode’ is invoked. Variants of ‘text-mode’
also use this hook.

1.53 jade.guide/Indented-Text mode

Indented-Text mode

This is a variant of ‘text-mode’, see
Text mode
It’s only
difference is in the way the TAB key is handled -- tab stops are
calculated from the previous non-empty line. Each transition from a
sequence of one or more spaces to a non-space character is used as a tab
stop. If there are none of these to the right of the cursor normal the
standard tabbing command is used.

— Command: indented-text-mode
Variant of ‘text-mode’.

— Hook: indented-text-mode—-hook

Evaluated when ‘indented-text-mode’ is invoked. The hook
‘text-mode-hook’ is also evaluated (before this one).

1.54 jade.guide/Texinfo mode

Texinfo mode

‘texinfo-mode’ is used to edit Texinfo source files, it is

jade 48 /348

automatically selected for files ending in ‘.texi’ or ‘.texinfo’. It
provides a few basic key bindings to take some of the tedium out of
editing these files.

Paragraphs are separated by the regexp ‘“@node’, i.e. each node is a
separate paragraph.

The special commands are,

‘TAB’
Inserts as many spaces as are needed to move the cursor to the
next tab position. The reason tab characters aren’t used is that
TeX doesn’t agree with them.

‘Ctrl-c Ctrl-c ¢’
Insert the string ‘@code{}’, positioning the cursor between the
braces.

‘Ctrl-c Ctrl-c d’
Insert the string ‘@dfn{}’, positioning the cursor between the
braces.

‘Ctrl-c Ctrl-c e’
Inserts the string ‘@end’.

‘Ctrl-c Ctrl-c £’/
Inserts the string ‘@file{}’, the cursor is put between the braces.

‘Ctrl-c Ctrl-c i’
Inserts the string ‘@item’.

‘Ctrl-c Ctrl-c 17
Inserts the string ‘@lisp\n’.

‘Ctrl-c Ctrl-c m’
Inserts the string ‘@menul\n’.

‘Ctrl-c Ctrl-c Ctrl-m’
Prompts for the name of a node and makes a menu-item for it.

‘Ctrl-c Ctrl-c n’
Prompts for each part of a node definition (name, next, prev, up)
and inserts the ‘@node ...’ string needed.

‘Ctrl-c Ctrl-c s’
Inserts the string ‘@samp{}’ and puts the cursor between the
braces.

‘Ctrl-c Ctrl-c v’
Inserts the string ‘@var{}’, the cursor is put between the braces.

‘Ctrl-c Ctrl-c {’
Inserts a pair of braces with the cursor between them.

‘Ctrl-c Ctrl-c }’
‘Ctrl-c Ctrl-c]’
Moves the cursor to the character after the next closing brace.

jade

49 /348

— Command: texinfo-mode
Major mode for editing Texinfo source files.

— Hook: texinfo-mode-hook
Evaluated when ‘texinfo-mode’ is invoked. The hook ‘text-mode-hook’
is evaluated first.

1.55 jade.guide/Minor Modes

Minor Modes

The editing modes described in the previous section were "Major
modes", each mode was designed for a particular class of file. Minor
modes work on top of the major modes, each minor mode provides a single
extra feature for editing the buffer they are used in. For example
‘overwrite-mode’ is a minor mode which makes any keys you type
overwrite the character beneath the cursor, instead of inserting
themselves before the cursor.

The names of the minor modes currently active in the current buffer
are displayed in the status line, to the right of the name of the major
mode.

Overwrite mode
Typed characters overwrite the character
beneath them.

Fill mode
Automatically break long lines as they
are typed.

Auto-Save mode
How to disable auto-saving of a buffer.

Latin-1 mode
Displaying European characters.

1.56 jade.guide/Overwrite mode

Overwrite mode

When enabled, characters typed replace the existing character under
the cursor instead of just moving it to the right.

jade 50/ 348

The command to toggle this mode on and off is ‘Meta-x
overwrite-mode’ .

— Command: overwrite-mode
Toggles overwriting character insertion in the current buffer.

1.57 jade.guide/Fill mode

Fill mode

Filling splits lines so that they aren’t longer than a certain
number of characters. The ‘fill-mode’ checks if you have passed this
threshold when you type the SPC key. Any words passed the threshold get
moved to the next line.

‘Ctrl-x f’
Sets the ‘fill-column’ variable (see below) to the cursor’s current
column position.

— Command: fill-mode
Toggles the auto-filling minor mode.

— Variable: fill-column

The maximum number of characters allowed in a single line. This is
used by the filling and centring functions.

1.58 jade.guide/Auto-Save mode

Auto-Save mode

This is not really a minor mode but it obeys the same calling
conventions (i.e. calling its function toggles its action).

— Command: auto-save-mode
Toggles whether or not the current buffer is regularly saved to a

temporary file.

For more details about auto-saving see
Auto-Saving Files

1.59 jade.guide/Latin-1 mode

jade 51 /348

Latin-1 mode

This minor mode toggles the display of characters in the Latin-1
character set, by default these characters are displayed as octal
escape sequences.

This only works properly if the font that you are using defines
glyphs for these characters!

— Command: latin-l-mode
Toggles the display of characters in the Latin-1 character set.
This is a xglobal*x setting.

For more information about what is displayed for each character see

Character Images

1.60 jade.guide/Using Buffers

Using Buffers

As you have probably realised, buffers are probably the most
important part of the editor. Each file that is being edited must be
stored in a buffer. They are not restricted to editing files though,
all buffers are regarded as simply being a list of lines which can be
displayed in a window and modified as needed.

This means that they are very flexible, for example, the Lisp
debugger uses a buffer for its user interface, the Info reader uses two
buffers - one to display the current node, the other to store the
file’s tag table (never displayed, just used to look up the position of
nodes) .

FEach buffer has a name, generally buffers which contain proper files
use the base part of the filename, while buffers which don’t correspond
to files use a word which starts and ends with asterisks (i.e.
‘xjadex’) .

Each window can display one buffer at any one time. There is no
restriction on the number of windows which may display the same buffer
at once.

Displaying Buffers
How to make a window display a buffer

Deleting Buffers
Killing unwanted buffers

jade

527348

Other Buffer Commands
General buffer manipulation

The Buffer Menu
Interactive buffer manipulation

1.61 jade.guide/Displaying Buffers

Displaying Buffers

There are two main commands for switching to a different buffer,

‘Ctrl-x b’
Prompt for the name of a buffer and display it in the current
window.

‘Ctrl-x 4 Db’
In a different window (opens a new window if there is currently
only one) prompt for the name of a buffer and display it in that
window.

Both commands are very similar, the ‘Ctrl-x 4 b’ variant simply
invokes a command to switch to a different window before calling the
‘Ctrl-x b’ command.

When typing the name of the new buffer you can use the prompt’s
completion mechanism to expand abbreviations (see see

The Buffer Prompt

). If you just press RET with an empty prompt the
default choice will be used. This will be the the buffer that was
being shown in this window before the current buffer was selected (its
name is displayed in the prompt’s title).

The ‘Ctrl-x Ctrl-f’ command and its variants also switch buffers
since they look for an existing copy of the file in a buffer before
loading it from disk, see

Commands To Load Files

1.62 jade.guide/Deleting Buffers

Deleting Buffers

There is no real need to delete buffers, those that haven’t been

jade 53 /348

used for a while just hang around at the end of the list. If you’re
short on memory though it can help to kill some of the unused buffers
which you have accumulated.

The command to kill a buffer is,

‘Ctrl-x k'
Prompts for the name of a buffer (with completion) then deletes
that buffer (if the buffer contains unsaved modifications you are
asked if you really want to lose them). It is removed from all
window’s buffer-lists and any window which is displaying it is
switched to another buffer (the next in its list).

Any marks which point to the buffer are made "non-resident" (that
is, they point to the name of the file in the buffer) and the
buffer is discarded.

1.63 jade.guide/Other Buffer Commands

Other Buffer Commands

‘Meta-x rotate-buffers—-forward’
Rotates the current window’s list of buffers.

‘Meta-x revert-buffer’
Restores the contents of the current buffer to the contents of the
file that it was loaded from, if an auto-save file exists you are
asked if you want to revert to that instead.

‘Ctrl-x s’
Ask whether to save any modified buffers that exist.

‘Meta-x clear-buffer’
Deletes the contents of the current buffer. Beware, you xwon’tx be
warned if you’re about to lose any unsaved modifications!

1.64 jade.guide/The Buffer Menu

The Buffer Menu

The buffer menu presents you with a list of all the buffers
accessible from the current window in most-recently-used order. You are
then able to manipulate the buffer list using several simple commands.

‘Ctrl-x Ctrl-Db’
Enters the buffer menu; the buffer ‘*Buffer Menux’ is selected and
a list of available buffers is printed in it.

jade

54 /348

The following example shows how the buffer list is printed.

MR Name Mode File
- *Buffer Menux Buffer Menu
+ user.texi Texinfo man/user.texi
*jadex Lisp

The column headed ‘M’ shows whether the buffer has been modified since
it was last saved and the column ‘R’ shows whether or not the buffer is
read-only. The other columns should be self-explanatory.

When the ‘xBuffer Menux’ buffer is selected the following commands
are available. When a single buffer is to be manipulated by a command,
the buffer described by the line which the cursor is on is chosen.

\dl
Mark the buffer for deletion and move to the next buffer. A ‘D’ is
displayed in the first column of a line if that buffer is marked
for deletion.

\SI

‘Ctrl-s’
Mark the buffer to be saved then move to the next buffer in the
list. A 'S’ in the second column of a line denotes a buffer which
has been marked to be saved.

\XV
Execute previously-marked saves and deletions.

\ul
Unmark the current line (i.e. clear any ‘D’ or ‘S’ markers) then
move to the next entry in the buffer list.

N
Toggle the modified flag of the current line’s buffer, then move
down.

\%V

N_7r
Toggle the read-only status of the current line’s buffer, then
move to the next entry.

\17

‘RET’
Select the current line’s buffer in this window.

\ol
Select the current line’s buffer in the other window.

‘Ctrl-f’

‘TAB'
Move to the next line in the buffer list.

‘Ctrl-b’

Move to the previous line in the buffer list.

jade

55/348

‘Ctrl-1’
Redraw the buffer list, incorporating any changes made to the
available buffers.

\ql
Quit the buffer menu.

1.65 jade.guide/Using Windows

Using Windows

Windows have two main functions: to display the contents of buffers

(but only one buffer at a time) and to collect input from you, the user.

The editor xmustx have at least one window open at all times, when
you close the last window Jade will exit, there is no limit to the
number of windows which you may have open at once.

FEach window is split into two parts, they are

"The Main Display Area"
This is the largest part of the window, it is where the buffer
that this window is displaying is drawn.

"The Status Line"
A single line of text associated with the window, under X11 this
is the area of the beneath the horizontal line at the bottom of
the window, on the Amiga it is the title of the window. The status
line is normally used to display information about this window and
what it is displaying, it has this format,

BUFFER-NAME (MODE-NAMES) (COL,ROW) N line(s) [FLAGS]
Where the individual parts mean,

BUFFER-NAME
The name of the buffer being edited, it can have either a ‘+’/
or a ‘-’ appended to it, a plus means the buffer has been
modified since it was saved, a minus means that the buffer is

read-only.

MODE-NAMES
This tells you which editing modes are being used by this
buffer, the first word is the name of the major mode, any
subsequent words correspond to the names of the minor modes
for this buffer. If this section is surrounded by square

brackets ‘[...]’ instead of parentheses it means that you are
currently in a recursive edit, for example, inside the Lisp
debugger.

COL
The column that the cursor is at.

jade

56 / 348

ROW

The row number of the cursor.
N

The number of lines in this buffer
FLAGS

General one-character flags related to the status of the
window and its buffer.

Each window maintains a list of all buffers which are available for
displaying, this is kept in order, from the most recently used to the
least. This list (called ‘buffer-1list’) is used by some of the buffer
manipulation commands when they are working out which buffer should be
displayed.

Creating Windows
Opening a new window

Killing Windows
How to close windows

Other Window Commands
General window manipulation

1.66 jade.guide/Creating Windows

Creating Windows

‘Ctrl-x 27
Opens a new window, it will have the most of the attributes that
the current window does, things like: size, buffer, font, etc...
If you are using X11 you will probably have to use your mouse to
select its position, depending on the window manager you use, on
the Amiga it will be created at the same position as the current
window.

‘Ctrl-x 4 Ctrl-f’
‘Ctrl-x 4 f’
In a different window, one will be created if only one window is
open, find a file, for more details see
Commands To Load Files

‘Ctrl-x 4 a’
In a different window add an entry to a change-log file. See

Keeping ChangeLogs

jade

577348

‘Ctrl-x 4 b’
In a different window, choose a buffer to display, similar to the
‘Ctrl-x b’ command. See
Displaying Buffers

‘Ctrl-x 4 h'
Enter the help system in a different window. See
The Help System

‘Ctrl-x 4 i’
Enter the Info browser in a different window. See
Info Mode

‘Ctrl-x 4 VY
Display the next error (or whatever) in the ‘xcompilationx*’ buffer
in a different window. See
Finding Errors

Note that for each ‘Ctrl-x 4’ command there is a corresponding
‘Ctrl-x 5’ command. Instead of using a different window to the current
one, a new window is opened for each ‘Ctrl-x 5’ command typed.

1.67 jade.guide/Killing Windows

Killing Windows

‘Ctrl-x 07
Close the current window, if it is the last window that the editor
has open it will exit (after asking you if you wish to lose any
unsaved modifications to buffers).

‘Ctrl-x 17
Close all windows except the current one.

1.68 jade.guide/Other Window Commands

Other Window Commands

‘Ctrl-x of
Activate the next window of the editor’s. Under X11 this involves
warping the mouse-pointer to the top left corner of the newly
activated window.

jade 58 /348

‘Meta-x set-font’

Choose a font to use in the current window. This command prompts
for the name of the font then installs it in the window. Font
names are the same as for the shell argument ‘-font’ (see

Startup Options
) -

1.69 jade.guide/Using the Prompt

Using the Prompt

There are two different styles of prompt that the editor uses when it
wants you to enter a string.

The Simple Prompt
The prompt at the bottom of the window

The Buffer Prompt
Prompt with its own buffer and completion

1.70 jade.guide/The Simple Prompt

The Simple Prompt

The simplest prompt uses the the bottom-most line in the window, it
prints the prompt’s title on the left hand side, you should type your
response and then press the RET key. This prompt is very primitive, the
only special commands that it has are,

‘Backspace’
Delete the previous character.

\Upl
‘Down’
Replace the contents of the prompt with the last string entered.

When you type ‘Up’ or ‘Down’ again the original contents are
restored.

‘ESC’
Cancel the prompt.

All other keys are simply printed in the prompt —-- whatever they are.

jade

59 /348

1.71 jade.guide/The Buffer Prompt

The Buffer Prompt

This type of prompt is more sophisticated. It creates a new buffer
for you to type your response into (called ‘xprompt=*’), the title of the
prompt is displayed in the buffer’s first line.

Normally you type the answer to the prompt into the buffer and then
press the RET key. All normal editor commands are available while you
are using the prompt, you can switch buffers, load new files, whatever
you like.

Another advantage of this type of prompt is that it supports
"completion", this allows you to type the beginning of your response
then press the TAB key. What you have typed will be matched against the
list of responses that the editor has (i.e. when being prompted for the
name of a file it will be matched against all available files), if a
unique match is found your response will be completed to that match.

If several potential completions are found, these will be displayed
after the line ‘::Completions::’ in the buffer and your response will
only be completed as far as the potential completions are similar. For
example, if you enter ‘fo’ then press TAB and files called ‘foo’ and
‘foobar’ exist, the contents of the prompt will become ‘foo’.

Completion is provided for many different things, some are: files,
buffers, symbols, functions, variables, Info nodes, etc...

The special commands for this type of prompt are,

‘TAB’

‘RMB-CLICK1'
Complete the contents of the prompt. If more than one potential
completion exists they are printed in the buffer.

‘RET’

‘LMB-CLICK2'
Enter the result of this prompt. If you invoke this command while
the cursor is on a printed potential completion (those under the
‘::Completions::’ line) the whole line will be entered. Otherwise,
just the text to the left of the cursor is entered.

‘Meta-?'
Print all possible completions of the current prompt but do not

try to actually change the contents of the prompt.

‘Ctrl-g’
Cancel the prompt.

1.72 jade.guide/Using Marks

jade

60 /348

Using Marks

Marks are used to record a position in a file, as the file’s buffer
is modified so does the position that the mark points to —- a mark will
keep pointing at the same character no matter what happens (unless the
character is deleted!).

The other good thing about marks is that they point to files *notx
buffers. This means that you can set a mark in a buffer, delete the
buffer and then move to the position of the mark, the file will be
reloaded and the cursor will point at the original character.

Normally there are three user-accessible marks (1) and one special
‘auto-mark’ which is used, amongst other things, to record the
"previous" position of the cursor, allowing you to retrace your last
major step.

The commands available on marks are,

\Fll

\F27

\F3(
Move to the mark #1, #2 or #3, depending on which function key is
pressed (F1l means mark #1, etc...). If the file pointed to is not

in memory it will be loaded into a new buffer.

‘Shift-F1’

‘Shift-F2’

‘Shift-F3’
Set the position of mark #1, #2 or #3, depending on the function
key.

‘Ctrl-x Ctrl-x’
Swap the positions of the cursor and the ‘auto-mark’.

‘Ctrl-@’
Set the position of the ‘auto-mark’.

(1) There is no reason why you can’t have more, the editor sets no
limitation on the number of marks available. This is just how I have
set the editor up.

1.73 jade.guide/Interrupting Jade

Interrupting Jade

It is often useful to be able to tell Jade to quit whatever it is
doing and wait for more commands; this is called "interrupting" Jade.
When the editor receives an interrupt signal it will abort what it is

jade

61/348

doing and rewind itself back to the inner-most recursive edit (see see

Recursive Editing

) .
The interrupt signal differs with the operating system being used,

* Under Unix the ‘SIGINT’ signal is used, this can be sent via the
‘intr’ character (get the editor into the foreground of the shell
it was started from and type ‘Ctrl-c’ in the shell’s terminal), or
directly through the ‘kill’ shell command. For example, look at
the following shell session extract,

/var/src/jade/man$ ps
PID TT STAT TIME COMMAND

60 1 SW 0:02 (xinit)
87 1 'S 0:08 fvwm
127 p0 S 0:00 /bin/bash
155 p0 S 0:04 jade
156 pl S 0:00 /bin/bash

159 pl R 0:00 ps
/var/src/jade/man$ kill —-INT 155

First the ‘ps’ command is used to find the Jade process’ pid (155),
then the ‘kill’ command is used to send the ‘INT’ signal to this
process.

* The ‘Ctrl-c’ signal is also used on Amigas, either type this in

the console window that Jade was launched from or use the ‘break’
(or possibly ‘breaktask’) command to send the signal.

1.74 jade.guide/Recursive Editing

Recursive Editing

Recursive editing is the act of editing a file while the current
command is still being evaluated. For example, when using the
‘query-replace’ command (‘Meta-%’) the ‘Ctrl-r’ command enters a
recursive edit to let you edit the buffer, even though you are still
doing a query-replace (which will be resumed when the recursive edit
finishes).

As the name suggests a recursive edit calls the editor’s main command
loop recursively from within a command. Any number of recursive edits
may be stacked up and then unwound back to the top-level of the editor.

When a recursive edit is in progress the name of the mode being used
to edit the buffer is shown in xsquare bracketsx, not parentheses as in

the top-level instance.

The commands for manipulating recursive edits are as follows,

jade 62 /348

‘Ctrl-]"

‘Ctrl-Meta-c’
Exit the innermost recursive edit, this has no effect at the
top-level.

‘Meta-x top-level’
Return to the outermost edit —-- the top-level. This is useful when
you get "lost" inside a sequence of recursive edits.

‘Meta—-x recursive-edit’
Enter a new recursive edit; this command is usually best avoided to

save confusion.

In general, recursive editing is rarely used except in unavoidable
circumstances (i.e. in the Lisp debugger).

1.75 jade.guide/Character Images

Character Images

In general any character can be mapped to any sequence of up to four
character sized images (called glyphs) when it is drawn into a window.
The TAB character is a notable exception; it expands to as many spaces
as are needed to fill up to the next tab stop.

By default, the editor is set up to display the following,

0 to 31
A caret ('*') followed by the ASCII value of the character
exclusive-or’d with 0x40, i.e. Q@' to ‘~_'.

32 to 126
Printed literally, this includes all "normal" characters and
punctuation.

127

NADT

128 to 255
Represented by the octal escape sequence (i.e. '\200’) for that
character’s numeric value.

If you want to edit files containing characters in the ‘Latinl’
character set (numerically, from 160 to 255) you can put the following
in your ‘.jaderc’ file,

(latin-1-mode)

this will redefine the necessary characters.

If you want more details about this sort of thing see
Glyph Tables

jade

63 /348

1.76 jade.guide/Client Editing

Client Editing

Normally you will only have one instance of Jade executing at a
single time. Often though, another program will want you to edit a
file, for example when you are composing a mail message. There is
normally a way to specify which editor you want to use, for example the
‘EDITOR’ environment variable.

If you were to ask to edit the file in ‘jade’ an xadditionalx
process executing Jade would be started, totally separate from the
original. It is possible to use the original instance.

Firstly Jade must be set up to listen for clients wanting files
edited, this is done with the ‘server-open’ command. You can either put
this in your ‘.Jjaderc’ file (with a line like ‘(server-open)’) or call
it manually with the command ‘Meta-x server-open’.

\

Only one instance of Jade may be a server at once. If you know that
there is no other Jade running but it still won’t let you open a
server, and you are running on Unix, look for a dead socket called
‘~/.Jade_rendezvous’ and delete it if necessary.

Once the editor is listening for client messages the separate program

‘jJadeclient’ may be used to load files into the server from an external
source. The format of ‘jadeclient’ invocation is,

jadeclient [+LINE-NUMBER] FILE-NAME

When invoked, it will ask the server to edit each FILE-NAME (initially
positioned at line LINE-NUMBER) in turn, exiting only after each file
has finished being edited.

If when the ‘jadeclient’ program is invoked their is no server open
(i.e. either Jade is not running or you haven’t used the ‘server-open’
function) a message ‘Jade not running, waiting...’ will be printed and
‘jadeclient’ will sit waiting for you to open a Jade server.

So, simply get the program you want to use Jade to use the
‘jadeclient’ program as its editor. For example, I use ‘mh’ to handle
my electronic mail; in my ‘~/.mh_profile’ file I have the line,

Editor: jadeclient
to tell it that I want to edit my mail in Jade.

The one special command for client/server editing 1is,

‘Ctrl-x #/
If the file being edited in the current buffer is a client file,

jade 64 /348

tell the client program which loaded it that it has finished being
edited. The actual buffer is *notx deleted.

It is also possible to finish editing a client file by simple
deleting its buffer in the normal way (‘Ctrl-x k’),
Deleting Buffers

1.77 jade.guide/Compiling Programs

Compiling Programs

Jade has a number of features to help you develop programs, foremost
is the ability to run a compilation inside one of the editor’s buffers.
Unfortunately, this is only possible when using the Unix operating
system at the present.

Once the compilation has finished you can then step through each
error produced.

Running a Compilation
Launching a compilation process

Finding Errors
Stepping through compile errors

Debugging Programs
Using GDB in an editor buffer

Using Grep
Searching files for a regexp

Keeping Changelogs
Simple recording of file revisions

1.78 jade.guide/Running a Compilation

Running a Compilation

The command to run a shell command in a buffer is,

‘Meta-x compile’
Prompts you for the command to execute, with a default of the last
command you ran (starts as ‘make’). A shell process is created

jade

65 /348

which runs asynchronously to the editor in the same directory as
the current buffer’s file was loaded from. The buffer
‘scompilationx’ is selected and this is where all output from the
program is printed.

When the process finishes running a message is printed in the
‘xcompilation*’ buffer telling you its exit-code.

Only one process may be run with the ‘compile’ function at once.

This command is not available on the Amiga version yet.

1.79 jade.guide/Finding Errors

Finding Errors

When you have compiled something with the ‘Meta-x compile’ command
it is possible to step through each of the errors that it produces. To
do this use the command,

‘Ctrl-x
Displays the next error in the ‘xcompilationx’ buffer. The file
that is in is loaded (if necessary) and the line with the error is
found.

If you edit a file which has errors in it, then try to find the next
error (which is in the same file) everything will still work. The
positions of errors are updated as the buffers are modified.

The only exception to this is when you invoke the ‘next-error’
function while the ‘xcompilationx’ buffer is still being written to. If
more errors are produced in a file which has been modified since the
compilation started it is likely that the positions will get out of
sync.

By default, the ‘next-error’ function understands the type of error
output that ‘gcc’ produces. This is of the form,

FILE:LINE-NUMBER:DESCRIPTION

It is possible to use other formats though, the variables which
control this are,

- Variable: compile-error-regexp
Regular expression to match a line containing an error. For ‘gcc’
this is Y™ (.*): ([0-9]+): (.+)".

— Variable: compile-file-expand
Expansion template to produce the name of the file with the error,
using ‘compile-error-regexp’ and the line containing the error. By
default this is ‘\1'.

— Variable: compile-line-expand

jade 66 / 348

Similar to ‘compile-file-expand’ except that it expands to a string
defining the number of the line with the error. By default, ‘\2'.

— Variable: compile-error-expand

Similar to ‘compile-file-expand’, but produces the description of
the error. By default, *‘\3’.

1.80 jade.guide/Debugging Programs

Debugging Programs

Jade allows you to run the GDB debugger in a buffer. Some of the
advantages of this over the usual terminal based interaction are,

* The current position of the target program (its "frame") is
highlighted; the source file is displayed in a separate window
with the current frame marked (in the same way that a block is
marked) .

* You are able to set and delete breakpoints simply by putting the
cursor on the line you wish the target to stop at and typing an
editor command.

To start a gdb subprocess use the ‘Meta-x gdb’ command, you will be
asked to enter the name of the program to debug then gdb will be
started in a new buffer (called ‘xgdbx’ or similar). You are then able
to type commands into the buffer, they will be sent to gdb each time
you type the RET key.

The commands for controlling the gdb subprocess are as follows (the
‘Ctrl-c’ prefixed commands are only available within the ‘xgdbx’ buffer
whereas the ‘Ctrl-x Ctrl-a’ variations are accessible globally so that
they can be invoked from within the target’s source files),

‘Ctrl-c Ctrl-n’
‘Ctrl-x Ctrl-a Ctrl—-n’

Continue execution to the next source line, this is the gdb command
‘next’ .

‘Ctrl-c Ctrl-s’
‘Ctrl-x Ctrl-a Ctrl-s’

Continue execution until a different source line is reached, this
is the gdb command ‘step’.

‘Ctrl-c Ctrl-£f’
‘Ctrl-x Ctrl-a Ctrl-f’

Continue running until the current stack frame exits, the ‘finish’
command.

‘Ctrl-c Ctrl-xr’
‘Ctrl-x Ctrl-a Ctrl-r’
Resume execution until a breakpoint is reached or the target exits.

jade

67 /348

‘Ctrl-c Ctrl-<’
‘Ctrl-x Ctrl-a Ctrl-<’
Display the stack frame above the current one.

‘Ctrl-c Ctrl->’
‘Ctrl-x Ctrl-a Ctrl—->'
Display the stack frame under the current one.

‘Ctrl-c Ctrl-b’

‘Ctrl-x Ctrl-a Ctrl-b’
Set a breakpoint at the current source line, if the ‘xgdbx’ buffer
is active the line selected is where the program last stopped.

‘Ctrl-c Ctrl-t’
‘Ctrl-x Ctrl-a Ctrl-t’
Set a temporary breakpoint at the current source line.

‘Ctrl-c Ctrl-d’
‘Ctrl-x Ctrl-a Ctrl-d’
Remove all breakpoints which are set at the current source line.

‘Ctrl-c Ctrl-1’
‘Ctrl-x Ctrl-a Ctrl-1'
Redisplay the current frame, centring it in its window.

For a summary of these commands type ‘Ctrl-h m’ in the ‘xgdbx’
buffer.

Since the gdb process runs on top of the Shell mode the bindings from
that mode are also available.

There is no limit to the number of gdb processes you may run at once,
each will get its own buffer. When a gdb command is invoked in a buffer
which doesn’t have a gdb subprocess (i.e. a source file’s buffer) the
command will be sent to the gdb process which either was last sent a
command, or last made the editor display a new frame. Hopefully this
will work fairly intuitively.

1.81 jade.guide/Using Grep

Using Grep

It is often very useful to grep through a set of files looking for a
regular expression, this is what the ‘grep’ command does. With Jade it
is possible to run an external ‘grep’ program in the ‘xcompilationx’
buffer. This then enables you to step through each grep hit using the
‘Ctrl-x ‘' command,

Finding Errors

The commands to use grep are,

‘Meta-x grep’

jade 68 /348

Prompt for a string of arguments to give ‘grep’, you do not need to
provide the name of the program, or the ‘-n’ switch, this is done
automatically. The shell will do any filename-globbing on the
arguments so it is advisable to surround the regular expression
with single quotes.

Note that the regular expression syntax will be different to that
which Jade uses. Also this command won’t work on an Amiga.

‘Meta-x grep-buffer’
This command provides a method for scanning the current buffer for
all lines matching a regular expression (which you are prompted
for). It is written entirely in Lisp —-- this means that the normal
regular expression syntax is needed and it will work on an Amiga.

1.82 jade.guide/Keeping ChangelLogs

Keeping Changelogs

A Changelog is a file (usually called ‘Changelog’) which keeps a log
of all changes you have made to the files in its directory. For
example, the ‘src/ChangelLog’ file for Jade keeps a list of changes made
to the editor’s source code.

There is no magic involved, you simply use a command to add a new
entry to a directory’s log after modifying a file in that directory.
You then have to enter a summary of the changes that you made.

The command to do this is,

‘Meta-a’
Prompts for the name of a directory then lets you type a
description of the changes you have made.

If you enter more than one change in the same day (and from the same
host) the same heading will be used. The heading consists of the time
and date, your name, your login and the name of the host you’re on. (1)

(1) On the Amiga there is no way to get these details. So, Jade
looks for some environment variables, ‘USERNAME’ for the login name,
‘HOSTNAME’ for the name of the host and ‘REALNAME’ for your actual name.

1.83 jade.guide/Info Mode

Info Mode

jade

69 /348

Despite the name of this section there is actually no such thing as
the ‘info-mode’. The Lisp file ‘info.jl’ is what this section documents
—-— 1t is a set of Lisp functions which make a buffer (the ‘xInfox’
buffer) into a simple browser for Info files(l).

To invoke it type ‘Ctrl-h i’, the ‘xInfox’ buffer will be selected
showing the ‘(dir)’ node (the root of the Info documentation tree).

When in the ‘xInfox’ buffer the following key bindings are available.

‘SpC’
Displays the next page of the current node.

‘Backspace’
Displays the previous page.

\1/
Move to the specified menu-item (‘'1’ means the first, etc) in the
menu in this node. The keys ‘1’ to ‘9’ work in this way.
\b’
Move to the beginning of the current node.
\dl
Display the directory node (‘'(dir)’) of the Info documentation
tree.
\f/
Follow a reference, the one under the cursor if one exists.
\gl
Prompt for the name of a node and try to display it.
\hl
Display the Info tutorial node ('(info)Help’).
\ll
Go back to the last node that was displayed before this one.
\ml
Prompts for a menu-item (the one on the same line as the cursor is
the default) and display the node it points to.
\nl
Display the next node.
\pl
Display the previous node.
\ul
Display the node "above" this one.
\ql

Quit the Info browser.

jade

70/348

Display a piece of text describing all commands available in Info
mode.

‘RET’
Go to the link (menu item or xref) described on the current line.

‘LMB-Click2’
Go to the link you double clicked on.

‘TAB'
Put the cursor on the next link in this node.

‘Meta-TAB’
Put the cursor on the previous link.

This mode has a number of disadvantages over the other Info browsers
available (i.e. the stand-alone ‘info’ program, or Emacs’ Info viewer):

* It depends wholly on being able to find a tag table in the Info
file, if it can’t it will simply load the whole file into the
buffer.

\

* There is no support for the ‘%’ node name.

* Seems not to work 100% with files formatted by Emacs, ‘makeinfo’
formatted files work properly though.

* No editing of nodes.

Of course, its main advantage is that it runs in Jade!

(1) ‘Info’ is the GNU way of creating hypertext documents, for more
information see Info.

1.84 jade.guide/Shell

When running on a Unix-style operating system Jade allows you to run
a shell subprocess in a buffer (usually the ‘xshellx’ buffer). Each
line you type in the buffer is sent to the shell and the output from
the shell is displayed in the buffer.

‘Meta-x shell’
Start a new shell subprocess running in a buffer called ‘sshellx’.

If a buffer ‘xshellx’ already exists a new buffer with a unique
name will be opened (i.e. ‘xshellx<2>'").

The working directory of the shell subprocess will be the directory
which the contents of the current buffer was read from.

jade

71/348

This command won’t work on Amigas!

Each ‘xshell«’ buffer installs the major mode ‘shell-mode’. This
provides the following commands.

‘Ctrl-a’
Move the cursor to the beginning of the current line, xafterx the
prompt which the shell printed (if one exists).

‘Ctrl-d’
If the cursor is at the end of the buffer send the shell process
the ‘eof’ character ('"D’) (signifying the end of the file).
Otherwise delete the character under the cursor.

‘RET’
Send the current line to the shell (minus any prompt at the
beginning of the line). If the cursor is not on the last line of
the buffer (i.e. the most recent prompt) the current line is
copied to the end of the buffer before being sent.

‘Ctrl-c Ctrl-n’
Move the cursor to the next prompt in the buffer.

‘Ctrl-c Ctrl-p’
Move to the previous prompt.

‘Ctrl-c Ctrl-c’
Send the ‘intr’ character ('*C’) to the shell process.

‘Ctrl-c Ctrl-d’
Send the ‘eof’ character ('"D’) to the shell.

‘Ctrl-c Ctrl-z’
Send the ‘susp’ character ('"2’) to the shell.

‘Ctrl-c Ctrl-\’
Send the ‘quit’ character ('~\’) to the shell.

— Hook: shell-mode-hook
This hook is evaluated by the Shell mode after it has initialised
itself (and started its subprocess).

The following variables customise the actions of the Shell mode.

— Variable: shell-file—name
This variable defines the file name of the shell to run. Its
default value is either the value of the environment wvariable
‘SHELL’ or if that doesn’t exist the file ‘/bin/sh’.

- Variable: shell-whole-line
When this variable’s value is non-‘nil’ the RET command always
sends the whole of the current line (minus any prompt) even when
the cursor is not at the end of the line. Otherwise only the part
of the line before the cursor is sent.

The default value of this variable is ‘t’.

jade

727348

— Variable: shell-prompt-regexp
This buffer-local variable defines the regular expression used to
match the prompt printed by the shell each time it waits for you
to enter a shell command. By default it has the value
NIATHSS>) I+ [1#5%>)] 7 but this may be incorrect if you have
modified your shell’s prompt.

1.85 jade.guide/Simple Customisation

Simple Customisation

The best way to tailor the editor to your own requirements is with
your personal startup file. This is called ‘.jaderc’ in your home

directory (1), it is a file of Lisp forms evaluated when Jade
initialises itself.

Usually, setting the values of variables in your startup file is
enough to configure Jade how you want, the Lisp function to set a
variable is called ‘setq’, it’s first argument is the name of the
variable, it’s second the value you wish to set it to. This value will
usually be one of the following data types,

n nwr

XY Z
A string ‘xyz’.

11237

*01737

‘0x7b’
A number, all of the above have the value 123 (in decimal, octal
and hexadecimal) .

‘nil’

\tl
A boolean value, ‘nil’ means false, or not true. ‘t’ is the
opposite (in fact, any value not ‘nil’ is true).

My ‘.jaderc’ file looks something like this (note that semicolons
introduce comments),

;777 -Jaderc —*-Lisp—*-—

;7 Size of tabs for Lisp source is 2
(setg lisp-body-indent 2)

;; When on an Amiga, flag that I don’t want pull down menus
(when (amiga-p)

(setg amiga-no-menus t))

;7 When editing English-text use auto-filling
(add-hook ’text-mode-hook ’fill-mode-on)

;; —with a maximum of 74 characters in a line

jade 73 /348

(setqg fill-column 74)

;; Start the edit server
(server—-open)

Most simple customisations can be achieved by simply giving a
variable a new value. Use the ‘setqg’ special form to do this (a special
form is a type of function) as in the examples above. If you wish to
set variables interactively use the ‘set’ command:

‘Meta-x set RET VARIABLE-NAME RET NEW-VALUE RET’.

The ‘add-hook’ function adds a function (in this case ‘fill-mode-on’)
to be called when the specified hook (in this case ‘text-mode-hook’) is
evaluated. The single-quote before the names means that the names are
passed as constants; xnotx their values. If you don’t quite understand
what I'm talking about don’t worry.

For full documentation of Jade’s programming language see

Programming Jade

(1) On the Amiga, your home directory is defined as the contents of
the environment variable ‘HOME’.

1.86 jade.guide/Programming Jade

Programming Jade
kkhkAkhk Ak kk kA hkkhkkhkkK

This chapter of the manual is a full guide to Jade’s Lisp programming
language, including documentation for most of the built-in functions.

Intro
Introduction and Lisp conventions

Data Types

Data types and values in Lisp
Numbers

Integers and arithmetic functions

Sequences

Ordered sequences of data values
Symbols

Symbols are uniquely named objects

jade 74 /348

Evaluation
Evaluating expressions

Control Structures
Special forms. Conditionals, loops, etc...

Variables
Symbols represent named variables
Functions
Functions are the building blocks of Lisp
programs
Macros
User-defined control structures
Streams
Data sinks and sources; character streams
Loading

Programs are stored in files

Compiled Lisp
Making programs run faster

Hooks
Hooks allow the extending of Jade

Buffers

Buffers allow editing of files
Windows

Windows receive input and display buffers
Positions

Coordinates in buffers and cursor movement

Marks

Marks represent the position of a <
character
in a file

Glyph Tables
Controlling the glyphs rendered for each
ASCII character

Input Events
Objects which represent input events

Keymaps
Mappings between events and commands

jade

757348

Event Loop
The event loop reads input events and
invokes commands

Editing Files
Files are edited in buffers

Text
Functions to edit buffers with

Writing Modes
Creating new editing modes

Prompting
Interactively asking the user a question
Files
Manipulating files in the filing system
Processes

Jade can launch and control subprocesses

when running under Unix

Miscellaneous Functions
Functions which don’t fit elsewhere in
this manual

Debugging
How to debug Lisp programs

Tips
General recommendations for Lisp
programmers

1.87 jade.guide/Intro

Introduction

As you have probably gathered by now, Jade is largely controlled by
its built in programming language: a dialect of Lisp containing many
extensions (non-standard data types and functions) to make it suitable
for controlling an editor. Through this language Jade can be customised
and extended.

I have attempted to make the "standard" portion of the language (i.e.
anything a normal Lisp would have; not related to editing) as compatible
with GNU Emacs Lisp as possible. In some areas this rule doesn’t apply,
there will usually be a good reason for this. A few functions have been

<_>

jade 76 /348

inspired by Common Lisp.

The areas of the language which control the xeditorx are xnotx
compatible with Emacs; some functions may be similar but since the two
editors are fundamentally different I have not attempted to conform with
the Emacs API.

All programs written using only the information in this manual should
be compatible with future revisions of Jade.

This following sections explain some of the most important Lisp
concepts and the conventions I’ve used in this manual.

nil and t
Boolean values in Lisp

The Lisp Reader
Basic program structure

Notation
Special glyphs used

Descriptions
How functions and variables are documented

1.88 jade.guide/nil and t

The two boolean values in Lisp are the symbols ‘nil’ (FALSE) and ‘t’
(TRUE) . Both these symbols always evaluate to themselves (so they do
not have to be quoted), any attempt to change their values is an error.

All of the conditional instructions regard xanythingx which is not
‘nil’ as being TRUE (i.e. not-FALSE). The actual symbol ‘t’ should be
used where a TRUE boolean value must be explicitly stated to increase
the clarity of the code.

This is not the end of the story; ‘nil’ actually has another meaning:
it represents the empty list. This is a consequence of how lists are
constructed in Lisp, a list of zero elements is stored as the symbol
‘nil’ .

To the Lisp system itself there is absolutely no difference between
‘()" (the notation for a list with zero elements) and ‘nil’ (the symbol
nil). When writing code however, the list notation is usually used
when the programmer regards the value as a list and the '‘nil’ notation
when its value as a boolean is to be emphasised.

jade

771348

1.89 jade.guide/The Lisp Reader

The Lisp Reader

Lisp programs and functions are stored internally as normal Lisp data
objects, the Lisp Reader is the process used to translate textual
descriptions of Lisp objects into the data structures used to represent
the objects.

The Lisp Reader is the collection of internal functions accessed by
the ‘read’ Lisp function. It reads a character at a time from an input
stream until it has parsed a whole Lisp object.

See
Data Types

1.90 jade.guide/Notation

Notation

Wherever an example of evaluating a Lisp form is shown it will be
formatted like this,

(+ 1 2)
=> 3

The glyph '=>’ is used to show the computed value of a form.

When two forms are shown as being exactly equivalent to one another
the glyph ‘==’ is used, for example,

(car some—-variable) == (nth 0 some-variable)

Evaluating some forms result in an error being signalled, this is
denoted by the ‘error-->' glyph.

(read-file "/tmp/foo")
error——> File error: No such file or directory, /tmp/foo

1.91 jade.guide/Descriptions

Descriptions

The simplest type of descriptions are the descriptions of variables
(see

jade

787348

Variables
), they look something like,

- Variable: grains-of-sand
This imaginary variable contains the number of grains of sand in a
one-mile long stretch of an averagely sandy beach.

Hooks (see
Hooks
) are also described in this format, the only
difference is that ‘Variable:’ is replaced by ‘Hook:’.

Functions (see

Functions

) and macros (see

Macros

) have more complex
descriptions; as well as the name of the thing being described, they
also have a list of arguments which the thing will accept. Each
argument in the list is named and may be referred to in the body of the
description.

Two ‘special’ arguments may be used, ‘&optional’ and ‘&rest’. They
have the same meaning as when used in the lambda-list of a function
definition (see

Lambda Expressions

), that is ‘&optional’ means that all
further arguments are optional, and ‘&rest’ means that zero or more
argument values are coalesced into a list to be used as the value of
the following argument.

An example function definition follows.

— Function: useless—-function FIRST &optional SECOND &rest TAIL
This function returns a list consisting of the values SECOND (when
undefined the number 42 is used), all the items in the list TAIL
and FIRST.

(useless—function ’'foo "bar ’'xyz 20)
=> (bar xyz 20 foo)

(useless—function ’50)
=> (42 50)

Macros and commands (see
Commands
) are defined in the same way with
‘Macro:’ or ‘Command:’ replacing ‘Function:’.

Special forms (see

Special Forms

) are described similarly to
functions except that the argument list is formatted differently since
special forms are, by definition, more flexible in how they treat their
arguments. Optional values are enclosed in square brackets
(*[OPTIONAL-ARG]’) and three dots (‘REPEATED-ARG...’) indicate where
zero or more arguments are allowed.

jade 79/ 348

1.92 jade.guide/Data Types

Data Types

The way that data values are represented in Lisp is fundamentally
different to more "conventional" languages such as C or Pascal: in Lisp
each piece of data (a "Lisp Object") has two basic attributes, the
actual data and a tag value defining the *typex of the object. This
means that type checking is performed on the actual data itself, not on
the "variable" holding the data.

All Lisp objects are a member of one of the primitive types; these
are types built into the Lisp system and can represent things like
strings, integers, cons cells, vectors, etc...

More complex types of object can be constructed from these primitive
types, for example a vector of three elements could be regarded as a
type ‘triple’ if necessary. In general, each separate type provides a
predicate function which returns ‘t’ when applied to an object of its

type.

Types Summary
List of the most common types

Read Syntax
Some types can be constructed from source code

Printed Representation
All types can be printed

Equality Predicates
How to test two objects for equality

Comparison Predicates
Comparing two objects as scalars

Type Predicates
Each type has a predicate defining it

Garbage Collection
Reusing memory from stale objects

1.93 jade.guide/Types Summary

jade

80 /348

Types Summary

FEach separate data type is documented in its own section, this is a

just a table of the more common types.

"Integer"
32-bit signed integers. See
Numbers

"Cons cell"
An object containing two other Lisp objects. See
Cons Cells

"List"
A sequence of objects, in Lisp lists are not primitive types,
instead they are made by chaining together Cons cells. See

Lists
"Vector"
A one-dimensional array of objects. See
Vectors
"String"
A vector of characters. See
Strings
"Array"

An ordered sequence of objects which can be accessed in constant
time, either a vector or a string. See

Sequences
"Sequence"
An ordered sequence of objects, either a list or an array. See
Sequences
"Symbol"

A symbol is a named object; they are used to provide named
variables and functions. See
Symbols

"File"
A link to a file in the operating system’s filing system, allows
access to the file as a stream. See
Files

jade 81/348

"Stream"
Serial data sinks and sources. See
Streams

"Void"
No type, only used in symbols to represent an unset function or
variable value.

"Buffer"
A "space" in which text can be edited, buffers may be displayed in
a window and hence edited by the user. See
Buffers

"Window"
A physical window in the underlying window-system, used for input
and output.

"Position"
A pair of integers, used to represent the coordinates of a
character in a buffer. See
Positions

"Mark"
A position in a specified file, this file may either be a buffer
in memory or a named file. See

Marks
"Process"
An object through which processes may be created and controlled.
See
Processes

"Glyph Table"
A lookup-table which is used to map characters in a buffer to the
sequence of glyphs they are rendered as. See
Glyph Tables

"Keymap"
A set of key-sequence-to-command mappings; when installed in a
buffer it controls how the editor reacts to all input from the
user. See
Keymaps

"Event"
An (input-) event from a window.

jade 82 /348

1.94 jade.guide/Read Syntax

Read Syntax

As previously noted the Lisp reader translates textual descriptions
of Lisp objects into the object they describe (source files are simply
descriptions of objects). However, not all data types can be created in
this way: in fact the only types which can are integers, strings,
symbols, cons cells (or lists) and vectors, all others have to be
created by calling functions.

Note that comments in a Lisp program are introduced by the semi-colon
character (';’). Whenever the Lisp reader encounters a semi-colon where
it’s looking for the read syntax of a new Lisp object it will discard
the rest of the line of input. See

Comment Styles

The "read syntax" of an object is the string which when given to the
reader as input will produce the object. The read syntax of each type
of object is documented in that type’s main section of this manual but
here is a small taste of how to write each type.

Integers
An integer is simply the number written in either decimal, octal
(when the number is preceded by ‘'0’) or hexadecimal (when the
number is preceded by ‘0x’). An optional minus sign may be the
first character in a number. Some examples are,

42
=> 42

0177
=> 127

Oxff
=> 255

-0x10
Strings
The read syntax of a string is simply the string with a

double-quote character ('"’) at each end, for more details see

Strings

"This is a string"

Cons cells
A cons cell is written in what is known as "dotted pair notation"
and is Jjust the two objects in the cell separated by a dot and the
whole thing in parentheses,

jade 83 /348

(CAR . CDR)

Lists
The syntax of a list is similar to a cons cell (since this is what
lists are made of): no dot is used and there may be zero or more
objects,
(OBJECT1 OBJECT2 OBJECT3 ...)
("fooll ("bar" "baz") 100)

The second example is a list of three elements, a string, another
list and a number.

Vectors
The read syntax of a vector is very similar to that of a list,
simply use square brackets instead of parentheses,

[OBJECT1 OBJECT2 OBJECT3 ...]
Symbols
A symbol’s read syntax is simply its name, for example the read

syntax of a symbol called ‘my-symbol’ is,

my—-symbol

1.95 jade.guide/Printed Representation

Printed Representation

The "printed representation" of an object is the string produced
when the object is printed (with one of the ‘print’ functions), this
will usually be very similar to the read syntax of the object (see

Read Syntax
) .

Objects which do not have a read syntax xdox have a printed
representation, it will normally be of the form,

#<relevant text>
where the "relevant text" is object-dependent and usually describes the

object and its contents. The reader will signal an error if it
encounters a description of an object in the format “#<...>'.

1.96 jade.guide/Equality Predicates

jade 84 /348

Equality Predicates

— Function: eq ARGl ARG2
Returns ‘t’ when ARGl and ARG2 are the same object. Two objects
are the same object when they occupy the same place in memory and
hence modifying one object would alter the other. The following
Lisp fragments may illustrate this,

(eq "foo" "foo") ;the objects are distinct
=> nil

(eg t t) ;the same object —-- the symbol ‘t’
:>t

Note that the result of ‘eq’ is undefined when called on two
integer objects with the same value, see ‘eql’.

— Function: equal ARGl ARG2
The function ‘equal’ compares the structure of the two objects ARG1
and ARG2. If they are considered to be equivalent then ‘t’ is
returned, otherwise ‘nil’ is returned.

(equal "foo" "foo")
=> t

(equal 42 42)
=> t

(equal 42 0)
=> nil

(equal " (x . y) "(x . Vy))
=> t

— Function: egql ARGl ARG2
This function is a cross between ‘eqg’ and ‘equal’: if ARGl and
ARG2 are both numbers then the value of these numbers are compared.
Otherwise it behaves in exactly the same manner as ‘eq’ does.

(eql 3 3)
=> t

(eql 1 2)
=> nil

(eql "fOO" "fooll)
=> nil

4

(eql '"x 'x)

=> t

jade 85/ 348

1.97 jade.guide/Comparison Predicates

Comparison Predicates

These functions compare their two arguments in a scalar fashion, the
arguments may be of any type but the results are only meaningful for
numbers, strings (ASCII values of each byte compared until a
non-matching pair is found then those two values are compared as
numbers) and positions.

— Function: > ARGl ARG2
Returns ‘t’ when ARGl is ‘greater than’ ARG2.

— Function: >= ARGl ARG2
Returns ‘t’ when ARGl is ‘greater than or equal to’ ARG2.

— Function: < ARGl ARG2
Returns ‘t’ when ARGl is ‘less than’ ARG2.

- Function: <= ARGl ARG2
Returns ‘t’ when ARGl is ‘less than or equal to’ ARG2.

1.98 jade.guide/Type Predicates

Type Predicates

Each type has a corresponding predicate which defines the objects
which are members of that type.

* ‘integerp’
* ‘numberp’

* ‘null’

* ‘consp’

* ‘listp’

* ‘vectorp’

* ‘subrp’

* “functionp’
* ‘sequencep’
* ‘stringp’

* ‘symbolp’

jade

86 /348

* ‘posp’

* ‘bufferp’
* ‘windowp’
* ‘markp’

* ‘processp’
x ‘filep’

* ‘keymapp’
* ‘eventp’

* ‘commandp’

The documentation for these functions is with the documentation for
the relevant type.

1.99 jade.guide/Garbage Collection

Garbage Collection

In Lisp, data objects are used very freely; a side effect of this is
that it is not possible to (easily) know when an object is "stale",
that is, no references to it exist and it can therefore be reused.

The "garbage collector" is used to overcome this problem; whenever
enough new data objects have been allocated to make it worthwhile,
everything stops and the garbage collector works its way through memory
deciding which objects are still in use and which are stale. The stale
objects are then recorded as being available for reuse and evaluation
continues again.

— Function: garbage-collect
Runs the garbage collector, usually this function doesn’t need to
be called manually.

- Variable: garbage-threshold
The number of bytes of data which must be allocated before
evaluation will pause and the garbage collector called.

Its default value is about 100K.

See
Idle Actions

jade

877348

1.100 jade.guide/Numbers

Numbers

Currently Jade is only capable of representing integers, for this it
uses signed 32-bit integers: this gives a range of -2147483648 through
0 to 2147483647.

The read syntax of an integer is simply the number written in
decimal, octal or hexadecimal. If the integer starts with the string
‘0x’ it is assumed to be hexadecimal or if it starts with a zero it is
treated as octal. The first character may be an optional minus or plus
sign (this should come before any base-specifier). Examples of valid
integer read syntaxes for the number 42 could be ‘42’, ‘0x2a’, ‘052’,
‘+0527,

An integer’s printed representation is simply the number printed in
decimal with a preceding minus sign if it is negative.

- Function: numberp OBJECT
This function returns ‘t’ if OBJECT is a number.

— Function: integerp OBJECT
This function returns ‘t’ when OBJECT is an integer.

Arithmetic Functions
Adding and substracting...

Bitwise Functions
Using integers as bit-sequences

Numeric Predicates
Comparing numbers

Characters
Integers are used to represent characters

1.101 jade.guide/Arithmetic Functions

Arithmetic Functions

There are a number of functions which perform arithmetic operations
on numbers, they take a varying number of integer objects as their
arguments then return a new integer object as their result.

Note that none of these functions check for overflow.

- Function: + NUMBER1l &rest NUMBERS

jade 88 /348

This functions adds its arguments then returns their sum.

- Function: - NUMBER1l &rest NUMBERS
If this function is just given one argument (NUMBER1) that number
is negated and returned. Otherwise each of NUMBERS is subtracted
from a running total starting with the value of NUMBERI.

(= 20)
=> -20

(- 20 10 5)
=> 5

- Function: % NUMBER1l &rest NUMBERS
This function multiplies its arguments then returns the result.

— Function: / NUMBER1 &rest NUMBERS
This function performs division, a running-total (initialised from
NUMBER1 is successively divided by each of NUMBERS then the result
is returned.

(/ 100 2)
=> 50

(/ 200 2 5)
=> 20

- Function: % DIVIDEND DIVISOR
Returns the remainder from dividing DIVIDEND by DIVISOR.

(mod 5 3)
=> 2

- Function: 1+ NUMBER
This function returns the result of adding one to NUMBER.

(1+ 42)
=> 43

— Function: 1- NUMBER
Returns NUMBER minus one.

1.102 jade.guide/Bitwise Functions

Bitwise Functions

These functions operate on the bit string which an integer is made
of.

— Function: 1lsh NUMBER COUNT
This function bit-shifts the integer NUMBER COUNT bits to the
left, if COUNT is negative NUMBER is shifted to the right instead.

jade

89 /348

(1sh 1 8)
=> 256

(1sh 256 -8)
=> 1

- Function: ash NUMBER COUNT
Similar to ‘lsh’ except that an arithmetical shift is done, this
means that the sign of NUMBER is always preserved.

(ash 1 8)
=> 256

(ash -1 2)
=> -4

- Function: logand NUMBER1 &rest NUMBERS
This function uses a bit-wise logical ‘and’ operation to combine
all its arguments (there must be at least one argument).

(logand 15 8)
=> 8

(logand 15 7 20)
=> 4

- Function: logior NUMBER1 &rest NUMBERS
Uses a bit-wise logical ‘inclusive-or’ to combine all its

arguments (there must always be at least one argument).

(logior 1 2 4)
=> 7

- Function: logxor NUMBER1 &rest NUMBERS

Uses a bitwise logical ‘exclusive-or’ to combine all its arguments

(there must be at least one).

(logxor 7 3)
=> 4

- Function: lognot NUMBER
This function inverts all the bits in NUMBER.

(lognot 0)
=> -1

(lognot 2)
=> -3

(lognot -1)
=> 0

1.103 jade.guide/Numeric Predicates

jade 90/ 348
Numeric Predicates
For the documentation of the functions '>’, ‘<’, '‘>=’ and ‘<=’ see
Comparison Predicates
— Function: = NUMBER1l NUMBER2

This function returns ‘t’ if the two integers NUMBER1 and NUMBER2
have the same value.

(=11)
=> t

(=1 0)
=> nil

- Function: /= NUMBER1 NUMBER2
This function will return ‘t’ if NUMBER1 and NUMBER2 and not equal

to each other.

- Function: zerop NUMBER
Returns ‘t’ if NUMBER is equal to zero.

1.104 jade.guide/Characters

Characters

In Jade characters are stored in integers. Their read syntax is a
question mark followed by the character itself which may be an escape
sequence introduced by a backslash. For details of the available escape
sequences see

Strings

?a

=> 97
?\n

=> 10
?2\177

=> 127

jade 91 /348

— Function: alpha-char-p CHARACTER
This function returns ‘t’ when CHARACTER is one of the alphabetic
characters.

(alpha-char-p ?a)
=> t

- Function: upper-case-p CHARACTER
When CHARACTER is one of the upper-case characters this function
returns ‘t’.

- Function: lower-case-p CHARACTER
Returns ‘t’ when CHARACTER is lower-case.

- Function: digit-char-p CHARACTER
This function returns ‘t’ when CHARACTER is one of the decimal
digit characters.

- Function: alphanumericp CHARACTER
This function returns ‘t’ when CHARACTER is either an alphabetic
character or a decimal digit character.

- Function: space-char-p CHARACTER
Returns ‘t’ when CHARACTER is a white-space character (space, tab,
newline or form feed).

— Function: char-upcase CHARACTER
This function returns the upper-case equivalent of CHARACTER. If
CHARACTER is already upper-case or has no upper-case equivalent it
is returned unchanged.

(char—-upcase ?a)
=> 65 ; ‘AT

(char-upcase ?A)
=> 65 ; ‘A

(char-upcase ?!)
=> 33 HAN

— Function: char-downcase CHARACTER
Returns the lower-case equivalent of the character CHARACTER.

1.105 jade.guide/Sequences

Sequences

Sequences are ordered groups of objects, there are several primitive
types which can be considered sequences, each with its own good and bad
points.

A sequence 1is either an array or a list, where an array is either a

jade 92 /348

vector or a string.

- Function: sequencep OBJECT
This function returns ‘t’ if OBJECT is a sequence, ‘nil’ otherwise.

Cons Cells
An ordered pair of two objects

Lists
Chains of cons cells
Vectors
A chunk of memory holding a number of <+
objects
Strings

Strings are efficiently-stored vectors

Array Functions
Accessing elements in vectors and strings

Sequence Functions
These work on any type of sequence

1.106 jade.guide/Cons Cells

Cons Cells

A "cons cell" is an ordered pair of two objects, the "car" and the
n Cdr n .

The read syntax of a cons cell is an opening parenthesis followed by
the read syntax of the car, a dot, the read syntax of the cdr and a
closing parenthesis. For example a cons cell with a car of 10 and a cdr
of the string ‘foo’ would be written as,

(10 . "foo")
— Function: cons CAR CDR
This function creates a new cons cell. It will have a car of CAR

and a cdr of CDR.

(cons 10 "foo")
=> (10 . "foo")

- Function: consp OBJECT
This function returns ‘t’ if OBJECT is a cons cell and ‘nil’

otherwise.

(consp " (1 . 2))

jade

93 /348

=> t

(consp nil)
=> nil

(consp (cons 1 2))
=> t

In Lisp an "atom" is any object which is not a cons cell

therefore, atomic).

— Function: atom OBJECT

Returns ‘t’ if OBJECT is an atom

Given a cons cell there are a number of operations which can be

performed on it.

— Function: car CONS-CELL

This function returns the object which the car of the cons cell

CONS—-CELL.

(car (cons 1 2))
=> 1

— Function: cdr CONS-CELL

This function returns the cdr of the cons cell CONS-CELL.

(cdr (cons 1 2))
=> 2

(cdr 7 (1 . 2))

- Function: rplaca CONS-CELL NEW-CAR
This function sets the value of the car in the cons cell CONS-CELL
to NEW-CAR. The value returned is NEW-CAR.

(setg x (cons 1 2))

= (1 . 2)
(rplaca x 3)
=> 3
X
=> (3 2)

— Function: rplacd CONS-CELL NEW-CDR
This function is similar to

CONS-CELL is modified.

1.107 jade.guide/Lists

(not a cons cell).

except that the cdr slot of

jade

94 /348

Lists

A list is a sequence of zero or more objects, the main difference
between lists and vectors is that lists are more dynamic: they can
change size, be split, reversed, concatenated, etc... very easily.

In Lisp lists are not a primitive type; instead singly-linked lists
are created by chaining cons cells together (see
Cons Cells
) -

- Function: listp OBJECT
This functions returns ‘t’ when its argument, OBJECT, is a list
(i.e. either a cons cell or ‘nil’).

List Structure
How lists are built from cons cells

Building Lists
Dynamically creating lists

Accessing List Elements
Getting at the elements which make the list

Modifying Lists
How to alter the contents of a list

Association Lists
Lists can represent relations

Infinite Lists
Circular data structures in Lisp

1.108 jade.guide/List Structure

List Structure

Each element in a list is given its own cons cell and stored in the
car of that cell. The list object is then constructed by making the cdr
of a cell contain the cons cell of the next element (and hence the
whole tail of the list). The cdr of the cell containing the last
element in the list is '‘nil’. A list of zero elements is represented by
the symbol ‘nil’.

The read syntax of a list is an opening parenthesis, followed by the
read syntax of zero or more space-separated objects, followed by a
closing parenthesis. Alternatively, lists can be constructed ‘manually’
using dotted-pair notation.

jade

95/ 348

All of the following examples result in the same list of five

elements: the numbers from zero to four.

(001 2 3 4)

(0 . (1L . (2 . (3 . (4 . nil)))))

(01 2 . (3 4))

An easy way to visualise lists and how they are constructed is to
see each cons cell in the list as a separate "box" with pointers to its

car and cdr,

+———— +———— +
| o | o-——> cdr
|t +
|
--> car
Complex box-diagrams can now be drawn to represent lists. For
example the following diagram represents the list ‘(1 2 3 4)’'.
+————= +———— + +———— +————= + +————= +———— + +———— +————= +
| o | o———> 1] o | o—=> | o-——-> | o o———--> nil
e e + +——| == + e e + +—— | == +
| \ \
-—> 1 -——> 2 -—> 3 -—> 4

A more complex example, the list ‘((1 2

- +———— +
| o | o—————— =
+——| -4 +

|
+———— +———— + +———— +———— +
| o | o-———> | o | o-——=> nil
el I + +—— | ——F———— +

| \

-—> 1 -—> 2

(foo bar))’ can be drawn as,

——t———— +
| o>
——t———— +
—————— +
| o————>
——t———— +
-—> foo

nil

- - +

| o \ o————> nil
+——| == +

Sometimes when manipulating complex list structures it is very
helpful to make a diagram of what it is that’s being manipulated.

1.109 jade.guide/Building Lists

Building Lists

It has already been shown how you can create lists using the Lisp
reader; this method does have a drawback though: the list created is
effectively static. If you modify the contents of the list and that
list was created when a function was defined the list will remain

modified for all future invocations of that function.

This is not

usually a good idea, consider the following function definition,

jade 96 / 348

(defun bogus-function (x)
"Return a list whose first element is nil and whose second element is X."

(let
((result ' (nil nil))) ;Static list which is filled in each time
(rplaca (cdr result) x) ; the function is called
result))

This function does in fact do what its documentation claims, but a
problem arises when it is called more than once,

(setqg x (bogus—-function ’foo))
=> (nil foo)
(setq y (bogus—-function ’bar))

=> (nil bar) ;The first result has been destroyed
X
=> (nil bar) ; See!
This example is totally contrived —-- no one would ever write a

function like the one in the example but it nicely demonstrates the
need for a dynamic method of creating lists.

— Function: list &rest ELEMENTS
This function creates a list out of its arguments, if zero
arguments are given the empty list, ‘nil’, is returned.

(list 1 2 3)
=> (1 2 3)

(list (major-version-number) (minor-version-number))
=> (3 2)

(list)
=> nil ;Equivalent to ()’

— Function: make-list LENGTH &optional INITIAL-VALUE
This function creates a list LENGTH elements long. If the
INITIAL-VALUE argument is given it defines the value of all
elements in the list, if it is not given they are all ‘nil’.

(make-1list 2)
=> (nil nil)

(make-1list 3 t)
=> (t t t)

(make-1ist 0)
=> nil

- Function: append &rest LISTS
This function creates a new list with the elements of each of its
arguments (which must be lists). Unlike the function ‘nconc’ this
function preserves all of its arguments.

(append " (1 2 3) " (4 5))
=> (1 2 3 4 5)

jade 97 /348

(append)
=> nil

What actually happens is that all arguments but the last are copied
then the last argument is linked on to the end of the list
(uncopied) .

(setqg foo ' (1 2))

=> (1 2)
(setqg bar 7 (3 4))
=> (3 4)
(setg baz (append foo bar))
=> (1 2 3 4)
(eg (nthcdr 2 baz) bar)
=> t

The following diagram shows the final state of the three variables
more clearly,

foo——> +-————- - + +—— e +
Il o | o—=—=—>1] o | \
el e it + Rl I +
| |
o——> 1 o——> 2 bar
| | ->
baz-—-> +-——|-——+-————~ + Rl I + Fm—— Fm——— + Fm——— e +
/| o | o-—=——>1] o | o——>1] o | o——>1] o | |
+——— +——— + +——— +——— + el e + |-t +

Note how ‘foo’ and the first half of ‘baz’ use the xsamex objects
for their elements —-- copying a list only copies its cons cells,
its elements are reused. Also note how the variable ‘bar’ actually
references the mid-point of ‘baz’ since the last 1list in an
‘append’ call is not copied.

- Function: reverse LIST
This function returns a new list; it is made from the elements of
the list LIST in reverse order. Note that this function does not
alter its argument.

(reverse ' (1 2 3 4))
=> (4 3 2 1)

As a postscript to this section, the function used as an example at
the beginning could now be written as,

(defun not-so-bogus—-function (x)
(list nil x))

Also note that the ‘cons’ function can be used to create lists by
hand and to add new elements onto the front of a list.

jade

98 /348

1.110 jade.guide/Accessing List Elements

Accessing List Elements

The most powerful method of accessing an element in a list is via a
combination of the ‘car’ and ‘cdr’ functions. There are other functions
which provide an easier way to get at the elements in a flat list.
These will usually be faster than a string of ‘car’ and ‘cdr’
operations.

— Function: nth COUNT LIST
This function returns the element COUNT elements down the list,
therefore to access the first element use a COUNT of zero (or even
better the ‘car’ function). If there are too few elements in the
list and no element number COUNT can be found '‘nil’ is returned.

(nth 3 7(0 1 2 3 4 5))
=> 3

(nth 0 ' (foo bar)
=> foo

— Function: nthcdr COUNT LIST
This function takes the cdr of the list LIST COUNT times,
returning the last cdr taken.

(nthedr 3 (0 1 2 3 4 5))
=> (3 4 5)

(nthcdr 0 ' (foo bar))
=> (foo bar)

— Function: last LIST
This function returns the last element in the list LIST. If the
list has zero elements ‘nil’ is returned.

(last " (1 2 3))
=> 3

(last " ())
=> nil

- Function: member OBJECT LIST
This function scans through the list LIST until it finds an element
which is ‘equal’ to OBJECT. The tail of the list (the cons cell
whose car is the matched object) is then returned. If no elements
match OBJECT then the empty list ‘nil’ is returned.

(member "c ' (a b c d e))
=> (c d e)

(member 20 ' (1 2))
=> nil

— Function: memg OBJECT LIST

jade

99 /348

This function is similar to ‘member’ except that comparisons are
performed by the ‘eq’ function not ‘equal’.

1.111 jade.guide/Modifying Lists

Modifying Lists

The ‘nthcdr’ function can be used in conjunction with the ‘rplaca’
function to modify an arbitrary element in a list. For example,

(rplaca (nthedr 2 7 (0 1 2 3 4 5)) ’"foo)
=> foo

sets the third element of the 1list (0 1 2 3 4 5)’ to the symbol called
‘foo' .

There are also functions which modify the structure of a whole list.
These are called "destructive" operations because they modify the actual
structure of a list —-— no copy is made. This can lead to unpleasant
side effects if care is not taken.

- Function: nconc &rest LISTS
This function is the destructive equivalent of the function
‘append’, it modifies its arguments so that it can return a list
which is the concatenation of the elements in its arguments lists.

Like all the destructive functions this means that the lists given
as arguments are modified (specifically, the cdr of their last

cons cell is made to point to the next list). This can be seen
with the following example (similar to the example in the ‘append’
documentation) .

(setg foo 7 (1 2))

=> (1 2)
(setg bar " (3 4))
=> (3 4)
(setg baz (nconc foo bar))
=> (1 2 3 4)
foo
=> (1 2 3 4) ; ‘foo’ has been altered!
(eq (nthcdr 2 baz) bar)
=>t

The following diagram shows the final state of the three wvariables
more clearly,

foo——> bar-->

baz-——> +-———- = + R +——— + +——— o + e +——— +
| o o-————> | o | o—=> 1] o o———> | o |
el I + Rl I + el I + Rl I

jade 100/ 348

- Function: nreverse LIST
This function rearranges the cons cells constituting the list LIST
so that the elements are in the reverse order to what they were.

(setg foo (1 2 3))

=> (1 2 3)
(nreverse foo)
=> (3 2 1)
foo
=> (1) ; ‘foo’ wasn’t updated when the list

; was altered.

— Function: delete OBJECT LIST
This function destructively removes all elements of the list LIST
which are ‘equal’ to OBJECT then returns the modified list.

(delete t " (nil t nil t nil))
=> (nil nil nil)

When this function is used to remove an element from a list which
is stored in a variable that variable must be set to the return
value of the ‘delete’ function. Otherwise, if the first element of
the list has to be deleted (because it is ‘equal’ to OBJECT) the
value of the variable will not change.

(setg foo (1 2 3))

= (1 2 3)
(delete 1 foo)
=> (2 3)
foo
=> (1 2 3)
(setg foo (delete 1 foo0))
=> (2 3)

- Function: delq OBJECT LIST
This function is similar to the ‘delete’ function, the only
difference is that the ‘eq’ function is used to compare OBJECT
with each of the elements in LIST, instead of the ‘equal’ function
which is used by ‘delete’.

1.112 jade.guide/Association Lists

Association Lists

An "association 1list" (or "alist") is a list mapping key values to
to other values. Each element of the alist is a cons cell, the car of
which is the "key", the cdr is the value that it associates to. For
example an alist could look like,

((fred . 20)
(bill . 30))

this alist has two keys, ‘fred’ and ‘bill’ which both associate to an

jade 101 /348

integer (20 and 30 respectively).
It is possible to make the associated values lists, this looks 1like,

((fred 20 male)
(bill 30 male)
(sue 25 female))

in this alist the symbol ‘fred’ is associated with the list ‘(20 male)’.

There are a number of functions which let you interrogate an alist
with a given key for its association.

- Function: assoc KEY ALIST
This function scans the association list ALIST for the first
element whose car is ‘equal’ to KEY, this element is then
returned. If no match of KEY is found ‘nil’ is returned.

(assoc "two /' ((one . 1) (two . 2) (three . 3)))
=> (two . 2)

— Function: assg KEY ALIST
Similar to the function ‘assoc’ except that the function ‘eq’ is
used to compare elements instead of ‘equal’.

It is not usually wise to use ‘assq’ when the keys of the alist
may not be symbols —-- ‘eq’ won’t think two objects are equivalent
unless they are the *samex object!

(assg "foo" ' (("bar"™ . 1) ("foo" . 2)))
=> nil

(assoc "foo" ' (("bar"™ . 1) ("foo" . 2)))
=> ("foo" . 2)

— Function: rassoc ASSOCIATION ALIST
This function searches through ALIST until it finds an element
whose cdr is ‘equal’ to ASSOCIATION, that element is then returned.
‘nil’ will be returned if no elements match.

(rassoc 2 " ((one . 1) (two . 2) (three . 3)))
=> (two . 2)

- Function: rassqgq ASSOCIATION ALIST
This function is equivalent to ‘rassoc’ except that it uses ‘eq’
to make comparisons.

1.113 jade.guide/Infinite Lists

Infinite Lists

Sometimes it is useful to be able to create ‘infinite’ lists -- that
is, lists which appear to have no last element ——- this can easily be
done in Lisp by linking the cdr of the last cons cell in the list

jade

102 /348

structure back to the beginning of the list.

-—> = +——— + - Fe——— +
| o | o——=>1] o [o-———-
+—— |- + +—— |-t +
\ |
-—> 1 —-—> 2
The diagram above represents the infinite list ‘(1 2 1 2 1 2 ...)’.

Infinite lists have a major drawback though, many of the standard
list manipulation functions can not be used on them. These functions
work by moving through the list until they reach the end. If the list
has *nox end the function may never terminate and the only option is to
send Jade an interrupt signal (see

Interrupting Jade

) .

The only functions which may be used on circular lists are: the cons
cell primitives (‘cons’, ‘car’, ‘cdr’, ‘rplaca’, ‘rplacd’), ‘nth’ and
‘nthcdr’ .

Also note that infinite lists can’t be printed.

1.114 jade.guide/Vectors

Vectors

A vector is a fixed-size sequence of Lisp objects, each element may
be accessed in constant time -- unlike lists where the time taken to
access an element is proportional to the position of the element.

The read syntax of a vector is an opening square bracket, followed
by zero or more space-separated objects, followed by a closing square
bracket. For example,

[zero one two three]

In general it is best to use vectors when the number of elements to
be stored is known and lists when the sequence must be more dynamic.

- Function: vectorp OBJECT
This function returns ‘t’ if its argument, OBJECT, is a vector.

— Function: vector &rest ELEMENTS
This function creates a new vector containing the arguments given
to the function.

(vector 1 2 3)
=> [1 2 3]

jade

103 /348

(vector)

=> []

— Function: make-vector SIZE &optional INITIAL-VALUE
Returns a new vector, SIZE elements big. If INITIAL-VALUE is
defined each element of the new vector is set to INITIAL-VALUE,
otherwise they are all ‘nil’.

(make-vector 4)
=> [nil nil nil nil]

(make-vector 2 t)
=> [t t]

1.115 jade.guide/Strings

Strings

A string is a vector of characters (see
Characters
), they are
generally used for storing and manipulating pieces of text. Jade puts
no restrictions on the values which may be stored in a string —--
specifically, the null character ('"Q@’) may be stored with no problems.

The read syntax of a string is a double quote character, followed by
the contents of the string, the object is terminated by a second double
quote character. For example, ‘"abc"’ is the read syntax of the string
‘abc’ .

Any backslash characters in the string’s read syntax introduce an
escape sequence; one or more of the following characters are treated
specially to produce the next wxactualx character in the string.

The following escape sequences are supported (all are shown without
their leading backslash ‘\’ character).

n
A newline character.
\rl
A carriage return character.
\fl
A form feed character.
\tl
A TAB character.
\al

A ‘bell’ character (this is Ctrl-g).

jade

104 /348

\/\C’
The ‘control’ code of the character C. This is calculated by
toggling the seventh bit of the xupper-casex version of C.
For example,
\"C ;A Ctrl-c character (ASCII value 3)
\~@ ; The NUL character (ASCII wvalue 0)
‘012
The character whose ASCII value is the octal value ‘012’. After the
backslash character the Lisp reader reads up to three octal digits
and combines them into one character.
‘x127

The character whose ASCII value is the hexadecimal value ‘12’, i.e.
an ‘x’ character followed by one or two hex digits.

- Function: stringp OBJECT
This function returns ‘t’ if its argument is a string.

— Function: make-string LENGTH &optional INITIAL-CHARACTER
Creates a new string containing LENGTH characters, each character
is initialised to INITIAL-CHARACTER (or to spaces if
INITIAL-CHARACTER is not defined).

(make-string 3)
=> " "

(make-string 2 ?29)

=> n$$"

- Function: concat &rest ARGS
This function concatenates all of its arguments, ARGS, into a
single string which is returned. If no arguments are given then
the null string (‘') results.

Each of the ARGS may be a string, a character or a list or vector
of characters. Characters are stored in strings modulo 256.

(concat "foo" "bar")
=> "foobar"

(concat "a" ?b)
=> "gph"

(concat "foo" [?b ?a ?r])
=> "foobar"

(concat)
=> nn

— Function: substring STRING START &optional END
This function creates a new string which is a partial copy of the
string STRING. The first character copied is START characters from
the beginning of the string. If the END argument is defined it is
the index of the character to stop copying at, if it is not defined

jade

105/348

all characters until the end of the string are copied.

(substring "xxyfoozwx" 3 6)
=> "foo"

(substring "xyzfoobar" 3)
=> "foobar"

— Function: string= STRINGl STRING2
This function compares the two strings STRINGl and STRING2 -- if
they are made from the same characters in the same order then ‘t’
is returned, else ‘nil’.

(string= "one" "one")
=> t

(string= "one" "two")
=> nil

Note that an alternate way to compare strings (or anything!) is to
use the ‘equal’ function.

- Function: string< STRING1l STRING2
This function returns ‘t’ if STRING1l is ‘less’ than ‘string2’.
This is determined by comparing the two strings a character at a
time, the first pair of characters which do not match each other
are then compared with a normal ‘less—-than’ function.

In Jade the standard ‘<’ function understands strings so ‘string<’
is Jjust a macro calling that function.

(string< "abc" "abd")
=> t

(string< "abc" "abb")
=> nil

Functions are also available which match regular expressions with
strings (see
Search and Match Functions
) and which apply a mapping to
each character in a string (see
Translation Functions

) .

1.116 jade.guide/Array Functions

Array Functions

- Function: arrayp OBJECT
This function returns ‘t’ if OBJECT is an array.

jade 106 /348

- Function: aref ARRAY POSITION
Returns the element of the array (vector or string) ARRAY POSITION
elements from the first element (i.e. the first element is
numbered zero). If no element exists at POSITION in ARRAY, ‘nil’
is returned.

(aref [0 1 2 31 2)
=> 2

(aref "abcdef" 3)
=> 100 ; vd’

— Function: aset ARRAY POSITION VALUE
This function sets the element of the array ARRAY with an index of
POSITION (counting from zero) to VALUE. An error is signalled if
element POSITION does not exist. The result of the function is
VALUE.

(setg x [0 1 2 31)
=> [0 1 2 3]
(aset x 2 "foo)
=> foo

=> [0 1 foo 3]

1.117 jade.guide/Sequence Functions

Sequence Functions

— Function: length SEQUENCE
This function returns the length (an integer) of the sequence
SEQUENCE.

(length "abc")
:>3

(length (1 2 3 4))
= 4

(length [x y])
=> 2

— Function: copy-sequence SEQUENCE
Returns a new copy of the sequence SEQUENCE. Where possible (in
lists and vectors) only the ‘structure’ of the sequence is newly
allocated: the same objects are used for the elements in both
sequences.

(copy—sequence "xy")
=> " Xy"

(setg x ' ("one" "two"))
=> ("one" "tWO")

jade 107 /348

(setqg y (copy-sequence x))

=> ("OI’le" "twol!)
(eq x)
=> nil
(eg (car x) (car vy))
=> t

— Function: elt SEQUENCE POSITION

This function returns the element of SEQUENCE POSITION elements
from the beginning of the sequence.

This function is a combination of the ‘nth’ and ‘aref’ functions.

(elt [0 1 2 31 1)
=> 1

(elt ' (foo bar) 0)
=> foo

1.118 jade.guide/Symbols

Symbols

Symbols are objects with a name (usually a unique name), they are
one of the most important data structures in Lisp since they are used to
provided named variables (see
Variables
) and functions (see
Functions

).

— Function: symbolp OBJECT
This function returns ‘t’ when its argument is a symbol.

Symbol Syntax
The read syntax of symbols

Symbol Attributes
The objects stored in a symbol

Obarrays

Vectors used to store symbols

Creating Symbols
Allocating new symbols

Interning

Putting a symbol into an obarray

Property Lists
Each symbol has a set of properties

jade

108 /348

1.119 jade.guide/Symbol Syntax

Symbol Syntax

The read syntax of a symbol is simply its name; if the name contains
any meta-characters (whitespace or any from ‘() []’";|’) they will have
to be entered specially. There are two ways to tell the reader that a
meta-character is actually part of the symbol’s name:

1. Precede the meta-character by a backslash character (‘\’), for
example:

xy\ (z\) ;the symbol whose name is ‘xy(z)’
2. Enclose part of the name in vertical lines (two ‘|’ characters).
All characters after the starting vertical line are copied as-is
until the closing vertical line is encountered. For example:

xyl (z) | ;the symbol ‘xy(z)’

Here are some example read syntaxes.

setqg ; ‘setqg’

| setql ; ‘setqg’

\s\e\t\qg ; ‘setqg’

1 ; the xnumberx 1
\1 ; the xsymbol* 1’
| 18%2£78& | ;o M1$%zf78¢&’

fool (bar) | ; ‘foo(bar)’

foo\ (bar\) ; “foo(bar)’

1.120 jade.guide/Symbol Attributes

Symbol Attributes

All symbols have four basic attributes, most important is the "print
name" of the symbol. This is a string containing the name of the
symbol, after it has been defined (when the symbol is first created) it
may not be changed.

- Function: symbol-name SYMBOL
This function returns the print name of the symbol SYMBOL.

(symbol-name ’'unwind-protect)
=> "unwind-protect"

jade

109 /348

Each symbol also has a "value" cell storing the value of this symbol
when it is referenced as a variable. Usually this cell is accessed
implicitly by evaluating a variable form but it can also be read via
the ‘symbol-value’ function(l) (see

Variables

).

Similar to the value cell each symbol also has a "function" cell
which contains the function definition of the symbol (see

Named Functions
) . The ‘symbol-function’ function can be used to read
this cell and the ‘fset’ function to set it.

Lastly, there is the symbol’s "property list", this is similar to an
alist (see
Association Lists
) and provides a method of storing arbitrary
extra values in each symbol. See
Property Lists

(1) Actually buffer-local variables complicate matters but you’ll
learn about that later.

1.121 jade.guide/Obarrays

Obarrays

An "obarray" is the structure used to ensure that no two symbols have
the same name and to provide quick access to a symbol given its name. An
obarray is basically a vector (with a slight wrinkle), each element of
the vector is a chain of symbols which share the same hash-value (a
"bucket"). These symbols are chained together through links which are
invisible to Lisp programs: if you examine an obarray you will see that
each bucket looks as though it has at most one symbol stored in it.

The normal way to reference a symbol is simply to type its name in
the program, when the Lisp reader encounters a name of a symbol it looks
in the default obarray for a symbol of that name. If the named symbol

doesn’t exist it is created and hashed into the obarray —-- this process
is known as "interning" the symbol, for more details see
Interning

- Variable: obarray
This variable contains the obarray that the ‘read’ function uses
when interning symbols. If you change this I hope you know what
you’ re doing.

jade 110/ 348

— Function: make-obarray SIZE
This function creates a new obarray with SIZE hash buckets (this
should be a prime number for best results).

This is the only correct way of making an obarray.

- Function: find-symbol SYMBOL-NAME &optional OBARRAY
This function scans the specified obarray (OBARRAY or the value of
the variable ‘obarray’ if OBARRAY is undefined) for a symbol whose
name 1is the string SYMBOL-NAME. The value returned is the symbol
if it can be found or ‘nil’ otherwise.

(find-symbol "setqg")
=> setqg

— Function: apropos REGEXP &optional PREDICATE OBARRAY
Returns a list of symbols from the obarray OBARRAY (or the default)
whose print name matches the regular expression REGEXP. If
PREDICATE is defined and not ‘nil’, each symbol which matches
REGEXP is applied to the function PREDICATE, if the wvalue is ‘t’
it is considered a match.

The PREDICATE argument is useful for restricting matches to a
certain type of symbol, for example only commands.

(apropos "“yank" ’commandp)
=> (yank-rectangle yank yank-to-mouse)

1.122 jade.guide/Creating Symbols

Creating Symbols

It is possible to allocate symbols dynamically, this is normally only
necessary when the symbol is to be interned in the non-default obarray
or the symbol is a temporary object which should not be interned (for
example: labels in a compiler?).

- Function: make-symbol PRINT-NAME
This function creates and returns a new, uninterned, symbol whose
print name is the string PRINT-NAME. Its variable and function
value cells are void and it will have an empty property list.

(make-symbol "foo")
=> foo

- Function: gensym
This function returns a new, uninterned, symbol which has a unique
print name.

(gensym)
=> G0001

jade

111/348

(gensym)
=> G0002

1.123 jade.guide/Interning

Interning

"Interning" a symbol means to store it in an obarray so that it can
be found in the future: all variables and named-functions are stored in
interned symbols.

When a symbol is interned a hash function is applied to its print
name to determine which bucket in the obarray it should be stored in.
Then it is simply pushed onto the front of that bucket’s chain of
symbols.

Normally all interning is done automatically by the Lisp reader.
When it encounters the name of a symbol which it can’t find in the
default obarray (the value of the variable ‘obarray’) it creates a new
symbol of that name and interns it. This means that no two symbols can
have the same print name, and that the read syntax of a particular
symbol always produces the same object (unless the value of ‘obarray’
is altered).

(eg ’'some-symbol ’some-symbol)
=>t

— Function: intern SYMBOL-NAME &optional OBARRAY
This function uses ‘find-symbol’ to search the OBARRAY (or the
standard obarray) for a symbol called SYMBOL-NAME. If a symbol of
that name is found it 1is returned, otherwise a new symbol of that
name 1is created, interned into the obarray, and returned.

(intern "setg")
=> setqg

(intern "my-symbol" my-obarray)
=> my-symbol

— Function: intern-symbol SYMBOL &optional OBARRAY
Interns the symbol SYMBOL into the obarray OBARRAY (or the
standard one) then returns the symbol. If SYMBOL is currently
interned in an obarray an error is signalled.

(intern-symbol (make-symbol "foo"))
=> foo

(intern-symbol " foo)
error——-> Error: Symbol is already interned, foo

- Function: unintern SYMBOL &optional OBARRAY
This function removes the symbol SYMBOL from the obarray OBARRAY
then returns the symbol.

jade

112/348

Beware! this function must be used with xextremex caution —-- once
you unintern a symbol there’s no way to recover it.

(unintern ’setq) ;This is extremely stupid
=> setqg

1.124 jade.guide/Property Lists

Property Lists

Each symbol has a property list (or "plist"), this is a structure
which associates an arbitrary Lisp object with a key (usually a
symbol) . The keys in a plist may not have any duplications (so that
each property is only defined once).

The concept of a property list is very similar to an association list
(see
Association Lists
) but there are two main differences:

1. Structure; each element of an alist represents one key/association
pair. In a plist each pair of elements represents an association:
the first is the key, the second the property. For example, where
an alist may be,

((one . 1) (two . 2) (three . 3))
a property list would be,
(one 1 two 2 three 3)

2. Plists have their own set of functions to modify the list. This is
done destructively, altering the property list (since the plist is
stored in only one location, the symbol, this is quite safe).

— Function: get SYMBOL PROPERTY
This function searches the property list of the symbol SYMBOL for
a property ‘eq’ to PROPERTY. If such a property is found it is
returned, else the value ‘nil’ is returned.

(get "if ’lisp-indent)
=> 2

(get 'set ’lisp-indent)
=> nil

- Function: put SYMBOL PROPERTY NEW-VALUE
‘put’ sets the value of the property PROPERTY to NEW-VALUE in the
property list of the symbol SYMBOL. If there is an existing value
for this property it is overwritten. The value returned is
NEW-VALUE.

jade

113/348

(put "foo 'prop 200)
=> 200

— Function: symbol-plist SYMBOL
Returns the property list of the symbol SYMBOL.

(symbol-plist ’if)
=> (lisp-indent 2)

- Function: setplist SYMBOL PLIST
This function sets the property list of the symbol SYMBOL to PLIST.

(setplist ’"foo ' (zombie yes))
=> (zombie yes)

1.125 jade.guide/Evaluation

Evaluation

So far I have only discussed a few of the various data types
available and how the Lisp reader can convert textual descriptions of
these types into Lisp objects. Obviously there has to be a way of
actually computing something —-- it would be difficult to write a useful
program otherwise.

What sets Lisp apart from other languages is that in Lisp there is no
difference between programs and data: a Lisp program is just a sequence
of Lisp objects which will be interpreted when the program is run.

The subsystem which does this interpreting is called the "Lisp
evaluator" and each expression to be evaluated is called a "form". The
evaluator (the function ‘eval’) examines the structure of the form that
is applied to and computes the value of the form within the current
environment.

A form can be any type of data object; the only types which the
evaluator treats specially are symbols (which stand for wvariables) and
lists, anything else is returned as-is (and is called a
"self-evaluating form").

— Function: eval FORM
This function computes the value of the form which is its
argument, within the current environment. The computed value is
then returned. ‘eval’ is the basic function for interpreting Lisp
objects.

Symbol Forms
How variables are accessed

List Forms

jade

114 /348

Subroutine calls

Self-Evaluating Forms
Forms which don’t get evaluated

Quoting
How to prevent evaluation of forms

1.126 jade.guide/Symbol Forms

Symbol Forms

When the evaluator is applied to a symbol the computed value of the
form is the object stored in the symbol’s variable slot. Basically this
means that to get the value of a variable you simply write its name.
For example,

buffer-list
=> (#<buffer xjadex> #<buffer programmer.texi>)

this extract from a Lisp session shows the read syntax of a form to get
the value of the variable ‘buffer-list’ and the result when this form
is evaluated.

Since forms are evaluated within the current environment the value of
a variable is its newest binding, or in the case of buffer-local
variables, its wvalue in the current buffer. See
Variables

If the value of an evaluated symbol is void an error is signalled.

1.127 jade.guide/List Forms

List Forms

Forms which are lists are used to call a subroutine. The first
element of the list is the subroutine which is to be called; all
further elements are arguments to be applied to the subroutine.

There are several different types of subroutines available:
functions, macros, special forms and autoloads. When the evaluator
finds a form which is a list it tries to classify the form into one of
these four types. First of all it looks at the first element of the
list, if it is a symbol it gets the value from the function slot of the
symbol (note that the first element of a list form is xnever* evaluated

jade

115/348

itself). This value (either the first element or the symbol’s function
value) is enough to classify the form into one of the four types.

Function Call Forms
‘Normal’ subroutines

Macro Call Forms
Source code expansions

Special Forms
Abnormal control structures

Autoload Forms
Loading subroutines from files on the fly

1.128 jade.guide/Function Call Forms

Function Call Forms

The first element of a function call form is the name of the
function, this can be either a symbol (in which case the symbol’s
function value is indirected through to get the real function
definition) or a lambda expression (see

Lambda Expressions

) .

Any other elements of the list are forms to be evaluated (in left to
right order) and their values become the arguments to the function. The
function is applied to these arguments and the result that it returns
becomes the value of the form.

For example, consider the form ‘(/ 100 (1+ 4))’. This is a function
call to the function ‘/’. First the ‘100’ form is evaluated: it returns
the value ‘100’, next the form ‘(1+ 4)’ is evaluated. This is also a
function call and computes to a value of ‘5’ which becomes the second
argument to the ‘/’ function. Now the ‘/’ function is applied to its
arguments of ‘100’ and ‘5’ and it returns the value ‘20’ which then
becomes the value of the form ‘(/ 100 (1+ 4))’.

(/ 100 (1+ 4))
== (/ 100 5)
=> 20

Or another example,

10 (1= 7)) (* (1+ 2) 4)
(- 10 6) (x (1+ 2) 4)

4 (x (1+ 2) 4)

4 (« 3 4))

4 12)

(+

TETET

jade 116/ 348

=> 16

1.129 jade.guide/Macro Call Forms

Macro Call Forms

Macros are source code expansions, the general idea is that a macro
is a function which using the unevaluated arguments applied to it,
computes another form (the expansion of the macro and its arguments)
which is then evaluated to provide the value of the form. For more
details see

Macros

1.130 jade.guide/Special Forms

Special Forms

Special forms are built-in functions which the evaluator knows must
be handled specially. The main difference between a special form and a
function is that the arguments applied to a special form are =*notx
automatically evaluated —-—- if necessary the special form will evaluate
arguments itself. This will be noted in the documentation of the
special form.

Special forms are generally used to provide control structures, for
example, all of the conditional constructs are special forms (if all of
their arguments, including the forms to be conditionally evaluated,
were evaluated automatically this would defeat the object of being
conditionall) .

The special forms supported by Jade are: ‘and’, ‘catch’, ‘cond’,
‘defconst’, ‘defmacro’, ‘defun’, ‘defvar’, ‘error-protect’, ‘function’,
‘ifr, ‘let’, ‘letx’, ‘or’, ‘progl’, ‘prog2’, ‘progn’, ‘quote’, ‘setqg’,
‘setg-default’, ‘unless’, ‘unwind-protect’, ‘when’, ‘while’,
‘with-buffer’, ‘with-window’.

1.131 jade.guide/Autoload Forms

Autoload Forms

Not all modules of Jade are needed at once, autoload forms provide a

jade

117 /348

means of marking that a function (or macro) is contained by a specific
file of Lisp code. The first time that the function is accessed the
autoload form will be evaluated; this loads the file that the function
is contained by then re-evaluates the list form.

By then the autoload form will have been overwritten in the symbol’s
function slot by the true function (when it was loaded) so the form
will execute properly.

An autoload form is a list whose first element is the symbol
‘autoload’, for full details see
Autoloading

1.132 jade.guide/Self-Evaluating Forms

Self-Evaluating Forms

The computed value of any form which is not a symbol or a list will
simply be the form itself and the form is said to be a "self-evaluating
form".

Usually the only forms to be evaluated in this way will be numbers,
strings and vectors (since they are the only other data types which
have read syntaxes) but the effect is the same for other types of data.

This means that forms you know are self-evaluating do not have to be
quoted to be used as constants (like lists and symbols do).

" fooll
=> "foo"

(eval (current-buffer))
=> f#<buffer programmer.texi>

1.133 jade.guide/Quoting

Quoting

As the above sections explain some types of Lisp object have special
meaning to the Lisp evaluator (namely the symbol and list types) this
means that if you want to refer to a symbol or a list in a program you
can’t (yet) because the evaluator will treat the form as either a
variable reference or a function call respectively.

To get around this Lisp uses something called "quoting", the ‘quote’
special form simply returns its argument, without evaluating it. For

jade

118 /348

example,

(quote my-symbol)
=> my-symbol

the ‘quote’ form prevents the ‘my-symbol’ being treated as a variable
—— it is effectively ‘hidden’ from the evaluator.

Writing ‘quote’ all the time would be a bit boring so there is a
shortcut: the Lisp reader treats any form X preceded by a single quote
character (‘') as the form ‘(quote X)’. So the example above would
normally be written as,

"my-symbol
=> my-symbol

— Special Form: quote FORM
This special form returns its single argument without evaluating

it. This is used to "quote" constant objects to prevent them from
being evaluated.

1.134 jade.guide/Control Structures

Control Structures

Control structures are special forms or macros which control which
forms get evaluated, when they get evaluated and the number of times to
evaluate them. This includes conditional structures, loops, etc...

The simplest control structures are the sequencing structures; they
are used to evaluate a list of forms in left to right order.

Sequencing Structures
Evaluating several forms in sequence

Conditional Structures
Making decisions based on truth values

Looping Structures
‘while’ loops

Non-Local Exits
Exiting from several levels of evaluation

1.135 jade.guide/Sequencing Structures

jade

119/348

Sequencing Structures

Each of the special forms in this section simply evaluates its
argument forms in left-to-right order. The only difference is the
result they return.

The most widely used sequencing special form is ‘progn’: it
evaluates all its argument forms and returns the computed value of the
last one. Many other control structures are said to perform an
"implicit progn", this means that they call ‘progn’ with a list of
forms.

‘progn’ in Lisp is nearly analogous to a ‘begin...end’ block in
Pascal; it is used in much the same places —-- to allow you to evaluate
a sequence of form where only one form was allowed (for example the
true clause of an ‘if’ structure).

- Special Form: progn FORMS...
All of the FORMS are evaluated sequentially (from left-to-right),
the result of the last evaluated FORM is the return value of this
structure. If no arguments are given to ‘progn’ it returns ‘nil’.

(progn "one (+ 1 1) "three")
=> "three"

(progn)
=> nil

— Special Form: progl FIRST FORMS...
This special form evaluates its FIRST form then performs an
implicit progn on the rest of its arguments. The result of this
structure is the computed value of the first form.

(progl "one (+ 1 1) "three")
=> one

— Special Form: prog2 FIRST SECOND FORMS...
This is similar to ‘progl’ except that the evaluated value of its

SECOND form is returned.

The FIRST form is evaluated, then its SECOND, then it performs an
implicit progn on the remaining arguments.

(prog2 "one (+ 1 1) "three")
=> 2

1.136 jade.guide/Conditional Structures

Conditional Structures

Lisp provides a number of conditional constructs, the most complex of

jade

which (‘cond’) will take a list of conditions, the first of which is
‘t’ then has its associated list of forms evaluated. Theoretically this
is the only conditional special form necessary —-- the rest could be
implemented as macros.

- Special Form: if CONDITION TRUE-FORM ELSE-FORMS...
The ‘if’ construct is the nearest thing in Lisp to the
"if-then-else" construct found in most programming languages.

First the CONDITION form is evaluated, 1f it returns ‘t’ (not
‘nil’) the TRUE-FORM is evaluated and its result returned.
Otherwise the result of an implicit progn on the ELSE-FORMS is
returned. If there are no ELSE-FORMS ‘nil’ is returned.

Note that one of the TRUE-FORM or the ELSE-FORMS is completely
ignored —-- it is not evaluated.

(1f (special-form-p "if)
"Yif’ is a special form"
"Yif’ is not a special form")
=> "‘if’ is a special form"

- Special Form: when CONDITION TRUE-FORMS...
CONDITION is evaluated, if it is ‘t’ the result of an implicit
progn on the TRUE-FORMS is returned, otherwise ‘nil’ is returned.

(when t
(message "Pointless")
"foo)
=> foo

— Special Form: unless CONDITION ELSE-FORMS...
This special forms first evaluates CONDITION, if its computed
value is not ‘nil’ its value is returned. Otherwise the ELSE-FORMS
are evaluated sequentially, the value of the last is returned.

- Special Form: cond CLAUSE...
The ‘cond’ special form is used to choose between an arbitrary
number of conditions. Each CLAUSE is a list; its car is the
CONDITION the list which is the cdr of the CLAUSE is the
BODY-FORMS. This means that each CLAUSE looks something like:

(CONDITION BODY-FORMS...)
and a whole ‘cond’ form looks like:

(cond

(CONDITION-1 BODY-FORMS-1...)

(CONDITION-2 BODY-FORMS-2...)
.)

The CONDITION in each CLAUSE is evaluated in sequence
(CONDITION-1, then CONDITION-2, ...), the first one which
evaluates to a non-'‘nil’ has an implicit progn performed on its
BODY-FORMS, the value of which is the value returned by the ‘cond’
form.

jade 121/348

If the true CONDITION has no BODY-FORMS the wvalue returned by
‘cond’ is the value of the CONDITION. If none of the clauses has a
non—-'‘nil’ CONDITION the wvalue of the ‘cond’ is ‘nil’.

Often you want a "default" clause; one which has its BODY-FORMS to
be evaluated if none of the other clauses are true. The way to do
this is to add a clause with a CONDITION of ‘t’ and BODY-FORMS of
whatever you want the default action to be.

(cond

((stringp buffer-1list)) ;Clause with no BODY-FORMS
((consp buffer-list)

(setg x buffer-1list) ; Two BODY-FORMS

t)

(t ;Default clause

(error "‘buffer-list’ is corrupted!")))

=> t

All of the other conditionals can be written in terms of ‘cond’,

(if C T E...) == (cond (C T) (t E...))
(when C T...) == (cond (C T...))
(unless C E...) == (cond (E) (t E...))

There are also a number of special forms which combine conditions
together by the normal logical rules.

- Special Form: or FORMS...
The first of the FORMS is evaluated, if it is non-‘nil’ its wvalue
becomes the wvalue of the ‘or’ form and no more of ‘forms’ are
evaluated. Otherwise this step is repeated for the next member of
FORMS.

If all of the FORMS have been evaluated and none have a non—-‘nil’
value ‘nil’ becomes the value of the ‘or’ form.

If there are no FORMS ‘nil’ is returned.

(or nil 1 nil (beep)) ; Y (beep)’ won’t be evaluated
=> 1

- Special Form: and FORMS...
The first of the FORMS is evaluated. If it is 'nil’ no more of the
FORMS are evaluated and ‘nil’ becomes the value of the ‘and’
structure. Otherwise the next member of FORMS is evaluated and its
value tested. If none of the FORMS are '‘nil’ the computed value of
the last member of FORMS becomes the wvalue of the ‘and’ form.

(and 1 2 nil (beep)) ; Y (beep)’ won’t be evaluated
=> nil

(and 1 2 3) ;All forms are evaluated
=> 3

— Function: not OBJECT

jade

122 /348

This function inverts the boolean value of its argument. If OBJECT

is non—-‘nil’, ‘nil’ is returned, otherwise ‘t’ is returned.

(not nil)
=>t

(not t)
=> nil

(not 42)
=> nil

1.137 jade.guide/Looping Structures

Looping Structures

Jade’s version of Lisp has only one structure for looping -- a
"while" loop similar to those found in most programming languages.

— Special Form: while CONDITION BODY-FORMS...
The CONDITION form is evaluated. If it is non-'‘nil’ an implicit

progn is performed on the BODY-FORMS and the whole thing is
repeated again.

This continues until the CONDITION form evaluates to ‘nil’. The
value of any ‘while’ structure is ‘nil’.

‘while’ can be recursively defined in terms of ‘when’:

(while C B ...)

(when C (progn B ... (while C B ...)))

;5 Step through a list X

(while X
;7 Do something with the current element, ‘(car X)'
(setg X (cdr X)))

1.138 jade.guide/Non-Local Exits

Non-Local Exits

A "non-local exit" is a transfer of control from the current point
of evaluation to a different point (somewhat similar to the
much-maligned ‘goto’ statement in some imperative languages) .

Non-local exits can either be used explicitly (‘catch’ and ‘throw’)

or implicitly (errors).

jade

123 /348

Catch and Throw
Programmed non-local exits

Function Exits
Returning values from a function

Cleanup Forms
Forms which will always be evaluated

Errors
Signalling that an error occurred

1.139 jade.guide/Catch and Throw

Catch and Throw

The ‘catch’ and ‘throw’ structures are used to perform explicit
transfers of control. First a ‘catch’ form is used to setup a "tag",
this acts like a label for the C language’s ‘goto’ statement. To
transfer control a ‘throw’ form is then used to transfer to the named
tag. The tag is destroyed and the ‘catch’ form exits with the wvalue
provided by the ‘throw’.

In a program this looks like,

(catch "TAG
;7 Forms which may ‘throw’ back to TAG

(throw ’TAG VALUE)

;; Control has now passed to the ‘catch’,

no more forms in this progn will be evaluated.
.)

=> VALUE

rrs

where TAG is the tag to be used (this is normally a symbol) and VALUE
is the result of the ‘catch’ form.

When a throw actually happens all catches in scope are searched for
one with a tag which is ‘eq’ to the tag in the throw. If more than one
exists the most-recent is chosen. Now that the catch has been located
the environment is ‘wound-back’ to the catch’s position (i.e. local
variables are unbound, cleanup forms removed, unused catches forgotten,
etc...) and all Lisp constructs between the current point of control and
the catch are exited.

For example,

(let
((test ’"outer))

jade 124 /348

(cons (catch ’"foo
(let
((test "inner))
(throw ’"foo test)
(setg test ’"unreachable))) ;Never reached
test))
=> (inner . outer)

when the throw executes the second binding of ‘test’ is unwound and the
first binding comes back into effect. For more details on variable
binding see

Local Variables

Note that catch tags are xdynamically* scoped, the thrower does not
have to be within the same lexical scope (this means you can throw
through functions).

- Special Form: catch TAG BODY-FORMS...
This special form defines a catch tag which will be accessible
while the BODY-FORMS are being evaluated.

TAG is evaluated and recorded as the tag for this catch. Next the
BODY-FORMS are evaluated as an implicit progn. The value of the
‘catch’ form is either the value of the progn, or, if a ‘throw’
happened, the value specified in the THROW form.

Before exiting the tag installed by this form is removed.

- Function: throw TAG &optional CATCH-VALUE
This function transfers the point of control to the catch form
with a tag which is ‘eq’ to TAG. The value returned by this catch
form is either CATCH-VALUE or '‘nil’ if CATCH-VALUE is undefined.

If there is no catch with a tag of TAG an error is signalled and
the editor returns to the top-level of evaluation.

1.140 jade.guide/Function EXxits

Function Exits

It is often useful to be able to immediately return control from a
function definition (like the C ‘return’ statement). Jade’s version of
Lisp has the ‘return’ function for this.

— Function: return &optional VALUE
This function transfers control out of the most-recent
lambda-expression (i.e. a function or macro definition) so that
the result of the lambda- expression is VALUE.

(funcall ' (lambda () (return ’'x) 'y))
=> x

jade 125/348

The ‘'y’ form is never evaluated since control is passed straight
from the ‘(return ’'y)’ form back to the ‘funcall’ form.

1.141 jade.guide/Cleanup Forms

Cleanup Forms

It is sometimes necessary to be sure that a certain form is xalwaysx
evaluated, even when a non-local exit would normally bypass that form.
The ‘unwind-protect’ special form is used to stop this happening.

- Special Form: unwind-protect BODY-FORM CLEANUP-FORMS...
The BODY-FORM is evaluated, if it exits normally the CLEANUP-FORMS
are evaluated sequentially then the value which the BODY-FORM
returned becomes the value of the ‘unwind-protect’ form. If the
BODY-FORM exits abnormally though (i.e. a non-local exit happened)
the CLEANUP-FORMS are evaluated anyway and the non-local exit
continues.

One use of this is to ensure that an opened file is always closed,
for example,

(catch ’"foo
(unwind-protect
(let
((temporary-file (open (tmp-file-name) "w")))
;; Use ‘temporary-file’
(write temporary-file "A test\n")
;; Now force a non-local exit
(throw ’"foo0))
;7 This is the CLEANUP-FORM it will xalwaysx
;; be evaluated no matter what happens.
(close temporary-file)))
=> nil

1.142 jade.guide/Errors

Errors

Errors are a type of non-local exit; when a form can not be evaluated
properly an error is normally "signalled". If an error-handler has been
installed for that type of error control is unwound back to the handler
and evaluation continues. If there is no suitable handler control is
passed back to the event loop of the most-recent recursive edit and a
suitable error message is printed.

— Function: signal ERROR-SYMBOL DATA

jade

126 /348

Signals that an error has happened. ERROR-SYMBOL is a symbol
classifying the type of error, it should have a property
‘error-message’ (a string) which is the error message to be
printed.

DATA is a list of objects which are relevant to the error —- they
will be made available to any error-handler or printed with the
error message otherwise.

(signal ’'void-value ’ (some-symbol))
error—--> Value as variable is void: some-symbol

- Variable: debug-on-error

This variable is consulted by the function ‘signal’. If its value
is either ‘t’ or a list containing the ERROR-SYMBOL to ‘signal’ as
one of its elements, the Lisp debugger is entered. When the
debugger exits the error is signalled as normal.

When you expect an error to occur and need to be able to regain

control afterwards the ‘error-protect’ form can be used.

— Special Form: error-protect BODY-FORM ERROR-HANDLERS...

‘error—-protect’ evaluates the BODY-FORM with error handlers in
place.

Each of the ERROR-HANDLERS is a list whose car is a symbol
defining the type of error which this handler catches. The cdr of
the list is a list of forms to be evaluated sequentially when the
handler is invoked.

While the forms of the error handler are being evaluated the
variable ‘error-info’ is bound to the value ‘(ERROR-SYMBOL . DATA)’
(these were the arguments to the ‘signal’ form which caused the
error) .

The special value, the symbol ‘error’, in the car of one of the
ERROR-HANDLERS will catch xallx types of errors.

(error—-protect
(signal 'file-error ’ ("File not found" "/tmp/foo"))

(file—-error

error—info)

(error
(setg x z))) ;Default handler
=> (file-error "File not found" "/tmp/foo")

1.143 jade.guide/Variables

Variables

In Lisp symbols are used to represent variables. Each symbol

contains a slot which is used to contain the value of the symbol when
it is used as a symbol.

jade

127 /348

The normal way to obtain the current value of a variable is simply to
evaluate the symbol it lives in (i.e. write the name of the variable in
your program) .

- Function: symbol-value VARIABLE
This function returns the value of the symbol VARIABLE in the
current environment.

Local Variables
Creating temporary variables

Setting Variables
Altering a variable’s wvalue

Scope and Extent
Technical jargon

Buffer-Local Variables
Variables with distinct wvalues in
each buffer.

Void Variables
Some variables have no values

Constant Variables
Variables which may not be altered

Defining Variables
How to define a variable before
using it

1.144 jade.guide/Local Variables

Local Variables

A "local variable" is a variable which has a temporary value while a
program is executing, for example, when a function is called the
variables which are the names of its arguments are temporarily bound (a
"binding" is a particular instance of a local variable) to the wvalues
of the arguments passed to the function. When the function call exits
its arguments are unbound and the previous definitions of the variables
come back into view.

Even if a variable has more than one binding still ‘active’ only the
most recent is visible —-- there is absolutely no way the previous
bindings can be accessed until the bindings are unbound one-by-one.

A nice way of visualising variable binding is to think of each
variable as a stack. When the variable is bound to, a new value is

jade 128 /348

pushed onto the stack, when it is unbound the top of the stack is
popped. Similarly when the stack is empty the value of the variable is
void (see

Void Variables

). Assigning a value to the variable (see

Setting Variables

) overwrites the top value on the stack with a new
value. When the value of the variable is required it is simply read
from the top of the stack.

Apart from function calls there are two special forms which perform
variable binding (i.e. creating local variables), ‘let’ and ‘letx’.

— Special Form: let BINDINGS BODY-FORMS...
‘let’ creates new variable bindings as specified by the BINDINGS
argument then evaluates the BODY-FORMS in order. The variables are
then unbound to their state before this ‘let’ form and the value
of the implicit progn of the BODY-FORMS becomes the value of the
‘let’ form.

The BINDINGS argument is a list of the bindings to perform. Each
binding is either a symbol, in which case that variable is bound to
nil, or a list whose car is a symbol. The cdr of this list is a
list of forms which, when evaluated, give the value to bind the
variable to.

(setqg foo 42)

=> 42
(let
((foo (+ 1 2))
bar)
;; Body forms
(setg foo (1+ foo0)) ;This sets the new binding
(cons foo bar))
=> (4 . nil)
foo
=> 42 ;The original values is back

Note that no variables are bound until all the new values have been
computed (unlike in ‘let«*’). For example,

(setqg foo 42)
=> 42
(let
((foo 100)
(bar foo))
(cons foo bar))
=> (100 . 42)

Although ‘foo’ is given a new binding this is not actually done
until all the new bindings have been computed, hence ‘bar’ is
bound to the *xoldx value of ‘foo’.

- Special Form: let* BINDINGS BODY-FORMS...
This special form is exactly the same as ‘let’ except for one
important difference: the new bindings are installed xas they are

jade

129/348

computedx.

You can see the difference by comparing the following example with
the last example in the ‘let’ documentation (above),

(setqg foo 42)
=> 42
(let* ;Using ‘letx’ this time
((foo 100)
(bar foo))
(cons foo bar))
=> (100 . 100)

By the time the binding of ‘bar’ is computed the new binding of
‘foo’ has already been installed.

1.145 jade.guide/Setting Variables

Setting Variables

"Setting" a variable means to overwrite its current value (that is,
the value of its most recent binding) with a new one. The old value is
irretrievably lost (unlike when a new value is bound to a variable, see

Local Variables

) .

- Special Form: setqg VARIABLE FORM
The special form ‘setqg’ is the usual method of altering the value
of a variable. Each VARIABLE is set to the result of evaluating its
corresponding FORM. The last value assigned becomes the value of
the ‘setqg’ form.

(setg x 20 y (+ 2 3))
=> 5

In the above example the variable 'x’ is set to ‘20’ and ‘y’ 1is
set to the value of the form ‘(+ 2 3)’ (5).

When the variable is marked as being buffer-local (see

Buffer-Local Variables
) the current buffer’s instance of the
variable is set.

- Function: set VARIABLE NEW-VALUE
The value of the variable VARIABLE (a symbol) is set to NEW-VALUE
and the NEW-VALUE is returned.

This function i1s used when the VARIABLE is unknown until run-time,
and therefore has to be computed from a form.

jade

130/348

set ’foo 20)

N~

(setg foo 20) ; ‘setgq’ means ‘set-quoted’
=> 20

1.146 jade.guide/Scope and Extent

Scope and Extent

In Jade’s version of Lisp all variables have "indefinite scope" and
"dynamic extent". What this means is that references to variables may
occur anywhere in a program (i.e. bindings established in one function
are not only accessible within that function, that’s lexical scope) and
that references may occur at any point in the time between the binding
being created and it being unbound.

The combination of indefinite scope and dynamic extent is often
termed "dynamic scope".

As an aside, Lisp objects have "indefinite extent", meaning that the
object will exist for as long as there is a possibility of it being
referenced (and possibly longer -- until the garbage collector runs).

Note that in Common Lisp only those variables declared ‘special’ have
indefinite scope and dynamic extent.

Try not to abuse the dynamic scoping, although it is often very
useful to be able to bind a variable in one function and use it in
another this can be confusing if not controlled and documented properly.

A quick example of the use of dynamic scope,

(defun foo (x)
(let
((foo-var (* x 20)))
(bar x)

(defun bar (y)
;7 Since this function is called from
;; the function ‘foo’ it can refer
;; to any bindings which ‘foo’ can.
(setg y (+ y foo-var))

1.147 jade.guide/Buffer-Local Variables

jade

131/348

Buffer-Local Variables

It is often very useful to be able to give variables different
values for different editor buffers -- most major modes need to record
some buffer-specific information. Jade allows you to do this by giving a
variable buffer-local bindings.

There are two strengths of buffer-local variables: you can either
give a variable a buffer-local value in a single buffer, with other
buffers treating the variable as normal, or a variable can be marked as
being xautomatically* buffer-local, each time the variable is set the
current buffer’s value of the variable is updated.

Fach buffer maintains an alist of the symbols which have buffer-local
values in the buffer and the actual values themselves, this alist may
be read with the ‘buffer-variables’ function.

When the value of a variable is referenced (via the ‘symbol-value’
function) the current buffer’s alist of local values is examined for a
binding of the variable being referenced; if one is found that is the
value of the variable, otherwise the "default value" (the value stored
in the symbol’s value cell) is used.

Setting a variable also searches for a buffer-local binding; if one
exists its value is modified, not the default value. If the variable
has previously been marked as being automatically buffer-local (by
‘make-variable-buffer-local’) a buffer-local binding is automatically
created if one doesn’t already exist.

Currently there is one main problem with buffer-local variables:
they can’t have temporary values bound to them (or rather, they can but
I guarantee it won’t work how you expect), so for the time being, don’t
try to bind local values (with ‘let’ or ‘letx’) to a buffer-local
variable.

— Function: make—-local-variable SYMBOL
This function gives the wvariable SYMBOL a buffer-local binding in
the current buffer. The value of this binding will be the same as
the variable’s default value.

If SYMBOL already has a buffer-local value in this buffer nothing
happens.

Returns SYMBOL.

— Function: make-variable-buffer—-local SYMBOL
This function marks the variable SYMBOL as being automatically
buffer-local.
This means that any attempts at setting the value of SYMBOL will
actually set the current buffer’s local value (if necessary a new

buffer—-local binding will be created in the buffer).

Returns SYMBOL.

jade 132/348

(make-variable-buffer-local ’'buffer-modtime)
=> buffer-modtime

— Function: default-value SYMBOL
This function returns the default value of the variable SYMBOL.

(setg foo ’'default)

=> default
(make—-local-variable ' foo) ;Create a value 1in this buffer
=> foo
(setg foo "local)
=> local
foo
=> local
(symbol-value ’foo)
=> local
(default-value ' foo)
=> default

— Function: default-boundp SYMBOL
Returns ‘t’ if the variable SYMBOL has a non-void default value.

- Special Form: setg-default SYMBOL FORM
Similar to the ‘setqg’ special form except that the default value
of each VARIABLE is set. In non-buffer-local symbols there is no
difference between ‘setq’ and ‘setg-default’.

- Function: set-default SYMBOL NEW-VALUE
Sets the default value of the variable SYMBOL to NEW-VALUE, then
returns NEW-VALUE.

— Function: kill-local-variable SYMBOL
This function removes the buffer-local binding of the variable
SYMBOL from the current buffer (if one exists) then returns SYMBOL.

— Function: kill-all-local-variables
This function removes all the buffer-local bindings associated
with the current buffer. Subsequently, any buffer-local variables
referenced while this buffer is current will use their default
values.

The usual way to define an automatically buffer-local variable is to
use ‘defvar’ and ‘make-variable-buffer-local’, for example,

(defvar my-local-variable DEFAULT-VALUE
"Doc string for ‘my-local-variable’.")
(make-variable-buffer-local "my-local-variable)

Note that if you want to reference the value of a buffer-local
variable in a buffer other than the current buffer, use the
‘with-buffer’ special form (see

The Current Buffer
). For example, the
form,

(with-buffer OTHER-BUFFER SOME-VARIABLE)

jade

133/348

will produce the value of the variable SOME-VARIABLE in the buffer
OTHER-BUFFER.

1.148 jade.guide/Void Variables

Void Variables

A variable which has no value is said to be "void", attempting to
reference the value of such a symbol will result in an error. It is
possible for the most recent binding of a variable to be void even
though the inactive bindings may have wvalues.

— Function: boundp VARIABLE
Returns ‘t’ if the symbol VARIABLE has a value, '‘nil’ if its value

is wvoid.

— Function: makunbound VARIABLE
This function makes the current binding of the symbol VARIABLE be
void, then returns VARIABLE.

(setqg foo 42)

=> 42
foo
=> 42
(boundp ' foo)
=> t
(makunbound ’ foo)
=> foo
(boundp ’ foo)
=> nil
foo

error——-> Value as variable is wvoid: foo

1.149 jade.guide/Constant Variables

Constant Variables

In Lisp constants are represented by variables which have been
marked as being read-only. Any attempt to alter the value of a constant
results in an error.

Two of the most commonly used constants are ‘nil’ and ‘t’.

— Function: set-const-variable VARIABLE &optional READ-WRITE
This function defines whether or not the value of the symbol
VARIABLE may be modified. If READ-WRITE is ‘nil’ or undefined the
variable is marked to be constant, otherwise it’s marked to be a

jade

134 /348

normal variable. The value returned is VARIABLE.

- Function: const-variable-p VARIABLE
Returns ‘t’ if the value of the symbol VARIABLE may be altered,
‘nil’ otherwise.

Constants may behave a bit strangely when you compile the program
they are used in: the value of the constant is likely to be hardwired
into the compiled functions it is used in, and the constant is unlikely
to be ‘eq’ to itself!

The compiler assumes that constant is always the same, whenever it is
evaluated. It may even be evaluated more than once. See
Compiled Lisp

The special form ‘defconst’ can be used to define constants, see

Defining Variables

1.150 jade.guide/Defining Variables

Defining Variables

The special forms ‘defvar’ and ‘defconst’ allow you to define the
global variables which will be used in a program. This is entirely
optional; it is highly recommended though.

- Special Form: defvar VARIABLE FORM [DOC-STRING]
This special form defines a global variable, the symbol VARIABLE.
If the value of VARIABLE is void the FORM is evaluated and its
value is stored as the value of VARIABLE (note that the default
value is modified, never a buffer-local value).

If the DOC-STRING argument is defined it is a string documenting
VARIABLE. This string is then stored as the symbol’s
‘variable-documentation’ property and can be accessed by the
‘describe-variable’ function.

(defvar my-variable ' (x vy)
"This variable is an example showing the usage of the ‘defvar’
special form.")
=> my-variable

- Special Form: defconst CONSTANT FORM [DOC-STRING]
‘defconst’ defines a constant, the symbol CONSTANT. Its value (in
the case of a buffer-local symbol, its default value) is set to the
result of evaluating FORM. Note that unlike ‘defvar’ the value of
the symbol is xalwaysx set, even if it already has a value.

The DOC-STRING argument, if defined, is the documentation string

jade 135/348

for the constant.

(defconst the-answer 42
"An example constant.")
=> the—-answer

See
Constant Variables

1.151 jade.guide/Functions

Functions

A "function" is a Lisp object which, when applied to a sequence of
argument values, produces a value —-- the function’s "result". It may
also produce side-effects. All Lisp functions return results —-- there
is nothing like a procedure in Pascal.

Functions are the main building-block in Lisp programs, each program
is usually a system of inter-related functions.

There are two types of function: "primitive functions" are functions
written in the C language, these are sometimes called built-in
functions, the object containing the C code itself is called a "subr".
All other functions are written in Lisp.

— Function: functionp OBJECT
Returns ‘t’ if OBJECT is a function (i.e. it can be used as the

function argument of ‘funcall’.

(functionp ’set)
=> t

(functionp ’setq)
=> nil

(functionp #’ (lambda (x) (+ x 2)))
=> t

Lambda Expressions
Structure of a function object

Named Functions
Functions can be named by symbols,

Anonymous Functions
Or they can be un—-named

Predicate Functions

jade

136 /348

Functions which return boolean values

Defining Functions
How to write a function definition

Calling Functions
Functions can be called by hand

Mapping Functions
Map a function to the elements of a list

1.152 jade.guide/Lambda Expressions

Lambda Expressions

"Lambda expressions" are used to create an object of type function
from other Lisp objects, it is a list whose first element is the symbol
‘lambda’. All functions written in Lisp (as opposed to the primitive
functions in C) are represented by a lambda expression.

Note that a lambda expression is *not* an expression, evaluating a
lambda expression will give an error (unless there is a function called
‘lambda’) .

The format of a lambda expression is:
(lambda LAMBDA-LIST [DOC] [INTERACTIVE-DECLARATION] BODY-FORMS...)

Where LAMBDA-LIST is the argument specification of the function, DOC is
an optional documentation string, INTERACTIVE-DECLARATION is only
required by editor commands (see

Commands

) and the BODY-FORMS is the
actual function code (when the function is called each form is
evaluated in sequence, the last form’s value is the result returned by
the function).

The LAMBDA-LIST is a list, it defines how the argument values
applied to the function are bound to local variables which represent
the arguments within the function. At its simplest it is simply a list
of symbols, each symbol will have the corresponding argument value
bound to it. For example, the lambda list,

(lambda (x y) (+ x v))
takes two arguments, ‘x’ and ‘y’. When this function is called with two
arguments the first will be bound to ‘x’ and the second to ‘y’ (then
the function will return their sum).

To complicate matters there are several "lambda-list keywords" which
modify the meaning of symbols in the lambda-list. Each keyword is a
symbol whose name begins with an ampersand, they are:

jade

137 /348

‘goptional’
All the variables following this keyword are considered "optional"
(all variables before the first keyword are "required": an error
will be signalled if a required argument is undefined in a
function call). If an optional argument is undefined it will
simply be given the value ‘nil’.

Note that optional arguments must be specified if a later optional
argument is also specified. Use 'nil’ to explicitly show that an
optional argument is undefined.

For example, if a function ‘foo’ takes two optional arguments and
you want to call it with only the second argument defined, the
first argument must be specified as ‘nil’ to ensure that the
correct argument value is bound to the correct variable.

(defun foo (&optional arg-1 arg-2)

(foo nil arg-2-value) ;Leave the first argument undefined

‘&rest’
The ‘&rest’ keyword allows a variable number of arguments to be
applied to a function, all the argument values which have not been
bound to argument variables are simply consed into a list and bound
to the variable after the ‘&rest’ keyword. For example, in,

(lambda (x &rest y) ...)

the first argument, ‘x’, is required. Any other arguments applied
to this function are made into a list and this list is bound to the
‘y/ variable.

When a function represented by a lambda-list is called the first
thing that happens is to bind the argument values to the argument
variables. The LAMBDA-LIST and the list of argument values applied to
the function are worked through in parallel. Any required arguments
which are left undefined when the end of the argument values has been
reached causes an error.

After the arguments have been processed the BODY-FORMS are evaluated
by an implicit progn, the value of which becomes the value of the
function call. Finally, all argument variables are unbound and control
passes back to the caller.

1.153 jade.guide/Named Functions

Named Functions

Functions are normally associated with symbols, the name of the
symbol being the same as the name of its associated function. Each

jade 138 /348

symbol has a special function cell (this is totally separate from the
symbol’s value as a variable —-- variables and functions may have the
same name without any problems occurring) which is used to store the
function’s definition, either a lambda expression (see

Lambda Expressions
) or a subr (C code) object.

The evaluator knows to indirect through the function value of a
symbol in any function call (see
Function Call Forms
) so the normal way
to call a function is simply write its name as the first element in a
list, any arguments making up the other elements in the list. See

List Forms

The functions and special forms which take functions as their
arguments (i.e. ‘funcall’) can also take symbols. For example,

(funcall 'message "An example")

(message "An example")

- Function: symbol-function SYMBOL
Returns the value of the function cell in the symbol SYMBOL.

(symbol-function ’symbol-function)
=> f#<subr symbol-function>

— Function: fboundp SYMBOL
This function returns ‘t’ if the symbol SYMBOL has a non-void
value in its function cell, ‘nil’ otherwise.

(fboundp ’setq)
=> t

— Function: fset SYMBOL NEW-VALUE
Sets the value of the function cell in the symbol SYMBOL to
NEW-VALUE, then returns NEW-VALUE.

This function is rarely used, see
Defining Functions

— Function: fmakunbound SYMBOL
This function makes the wvalue of the function cell in SYMBOL void,
then returns SYMBOL.

1.154 jade.guide/Anonymous Functions

jade 139/348

Anonymous Functions

When giving function names as arguments to functions it is useful to
give an actual function xdefinitionx (i.e. a lambda expression) instead
of the name of a function.

In Lisp, unlike most other programming languages, functions have no
inherent name. As seen in the last section named-functions are created
by storing a function in a special slot of a symbol, if you want, a
function can have many different names: simply store the function in
many different symbols!

So, when you want to pass a function as an argument there is the
option of Jjust writing down its definition. This is especially useful
with functions like ‘mapcar’ and ‘delete-if’. For example, the
following form removes all elements from the LIST which are even and
greater than 20.

(setg LIST (delete—-if #’ (lambda (x)
(and (zerop (% x 2))
)

LIST))

The lambda expression is very simple, it combines two predicates
applied to its argument.

Note that the function definition is quoted by ‘#’’, not the normal
V7. This is a special shortcut for the ‘function’ special form (like
is a shortcut to ‘quote’). In general, ‘#’'X’ is expanded by the
Lisp reader to ‘(function X)’.

NI

- Special Form: function ARG
This special form is nearly identical to the ‘quote’ form, it
always returns its argument without evaluating it. The difference
is that the Lisp compiler knows to compile the ARG into a byte-code
form (unless ARG is a symbol in which case it is not compiled).

What this means is when you have to quote a function, use the ‘#'’
syntax.

1.155 jade.guide/Predicate Functions

Predicate Functions

In Lisp, a function which returns a boolean ‘true’ or boolean ‘false’
value is called a "predicate". As is the convention in Lisp a value of
‘nil’ means false, anything else means true. The symbol ‘t’ is often
used to represent a true value (in fact, sometimes the symbol ‘t’
should be read as xanyx non-‘nil’ wvalue).

Another Lisp convention is that the names of predicate functions
should be the concept the predicate is testing for and either ‘p’ or

140/348

The ‘p’ variant is used when the concept name does not contain any

hyphens.

For example a predicate to test for the concept "const-variable" (a

variable which has a constant value, see
Constant Variables

) would be
called ‘const-variable-p’. On the other hand a predicate to test for
the concept "buffer" (a Lisp object which is a buffer) would be called

‘bufferp’.

1.156 jade.guide/Defining Functions

Defining Functions

Named functions are normally defined by the ‘defun’ special form.

- Special Form: defun NAME LAMBDA-LIST BODY-FORMS...
‘defun’ initialises the function definition of the symbol NAME to

the lambda expression resulting from the concatenation of the
symbol ‘lambda’, LAMBDA-LIST and the BODY-FORMS. So,

(defun foo (x vy)

(fset "foo #’ (lambda (x y)

The BODY-FORMS may contain a documentation string for the function
as its first form and an interactive calling specification as its
first (if there is no doc-string) or second form if the function
may be called interactively by the user (see

Commands

).

An example function definition (actually a command) taken from Jade’s

source 1is,

(defun upcase-word (count)
"Makes the next COUNT words from the cursor upper-case."
(interactive "p")

(let
((pos (forward-word count)))

(upcase—area (cursor—-pos) pos)
(goto-char pos)))

jade 141/348

1.157 jade.guide/Calling Functions

Calling Functions

Most of the time function calls are done by the evaluator when it
detects a function call form (see
List Forms
); when the function to be
called is not known until run-time it is easier to use a special
function to call the function directly than create a custom form to
apply to the ‘eval’ function.

— Function: funcall FUNCTION &rest ARGS

Applies the argument values ARGS to the function FUNCTION, then
returns its result.

Note that the argument values ARGS are xnotx evaluated again. This
also means that ‘funcall’ can xnotx be used to call macros or

special forms —-- they would need the unevaluated versions of ARGS,
which are not available to ‘funcall’.

(funcall "+ 1 2 3)
=> 6

— Function: apply FUNCTION &rest ARGS
Similar to ‘funcall’ except that the last of its arguments is a
*1listx of arguments which are appended to the other members of
ARGS to form the list of argument values to apply to the function
FUNCTION.

Constructs a list of arguments to apply to the function FUNCTION
from ARGS.

1.158 jade.guide/Mapping Functions

Mapping Functions

A "mapping function" applies a function to each of a collection of
objects. Jade currently has two mapping functions, ‘mapcar’ and ‘mapc’.

- Function: mapcar FUNCTION LIST
Each element in the list LIST is individually applied to the
function FUNCTION. The values returned are made into a new list
which is returned.

The FUNCTION should be able to be called with one argument.

(mapcar "1+ (1 2 3 4 5))
=> (2 3 4 5 6)

jade

142 /348

— Function: mapc FUNCTION LIST
Similar to ‘mapcar’ except that the values returned when each
element is applied to the function FUNCTION are discarded. The
value returned is LIST.

This function is generally used where the side effects of calling
the function are the important thing, not the results.

The two following functions are also mapping functions of a sort.
They are variants of the ‘delete’ function (see
Modifying Lists
) and
use predicate functions to classify the elements of the list which are
to be deleted.

— Function: delete-if PREDICATE LIST
This function is a variant of the ‘delete’ function. Instead of
comparing each element of LIST with a specified object, each
element of LIST is applied to the predicate function PREDICATE.
If it returns ‘t’ (i.e. not 'nil’) then the element is
destructively removed from LIST.

(delete—-if ’'stringp ' (1 "foo" 2 "bar" 3 "baz"))
=> (1 2 3)

— Function: delete-if-not PREDICATE LIST
This function does the inverse of ‘delete-if’. It applies PREDICATE
to each element of LIST, if it returns ‘nil’ then the element is
destructively removed from the list.

(delete—-if-not ’stringp ' (1 "foo" 2 "bar" 3 "baz"))
=> ("foo" "bar" "baZ")

1.159 jade.guide/Macros

Macros

"Macros" are used to extend the Lisp language, they are basically a
function which instead of returning its wvalue, return a new form which
will produce the macro call’s value when evaluated.

When a function being compiled calls a macro the macro is expanded
immediately and the resultant form is open-coded into the compiler’s
output.

Defining Macros
Macros are defined like functions

Macro Expansion
How macros are used by the evaluator

jade 143 /348

Compiling Macros
The compiler expands macros at compile-
time.

1.160 jade.guide/Defining Macros

Defining Macros

Macros are defined in the same style as functions, the only
difference is the name of the special form used to define them.

A macro object is a list whose car is the symbol ‘macro’, its cdr is
the function which creates the expansion of the macro when applied to
the macro calls unevaluated arguments.

- Special Form: defmacro NAME LAMBDA-LIST BODY-FORMS...

Defines the macro stored in the function cell of the symbol NAME.
1AMBDA-LIST is the lambda-list specifying the arguments to the
macro (see

Lambda Expressions

) and BODY-FORMS are the forms
evaluated when the macro is expanded. The first of BODY-FORMS may
be a documentation string describing the macro’s use.

Here is a simple macro definition, it is a possible definition for
the ‘when’ construct (which might even be useful if ‘when’ wasn’t
already defined as a special form...),

(defmacro when (condition &rest body)

"Evaluates CONDITION, if it’s non-‘nil’ evaluates the BODY
forms."

(list 'if condition (cons ’'progn body)))

When a form of the type ‘(when C B ...)’ is evaluated the macro
definition of ‘when’ expands to the form ‘(if C (progn B ...))’ which
is then evaluated to perform my when-construct.

When you define a macro ensure that the forms which produce the

expansion have no side effects; it would fail spectacularly when you
attempt to compile your program!

1.161 jade.guide/Macro Expansion

Macro Expansion

jade 144 / 348

When a macro call is detected (see

List Forms

) the function which is
the cdr of the macro’s definition (see

Defining Macros

) is applied to
the macro call’s arguments. Unlike in a function call, the arguments
are xnot evaluatedx, the actual forms are the arguments to the macro’s
expansion function. This is so these forms can be rearranged by the
macro’s expansion function to create the new form which will be
evaluated.

There is a function which performs macro expansion, its main use is
to let the Lisp compiler expand macro calls at compile time.

— Function: macroexpand FORM &optional ENVIRONMENT
If FORM is a macro call ‘macroexpand’ will expand that call by
calling the macro’s expansion function (the cdr of the macro
definition). If this expansion is another macro call the process
is repeated until an expansion is obtained which is not a macro
call, this form is then returned.

The optional ENVIRONMENT argument is an alist of macro definitions
to use as well as the existing macros; this is mainly used for
compiling purposes.

(defmacro when (condition &rest body)
"Evaluates CONDITION, if it’s non—-‘nil’ evaluates the BODY
forms."
(list "if condition (cons ’progn body)))
=> when

(macroexpand ’ (when x (setg foo bar)))
=> (if x (progn (setqg foo bar)))

1.162 jade.guide/Compiling Macros

Compiling Macros

Although it may seem odd that macros return a form to produce a
result and not simply the result this is their most important feature.
It allows the expansion and the evaluation of the expansion to happen
at different times.

The Lisp compiler makes use of this; when it comes across a macro
call in a form it is compiling it uses the ‘macroexpand’ function to
produce the expansion of that form which it then compiles straight into
the object code. Obviously this is good for performance (why evaluate
the expansion every time it is needed when once will do?).

Some rules do need to be observed to make this work properly:

jade

145/348

* When the compiler compiles a file it remembers the macros which
have been defined by that file; it can only expand a macro call if
the definition of the macro appears before the macro call itself
(it can’t read your mind) .

* The macro expansion function (i.e. the definition of the macro)
should not have any side effects or evaluate its arguments (the
value of a symbol at compile-time probably won’t be the same as
its value at run-time).

* Macros which are defined by another file must be loaded so they
can be recognised. Use the ‘require’ function, the compiler will
evaluate any top-level ‘require’ forms it sees to bring in any
macro definitions used.

1.163 jade.guide/Streams

Streams

A "stream" is a Lisp object which is either a data sink (an "output
stream") or a data source (an "input stream"). In Jade all streams
produce or consume sequences of 8-bit characters.

Streams are very flexible, functions using streams for their input
and output do not need to know what type of stream it is. For example
the Lisp reader (the ‘read’ function) takes an input stream as its one
argument, it then reads characters from this stream until it has parsed
a whole object. This stream could be a file, a position in a buffer, a
function or even a string; the ‘read’ function can not tell the
difference.

- Function: streamp OBJECT
This function returns ‘t’ if its argument is a stream.

Input Streams
Types of input stream

Output Streams
Types of output stream

Input Functions
Functions to read from streams

Output Functions
How to output to a stream

jade 146/ 348

1.164 jade.guide/Input Streams

Input Streams

These are the possible types of input stream, for the functions which
use them see

Input Functions

‘FILE'
Characters are read from the file object FILE, for the functions
which manipulate file objects see
Files

‘MARK’
The marker MARK points to the next character that will be read.
Each time a character is read the position that MARK points to will
be advanced to the following character. See
Marks

‘BUFFER’

Reads from the position of the cursor in the buffer BUFFER. This
position is advanced as characters are read.

‘' (BUFFER . POSITION)'
Characters are read from the position POSITION in the buffer
BUFFER. POSITION is advanced to the next character as each
character is read.

‘FUNCTION’
Each time an input character is required the FUNCTION is called
with no arguments. It should return the character read (an
integer) or ‘nil’ if for some reason no character is available.

FUNCTION should also be able to ‘unread’ one character. When this
happens the function will be called with one argument -- the value
of the last character read. The function should arrange it so that
the next time it is called it returns this character. A possible
implementation could be,

(defvar ms-unread-char nil
"If non-nil the character which was pushed back.")

(defun my-stream (&optional unread-char)
(if unread-char
(setg ms—-unread-char unread-char)
(1f ms—-unread-char
(progl

ms—-unread-char
(setg ms—unread-char nil))

;7 Normal case ——- read and return a character from somewhere

jade 147/ 348

‘nil’
Read from the stream stored in the variable ‘standard-input’.

It is also possible to use a string as an input stream. The string to
be read from must be applied to the ‘make-string-input-stream’ function
and the result from this function used as the input stream.

— Function: make-string-input-stream STRING &optional START
Returns an input stream which will supply the characters of the
string STRING in order starting with the character at position
START (or from position zero if this argument is undefined).

(read (make-string-input-stream "(1 . 2)"))
=> (1 . 2)

- Variable: standard-input
The input stream which is used when no other is specified or is
‘nil’.

1.165 jade.guide/Output Streams

Output Streams

These are the different types of output stream, for the functions
which use them see
Output Functions

‘FILE'
Writes to the file object FILE. See
Files
‘MARK'

Writes to the position pointed to by the marked MARK, then
advances the position of the mark.

‘BUFFER’
Writes to BUFFER at the position of the cursor in that buffer,
which is then advanced.

‘(BUFFER . POSITION)'
POSITION in the buffer BUFFER. POSITION is then moved over the
written text.

“(BUFFER . t)’
Writes to the end of the buffer BUFFER.

‘FUNCTION'
The function FUNCTION is called with one argument, either a string
or a character. This should be used as the circumstances dictate.
If the function returns a number it is the number of characters

148 /348

jade
actually used, otherwise it is assumed that all the characters
were successful.

‘*PROCESS’
Writes to the standard input of the process object PROCESS. If
PROCESS isn’t running an error is signalled. See

Processes

\tl
Appends the character(s) to the end of the status line message.

‘nil”’

Write to the stream stored in the variable ‘standard-output’.

It is also possible to store the characters sent to an output stream

in a string.

— Function: make-string-output-stream
Returns an output stream. It accumulates the text sent to it for

the benefit of the ‘get-output-stream-string’ function.

- Function: get-output-stream-string STRING-OUTPUT-STREAM
Returns a string consisting of the text sent to the
STRING-OUTPUT-STREAM since the last call to
GET-OUTPUT-STREAM-STRING (or since this stream was created by

‘make-string-output-stream’) .

(setg stream (make-string-output-stream))

=> ("" . O)
(prinl keymap-path stream)
=> (" (lisp-mode-keymap global-keymap)" . 64)

(get-output-stream-string stream)
=> " (lisp-mode-keymap global-keymap)"

— Variable: standard-output
This variable contains the output stream which is used when no

other is specified (or when the given output stream is ‘nil’).

1.166 jade.guide/Input Functions

Input Functions

- Function: read-char STREAM
Read and return the next character from the input stream STREAM.

the end of the stream is reached ‘nil’ is returned.

— Function: read-line STREAM
This function reads one line of characters from the input stream

STREAM, creates a string containing the line (including the
newline character which terminates the line) and returns it.

jade 149 /348

If the end of stream is reached before any characters can be read
‘nil’ is returned, if the end of stream is reached but some
characters have been read (but not the newline) these characters
are made into a string and returned.

Note that unlike the Common Lisp function of the same name, the
newline character is not removed from the returned string.

- Function: read STREAM
This function is the function which contains the Lisp reader (see

The Lisp Reader

). It reads as many characters from the input
stream STREAM as it needs to make the read syntax of a single Lisp
object (see

Read Syntax

), this object is then returned.

- Function: read-from-string STRING &optional START
Reads one Lisp object from the string STRING, the first character

is read from position START (or position zero).

(read-from-string STRING START)

(read (make-string-input-stream STRING START))

1.167 jade.guide/Output Functions

Output Functions

— Function: write STREAM DATA &optional LENGTH
Writes the specified character(s) to the output stream STREAM.
dATA is either the character or the string to be written. If DATA
is a string the optional argument LENGTH may specify how many
characters are to be written. The value returned is the number of
characters successfully written.

(write standard-output "Testing 1.. 2.. 3..")
—-| Testing 1.. 2.. 3..
=> 19

- Function: copy-stream INPUT-STREAM OUTPUT-STREAM
This function copies all characters which may be read from
INPUT-STREAM to OUTPUT-STREAM. The copying process is not stopped
until the end of the input stream is read. Returns the number of
characters copied.

Be warned, if you don’t choose the streams carefully you may get a
deadlock which only an interrupt signal can break!

— Function: print OBJECT &optional STREAM
Outputs a newline character to the output stream STREAM, then

jade

150 /348

writes a textual representation of OBJECT to the stream.
If possible, this representation will be such that ‘read’ can turn
it into an object structurally similar to OBJECT. This will *notx*

be possible if OBJECT does not have a read syntax.

OBJECT is returned.

— Function: prinl OBJECT &optional STREAM
Similar to ‘print’ but no initial newline is output.

(prinl " (1 2 3))

) ;A strange symbol

- Function: prinl-to-string OBJECT
Returns a string containing the characters that ‘prinl’ would

output when it prints OBJECT.

(prinl-to-string ' (1 2 3))

=> "(1 2 3)"
— Function: princ OBJECT &optional STREAM
Prints a textual representation of OBJECT to the output stream
STREAM. No steps are taken to create output that ‘read’ can parse
and no quote characters surround strings.

(princ "foo")
-1 foo
=> "foo"

— Function: format STREAM TEMPLATE &rest VALUES
Writes to a stream, STREAM, a string constructed from the format

string, TEMPLATE, and the argument VALUES.

If STREAM is '‘nil’ the resulting string will be returned, not
written to a stream.

TEMPLATE is a string which may contain format specifiers, these are
a ‘%’ character followed by another character telling how to print
the next of the VALUES. The following options are available
\SI

Write the printed representation of the value without quoting

jade

151 /348

(as 1f from the ‘princ’ function).

\SI
Write the printed representation *with* quoting enabled (like
the ‘prinl’ function).
\d’
Output the value as a decimal number.
\OI
Write the value in octal.
\XI
In hexadecimal.
\CI

Write the character specified by the value.

Print a literal percent character. None of the VALUES are
used.

The function works through the TEMPLATE a character at a time. If
the character is a format specifier (a ‘'%’) it inserts the correct
string (as defined above) into the output. Otherwise, the
character is simply put into the output stream.

If STREAM isn’t ‘nil’ (i.e. the formatted string is returned) the
value of STREAM is returned.

(format nil "foo %S bar 0x%x" ' (x . y) 255)
=> "foo (x . y) bar Oxff"

(format standard-output "The %s is %s!" "dog" "purple")

—| The dog is purple!
=> #<buffer =*jadex>

1.168 jade.guide/Loading

Loading
In Lisp, programs (also called "modules") are stored in files. Each
file is a sequence of Lisp forms (known as "top-level forms"). Most of

the top-level forms in a program will be definitions (i.e. function,
macro or variable definitions) since generally each module is a system
of related functions and variables.

Before the program can be used it has to be "loaded" into the
editor’s workspace; this involves reading and evaluating each top-level
form in the file.

jade

152 /348

Load Function
The function which loads programs

Autoloading
Functions can be loaded on reference

Features
Module management functions

1.169 jade.guide/Load Function

Load Function

— Function: load PROGRAM &optional NO-ERROR NO-PATH NO-SUFFIX

This function loads the file containing the program called PROGRAM;
first the file is located then each top-level form contained by
the file is read and evaluated in order.

Each directory named by the variable ‘load-path’ is searched until
the file containing PROGRAM is found. In each directory three
different file names are tried,

1. PROGRAM with ‘.jlc’ appended to it. Files with a ‘.jlc’
suffix are usually compiled Lisp files. See
Compiled Lisp

2. PROGRAM with ‘.Jjl’ appended, most uncompiled Lisp programs are
stored in files with names like this.

3. PROGRAM with no modifications.

If none of these gives a result the next directory is searched in
the same way, when all directories in ‘load-path’ have been
exhausted and the file still has not been found an error is
signalled.

Next the file is opened for reading and Lisp forms are read from it
one at a time, each form is evaluated before the next form is

read. When the end of the file is reached the file has been loaded
and this function returns ‘t’.

The optional arguments to this function are used to modify its
behaviour,

NO-ERROR
When this argument is non—-'‘nil’ no error is signalled if the
file can not be located. Instead the function returns ‘nil’.

NO-PATH
The variable ‘load-path’ is not used, PROGRAM must point to
the file from the current working directory.

jade 153 /348

NO-SUFFIX
When non-‘nil’ no ‘.jlc’ or ‘.Jjl’ suffixes are applied to the
PROGRAM argument when locating the file.

If a version of the program whose name ends in ‘.Jjlc’ is older than
a ‘.]jl’ version of the same file (i.e. the source code is newer
than the compiled version) a warning is displayed and the ‘.jl’
version is used.

(load "foobar")
error—-—> File error: Can’t open lisp-file, foobar

(load "foobar" t)
=> nil

- Variable: load-path
A list of strings, each element is the name of a directory which is
prefixed to the name of a program when Lisp program files are being
searched for.

load-path
=> ("" "/usr/local/lib/jade/3.2/1lisp/")

The element ‘""’ means the current directory, note that directory
names should have an ending ‘/’ (or whatever) so that when
concatenated with the name of the file they make a meaningful
filename.

— Variable: lisp-lib-dir
The name of the directory in which the standard Lisp files are
stored.

lisp-lib-dir
=> "/usr/local/lib/jade/3.2/1isp/"

1.170 jade.guide/Autoloading

Autoloading

Obviously, not all the features of the editor are always used.
"Autoloading" allows modules to be loaded when they are referenced.
This speeds up the initialisation process and may save memory.

Functions which may be autoloaded have a special form in their
symbol’s function cell -- an autoload form. This is a list whose first
element is the symbol ‘autoload’. When the function call dispatcher
finds one of these forms it loads the program file specified in the form
then re-evaluates the function call. The true function definition will
have been loaded and therefore the call may proceed as normal.

The structure of an autoload form is:

jade

154 /348

(autoload PROGRAM-FILE [IS-COMMAND])

PROGRAM-FILE is the argument to give to the ‘load’ function when the
function is to be loaded. It should be the program containing a
definition of the autoloaded function.

The optional IS-COMMAND object specifies whether or not the function
may be called interactively (i.e. it is an editor command).

— Function: autoload SYMBOL &rest AUTOLOAD-DEFN
Installs an autoload form into the function cell of the symbol
SYMBOL. The form is a cons cell whose car is ‘autoload’ and whose
cdr is the argument AUTOLOAD-DEFN.

Returns the resulting autoload form.

(autoload "foo "foos-file")
=> (autoload "foos-file")
(symbol-function ’ foo)
=> (autoload "foos-file")

(autoload ’"bar "bars-file" t)
=> (autoload "bars—-file" t)
(commandp ’bar)
=> t

It is not necessary to call the ‘autoload’ function manually. Simply
prefix the definitions of all the functions which may be autoloaded
(i.e. the entry points to your module; #*notx all the internal
functions!) with the magic comment ‘;;;###autoload’. Then the
‘add-autoloads’ command can be used to create the necessary calls to
the autoload function in the ‘autoloads.jl’ Lisp file (this file which
lives in the Lisp library directory is loaded when the editor is
initialised).

‘Meta-x add-autoloads’
Scans the current buffer for any autoload definitions. Functions
with the comment ‘;;;###autoload’ preceding them have autoload
forms inserted into the ‘autoloads.jl’ file. Simply save this
file’s buffer and the new autoloads will be used the next time
Jade is initialised.

It is also possible to mark arbitrary forms for inclusion in the
‘autoloads.jl’ file: put them on a single line which starts with
the comment ‘;;;###autoload’ call the command.

The unsaved ‘autoloads.jl’ buffer will become the current buffer.

;i ###autoload
(defun foo (bar) ; ‘foo’ 1s to be autoloaded

;i ###autoload (setqg x y) ;Form to eval on initialisation

‘Meta—-x remove—autoloads’
Remove all autoload forms from the ‘autoloads.jl’ file which are

jade

155/348

marked by the Y;;;###autoload’ comment in the current buffer.

The unsaved ‘autoloads.jl’ buffer will become the current buffer.

1.171 jade.guide/Features

Features

"Features" correspond to modules of the editor. Each feature is
loaded separately. Each feature has a name, when a certain feature 1is
required its user asks for it to be present (with the ‘require’
function), the feature may then be used as normal.

When a feature is loaded one of the top-level forms evaluated is a
call to the ‘provide’ function. This names the feature and installs it
into the list of present features.

— Variable: features
A list of the features currently present (that is, loaded). Each
feature is represented by a symbol. Usually the print name of the
symbol (the name of the feature) is the same as the name of the
file it was loaded from, minus any ‘.jl’ or ‘.jlc’ suffix.

features
=> (info isearch fill-mode texinfo-mode lisp-mode xc)

— Function: provide FEATURE
Adds FEATURE (a symbol) to the list of features present. A call to
this function is normally one of the top-level forms in a module.

;775 maths.jl —- the ‘maths’ module
(provide ’'maths)
— Function: require FEATURE &optional FILE

Show that the caller is planning to use the feature FEATURE (a
symbol). This function will check the ‘features’ variable to see
if FEATURE is already loaded, if so it will return immediately.
If FEATURE is not present it will be loaded. If FILE is non-‘nil’
it specifies the first argument to the ‘load’ function, else the
print name of the symbol FEATURE is used.

;775 physics.jl —— the ‘physics’ module

(require ’"maths) ;Need the ‘maths’ module
(provide ’physics)

jade

156 / 348

1.172 jade.guide/Compiled Lisp

Compiled Lisp

Jade contains a rudimentary Lisp compiler; this takes a Lisp form or
program and compiles it into a "byte-code" form. This byte-code form
contains a string of byte instructions, a vector of data constants and
some other information.

The main reason for compiling your programs is to increase their
speed, it is difficult to quantify the speed increase gained —-- some
programs (especially those using a lot of macros) will execute many
times quicker than their uncompiled version whereas others may only
execute a bit quicker.

Compilation Functions
How to compile Lisp programs

Compilation Tips
Getting the most out of the compiler

Disassembly
Examining compiled functions

1.173 jade.guide/Compilation Functions

Compilation Functions

— Function: compile-form FORM
This function compiles the Lisp form FORM into a byte-code form
which is returned.

(compile-form ’ (setqg foo bar))
=> (jade-byte-code "?F!" [bar foo] 2)

— Command: compile-file FILE-NAME
This function compiles the file called FILE-NAME into a file of
compiled Lisp forms whose name is FILE-NAME with ‘c’ appended to
it (i.e. if FILE-NAME is ‘foo.jl’ it will be compiled to
‘foo.jlc’).

If an error occurs while the file is being compiled any
semi-written file will be deleted.

When called interactively this function will ask for the value of
FILE-NAME.

— Command: compile-directory DIRECTORY &optional FORCE EXCLUDE

jade

157 /348

Compiles all the Lisp files in the directory called DIRECTORY which
either haven’t been compiled or whose compiled version is older
than the source file (Lisp files are those ending in ‘.3jl’).

If the optional argument FORCE is non-'‘nil’ *allx Lisp files will
be recompiled whatever the status of their compiled version.

The EXCLUDE argument may be a list of filenames, these files will
*notx be compiled.

When this function is called interactively it prompts for the
directory.

- Function: compile-lisp-lib &optional FORCE
Uses ‘compile-directory’ to compile the library of standard Lisp
files. If FORCE is non-'‘nil’ all of these files will be compiled.

The ‘autoloads.jl’ is =xneverx compiled since it is often modified
and wouldn’t really benefit from compilation anyway.

— Function: jade-byte-code BYTE-CODES CONSTANTS MAX-STACK
Interprets the string of byte instructions BYTE-CODES with the
vector of constants CONSTANTS. MAX-STACK defines the maximum
number of stack cells required to interpret the code.

This function is xnever* called by hand. The compiler will produce
calls to this function when it compiles a form or a function.

(setg x 1
y 3)
=> 3
(setqg comp (compile-form ’ (cons x y)))
=> (jade-byte-code "??K" [x y] 2)
(eval comp)
= (1 . 3)

1.174 jade.guide/Compilation Tips

Compilation Tips

Here are some tips for making compiled code run fast:

* Always favour iteration over recursion; function calls are
relatively slow. The compiler doesn’t know about tail recursion or
whatever so you’ll have to do this explicitly.

For example, the most elegant way of searching a list is to use
recursion,

(defun scan-list (list elt)
"Search the LIST for an element ELT. Return it if one is found."
(if (eg (car list) elt)
elt

jade 158 /348

(scan—-1list (cdr list) elt)))
but this is fairly slow. Instead, iterate through each element,

(defun scan-list (list elt)
(while (consp list)
(when (eq (car list) elt)
(return elt))
(setqg list (cdr list))))

* In some cases the functions ‘member’, ‘memqg’, ‘assoc’, etc... can
be used to search lists. Since these are primitives written in C
they will run smuchx faster than an equivalent Lisp function.

So the above ‘scan-list’ example can be rewritten as,

(defun scan-list (list elt)
(car (memg elt 1list)))

Also note that the ‘mapcar’ and ‘mapc’ functions are useful (and
efficient) when using lists.

* Whenever possible use the ‘when’ and ‘unless’ conditional
structures; they are more efficient than ‘cond’ or ‘if’.

* Careful use of named constants (see
Constant Variables
) can
increase the speed of some programs. For example, in the Lisp
compiler itself all the opcode values (small integers) are defined
as constants.

I must stress that in some cases constants are xnotx suitable;
they may drastically increase the size of the compiled program
(when the constants are ‘big’ objects, i.e. long lists) or even
introduce subtle bugs (since two references to the same constant
may not be ‘eq’ whereas two references to the same variable are
always ‘eq’).

* Many primitives have corresponding byte-code instructions; these
primitives will be quicker to call than those that don’t (and
incur a normal function call). Currently, the functions which have
byte-code instructions (apart from all the special forms) are:

‘cons’, ‘car’, ‘cdr’, ‘rplaca’, ‘rplacd’, ‘nth’, ‘nthcdr’, ‘aset’,
‘aref’, ‘length’, ‘eval’, ‘+', “x', /', '%’, ‘lognot’, ‘not’,
‘logior’, ‘logand’, ‘equal’, \qu’ \:I, \/:I’ \>I, \<l’ \>:I,

‘<=, M1+, M1-r, ', ‘set’, ‘fset’, ‘lsh’, ‘zerop’, ‘null’,
‘atom’, ‘consp’, ‘listp’, ‘numberp’, ‘stringp’, ‘vectorp’, ‘throw’,
‘fboundp’, ‘boundp’, ‘symbolp’, ‘get’, ‘put’, ‘signal’, ‘return’,
‘reverse’, ‘nreverse’, ‘assoc’, ‘assq’, ‘rassoc’, ‘rassqg’, ‘last’,
‘mapcar’, ‘mapc’, ‘member’, ‘memqg’, ‘delete’, ‘delqg’, ‘delete-if’,
‘delete-if-not’, ‘copy-sequence’, ‘sequencep’, ‘functionp’,
‘special-formp’, ‘subrp’, ‘eql’, ‘set-current-buffer’,
‘current-buffer’, ‘bufferp’, ‘markp’, ‘windowp’.

* When a file is being compiled each top-level form it contains is

jade 159 /348

inspected to see if it should be compiled into a byte-code form.
Different types of form are processed in different ways:

*+ Function and macro definitions have their body forms compiled
into a single byte-code form. The doc-string and interactive
declaration are not compiled.

* Calls to the ‘require’ function are evaluated then the
unevaluated form is written as-is to the output file. The
reason it is evaluated is so that any macros defined in the
required module are loaded before they are called by the
program being compiled.

+ If the form is a list form (see
List Forms
) and the symbol
which is the car of the list is one of:

‘if’, ‘cond’, ‘when’, ‘unless’, ‘let’, ‘letx’, ‘catch’,
‘unwind-protect’, ‘error-protect’, ‘with-buffer’,
‘with-window’, ‘progn’, ‘progl’, ‘prog2’, ‘while’, ‘and’,
\ 14

or’ .

then the form is compiled. Otherwise it is just written to
the output file in its uncompiled state.

If your program contains a lot of top-level forms which you know
will not be compiled automatically, consider putting them in a
‘progn’ block to make the compiler coalesce them into one
byte-code form.

1.175 jade.guide/Disassembly

Disassembly

It is possible to disassemble byte-code forms; originally this was so
I could figure out why the compiler wasn’t working but if you’re
curious about how the compiler compiles a form it may be of use to you.

Naturally, the output of the disassembler is a listing in Jade’s
pseudo-machine language -- it won’t take a byte-code form and produce
the equivalent Lisp code!

— Command: disassemble-fun FUNCTION &optional STREAM
This function disassembles the compile Lisp function FUNCTION. It
writes a listing to the output stream STREAM (normally the wvalue
of the ‘standard-output’ variable).

When called interactively it will prompt for a function to
disassemble.

When reading the output of the disassembler bear in mind that Jade

jade 160 /348

simulates a stack machine for the code to run on. All calculations are
performed on the stack, the value left on the stack when the piece of
code ends is the value of the byte-code form.

1.176 jade.guide/Hooks

Hooks

A "hook" allows you to wedge your own pieces of Lisp code into the
editor’s operations. These pieces of code are evaluated via the hook
and the result is available to the hook’s caller.

Functions As Hooks
Some hooks are a single function,

Normal Hooks
Others may be a list of pieces of code

to evaluate.

Standard Hooks
A table of the predefined hooks

1.177 jade.guide/Functions As Hooks

Functions As Hooks

Some hooks only allow a single piece of code to be hooked in. Usually
a normally-undefined function is used; to install your hook defined a
function with the name of the hook. When the hook is to be evaluated
the function is called.

Generally the name of the hook’s function will end in ‘-function’.

An alternative scheme is to use a variable to store the hook, its
value should be the function to call.

1.178 jade.guide/Normal Hooks

Normal Hooks

This is the standard type of hook, it is a variable whose value is a

jade 161 /348

list of functions. When the hook is evaluated each of the named
functions will be called in turn until one of them returns a value
which is not ‘nil’. This value becomes the value of the hook and no
more of the functions are called. If all of the functions in the hook
return ‘nil’ the value of the hook is ‘nil’.

The names of hooks of this type will normally end in ‘-hook’.

— Function: add-hook HOOK FUNCTION &optional AT-END
This function adds a new function FUNCTION to the list of functions
installed in the (list) hook HOOK (a symbol).

If AT-END is non—-'nil’ the new function is added at the end of the
hook’s list of functions (and therefore will be called last when
the hook is evaluated), otherwise the new function is added to the
front of the list.

text-mode-hook
=> (fill-mode-on)

(add-hook 'text-mode-hook ’'my-function)
=> (my-function fill-mode-on)

— Function: remove-hook HOOK FUNCTION
This function removes the function FUNCTION from the list of
functions stored in the (list) hook HOOK (a symbol).

*Allx instances of FUNCTION are deleted from the hook.

text-mode-hook
=> (my-function fill-mode-on)
(remove-hook ’text-mode-hook ’'my-function)
=> (fill-mode-on)

— Function: eval-hook HOOK &rest ARGS
Evaluates the (list) hook HOOK (a symbol) with argument wvalues
ARGS.

Each function stored in the hook is applied to the ARGS in turn
until one returns non—-‘nil’. This non-‘nil’ value becomes the
result of the hook. If all functions return ‘nil’ then the result

of the hook is 'nil’.

Note that most functions which are installed in hooks should always
return ‘nil’ to ensure that all the functions in the hook are evaluated.

1.179 jade.guide/Standard Hooks

Standard Hooks

This is a table of the predefined hooks in Jade:

‘asm-cpp-mode—hook’
See

jade 162 /348

Asm mode

‘asm-mode—-hook’
See
Asm mode

‘auto-save-hook’
See
Controlling Auto-Saves

‘buffer-menu-mode-hook’
‘c-mode-hook’
See
C mode

‘destroy-window-hook’
See
Closing Windows

‘gdb-hook’
‘idle-hook’
See
Idle Actions

‘indented-text-mode-hook’
See
Indented-Text mode

‘insert-file-hook’
See
Reading Files Into Buffers

‘kill-buffer-hook’
See
Destroying Buffers

‘lisp-mode-hook’
See
Lisp mode

‘make-window—-hook’
See
Opening Windows

‘open-file-hook’
See

jade

163 /348

Reading Files Into Buffers

‘read-file-hook’
See
Reading Files Into Buffers

‘shell-callback-function’
‘shell-mode-hook’
‘texinfo-mode-hook’
See
Texinfo mode

‘text-mode—-hook’
See
Text mode

‘unbound-key-hook’
See
Event Loop

‘window-closed-hook’
See
Event Loop

‘write-file-hook’
See
Writing Buffers

1.180 jade.guide/Buffers

Buffers

A "pbuffer" is a Lisp object containing a ‘space’ in which files (or
any pieces of text) may be edited, either directly by the user or by
Lisp programs.

Each window (see
Windows
) may display any one buffer at any time, the
buffer being displayed by the current window is known as the "current

buffer". This is the buffer which functions will operate on by default.

- Function: bufferp OBJECT
Returns ‘t’ if its argument is a buffer.

jade 164 /348

Buffer Attributes
Data contained in a buffer object

Creating Buffers
How to create empty buffers

Modifications to Buffers
Is a buffer modified?

Read-Only Buffers
Unmodifiable buffers

Destroying Buffers
Deleting a buffer and its contents

Special Buffers
Program—-controlled buffers

The Buffer List
Each window has a list of buffers

The Current Buffer
One buffer is the default buffer

1.181 jade.guide/Buffer Attributes

Buffer Attributes

All buffer objects store a set of basic attributes, some of these
are:

"name"
Each buffer has a unique name.

— Function: buffer-name &optional BUFFER
Returns the name of the buffer BUFFER, or of the current
buffer if BUFFER is undefined.

(buffer—-name)
=> "programmer.texi"

- Function: set-buffer-name NAME &optional BUFFER
Sets the name of the buffer BUFFER (or the current buffer) to
the string NAME.

Note that NAME is not checked for uniqueness, use the
‘make-buffer—-name’ function if you want a guaranteed unique

name.

- Function: make-buffer-name NAME

jade

165/348

Returns a unique version of the string NAME so that no
existing buffer has the same string as its name. If a clash
occurs a suffix ‘<N>’ is appended to NAME, where N is the
first number which guarantees the uniqueness of the result.

— Function: get-buffer NAME
Returns the existing buffer whose name is NAME, or '‘nil’ if
no such buffer exists.

"file name"

Since buffers often contain text belonging to files on disk the
buffer stores the name of the file its text was read from. See

Editing Files
— Function: buffer-file—-name &optional BUFFER
Returns the name of the file stored in BUFFER. If no file is

stored in the buffer the null string (‘) is returned.

(buffer-file—-name)
=> "man/programmer.texi"

— Function: set-buffer-file-name NAME &optional BUFFER
This function sets the file-name of the buffer to the string

NAME .

— Function: get-file-buffer FILE-NAME

Searches for an existing buffer containing the file FILE-NAME

then returns it, or 'nil’ if no such buffer exists.

"contents"

The contents of a buffer is the text it holds. This is stored as
an array of lines. See
Text

"tab size"

This is the spacing of tab stops. When the contents of the buffer
is being displayed (in a window) this value is used.

— Variable: tab-size

A buffer—-local variable which holds the size of tab stops in
the buffer.

"glyph table"
Each buffer has its own glyph table which is used when the buffer
is being displayed. See
Buffer Glyph Tables

"local variables"

Each buffer can have its own value for any variable, these local
values are stored in an alist which lives in the buffer object.
See

Buffer-Local Variables

jade

166 /348

— Function: buffer-variables &optional BUFFER
Returns the alist of local variables in the buffer. Each
alist element is structured like, ‘(SYMBOL . LOCAL-VALUE)'.

"modification counter"

Each modification made to the buffer increments its modification
counter. See

Modifications to Buffers

— Function: buffer-changes &optional BUFFER

Returns the number of modifications made to the buffer since
it was created.

"undo information"

When a modification is made to a buffer enough information is
recorded so that the modification can later be undone. See

Controlling Undo

All other buffer-specific information is kept in buffer-local
variables.

1.182 jade.guide/Creating Buffers

Creating Buffers

- Function: make-buffer NAME
Creates and returns a new buffer object. Its name will be a unique
version of NAME (created by the ‘make-buffer-name’ function).

The buffer will be totally empty and all its attributes will have
standard values.

(make-buffer "foo")
=> #<buffer foo>

— Function: open-buffer NAME
If no buffer called NAME exists, creates a new buffer of that name
and adds it to the end of each windows ‘buffer-list’. This function
always returns the buffer called NAME.

For more ways of creating buffers see
Editing Files

jade 167 /348

1.183 jade.guide/Modifications to Buffers

Modifications to Buffers

Each buffer maintains a counter which is incremented each time the
contents of the buffer is modified. It also holds the value of this
counter when the buffer was last saved, when the two numbers are
different the buffer is classed as have being "modified".

- Function: buffer-modified-p &optional BUFFER
This function returns ‘t’ when the buffer has been modified.

— Function: set-buffer-modified BUFFER STATUS
Sets the modified status of the buffer BUFFER. When STATUS is
‘nil’ the buffer will appear to be unmodified, otherwise it will
look modified.

1.184 jade.guide/Read-Only Buffers

Read-Only Buffers

When a buffer has been marked as being read-only no modifications
may be made to its contents (neither by the user nor a Lisp program).

— Function: buffer-read-only-p &optional BUFFER
Returns ‘t’ when the buffer is read-only.

— Function: set-buffer-read-only BUFFER READ-ONLY
When READ-ONLY is non-‘nil’ the buffer BUFFER is marked as being
read-only, otherwise it is read-write.

— Variable: inhibit-read-only
When this variable is non—-'nil’ any buffer may be modified, even if
it is marked as being read-only.

Lisp programs can temporarily bind a non-‘nil’ wvalue to this
variable when they want to edit one of their normally read-only
buffers.

1.185 jade.guide/Destroying Buffers

Destroying Buffers

Since all Lisp objects have indefinite extent (i.e. they live until
there are no references to them) a buffer will be automatically
destroyed when all references to it disappear.

jade

168 /348

Alternatively one of the following functions can be used to
explicitly kill a buffer; the buffer object will still exist but all
data associated with it (including the text it contains) will be
released.

— Command: kill-buffer BUFFER
Removes the buffer BUFFER (a buffer or the name of a buffer) from
all windows (any windows displaying BUFFER will be changed to
display the previous buffer they showed) and destroys the buffer.

The hook ‘kill-buffer-hook’ is evaluated before the buffer is
killed with BUFFER as its argument.

If the buffer contains unsaved modifications the user will be asked
if they really want to lose them before the buffer is killed (if
the answer is yes).

When called interactively a buffer will be prompted for.

— Hook: kill-buffer-hook
Hook called by ‘kill-buffer’ before it does anything. If a function
in the hook doesn’t want the buffer deleted it should signal some
sort of error.

— Function: destroy-buffer BUFFER
This function may be used to remove all data stored in the buffer
object manually. Also, any marks in this buffer are made
non-resident.

After applying this function to a buffer the buffer will contain
one empty line.

Use this function wisely, there are no safety measures taken to
ensure valuable data is not lost.

1.186 jade.guide/Special Buffers

Special Buffers

When a buffer is "special" it means that it is controlled by a Lisp
program, not by the user typing into it (although this can happen as
well) .

Special buffers are used for things like the ‘xjadex’ or ‘xInfox’
buffers (in fact most of the buffers whose names are surrounded by
asterisks are special).

What the special attribute actually does is make sure that the
buffer is never truly killed (‘kill-buffer’ removes it from each
window’s ‘buffer-1list’ but doesn’t call ‘destroy-buffer’ on it) and
modifications don’t cause the ‘+’ flag to appear in the status line.

— Function: buffer-special-p &optional BUFFER

jade

169 /348

Returns ‘t’ if the buffer is marked as being special.

- Function: set-buffer-special BUFFER SPECIAL
Sets the value of the special flag in the buffer BUFFER to the
value of SPECIAL (‘'nil’ means non-special, anything else means
special) .

Another type of special buffer exists; the "mildly-special buffer".

— Variable: mildly-special-buffer
When this buffer-local variable is set to ‘t’ (it is ‘nil’ by
default) and the buffer is marked as being special, the
‘kill-buffer’ function is allowed to totally destroy the buffer.

1.187 jade.guide/The Buffer List

The Buffer List

Each window (see
Windows
) has a list of buffers which may be
displayed in that window. It is arranged is "most-recently-used" order,
so that the car of the list is the buffer currently being shown in the

window, the second element the window previously being shown and so on.

— Variable: buffer-1list
A variable, local to each window, which contains a list of the
buffers available in the window. The list is maintained in
most-recently-used order.

buffer-1list
=> (#<buffer programmer.texi> #<buffer xHelp*>
#<buffer buffers.c> #<buffer buffers.jl>
#<buffer edit.c> #<buffer edit.h>
#<buffer xjadex> #<buffer lisp.jl>
#<buffer *compilationx> #<buffer *Infox*>)

Generally each window’s ‘buffer-list’ contains the same buffers, each

window has its own value for the variable so it can be kept in the
correct order (each window will probably be displaying different
buffers).

— Function: add-buffer BUFFER
This function ensures that the buffer BUFFER is in each window’s
‘buffer-1list’. If it isn’t it is appended to the end of the list.

— Function: remove-buffer BUFFER
Deletes all references to BUFFER in each window’s ‘buffer-list’.

— Command: bury-buffer &optional BUFFER ALL-WINDOWS
Puts BUFFER (or the currently displayed buffer) at the end of the
current window’s ‘buffer-list’ then switch to the buffer at the
head of the list.

jade

170/348

If ALL-WINDOWS is non—-'‘nil’ this is done in all windows (the same
buffer will be buried in each window though) .

— Command: rotate-buffers-forward
Moves the buffer at the head of the ‘buffer-list’ to be last in the
list, the new head of the ‘buffer-list’ is displayed in the current
window.

1.188 jade.guide/The Current Buffer

The Current Buffer

The "current buffer" is the buffer being displayed in the current
window (see
Windows
), all functions which take an optional BUFFER
argument will operate on the current buffer if this argument is
undefined. Similarly if a WINDOW argument to a function is left
undefined the current window will be used.

— Function: current-buffer &optional WINDOW
Returns the buffer being displayed by the window WINDOW (or the
current window) .

(current-buffer)
=> #<buffer programmer.texi>

The ‘set-current-buffer’ function sets the current buffer of a
window. If, when the window is next redisplayed (i.e. after each
command), the current buffer is different to what it was at the last
redisplay the new buffer will be displayed in the window.

- Function: set-current-buffer BUFFER &optional WINDOW
Sets the buffer that the window is displaying.

Usually a window’s current buffer will be the buffer which is at
the head of the window’s ‘buffer-list’. The function ‘goto-buffer’
can be used to set both of these at once.

— Function: goto-buffer BUFFER
Set the current buffer to BUFFER which is either a buffer or a
string naming a buffer. The selected buffer is moved to the head
of the window’s ‘buffer-list’.

If BUFFER is a string and no buffer exists of that name a new one
is created.

Often you will want to temporarily switch to a different current
buffer, that is what the ‘with-buffer’ special form is for.

— Special Form: with-buffer BUFFER FORMS...

jade 171/348

Temporarily sets the current buffer to the value of evaluating
BUFFER, then evaluates the FORMS in sequence. The old value of the
current buffer is reinstated and the structure returns the value
of the last of the FORMS to be evaluated.

If the implicit progn evaluating FORMS is exited abnormally the
old value of the current buffer will still be reinstated.

If the window is redisplayed while the FORMS are being evaluated

(i.e. 1in a recursive edit) the new buffer will be drawn into the
window.
(with-buffer new-buffer ;Enter a recursive edit in
(recursive—edit)) ; the buffer ‘new-buffer’.

1.189 jade.guide/Windows

Windows

A "window" is a Lisp object representing a window (a rectangular
section of the display) open in the windowing-system you are running
Jade in.

Windows have two main functions, firstly to provide a means of seeing
the contents of a buffer and secondly to receive input events. For more
details about event handling see

Event Loop

A window xalways* displays a buffer and there is xalways*x at least
one window open. The editor remembers which of the open windows is the
"current window", this is normally the window it last received an input
event from, though it can be set by programs.

For some basic details about using windows see
Using Windows

- Function: windowp OBJECT
This function returns ‘t’ if its argument is a window.

- Variable: window-1list
This variable’s wvalue is a list of all the currently open windows.
The order of the elements in the list is insignificant.

window-1list
=> (#<window 20971528 xInfox*> #<window 20971524 xjadex>)

Opening Windows
Creating new windows

jade 172/348

Closing Windows
Deleting windows

Iconifying Windows
Temporarily removing windows

Displaying Messages
Messages to the user

The Current Window
The activated window, used by default

Window Font
Each window may use a different font

Window Information
Details of a window’s current state

Rendering
How buffers are drawn in windows

Block Marking
Highlighting a region of a window

1.190 jade.guide/Opening Windows

Opening Windows

— Function: open-window &optional BUFFER X Y WIDTH HEIGHT
Opens a new window and returns it. If BUFFER is defined it is the
buffer to display in the new window, otherwise the current buffer
is displayed.

The X and Y arguments are the pixel coordinates of the new window’s
top left corner in the display. The WIDTH and HEIGHT arguments are
the size of the window in columns and rows of characters
respectively.

What happens when the position and size of the window is undefined
will depend on the underlying window system, on the Amiga the
window will probably be the same as the current window, in X11 the
window manager will probably let the user size it interactively.

The new window will have its ‘buffer-list’ wvariable initialised
suitably and it will be added to the head of the ‘window-list’

variable.

The ‘make-window’ function is the lowest level of creating a new
window, ‘open-window’ uses it to open the window.

— Function: make-window &optional X Y WIDTH HEIGHT

jade

173 /348

Creates a new window and returns it, the arguments are similar to
those of the same name in the ‘open-window’ function. The window
will display the current buffer.

After the window is created the ‘make-window-hook’ will be called
with the window as its argument.

— Hook: make-window-hook
Hook called each time a new window is created. It has one
argument, the new window.

— Variable: pub-screen
This window-local variable is only used on the Amiga version of
Jade; it holds the name of the public screen which windows are
opened on. By default this is the Workbench screen.

When a window is opened it inherits this wvalue from the current
window at the time.

1.191 jade.guide/Closing Windows

Closing Windows

Unlike buffers, window objects don’t have indefinite extent, even
when a window is incapable of being referenced the object will not be
destroyed by the garbage collector; count the user looking at the window
as a reference!

When the window is closed (by the ‘destroy-window’ function) the
object loses its ‘window-ness’ and the garbage collector is free to
reclaim its memory.

- Function: close-window &optional WINDOW
This function closes the window WINDOW (or the current window) and
deletes its entry from the ‘window-list’ wvariable.

If this window is the only one the editor has open the user is
asked if it’s okay to lose any modified buffers before the window
is closed.

— Function: close-other-windows &optional WINDOW
Uses ‘close-window’ to close all windows except WINDOW (or the
current window) .

— Function: destroy-window WINDOW
Closes the window WINDOW. After a window object has been closed it

is no longer a member of the type ‘window’.

Before closing the window the ‘destroy-window-hook’ is evaluated
with the window being destroyed as an argument.

When the last window is closed the editor will exit automatically.

jade

174 /348

Like the ‘destroy-buffer’ function, this function is dangerous if
used carelessly.

Both ‘close-window’ and ‘close-other-windows’ eventually call this
function.

- Hook: destroy-window-hook

Hook called by ‘destroy-window’ before it does anything. It has
one argument -- the window to be destroyed.

1.192 jade.guide/lconifying Windows

Iconifying Windows

When you don’t want a window cluttering the display, but don’t want

to kill it totally it can be iconified; the window will be displayed as
a small icon which can be reactivated when the window is wanted again.

Function: sleep-window &optional WINDOW

Iconifies the specified window.

Function: unsleep-window &optional WINDOW

Uniconifies the specified window. This may be done automatically if
the user needs to be prompted.

Function: toggle-iconic

Toggles the current window between the iconified and normal
states. This command is bound to the key sequence ‘Ctrl-z’.

Function: window-asleep-p

Returns ‘t’ when the current window is iconified.

1.193 jade.guide/Displaying Messages

Displaying Messages

Often it is useful to be able to show the user a short one-line

message, this is what the ‘message’ function does.

— Function: message MESSAGE &optional DISPLAY-NOW

This function displays the string MESSAGE in the status line of
the current window, then returns MESSAGE.

If DISPLAY-NOW is non-'‘nil’ the message is rendered into the
window immediately, otherwise it will not be visible until the next
general redisplay (usually after each command exits).

Note that an alternate way of writing in the status line is to use

jade

175/348

the output stream ‘t’. See
Output Streams

When writing interactive programs it is sometimes useful to be able
to render the cursor in the status line. This shows that the next key
press will not be subject to normal editing key bindings but to the
special user interface (usually explained by a message in the status
line).

For example the ‘y-or-n-p’ function uses this technique to show that
it needs an answer.

- Variable: status-line-cursor
When this window—-local variable is non-‘nil’ the window’s cursor is
rendered at the end of the message in the status line, not at the
cursor’s position in the main display.

Another way of alerting the user is to use the ‘beep’ function,

— Function: beep
This function rings a bell or flashes the current window or screen
depending on your system.

1.194 jade.guide/The Current Window

The Current Window

The current window is the window that functions operate on by
default; every time the event loop receives some input from the user
the window which the input event originated in becomes the current
window. It is also possible for Lisp programs to set the current
window, either permanently or temporarily.

The "active window" is the window which the windowing system will
send any keyboard input to. Since Jade sets the current window to where
it receives input from, it is often the case that the current window is
the same as the active window. Jade also provides the means to set the
active window; in some cases this may be best left to the user though.

— Function: current-window
This function returns the current window.

(current—-window)
=> #<window 20971524 programmer.texi>

— Function: set-current-window WINDOW &optional ACTIVATE
This function sets the current window to be the window WINDOW. If
the optional argument ACTIVATE is non-'‘nil’ this window will also
become the active window.

When using the ACTIVATE argument bear in mind that it may be

jade

176 /348

confusing for the user if the active window is suddenly changed;
only change the active window synchronously with some input from
the user.

— Special Form: with-window WINDOW FORMS...

Temporarily sets the current window to the value of evaluating the

form WINDOW, then uses an implicit progn to evaluate the FORMS. The

old current window is then reinstated before returning the value
of the implicit progn.

1.195 jade.guide/Window Font

Window Font

FEach window may use a different font; this font will be used for

rendering all text in the window. When windows are created they inherit
their font from the current window at the time.

Currently Jade only allows the use of fixed-width fonts;

fonts won’t work properly.

— Command: set-font FONT-NAME &optional WINDOW

This function sets the font used in the window WINDOW (or the
current window) to the font named by the string FONT-NAME.

The format of the string FONT-NAME depends on the underlying
windowing system:

X11

Simply use the standard name of the font, asterisk characters
work like usual (i.e. match zero or more characters).

Amiga
This is different to the normal Amiga conventions, use the
name of the font followed by a dash and then the size of the
font. For example to get an 8-point topaz font, use
‘topaz.font-8'.

When this function is called interactively it will prompt for
FONT-NAME .

— Function: font-name &optional WINDOW

Returns the name of the font being used in the specified window.

Note that on an Amiga this will only return the name, and not the
size of the font. For example, if ‘set-font’ has been used with an
argument of ‘"topaz.font-8"', a call to ‘font-name’ would produce
‘"topaz.font"’.

- Function: font-x-size &optional WINDOW

Returns the width (in pixels) of a character in the specified
window’s font.

proportional

jade 177 /348

(font—-x-size)
=> 7

— Function: font-y-size &optional WINDOW
Returns the height in pixels of each character in the window’s
font.

(font-y-size)
=> 13

1.196 jade.guide/Window Information

Window Information

There are a number of functions which provide information about the
current state of a window.

— Function: window-id &optional WINDOW
Returns an integer which is the window system’s ‘handle’ on the
window WINDOW (or the current window). Under X11 this is the Window
identifier, on an Amiga it’s a pointer to the window’s ‘struct
Window’ .

(window—-id)
=> 20971524

— Function: window-count
Returns the number of currently-opened windows.

— Function: screen-width
Returns the width of the root window or screen in pixels.

— Function: screen-height
Returns the height in pixels of the root window.

— Function: window-left-edge
Returns the x coordinate of the current window relative to the root
window’s top-left corner.

— Function: window-top-edge
The y coordinate of the current window relative to the root
window’s top-left corner.

— Function: window-width
Returns the width, in pixels, of the current window.

— Function: window-height
Returns the height in pixels of the current window.

- Function: window-bar-height
Only used by Amigas, this returns the height of the current
window’s title bar. This will always be zero in X.

jade

178 /348

1.1

of
it

Function: screen-top-line
Returns the line number of the first line being shown in the
current window.

Function: screen-bottom-line
Returns the line number of the last line being shown in the
current window.

Function: screen-first-column
Returns the column number of the first column being shown in the
current window.

Function: screen-last—-column
Returns the column number of the last column being shown in the
current window.

97 jade.guide/Rendering

Rendering

After each command is executed a full redisplay is done; the display
each window is made to be consistent with the contents of the buffer
is showing.

Function: refresh-all
This function calls the redisplay code, any windows, whose display
is inconsistent with what it should be displaying, are updated.

Function: cursor ON
Turns the cursor in the current window on or off (depending on
whether ON is non-‘nil’ or not). Normally the cursor is erased
while Lisp programs are executing.

If you use this function be sure to leave the cursor undrawn when
you’ve finished.

Function: centre-display &optional WINDOW
If possible, this function will arrange it so that the line which
the cursor is on (see
The Cursor Position
) will be in the centre
of the display.

Function: next-screen &optional COUNT
Move COUNT (or 1 by default) screens forwards in the display, Lisp
programs shouldn’t need to call this.

Function: prev-screen &optional COUNT
Move COUNT screens backwards in the display. Don’t call this from
Lisp programs.

Function: flush-output
This function forces any locally-cached rendering operations to be

jade

179/348

drawn into the actual window. This should be called after any use
of the ‘refresh-all’ or ‘cursor’ functions.

Currently this function only actually does anything in the X11
version of Jade (it calls XFlush()), but to ensure the portability
of Lisp programs it should be used anyway.

— Variable: max-scroll
This window-local variable defines the maximum number of lines
which may be scrolled in one go; if more than this number of lines
have to be moved when a redisplay happens the whole window will be
redrawn.

- Variable: y-scroll-step-ratio
This window-local variable controls the actual number of lines
scrolled when the cursor moves out of the visible part of the
window. The number of lines to move the display origin is
calculated with the formula:

(/ TOTAL-LINES-IN-WINDOW y-scroll-step-ratio)

If the variable’s value is zero then the window will be scrolled
by the least number of lines necessary to get the cursor back into
the visible part.

— Variable: x-scroll-step-ratio
Similar to ‘y-scroll-step-ratio’, except that it’s used when the
cursor disappears to the left or the right of the display.

1.198 jade.guide/Block Marking

Block Marking

Each window may define one "block", this is a region of the buffer
displayed in the window which is rendered in the opposite colours to
normal (i.e. the same as the normal cursor, when the cursor is in a
block it’s drawn in the inverse of the block). Blocks are primarily
used for marking areas of a buffer which will subsequently be
manipulated.

Normally the area of the buffer contained by a block is delimited by
two positions; the start and end of the block (these will track changes
made to the buffer and adjust themselves, like marks do). It is also
possible to mark rectangular blocks; these are also delimited by two
positions, but they define the two opposite corners of the rectangular
block.

- Function: blockp
Returns ‘t’ if a block is marked in the current window.

— Function: mark-block START-POS END-POS
Define the beginning and end markers of the block to display in the

jade

180 /348

current window.

— Command: block-kill
Unmark the block displayed in the current window.

— Command: mark-word COUNT &optional POS
Mark COUNT words from POS (or the cursor pos) in the current
window.

— Command: mark-whole-buffer
Mark the whole of the current buffer.

— Function: block-start
Returns the position of the beginning of the block marked in the
current window. If no block is defined returns ‘nil’.

— Function: block-end
Returns the position of the end of the block, or '‘nil’” if no block
is defined in the current window.

— Command: block-toggle
Toggles between marking the beginning, marking the end and totally
unmarking the block in the current window.

- Function: rect-blocks-p &optional WINDOW
Returns ‘t’ if the block marked in the window is drawn as a
rectangle.

— Function: set-rect-blocks WINDOW STATUS
Defines whether or not the block drawn in WINDOW is drawn as a
rectangle or not. If STATUS is '‘nil’ it isn’t.

— Command: toggle-rect-blocks
Toggles between marking normal and rectangular blocks in the
current window.

1.199 jade.guide/Positions

Positions

A "position" is a Lisp object representing the location of one of the

characters in the contents of a buffer (see

Buffers

). Since Jade stores
buffer contents as an array of lines, two index values are needed to
reference a single character. A position object contains two integers;
the column and line numbers of the character, both these wvalues count
upwards from zero (i.e. the first character in a buffer has line and
column numbers of zero).

Position objects have no read syntax; they print as,

#<pos COLUMN LINE>

jade

181/348

- Function: posp OBJECT

This function returns ‘t’ when its argument is a position object.

— Function: pos COLUMN LINE
Creates and returns a new position object, it points to column
number COLUMN and line number LINE (both integers).

— Function: copy-pos POS
Creates a new copy of the position object POS.

Position Components
Accessing the members of a position

The Cursor Position
Where the cursor is drawn in the display

Movement Functions
Position-motion functions

Positions and Offsets

Converting between positions and buffer
offsets

1.200 jade.guide/Position Components

Position Components

As previously noted, each position object has two components; one
number defining the column, the other defining the line that the
position represents. These components can be accessed individually.

- Function: pos-col POS
Returns the column which the position object POS points to.

(pos—-col (pos 1 2))
=> 1

— Function: pos—-line POS
This function returns the line number which POS points to.

— Function: set-pos-col POS NEW-COL

Sets the number of the column which the position object POS points

to, to NEW-COL (an integer), then returns col.

(setg x (pos 1 2))
=> #<pos 1 2>

(set-pos-col x 3)
=> 3

jade 182/348

=> #<pos 3 2>

- Function: set-pos—-line POS NEW-LINE
Similar to ‘set-pos-col’ except the line number is modified.

1.201 jade.guide/The Cursor Position

The Cursor Position

FEach window displays a "cursor", this is rendered as a character in
the opposite colour to what it would usually be (i.e. normally a dark
rectangle) . The cursor is used to show the user where any characters
they type will be inserted, each window has a separate cursor position
and buffers which are not being displayed ‘remember’ the last position
of their cursor.

- Function: cursor-pos
This function returns a copy of the cursor position in the current
window.

(cursor—-pos)
=> #<pos 14 5638>

- Function: goto-char POS
Sets the position of the current window’s cursor to the position
object POS, then returns POS.

Note that the components of POS are xcopiedx, any subsequent
modification of POS will not affect the cursor.

If the line number of POS points to a non-existent line the cursor
won’t be moved and ‘nil’ will be returned.

1.202 jade.guide/Movement Functions

Movement Functions

This section documents the functions which are used to create and
modify position objects so that they point to a different position
which is related to the original position in some way.

The functions which begin ‘goto-’ set the cursor position of the
current window to the new position; the others do xnotx move the
cursor, they simply calculate the new position and return it.

In some cases the position argument itself will be modified and
returned, this may cause confusion; i1f there are existing references to
the object they subtle bugs may result. Consider the following,

jade

183 /348

(setg x (cursor—-pos)
y (next-char 1 x))
At first glance this looks as though the variable ‘y’ will point to
one character after the variable ‘x’ does. Since the ‘next-char’
function xmodifies* its argument position *bothx variables will contain
the same object, and therefore, point to the same position.

A solution is,

(setg x (cursor—-pos)
y (next-char 1 (copy-pos x)))

Read each function’s description carefully to see if it alters its
arguments!

Buffer Extremes
The edges of a buffer

Character Movement
Moving in terms of characters,

Word Movement
or maybe words,

Tab Movement
tabs,

Line Movement
lines,

Expression Movement
or even expressions.

1.203 jade.guide/Buffer Extremes

Buffer Extremes

— Function: buffer-end &optional BUFFER
Create and return a new position object pointing to the character
after the last character in the buffer.

— Function: goto-buffer-end
Set the cursor to the character after the last character in the
current buffer.

— Function: buffer-start &optional BUFFER
Create a new position pointing to the first character in the
buffer. Currently this is always the position ‘“#<pos 0 0>’ and the

jade

184 /348

BUFFER argument is ignored.

- Function: goto-buffer-start
Set the cursor position to the first character in the buffer.

1.204 jade.guide/Character Movement

Character Movement

— Function: left-char &optional COUNT POS
Alter and return POS (or a copy of the cursor pos) so that it
points COUNT characters (default is one) to the left of its
current position. If the resulting column number is less than
zero ‘nil’ 1is returned, else the position.

(goto-char (pos 20 0))
=> #<pos 20 0>
(left-char)
=> #<pos 19 0>

(setg x (pos 4 1))
=> f<pos 4 1>
(left-char 3 x)
=> #<pos 1 1>

=> #<pos 1 1>

- Function: goto-left-char &optional COUNT
Move COUNT (or one) characters to the left.

— Function: right-char &optional COUNT POS
Alter and return POS (or a copy of the cursor pos) so that it
points COUNT (or one) characters to the right of its current
position. May return a position which points to a character past
the end of the line.

- Function: goto-right-char &optional COUNT
Move COUNT (or one) characters to the right.

The following functions results depends on the contents of the buffer
they are operating on; they move a certain number of xcharactersx*, and
hence will cross line boundaries.

— Function: next-char &optional COUNT POS BUFFER
Alter and return POS (or a copy of the cursor pos) to point to the
character COUNT characters in front of its current position.

If COUNT is negative this function will work backwards through the
buffer.

- Function: goto-next-char &optional COUNT
Move COUNT characters forwards.

jade 185/348

— Function: prev-char &optional COUNT POS BUFFER
Similar to the ‘next-char’ function but will work backwards when
COUNT is positive and forwards when it is negative.

- Function: goto-prev-char COUNT
Move COUNT characters backwards.

1.205 jade.guide/Word Movement

Word Movement

There are two buffer-local variables which control the syntax of
words in each buffer.

- Variable: word-regexp
This buffer-local variable contains a regular expression which
will match each character allowed to be in a word.

The standard value is ‘[a-zA-Z0-9]’, i.e. all alphanumeric
characters.

— Variable: word-not-regexp
A buffer-local variable. Holds a regular expression which will
match anything not in a word.

The normal value is ‘["a-zA-Z0-9]|$’, i.e. anything which is not
alphanumeric or the end of a line.

The following functions use these variables when deciding what is and
what isn’t a word.

— Function: forward-word &optional COUNT POS MOVE
Return the position of the first character after the end of the
word at position POS (or the cursor). COUNT is the number of
words to move, negative values mean go backwards.

If MOVE is non-'‘nil’ then the cursor is moved to the result.
Note that POS is not altered.
— Function: backward-word &optional COUNT POS MOVE
Similar to ‘forward-word’ except that it works backwards. In fact,
all this function does is call ‘forward-word’ with COUNT negated.
- Function: word-start &optional POS
Returns the position of the first character of the word at POS (or

the cursor position).

- Function: in-word-p &optional POS
This function returns ‘t’ if POS (or the cursor) is in a word.

jade 186 /348

1.206 jade.guide/Tab Movement

Tab Movement

— Function: prev-tab &optional COUNT POS SIZE
Alter and return POS (or a copy of the cursor position) so that it
points COUNT (default is one) tab stops to the left of its current
position. Returns ‘nil’ if that position is before the start of
the line.

SIZE is optionally the number of glyphs in each tab, or the value
of the ‘tab-size’ wvariable.

Note that the position returned is not the position of a character
but of a glyph (see

Glyph Positions

) .

(prev-tab 1 (pos 20 0))
=> #<pos 16 0>

— Function: goto-prev-tab &optional COUNT SIZE
Move COUNT tab stops to the left.

- Function: next-tab &optional COUNT POS SIZE
Alter and return POS (or a copy of the cursor position) so that it
points COUNT tab stops to the right of its current position.

SIZE is optionally the number of glyphs in each tab, or the value
of the ‘tab-size’ variable.

Note that the position returned is not the position of a character
but of a glyph (see

Glyph Positions

) -

— Function: goto-next-tab &optional COUNT SIZE
Move COUNT tab stops to the right.

1.207 jade.guide/Line Movement

Line Movement

— Function: next-line &optional COUNT POS
Alter and return POS (or a copy of the cursor position) so that it

points COUNT (or one) lines forwards, the column component is not
changed.

If COUNT is negative (i.e. go backwards) and the resulting line
number is less than zero ‘nil’ is returned.

jade

187 /348

(next—-1line 2 (pos 1 1))
=> #<pos 1 3>

(next-1line -1 (pos 1 1))
=> #<pos 1 0>

- Function: goto-next-line &optional COUNT
Move COUNT lines downwards, the column number of the cursor is
adjusted so that its glyph position is as close to its previous
glyph position as possible.

- Function: prev-line &optional COUNT POS
Similar to NEXT-LINE but goes backwards (or forwards with a
negative COUNT) .

— Function: goto-prev-line &optional COUNT
Move COUNT lines backwards, adjusting the column number of the
Cursor as necessary.

1.208 jade.guide/Expression Movement

Expression Movement

Some major modes provide functions to move backwards and forwards
over expressions written in a buffer in the programming language that
the mode supports (see

Mode-Specific Expressions
), for example the Lisp
mode defines the syntax of Lisp forms written in a buffer.

- Function: forward-exp &optional COUNT
This function moves the cursor over COUNT expressions, as defined
in the current buffer. If the buffer has no expression definitions
an error is signalled.

- Function: backward-exp &optional COUNT
Moves backwards over COUNT (or one) expressions, leaving the cursor
at the beginning of the expression. If the buffer has no
expression definition functions an error is signalled.

1.209 jade.guide/Positions and Offsets

Positions and Offsets

Although Jade stores the position of a character as a pair of two
numbers many other programs define the position of a character as its

jade

188 /348

offset from the beginning of the buffer or file it is in. The following
functions may be used to convert between these two types of positions
in a specified buffer.

— Function: pos-to-offset &optional POS BUFFER
This function returns the offset of the character at the position
POS (or the cursor position by default) in the specified buffer.
This will be an integer, the first character in a buffer is
represented by an offset of zero.

(pos—-to-offset (pos 0 0))
=> 0

(pos—to-offset)
=> 195654

— Function: offset-to-pos OFFSET &optional BUFFER
Creates a new position object which contains the position of the
character OFFSET characters from the start of the specified buffer.

(offset-to-pos 0)
=> #<pos 0 0>

(offset-to-pos 195654)
=> #<pos 14 5974>

1.210 jade.guide/Marks

Marks

A "mark" is a Lisp object which points to a character in a file (or
buffer), as the buffer the file is stored in is modified the position
the mark points to is also modified so that the mark will xalwaysx
point to the same character.

The character that a mark points to does not have to be loaded into
the editor all the time either; if the file the character is in is not
resident in a buffer the mark will simply contain the character’s
position and the file’s name. When a file is loaded any marks pointing
to the file are altered so that they point straight to the buffer
containing the file.

- Function: markp OBJECT
This function returns ‘t’ if its argument is a mark.

Mark Components
Marks contain two values; position and file

Mark Relocation
How the position of a mark is updated as
its buffer is modified

jade

189/348

Mark Residency
Marks may point to files which have not
been loaded

Creating Marks
Functions to allocate new mark objects

Altering Marks
Setting the components of a mark

Moving to Marks
Moving the cursor to the character a
mark points to

1.211 jade.guide/Mark Components

Mark Components

Each mark object has two main components; the position of the
character pointed to by the mark (a position object) and the file which
the character is contained by.

The file is the most complex component, it can be either a string
naming the file or a buffer. When the file component is a string the
mark is said to be "non-resident" since none of the editor buffers
contain the character which the mark points to.

- Function: mark-pos MARK
Returns the position object contained in the marker MARK, no copy
is made: if you modify the position returned it will be reflected
in the position of the mark.

Note that if you later modify the buffer the mark is resident in
the position previously returned by ‘mark-pos’ may be altered by
the mark relocation process. See

Mark Relocation

— Function: mark-file MARK

Returns the file component of MARK. This will be either the name of

the file or the buffer itself depending on whether the mark is
resident or not. See
Mark Residency

1.212 jade.guide/Mark Relocation

jade

190 /348

Mark Relocation

An important feature of marks is that they always point to the same
character, even when the buffer has been modified, changing the position
of the character (i.e. if some text is deleted from somewhere before the
character its position will probably change).

Every time a buffer is modified each mark which points to a character
in that buffer is examined and then, if necessary, the position it
points to is changed to take account of the buffer’s new state.

Basically, what happens is that each mark will try to point at the
same character all the time. If some text is inserted at the position
of the mark the mark’s position will be advanced to the end of the
insertion and hence the original character.

The only time the mark will not point at the same character is when
the character is deleted from the buffer. In this case the mark will
point to the start of the deletion.

1.213 jade.guide/Mark Residency

Mark Residency

As I have already explained, a mark does not necessarily have to
point at a character loaded into a buffer; it can also point at a
character in a file on disk somewhere. When this happens the mark is
said to be non-resident.

— Function: mark-resident-p MARK
This function returns ‘t’ when the character pointed to by the
marker MARK is resident in one of the editor’s buffers.

When the function ‘mark-file’ (see
Mark Components
) is applied to a
non-resident mark it returns the full name of the file, for example,

(setg x (make-mark (pos 0 20) "/tmp/foo.c"))
=> #<mark "/tmp/foo.c" #<pos 1 21>>
(mark-resident-p x)
=> nil
(mark-file x)
=> "/tmp/foo.c"

When a file is loaded into a buffer all existing non-resident marks
are examined to see if they point to that file. If so that mark has its
file component set to the buffer that the file was loaded into.

Similarly, when a buffer is deleted any marks pointing to characters
in that buffer are made non-resident: their file component is set to the

jade

191/348

name of the file.

When the function which moves the cursor to the position of a
specific mark (‘goto-mark’, see
Moving to Marks
) is called with a
non-resident mark it will try to load the file into a buffer.

The following code fragment can be used to ensure that a mark MARK
is resident,

(or (mark-resident-p MARK)
(open-file (mark-file MARK))
(error "Can’t make mark resident, %S" MARK))

1.214 jade.guide/Creating Marks

Creating Marks

— Function: make-mark &optional POS BUFFER-OR-FILENAME
This function allocates a new mark object and fills it in according
to the supplied arguments.

It will point at a character at position POS, or the position of
the cursor in the current window. Note that a copy of POS is made.

The BUFFER-OR-FILENAME argument specifies the file component of the
mark. If BUFFER-OR-FILENAME is a buffer (‘nil’ or undefined means
the current buffer) the mark will use it and therefore will be
resident (see

Mark Residency

) .

Alternatively, BUFFER-OR-FILENAME can be a string naming the file
explicitly. If the file is already loaded into a buffer that
buffer will be used and the mark will be resident. Otherwise the
mark will be non-resident and the string will be used as the file
component.

With no arguments this function will produce a resident mark
pointing at the cursor in the current buffer.

(make-mark)
=> #<mark #<buffer programmer.texi> #<pos 46 6152>>

(make-mark (buffer-start) "/tmp/foo")
=> #<mark "/tmp/foo" #<pos 0 0>>

(make-mark (pos 0 3))
=> #<mark #<buffer programmer.texi> #<pos 0 3>>

jade

192 /348

1.215 jade.guide/Altering Marks

Altering Marks

If you just want to set the position of a mark you can modify its
position component (see
Mark Components
). Alternately the following
function may be used. When you need to set the file a mark points to
the only method is to use this function.

— Function: set-mark MARK &optional POS BUFFER-OR-FILENAME
This function sets either or both of the position and file
components of the mark object MARK, then returns MARK.

If POS is a position object the position component of MARK will be
set to it (a copy of it actually).

If the BUFFER-OR-FILENAME argument is non-‘nil’ the file component
of MARK will be set. This argument can be a buffer object or a
string naming a file. If a named file is already in a buffer that
buffer will be used instead.

(setg x (make-mark))

=> #<mark #<buffer programmer.texi> #<pos 46 6186>>
(set—-mark x (buffer-start))

=> #<mark #<buffer programmer.texi> #<pos 0 0>>
(set-mark x nil "/tmp/foo")

=> #<mark "/tmp/foo" #<pos 0 0>>

1.216 jade.guide/Moving to Marks

Moving to Marks

— Function: goto-mark MARK
This function switches to the buffer containing MARK (if necessary)
and then moves the cursor to the character that the mark points to.

If the mark is not currently resident an attempt will be made to
load the mark’s file into a new buffer and use that.

1.217 jade.guide/Glyph Tables

jade 193 /348

Glyph Tables

A "glyph table" is a Lisp object used to define a mapping between
the characters which may occur in a buffer (anything with a numeric
value between 0 and 255 inclusive) and the sequences of glyphs which are
drawn into a window to represent these characters.

A "glyph" is a image which, when rendered into the display, takes up
one character position. Each character in a buffer is rendered as a
sequence of 1 or more glyphs.

- Function: glyph-table-p OBJECT
This function returns ‘t’ when its argument is a glyph table.

Glyph Table Basics
How a glyph table defines mappings

Glyph Positions
The position of a character and its
glyph sequence may be different

Creating Glyph Tables
Making new glyph tables

Buffer Glyph Tables
Each buffer may use a separate glyph
table for its display

1.218 jade.guide/Glyph Table Basics

Glyph Table Basics

A glyph table is basically an array that has 256 elements; each
element represents one character and contains between zero and four
glyphs -- the glyphs which will be printed for the character.

A special case exists for the tab character; when an element in the
table contains zero glyphs, enough spaces will be printed to fill in to
the next tab stop.

- Function: get—glyph GLYPH-TABLE CHARACTER
This function returns a string containing the glyphs in the

element of the glyph table GLYPH-TABLE for the character CHARACTER.

(get—-glyph (default-glyph-table) ?a)
=> "gn

(get-glyph (default-glyph-table) ?\t)

jade

194 /348

=> "n ;TAB is special

(get—glyph (default-glyph-table) 2\000)
=> "Apn ;the NUL character

— Function: set-glyph GLYPH-TABLE CHARACTER GLYPH-STRING
This function sets the sequence of glyphs used to render the
character CHARACTER in the glyph table GLYPH-TABLE to the
characters in the string GLYPH-STRING.

An error 1s signalled if there are more than four characters in
GLYPH-STRING.

All buffers which use GLYPH-TABLE for their rendering will be
totally redrawn at the next redisplay.

1.219 jade.guide/Glyph Positions

Glyph Positions

Position objects are usually used to refer to the position of a
character in a buffer, this position (sometimes called the "character
position" may not be the same as the position of the sequence of glyphs
printed to represent the character. When a position object is used to
refer to the position of a glyph it is called a "glyph position".

For example, consider a line in a buffer containing the string
‘a\tb’ (where ‘\t’ represents a tab character). When this is rendered
in a buffer the glyphs which will actually be drawn are,

a b

That is, an ‘a’ glyph, followed by seven (assuming ‘tab-size’ is set to
8) Y '’ glyphs, and lastly a ‘b’ glyph.

The character position of the ‘b’ character in the buffer is ‘“#<pos
2 LINE>', where LINE is the line’s number.

Now the confusing bit: the xglyphx position of the ‘b’ xglyphx is
‘#<pos 8 LINE>’ since it is actually the ninth glyph to be drawn.

The good news is that most of the time you can forget about glyph
positions, they only need to be considered when you’re thinking about
how the buffer will look when rendered in the window. For example, Lisp
programs which indent source code will definitely need to use glyph
positions.

Two functions are provided for converting between character and glyph
positions and vice versa.

- Function: char-to-glyph-pos &optional POS BUFFER
Return a new position object containing the glyph position of the
character at character position POS (or the cursor position) in the

jade

195/348

specified buffer.

- Function: glyph-to-char-pos POS &optional BUFFER
This function returns a new position object containing the
character position of the glyph printed at glyph position POS in
the specified buffer.

If the glyph position POS is not the position of the first in a
sequence of glyphs representing a single character the position of
the next character will be returned.

1.220 jade.guide/Creating Glyph Tables

Creating Glyph Tables

— Function: make-glyph-table SOURCE
This function creates a new glyph table, containing glyph sequences
defined by the SOURCE argument.

If SOURCE is a glyph table it will be copied, if it’s a buffer
that buffer’s glyph table will be copied or if SOURCE is ‘nil’ a
copy of the default glyph table will be made.

1.221 jade.guide/Buffer Glyph Tables

Buffer Glyph Tables

Each buffer may define its own glyph table that will be used to
provide the character-to-glyph mappings for that buffer.

— Function: buffer-glyph-table &optional BUFFER
Returns the glyph table installed in the buffer.

— Function: set-buffer-glyph-table GLYPH-TABRLE &optional BUFFER
Sets the glyph table being used in the buffer to GLYPH-TABLE.

By default, each buffer uses the "default glyph table". This is a
glyph table set up when the editor initialise itself. The mappings it
provides are very generic, for more details see

Character Images

- Function: default-glyph-table
This function returns the default glyph table.

Redefining some of the mappings in the default glyph table is an easy
way to affect rendering operations, for example if I want the UK pound
sign character (ASCII value is octal 243) to be printed as itself and

jade

196 /348

not the usual escape sequence I can do the following,

(set—glyph (default—-glyph-table) 2243 "\243")

1.222 jade.guide/Input Events

Input Events

An "input event" is a Lisp object representing an action initiated
by the user, i.e. a key press, pressing a mouse button and similar
things.

Note that input events are often referred to as key presses, this
isn’t really accurate but since most input events are key presses the
term sort of stuck. Anyway, wherever the phrase ‘key press’ occurs in
this manual it could be replaced by ‘input event’.

Each input event is represented by a cons cell (see
Cons Cells
)

containing two integers, these integers encode the actual input event.

The encoding is opaque; the only way to access an event meaningfully is

via the functions provided.

- Function: eventp OBJECT
This function returns ‘t’ if its argument is an input event.

Each event has a textual name, for the actual format of these names
see
Key Names

Functions are available to convert between the name of an event and
the actual event itself, and vice versa.

— Function: lookup-event EVENT-NAME
Create and return a new input event whose name is EVENT-NAME.

(lookup—event "Ctrl-x")
=> (120 . 9)

(lookup-event "Ctrl-Meta-LMB-Clickl")
=> (1 . 58)

- Function: event-name EVENT
This function returns a string naming the input event EVENT.

(event—-name (lookup-event "Ctrl-x"))
=> "Ctrl-x"

jade

197 /348

1.223 jade.guide/Keymaps

Keymaps

A "keymap" is a Lisp object defining a mapping between input events
(see
Input Events
) and commands to be executed when the event loop (see

Event Loop
) receives the input event.

- Function: keymapp OBJECT
Returns ‘t’ when OBJECT is a keymap.

Types of Keymap
Two different formats of keymap

Creating Keymaps
Allocating new keymaps

Binding Keys
Inserting and removing key bindings

Key Lookup
How a key press is resolved into a command

Prefix Keys
Chaining events into multiple-event
bindings

Standard Keymaps
Predefined keymaps you can modify

1.224 jade.guide/Types of Keymap

Types of Keymap

There are two different types of keymap; one for keymaps which
contain only a few bindings, the other providing a more efficient
method of storing larger numbers of bindings.

"Key lists"
These are used for keymaps which only contain a few bindings; they
are lists whose first element is the symbol ‘keymap’. All
subsequent elements define bindings, they are represented by
three—-element vectors. The first two are the contents of the cons
cell representing the input event, the other element is the

jade

198 /348

command to be invoked.
For example,
(keymap [120 9 some-command])

Since the event ‘(120 . 9)’ is the key press ‘Ctrl-x’, this keymap
binds the command ‘some-command’ to the key press ‘Ctrl-x’.

"Key tables™"
Key tables are used for keymaps which contain a larger number of
bindings. They are vectors of 127 elements, a hash function is
used to hash each event contained in the keymap into one of the
127 buckets. Each bucket is a list of key bindings in the same
form as a key list (but without the ‘keymap’ symbol).

1.225 jade.guide/Creating Keymaps

Creating Keymaps

Since there are two different types of keymap (lists and tables)
there are two different functions for creating them with.

— Function: make-keylist
Creates and returns a new key list containing no bindings.

(make-keylist)
=> (keymap)

— Function: make-keytab
This function returns a new key table; it will be totally empty.

(make-keytab)
=> [nil nil ... nil]

If you want to produce a new copy of a keymap use the ‘copy-sequence’
function (see
Sequence Functions
) to duplicate the source keymap.

1.226 jade.guide/Binding Keys

Binding Keys

The ‘bind-keys’ function is used to install new key bindings into a
keymap (either a key list or table).

jade

199 /348

— Function: bind-keys KEYMAP &rest BINDINGS
This function installs zero or more key bindings into the keymap
KEYMAP.

Each binding is defined by two elements in the list of BINDINGS,
the first defines the name of the input event (or the event itself)
and the second defines the command to be associated with the event.

For example to bind two keys in the keymap KEYMAP; the event
‘Ctrl-f’ to the command ‘goto-next-char’ and the event ‘Ctrl-b’ to
the command ‘goto-prev-command’ the following form would be used,

(bind-keys KEYMAP
"Ctrl-f" ’'goto-next-char
"Ctrl-b" ’'goto-prev-char)

— Function: unbind-keys KEYMAP &rest KEYS
This function removes the bindings of the events KEYS (these may
be the names of the events or the event objects themselves) from
the keymap KEYMAP.

(unbind-keys KEYMAP
"Ctrl-f"
"Ctrl-b")

1.227 jade.guide/Key Lookup

Key Lookup

Each time the event loop (see
Event Loop
) receives an input event
from the window system it searches for a binding of that event.

The variables ‘keymap-path’ and ‘next-keymap-path’ are used to
determine the "keymap environment", this is the list of keymaps which
are searched when looking for the binding.

— Function: lookup-event-binding EVENT &optional RESET-PATH
This function examines the current keymap environment for a
binding of the event EVENT (see
Input Events
). If such a binding
is found its command is returned, otherwise ‘nil’ is returned.

If the optional RESET-PATH argument is non-‘nil’ the
‘next-keymap-path’ variable will be set to ‘nil’, otherwise it
will be left with its original value.

- Variable: keymap-path
A buffer-local variable providing the list of keymaps (or
variables whose values are keymaps) which will be searched for a

binding when the value of the ‘next-keymap-path’ variable is '‘nil’.

jade

200/ 348

keymap-path
=> (minor-mode-keymap texinfo-keymap global-keymap)

— Variable: next-keymap-path
This variable is used to create multi-event key bindings. When it
has a non-'‘nil’ value it overrides the ‘keymap-path’ wvariable when
a key binding is being searched for.

After the value of this wvariable is used to search for a key
binding it is set to '‘nil’. This means that, unless another prefix
key occurred, the next input event received will be resolved
through the ‘keymap-path’ variable.

When this variable is set the value of the ‘prefix—-arg’ variable is
set to the current value of the ‘current-prefix—-arg’ variable.

This is so a prefix argument given to a multi-event command is
transmitted through to the command.

For more details on multi-event bindings see
Prefix Keys

1.228 jade.guide/Prefix Keys

Prefix Keys

As briefly noted in the previous section it is possible to create
multi-event key bindings. The ‘next-keymap-path’ variable is used to
link key presses (known as "prefix keys" since they prefix the actual,
command-invoking, binding) to a new keymap environment which will be
used to resolve the next key press. This method allows key sequences of
an arbitrary length to be used.

The best way to explain this is probably with an example. Consider
the following,

(setg entry-keymap (make-keylist))
(bind-keys entry-keymap
"Ctrl-x" '’ (setg next-keymap-path ’ (second-keymap)))

(setq second-keymap (make-keylist))
(bind-keys second-keymap
"Ctrl-j" ’some-command)

Two keymaps are created, the first of which, ‘entry-keymap’, would be
placed in the ‘keymap-path’ list. When ‘Ctrl-x’ is typed the associated
command would be invoked, installing the next piece of the chain, the
‘second-keymap’ into the ‘next-keymap-path’ variable.

So, after ‘Ctrl-x’ is typed the keymap environment will be the list
of keymaps ' (second-keymap)’, subsequently typing ‘Ctrl-j’ would then

jade

201 /348

invoke the command ‘some-command’ .

1.229 jade.guide/Standard Keymaps

Standard Keymaps

Several keymaps are predefined by Jade.

‘global-keymap’

This keymap is the root of the global keymap structure;

all buffers

which allow themselves to be edited have this keymap in their

‘keymap-path’ .

‘ctrl-x-keymap’

This is linked to the ‘global-keymap’ via the key

‘ctrl-x—-4-keymap’

The keymap for the global prefix ‘Ctrl-x 4'.

‘ctrl-x-5-keymap’

The keymap for the global prefix ‘Ctrl-x 5’.

‘user—-keymap’

This keymap is only to be bound by the xuserx,

not by programmers!

It’s linked to the global prefix ‘Ctrl-c’ and is intended to allow

users to bind unmodified keys (modified keys with the prefix

‘Ctrl-c’ are usually bound to by modes) to commands which don’t

have bindings by default.

1.230 jade.guide/Event Loop

Event Loop

Whenever Jade is not executing a command it is sitting in the
loop". This is where the editor waits for any input events which
window system sends it, invokes the commands they resolve to and
redraws all the editor windows to reflect the modifications made

buffers.

Event Loop Actions
What actually happens

Commands

"event
the
then
to any

Commands are Lisp functions which may
be called interactively by the user

jade 202 /348

Event Loop Info
Information about the event loop

Recursive Edits
How to call the event loop from Lisp
programs

Reading Events
Reading single events in Lisp

Idle Actions
What happens when nothing happens

1.231 jade.guide/Event Loop Actions

Event Loop Actions

When Jade appears to be doing nothing it is probably sitting in the
event loop waiting for input to arrive. When an input event arrives from
the window system it is processed according to its type.

If the input event is a keyboard or mouse button event it is
converted into a Lisp input event (see
Input Events
) and the current
keymap environment is searched for a binding of that event (see

Key Lookup

). If a binding of the event is found it defines a command
(see

Commands

) to be invoked, the ‘call-command’ function (see

Calling Commands
) is used to do this.

When no binding of a key or mouse button event exists the hook,
‘unbound-key-hook’, is evaluated; if this returns '‘nil’ and the event
is a keyboard event and no prefix keys (see

Prefix Keys
) preceded it
the key is inserted into the current buffer before the cursor.

If the event was not a keyboard or mouse button event the event loop
will deal with it itself; these events are generally things which
should be transparent to Lisp programs (i.e. window exposure
notification, etc...).

One exception is the event sent when a window should be closed (i.e.
hitting the close-window gadget in Intuition, or sending a window the
delete-window atom in X), the hook ‘window-closed-hook’ is called. By
default this hook is setup to invoke the ‘close-window’ command (as

jade 203 /348

bound to ‘Ctrl-x 07).

Another function of the event loop is to wait for input from any of
the subprocesses currently executing (see
Processes
) ; whenever input is
pending in a subprocess’s standard output channel it is copied to the
process objects’s output stream.

After processing an event or piece of subprocess output the event
loop will redisplay any part of any window which needs to be updated;
this may be necessary if a window is now displaying a different part of
a buffer, or if the part of the buffer it is displaying has been
modified. See

Rendering

Normally Jade will ‘sleep’ while it’s waiting for input, however
after every second it spends asleep the event loop will wake up and try
to do a sequence of operations; for more details see

Idle Actions

- Hook: unbound-key-hook
The hook called when an unbound input event is received.

- Hook: window-closed-hook
The hook called when an event is received telling Jade to close a
window; the current window is the one which should be closed.

1.232 jade.guide/Commands

Commands

A "command" is a Lisp function which may be called interactively,
that is, either as a binding of an input event or by name (with the
‘Meta-x’ key sequence).

Commands are defined in the same way as functions, using the ‘defun’
special form; the body forms of a command must contain an "interactive
declaration". This shows that the function may be called interactively
part and tells the ‘call-command’ function how to compute the argument
values to apply to the command.

Interactive Declarations
How to define a command

Prefix Arguments
Arguments to a command from the user

jade 204 / 348

Calling Commands
The function used to invoke a command

Example Commands
A definition of a command

1.233 jade.guide/Interactive Declarations

Interactive Declarations

When you define a command (using the ‘defun’ special form in the
same way you would define a function) the first of its body forms (after
the optional documentation string) *mustx be an interactive declaration.

This form looks like a call to the special form ‘interactive’, in
actual fact this special form always returns ‘nil’ and has no
side-effects. The only effect of this form is to show the
‘call-command’ function, which invokes commands, that this function
definition is actually a command (i.e. 1t may be called
interactively). The second element of the declaration form (after the
‘interactive’ symbol) defines how the argument values applied to the
command are computed.

The structure of an interactive declaration, then, is:
(interactive [CALLING-SPEC])

When a command is defined this is how it is defined with the
interactive declaration:

(defun some-command (argl)
"Optional documentation string."
(interactive ...)

The CALLING-SPEC form defines the argument values applied to the
command when it is called interactively, it may be one of,

* ‘nil’ or undefined (i.e. ‘(interactive)’); no arguments are given
to the command, this type of interactive declaration just shows
that the function may be called interactively.

* A string; zero or more lines (each separated by a newline
character), each line defines how to compute one argument value.
The first character of each line is a code letter defining exactly
how to compute the argument, the rest of the line is an optional
prompt string which some code letters show the user when prompting
for the argument.

The currently available code letters are,

\a’

jade

205 /348

\bl

‘B’

\CI

\d’

\DI

\EI

\fl

\F’

\kl

\M’

N/

Prompt, with completion, for a function object.

Prompt, with completion, for an existing buffer object.

Prompt, with completion, for a buffer; if it doesn’t yet

exist it will be created.

Prompt for a character.

Prompt with completion for a command.

The position of the cursor in the current window.

Prompt with completion for the name
filing system.

The event which caused this command

The event which caused this command,

Prompt with completion for the name

Prompt with completion for the name
have to exist.

Prompt for a single event.

The starting position of the marked
window.

of a directory in the

to be invoked.

cooked into a string.

of an existing file.

of a file; it doesn’t

block in the current

The ending position of the current block.

Prompt for a number.

The prefix argument (see
Prefix Arguments
) as a number, if no

prefix argument exists, prompt for a number.

The prefix argument as a number, this will be 1 if no prefix

argument has been entered.

jade

206 / 348

\P/
The raw prefix argument.
\SI
Prompt for a string.
\SI
Prompt with completion for a symbol.
\tl
The symbol ‘t’.
\VI
Prompt with completion for a variable.
\x’
Read one Lisp object.
\XI

Read a Lisp object, then evaluate it.
A null line produces an argument value of ‘nil’.

Any non-alphabetic characters at the beginning of the CALLING-SPEC
are used as flags, the currently recognised flags are,

Nyt

If the active buffer is read-only an error will be signalled.

After building the argument list the block marked in the
current window will be unmarked.

* Anything else; the form is evaluated and expected to return a

*1listx of arguments to apply to the command.

Some example interactive declarations,

;7 No arguments, but the function may be called
;; as a command.
(interactive)

;7 One argument, an existing buffer
(interactive "bBuffer to kill:")

;7 If buffer isn’t read-only, three arguments:
;; '‘nil’, a Lisp object and ‘t’.
(interactive "x\nxLisp form:\nt")

1.234 jade.guide/Prefix Arguments

jade 207 / 348

Prefix Arguments

When the you invoke a command it is often useful to be able to
specify arguments which the command will act on. "Prefix arguments" are
used for this purpose. They are called xprefixx arguments since they
are entered before the command is invoked, and therefore prefix the
command with an argument. Prefix arguments are usually integers.

The easiest way for a command to access these arguments is through
its interactive declaration (see
Interactive Declarations
) and the ‘N’,
‘p’ and ‘P’ code letters.

The two variables ‘prefix-arg’ and ‘current-prefix-arg’ are used to
store prefix arguments. Whenever a command is invoked the value of
‘prefix-arg’ is moved to ‘current-prefix—-arg’ and ‘prefix—-arg’ set to
‘nil’. This allows commands to set the prefix argument of the next
command by assigning a value to the ‘prefix-arg’ variable.

These variables store an object known as the "raw prefix argument",
when a command is called it normally uses the "numeric prefix argument",
this is an integer created from the raw argument using the following
rules,

* If the raw arg is '‘nil’ the numeric value is 1.

*

If the raw arg is any other symbol the value is -1.

*

A number 1s used unchanged.
* A cons cell stores the numeric value in its car.

The ‘prefix-numeric-argument’ function is used to convert the raw
argument into a numeric value.

— Function: prefix—numeric-argument RAW-ARG
Returns the numeric value of the raw prefix argument RAW-ARG.

- Variable: prefix-arg
The value of the raw prefix argument used by the next command to be

invoked.

- Variable: current-prefix—-arg
The value of the raw prefix argument of the current command.

1.235 jade.guide/Calling Commands

Calling Commands

When a command is to be invoked, the ‘call-command’ function is

jade 208 / 348

used. This builds a list of argument values to apply to the command
(using its interactive declaration) then calls the command.

— Function: commandp OBJECT
This function returns ‘t’ if its argument may be called
interactively. If OBJECT is a function (i.e. a symbol or a
lambda-expression) it is a command if it contains an interactive
declaration (see
Interactive Declarations

).

The only other object which is a command is a function call form;
the use of these types of commands is discouraged but they can be
useful sometimes.

(commandp ’setq)
=> nil

(commandp ’isearch-forward)
:>t

(commandp ’ (setg x 20))
=> t

— Command: call-command COMMAND &optional PREFIX-ARG
This function calls the command COMMAND interactively. See the
documentation of ‘commandp’ above for what constitutes a command.

If the PREFIX-ARGUMENT is non-nil it defines the value of the
‘current-prefix—-arg’ variable for this command, normally the wvalue
of this wvariable would be taken from the global ‘prefix-arg’
variable.

When called interactively, this function will prompt for a command
to invoke. This function is bound to the key sequence ‘Meta-x’.

1.236 jade.guide/Example Commands

Example Commands

This is a couple of simple commands, taken from the source code of
Jade.

(defun backward-kill-word (count)
"Kill COUNT words backwards."
(interactive "p")
(kill-area (forward-word (- count)) (cursor-pos)))

(defun find-file (name)

"Sets the current buffer to that containing the file NAME, if
NAME is unspecified it will be prompted for. If the file is not
already in memory ‘open-file’ will be used to load it."

jade 209 / 348

(interactive "FFind file: ")
(goto-buffer (open-file name)))

1.237 jade.guide/Event Loop Info

Event Loop Information

— Variable: this-command
This variable contains the value of the command currently being
executed.

— Variable: last-command
Holds the previously executed command.

- Function: current-event
Returns the event which caused this command to be invoked.

- Function: current-event-string
Returns a string which is the ‘cooked’ representation of the
current event.

- Function: last-event
Returns the event which caused the previous command.

1.238 jade.guide/Recursive Edits

Recursive Edits

Entering a "recursive edit" basically means to recursively call the
event loop from a Lisp program, this latest instance of the event loop
will work like the normal event loop (the "top level" event loop) until
it is exited, at which point the Lisp program will regain control.

Recursive edits should be used sparingly since they can be very
confusing for the user; they are mainly used to implement interactive
user interfaces in the middle of a Lisp program or command. This can be
achieved by installing a special set of key bindings for the duration
of the recursive edit.

When programming with recursive edits *a lotx of care should be
used; 1if proper cautions aren’t taken an abnormal exit from a recursive
error can wreak havoc.

Note that ‘throw’ and ‘catch’ (see
Catch and Throw
) can be used
*throughx recursive edits with no problems; the recursive edit will
automatically be aborted.

jade 210 /348

— Command: recursive-edit
Enter a new level of recursive editing.

— Function: recursion-depth
This function returns the number of recursive edits currently in
progress. When in the top level this will return zero.

— Command: top-level
Abort all recursive edits, control will be passed straight back to
the top level event loop.

— Command: abort-recursive-edit &optional EDIT-VALUE
This function aborts the outermost recursive edit (but *neverx the
top level) returning EDIT-VALUE (or ‘nil’) from the instance of
the ‘recursive-edit’ function which invoked this recursive edit.

When using recursive edits it is important to remember that the
buffer and window configuration that existed when the edit was entered
may not still exist when the recursive edit terminates. This means that
some care has to be taken when installing and removing buffer-local
values of variables. For example, the ‘ask-y-or-n’ function, which uses
a recursive edit, does something like this:

(let
;; First save the old values of the variables to be altered.
;7 The variables can’t be directly bound to since this doesn’t
; work properly with buffer-local variables :—(
(old-u-k-h unbound-key-hook)
(old-k-p keymap-path)
(old-buf (current-buffer)))
;; Now install the new values
(setqg unbound-key-hook (cons #’ (lLambda ()
(beep)
t)
nil)
keymap-path ’ (y—or—-n-keymap)
status-line-cursor t)
;5 This is the important bit; ensure that the old values will
;; be reinstated even if an abnormal exit occurs. Also note
;; that they are always set in the original buffer.
(unwind-protect
(catch "ask
(recursive—-edit))
(with-buffer old-buf
(setg keymap-path old-k-p
unbound-key-hook old-u-k-h
status—-line-cursor nil)))))

4

(

1.239 jade.guide/Reading Events

Reading Events

jade

211 /348

Most of the time it is unnecessary to read events manually; usually
a special-purpose keymap will be sufficient. However it is possible to
read single events from a Lisp program.

— Function: read-event &optional PROMPT-STRING
Read the next input event from the current window and return it.
If the optional string PROMPT-STRING is defined it is a one-line
message to display while waiting for the event.

Note that this function isn’t very efficient when used heavily; it
uses a recursive edit and the ‘unbound-key-hook’ to read the
event. If possible use a keymap instead.

1.240 jade.guide/ldle Actions

Idle Actions

When a second goes by with no input events arriving, the editor
assumes that is has "idle time" available, and tries to use this period
to do non-essential tasks. These tasks include things like garbage
collection and auto-saving modified files.

Whenever idle time is detected one of the following tasks is
performed. They are listed in order of preference; once one of these
has been done Jade will again sleep until an input event is received or
another second elapses, whichever happens soonest.

1. If prefix keys have been entered and are outstanding their names
will be printed in the status line. See
Prefix Keys

2. If any buffers are ready to be auto-saved (i.e. enough time since
their last auto-save has elapsed) one of these buffers will be
auto-saved. Only one buffer is ever saved in each idle period.
See

Auto-Saving Files

3. If the total size of the data objects allocated since the last
garbage collection is greater than the value of the

‘idle—-gc-threshold’ variable then the garbage collector is invoked.

- Variable: idle-garbage-threshold
The number of bytes of Lisp data which must have been
allocated since the last garbage collection for the garbage
collector to be called in an idle period.

It is a good idea to set this variable much lower than the
value of the ‘gc-threshold’ wvariable since garbage
collections happening while Jade is idle should usually be
unnoticeable.

jade 212/ 348

See
Garbage Collection

4. If none of the other tasks have been performed the ‘idle-hook’ hook
is dispatched. I'm not sure what this hook could be used for but
you never kKnow...

1.241 jade.guide/Editing Files

Editing Files

The main function of Jade is editing files of text; buffers (see

Buffers

) are used to contain files to be edited. When the buffer is
displayed in a window (see

Windows

) the user can edit the file
interactively using the keyboard and mouse.

This chapter documents the Lisp interface to all this; for the user’s
perspective see
Loading and Saving Files

Reading Files Into Buffers
How to read a file into a buffer

Writing Buffers
Functions to write buffers to files

Buffer Date Stamps
The last-modification time of each
file is recorded

Buffer Modification Counts
Variables storing modification counts

Making Backups
How backup files can be made

Controlling Auto-Saves
Functions to control the auto-saving
feature

jade

213 /348

1.242 jade.guide/Reading Files Into Buffers

Reading Files Info Buffers

Before a file can be edited it must be read into a buffer, this
buffer can then be modified and later saved over the original contents
of the file. Note that editing a buffer makes xno* changes to the
contents of the file on disk; the buffer will have to be written back
to the file on the disk first. See

Writing Buffers

— Function: open—-file FILE-NAME
This function returns a buffer containing the contents of the file
called FILE-NAME.

If an existing buffer contains the file called FILE-NAME that
buffer is returned. Otherwise a new buffer is created and the file
read into it.

When the file has successfully been read into the new buffer any
local variables defined at the end of the file are processed (see

File Variables

) and the function ‘init-mode’ is used to try to
install a major mode for the new buffer. See

Installing Modes

If file may not be written to the buffer is marked to be read-only.

Note that the hook, ‘read-file-hook’, can be used to read the
contents of the file into the buffer if necessary. See the
documentation of this hook for more details.

- Hook: read-file-hook
This hook is called by the ‘open-file’ function when it wants to
read a file into a buffer. If the hook returns a non-‘nil’ wvalue
‘open—-file’ assumes that one member of the hook was successful in
reading the file, otherwise the file will be read verbatim into the
buffer.

The hook is called with two arguments: the name of the file and the
buffer to read it into respectively.

If any members of the hook decide to read the file they’re
responsible for setting the ‘buffer-file-name’ component of the
buffer and the buffer’s ‘buffer-file-modtime’ variables to
suitable values.

See the ‘gzip.jl’ file in the Lisp library directory for an example
of how this hook can be used (in this case to automatically

decompress gzip’ed files).

— Function: read-buffer FILE-OR-NAME &optional BUFFER

jade

214 /348

Replaces all text contained by the buffer by the contents of the
file FILE-OR-NAME. This can be either a Lisp file object, in which
case bytes will be read until the end of the file is reached, or
the name of a file to read.

The following commands are used to read a file into a buffer then
display that buffer in the current buffer.

— Command: find-file FILE-NAME
Display a buffer containing the file FILE-NAME in the current
window.

When called interactively FILE-NAME will be prompted for.

— Command: find-alternate-file FILE-NAME
Replace the current buffer with one displaying the file FILE-NAME.
What actually happens is that the current buffer is killed and a
new one created.

When called interactively this function will prompt for its
argument.

— Command: find-file-read-only FILE-NAME
Display a buffer containing FILE-NAME in the current window. The
buffer will be read-only.

This will prompt for its argument when called interactively.

There is also a command to insert the contents of a file into a
buffer.

— Command: insert—-file FILE-NAME &optional BUFFER
This command inserts the contents of the file FILE-NAME into the
buffer BUFFER (or the current buffer).

The hook ‘insert-file-hook’ is called with FILE-NAME as an
argument to try and insert the file (into the current buffer at the

current position). If this hook returns ‘nil’ (i.e. none of the
functions in the hook inserted the file) it will be inserted
normally.

If called interactively, FILE-NAME will be prompted for.

— Hook: insert-file-hook
Hook used to insert a file (given as the hook’s argument) into the
current buffer at the current cursor position.

— Command: revert-buffer &optional BUFFER
Reloads the contents of the buffer from the file it was originally
loaded from; if any unsaved modifications will be lost the user is
asked for confirmation.

jade 215 /348

1.243 jade.guide/Writing Buffers

Writing Buffers

After a buffer containing a file has been edited it must be written
back to a file on disk, otherwise the modifications will disappear when
Jade is exited!

— Function: write-buffer &optional FILE-NAME BUFFER
The primitive to save a buffer’s contents. The contents of the
buffer BUFFER (or the current buffer) is written to the file
FILE-NAME (or the ‘buffer-file-name’ component of the buffer).

- Function: write-buffer-area START-POS END-POS FILE-NAME &optional
BUFFER
Writes the region of text from START-POS up to, but not including,
END-POS to the file FILE-NAME.

— Function: write—-file BUFFER &optional FILE-NAME
Writes the contents of the buffer BUFFER to a file on disk. If the
optional argument FILE-NAME is defined it names the file to write
to. Otherwise, the wvalue of the buffer’s ‘buffer-file—name’
component is used.

The hook ‘write-file-hook’ is used to try and write the file, if
this fails (i.e. the hook returns 'nil’) the buffer is saved
normally.

A backup may be made of the file to be overwritten (see

Making Backups
) and the protection-modes of the overwritten file
will be preserved if possible.

— Hook: write-file-hook
This hook is called by the ‘write-file’ function when a buffer is
to be saved. If no member of the hook actually writes the buffer
to a file (i.e. the hook returns '‘nil’) ‘write-file’ will do it
itself in a standard way.

The hook function is responsible for creating any required backup
file (use the function ‘backup-file’, see

Making Backups

) and
resetting the protection-modes of the new file to their original
value.

See the file ‘gzip.jl’ in the Lisp library directory for an
example, it uses it to compress certain files automatically.

Remember to make sure that if a member of the hook writes the
buffer it returns a non-‘nil’ value!

The following code fragment defines a function which does what the
default action of ‘write-file’ is,

jade

216 /348

(defun write—-file-default-action (buffer name)
(let
((modes (when (file-exists—-p name) (file-modes name))))
(backup-file name)
(when (write-buffer name buffer)
(when modes
(set-file-modes name modes))

t)))

The following commands call the ‘write—-file’ function to write out a
buffer, they also update the various variables containing information
about the state of the buffer. It is normally unnecessary to call
‘write—-file’ yourself; these commands should suffice.

— Command: save—-file &optional BUFFER
This command writes the buffer to the file that it was loaded from
and then updates all the necessary buffer-local variables.

If the file on disk has been modified since it was read into the
buffer the user is asked if they really want to save it (and risk
losing a version of the file).

If no modifications have been made to the file since it was last
saved it won’t be saved again.

Any auto-saved version of the file is deleted.

- Command: save—-file—-as NEW-NAME &optional BUFFER
This command saves the buffer BUFFER (or the current buffer) to
the file called NEW-NAME. The ‘buffer-file-name’ is set to
NEW-NAME and all the necessary buffer-local variables are updated.
If an auto-saved version of FILE-NAME exists it is deleted.
When called interactively NEW-NAME will be prompted for.

— Command: save-some-buffers
For each buffer which contains unsaved modifications the user is

asked whether or not to save the buffer.

‘t’ is returned if no unsaved modifications exist in any buffers
(i.e. the user replied ‘yes’ to all files which could be saved).

- Command: save—and-quit

Calls ‘save-some-buffers’ then quits Jade (after asking the user
if any unsaved buffers may be discarded).

1.244 jade.guide/Buffer Date Stamps

Buffer Date Stamps

jade

217 /348

When a file is read into a buffer its (the file’s) time of last
modification is recorded, this can later be used to see if the file (on
disk) has been modified since it was loaded into a buffer.

- Variable: buffer-file-modtime
This buffer-local variable contains the file-modtime of the file
stored in the buffer when it (the file) was last read from disk.

See
File Information

1.245 jade.guide/Buffer Modification Counts

Buffer Modification Counts

Two buffer-local variables are used to record the modification count
(see
Buffer Attributes
) of a buffer when it is saved.

- Variable: last-save-changes
A buffer-local variable containing the number of modifications
made to the buffer the last time it was saved (either auto-saved
or by the user).

- Variable: last-user-save-changes
This buffer-local variable holds the number of modifications made
to the buffer when it was last saved by the user.

- Variable: last-save-time
A buffer-local variable holding the system time (from the
‘current-time’ function) from when the buffer was last saved
(auto-saved or by the user).

1.246 jade.guide/Making Backups

Making Backups

For details of the variables which control whether and how backup
files are made see
Backup Files

— Function: backup-file FILE-NAME
When necessary, make a backup of the file FILE-NAME. This should be

jade

218 /348

called when the file FILE-NAME is about to be overwritten.

Note that this function doesn’t define whether or not the file
FILE-NAME will still exist when this function returns. Sometimes
it will, sometimes it won’t...

1.247 jade.guide/Controlling Auto-Saves

Controlling Auto-Saves

For the documentation of the variables controlling the making of
auto-save files see
Auto-Saving Files

- Function: make-auto-save-name FILE-NAME
Returns a string naming the file which should hold the auto-saved
version of the file FILE-NAME.

(make-auto-save—-name "/tmp/foo")
=> "/tmp/#foo#"

— Function: auto-save-function BUFFER
This function is called automatically whenever a buffer (BUFFER)
needs to be auto-saved.

It firstly tries to use the ‘auto-save-hook’ hook to auto-save the
file, if this fails (i.e. the hook returns ‘nil’) it is done
manually (using the ‘write-buffer’ function).

— Hook: auto-save—-hook
Called by ‘auto-save-function’ (with the buffer as an argument)
when a buffer is to be auto-saved.

— Command: delete-auto-save-file &optional BUFFER
This command deletes the auto-saved version of the buffer, if one
exists.

- Function: auto-save-file-newer-p FILE-NAME
This function returns ‘t’ when there is an auto-saved version of
the file called FILE-NAME which is newer than FILE-NAME.

— Command: recover—-file &optional BUFFER
If an auto-saved version of the buffer exists it is read into the
buffer, overwriting its current contents. If any changes to the
buffer will be lost the user is asked for confirmation.

jade 219 /348

1.248 jade.guide/Text

Text
This chapter describes all the functions used for editing and
referencing the text stored in a buffer.
Note that where a command has a COUNT argument specifying the number

of items to process; this argument will normally use the numeric value
of the prefix argument when the function is called interactively.

Buffer Contents
Accessing the contents of a buffer

Insertion Functions
Inserting strings into a buffer

Deletion Functions
Deleting regions of text

Kill Functions
Recording regions of text

Transpose Functions
Swapping two regions of text

Indentation Functions
Functions for managing indentation

Translation Functions
Applying a mapping to characters in a buffer

Search and Match Functions
Regexps and general string matching

Rectangular Editing
Manipulating rectangular regions

Controlling Undo
How undo works

Misc Text Functions
Other stuff

1.249 jade.guide/Buffer Contents

Buffer Contents

jade

220 /348

— Function: get-char &optional POS BUFFER

Returns the character at position POS (or the cursor position) in

the specified buffer.

— Function: set-char CHARACTER &optional POS BUFFER
Sets the character at position POS (or the cursor) in the buffer
BUFFER (or the current buffer) to the character CHARACTER, then
returns CHARACTER.

— Function: copy-area START-POS END-POS &optional BUFFER

This function creates and returns a string containing the contents

of the buffer BUFFER (or the current buffer) between the two
positions START-POS (inclusive) and END-POS (exclusive).

- Function: copy-block
If a block is marked in the current window returns a string
containing the text marked then unmark the block, otherwise
returns ‘nil’.

If the marked block is rectangular the ‘copy-rect’ function (see

Rectangular Editing
is used to get the string.

- Function: clear-buffer &optional BUFFER
Removes all text from the specified buffer. No precautions are
taken against losing any unsaved modifications that the buffer
might contain!

1.250 jade.guide/Insertion Functions

Insertion Functions

Note that the ‘format’ function can be used to provide formatted
insertion; simply give it a suitable output stream. See
Streams

— Command: insert STRING &optional POS BUFFER

Inserts the string STRING into the specified buffer at the cursor

position (or POS, if defined).

Returns the position of the first character after the end of the
inserted text.

When called interactively the string to insert is prompted for.

- Command: insert-block &optional POS

If a block is marked in the current window, the text it contains is

inserted at the position POS (or the cursor) and the block is
unmarked.

jade

221 /348

If the marked block is rectangular the block is copied and inserted
as a rectangle.

— Command: yank &optional DONT-YANK-BLOCK
Inserts a string before the cursor. If a block is marked in the
current buffer and DONT-YANK-BLOCK is ‘nil’ insert the text in the
block. Else yank the last killed text. See
Kill Functions

When called interactively the raw prefix arg is used as the value
of the DONT-YANK-BLOCK argument.

— Command: yank-to-mouse
Moves the cursor to the current position of the mouse pointer then
calls the ‘yank’ function.

— Command: open-line COUNT
Break the current line at the cursor, creating COUNT new lines. The
cursor is left in its original position.

— Command: split-line
This function inserts a newline character (‘\n’) at the current
cursor position.

1.251 jade.guide/Deletion Functions

Deletion Functions

— Function: delete-area START-POS END-POS &optional BUFFER
This function deletes all text starting from the position START-POS
up to, but not including, the position END-POS.

If BUFFER is defined it specifies the buffer to delete from,
usually the current buffer is used.

— Function: cut-area START-POS END-POS &optional BUFFER
This function is a combination of the ‘copy-area’ and ‘delete-area’
functions; it copies the specified region then deletes it before
returning the copy it made.

(cut—-area START END)

(let
((text (copy—area START END)))
(delete—area START END)
text)

— Command: delete-block
Deletes the block marked in the current window (if one exists).
This function knows about rectangular blocks.

jade

222 /348

- Function: cut-block
Copies the block marked in the current window if one exists, then
deletes it before returning the copied string. If the block is
rectangular it is copied and cut as a rectangle.

— Command: delete—-char COUNT
Deletes COUNT characters, starting at the cursor position and

working forwards.

— Command: backspace—-char COUNT
Deletes the COUNT characters preceding the cursor, if the cursor
is past the end of the line, simply move COUNT characters to the

left.

1.252 jade.guide/Kill Functions

Kill Functions

"Killing" a piece of text means to delete it then store a copy of it
in a special place. This string is later available to other functions,
such as ‘yank’ which inserts it into a buffer.

- Function: kill-string STRING
This function adds the string STRING to the kill buffer. If the
last command also killed something STRING is appended to the
current value of the kill buffer.

The ‘this-command’ wvariable is set to the wvalue ‘kill’ to flag
that the current command did some killing.

Returns STRING.

- Function: killed-string &optional DEPTH
Returns the string in the kill buffer number DEPTH, currently only
the last kill is stored so DEPTH must either be zero or undefined.

— Command: kill-area START-POS END-POS
This command kills a region of text in the current buffer, from
START-POS up to, but not including, END-POS.

When called interactively the currently marked block (if one
exists) is used to provide the two arguments, then the block is
unmarked.

— Command: copy-area-as-kill START-POS END-POS
Similar to ‘kill-area’ except that the region killed is not
actually deleted from the buffer.

— Command: kill-block
Kills the block marked in the current window.

— Command: copy-block-as-kill
Kills the block marked in this window but doesn’t actually delete

jade

223 /348

it from the buffer.
— Command: kill-line &optional ARG
This command kills lines from the cursor position. ARG is a raw
prefix argument (see
Prefix Arguments
) . What gets killed depends
on ARG,
+ When ARG is '‘nil’ it kills from the cursor position to the end
of the line, if the cursor is already at the end of the line

it kills the newline character.

* If the numeric value of ARG is greater than zero it kills
from the cursor for that many whole lines.

« If the numeric value is less than or equal to zero it kills
that number of whole lines xbackwardsx from the cursor.

— Command: kill-whole-line COUNT
Kills *xallx of the COUNT (an integer) next following lines.

— Command: kill-word COUNT
Kills COUNT words, starting at the cursor position.

When called interactively COUNT is the numeric prefix arg.

— Command: backwards-kill-word COUNT
Kills the COUNT previous words, starting from the cursor.

When called interactively COUNT is the numeric prefix arg.

— Command: kill-exp &optional COUNT
Kill COUNT expressions from the cursor position. See

Mode-Specific Expressions
— Command: backward-kill-exp &optional COUNT
Kills COUNT expressions, working backwards from the cursor. See

Mode-Specific Expressions

1.253 jade.guide/Transpose Functions

Transpose Functions

"Transposing" two regions of text in a buffer means to swap their
positions.

— Function: transpose—-items FORWARD-ITEM-FUN BACKWARD-ITEM-FUN COUNT

jade 224 / 348

This function transposes the areas defined by the functions
FORWARD-ITEM-FUN and BACKWARD-ITEM-FUN (these functions must work
in the style of ‘forward-word’ and ‘backward-word’ respectively).

What actually happens is that the item before the cursor is dragged
forward over the next COUNT items.

— Command: transpose-words COUNT
Uses ‘transpose-items’ with each item being a word.

When called interactively, COUNT is the wvalue of the numeric
prefix argument.

— Command: transpose-chars COUNT
Transposes characters.

— Command: transpose—-exps COUNT
If the major mode in the current buffer has installed functions
which define expressions then this command transposes expressions.
See
Mode-Specific Expressions

1.254 jade.guide/Indentation Functions

Indentation Functions

- Function: indent-pos &optional POS BUFFER
This function returns the xglyph* position (see
Glyph Positions

)
of the first character in the line pointed to by POS (or the
cursor) which is not a TAB or SPC character.

— Function: set-indent-pos INDENT-POS &optional BUFFER ONLY-SPACES
Sets the indentation of the line pointed to by POS to the column
pointed to by POS by putting the optimal sequence of TAB and SPC
characters at the start of the line.

If the ONLY-SPACES argument is non-‘nil’ no TAB characters will be
used.

— Command: indent-to COLUMN &optional ONLY-SPACES
This function inserts enough TAB and SPC characters to move the

cursor to glyph column COLUMN.

If the ONLY-SPACES argument is non-‘nil’ no TAB characters are
used.

Note that COLUMN counts from zero.

When called interactively the COLUMN argument is either the

jade

225 /348

numeric value of the prefix argument or, if no prefix argument has
been entered, the result of prompting for a number.

— Command: tab-with-spaces
This command inserts enough spaces at the cursor position to move
the cursor to the next tab stop.

Some major modes provide their own method of indentation (for example
Lisp mode will indent Lisp programs in the proper style), see

Mode-Specific Indentation

— Command: indent-1line
If the current buffer has a method for indentation installed, use
it to indent the current line to its correct depth.

— Command: newline—-and-indent
Insert a newline character, then indent the new line; if no
function for indenting lines has been installed in this buffer a
single TAB character is inserted.

— Command: indent—-area START-POS END-POS
Uses the buffer’s indentation method to indent all lines in the
specified region to their correct depth.

When called interactively the currently-marked block is used to
get the values of the two arguments, the block is then unmarked.

1.255 jade.guide/Translation Functions

Translation Functions

— Function: translate-area START-POS END-POS TRANSLATION-TABLE
&optional BUFFER
This function applies the mapping TRANSLATION-TABLE to each
character in the region starting at the position START-POS up to,
but not including, END-POS.

TRANSLATION-TABLE is a string, each character represents the
mapping for an ASCII character of that character’s position in the
string. If the string is less than 256 characters in length any
undefined characters will remain unchanged (i.e. a
TRANSLATION-TABLE of '’ would leave the region unaltered).

— Function: translate-string STRING TRANSLATION-TABLE
This function uses a similar method to that used in the
‘translate—area’ function. Instead of applying the mapping to a
region of a buffer it applies it to the string STRING. STRING is
returned (after being modified).

Note that the STRING really is modified, no copy is made!

jade

226 / 348

(translate-string "abc" upcase-table)
=> "ABC"

- Variable: upcase-table
This is a 256-character long string which may be used as a
translation table to convert from lower-case to upper-case with
the functions ‘translate-string’ and ‘translate-area’.

- Variable: downcase-table
Similar to ‘upcase-table’ except that it is used to convert from
upper-case to lower-case.

The following functions use the translation functions and the two
translation tables described above.

Command: upcase—area START-POS END-POS &optional BUFFER
Makes all alphabetic characters in the specified region of text
upper-case.

When called interactively uses the block marks for its arguments;
note that this won’t work properly with rectangular blocks.

— Command: downcase—-area START-POS END-POS &optional BUFFER
Similar to ‘upcase-area’ but makes all alphabetic characters
lower—-case.

— Command: upcase-word COUNT
For the next COUNT words starting at the cursor position, make
their alphabetic characters upper-case.

— Command: downcase-word COUNT
Does the opposite of ‘upcase-word’, makes words lower-case!

— Command: capitalize-word
The first character of this word (normally the one under the
cursor) 1s made upper-case, the rest lower.

1.256 jade.guide/Search and Match Functions

Searching and Matching Functions

The most powerful of the searching and matching functions are those
using regular expressions, for details of the regexp syntax used by
Jade see

Regular Expressions

Note that the regexp matcher xdoes not work across linesx, at the
moment no regexp may span more than one line. Also the regexp routines
choke on NUL bytes; hopefully I’"1ll correct these problems soon...

jade

227 / 348

Searching Buffers
Scanning buffers for something

String Matching
Matching regexps to text

Replacing Strings
Replacing a found string or regexp with
something else

Regexp Functions
General regexp utility functions

1.257 jade.guide/Searching Buffers

Sea

rching Buffers

Function: find-next-regexp REGEXP &optional POS BUFFER IGNORE-CASE
This function returns the position of the next substring in the
buffer matching the regular expression string REGEXP. It starts
searching at POS, or the cursor position if POS is undefined.

If no match of the regexp occurs before the end of the buffer ‘nil’
is returned.

If the IGNORE-CASE argument is non-‘'nil’ then the case of matched
strings is ignored (note that character ranges are still
case-significant) .

Function: find-prev-regexp REGEXP &optional POS BUFFER IGNORE-CASE
Similar to ‘find-next-regexp’ except this searches in the opposite
direction, from POS (or the cursor) to the xstart* of the buffer.

Function: find-next-string STRING &optional POS BUFFER
Scans forwards from POS (or the cursor), in BUFFER (or the current
buffer), looking for a match with the string STRING. Returns the
position of the next match or ‘nil’.

Note that matches can’t span more than one line.

Function: find-prev-string STRING &optional POS BUFFER
A backwards-searching version of ‘find-next-string’.

Function: find-next-char CHARACTER &optional POS BUFFER
Search forwards for an occurrence of the character CHARACTER and
returns its position, or ‘nil’ if no occurrence exists.

Function: find-prev-char CHARACTER &optional POS BUFFER
This function searches backwards for an occurrence of the character
CHARACTER.

jade

228 / 348

1.258 jade.guide/String Matching

String Matching

- Function: looking-at REGEXP &optional POS BUFFER IGNORE-CASE
Returns ‘t’ if the regular expression REGEXP matches the text at
position POS in the buffer BUFFER (or the current buffer).

Only the text from POS to the end of the line is matched against.

- Function: regexp-match REGEXP STRING &optional IGNORE-CASE
This function returns ‘t’ if the regular expression REGEXP matches
the string STRING.

Note that the match is unanchored so if you want test for a match
of the whole of STRING use the ‘*’ and ‘$’ regexp meta-characters.
For example,

(regexp—-match " (alb)+" "fooabababar")
:>t

(regexp-match "" (a|b)+$" "fooabababar")
=> nil

(regexp-match "” (alb)+S$" "ababbabba")
=> t

When the IGNORE-CASE argument is non-‘nil’ the case of strings
being matched is insignificant (except in character ranges).

— Function: regexp-expand REGEXP STRING TEMPLATE &optional IGNORE-CASE
This function matches the regular expression REGEXP against the
string STRING, if the match is successful a string is created by
expanding the template string TEMPLATE.

For details of what meta-characters are allowed in TEMPLATE see

Regular Expressions

(regexp-expand "* ([a-z]+): ([0-9]+)S"
"foobar:42"
"The \1 is \2.")
=> "The foobar is 42."

— Function: regexp-match-line REGEXP &optional LINE-POS BUFFER
IGNORE-CASE
This function is similar to ‘regexp-match’, instead of explicitly
supplying the string to match against it is one whole line of the
specified buffer, the line pointed to by LINE-POS (or the line
that the cursor is on).

jade 229 /348

‘t’ is returned if the match is successful.

- Function: regexp-expand-line REGEXP TEMPLATE &optional LINE-POS
BUFFER IGNORE-CASE
As ‘regexp-match-line’ is similar to ‘regexp-match’, this function
is similar to ‘regexp-expand’.

The whole of the line at the position LINE-POS (or the cursor) is
matched with the regular expression REGEXP. If the match is
successful the TEMPLATE is used to expand a string which is
returned.

1.259 jade.guide/Replacing Strings

Replacing Strings

— Function: replace-regexp REGEXP TEMPLATE &optional POS BUFFER
IGNORE-CASE
If a substring of the buffer at POS (or the cursor) matches the
regular expression REGEXP the text that matched is replaced with
the result of expanding the template string TEMPLATE.

For details about templates see
Regular Expressions

‘nil’ is returned if the match failed, and therefore no replacement
occurred.

— Function: replace-string OLD-STRING NEW-STRING &optional POS BUFFER
If a substring of the buffer at POS (or the cursor) matches the
string OLD-STRING it is replaced by the string NEW-STRING.

If the match fails '‘nil’ is returned, otherwise some non-‘nil’
value.

1.260 jade.guide/Regexp Functions

Regexp Functions

It is often useful to construct regular expressions by concatenating
several strings together; the problem with doing this is you may not
know if a string contains any characters which the regexp compiler
reacts specially to (i.e. Yx', “|’, ...). Obviously these characters
should be protected by a backslash, the following function will do this
for you.

jade

230/ 348

- Function: regexp-quote STRING
This function returns a new version of the string STRING, any
characters in STRING which are regexp meta-characters are quoted
with a backslash.

If the string contains no meta-characters the original string is
returned, without being copied.

(regexp—quote "fooxbart+baz")
=> "foo\xbar\+baz"

Note that in the above example the backslashes in the returned
string are only single backslashes; the print functions print a

single backslash character as '\’ so they can be read back in.

This function is usually used when a part of a regexp being

constructed is unknown at compile time, often provided by the user.

As the section describing regexp syntax notes, the strings that
parenthesised expressions match are recorded, the following two
functions allow Lisp programs to access the positions of these strings.

— Function: match-start &optional EXPRESSION-INDEX
This function returns the position which the parenthesised
expression number EXPRESSION-INDEX started at in the last
successful regexp match.

If EXPRESSION-INDEX is ‘nil’ or zero the start of the whole string
matched is returned instead.

The returned value will either be a position object if the last
match was in a buffer, or an integer if the last match was in a

string (i.e. ‘regexp-match’) .
(regexp-match "foo (bar)" "xyzfoobarsaalsd")
=> t
(match-start)
=> 3
(match-start 1)
=> 6

— Function: match-end &optional EXPRESSION-INDEX
Return the position which the parenthesised expression number
EXPRESSION-INDEX ended at in the last successful regexp match.

If EXPRESSION-INDEX is ‘nil’ or zero the end of the whole match is
returned instead.

The returned value will either be a position object if the last
match was in a buffer, or an integer if the last match was in a

string (i.e. ‘regexp-match’) .
(regexp—match "foo (bar)" "xyzfoobarsaalsd")
=> t

(match—-end)
=> 9

jade

231/348

(match—-end 1)
=> 9

1.261 jade.guide/Rectangular Editing

Rectangular Editing

These functions are used to manipulate rectangular regions of
buffers. Two position objects are used to define a rectangle, these
represent opposite corners of the rectangle. Note that the corner on
the right hand side of the rectangle specifies the column xafter* the
last column included in the rectangle.

— Function: delete-rect START-POS END-POS &optional BUFFER
This function deletes a rectangle, defined by START-POS and
END-POS, from the specified buffer.

- Function: copy-rect START-POS END-POS &optional BUFFER
Returns a string containing the rectangle of text defined by the
two positions START-POS and END-POS. Any TAB characters are
expanded to SPC characters, newline characters mark the end of
each line in the rectangle.

- Function: cut-rect START-POS END-POS &optional BUFFER
A combination of the ‘copy-rect’ and ‘delete-rect’ functions; it
makes a copy of the rectangle’s contents which is returned after
the rectangle is deleted from the buffer.

— Command: insert-rect STRING &optional POS BUFFER
Inserts the string STRING into the buffer at the specified
position, treating STRING as a rectangle of text. This means that
each successive line of STRING (separated by newline characters)
is inserted at the xsamex column in successive lines.

If the end of the buffer is reached and there is still some of the

string left to insert extra lines are created at the end of the
buffer.

- Command: yank-rectangle &optional DONT-YANK-BLOCK
This function is similar to the ‘yank’ function (see

Insertion Functions

), except that it uses the ‘insert-rect’
function to insert the piece of text.

1.262 jade.guide/Controlling Undo

jade

232 /348

Controlling Undo

For the description of one part of controlling the undo feature, the
maximum size of the undo-list, see
Undo

— Variable: buffer-record-undo
A buffer-local variable which, when set to ‘nil’, stops any
undo—-information being recorded for the buffer.

When a buffer is created, this variable is always set to ‘t’.

- Variable: buffer-undo-list
This buffer-local variable stores the actual list of
undo-information; each element defines one modification to the
buffer.

Don’t try to be clever and access the contents of this list; the
structure may well change in future revisions of Jade.

The only thing you’re allowed to do is set it to '‘nil’, this clears
all undo-information for the buffer.

— Command: undo
Undo every change to the contents of the buffer back to the
previous command. Successive calls to this command work backwards
through the buffer’s undo-list.

1.263 jade.guide/Misc Text Functions

Miscellaneous Text Functions

— Function: empty-line-p &optional POS BUFFER
This function returns ‘t’ if the line pointed to by POS (or by the
cursor) consists totally of TAB or SPC characters.

1.264 jade.guide/Writing Modes

Writing Modes

Modes are used to customise individual buffers so that the text it
contains can be edited in a special way. Each buffer has a single
"Major mode", tailoring the buffer to the type of file contained in it
(i.e. C source code uses ‘c-mode’). See

jade

233 /348

Editing Modes

"Minor modes" provide individual features which may be enabled and
disabled individually, each buffer may have any number of minor modes
enabled at once. See

Minor Modes

Writing Major Modes
How to define a new major mode

Installing Modes
Functions and variables used to
install major modes in buffers

Writing Minor Modes
Minor modes are totally different
to major modes

Mode-Specific Indentation
Each major mode may define its own
method of indentation,

Mode—-Specific Expressions
expression handling,

Mode-Specific Comments
and comment insertion.

1.265 jade.guide/Writing Major Modes

Writing Major Modes

Fach major mode must define a command whose name ends in ‘-mode’
(i.e. ‘c-mode’, ‘lisp-mode’, etc...). This command is called when the
major mode is to be installed in the current buffer. It’s first action
smustx be to check for an already installed mode and remove it. The
following code fragment does this,

(when major-mode-kill
(funcall major-mode-kill))

*Allx major modes must do this!

Now the major mode is free to install itself; generally this will

entail setting the buffer-local values of the ‘mode-name’, ‘major-mode’,

‘major-mode-kill’ and ‘keymap-path’ variables. For example the
‘lisp-mode’ sets these variables as follows,

jade

234 /348

(setq mode—name "Lisp"
major-mode ’lisp-mode
major-mode-kill ’lisp-mode-kill
keymap-path (cons ’lisp-mode-keymap keymap-path))

Note how the major mode’s own keymap (with all the mode’s local key
bindings installed in it) is consed onto the front of the
‘keymap-path’; this ensures that mode-local bindings take precedence
over bindings in the global keymaps.

After installing itself a major mode should call a hook (generally
called ‘X-mode-hook’ where X is the name of the mode) to allow
customisation of the mode itself.

The ‘major-mode-kill’ variable holds a function to be called when the
major mode is to be removed from the current buffer; basically it should
remove its keymap and set all the mode-local variables to ‘nil’. For
example the ‘lisp-mode-kill’ function does the following to negate the
effects of the code fragment above,

(setq keymap-path (delqg ’lisp-mode-keymap keymap-path)
major-mode nil
major-mode-kill nil
mode—-name nil)

— Variable: major-mode
This buffer-local variable contains the symbol whose function
definition was used to install the buffer’s major mode (i.e.
‘c-mode’, etc...).

When it is ‘nil’ the buffer uses the ‘generic’ mode; this is simply
the bog standard editor.

- Variable: major-mode-kill
This buffer-local variable contains the function which should be
called to remove the buffer’s currently installed major-mode.

Note that the ‘kill-buffer’ function calls this (if it’s non-‘nil’)
just before destroying a buffer; so if necessary, an error
signalled within this function will prevent a buffer being killed.

— Variable: mode—name
A buffer-local variable containing the ‘pretty’ name of the
buffer’s major mode, a string which will be printed in the status
line.

Many modes bind commands to keys with the prefix ‘Ctrl-c’, to save
each mode creating a new root keymap the buffer-local variable
‘ctrl-c-keymap’ exists.

— Variable: ctrl-c-keymap
This buffer-local variable can be used by major modes to hang their
keymap for the ‘Ctrl-c’ prefix from. Simply set this wvariable to
the keymap your mode wants to be installed after a ‘Ctrl-c’ prefix.

The definitions for many different types of modes can be found in
Jade’s lisp directory.

jade 235 /348

1.266 jade.guide/Installing Modes

Installing Modes

Before a major mode can be used to edit a buffer with it must be
installed in that buffer. The most straightforward method of doing this
is simply to invoke the mode’s command which does this (i.e. ‘c-mode’).

It could be a bit annoying to have to this every time a new buffer is
created so the '‘mode-alist’ variable allows major modes to be installed
automatically, when the buffer is opened.

— Function: init-mode BUFFER &optional STRING
This function attempts to install a major mode into BUFFER. If the
‘major-mode’ variable is non-‘nil’ it defines the function to call
to install the mode; this function will be called.

Otherwise the ‘mode-alist’ wvariable is searched; each regular
expression is matched against a string, when a match occurs the
associated function is called to install the mode.

The string matched against is defined by the first of the following
choices which is not ‘nil’ or undefined.

1. The value of the optional STRING argument.

2. The word specified on the first line of the buffer bracketed
by the string ‘-%-'. For example if the first line contained
the string ‘-*x-Text-*-' the string ‘Text’ would be used.

3. The value of the variable mode-name.

4. The name of the file being edited in the buffer.

Note that each match is case-insensitive.
— Variable: mode-alist
An association list (see
Association Lists
) defining regular
expressions which associate with a particular major mode.
When the ‘init-mode’ function matches a regular expression to the
string it is using to find the mode for the buffer the associated

mode is installed.

For example, ‘mode—-alist’ could be,

(("\.(clh)S$|”c(|-mode)$" . c-mode)
("\.J1$|"1lisp(|-mode)$" . lisp-mode)

("\. (text|doc|txt|article|letter)$" . text-mode)
("/\

(text (|-mode) | (.*/|)draft)s$" . text-mode)

jade

236 / 348

(""indented-text (|-mode) $" . indented-text-mode)
("\.[s]1$]"asm(|-mode)$" . asm-mode)
("\.[S]$|"asm—cpp (|—-mode) $" . asm-cpp-mode)
("\.texi(|Info) |"texinfo(|-mode) $" . texinfo-mode))

— Function: kill-mode &optional BUFFER
This function removes the major mode currently installed in the
specified buffer.

1.267 jade.guide/Writing Minor Modes

Writing Minor Modes

Minor modes are generally harder to write properly than major modes
since they have to peacefully coexist with all the other minor modes
which may also be enabled in a buffer.

Generally each minor mode maintains a buffer-local variable saying
whether or not it’s installed in the buffer. The minor mode’s function
usually toggles the mode on or off depending on the state of this
variable.

There are two functions which xmust* be used to install and remove a
minor mode —-- ‘add-minor-mode’ and ‘remove-minor-mode’, see their
documentation for details.

Each buffer has a keymap containing the bindings of all the minor
modes enabled in the buffer (the variable ‘minor-mode-keymap’). These
bindings have to be added when the mode is enabled and removed when it
is disabled.

— Variable: minor-mode-list
This buffer-local variable is a list of all the minor modes
enabled in a buffer.

— Variable: minor-mode—-names
This buffer-local variable contains a list of strings, each string
names one of the minor modes currently enabled in the buffer.

Variable: minor-mode-keymap
A buffer-local keymap to be used by minor-modes. This is only
created the first time a minor mode calls ‘add-minor-mode’ in the
buffer.

— Function: add-minor-mode MODE NAME &optional NO-KEYMAP
This function installs a minor mode (the symbol MODE) into the
current buffer. All minor modes should call this before doing
anything drastic.

NAME is the string to be displayed in the status line as the name
of this minor mode.

jade

237 /348

When NO-KEYMAP is ‘nil’ or undefined this function ensures that
the '‘minor-mode-keymap’ variable has a valid value in this buffer.

— Function: remove-minor-mode MODE NAME
Removes a minor mode from the current buffer, the MODE and NAME
arguments must have the same value as the arguments given to
‘add-minor-mode’ when the mode was enabled.

The following code fragment is an example minor mode taken from
Jade’s source code.

(provide ’fill-mode)

(defvar fill-column 72
"Position at which the text filling commands break lines.")

(defvar fill-mode-p nil)
(make-variable-buffer-local ’'fill-mode-p)

;i ###autoload
(defun fill-mode ()
"Minor mode for automatically filling lines, i.e. word-wrapping.

This makes the SPC key checks if the cursor is past the fill-column.

so, the next line is started."
(interactive)
(if fill-mode-p
(progn
(setg fill-mode-p nil)
(remove-minor-mode ’'fill-mode "Fill")
(unbind-keys minor-mode-keymap "SPC"))
(add-minor-mode ’fill-mode "Fill")
(setg fill-mode-p t)
(bind-keys minor-mode-keymap
"SPC" ’'fill-mode-spc)))

(defun fill-mode-spc ()
(interactive)
(when (> (pos-col (cursor-pos)) fill-column)
(let
((pos (cursor-pos)))
set-pos-col pos (1+ fill-column))

(

(setg pos (unless (word-start pos) (forward-word -1 pos)))
(insert "\n" pos)

(let

((end (left-char 1 (copy-pos pos))))
(when (equal (get-char end) 2?2\)
(delete—area end pos)))))
(insert " "))

1.268 jade.guide/Mode-Specific Indentation

Mode-Specific Indentation

If

jade

238 /348

Some major modes provide functions which manage the indentation of
the buffer they are installed in. These modes are usually those which
are designed for a particular programming language;

To simplify matters there is a unified interface to the indentation

process; each major mode simply sets the value of a buffer-local
variable to the function used to indent a line in that buffer. This

variable is then referenced by the functions which provide indentation.

- Variable: mode-indent-line
This buffer-local variable should contain a function when the
buffer’s major mode provides special indentation.

The function should take one optional argument, the position of
the line to indent. If the value of this argument is ‘nil’ the
current line should be indented. The function should set the

indentation of the line to the correct depth then return the glyph

position (see

Glyph Positions

) of the first non-whitespace
character.

For example Lisp mode sets this wvariable to ‘lisp-indent-line’,
this function is defined as,

(defun lisp-indent-line (&optional pos)
(set—-indent-pos (lisp-indent-pos (or pos (cursor-pos)))))

Where the function ‘lisp-indent-pos’ calculates the proper
indentation for the line pointed to by its argument.

For the functions dealing with indentation see
Indentation Functions

1.269 jade.guide/Mode-Specific Expressions

Mode-Specific Expressions

Most programming use the concept of an "expression", Jade allows
major modes to define two functions which define the syntax of an
expression in a particular programming language. Commands exist which
use these functions to allow the manipulation of expressions as
entities in a buffer, much like words.

- Variable: mode-forward-exp

This buffer-local variable contains a function which calculates the

position of the end of an expression in that language.

The lambda-list of the function (i.e. its arguments) must be
‘(&optional COUNT POS)’. COUNT is the number of expressions to

for example C mode
understands how to indent C source and Lisp mode knows about Lisp code.

jade

239 /348

move forwards over (default is one), POS is the position to start
from (default is the cursor position).

The function should return the position of the character following
the end of COUNT expressions starting from POS.

- Variable: mode-backward-exp
Similar to ‘mode-forward-exp’ but works backwards from the
character after the expression (at POS) to the start of the
previous COUNT expressions.

These functions can often be quite complex but their structure is
usually the same; these two examples are taken from the Lisp mode,

(defun lisp-forward-sexp (&optional number pos)

"Return the position of the NUMBER’th next s-expression from POS."

(unless number
(setg number 1))
(while (> number 0)
;7 Move ‘pos’ over one expression

(setg number (1- number)))
pos)

(defun lisp-backward-sexp (&optional number orig-pos)
"Return the position of the NUMBER’th previous s—-expression
from ORIG-POS."
(unless number
(setg number 1))
(unless orig-pos
(setqg orig-pos (cursor-pos)))
(let
((pos (copy-pos orig-pos)))
(while (> number 0)
;7 Move ‘pos’ backwards over one expression

(setg number (1- number)))
pos))

1.270 jade.guide/Mode-Specific Comments

Mode-Specific Comments

When you wish to enter a comment in a piece of source code Jade has
a command to do this (‘insert-comment’); each major mode which wishes
to allow comments (created by this command) must give the following
variable a suitable function.

— Variable: mode-comment-fun
This buffer-local variable contains the function to call when a
comment is to be entered, basically the ‘insert-comment’ command
just calls this function.

jade 240 / 348

— Function: find-comment-pos
This function moves the cursor to a suitable position for inserting
a comment in the current line.

— Variable: comment-column
Buffer-local variable containing the canonical column number which
comments should begin at (used by the ‘find-comment-pos’ function).
If the line extends past this column the next tab stop after the
end of the line is used instead.

The following function is an example of what is needed in the
‘mode—-comment—-fun’ variable; it is used by the C mode.

(defun c—-insert—-comment ()
(interactive)
(find-comment-pos)
(insert "/* */")
(goto-left-char 3))

1.271 jade.guide/Prompting

Prompting

The most common way to ask the user for a response is to encode the
question in the command’s interactive declaration (see

Interactive Declarations

), sometimes this is inconvenient; functions
are available which have the same effect as the code letters in an
interactive declaration.

The following two functions don’t have an equivalent code for the
interactive declaration.

— Function: y-or-n-p QUESTION
This function prompts the user for a single key response to the
string QUESTION asking a question which can be answered yes or no.

Returns ‘t’ when QUESTION is answered with a ‘y’ and ‘nil’ when
‘n’ is typed.

- Function: yes-or-no-p QUESTION
Similar to ‘y-or-n-p’ but the answer must be either the word ‘yes’
or the word ‘no’ entered in full. This function should be used when
a mistyped answer could be catastrophic (i.e. losing changes to a
buffer).

Returns ‘t’ for ‘yes’, '‘nil’ for anything else.

The following functions are the functions used by the ‘call-command’
function to resolve interactive arguments.

Note that these function don’t return the string entered (except for

jade

241 /348

‘prompt-for-string’) -- they return some Lisp object which the string
entered represents somehow.

— Function: prompt-for-file &optional PROMPT EXISTING START
Prompts for the name of a file. PROMPT is the string to display at
the head of the prompt, when EXISTING is non-'‘nil’ only files
which actually exist are allowed to be entered. The START argument
may be a string defining the starting contents of the prompt.

— Function: prompt-for-directory &optional PROMPT EXISTING START
Prompts for the name of a directory, all arguments are similar to
in the ‘prompt-for-file’ function.

— Function: prompt-for-buffer &optional PROMPT EXISTING DEFAULT
This function prompts for a buffer object, if EXISTING is non-‘nil’
the buffer selected must exist, otherwise the buffer will be
created 1if it doesn’t already exist. DEFAULT is the value to
return if the user enters the null string, if ‘nil’ the current
buffer is returned.

Note that this returns the xactual bufferx, not its name as a
string.

- Function: prompt-for-symbol &optional PROMPT PREDICATE
Prompt for a symbol, PROMPT is displayed at the head of the prompt
buffer. If the PREDICATE argument is defined it is a predicate
function; only symbols which when applied to the function PREDICATE
return non-'‘nil’ will be allowed to be entered.

- Function: prompt-for-lisp &optional PROMPT
Prompt for and return a Lisp object.

— Function: prompt-for-function &optional PROMPT
Prompts for a function.

(prompt—-for-function PROMPT)

(prompt—for-symbol PROMPT ’functionp)

- Function: prompt-for-variable &optional PROMPT
Prompts for a variable (a symbol whose value is not void).

(prompt-for-variable PROMPT)

(prompt-for-symbol PROMPT ’boundp)

— Function: prompt-for-command &optional PROMPT
Prompts for a command (a function which may be called
interactively) .

(prompt-for-command PROMPT)

(prompt—-for-symbol PROMPT ’commandp)

- Function: prompt-for-string &optional PROMPT
Prompt for a string, whatever string is entered is returned as-is.

jade 242 / 348

— Function: prompt-for-number &optional PROMPT
Prompts for a number which is then returned.

The following function is useful when a number of options have to be
chosen between, for example the menu command in Info-mode uses this
function.

- Function: prompt-from-list OPTION-LIST PROMPT &optional START
Returns a selected choice from the list of options (strings)
OPTION-LIST. PROMPT is the title displayed, START the optional
starting choice.

1.272 jade.guide/Files

Files

Jade allows you to manipulate files in the operating system’s filing
system; a special type of Lisp object, a "file object", is used to
represent files which have been opened for reading or writing (through
the streams mechanism, see

Streams

) .

Names of files are represented by strings, the syntax of file names
is defined by the underlying operating system: Jade simply treats it as
a string.

File Names
Files are named by a string

File Objects
Lisp objects representing files

File Information
Predicates on files

Manipulating Files
Deleting, renaming and copying files

Reading Directories
Getting a list of the files in a directory

Reading and Writing Files
Accessing the contents of a file in one go

jade 243 /348

1.273 jade.guide/File Names

File Names

A "file name" is a string identifying an individual file (or
directory) in the filing system (i.e. the disk). The exact syntax of
file names depends on the operating system.

— Function: file-name-directory FILE-NAME
This function returns the directory part of the file name string
FILE-NAME. This is the substring of FILE-NAME defining the
directory containing the file.

(file-name-directory "/tmp/foo")
=> "/tmp/"

(file-name-directory "foo")
=> nn

(file—-name-directory "foo/bar/")
=> "/foo/bar/"

— Function: file-name-nondirectory FILE-NAME

Returns the substring of the file name FILE-NAME which is xnot=
the directory part.

(file—name—-nondirectory "/tmp/foo")
=> "foo"

(file—-name-nondirectory "foo")
=> "foo"

(file—name—-nondirectory "foo/bar/")
=> nn

— Function: file—-name-concat &rest PARTS
This function returns a file name constructed by concatenating
each of the PARTS of the file name together. Each part is
separated by the necessary string (i.e. ‘/’ on Unix) when

necessary. Note that each part may contain more than one component
of the file name.

(file—-name-concat "/tmp" "foo" "bar")
=> "/tmp/foo/bar"

(file-name-concat "/tmp/" "foo/" "bar")
=> "/tmp/foo/bar"

(file—-name-concat "/tmp/foo" "bar")
=> "/tmp/foo/bar"

- Function: expand-file-name FILE-NAME &optional MAKE-ABSOLUTE
This function expands the string FILE-NAME into a valid file name.
Currently it only checks for a leading tilde character (‘'~’) when
running on Unix, if one is found it’s expanded to the user’s home

jade 244 /348

directory.

When the optional argument MAKE-ABSOLUTE is non-‘nil’ FILE-NAME is
altered so that it is not relative to the current working
directory. Generally this involves prefixing it by the absolute
name of the current directory.

(expand-file—-name "~/src")
=> "/home/jsh/src"

(expand-file-name "foo.c" t)
=> "/var/src/jade/foo.c"

— Function: tmp-file-name
This function returns the name of a file which, when created, may
be used for temporary storage. Each time this function is called a
unique name is computed.

(tmp—-file—-name)
=> "/tmp/00088aaa"

(tmp-file—-name)
=> "/tmp/00088baa"

1.274 jade.guide/File Objects

File Obijects

A file object is a Lisp object which represents a file in the filing
system. Any file object may be used as a stream (either input or output)
to access the contents of the file serially,

Streams

Creating File Objects
Opening files

Destroying File Obijects
Closing files

File Object Predicates
Predicates for file objects

Functions on File Objects
Functions operating on file objects

jade

245 /348

1.275 jade.guide/Creating File Objects

Creating File Objects

- Function: open FILE-NAME MODE-STRING &optional FILE-OBJECT

This function opens the file called FILE-NAME (see
File Names
) and

returns the file’s object.

The MODE-STRING argument is a string defining the access modes used
to open the file with; this string is passed as-is to the C
library’s ‘fopen ()’ function. Usually one of the following strings
is used,

Open an existing file for reading only.

Open the file for writing only, if the file exists it is
truncated to zero length. Otherwise a new file is created.

Open the file for appending to, i.e. writing to the end of
the file. If the file doesn’t exist it is created.
Other options exist; consult a C library manual for details.
When the FILE-OBJECT argument is defined it should be a file

object, the file it points to will be closed and the new file will
be opened on this obiject.

1.276 jade.guide/Destroying File Objects

Destroying File Obijects

The easiest way to close a file is simply to eliminate all

references to it, subsequently the garbage collector will close it for

you.

It is better to close files explicitly though since only a limited

number of files may be opened concurrently.

— Function: close FILE-OBJECT

This function closes the file pointed to by the file obiject
FILE-OBJECT.

Until a new file is opened on FILE-OBJECT any read/write accesses
to it are illegal and an error will be signalled.

jade 246 / 348

1.277 jade.guide/File Object Predicates

File Object Predicates

- Function: filep OBJECT
This function returns ‘t’ when its argument is a file object.

— Function: file-bound-p FILE-OBJECT
Returns ‘t’ when the file object FILE-OBJECT is currently bound to
a physical file (i.e. the ‘close’ function hasn’t been called on
it yet).

— Function: file-eof-p FILE-OBJECT
This function returns ‘t’ when the current position of the file
object FILE-OBJECT is the end of the file (i.e. when reading a
character from the file would return ‘nil’).

1.278 jade.guide/Functions on File Objects

Functions on File Obijects

— Function: flush-file FILE-OBJECT
This function flushes any buffered output to the file object
FILE-OBJECT to disk.

Note that when using a file which was opened with the '+’ option
it’s necessary to call this function when switching from reading to
writing or vice versa.

— Function: file-binding FILE-OBJECT
Returns the name of the file which the file object FILE-OBJECT 1is
currently bound to.

- Function: read-file-until FILE-OBJECT REGEXP &optional IGNORE-CASE
This function reads lines from the file object FILE-OBJECT until a
line matching the regular expression REGEXP is found. The matching
line is returned, or ‘nil’ if the end of the file is reached.

When the IGNORE-CASE option is non—-'‘nil’ all regexp matching is
done case-insignificantly (except for matching ranges).

1.279 jade.guide/File Information

File Information

A number of functions exist which when given the name of a file
return some information about that file.

jade 247 / 348

- Function: file-exists-p FILE-NAME
Returns ‘t’ when a file FILE-NAME exists.

— Function: file-regular-p FILE-NAME
Returns ‘t’ when the file FILE-NAME is a ‘normal’ file. This means
that it isn’t a directory, device, symbolic link or whatever.

— Function: file-directory-p FILE-NAME
Returns ‘t’ when the file FILE-NAME is a directory.

— Function: file-symlink-p FILE-NAME
Returns ‘t’ when the file FILE-NAME is a symbolic link.

— Function: file-readable-p FILE-NAME
Returns ‘t’ when the file FILE-NAME is readable.

- Function: file-writable-p FILE-NAME
Returns ‘t’ when the file FILE-NAME is writable.

— Function: file-owner-p FILE-NAME
Returns ‘t’ when the ownership of the file FILE-NAME is the same
as that of any files written by the editor.

Note that currently this always returns ‘t’ in the Amiga version.

- Function: file-nlinks FILE-NAME
Returns the number of hard links pointing to the file FILE-NAME. If
FILE-NAME has only one name the number will be one.

Note that this always returns one in the Amiga version of Jade.

— Function: file-modes FILE-NAME
This function returns the access permissions of the file FILE-NAME.
This will be an integer whose format is undefined; it differs from
operating system to operating system.

- Function: set-file-modes FILE-NAME MODES
This function sets the access permissions of the file FILE-NAME to
the integer MODES (as returned by the ‘file-modes’ function).

— Function: file-modtime FILE-NAME
Returns the system time at the last modification to the file
FILE-NAME, this will be an integer. See
System Time

— Function: file-newer-than-file-p FILE-NAMEl FILE-NAME2
This function returns ‘t’ if the file FILE-NAMEl was modified more
recently than the file FILE-NAMEZ2 was.

(file-newer-than-file-p FILEl FILE2)

(> (file-modtime FILEl) (file-modtime FILE2))

jade 248 / 348

1.280 jade.guide/Manipulating Files

Manipulating Files

— Command: delete-file FILE-NAME
This function deletes the file called FILE-NAME. When called
interactively FILE-NAME is prompted for.

— Command: rename-file FILE-NAME NEW-NAME
This function attempts to change the name of the file NEW-NAME to
NEW-NAME .

This won’t work from one file system to another or if a file called
NEW-NAME already exists, in these cases an error is signalled.

This prompts for its arguments when called interactively.

— Command: copy-file FILE-NAME DESTINATION-NAME
Creates a new copy of the file FILE-NAME with the name
DESTINATION—-NAME.

The access modes of the new file will be the same as those of the
original file.

The arguments are prompted for when this function is called
interactively.

1.281 jade.guide/Reading Directories

Reading Directories

— Function: directory-files DIRECTORY-NAME
This function returns a list of the names of all files in the
directory whose file name is DIRECTORY-NAME. The names in the list
will be relative to the directory DIRECTORY-NAME, any directories
in the list will have a ‘/’ character appended to them.

(directory-files "/tmp/foo"
:> ("bar" "Subdir/" "XyZ" "." ". .")

1.282 jade.guide/Reading and Writing Files

Reading and Writing Files

- Function: read-file FILE-NAME
This function returns a string containing the contents of the file
called FILE-NAME.

jade 249 /348

- Function: write-file FILE-NAME CONTENTS
This function creates or overwrites the file called FILE-NAME with
the string CONTENTS as its contents.

1.283 jade.guide/Processes

Processes

When running on a Unix-style operating system (i.e. the X11 version)
Jade allows you to launch and control an arbitrary number of
subprocesses. These subprocesses can run either synchronously or
asynchronously in respect to the editor; data can be sent to the stdin
channel and any output from the process is automatically written to a
programmer—-defined Lisp stream.

Currently there is *no*x way to manipulate subprocesses in the Amiga
version of Jade (sorry!).

Process Objects
Lisp objects associated with subprocesses

Asynchronous Processes
Subprocesses running in parallel with Jade

Synchronous Processes
Subprocesses which Jade runs serially

Process I-O
Input and output with subprocesses

Process States
Suspending subprocesses

Signalling Processes
Sending signals to subprocesses

Process Information
Information stored in a process object

Interactive Processes

Shell mode lets the user interact with a
subprocess

1.284 jade.guide/Process Objects

jade

250/ 348

Process Objects

A "process object" is a type of Lisp object used to provide a link
between a ‘physical’ process running in the operating system and Jade’s
Lisp system. Each process object consists of a number of components
(references to other Lisp objects); these components are used when the
object is used to run a subprocess.

Process objects which aren’t currently being used to run a subprocess
store the exit value of the last subprocess which was run on that
object.

— Function: processp OBJECT
This function returns ‘t’ when its argument is a process object.

The programmer-accessible components of a process object are,

"Output stream"
A normal Lisp output stream (see
Output Streams
), all data which

the subprocess outputs to its ‘stdout’ channel is copied to this
output stream. See
Process I-0

"State change function"
A Lisp function, called each time the state of the subprocess
being run on the object changes. See
Process States

"Program name"

The name of the program (a string) to execute when the subprocess
is created.

"Program arguments"

A list of strings defining the arguments which the program executed
is given.

"Directory"
When a subprocess is started its current working directory is set
to the directory named by this component of its process object.

"Connection type"
Asynchronous subprocesses (see
Asynchronous Processes
) use this
component to decide how to connect to the I/0 channels of the
subprocess. Current options include pseudo-terminals and pipes.

- Function: make-process &optional OUTPUT-STREAM STATE-FUNCTION
DIRECTORY PROGRAM ARGS

This functions creates and returns a new process object. =*No
subprocess will be started.=x

jade

251 /348

The optional arguments are used to define the values of the
components of the new process object, any undefined components
will be set to default or null values.

For each component of a process object two functions exist; one to
read the component’s value in a specific process object, the other to
set the component’s value.

- Function: process-prog PROCESS
Returns the value of the program name component of the process
object PROCESS.

— Function: set-process-prog PROCESS PROG-NAME
Sets the value of the program name component of the process object
PROCESS to the string PROG-NAME, then returns PROG-NAME.

- Function: process-args PROCESS
Returns the value of the program arguments component of the
process object PROCESS.

- Function: set-process-args PROCESS ARG-LIST
Sets the value of the program arguments component of the process
object PROCESS to the list ARG-LIST, then returns ARG-LIST.

— Function: process—-dir PROCESS
Returns the value of the directory component of the process object
PROCESS.

— Function: set-process-directory PROCESS DIRECTORY
Sets the value of the directory component of the process object
PROCESS to the string DIRECTORY, then returns DIRECTORY.

1.285 jade.guide/Asynchronous Processes

Asynchronous Processes

An "asynchronous process" is one that runs in parallel with the
editor, basically this means that once the subprocess has been started
(by the ‘start-process’ function) Jade will carry on as normal.

The event loop checks for output from asynchronous processes, any
found is copied to the process’ output stream, and calls the the
process’ state change function when necessary (see

Process States

).

When using asynchronous processes you have a choice as to the Unix
mechanism used to connect the ‘stdin’, ‘stdout’ and ‘stderr’ streams of
the subprocess to Jade’s process (note that whatever the choice
‘stdout’ and ‘stderr’ always go to the same place).

jade

252 /348

The two options currently available are pipes or pseudo—-terminals; in

general pseudo-terminals should only be used to provide a direct
interface between the user and a process (i.e. the ‘xshellx’ buffer)
since they allow job control to work properly. At other times pipes
will be more efficient and are used by default.

- Function: start-process &optional PROCESS-OBJECT PROGRAM &rest ARGS

This function starts an asynchronous subprocess running on the
process object PROCESS-OBJECT. If PROCESS-OBJECT is undefined a
new process object is created (by calling the function
‘make-process’ with all arguments undefined).

The function always returns the process object which the subprocess

has been started on. If for some reason the subprocess can’t be
created an error of type ‘process-error’ 1is signalled.

The optional argument PROGRAM is a string defining the name of the
program to execute, it will be searched for in all the directories

in the ‘PATH’ environment variable. The ARGS are strings to pass
to the subprocess as its arguments.

When defined, the optional arguments overrule the values of the
related components of the process object.

The following example runs the ‘ls’ program asynchronously, its
output 1is inserted into the current buffer.

(let
((process (make-process (current-buffer))))
(start-process process "1ls" "-s"))

Note that when Jade terminates it kills all of its asynchronous

subprocesses which are still running without warning.

- Function: process-connection-type PROCESS

Returns the value of the connection type component of the process
object PROCESS. See the documentation of the
‘set-process-connection-type’ function for the values this may
take.

— Function: set-process-connection-type PROCESS SYMBOL

Sets the value of the connection type component of the process
object PROCESS to SYMBOL, then returns SYMBOL.

SYMBOL should be one of the following symbols,

\ptyl
Use pseudo-terminals to connect to subprocesses running
asynchronously on this process object.

\pipel
Use standard Unix pipes to connect, this is the default value
of this component.

jade

253 /348

1.286 jade.guide/Synchronous Processes

Synchronous Processes

When a "synchronous process" is started Jade waits for it to
terminated before continuing; they are usually used when a Lisp program
must invoke an external program as part of its function, i.e. the
auto-compression feature runs the compression program ‘gzip’
synchronously when it needs to compress a buffer.

Unlike asynchronous processes their is no choice between pipes and
pseudo-terminals for connecting to a subprocess. Instead, it is possible
to link the ‘stdin’ channel of a synchronous process to a named file.

— Function: run-process &optional PROCESS-OBJECT INPUT-FILE-NAME
PROGRAM &rest ARGS
This function starts a process running on the process object
PROCESS-OBJECT. If PROCESS-OBJECT is undefined a new process object
is created by calling the ‘make-process’ function.

If defined, the string INPUT-FILE-NAME names the file to connect to
the standard input of the subprocess, otherwise the subprocess’
input comes from the null device (‘/dev/null’).

The optional arguments PROGRAM and ARGS define the name of the
program to invoke and any arguments to pass to it. The program
will be searched for in all directories listed in the ‘PATH’
environment variable.

If any of the optional parameters are unspecified they should have
been set in the PROCESS-OBJECT prior to calling this function.

After successfully creating the new subprocess, this function
simply copies any output from the process to the output stream
defined by the output stream component of the process object. When
the subprocess exits its exit-value is returned (an integer). Note
that the exit-value is the value returned by the
‘process-exit-value’ function, see

Process Information

If, for some reason, the new subprocess can’t be created an error
of type ‘process-error’ is signalled.

The following function definition is taken from the ‘gzip.jl’ file,
it shows how the ‘run-process’ function can be used to uncompress a
file into a buffer.

;7 Uncompress FILE-NAME into the current buffer
(defun gzip-uncompress (file—name)
(let
((proc (make-process (current-buffer))))
(message (concat "Uncompressing ‘" file-name "’") t)
;7 gunzip can do .Z files as well
(unless (zerop (run-process proc nil "gunzip" "-c" file-name))

jade

254 /348

(signal 'file-error (list "Can’t gunzip file" file-name)))))

1.287 jade.guide/Process I-O

Process I/0

It is only possible for lisp programs to explicitly send input data
to *xasynchronousx processes (by the time it’s possible to call a
function to send data to a synchronous process, the process will
already have terminated!). Simply use the process object which an
asynchronous process is running on as a normal Lisp input stream, any
strings or characters written to the stream will immediately be copied
to the ‘stdin’ channel of the subprocess.

With synchronous processes, the only control over input data
possible is by giving the ‘run-process’ function the name of a file
containing the subprocess’ input data.

Output data from subprocesses is handled the same way by both
asynchronous and synchronous processes: it 1is simply copied to the
stream defined by the output stream component of the subprocess’
process object.

- Function: process-output-stream PROCESS
Returns the value of the output stream component of the process
object PROCESS.

— Function: set-process-output-stream PROCESS STREAM
Sets the value of the output stream component of the process object

PROCESS to the stream STREAM, then returns STREAM.

See
Streams

1.288 jade.guide/Process States

Process States

FEach process object has a "state" associated with it; this depends on
the status of the subprocess currently running on the process object (or
not as the case may be).

The possible states are,

"running"

jade

255 /348

This state means that the subprocess using this process object is
currently running, i.e. it hasn’t been stopped.

"stopped"
Means that the subprocess has been temporarily suspended from
running.

"unused"
This means that the process object is free to have a new
subprocess created on it.

Predicates exist which test whether a given process object is in one
of these states.

- Function: process-running-p PROCESS-OBJECT
Returns ‘t’ when PROCESS-OBJECT is in the running state.

— Function: process-stopped-p PROCESS-OBJECT
Returns ‘t’ when PROCESS-OBJECT is in the stopped state.

— Function: process—-in-use-p PROCESS-OBJECT
Returns ‘t’ when PROCESS-OBJECT is #*not* in the unused state.

The following two functions are used to stop and then subsequently
continue a process running.

— Function: stop-process PROCESS-OBJECT &optional WHOLE-GROUP
This function suspends execution of the subprocess running on the
process object PROCESS-OBJECT.

If WHOLE-GROUP is non-'‘nil’ all subprocesses in the process group
of PROCESS-OBJECT are stopped.

— Function: continue-process PROCESS-OBJECT &optional WHOLE-GROUP
Use this function to continue a subprocess executing after it has
been stopped (by the ‘stop-process’ function).

If WHOLE-GROUP is non-'‘nil’ all subprocesses in the process group
of PROCESS-OBJECT are continued.

The state change function component of a process object defines a
function which will be called each time the state of the process object
changes. If your program needs to be informed when an asynchronous
process terminates this function is the way to do it.

— Function: process-function PROCESS
Returns the value of the state change function component of the
process object PROCESS.

— Function: set-process-function PROCESS FUNCTION
Sets the value of the state change function component of the
process object PROCESS to the function FUNCTION, then returns
FUNCTION.

jade

256 / 348

1.289 jade.guide/Signalling Processes

Signalling Processes

— Function: signal-process PROCESS-OBJECT SIGNAL-NUMBER &optional
WHOLE-GROUP
If the process object PROCESS-OBJECT is being used to run an
asynchronous subprocess send the signal numbered SIGNAL-NUMBER to
it.

When the optional argument WHOLE-GROUP is non-‘nil’ the signal is
also sent to all processes in the process group of the subprocess.

The following functions use the ‘signal-process’ function to send
some common signals to processes.

- Function: interrupt-process PROCESS-OBJECT &optional WHOLE-GROUP
Sends the ‘SIGINT’ signal to PROCESS-OBJECT.

(interrupt-process PROCESS-OBJECT WHOLE-GROUP)

(signal-process PROCESS-OBJECT ‘SIGINT’ WHOLE-GROUP)

— Function: kill-process PROCESS-OBJECT &optional WHOLE-GROUP
Sends the ‘SIGKILL’ signal to the PROCESS-OBJECT.

(kill-process PROCESS-OBJECT WHOLE-GROUP)

(signal-process PROCESS-OBJECT ‘SIGKILL’ WHOLE-GROUP)

Note that the functions ‘stop-process’ and ‘continue-process’ also
send signals to the subprocess.

1.290 jade.guide/Process Information

Process Information

— Function: process—-id PROCESS-OBJECT
This function returns the operating-system identifier associated
with the subprocess currently running on the process object
PROCESS-OBJECT.

- Function: process—-exit-value PROCESS-OBJECT
Returns the integer representing the return code of the last
subprocess to be run on PROCESS-OBJECT.

If no subprocess has been run on PROCESS-OBJECT, PROCESS-OBJECT is
currently in the running state or the last subprocess exited

abnormally (i.e. from a terminal signal) ‘nil’ is returned.

— Function: process-exit-status PROCESS-OBJECT

jade 257 / 348

This function returns the integer that was the exit status of the
last subprocess which was run on the process object PROCESS-OBJECT.

Note that the exit status is *notx the value given to the ‘exit’
function in a C program, use the ‘process-exit-value’ to access
this value.

If no process has been run on PROCESS-OBJECT, or the process is
currently in the running state '‘nil’ is returned.

1.291 jade.guide/Interactive Processes

Interactive Processes

The Shell mode is usually used to run a shell process in a buffer
(with the ‘shell’ command, see
Shell
) but in actual fact it is capable
of running (nearly) any type of interactive process. For example the
gdb interface (see
Debugging Programs
) uses the Shell mode to handle
its user interaction.

The following buffer-local variables control the Shell mode.

— Variable: shell-program
This variable defines the name of the program to execute. By
default it is the user’s shell.

- Variable: shell-program-args
A list of arguments which should be given to the process when it is
started.

— Variable: shell-prompt-regexp
This regular expression must match the prompt that the process
emits each time it waits for input. Its standard value of
WNINTHSS>) I+ [1#5%>)] +«’ will need to be tailored to the program
that you are executing.

— Variable: shell-callback-function
Every time the state of the subprocess changes (see
Process States

)

this function is called in the context of the process’ buffer.

— Variable: shell-output-stream
All output from the subprocess is copied to this output stream. If
it is '‘nil’ all output goes to the end of the process’ buffer.

Note that this variable is only referenced when the process is
started.

jade 258 / 348

To use the Shell mode to create an interface with a program simply
use the following steps.

1. Select the buffer which you want to run the subprocess in. The
value of the ‘buffer-file-name’ attribute of the buffer defines the
working directory of the subprocess.

2. Set the variables described above to suitable values.
3. Call the ‘shell-mode’ function.

4. Reset the values of the ‘mode-name’ and ‘major-mode’ if necessary
and install your own keymaps.

Remember that commands essential to the Shell mode (and hence your
program) are contained in the two keymaps ‘shell-keymap’ and
‘shell-ctrl-c-keymap’. If you need to bind your own commands to
either of these prefixes make copies of these keymaps (using the
function ‘copy-sequence’) and bind to the copies.

For example the gdb interface installs its own key bindings from
the ‘Ctrl-c’ prefix by doing the following in its initialisation.

(defvar gdb-ctrl-c-keymap (copy-sequence shell-ctrl-c-keymap))
(bind-keys gdb-ctrl-c-keymap
;7 Gdb mode ‘Ctrl-c’ prefix bindings follow

— Function: shell-mode
This function installs the Shell mode and starts a subprocess
running in the current buffer.

The variables ‘shell-program’, ‘shell-program-args’,
‘shell-prompt-regexp’, ‘shell-callback-function’ and
‘shell-output-stream’ control the program executed and how it will
execute.

The process object created is stored in the buffer-local variable
‘shell-process’.

— Variable: shell-process
This buffer-local variable contains the process object which the
Shell mode started running in this buffer. If it is ‘nil’ no such
process exists.

— Variable: shell-keymap
The root keymap of the Shell mode.

— Variable: shell-ctrl-c-keymap
The keymap containing the key bindings of the commands in Shell
mode with a prefix of ‘Ctrl-c’.

See the Lisp program ‘gdb.jl’ for an example of how to use the Shell
mode as the user interface with an external program.

jade

259 /348

1.292 jade.guide/Miscellaneous Functions

Miscellaneous Functions

This section of the manual documents functions and features which
don’t comfortably fit elsewhere in this manual.

System Information
Getting details about the host

User Information
The name of the user

Environment Variables
Reading and writing the environment

System Time
Getting the current time

Revision Information
How to check Jade’s revision numbers

1.293 jade.guide/System Information

System Information

- Function: x11-p
This function returns ‘t’ when Jade is running on the X11 window
system.

— Function: unix-p
This function returns ‘t’ when Jade is running on a variant of the
Unix operating system.

- Function: amiga-p
This function returns ‘t’ when Jade is running on an Amiga.

- Function: system-name
This function returns a string naming the host that Jade is
running on. When possible this will include the name of the domain
as well.

In the Amiga version of Jade the environment variable ‘HOSTNAME’ is
assumed to contain the host’s name.

jade

260 /348

1.294 jade.guide/User Information

User Information

— Function: user-login-—-name
This function returns a string containing the login name of the
user.

In the Amiga version this is taken from the environment variable
‘USERNAME’ .

(user-login—-name)
=> " jSh"

- Function: user-real-name
This function returns a string containing the ‘real’ name of the
user; the format of the string will depend on the host system.

In the Amiga version this is taken from the ‘REALNAME’ environment
variable.

(user—-real—-name)
=> "John Harper"

— Function: user-home-directory
This function returns the name of the user’s home directory
terminated by a slash character (‘/').

The first place this is looked for is in the ‘HOME’ environment
variable; if this variable doesn’t exist we either use the 'SYS:’

logical device in AmigaDOS or consult the passwd file when in Unix.

(user—-home-directory)
=> "/home/jsh/"

1.295 jade.guide/Environment Variables

Environment Variables

— Function: getenv VARIABLE-NAME
This function returns the value (a string) of the environment
variable called VARIABLE-NAME. If the specified variable doesn’t
exist ‘nil’ is returned.

(getenv "OSTYPE")
=> "Linux"

— Function: setenv VARIABLE-NAME NEW-VALUE
This function sets the value of the environment variable called
VARIABLE-NAME to NEW-VALUE. NEW-VALUE can either be a string
containing the new contents of the variable or ‘nil’, in which

jade

261 /348

case the environment variable is deleted.

1.296 jade.guide/System Time

System Time

No matter what operating system Jade is running on it always an
integer to store a time value. Generally this will be the number of
seconds since some previous date.

The only thing a Lisp program is allowed to assume about a time
value is that as time passes the time value xincreasesx. This means
that it’s possible to compare two time values and know which is the
newer.

- Function: current-time
Returns an integer denoting the current time.

(current—-time)
=> 780935736

— Function: current-time-string

This function returns a string stating the current time and date

in a fixed format. An example of the format is,
Fri Sep 30 15:20:56 1994

Each field will always be in the same place, for example,
Thu Sep 1 12:13:14 1994

(current-time-string)
=> "Fri Sep 30 15:20:56 1994"

1.297 jade.guide/Revision Information

Revision Information

- Function: major-version-number

This function returns a number defining the major version of the

editor.

(major-version—-number)
=> 3

- Function: minor-version—-number
Returns a number defining the minor version of the editor.

jade

262 /348

(minor-version—-number)
=> 2

1.298 jade.guide/Debugging

Debugging

When you have written a Lisp program you will have to debug it
(unless all your programs work first time?). There are two main classes
of errors; syntax errors and semantic errors.

Syntax errors occur when the text you’ve typed out to represent your
program is not a valid representation of a Lisp object (since a program
is simply an ordered set of Lisp objects). When you try to load your
program the Lisp reader will find the syntax error and tell you about,
unfortunately though it probably won’t be able to tell you exactly
where the error is.

The most common source of syntax errors is too few or too many
parentheses; the ‘Ctrl-Meta-f’ and ‘Ctrl-Meta-b’ commands can be used
to show the structure of the program as the Lisp reader sees 1it.

Semantic errors are what we normally call bugs -- errors in logic,
the program is syntactically correct but doesn’t do what you want it
to. For these types of errors Jade provides a simple debugger which
allows you to single step through the Lisp forms of your program as
they are being evaluated.

There are several ways to enter the Lisp debugger; functions can be
marked so that they cause the debugger to be entered when they are
called, breakpoints can be written in functions or it can be called
explicitly with a form to step through.

Command: trace SYMBOL
This command marks the symbol SYMBOL so that each time the function
stored in the function cell of SYMBOL is called the debugger is
entered immediately.

When called interactively SYMBOL is prompted for.

Command: untrace SYMBOL
The opposite of ‘trace’ -- unmarks the symbol.

— Function: break
This function causes the debugger to be entered immediately. By
putting the form ‘(break)’ at suitable points in your program
simple breakpoints can be created.

Command: step FORM
This function invokes the debugger to step through the form FORM.

When called interactively FORM is prompted for.

jade

263 /348

Whenever the Lisp debugger is entered the form waiting to be
evaluated is printed at the bottom of the buffer, at this point the
special debugger commands available are,

‘Ctrl-c Ctrl-s’
Step into the current form; this means that in a list form the
debugger is used to evaluated each argument in turn.

‘Ctrl-c Ctrl-i’
Ignore the current form; makes the current form immediately return
‘nil’ .

‘Ctrl-c Ctrl-n’
Continue evaluating forms normally until the next form at the
current level is entered, then re-enter the debugger.

‘Ctrl-c Ctrl-r’
Continue execution normally. Note that this command is the one to
use when an error has been trapped.

‘Ctrl-c Ctrl-b’
Print a backtrace of the current Lisp call stack, note that calls
of primitive functions aren’t currently recorded in this stack.
‘Ctrl-c Ctrl-x’
Prompt for a Lisp form, evaluate it and return this wvalue as the
result of the current form.
After the form has been evaluated (i.e. after you’ve typed one of the
commands above) the value of the form is printed in the buffer,
prefixed by the string ‘=> ’.
Note that it is also possible to make certain types of errors invoke

the debugger immediately they are signalled, see
Errors

1.299 jade.guide/Tips

Tips

This section of the manual gives advice about programming in Jade.

Obviously there is no xneedx to religiously follow every single one,
but following these tips will make your programs easier to read and
(hopefully) more efficient overall.

For advice on getting the most out of the compiler, see

Compilation Tips

jade

264 /348

Comment Styles
Differrent types of comments

Program Layout
How I lay out the programs I write

General Tips
Do’s and Don’t’s of Jade programming

1.300 jade.guide/Comment Styles

Comment Styles

As already described, single-line comments in Lisp are introduced by
a semi-colon (';’) character. By convention a different number of
semi-colons is used to introduce different types of comments,

A comment referring to the line of Lisp code that it occurs on,
comments of this type are usually indented to the same depth, on
the right of the Lisp code. When editing in Lisp mode the command
‘Meta—;’ can be used to insert a comment of this type.

For example,

(defconst op-call 0x08) ;call (stk[n] stk[n-1] ... stk[0])
; pops n values, replacing the
; function with the result.
(defconst op-push 0x10) ;pushes constant # n

Comments starting with two semi-colons are written on a line of
their own and indented to the same depth as the next line of Lisp
code. They describe the following lines of code.

For example,

;7 Be sure to remove any partially written dst-file.
(let
((fname (concat file—-name ?c)))
(when (file-exists-p fname)
(delete—file fname)))

Comments of this type are also placed before a function definition
to describe the function. This saves wasting memory with a
documentation string in a module’s internal functions.

For example,

;; Compile a form which occurred at the ‘top-level’ into a

jade

265 /348

rs
rs
rs

rs

(defun comp-compile-top-form

byte code form.

defuns,

defmacros,

defvars, etc... are treated specially.

require forms are evaluated before being output uncompiled;
this is so any macros are brought in before they’re used.

(form)

This type of comment always starts in the first column of the
line, they are used to make general comments about a program and
don’t refer to any function or piece of code in particular.

For example,

Ve o ool
rrrr

4

4

14

Notes:

Instruction Encoding

Instructions which get an argument (with opcodes of zero u

Each program should have a comment of this type as its first line,
the body of the comment is the name of the file, two dashes and a
brief description of what the program does. They always start in

the first column.

For example,

rrrr

compiler.jl —— Simple compiler for Lisp files/forms

If you adhere to these standards the indentation functions provide by
the Lisp mode will indent your comments to the correct depth.

1.301 jade.guide/Program Layout

Program Layout

The layout that I have used for all the Lisp programs included with

Jade is as follows,

obviously this isn’t ideal but it seems ok.

1. The first line of the file is the header comment, including the
name of the file and its general function.

2. Copyright banner.

3. Any ‘require’

module.

4. Variable and constant definitions.

The

‘require’

forms needed followed by a ‘provide’ form for this

forms should be before the ‘provide’ in case
the required modules aren’t available.

As a variable is defined any

initialisation it needs is done immediately afterwards. For example
a keymap is defined with ‘defvar’

then initialised with the

p

to

jade

266 / 348

‘bind-keys’ function.
For example,

(defvar debug-buffer (make-buffer "xdebuggerx")
"Buffer to use for the Lisp debugger.")

(set-buffer-special debug-buffer t)

(add-buffer debug-buffer)

(defvar debug-ctrl-c-keymap (make-keylist)
"Keymap for debugger’s ctrl-c prefix.")
(bind-keys debug-ctrl-c-keymap
"Ctrl-s" ’'debug-step

Finally the functions which make up the program, it often improves
readability if the entry points to the program are defined first.

1.302 jade.guide/General Tips

General Tips

The following are some general items of advice; you don’t have to

follow them but they are the result of experience!

* Jade only has one name—-space for all the symbols ever created,

this could lead to naming clashes if care isn’t taken.

When you write a program all the symbols it creates should be
prefixed by a name derived from the name of the program in some
way. For example, in the program ‘isearch.jl’ all functions and
variable names are prefixed by the string ‘isearch-’, giving
‘isearch-cancel’ and so on. Note that the prefix doesn’t have to
be the exact name of the file, the program ‘buffer-menu.jl’ uses
the prefix ‘bm-’.

The entry points to a module (i.e. the names of the commands it
provides) should xnotx have a prefix, simply give them a
descriptive name (but try not to make it too long!).

Don’t bother giving local variables these prefixes unless they are
used by several functions in the program.

Use the ‘recursive-edit’ function as little as possible; it can be
*veryx confusing for the user! When at all possible use keymaps to
create user interfaces.

Use the Lisp mode to indent your programs; not only does it save a
lot of time it also makes it easier for other people to read them.

Errors should always be reported by either ‘error’ or ‘signal’,
don’t just print a message or call ‘beep’.

jade 267 /348

* Don’t redefine existing functions unless absolutely possible: try
to use hooks. If there is no hook where you want one, mail me
about it and I may put one in the next release.

* Don’t compile your program until you’re sure it works! The
debugger only works properly with uncompiled code.

* Use constants sparingly: personally, I only use them where the
constants are numeric.

* Remember to define macros before they are used, otherwise they
won’t be compiled inline. The same can happen if you don’t
‘require’ a file that a macro is defined in before using the macro
definition.

* As I said in the compilation tips (see
Compilation Tips
), try to
use iteration instead of recursion. Also the ‘memg’ and ‘assq’
types of functions can be used to search some types of list
structures very quickly.

* When writing modes don’t bind any unmodified keys to the prefix
‘Ctrl-c’, these are reserved for customisation by users.

1.303 jade.guide/Reporting Bugs

Reporting Bugs

*hkkhkkhkkkkhkkkkkKx*k

If you think you’ve found a bug in Jade I want to know about it,
there is a list of problems that I am aware of in the ‘src/BUGS’ file,
if yours appears in there tell me anyway to make me fix it.

When submitting bug reports I need to know as much as possible, both
about the problem and the circumstances in which it occurs. In general,
send me as much information as possible, even if you think it’s probably
irrelevant.

If you can, contact me via email, my address is ‘jsh@ukc.ac.uk’. If
you don’t get a reply within about a week it’s probably a university
vacation —-- this means that I won’t get your message for a while; if
it’s important try my postal address, this is,

John Harper

91 Springdale Road
Broadstone

Dorset

BH18 9BW

England

As well as bugs I’'m interested in any comments you have about the
editor, even if you just tell me you hate it (as long as you say *whyx

jade

268 /348

you hate it!).

1.304 jade.guide/Function Index

khkkkkhkkkkhkkkkhkkx*K

Function Index

oe

Arithmetic Functions

Arithmetic Functions

+
Arithmetic Functions
Arithmetic Functions
/
Arithmetic Functions
/=
Numeric Predicates
1+
Arithmetic Functions
17
Arithmetic Functions
<
Comparison Predicates
<=
Comparison Predicates
Numeric Predicates
>
Comparison Predicates
>=

Comparison Predicates

abort-recursive-edit
Recursive Edits

add-buffer
The Buffer List

jade

269 /348

add-hook
Normal Hooks

add-minor-mode
Writing Minor Modes

alpha-char-p

Characters
alphanumericp
Characters
amiga-p
System Information
and
Conditional Structures
append
Building Lists
apply
Calling Functions
apropos
Obarrays
aref
Array Functions
arrayp
Array Functions
aset
Array Functions
ash

Bitwise Functions

asm-mode
Asm mode

assoc
Association Lists
assq
Association Lists
atom

Cons Cells

auto-save-file—newer-p
Controlling Auto-Saves

auto-save—-function
Controlling Auto-Saves

jade

270/ 348

auto—-save-mode
Auto-Save mode

autoload
Autoloading

backspace-char
Deletion Functions

backup-file
Making Backups

backward-exp
Expression Movement

backward-kill-exp
Kill Functions

backward-word
Word Movement

backwards-kill-word
Kill Functions

beep
Displaying Messages
bind-keys
Binding Keys
block-end
Block Marking
block-kill

Block Marking

block-start
Block Marking

block-toggle
Block Marking

blockp

Block Marking
boundp

Void Variables
break

Debugging

buffer-changes
Buffer Attributes

buffer—-end
Buffer Extremes

jade

271 /348

buffer—-file—-name
Buffer Attributes

buffer-glyph-table
Buffer Glyph Tables

buffer-modified-p
Modifications to Buffers

buffer—-name
Buffer Attributes

buffer-read-only-p
Read-Only Buffers

buffer-special-p
Special Buffers

buffer-start
Buffer Extremes

buffer-variables
Buffer Attributes

bufferp
Buffers

bury-buffer
The Buffer List

c—mode
C mode

call-command
Calling Commands

capitalize-word
Translation Functions

car

Cons Cells
catch

Catch and Throw

cdr

Cons Cells
centre-display

Rendering
char-downcase
Characters

char-to-glyph-pos
Glyph Positions

jade 272/ 348

char-upcase
Characters

clear-buffer
Buffer Contents

close
Destroying File Obijects

close-other-windows
Closing Windows

close-window
Closing Windows

commandp
Calling Commands

compile-directory
Compilation Functions

compile-file
Compilation Functions

compile-form
Compilation Functions

compile-lisp-1ib
Compilation Functions

concat
Strings
cond
Conditional Structures
cons
Cons Cells
consp

Cons Cells

const-variable-p
Constant Variables

continue-process
Process States

copy—-area
Buffer Contents

copy—area-as—-kill
Kill Functions

copy-block
Buffer Contents

jade

273 /348

copy-block-as-kill
Kill Functions

copy-file
Manipulating Files

copy—-pos
Positions

copy—rect
Rectangular Editing

copy-sequence
Sequence Functions

copy—stream
Output Functions

current-buffer
The Current Buffer

current—-event
Event Loop Info

current-event-string
Event Loop Info

current—-time
System Time

current-time-string
System Time

current-window
The Current Window

cursor
Rendering

cursor—-pos
The Cursor Position

cut—area
Deletion Functions

cut-block
Deletion Functions

cut—-rect
Rectangular Editing

default-boundp
Buffer-Local Variables

default-glyph-table
Buffer Glyph Tables

jade

274 /348

default-value
Buffer-Local Variables

defconst
Defining Variables
defmacro
Defining Macros
defun
Defining Functions
defvar
Defining Variables
delete

Modifying Lists

delete—-area
Deletion Functions

delete-auto-save-file
Controlling Auto-Saves

delete-block
Deletion Functions

delete-char
Deletion Functions

delete-file
Manipulating Files

delete-if
Mapping Functions

delete-if-not
Mapping Functions

delete-rect
Rectangular Editing

delg
Modifying Lists

destroy-buffer
Destroying Buffers

destroy-window
Closing Windows

digit-char-p
Characters

directory-files
Reading Directories

jade

275/ 348

disassemble-fun

downcase—-area

downcase-word

elt

empty-line-p

eq

eql

equal

error—protect

eval

eval-hook

event—-name

eventp

expand-file-name

fboundp

file-binding

file-bound-p

file-directory-p

file-eof-p

Disassembly

Translation Functions

Translation Functions

Sequence Functions

Misc Text Functions

Equality Predicates

Equality Predicates

Equality Predicates

Errors

Evaluation

Normal Hooks

Input Events

Input Events

File Names

Named Functions

Functions on File Objects

File Object Predicates

File Information

File Object Predicates

jade

276 / 348

file-exists-p
File Information

file-modes
File Information

file-modtime
File Information

file—-name-concat
File Names

file-name-directory
File Names

file-name-nondirectory
File Names

file-newer-than-file-p
File Information

file—-nlinks
File Information

file-owner-p
File Information

file-readable-p
File Information

file-regular-p
File Information

file-symlink-p
File Information

file-writable-p
File Information

filep
File Object Predicates

fill-mode
Fill mode

find-alternate-file
Reading Files Into Buffers

find-comment-pos
Mode-Specific Comments

find-file
Reading Files Into Buffers

find-file-read-only
Reading Files Into Buffers

jade

277 /348

find—-next-char
Searching Buffers

find-next-regexp
Searching Buffers

find-next-string
Searching Buffers

find-prev-char
Searching Buffers

find-prev-regexp
Searching Buffers

find-prev-string
Searching Buffers

find-symbol
Obarrays

flush-file
Functions on File Obijects

flush-output
Rendering

fmakunbound
Named Functions

font—name
Window Font

font-x-size
Window Font

font-y-size
Window Font

format
Output Functions

forward-exp
Expression Movement

forward-word
Word Movement

fset
Named Functions
funcall
Calling Functions
function

Anonymous Functions

jade

278 /348

functionp
Functions

garbage-collect
Garbage Collection

gensym
Creating Symbols
get
Property Lists
get-buffer
Buffer Attributes
get—-char

Buffer Contents

get-file-buffer
Buffer Attributes

get-glyph
Glyph Table Basics

get-output-stream-string
Output Streams

getenv
Environment Variables

glyph-table-p
Glyph Tables

glyph-to-char-pos
Glyph Positions

goto-buffer
The Current Buffer

goto-buffer-end
Buffer Extremes

goto-buffer-start
Buffer Extremes

goto-char
The Cursor Position

goto—-left—-char
Character Movement

goto—-mark
Moving to Marks

goto-next-char
Character Movement

jade

279 /348

goto-next-line
Line Movement

goto—next-tab
Tab Movement

goto-prev-char
Character Movement

goto-prev-line
Line Movement

goto-prev-tab
Tab Movement

goto-right-char
Character Movement
if
Conditional Structures

in-word-p
Word Movement

indent-area
Indentation Functions

indent-1line
Indentation Functions

indent-pos
Indentation Functions

indent-to
Indentation Functions

indented-text-mode
Indented-Text mode

init-mode
Installing Modes

insert
Insertion Functions

insert-block
Insertion Functions

insert-file
Reading Files Into Buffers

insert-rect
Rectangular Editing

integerp
Numbers

jade

280 /348

intern
Interning

intern-symbol
Interning

interrupt-process
Signalling Processes

jade-byte-code
Compilation Functions

keymapp
Keymaps

kill-all-local-variables
Buffer-Local Variables

kill-area
Kill Functions

kill-block
Kill Functions

kill-buffer
Destroying Buffers

kill-exp
Kill Functions

kill-1line
Kill Functions

kill-local-variable
Buffer-Local Variables

kill-mode
Installing Modes

kill-process
Signalling Processes

kill-string
Kill Functions

kill-whole-1line
Kill Functions

kill-word
Kill Functions

killed-string
Kill Functions

last
Accessing List

Elements

jade

281 /348

last—-event
Event Loop Info

latin—-1-mode
Latin-1 mode

left-char
Character Movement
length
Sequence Functions
let
Local Variables
letx*

Local Variables

lisp-mode
Lisp mode

list
Building Lists
listp
Lists
load
Load Function
logand
Bitwise Functions
logior
Bitwise Functions
lognot
Bitwise Functions
logxor

Bitwise Functions

looking-at
String Matching

lookup-event
Input Events

lookup-event-binding
Key Lookup

lower—-case-p
Characters

1sh
Bitwise Functions

jade

282 /348

macroexpand
Macro Expansion

major-version—number
Revision Information

make-auto-save-name
Controlling Auto-Saves

make-buffer
Creating Buffers

make-buffer—-name
Buffer Attributes

make—-glyph-table
Creating Glyph Tables

make-keylist
Creating Keymaps

make-keytab
Creating Keymaps

make-list
Building Lists

make-local-variable
Buffer-Local Variables

make-mark
Creating Marks

make-obarray
Obarrays

make-process
Process Objects

make-string
Strings

make-string-input-stream
Input Streams

make-string-output-stream
Output Streams

make—-symbol
Creating Symbols

make-variable-buffer-local
Buffer-Local Variables

make-vector
Vectors

jade

283 /348

make-window
Opening Windows

makunbound
Void Variables
mapc
Mapping Functions
mapcar
Mapping Functions
mark-block

Block Marking

mark-file
Mark Components

mark-pos
Mark Components

mark-resident-p
Mark Residency

mark-whole-buffer
Block Marking

mark-word
Block Marking

markp
Marks

match-end
Regexp Functions

match-start
Regexp Functions

member
Accessing List Elements
memg
Accessing List Elements
message

Displaying Messages

minor-version—number
Revision Information

nconc
Modifying Lists

newline—-and-indent
Indentation Functions

jade

284 /348

next—-char

next-line

next—-screen

next-tab

not

nreverse

nth

nthcdr

numberp

offset-to-pos

open

open-buffer

open—-file

open-line

open-window

or

overwrite-mode

pos

pos—-col

Character Movement

Line Movement

Rendering

Tab Movement

Conditional Structures

Modifying Lists

Accessing List Elements

Accessing List Elements

Numbers

Positions and Offsets

Creating File Objects

Creating Buffers

Reading Files Into Buffers

Insertion Functions

Opening Windows

Conditional Structures

Overwrite mode

Positions

Position Components

jade

285/348

pos—line
Position Components

pos—to-offset
Positions and Offsets

posp
Positions

prefix—numeric-argument
Prefix Arguments

prev-char
Character Movement

prev-line
Line Movement

prev-screen
Rendering

prev—tab
Tab Movement

prinl
Output Functions

prinl-to-string
Output Functions

princ
Output Functions

print
Output Functions

process—args
Process Objects

process—connection-type
Asynchronous Processes

process—-dir
Process Objects

process-exit-status
Process Information

process—exit-value
Process Information

process—-function
Process States

process—id
Process Information

jade

286 / 348

process—in-use-p
Process States

process—-output-stream
Process I-0

process-prog
Process Objects

process—-running-p
Process States

process—stopped-p
Process States

processp
Process Objects
progl
Sequencing Structures
prog2
Sequencing Structures
progn

Sequencing Structures

prompt—-for-buffer
Prompting

prompt-for-command
Prompting

prompt-for-directory
Prompting

prompt—-for-file
Prompting

prompt-for-function

Prompting
prompt-for-lisp
Prompting

prompt-for—number

Prompting
prompt-for-string

Prompting
prompt-for—-symbol

Prompting

prompt—-for-variable
Prompting

jade 287 /348

prompt-from-list

Prompting
provide
Features
put
Property Lists
quote
Quoting
rassoc
Association Lists
rassq
Association Lists
read

Input Functions

read-buffer
Reading Files Into Buffers

read-char
Input Functions

read-event
Reading Events

read—-file
Reading and Writing Files

read-file-until
Functions on File Objects

read-from-string
Input Functions

read-line
Input Functions

recover-file
Controlling Auto-Saves

rect-blocks-p
Block Marking

recursion-depth
Recursive Edits

recursive-edit
Recursive Edits

refresh-all
Rendering

jade

288 /348

regexp-expand

regexp-expand-line
String Matching

regexp-match

regexp-match-line

regexp—quote

remove-buffer

remove-hook

remove-minor-mode

rename-file

replace-regexp

replace-string

require

return

reverse

revert-buffer

right-char

String Matching

String Matching

String Matching

Regexp Functions

The Buffer List

Normal Hooks

Writing Minor Modes

Manipulating Files

Replacing Strings

Replacing Strings

Features

Function Exits

Building Lists

Reading Files Into Buffers

Character Movement

rotate-buffers—-forward
The Buffer List

rplaca

rplacd

Cons Cells

Cons Cells

jade

289 /348

run-process
Synchronous Processes

save—and-quit
Writing Buffers

save—-file
Writing Buffers

save—file-as
Writing Buffers

save-some-buffers
Writing Buffers

screen-bottom-line
Window Information

screen-first-column
Window Information

screen—height
Window Information

screen—-last-column
Window Information

screen-top-line
Window Information

screen-width
Window Information

sequencep
Sequences

set
Setting Variables

set-buffer-file—name
Buffer Attributes

set-buffer—-glyph-table
Buffer Glyph Tables

set-buffer-modified
Modifications to Buffers

set-buffer—-name
Buffer Attributes

set-buffer-read-only
Read-Only Buffers

set-buffer-special
Special Buffers

jade 290 / 348

set—-char
Buffer Contents

set-const-variable
Constant Variables

set—-current-buffer
The Current Buffer

set-current-window
The Current Window

set-default
Buffer-Local Variables

set-file-modes
File Information

set—-font
Window Font

set—-glyph
Glyph Table Basics

set—-indent-pos
Indentation Functions

set-mark
Altering Marks

set—-pos-col
Position Components

set-pos—-1line
Position Components

set—-process—args
Process Objects

set-process—-connection-type
Asynchronous Processes

set-process—-directory
Process Objects

set-process—-function
Process States

set—-process—-output—-stream
Process I-0

set-process-prog
Process Objects

set—-rect-blocks
Block Marking

jade

291 /348

setenv

setplist

setqg

setg-default

shell-mode

signal

signal-process

sleep-window

space—-char-p

split-1line

start—-process

step

stop—-process

streamp

string<

string=

stringp

substring

symbol-function

Environment Variables

Property Lists

Setting Variables

Buffer-Local Variables

Interactive Processes

Errors

Signalling Processes

Iconifying Windows

Characters

Insertion Functions

Asynchronous Processes

Debugging

Process States

Streams

Strings

Strings

Strings

Strings

Named Functions

jade

292 /348

symbol-name
Symbol Attributes

symbol-plist
Property Lists

symbol-value
Variables

symbolp
Symbols

system—name
System Information

tab-with-spaces
Indentation Functions

texinfo-mode
Texinfo mode

text-mode
Text mode

throw
Catch and Throw

tmp-file—-name
File Names

toggle-iconic
Iconifying Windows

toggle-rect-blocks
Block Marking

top-level
Recursive Edits

trace
Debugging

translate—-area
Translation Functions

translate-string
Translation Functions

transpose-chars
Transpose Functions

transpose—exps
Transpose Functions

transpose-items
Transpose Functions

jade

293 /348

transpose-words

unbind-keys

undo

unintern

unix-p

unless

unsleep-window

untrace

unwind-protect

upcase—area

upcase-word

upper—case—-p

useless—function

user—-home-directory
User Information

user—-login—-name

user—-real—-name

vector

vectorp

when

Transpose Functions

Binding Keys

Controlling Undo

Interning

System Information

Conditional Structures

Iconifying Windows

Debugging

Cleanup Forms

Translation Functions

Translation Functions

Characters

Descriptions

User Information

User Information

Vectors

Vectors

Conditional Structures

jade

294 /348

while

window—-asleep-p

window—-bar-height

window—-count

window—-height

window—-1id

window—-left-edge

window-top—-edge

window—-width

windowp

with-buffer

with-window

word—start

write

write-buffer

write-buffer—-area

write-file

write-file

x11-p

Looping Structures

Iconifying Windows

Window Information

Window Information

Window Information

Window Information

Window Information

Window Information

Window Information

Windows

The Current Buffer

The Current Window

Word Movement

Output Functions

Writing Buffers

Writing Buffers

Reading and Writing Files

Writing Buffers

System Information

jade 295 / 348

y-or-n-p
Prompting

yank
Insertion Functions

yank-rectangle
Rectangular Editing

yank—-to-mouse
Insertion Functions

yes—or-no-p
Prompting

zerop
Numeric Predicates

1.305 jade.guide/Variable Index

Variable Index

*hkkkkhkkkkhkkkkkKx*k

asm—comment

Asm mode
asm—indent
Asm mode
asm-mode—-hook
Asm mode

auto-save—hook
Controlling Auto-Saves

auto-save-interval
Auto-Saving Files

auto—-save-p
Auto-Saving Files

backup-by-copying
Backup Files

buffer-file-modtime
Buffer Date Stamps

buffer-1list
The Buffer List

jade 296 / 348

buffer—-record-undo
Controlling Undo

buffer-undo-list
Controlling Undo

c-mode—auto-indent
C mode

c—-mode-hook
C mode

c—mode-tab
C mode

comment—-column
Mode-Specific Comments

compile—-error-expand
Finding Errors

compile-error-regexp
Finding Errors

compile-file-expand
Finding Errors

compile-line—-expand
Finding Errors

ctrl-c—keymap
Writing Major Modes

ctrl-x—-4-keymap
Standard Keymaps

ctrl-x-5-keymap
Standard Keymaps

ctrl-x-keymap
Standard Keymaps

current-prefix—arg
Prefix Arguments

debug-on—-error
Errors

default—-auto-save—-interval
Auto-Saving Files

destroy-window-hook
Closing Windows

downcase-table
Translation Functions

jade 297 / 348

else-backup-by-copying
Backup Files

enable-local-eval
File Variables

enable-local-variables
File Variables

features
Features

fill-column
Fill mode

garbage—-threshold
Garbage Collection

global-keymap
Standard Keymaps

grains-of-sand
Descriptions

idle-garbage-threshold
Idle Actions

indented-text-mode—hook
Indented-Text mode

inhibit-read-only
Read-Only Buffers

insert-file-hook
Reading Files Into Buffers

keymap-path
Key Lookup

kill-buffer-hook
Destroying Buffers

last—command
Event Loop Info

last-save—changes
Buffer Modification Counts

last—-save-time
Buffer Modification Counts

last-user—save—-changes
Buffer Modification Counts

lisp-body—-indent
Lisp mode

jade

298 / 348

lisp-lib-dir

lisp-mode-hook

load-path

Load Function

Lisp mode

Load Function

local-variable-lines
File Variables

major-mode

major-mode—-kill

make-backup-files

make-window—-hook

max—-scroll

max-undo—-size

meta—-sends—-esc

Writing Major Modes

Writing Major Modes

Backup Files

Opening Windows

Rendering

Undo

Modifiers

mildly-special-buffer
Special Buffers

minor-mode-keymap

minor-mode—list

minor-mode—names

mode-alist

mode-backward-exp

mode—-comment—-fun

mode-forward-exp

Writing Minor Modes

Writing Minor Modes

Writing Minor Modes

Installing Modes

Mode-Specific Expressions

Mode—-Specific Comments

Mode-Specific Expressions

jade

299 /348

mode—-indent-1line
Mode-Specific Indentation

mode—name
Writing Major Modes

next-keymap-path
Key Lookup

obarray
Obarrays

prefix-arg
Prefix Arguments

pub-screen
Opening Windows

read-file-hook
Reading Files Into Buffers

shell-callback-function
Interactive Processes

shell-ctrl-c-keymap
Interactive Processes

shell-file—name
Shell

shell-keymap
Interactive Processes

shell-mode-hook
Shell

shell-output—-stream
Interactive Processes

shell-process
Interactive Processes

shell-program
Interactive Processes

shell-program—-args
Interactive Processes

shell-prompt—-regexp
Interactive Processes

shell-prompt-regexp
Shell

shell-whole-1line
Shell

jade 300 / 348

standard-input
Input Streams

standard-output
Output Streams

status—-line-cursor
Displaying Messages

tab-size
Buffer Attributes

texinfo-mode—-hook
Texinfo mode

text-mode-hook
Text mode

this—-command
Event Loop Info

unbound-key—-hook
Event Loop Actions

upcase-table
Translation Functions

user—-keymap
Standard Keymaps

window—-closed-hook
Event Loop Actions

window—-1list
Windows

word—-not—-regexp
Word Movement

word-regexp
Word Movement

write—-file-hook
Writing Buffers

x—-scroll-step-ratio
Rendering

y—-scroll-step-ratio
Rendering

jade

301 /348

1.306 jade.guide/Key Index

kKA khkkKkKhKk

Key Index

o\

Backspace

Backspace

Backspace

Backspace

DEL

Query Replace

The Buffer Menu

Query Replace

The Buffer Menu

Asm mode

Query Replace

Info Mode

The Buffer Menu

Asm mode

C mode

Info Mode

Info Mode

Query Replace

Incremental Search

Editing Characters

Editing Characters

jade

302 /348

Down

ESC

ESC

Fl

F2

F3

HELP

HELP a

HELP Db

HELP e

HELP f

HELP h

HELP i

HELP k

HELP m

HELP v

Left

LMB-CLICK2

RET

Editing Lines

Query Replace

Incremental Search

Using Marks

Using Marks

Using Marks

The Help System

The Help System

The Help System

The Help System

The Help System

The Help System

The Help System

The Help System

The Help System

The Help System

Editing Characters

The Buffer Prompt

Shell

jade

303 /348

RET
The Buffer Prompt
RET
The Buffer Menu
RET
Asm mode
RET
Query Replace
RET
Incremental Search
RET
Editing Buffers
Right
Editing Characters
RMB-CLICK1
The Buffer Prompt
SPC
Info Mode
SPC
Query Replace
TAB
The Buffer Prompt
TAB
The Buffer Menu
TAB
Texinfo mode
TAB
Lisp mode
TAB
C mode
TAB
Moving Around Buffers
Up

Editing Lines

C mode

C mode

jade

304 /348

b
Info Mode
Ctrl-@
Using Marks
Ctrl-DEL
Editing Lines
Ctrl-Down
Moving Around Buffers
Ctrl-TAB
Moving Around Buffers
Ctrl-Up
Moving Around Buffers
Ctrl-a
Shell
Ctrl-a
Editing Lines
Ctrl-b
The Buffer Menu
Ctrl-b

Editing Characters

Ctrl-c Ctrl-<
Debugging Programs

Ctrl-c Ctrl->
Debugging Programs

Ctrl-c Ctrl-b
Debugging

Ctrl-c Ctrl-b
Debugging Programs

Ctrl-c Ctrl-c
Shell

Ctrl-c Ctrl-c {
Texinfo mode

Ctrl-c Ctrl-c }
Texinfo mode

Ctrl-c Ctrl-c c
Texinfo mode

Ctrl-c Ctrl-c Ctrl-m
Texinfo mode

jade

305/348

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-d

Ctrl-d

Ctrl-£f

Ctrl-1i

Ctrl-1

Ctrl-n

Ctrl-n

Ctrl-n

Ctrl-p

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Texinfo mode

Shell

Debugging

Debugging

Debugging

Debugging

Debugging

Shell

Debugging

Shell

Programs

Programs

Programs

Programs

jade

306 /348

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-c

Ctrl-d

Ctrl-d

Ctrl-e

Ctrl-£f

Ctrl-£f

Ctrl-g

Ctrl-g

Ctrl-h

Ctrl-h

Ctrl-h

Ctrl-h

Ctrl-r

Ctrl-r

Ctrl-s

Ctrl-s

Ctrl-t

Ctrl-x

Ctrl-z

Ctrl-\

Debugging

Debugging Programs

Debugging

Debugging Programs

Debugging Programs

Debugging
Shell
Shell

Shell

Editing Characters

Editing Lines

The Buffer Menu

Editing Characters

The Buffer Prompt

Incremental Search

The Help System

The Help System

The Help System

The Help System

jade

307 /348

Ctrl-h £

Ctrl-h h

Ctrl-h i

Ctrl-h k

Ctrl-h m

Ctrl-h v

Ctrl-1i

Ctrl-j

Ctrl-k

Ctrl-k

Ctrl-k

Ctrl-1

Ctrl-M

Ctrl-m

Ctrl-Meta-b

Ctrl-Meta-c

Ctrl-Meta-f

Ctrl-Meta-k

Ctrl-Meta-k

The Help System

The Help System

The Help System

The Help System

The Help System

The Help System

Commands on Blocks

Lisp mode

Killing

Editing Lines

Editing Buffers

The Buffer Menu

Rectangular Blocks

Marking Blocks

Editing Expressions

Recursive Editing

Editing Expressions

Killing

Editing Expressions

jade

308 /348

Ctrl-Meta-t
Editing Expressions

Ctrl-Meta—-x
Lisp mode

Ctrl-Meta-\
Lisp mode

Ctrl-Meta-\

C mode

Ctrl-n

Editing Lines
Ctrl-o

Editing Lines
Ctrl-p

Editing Lines
Ctrl-g

Incremental Search
Ctrl-r

Query Replace
Ctrl-r

Incremental Search
Ctrl-s

The Buffer Menu
Ctrl-s

Incremental Search
Ctrl-SPC

Marking Blocks

Ctrl-t

Editing Characters
Ctrl-u

Command Arguments
Ctrl-v

Moving Around Buffers
Ctrl-w

Query Replace
Ctrl-w

Incremental Search
Ctrl-w

Killing

jade

309 /348

Ctrl-w

Ctrl-w

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-x

Ctrl-£f

Ctrl-f

Commands on Blocks

Commands on Blocks

Client Editing

Killing Windows

Killing Windows

Creating Windows

Creating Windows

Creating Windows

Displaying Buffers

Creating Windows

Creating Windows

Creating Windows

Creating Windows

Creating Windows

Creating Windows

Creating Windows

Creating Windows

Creating Windows

Creating Windows

jade 310/348

Ctrl-x 5 1

Creating Windows
Ctrl-x 5 ¢

Creating Windows
Ctrl-x b

Displaying Buffers

Ctrl-x Ctrl-a Ctrl-<
Debugging Programs

Ctrl-x Ctrl-a Ctrl—>
Debugging Programs

Ctrl-x Ctrl-a Ctrl-b
Debugging Programs

Ctrl-x Ctrl-a Ctrl-d
Debugging Programs

Ctrl-x Ctrl-a Ctrl-f
Debugging Programs

Ctrl-x Ctrl-a Ctrl-1
Debugging Programs

Ctrl-x Ctrl-a Ctrl—-n
Debugging Programs

Ctrl-x Ctrl-a Ctrl-r
Debugging Programs

Ctrl-x Ctrl-a Ctrl-s
Debugging Programs

Ctrl-x Ctrl-a Ctrl-t
Debugging Programs

Ctrl-x Ctrl-b
The Buffer Menu

Ctrl-x Ctrl-£f
Commands To Load Files

Ctrl-x Ctrl-1
Commands on Blocks

Ctrl-x Ctrl-r
Commands To Load Files

Ctrl-x Ctrl-s
Commands To Save Files

Ctrl-x Ctrl-u
Commands on Blocks

jade 311/348

Ctrl-x Ctrl-v
Commands To Load Files

Ctrl-x Ctrl-w
Commands To Save Files

Ctrl-x Ctrl—-x
Using Marks

Ctrl-x f
Fill mode
Ctrl-x h
Marking Blocks
Ctrl-x 1
Commands To Load Files
Ctrl-x k
Deleting Buffers
Ctrl-x o
Other Window Commands
Ctrl-x s
Commands To Save Files
Ctrl-x u
Undo
Ctrl-x ¢
Finding Errors
Ctrl-y
Incremental Search
Ctrl-Y
Rectangular Blocks
Ctrl-Y
Cutting And Pasting
Ctrl-y
Cutting And Pasting
Ctrl-]
Recursive Editing
Ctrl—_
Undo
d
Info Mode
d

The Buffer Menu

jade

312/348

f
Info Mode
g
Info Mode
h
Info Mode
1
Info Mode
LMB-Click2
Info Mode
m
Info Mode
Meta-%
Query Replace
Meta-
Command Arguments
Meta-0
Command Arguments
Meta-1
Command Arguments
Meta-2
Command Arguments
Meta-3
Command Arguments
Meta-4
Command Arguments
Meta-5
Command Arguments
Meta-6
Command Arguments
Meta-7
Command Arguments
Meta-8
Command Arguments
Meta-9
Command Arguments
Meta-—;

Editing

Modes

jade

313/348

Meta—-<

Meta—>

Meta-"7?

Meta-@

Meta-Backspace

Meta-Backspace

Meta-DEL

Meta-Left

Meta-Right

Meta—-SPC

Meta-a

Meta-b

Meta-c

Meta-d

Meta-d

Meta-f

Meta-h

Meta—-1i

Meta-j

Moving Around Buffers

Moving Around Buffers

The Buffer Prompt

Marking

Editing Words

Keeping

Editing

Editing

Killing

Editing

Editing

Marking

Blocks

Editing Words

Editing Words

Editing Words

Editing Characters

Changelogs

Words

Words

Words

Words

Blocks

Moving Around Buffers

Editing

Lines

jade

314 /348

Meta—j

Meta-1

Meta-m

Meta-S

Meta-s

Meta-t

Meta-TAB

Meta-u

Meta-v

Meta—-w

Meta-w

Meta—-x

Meta—-x

Meta—-x

Meta—-x

Meta-\

add—-autoloads
Autoloading

recover—file

Moving Around Buffers

Editing Words

Moving Around Buffers

Text mode

Text mode

Editing Words

Info Mode

Editing Words

Moving Around Buffers

Killing

Commands on Blocks

Invoking Commands

Auto-Saving Files

remove—autoloads
Autoloading

Editing Characters

Info Mode

Query Replace

The Buffer Menu

jade

315/348

RET

Shift-Backspace

Shift-DEL

Shift-Down

Shift-F1

Shift-F2

Shift-F3

Shift-Left

Shift-Right

Shift-TAB

Shift-Up

TAB

Info Mode

Info Mode

The Buffer Menu

Query Replace

Info Mode

The Buffer Menu

Editing Lines

Editing Lines

Moving Around Buffers

Using Marks

Using Marks

Using Marks

Editing Lines

Editing Lines

Moving Around Buffers

Moving Around Buffers

Info Mode

Info Mode

The Buffer Menu

jade 316 /348

The Buffer Menu
Query Replace
Query Replace

The Buffer Menu

1.307 jade.guide/Concept Index

Concept Index
kkhkkhkkhkkkkhkkKkkkx

Accessing compressed files
Accessing Compressed Files

Accessing list elements
Accessing List Elements

Alists
Association Lists

Altering marks
Altering Marks

Anonymous functions
Anonymous Functions

Arguments, startup
Startup Options

Arithmetic Functions
Arithmetic Functions

Array functions
Array Functions

Arrays
Sequences

Asm mode
Asm mode

Association lists
Association Lists

Asynchronous processes
Asynchronous Processes

jade

317 /348

Atom

Cons Cells

Auto-save mode
Auto—-Save mode

Auto-saves, controlling
Controlling Auto-Saves

Auto-saving files
Auto-Saving Files

Autoload forms
Autoload Forms

Autoloading
Autoloading

Backup files
Backup Files

Backup files, making
Making Backups

Binding keys
Binding Keys

Bitwise functions
Bitwise Functions

Block marking
Block Marking

Blocks, commands

Commands on Blocks

Blocks, marking
Marking Blocks

Blocks, rectangular
Rectangular Blocks

Blocks, using
Using Blocks

Boolean values
nil and t

Boolean values, predicate functions
Predicate Functions

Breaking out of loops
Interrupting Jade

Buffer

Editor Concepts

jade

318 /348

Buffer attributes
Buffer Attributes

Buffer contents
Buffer Contents

Buffer date stamps
Buffer Date Stamps

Buffer extremes
Buffer Extremes

Buffer glyph tables
Buffer Glyph Tables

Buffer list
The Buffer List

Buffer menu
The Buffer Menu

Buffer modification counts
Buffer Modification Counts

Buffer prompt
The Buffer Prompt

Buffer, current
Editor Concepts

Buffer-local variables
Buffer-Local Variables

Buffer—-local variables defined in files
File Variables

Buffers
Buffers

Buffers, contents of
Buffer Attributes

Buffers, creating
Creating Buffers

Buffers, current
The Current Buffer

Buffers, deleting
Deleting Buffers

Buffers, destroying
Destroying Buffers

Buffers, displaying
Displaying Buffers

jade

319/348

Buffers, editing
Editing Buffers

Buffers, editing files
Editing Files

Buffers, file names of
Buffer Attributes

Buffers, glyph table
Buffer Attributes

Buffers, local variables
Buffer Attributes

Buffers, modification counter
Buffer Attributes

Buffers, modifications
Modifications to Buffers

Buffers, moving around
Moving Around Buffers

Buffers, names of
Buffer Attributes

Buffers, other commands
Other Buffer Commands

Buffers, positions
Positions

Buffers, read-only
Read-Only Buffers

Buffers, reading files
Reading Files Into Buffers

Buffers, searching and replacing
Searching and Replacing

Buffers, special
Special Buffers

Buffers, tab size
Buffer Attributes

Buffers, text
Text

Buffers, the list of
The Buffer List

Buffers, undo information
Buffer Attributes

jade

320/ 348

Buffers, using
Using Buffers

Buffers, writing to a file
Writing Buffers

Bugs, reporting
Reporting Bugs

Building lists
Building Lists

C mode
C mode

Calling commands
Calling Commands

Calling functions
Calling Functions

Catch and throw
Catch and Throw

ChangeLogs, keeping
Keeping Changelogs

Changes since the last release
News

Changes, undoing
Undo

Character images
Character Images

Character movement
Character Movement

Character set, Latin-1
Latin-1 mode

Characters
Characters

Characters, editing
Editing Characters

Circular lists
Infinite Lists

Cleanup forms
Cleanup Forms

Client editing
Client Editing

jade

321/348

Closing windows
Closing Windows

Columnar blocks

Rectangular Blocks

Command

Editor Concepts

Command arguments
Command Arguments

Commands
Commands

Commands on blocks
Commands on Blocks

Commands to load files
Commands To Load Files

Commands to save files
Commands To Save Files

Commands, calling
Calling Commands

Commands, event loop
Event Loop

Commands, example command definitions
Example Commands

Commands, interactive declarations
Interactive Declarations

Commands, invoking
Invoking Commands

Commands, prefix arguments
Prefix Arguments

Commands, window

Other Window Commands

Comment styles
Comment Styles

Comments

Read Syntax

Comments, mode-specific
Mode-Specific Comments

Comparison predicates
Comparison Predicates

jade

322 /348

Compilation functions
Compilation Functions

Compilation tips
Compilation Tips

Compilation, disassembly of forms
Disassembly

Compilation, finding errors
Finding Errors

Compilation, running
Running a Compilation

Compiled Lisp
Compiled Lisp

Compiling macros
Compiling Macros

Compiling programs
Compiling Programs

Compressed files, accessing
Accessing Compressed Files

Concepts, editor
Editor Concepts

Conditional structures
Conditional Structures

Cons cells
Cons Cells

Constant variables
Constant Variables

Control Structures
Control Structures

Control structures, conditionals
Conditional Structures

Control structures, looping
Looping Structures

Control structures, non-local exits
Non-Local Exits

Control structures, sequencing
Sequencing Structures

Controlling auto-saves
Controlling Auto-Saves

jade

323 /348

Controlling undo
Controlling Undo

Copying
Copying

Copying text
Cutting And Pasting

Creating buffers
Creating Buffers

Creating file obijects
Creating File Obijects

Creating glyph tables
Creating Glyph Tables

Creating keymaps
Creating Keymaps

Creating marks
Creating Marks

Creating symbols
Creating Symbols

Creating windows
Creating Windows

Current buffer
The Current Buffer

Current buffer
Editor Concepts

Current time
System Time

Current window
The Current Window

Current window
Editor Concepts

Cursor
Editor Concepts

Cursor position
The Cursor Position

Customisation, simple
Simple Customisation

Cutting and pasting
Cutting And Pasting

jade

324 /348

Data types
Data Types

Data types, summary of
Types Summary

Debugging
Debugging

Debugging programs
Debugging Programs

Default glyph table
Buffer Glyph Tables

Defining functions
Defining Functions

Defining macros
Defining Macros

Defining variables
Defining Variables

Deleting buffers
Deleting Buffers

Deleting text

Cutting And Pasting

Deletion functions
Deletion Functions

Descriptions
Descriptions

Destroying buffers
Destroying Buffers

Destroying file objects
Destroying File Objects

Disassembly
Disassembly

Display, glyph tables
Glyph Tables

Displaying buffers
Displaying Buffers

Displaying messages
Displaying Messages

Distribution conditions
Copying

jade

325/348

Editing buffers
Editing Buffers

Editing characters
Editing Characters

Editing expressions
Editing Expressions

Editing files
Editing Files

Editing lines
Editing Lines

Editing modes
Editing Modes

Editing modes, invoking
Invoking a Mode

Editing units
Editing Units

Editing words
Editing Words

Editor commands
Commands

Editor concepts
Editor Concepts

Email, my address
Reporting Bugs

Environment variables
Environment Variables

Equality predicates
Equality Predicates

Errors
Errors
Escape sequences in strings
Strings
Evaluating Lisp forms
Evaluation

Evaluation

Evaluation

Event loop
Event Loop

jade

326 / 348

Event loop actions
Event Loop Actions

Event loop information
Event Loop Info

Event loop, idle actions
Idle Actions

Event loop, reading events
Reading Events

Event loop, recursive edit
Recursive Edits

Events, input
Input Events

Example commands
Example Commands

Example key names
Example Keys

Expression movement
Expression Movement

Expressions, editing
Editing Expressions

Expressions, modes-specific
Mode—-Specific Expressions

Features
Features

File information
File Information

File names
File Names

File object predicates
File Object Predicates

File objects
File Objects

File objects, creating
Creating File Objects

File objects, destroying
Destroying File Obijects

File objects, functions
Functions on File Objects

jade

327 /348

File variables

File Variables

Files
Files
Files, auto-saving
Auto-Saving Files
Files, backups
Backup Files
Files, closing
Destroying File Objects
Files, commands
Other File Commands
Files, editing
Editing Files
Files, loading and loading
Loading and Saving Files
Files, manipulating
Manipulating Files
Files, opening
Creating File Objects
Files, reading and writing
Reading and Writing Files
Files, reading directories
Reading Directories
Files, reading into buffers
Reading Files Into Buffers
Fill mode

Fill mode

Finding errors

Font,

Font,

Form

Forms,

Finding Errors

selecting
Other Window Commands
window
Window Font
Editor Concepts
autoload

Autoload Forms

jade

328 /348

Forms,

Forms,

Forms,

Forms,

Forms,

Forms,

Forms,

constant

Self-Evaluating Forms

function call
Function Call

macro call
Macro Call

self-evaluating
Self-Evaluating

special
Special
symbol
Symbol
variable

Forms

Forms

Forms

Forms

Forms

Symbol Forms

Function call forms

Function Call Forms

Function exits

Function Exits

Functions

Functions

Functions as hooks

Functions As Hooks

Functions on File Objects

Functions on File Objects

Functions, anonymous
Anonymous Functions

Functions, calling

Calling Functions

Functions, compilation
Compilation Functions

Functions, defining
Defining Functions

Functions, descriptions of

Descriptions

Functions, input

Input Functions

Functions, lambda expressions

Lambda Expressions

jade

329 /348

Functions, loading

Load Function

Functions, mapping

Mapping Functions

Functions, movement

Movement Functions

Functions, named

Named Functions

Functions, output

Output Functions

Garbage collection

GDB,

Garbage Collection

running

Debugging Programs

General tips

General Tips

Generic mode

Generic mode

Global replace

Glyph

Glyph

Glyph

Glyph

Glyph

Glyph

Grep,

Gzip

Global Replace

positions
Glyph Positions

table basics
Glyph Table Basics

tables
Glyph Tables

tables, buffer
Buffer Glyph Tables

tables, creating
Creating Glyph Tables

tables, default
Buffer Glyph Tables

using
Using Grep

Accessing Compressed Files

Help system

The Help System

jade

330/348

Help, starting
The Help System

Hooks
Hooks

Hooks, functions as
Functions As Hooks

Hooks, normal
Normal Hooks

Hooks, predefined
Standard Hooks

Iconifying windows
Iconifying Windows

Idle actions
Idle Actions

Incremental search
Incremental Search

Indentation functions
Indentation Functions

Indentation, mode-specific
Mode-Specific Indentation

Indented-Text mode
Indented-Text mode

Infinite lists
Infinite Lists

Info browser
Info Mode

Info mode
Info Mode

Initialisation procedure
Startup Procedure

Input and output
Streams

Input events
Input Events

Input functions
Input Functions

Input streams
Input Streams

jade

331/348

Insertion functions
Insertion Functions

Installing modes
Installing Modes

Integers
Numbers

Interactive declarations
Interactive Declarations

Interactive processes
Interactive Processes

Interactive prompts
Prompting

Interning
Interning

Interrupting Jade
Interrupting Jade

Introduction
Introduction
Introduction, Lisp
Intro
Invocation
Invocation

Invoking a mode
Invoking a Mode

Invoking commands
Invoking Commands

Jade, using
Using Jade

Keeping Changelogs
Keeping ChangelLogs

Key lookup
Key Lookup

Key names
Key Names

Key names, examples
Example Keys

Key names, keys
Keys

jade

332 /348

Key names, modif

Keymaps

Keymaps, binding

B

Keymaps, creatin

Keymaps, key loo

Keymaps, predefi

Keymaps, prefix

Keymaps, types

Keys

Keys, event loop

Kill functions

Killing

Killing buffers

Killing windows

Lambda expressio

Latin-1 mode

Latinl character

Layout of progra

Licence

iers
Modifiers
Keymaps

keys
inding Keys

g
Creating Keymaps

kup
Key Lookup

ned
Standard Keymaps

keys

Prefix Keys

Types of Keymap

Keys

Event Loop

Kill Functions

Killing

Destroying Buffers

Killing Windows

ns

Lambda Expressions

Latin-1 mode

set
Character Images

ms
Program Layout

Copying

jade 333 /348

Line movement
Line Movement

Lines, editing
Editing Lines

Lisp
Editor Concepts

Lisp forms, evaluating
Evaluation

Lisp mode
Lisp mode

Lisp, Jade’s programming language
Programming Jade

List forms
List Forms

List structure
List Structure

Lists
Lists

Lists, accessing elements
Accessing List Elements

Lists, association
Association Lists

Lists, building
Building Lists

Lists, circular
Infinite Lists

Lists, mapping
Mapping Functions

Lists, modifying
Modifying Lists

Load function
Load Function

Loading
Loading

Loading files
Loading and Saving Files

Loading programs
Loading

jade

334 /348

Loading, on reference
Autoloading

Local variables
Local Variables

Local variables defined in files
File Variables

Looping structures
Looping Structures

Macro call forms
Macro Call Forms

Macro expansion
Macro Expansion

Macros
Macros

Macros, compiling
Compiling Macros

Macros, defining
Defining Macros

Major modes, writing
Writing Major Modes

Making backups
Making Backups

Manipulating files
Manipulating Files

Manual notation
Notation

Mapping functions
Mapping Functions

Mark components
Mark Components

Mark relocation
Mark Relocation

Mark residency
Mark Residency

Marking blocks
Block Marking

Marking blocks
Marking Blocks

jade

335/348

Marks
Marks

Marks, altering
Altering Marks

Marks, creating
Creating Marks

Marks, moving to
Moving to Marks

Marks, using
Using Marks

Messages, displaying
Displaying Messages

Minor modes
Minor Modes

Minor modes, auto-save
Auto-Save mode

Minor modes, fill
Fill mode

Minor modes, Latin-1
Latin—-1 mode

Minor modes, overwrite
Overwrite mode

Minor modes, writing
Writing Minor Modes

Misc text functions
Misc Text Functions

Miscellaneous functions
Miscellaneous Functions

Mode-specific comments
Mode-Specific Comments

Mode-specific expressions
Mode—-Specific Expressions

Mode-specific indentation
Mode-Specific Indentation

Modes, editing
Editing Modes

Modes, installing
Installing Modes

jade

336 /348

Modes, invoking
Invoking a Mode

Modes, minor
Minor Modes

Modifications to buffers
Modifications to Buffers

Modifiers
Modifiers

Modifying lists
Modifying Lists

Movement functions
Movement Functions

Movement, character
Character Movement

Movement, expression
Expression Movement

Movement, line
Line Movement

Movement, tab
Tab Movement

Movement, word
Word Movement

Moving around buffers
Moving Around Buffers

Moving to marks
Moving to Marks

Named functions
Named Functions

Names of files
File Names

News
News

nil and t
nil and t

Non—-local exits
Non-Local Exits

Non—-local exits, catch and throw
Catch and Throw

jade

337 /348

Non-local exits, cleanup forms
Cleanup Forms

Non-local exits, errors
Errors

Non—-local exits, function exits
Function Exits

Normal hooks
Normal Hooks

Notation
Notation

Numbers
Numbers

Numbers, arithmetic functions
Arithmetic Functions

Numbers, bitwise functions
Bitwise Functions

Numbers, predicates on
Numeric Predicates

Numeric predicates
Numeric Predicates

Obarrays
Obarrays

Offsets and positions
Positions and Offsets

Opening windows
Opening Windows

Options, startup
Startup Options

Other buffer commands
Other Buffer Commands

Other file commands
Other File Commands

Other window commands
Other Window Commands

Output functions
Output Functions

Output streams
Output Streams

jade

338 /348

Overwrite mode
Overwrite mode

Pasting text
Cutting And Pasting

Position components
Position Components

Positions
Positions

Positions and offsets
Positions and Offsets

Positions, buffer extremes
Buffer Extremes

Positions, cursor
The Cursor Position

Positions, glyph
Glyph Positions

Positions, marks
Marks

Predicate functions
Predicate Functions

Predicates on numbers
Numeric Predicates

Predicates, comparison
Comparison Predicates

Predicates, equality
Equality Predicates

Predicates, type
Type Predicates

Prefix arguments
Prefix Arguments

Prefix arguments, using
Command Arguments

Prefix keys
Prefix Keys

Printed representation
Printed Representation

Process I/0
Process I-0

jade

339/348

Process informati

Process objects

Process states

Processes

Processes, asynch

Asyn

Processes, intera
Int

Processes, signal
Si

Processes, synchr

Syn

Program layout

Programming Jade

Programs, debuggi

Programs, running

Prompt, buffer

Prompt, simple

Prompt, using

Prompting

Property lists

Protrams, loading

Query replace

on
Process Information

Process Objects

Process States

Processes

ronous
chronous Processes

ctive
eractive Processes

ling
gnalling Processes

onous

chronous Processes

Program Layout

Programming Jade

ng

Debugging Programs

Running a Compilation

The Buffer Prompt

The Simple Prompt

Using the Prompt

Prompting

Property Lists

Loading

Query Replace

jade

340/ 348

Quoting
Quoting

Read syntax
Read Syntax

Read-only buffers
Read-Only Buffers

Reader, the Lisp
The Lisp Reader

Reading and writing files
Reading and Writing Files

Reading directories
Reading Directories

Reading events
Reading Events

Reading files into buffers
Reading Files Into Buffers

Rectangular blocks
Rectangular Blocks

Rectangular editing
Rectangular Editing

Recursive editing
Recursive Editing

Recursive edits
Recursive Edits

Regexp functions
Regexp Functions

Regexps
Regular

Regular expression, definition
Editor Concepts

Regular expressions
Regular Expressions

Rendering
Rendering

Rendering, glyph tables
Glyph Tables

Replace, global
Global Replace

Expressions

341 /348

Replace, query
Query Replace

Replace, search and
Searching and Replacing

Replacing strings
Replacing Strings

Reporting bugs
Reporting Bugs

Requirements
Systems Supported

Resident marks
Mark Residency

Revision information
Revision Information

Running a compilation
Running a Compilation

Saving files
Loading and Saving Files

Scope and extent
Scope and Extent

Search and match functions, regexp functions
Regexp Functions

Search and match functions, replacing strings
Replacing Strings

Search and match functions, searching buffers
Searching Buffers

Search and match functions, string matching
String Matching

Search, incremental
Incremental Search

Searching and matching functions
Search and Match Functions

Searching and replacing
Searching and Replacing

Searching buffers
Searching Buffers

Self-evaluating forms
Self-Evaluating Forms

jade

342 /348

Sequence functions
Sequence Functions

Sequences
Sequences

Sequences, cons cells
Cons Cells

Sequencing structures
Sequencing Structures

Server, Jade as a
Client Editing

Setting variables
Setting Variables

Shell
Shell

Shell mode
Shell

Shell mode, programming
Interactive Processes

Signalling processes
Signalling Processes

Simple customisation
Simple Customisation

Simple prompt

The Simple Prompt

Special buffers
Special Buffers

Special forms
Special Forms

Standard hooks
Standard Hooks

Standard keymaps
Standard Keymaps

Starting jade
Starting Jade

Startup options
Startup Options

Startup procedure
Startup Procedure

jade

343 /348

Streams
Streams

Streams, input
Input Streams

Streams, output
Output Streams

String matching
String Matching

Strings, escape sequences
Strings

Style, comments
Comment Styles

Symbol attributes
Symbol Attributes

Symbol forms
Symbol Forms

Symbol syntax
Symbol Syntax

Symbols
Symbols

Symbols, creating
Creating Symbols

Symbols, interning
Interning

Symbols, obarrays
Obarrays

Symbols, property lists
Property Lists

Synchronous processes
Synchronous Processes

Syntax of objects
Read Syntax

System information
System Information

System time
System Time

nil and t

jade

344 /348

Tab movement
Tab Movement

Texinfo mode
Texinfo mode

Text
Text

Text mode
Text mode

Text, buffer contents
Buffer Contents

Text, controlling undo
Controlling Undo

Text, deletion functions
Deletion Functions

Text, indentation functions
Indentation Functions

Text, insertion functions
Insertion Functions

Text, kill functions
Kill Functions

Text, killing
Killing

Text, misc functions
Misc Text Functions

Text, rectangular editing
Rectangular Editing

Text, regexp functions
Regexp Functions

Text, replacing strings
Replacing Strings

Text, searching and matching functions
Search and Match Functions

Text, searching buffers
Searching Buffers

Text, string matching
String Matching

Text, translation functions
Translation Functions

jade

345 /348

Text, transpose functions
Transpose Functions

The Lisp reader
The Lisp Reader

Time, system
System Time

Tips
Tips

Tips, comment styles
Comment Styles

Tips, compilation
Compilation Tips

Tips, general
General Tips

Tips, program layout
Program Layout

Translation functions
Translation Functions

Transpose functions
Transpose Functions

Type predicates
Type Predicates

Types of keymap
Types of Keymap

Types summary
Types Summary

Undo
Undo

Undo, controlling
Controlling Undo

User information
User Information

Using blocks
Using Blocks

Using buffers
Using Buffers

Using grep
Using Grep

jade

346 /348

Using Jade

Using marks

Using the prompt

Using windows

Variable

Variables

Variables, buffer-

Buffe

Variables, constan
C

Variables, definin
D

Variables, descrip

Descript

Variables, local

Variables, scope a

Scope and Ex

Variables, setting

Variables, void

Version numbers

Void variables

Window

Window font

Window information

Using Jade

Using Marks

Using the Prompt

Using Windows

Editor Concepts

Variables

local
r—-Local Variables

t
onstant Variables

g
efining Variables

tions of

ions

Local Variables

nd extent of

tent

Setting Variables

Void Variables

Revision Information

Void Variables

Editor Concepts

Window Font

Window Information

347 /348

Window, current
Editor Concepts

Windows
Windows

Windows, closing
Closing Windows

Windows, creating
Creating Windows

Windows, current

The Current Window

Windows, cursor position
The Cursor Position

Windows, displaying messages
Displaying Messages

Windows, iconifying
Iconifying Windows

Windows, killing
Killing Windows

Windows, marking blocks
Block Marking

Windows, opening
Opening Windows

Windows, other commands
Other Window Commands

Windows, rendering
Rendering

Windows, using
Using Windows

Word movement
Word Movement

Words, editing
Editing Words

Writing buffers
Writing Buffers

Writing major modes
Writing Major Modes

Writing minor modes
Writing Minor Modes

jade

348 /348

Writing

Writing

Writing

Writing

modes

modes,

Writing Modes

comments

Mode—-Specific Comments

modes,

Mode-

modes,

Mode-

expressions
Specific Expressions

indentation
Specific Indentation

	jade
	jade.guide
	jade.guide/Copying
	jade.guide/Introduction
	jade.guide/News
	jade.guide/Systems Supported
	jade.guide/Editor Concepts
	jade.guide/Key Names
	jade.guide/Modifiers
	jade.guide/Keys
	jade.guide/Example Keys
	jade.guide/Starting Jade
	jade.guide/Invocation
	jade.guide/Startup Options
	jade.guide/Startup Procedure
	jade.guide/Using Jade
	jade.guide/Invoking Commands
	jade.guide/Command Arguments
	jade.guide/The Help System
	jade.guide/Loading and Saving Files
	jade.guide/Commands To Load Files
	jade.guide/Commands To Save Files
	jade.guide/File Variables
	jade.guide/Backup Files
	jade.guide/Auto-Saving Files
	jade.guide/Accessing Compressed Files
	jade.guide/Other File Commands
	jade.guide/Editing Buffers
	jade.guide/Moving Around Buffers
	jade.guide/Undo
	jade.guide/Editing Units
	jade.guide/Editing Characters
	jade.guide/Editing Words
	jade.guide/Editing Expressions
	jade.guide/Editing Lines
	jade.guide/Cutting And Pasting
	jade.guide/Using Blocks
	jade.guide/Marking Blocks
	jade.guide/Commands on Blocks
	jade.guide/Rectangular Blocks
	jade.guide/Killing
	jade.guide/Searching and Replacing
	jade.guide/Regular Expressions
	jade.guide/Incremental Search
	jade.guide/Global Replace
	jade.guide/Query Replace
	jade.guide/Editing Modes
	jade.guide/Invoking a Mode
	jade.guide/Generic mode
	jade.guide/C mode
	jade.guide/Lisp mode
	jade.guide/Asm mode
	jade.guide/Text mode
	jade.guide/Indented-Text mode
	jade.guide/Texinfo mode
	jade.guide/Minor Modes
	jade.guide/Overwrite mode
	jade.guide/Fill mode
	jade.guide/Auto-Save mode
	jade.guide/Latin-1 mode
	jade.guide/Using Buffers
	jade.guide/Displaying Buffers
	jade.guide/Deleting Buffers
	jade.guide/Other Buffer Commands
	jade.guide/The Buffer Menu
	jade.guide/Using Windows
	jade.guide/Creating Windows
	jade.guide/Killing Windows
	jade.guide/Other Window Commands
	jade.guide/Using the Prompt
	jade.guide/The Simple Prompt
	jade.guide/The Buffer Prompt
	jade.guide/Using Marks
	jade.guide/Interrupting Jade
	jade.guide/Recursive Editing
	jade.guide/Character Images
	jade.guide/Client Editing
	jade.guide/Compiling Programs
	jade.guide/Running a Compilation
	jade.guide/Finding Errors
	jade.guide/Debugging Programs
	jade.guide/Using Grep
	jade.guide/Keeping ChangeLogs
	jade.guide/Info Mode
	jade.guide/Shell
	jade.guide/Simple Customisation
	jade.guide/Programming Jade
	jade.guide/Intro
	jade.guide/nil and t
	jade.guide/The Lisp Reader
	jade.guide/Notation
	jade.guide/Descriptions
	jade.guide/Data Types
	jade.guide/Types Summary
	jade.guide/Read Syntax
	jade.guide/Printed Representation
	jade.guide/Equality Predicates
	jade.guide/Comparison Predicates
	jade.guide/Type Predicates
	jade.guide/Garbage Collection
	jade.guide/Numbers
	jade.guide/Arithmetic Functions
	jade.guide/Bitwise Functions
	jade.guide/Numeric Predicates
	jade.guide/Characters
	jade.guide/Sequences
	jade.guide/Cons Cells
	jade.guide/Lists
	jade.guide/List Structure
	jade.guide/Building Lists
	jade.guide/Accessing List Elements
	jade.guide/Modifying Lists
	jade.guide/Association Lists
	jade.guide/Infinite Lists
	jade.guide/Vectors
	jade.guide/Strings
	jade.guide/Array Functions
	jade.guide/Sequence Functions
	jade.guide/Symbols
	jade.guide/Symbol Syntax
	jade.guide/Symbol Attributes
	jade.guide/Obarrays
	jade.guide/Creating Symbols
	jade.guide/Interning
	jade.guide/Property Lists
	jade.guide/Evaluation
	jade.guide/Symbol Forms
	jade.guide/List Forms
	jade.guide/Function Call Forms
	jade.guide/Macro Call Forms
	jade.guide/Special Forms
	jade.guide/Autoload Forms
	jade.guide/Self-Evaluating Forms
	jade.guide/Quoting
	jade.guide/Control Structures
	jade.guide/Sequencing Structures
	jade.guide/Conditional Structures
	jade.guide/Looping Structures
	jade.guide/Non-Local Exits
	jade.guide/Catch and Throw
	jade.guide/Function Exits
	jade.guide/Cleanup Forms
	jade.guide/Errors
	jade.guide/Variables
	jade.guide/Local Variables
	jade.guide/Setting Variables
	jade.guide/Scope and Extent
	jade.guide/Buffer-Local Variables
	jade.guide/Void Variables
	jade.guide/Constant Variables
	jade.guide/Defining Variables
	jade.guide/Functions
	jade.guide/Lambda Expressions
	jade.guide/Named Functions
	jade.guide/Anonymous Functions
	jade.guide/Predicate Functions
	jade.guide/Defining Functions
	jade.guide/Calling Functions
	jade.guide/Mapping Functions
	jade.guide/Macros
	jade.guide/Defining Macros
	jade.guide/Macro Expansion
	jade.guide/Compiling Macros
	jade.guide/Streams
	jade.guide/Input Streams
	jade.guide/Output Streams
	jade.guide/Input Functions
	jade.guide/Output Functions
	jade.guide/Loading
	jade.guide/Load Function
	jade.guide/Autoloading
	jade.guide/Features
	jade.guide/Compiled Lisp
	jade.guide/Compilation Functions
	jade.guide/Compilation Tips
	jade.guide/Disassembly
	jade.guide/Hooks
	jade.guide/Functions As Hooks
	jade.guide/Normal Hooks
	jade.guide/Standard Hooks
	jade.guide/Buffers
	jade.guide/Buffer Attributes
	jade.guide/Creating Buffers
	jade.guide/Modifications to Buffers
	jade.guide/Read-Only Buffers
	jade.guide/Destroying Buffers
	jade.guide/Special Buffers
	jade.guide/The Buffer List
	jade.guide/The Current Buffer
	jade.guide/Windows
	jade.guide/Opening Windows
	jade.guide/Closing Windows
	jade.guide/Iconifying Windows
	jade.guide/Displaying Messages
	jade.guide/The Current Window
	jade.guide/Window Font
	jade.guide/Window Information
	jade.guide/Rendering
	jade.guide/Block Marking
	jade.guide/Positions
	jade.guide/Position Components
	jade.guide/The Cursor Position
	jade.guide/Movement Functions
	jade.guide/Buffer Extremes
	jade.guide/Character Movement
	jade.guide/Word Movement
	jade.guide/Tab Movement
	jade.guide/Line Movement
	jade.guide/Expression Movement
	jade.guide/Positions and Offsets
	jade.guide/Marks
	jade.guide/Mark Components
	jade.guide/Mark Relocation
	jade.guide/Mark Residency
	jade.guide/Creating Marks
	jade.guide/Altering Marks
	jade.guide/Moving to Marks
	jade.guide/Glyph Tables
	jade.guide/Glyph Table Basics
	jade.guide/Glyph Positions
	jade.guide/Creating Glyph Tables
	jade.guide/Buffer Glyph Tables
	jade.guide/Input Events
	jade.guide/Keymaps
	jade.guide/Types of Keymap
	jade.guide/Creating Keymaps
	jade.guide/Binding Keys
	jade.guide/Key Lookup
	jade.guide/Prefix Keys
	jade.guide/Standard Keymaps
	jade.guide/Event Loop
	jade.guide/Event Loop Actions
	jade.guide/Commands
	jade.guide/Interactive Declarations
	jade.guide/Prefix Arguments
	jade.guide/Calling Commands
	jade.guide/Example Commands
	jade.guide/Event Loop Info
	jade.guide/Recursive Edits
	jade.guide/Reading Events
	jade.guide/Idle Actions
	jade.guide/Editing Files
	jade.guide/Reading Files Into Buffers
	jade.guide/Writing Buffers
	jade.guide/Buffer Date Stamps
	jade.guide/Buffer Modification Counts
	jade.guide/Making Backups
	jade.guide/Controlling Auto-Saves
	jade.guide/Text
	jade.guide/Buffer Contents
	jade.guide/Insertion Functions
	jade.guide/Deletion Functions
	jade.guide/Kill Functions
	jade.guide/Transpose Functions
	jade.guide/Indentation Functions
	jade.guide/Translation Functions
	jade.guide/Search and Match Functions
	jade.guide/Searching Buffers
	jade.guide/String Matching
	jade.guide/Replacing Strings
	jade.guide/Regexp Functions
	jade.guide/Rectangular Editing
	jade.guide/Controlling Undo
	jade.guide/Misc Text Functions
	jade.guide/Writing Modes
	jade.guide/Writing Major Modes
	jade.guide/Installing Modes
	jade.guide/Writing Minor Modes
	jade.guide/Mode-Specific Indentation
	jade.guide/Mode-Specific Expressions
	jade.guide/Mode-Specific Comments
	jade.guide/Prompting
	jade.guide/Files
	jade.guide/File Names
	jade.guide/File Objects
	jade.guide/Creating File Objects
	jade.guide/Destroying File Objects
	jade.guide/File Object Predicates
	jade.guide/Functions on File Objects
	jade.guide/File Information
	jade.guide/Manipulating Files
	jade.guide/Reading Directories
	jade.guide/Reading and Writing Files
	jade.guide/Processes
	jade.guide/Process Objects
	jade.guide/Asynchronous Processes
	jade.guide/Synchronous Processes
	jade.guide/Process I-O
	jade.guide/Process States
	jade.guide/Signalling Processes
	jade.guide/Process Information
	jade.guide/Interactive Processes
	jade.guide/Miscellaneous Functions
	jade.guide/System Information
	jade.guide/User Information
	jade.guide/Environment Variables
	jade.guide/System Time
	jade.guide/Revision Information
	jade.guide/Debugging
	jade.guide/Tips
	jade.guide/Comment Styles
	jade.guide/Program Layout
	jade.guide/General Tips
	jade.guide/Reporting Bugs
	jade.guide/Function Index
	jade.guide/Variable Index
	jade.guide/Key Index
	jade.guide/Concept Index

