This is Info file make.info, produced by Makeinfo-1.55 from the input file ./make.texinfo. This file documents the GNU Make utility, which determines automatically which pieces of a large program need to be recompiled, and issues the commands to recompile them. This is Edition 0.47, last updated 1 November 1994, of `The GNU Make Manual', for `make', Version 3.72 Beta. Copyright (C) 1988, '89, '90, '91, '92, '93, '94 Free Software Foundation, Inc. Permission is granted to make and distribute verbatim copies of this manual provided the copyright notice and this permission notice are preserved on all copies. Permission is granted to copy and distribute modified versions of this manual under the conditions for verbatim copying, provided that the entire resulting derived work is distributed under the terms of a permission notice identical to this one. Permission is granted to copy and distribute translations of this manual into another language, under the above conditions for modified versions, except that this permission notice may be stated in a translation approved by the Free Software Foundation. File: make.info, Node: Directory Variables, Prev: Command Variables, Up: Makefile Conventions Variables for Installation Directories ====================================== Installation directories should always be named by variables, so it is easy to install in a nonstandard place. The standard names for these variables are as follows. These two variables set the root for the installation. All the other installation directories should be subdirectories of one of these two, and nothing should be directly installed into these two directories. `prefix' A prefix used in constructing the default values of the variables listed below. The default value of `prefix' should be `/usr/local' (at least for now). `exec_prefix' A prefix used in constructing the default values of some of the variables listed below. The default value of `exec_prefix' should be `$(prefix)'. Generally, `$(exec_prefix)' is used for directories that contain machine-specific files (such as executables and subroutine libraries), while `$(prefix)' is used directly for other directories. Executable programs are installed in one of the following directories. `bindir' The directory for installing executable programs that users can run. This should normally be `/usr/local/bin', but write it as `$(exec_prefix)/bin'. `sbindir' The directory for installing executable programs that can be run from the shell, but are only generally useful to system administrators. This should normally be `/usr/local/sbin', but write it as `$(exec_prefix)/sbin'. `libexecdir' The directory for installing executable programs to be run by other programs rather than by users. This directory should normally be `/usr/local/libexec', but write it as `$(exec_prefix)/libexec'. Data files used by the program during its execution are divided into categories in two ways. * Some files are normally modified by programs; others are never normally modified (though users may edit some of these). * Some files are architecture-independent and can be shared by all machines at a site; some are architecture-dependent and can be shared only by machines of the same kind and operating system; others may never be shared between two machines. This makes for six different possibilities. However, we want to discourage the use of architecture-dependent files, aside from of object files and libraries. It is much cleaner to make other data files architecture-independent, and it is generally not hard. Therefore, here are the variables makefiles should use to specify directories: `datadir' The directory for installing read-only architecture independent data files. This should normally be `/usr/local/share', but write it as `$(prefix)/share'. As a special exception, see `$(infodir)' and `$(includedir)' below. `sysconfdir' The directory for installing read-only data files that pertain to a single machine-that is to say, files for configuring a host. Mailer and network configuration files, `/etc/passwd', and so forth belong here. All the files in this directory should be ordinary ASCII text files. This directory should normally be `/usr/local/etc', but write it as `$(prefix)/etc'. Do not install executables in this directory (they probably belong in `$(libexecdir)' or `$(sbindir))'. Also do not install files that are modified in the normal course of their use (programs whose purpose is to change the configuration of the system excluded). Those probably belong in `$(localstatedir)'. `sharedstatedir' The directory for installing architecture-independent data files which the programs modify while they run. This should normally be `/usr/local/com', but write it as `$(prefix)/com'. `localstatedir' The directory for installing data files which the programs modify while they run, and that pertain to one specific machine. Users should never need to modify files in this directory to configure the package's operation; put such configuration information in separate files that go in `datadir' or `$(sysconfdir)'. `$(localstatedir)' should normally be `/usr/local/var', but write it as `$(prefix)/var'. `libdir' The directory for object files and libraries of object code. Do not install executables here, they probably belong in `$(libexecdir)' instead. The value of `libdir' should normally be `/usr/local/lib', but write it as `$(exec_prefix)/lib'. `infodir' The directory for installing the Info files for this package. By default, it should be `/usr/local/info', but it should be written as `$(prefix)/info'. `includedir' The directory for installing header files to be included by user programs with the C `#include' preprocessor directive. This should normally be `/usr/local/include', but write it as `$(prefix)/include'. Most compilers other than GCC do not look for header files in `/usr/local/include'. So installing the header files this way is only useful with GCC. Sometimes this is not a problem because some libraries are only really intended to work with GCC. But some libraries are intended to work with other compilers. They should install their header files in two places, one specified by `includedir' and one specified by `oldincludedir'. `oldincludedir' The directory for installing `#include' header files for use with compilers other than GCC. This should normally be `/usr/include'. The Makefile commands should check whether the value of `oldincludedir' is empty. If it is, they should not try to use it; they should cancel the second installation of the header files. A package should not replace an existing header in this directory unless the header came from the same package. Thus, if your Foo package provides a header file `foo.h', then it should install the header file in the `oldincludedir' directory if either (1) there is no `foo.h' there or (2) the `foo.h' that exists came from the Foo package. To tell whether `foo.h' came from the Foo package, put a magic string in the file--part of a comment--and grep for that string. Unix-style man pages are installed in one of the following: `mandir' The directory for installing the man pages (if any) for this package. It should include the suffix for the proper section of the manual--usually `1' for a utility. It will normally be `/usr/local/man/man1', but you should write it as `$(prefix)/man/man1'. `man1dir' The directory for installing section 1 man pages. `man2dir' The directory for installing section 2 man pages. `...' Use these names instead of `mandir' if the package needs to install man pages in more than one section of the manual. *Don't make the primary documentation for any GNU software be a man page. Write a manual in Texinfo instead. Man pages are just for the sake of people running GNU software on Unix, which is a secondary application only.* `manext' The file name extension for the installed man page. This should contain a period followed by the appropriate digit; it should normally be `.1'. `man1ext' The file name extension for installed section 1 man pages. `man2ext' The file name extension for installed section 2 man pages. `...' Use these names instead of `manext' if the package needs to install man pages in more than one section of the manual. And finally, you should set the following variable: `srcdir' The directory for the sources being compiled. The value of this variable is normally inserted by the `configure' shell script. For example: # Common prefix for installation directories. # NOTE: This directory must exist when you start the install. prefix = /usr/local exec_prefix = $(prefix) # Where to put the executable for the command `gcc'. bindir = $(exec_prefix)/bin # Where to put the directories used by the compiler. libexecdir = $(exec_prefix)/libexec # Where to put the Info files. infodir = $(prefix)/info If your program installs a large number of files into one of the standard user-specified directories, it might be useful to group them into a subdirectory particular to that program. If you do this, you should write the `install' rule to create these subdirectories. Do not expect the user to include the subdirectory name in the value of any of the variables listed above. The idea of having a uniform set of variable names for installation directories is to enable the user to specify the exact same values for several different GNU packages. In order for this to be useful, all the packages must be designed so that they will work sensibly when the user does so. File: make.info, Node: Quick Reference, Next: Complex Makefile, Prev: Makefile Conventions, Up: Top Quick Reference *************** This appendix summarizes the directives, text manipulation functions, and special variables which GNU `make' understands. *Note Special Targets::, *Note Catalogue of Implicit Rules: Catalogue of Rules, and *Note Summary of Options: Options Summary, for other summaries. Here is a summary of the directives GNU `make' recognizes: `define VARIABLE' `endef' Define a multi-line, recursively-expanded variable. *Note Sequences::. `ifdef VARIABLE' `ifndef VARIABLE' `ifeq (A,B)' `ifeq "A" "B"' `ifeq 'A' 'B'' `ifneq (A,B)' `ifneq "A" "B"' `ifneq 'A' 'B'' `else' `endif' Conditionally evaluate part of the makefile. *Note Conditionals::. `include FILE' Include another makefile. *Note Including Other Makefiles: Include. `override VARIABLE = VALUE' `override VARIABLE := VALUE' `override VARIABLE += VALUE' `override define VARIABLE' `endef' Define a variable, overriding any previous definition, even one from the command line. *Note The `override' Directive: Override Directive. `export' Tell `make' to export all variables to child processes by default. *Note Communicating Variables to a Sub-`make': Variables/Recursion. `export VARIABLE' `export VARIABLE = VALUE' `export VARIABLE := VALUE' `export VARIABLE += VALUE' `unexport VARIABLE' Tell `make' whether or not to export a particular variable to child processes. *Note Communicating Variables to a Sub-`make': Variables/Recursion. `vpath PATTERN PATH' Specify a search path for files matching a `%' pattern. *Note The `vpath' Directive: Selective Search. `vpath PATTERN' Remove all search paths previously specified for PATTERN. `vpath' Remove all search paths previously specified in any `vpath' directive. Here is a summary of the text manipulation functions (*note Functions::.): `$(subst FROM,TO,TEXT)' Replace FROM with TO in TEXT. *Note Functions for String Substitution and Analysis: Text Functions. `$(patsubst PATTERN,REPLACEMENT,TEXT)' Replace words matching PATTERN with REPLACEMENT in TEXT. *Note Functions for String Substitution and Analysis: Text Functions. `$(strip STRING)' Remove excess whitespace characters from STRING. *Note Functions for String Substitution and Analysis: Text Functions. `$(findstring FIND,TEXT)' Locate FIND in TEXT. *Note Functions for String Substitution and Analysis: Text Functions. `$(filter PATTERN...,TEXT)' Select words in TEXT that match one of the PATTERN words. *Note Functions for String Substitution and Analysis: Text Functions. `$(filter-out PATTERN...,TEXT)' Select words in TEXT that *do not* match any of the PATTERN words. *Note Functions for String Substitution and Analysis: Text Functions. `$(sort LIST)' Sort the words in LIST lexicographically, removing duplicates. *Note Functions for String Substitution and Analysis: Text Functions. `$(dir NAMES...)' Extract the directory part of each file name. *Note Functions for File Names: Filename Functions. `$(notdir NAMES...)' Extract the non-directory part of each file name. *Note Functions for File Names: Filename Functions. `$(suffix NAMES...)' Extract the suffix (the last `.' and following characters) of each file name. *Note Functions for File Names: Filename Functions. `$(basename NAMES...)' Extract the base name (name without suffix) of each file name. *Note Functions for File Names: Filename Functions. `$(addsuffix SUFFIX,NAMES...)' Append SUFFIX to each word in NAMES. *Note Functions for File Names: Filename Functions. `$(addprefix PREFIX,NAMES...)' Prepend PREFIX to each word in NAMES. *Note Functions for File Names: Filename Functions. `$(join LIST1,LIST2)' Join two parallel lists of words. *Note Functions for File Names: Filename Functions. `$(word N,TEXT)' Extract the Nth word (one-origin) of TEXT. *Note Functions for File Names: Filename Functions. `$(words TEXT)' Count the number of words in TEXT. *Note Functions for File Names: Filename Functions. `$(firstword NAMES...)' Extract the first word of NAMES. *Note Functions for File Names: Filename Functions. `$(wildcard PATTERN...)' Find file names matching a shell file name pattern (*not* a `%' pattern). *Note The Function `wildcard': Wildcard Function. `$(shell COMMAND)' Execute a shell command and return its output. *Note The `shell' Function: Shell Function. `$(origin VARIABLE)' Return a string describing how the `make' variable VARIABLE was defined. *Note The `origin' Function: Origin Function. `$(foreach VAR,WORDS,TEXT)' Evaluate TEXT with VAR bound to each word in WORDS, and concatenate the results. *Note The `foreach' Function: Foreach Function. Here is a summary of the automatic variables. *Note Automatic Variables: Automatic, for full information. The file name of the target. The target member name, when the target is an archive member. The name of the first dependency. The names of all the dependencies that are newer than the target, with spaces between them. For dependencies which are archive members, only the member named is used (*note Archives::.). The names of all the dependencies, with spaces between them. For dependencies which are archive members, only the member named is used (*note Archives::.). The value of `$^' omits duplicate dependencies, while `$+' retains them and preserves their order. The stem with which an implicit rule matches (*note How Patterns Match: Pattern Match.). `$(@D)' `$(@F)' The directory part and the file-within-directory part of `$@'. `$(*D)' `$(*F)' The directory part and the file-within-directory part of `$*'. `$(%D)' `$(%F)' The directory part and the file-within-directory part of `$%'. `$( tar-`sed -e '/version_string/!d' \ -e 's/[^0-9.]*\([0-9.]*\).*/\1/' \ -e q version.c`.shar.Z dist: $(SRCS) $(AUX) echo tar-`sed \ -e '/version_string/!d' \ -e 's/[^0-9.]*\([0-9.]*\).*/\1/' \ -e q version.c` > .fname -rm -rf `cat .fname` mkdir `cat .fname` ln $(SRCS) $(AUX) `cat .fname` -rm -rf `cat .fname` .fname tar chZf `cat .fname`.tar.Z `cat .fname` tar.zoo: $(SRCS) $(AUX) -rm -rf tmp.dir -mkdir tmp.dir -rm tar.zoo for X in $(SRCS) $(AUX) ; do \ echo $$X ; \ sed 's/$$/^M/' $$X \ > tmp.dir/$$X ; done cd tmp.dir ; zoo aM ../tar.zoo * -rm -rf tmp.dir