
Autoconf
Generating Automatic Configuration Scripts

Edition 1.11, for Autoconf version 1.11
May 1994

by David MacKenzie, Roland McGrath, and Noah Friedman

Copyright c© 1992, 1993, 1994 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Foundation.

1

1 Introduction

Autoconf is a tool for producing shell scripts that automatically configure software source
code packages to adapt to many kinds of UNIX-like systems. The configuration scripts
produced by Autoconf are independent of Autoconf when they are run, so their users do
not need to have Autoconf.

The configuration scripts produced by Autoconf normally require no manual user inter-
vention when run; they do not even take an argument specifying the system type. Instead,
they test for the presence of each feature that the software package they are for might
need individually. (Before each check, they print a one-line message stating what they are
checking for, so the user doesn’t get too bored while waiting for the script to finish.) As a
result, they deal well with systems that are hybrids or customized from the more common
UNIX variants. There is no need to maintain files that list the features supported by each
release of each variant of UNIX.

For each software package that Autoconf is used with, it creates a configuration script
from a template file that lists the operating system features that the package can use. After
the shell code to recognize and respond to an operating system feature has been written,
Autoconf allows it to be shared by many software packages that can use (or need) that
feature. If it later turns out that the shell code needs adjustment for some reason, it needs
to be changed in only one place; all of the the configuration scripts can be regenerated
automatically to take advantage of the updated code.

Larry Wall’s Metaconfig package is similar in purpose to Autoconf, but is more general.
The scripts it produces require manual user intervention, which is quite inconvenient when
configuring large source trees.

Unlike Metaconfig scripts, Autoconf scripts can support cross-compiling, if some care
is taken in writing them. They should avoid executing test programs, since test programs
compiled with a cross-compiler can not be executed on the host system. Also, they shouldn’t
do anything that tests features of the host system instead of the target system.

Autoconf imposes some restrictions on the names of macros used with #ifdef in C
programs (see [Preprocessor Symbol Index], page 44).

Autoconf requires GNU m4 in order to generate the scripts. It uses features that some
UNIX versions of m4 do not have. It also overflows internal limits of some versions of m4,
including GNU m4 1.0; so use a later version of GNU m4.

Autoconf does not work well with GNU C library releases before 1.06. The GNU C
library contains stubs (which always return an error) for functions that are not available
instead of omitting them from the library. As a result, Autoconf scripts are fooled into
thinking that those functions are available. This problem does not exist with releases 1.06
and later of the GNU C library, which define C preprocessor macros that the Autoconf
macros AC_FUNC_CHECK and AC_REPLACE_FUNCS test, indicating that certain functions are
stubs (see Section 5.2 [General Feature Tests], page 20, for more information on checking
for functions).

Autoconf was written by David MacKenzie, with help from François Pinard, Karl Berry,
Richard Pixley, Ian Lance Taylor, Roland McGrath, Noah Friedman, and david d zuhn. It
was inspired by Brian Fox’s automatic configuration system for Bash, by Larry Wall’s

Chapter 1: Introduction 2

Metaconfig, and by Richard Stallman, Richard Pixley, and John Gilmore’s configuration
tools for the GNU compiler and object file utilities.

Mail suggestions and bug reports for Autoconf to bug-gnu-utils@prep.ai.mit.edu.
Please include the Autoconf version number, which you can get by running ‘autoconf
--version’.

3

2 Distributing Autoconf Output

The configuration scripts that Autoconf produces are covered by the GNU General Public
License. This is because they consist almost entirely of parts of Autoconf itself, rearranged
somewhat, and Autoconf is distributed under the terms of the GPL. As applied to Au-
toconf, the GPL just means that you need to distribute configure.in, and aclocal.m4,
acconfig.h, and config.h.top and config.h.bot if you use them, along with configure.

Programs that use Autoconf scripts to configure themselves do not automatically come
under the GPL. Distributing an Autoconf configuration script as part of a program is
considered to be mere aggregation of that work with the Autoconf script. Such programs
are not derivative works based on Autoconf; only their configuration scripts are. We still
encourage software authors to distribute their work under terms like those of the GPL, but
doing so is not required to use Autoconf.

4

3 Making configure Scripts

The configuration scripts that Autoconf produces are by convention called configure.
When run, configure creates several files, replacing configuration parameters in them
with values appropriate for the system being configured. The files that configure creates
are:

• one or more Makefile files (one in each subdirectory of the package), from template
Makefile.in files (see Chapter 7 [Makefiles], page 34);

• optionally, a C header file, the name of which is configurable, containing #define

statements (see Section 5.1 [Setup], page 19);

• a shell script called config.status that, when run, will recreate the files listed above
(see Section 8.2 [Invoking config.status], page 38).

To create a configure script with Autoconf, you need to write an Autoconf input file
(configure.in) and run Autoconf on it to produce the script. If you write your own
feature tests to supplement those that come with Autoconf, you might also write a file
called aclocal.m4. If you use a C header file to contain #define directives, you might
also write config.h.top, config.h.bot, and acconfig.h, and you will distribute the
Autoconf-generated file config.h.in with the package.

Here is a diagram showing how the files that can be used in configuration are pro-
duced. Programs that are executed are suffixed by ‘*’. Optional files are enclosed in square
brackets (‘[]’). autoconf and autoheader also read the installed files acgeneral.m4 and
acspecific.m4, and also an installed aclocal.m4 if it exists.

Files used in preparing a software package for distribution:

configure.in --. .------> autoconf* -----> configure

+---+

[aclocal.m4] --’ ‘---.

+--> [autoheader*] -> [config.h.in]

[acconfig.h] ----. |

+-----’

[config.h.top] --+

[config.h.bot] --’

Makefile.in -------------------------------> Makefile.in

Files used in configuring a software package:

configure* ------------.

|

[config.h.in] -. v .-> [config.h] -.

+--> config.status* -+ +--> make*

Makefile.in ---’ ‘-> Makefile ---’

3.1 Writing configure.in

To produce a configure script for a software package, create a file called configure.in

that contains invocations of the Autoconf macros that test the system features your package
needs or can use. Autoconf macros already exist to check for many features; see Chapter 4

Chapter 3: Making configure Scripts 5

[Specific Tests], page 7, for their descriptions. For most other features, you can use Autoconf
template macros to produce custom checks; see Section 5.2 [General Feature Tests], page 20,
for information about them. For especially tricky or specialized features, configure.in
might need to contain some hand-crafted shell commands. See Chapter 6 [Writing Macros],
page 29, for guidelines on writing tests from scratch.

Every configure.inmust begin with a call to AC_INIT and end with a call to AC_OUTPUT
(see Section 5.1 [Setup], page 19). Other than that, the order in which configure.in calls
the Autoconf macros is generally not important, except that some macros rely on other
macros having been called first, because they check previously set values of some variables
to decide what to do. These macros are noted in the individual descriptions (see Chapter 4
[Specific Tests], page 7).

To encourage consistency, here is a suggested order for calling the Autoconf macros. A
few macros need to be called in a different order from the one given here; they are noted in
their individual descriptions (see Chapter 4 [Specific Tests], page 7). Note that there must
not be any space between the macro name and the open parentheses.

AC_INIT(file)

checks for alternative programs
checks for UNIX variants that set C preprocessor variables
checks for header files
checks for typedefs
checks for library functions
checks for structures
checks for compiler characteristics
checks for system services
other checks for UNIX variants
AC_OUTPUT([file...])

You can include comments in configure.in files by starting them with the m4 predefined
macro dnl, which discards text up through the next newline. These comments do not appear
in the generated configure scripts. For example, it is helpful to begin configure.in files
with a line like this:

dnl Process this file with autoconf to produce a configure script.

See Section 9.1 [Sample configure.in], page 40, for an example of a real configure.in
script.

3.2 Invoking autoconf

To create configure from configure.in, run the autoconf program with no arguments.
autoconf processes configure.in with the m4macro processor, using the Autoconf macros.
If you give autoconf an argument, it reads that file instead of configure.in and writes the
configuration script to the standard output instead of to configure. If you give autoconf
the argument ‘-’, it reads the standard input instead of configure.in and writes the
configuration script on the standard output.

The Autoconf macros are defined in two or more files. Two of the files are distributed
with Autoconf: autoconf first reads acgeneral.m4 (see Chapter 5 [General Purpose
Macros], page 19), then acspecific.m4 (see Chapter 4 [Specific Tests], page 7). After
reading them, autoconf looks for an optional file called aclocal.m4, first in the directory

Chapter 3: Making configure Scripts 6

that contains other installed Autoconf macro files, and then in the current directory.
If both files exist, it uses both of them. Those files can contain your site’s own locally
written Autoconf macro definitions (see Chapter 6 [Writing Macros], page 29, for more
information). If a macro is defined in more than one of the files that autoconf reads, the
last definition it reads overrides the earlier ones.

You can override the directory where autoconf looks for the installed macro files by
setting the AC_MACRODIR environment variable to a different directory. You can also give
autoconf the ‘--macrodir’ option, which overrides AC_MACRODIR.

autoconf also accepts the options --version, which prints the Autoconf version number
and exits, and --help, which prints a summary of the command-line options and exits.

3.3 Invoking autoheader

You can use the autoheader program to create a template file of C ‘#define’ statements
for configure to use. By default, the file that autoheader creates is called config.h.in;
if configure.in invokes AC_CONFIG_HEADER(file), autoheader creates file.in.

autoheader scans configure.in and figures out which C preprocessor symbols it
might define. It copies comments and #define and #undef statements from a file called
acconfig.h, which comes with and is installed with Autoconf. It also uses a file called
acconfig.h in the current directory, if present; you must create that file to contain entries
for any additional symbols that you AC_DEFINE. For symbols defined by AC_HAVE_HEADERS,
AC_HAVE_FUNCS, AC_SIZEOF_TYPE, or AC_HAVE_LIBRARY, autoheader generates comments
and #undef statements itself rather than copying them from a file, since the possible
symbols are effectively limitless.

The file that autoheader creates usually contains only #define and #undef state-
ments and their accompanying comments. However, if a file called file.top (typically
config.h.top) exists in the current directory, autoheader copies that file to the beginning
of its output.

If you give autoheader an argument, it uses that file instead of configure.in and writes
the header file to the standard output instead of to config.h.in. If you give autoheader

an argument of ‘-’, it reads the standard input instead of configure.in and writes the
header file to the standard output.

You can override the directory where autoheader looks for the installed macro and
acconfig.h files by setting the AC_MACRODIR environment variable to a different directory.
You can also give autoheader the ‘--macrodir’ option, which overrides AC_MACRODIR.

autoheader also accepts the options --version, which prints the Autoconf version
number and exits, and --help, which prints a summary of the command-line options and
exits.

7

4 Specific Tests

These macros test for particular operating system features that packages might need or
want to use. If you need to test for a feature that none of these macros check for, you can
probably do it by calling one of the general purpose test macros with appropriate arguments
(see Section 5.2 [General Feature Tests], page 20).

All of these macros that set make variables call AC_SUBST on those variables (see
Section 5.4 [Setting Variables], page 24, for details about AC_SUBST). The phrase “define
name” is used below as a shorthand to mean either add ‘-Dname=1’ to the make variable
DEFS, or put ‘#define name 1’ in the configuration header file, depending on whether
AC_CONFIG_HEADER has been called. See Section 5.4 [Setting Variables], page 24, for more
information.

Within each section below, the macros are listed in alphabetical order. The macros are
generally named for the make variables or C preprocessor macros that they define; those
names are based largely on what existing GNU programs use. These macros are defined in
the file acspecific.m4.

4.1 Alternative Programs

The following macros check for the presence or behavior of particular programs:

[Macro]AC_GCC_TRADITIONAL
Add ‘-traditional’ to make variable CC if using the GNU C compiler and ioctl

does not work properly without ‘-traditional’. This macro calls AC_PROG_CC and
AC_PROG_CPP if they haven’t been called already.

[Macro]AC_LN_S
If ‘ln -s’ works on the current filesystem (the O.S. and filesystem support symbolic
links), set shell and make variable LN_S to ‘ln -s’, otherwise set it to ‘ln’.

[Macro]AC_MINUS_C_MINUS_O
If the C compiler does not accept the ‘-c’ and ‘-o’ options simultaneously, define
NO_MINUS_C_MINUS_O.

[Macro]AC_PROG_AWK
Check for mawk, gawk, nawk, and awk, in that order, and set make variable AWK to the
first one that it finds.

[Macro]AC_PROG_CC
If gcc is found, set make variable CC to ‘gcc’, and set shell variable GCC to 1 for use
by macros such as AC_GCC_TRADITIONAL.

[Macro]AC_PROG_CPP
Set shell and make variable CPP to a command that runs the C preprocessor. If ‘$CC
-E’ doesn’t work, it uses /lib/cpp. It is only portable to run CPP on files with a .c

extension.

If the current language is C (see Section 5.6 [Language Choice], page 26), many
of the specific test macros use the value of CPP indirectly by calling AC_TEST_CPP,

Chapter 4: Specific Tests 8

AC_HEADER_CHECK, AC_HEADER_EGREP, or AC_PROGRAM_EGREP. Those macros call this
macro first if it hasn’t been called already. It calls AC_PROG_CC if it hasn’t been called
already.

[Macro]AC_PROG_CXX
Determine a C++ compiler to use. Check if the environment variable CXX or CCC
(in that order) is set; if so, set make variable CXX to its value. Otherwise search for
a C++ compiler under likely names (c++, g++, gcc, and CC). If none of those checks
succeed, as a last resort set CXX to gcc.

[Macro]AC_PROG_CXXCPP
Set shell and make variable CXXCPP to a command that runs the C++ preprocessor. If
‘$CXX -E’ doesn’t work, it uses /lib/cpp. It is only portable to run CXXCPP on files
with a .C or .cc extension.

If the current language is C++ (see Section 5.6 [Language Choice], page 26), many of
the specific test macros use the value of CXXCPP indirectly by calling AC_TEST_CPP,
AC_HEADER_CHECK, AC_HEADER_EGREP, or AC_PROGRAM_EGREP. Those macros call this
macro first if it hasn’t been called already. This macro calls AC_PROG_CXX if it hasn’t
been called already.

[Macro]AC_PROG_INSTALL
Set make variable INSTALL to ‘install -c’ if install is found and is compatible with
the BSD and GNU versions. Otherwise, set INSTALL to ‘dir/install.sh -c’, where
it checks for install.sh in the directories $srcdir, $srcdir/.., and $srcdir/../..

to determine dir.

This macro screens out the false matches /etc/install, /usr/sbin/install, and
other instances of install known not to work. It also sets the variable INSTALL_

PROGRAM to ‘${INSTALL}’ and INSTALL_DATA to ‘${INSTALL} -m 644’.

If you need to use your own install.sh because it has features not found in standard
install programs, there is no reason to use AC_PROG_INSTALL; just put the pathname
of your script into your Makefile.in files.

[Macro]AC_PROG_LEX
If flex is found, set make variable LEX to ‘flex’ and LEXLIB to ‘-lfl’, if that library
is in a standard place. Otherwise set LEX to ‘lex’ and LEXLIB to ‘-ll’.

[Macro]AC_PROG_RANLIB
Set make variable RANLIB to ‘ranlib’ if ranlib is found, otherwise to ‘:’ (do nothing).

[Macro]AC_PROG_YACC
If bison is found, set make variable YACC to ‘bison -y’. Otherwise, if byacc is found,
set YACC to ‘byacc’. Otherwise set YACC to ‘yacc’.

[Macro]AC_RSH
If a remote shell is available, put ‘rtapelib.o’ in make variable RTAPELIB. Otherwise,
also do so if netdb.h exists (implying the rexec function), and in addition define
HAVE_NETDB_H. If neither a remote shell nor rexec is available, define NO_REMOTE.

Chapter 4: Specific Tests 9

[Macro]AC_SET_MAKE
If make predefines the variable MAKE, define make variable SET_MAKE to be empty.
Otherwise, define SET_MAKE to contain ‘MAKE=make’. Calls AC_SUBST for SET_MAKE.

In recent versions of make, the variable MAKE contains the name of the make program
plus options it was given. It is used when running make recursively in subdirectories.
But some old versions of make don’t set the MAKE variable. This macro allows use of
MAKE on all systems.

If you use this macro, simply place a line like this in your Makefile.in file(s):

@SET_MAKE@

[Macro]AC_YYTEXT_POINTER
Define YYTEXT_POINTER if yytext is a ‘char *’ instead of a ‘char []’. This depends
on whether lex or flex is being used. This macro calls AC_PROG_CPP (or AC_PROG_
CXXCPP if C++ is the current language, see Section 5.6 [Language Choice], page 26)
and AC_PROG_LEX if they haven’t been called already.

This macro replaces AC_DECLARE_YYTEXT, which didn’t work.

4.2 Header Files

The following macros check for the presence of certain C header files:

[Macro]AC_DIR_HEADER
If the system has dirent.h, define DIRENT; otherwise, if it has sys/ndir.h, define
SYSNDIR; otherwise, if it has sys/dir.h, define SYSDIR; otherwise, if it has ndir.h,
define NDIR. Also, if the directory library header file contains a declaration of the
closedir function with a void return type, define VOID_CLOSEDIR.

The directory library declarations in the source code should look something like the
following, which assumes that you have also called ‘AC_HAVE_HEADERS(unistd.h)’:

Chapter 4: Specific Tests 10

#ifdef HAVE_UNISTD_H

#include <sys/types.h>

#include <unistd.h>

#endif

/* unistd.h defines _POSIX_VERSION on POSIX.1 systems. */

#if defined(DIRENT) || defined(_POSIX_VERSION)

#include <dirent.h>

#define NLENGTH(dirent) (strlen((dirent)->d_name))

#else /* not (DIRENT or _POSIX_VERSION) */

#define dirent direct

#define NLENGTH(dirent) ((dirent)->d_namlen)

#ifdef SYSNDIR

#include <sys/ndir.h>

#endif /* SYSNDIR */

#ifdef SYSDIR

#include <sys/dir.h>

#endif /* SYSDIR */

#ifdef NDIR

#include <ndir.h>

#endif /* NDIR */

#endif /* not (DIRENT or _POSIX_VERSION) */

Using the above declarations, the program would declare variables to be type struct
dirent, not struct direct, and would access the length of a directory entry name
by passing a pointer to a struct dirent to the NLENGTH macro.

[Macro]AC_MAJOR_HEADER
If sys/types.h does not define major, minor, and makedev, but sys/mkdev.h

does, define MAJOR_IN_MKDEV; otherwise, if sys/sysmacros.h does, define
MAJOR_IN_SYSMACROS.

[Macro]AC_MEMORY_H
Define NEED_MEMORY_H if memcpy, memcmp, etc. are not declared in string.h and
memory.h exists. This macro is obsolete; instead, use AC_HAVE_HEADERS(memory.h).
See the example for AC_STDC_HEADERS.

[Macro]AC_STDC_HEADERS
Define STDC_HEADERS if the system has ANSI C header files. Specifically, this macro
checks for stdlib.h, stdarg.h, string.h, and float.h; if the system has those, it
probably has the rest of the ANSI C header files. This macro also checks whether
string.h declares memchr (and thus presumably the other mem functions), whether
stdlib.h declare free (and thus presumably malloc and other related functions),
and whether the ctype.h macros work on characters with the high bit set, as ANSI
C requires.

Use STDC_HEADERS instead of __STDC__ to determine whether the system has ANSI-
compliant header files (and probably C library functions) because many systems that
have GCC do not have ANSI C header files.

Chapter 4: Specific Tests 11

To check whether to use the System V/ANSI C string functions and header file, you
can put the following in configure.in:

AC_STDC_HEADERS

AC_HAVE_HEADERS(string.h memory.h)

Then, in the code, use a test like this:

#if STDC_HEADERS || HAVE_STRING_H

#include <string.h>

/* An ANSI string.h and pre-ANSI memory.h might conflict. */

#if !STDC_HEADERS && HAVE_MEMORY_H

#include <memory.h>

#endif /* not STDC_HEADERS and HAVE_MEMORY_H */

#define index strchr

#define rindex strrchr

#define bcopy(s, d, n) memcpy ((d), (s), (n))

#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))

#define bzero(s, n) memset ((s), 0, (n))

#else /* not STDC_HEADERS and not HAVE_STRING_H */

#include <strings.h>

/* memory.h and strings.h conflict on some systems. */

#endif /* not STDC_HEADERS and not HAVE_STRING_H */

This example asssumes that your code uses the BSD style functions. If you use the
System V/ANSI C style functions, you will need to replace the macro definitions with
ones that go in the other direction.

This macro calls AC_PROG_CPP or AC_PROG_CXXCPP (depending on which language is
current, see Section 5.6 [Language Choice], page 26), if it hasn’t been called already.

[Macro]AC_UNISTD_H
Define HAVE_UNISTD_H if the system has unistd.h. This macro is obsolete; instead,
use ‘AC_HAVE_HEADERS(unistd.h)’.

The way to check if the system supports POSIX.1 is:

#if HAVE_UNISTD_H

#include <sys/types.h>

#include <unistd.h>

#endif

#ifdef _POSIX_VERSION

/* Code for POSIX.1 systems. */

#endif

_POSIX_VERSION is defined when unistd.h is included on POSIX.1 systems. If there
is no unistd.h, it is definitely not a POSIX.1 system. However, some non-POSIX.1
systems do have unistd.h.

[Macro]AC_USG
Define USG if the system does not have strings.h, rindex, bzero, etc. This implies
that it has string.h, strrchr, memset, etc.

Chapter 4: Specific Tests 12

The symbol USG is obsolete. Instead of this macro, use AC_HAVE_HEADERS(string.h)
and use HAVE_STRING_H in your code. See the example for AC_STDC_HEADERS.

[Macro]AC_SYS_SIGLIST_DECLARED
Define SYS_SIGLIST_DECLARED if the variable sys_siglist is declared in a system
header file, either signal.h or unistd.h.

4.3 Typedefs

The following macros check for predefined C types:

[Macro]AC_GETGROUPS_T
Define GETGROUPS_T to be whichever of gid_t or int is the base type of the array
argument to getgroups.

[Macro]AC_MODE_T
If mode_t is not defined in sys/types.h, define mode_t to be int.

[Macro]AC_OFF_T
If off_t is not defined in sys/types.h, define off_t to be long.

[Macro]AC_PID_T
If pid_t is not defined in sys/types.h, define pid_t to be int.

[Macro]AC_RETSIGTYPE
If signal.h declares signal as returning a pointer to a function returning void,
define RETSIGTYPE to be void; otherwise, define it to be int.

Define signal handlers as returning type RETSIGTYPE:

RETSIGTYPE

hup_handler ()

{

...

}

[Macro]AC_SIZE_T
If size_t is not defined in sys/types.h, define size_t to be unsigned.

[Macro]AC_UID_T
If uid_t is not defined in sys/types.h, define uid_t to be int and gid_t to be int.

4.4 Library Functions

The following macros check for particular C library functions:

[Macro]AC_ALLOCA
Check how to get alloca. Tries to get a builtin version by checking for alloca.h or
the predefined C preprocessor macros __GNUC__ and _AIX. If that fails, it looks for
a function in the standard C library. If that fails, it sets the make variable ALLOCA

to ‘alloca.o’ and defines C_ALLOCA (so programs can periodically call ‘alloca(0)’
to garbage collect). This variable is separate from LIBOBJS so multiple programs can

Chapter 4: Specific Tests 13

share the value of ALLOCA without needing to create an actual library, in case only
some of them use the code in LIBOBJS.

If this macro finds alloca.h, it defines HAVE_ALLOCA_H.

This macro does not try to get alloca from the SVR3 libPW or the SVR4 libucb

because those libraries contain some incompatible functions that cause trouble. Some
versions do not even contain alloca or contain a buggy version. If you still want
to use their alloca, use ar to extract alloca.o from them instead of compiling
alloca.c.

Source files that use alloca should start with a piece of code like the following, to
declare it properly. Note that in some versions of AIX, the declaration of alloca
must precede everything else except for comments and preprocessor directives. The
#pragma directive is indented so that pre-ANSI C compilers will ignore it, rather than
choke on it.

/* AIX requires this to be the first thing in the file. */

#ifdef __GNUC__

#define alloca __builtin_alloca

#else /* not __GNUC__ */

#if HAVE_ALLOCA_H

#include <alloca.h>

#else /* not HAVE_ALLOCA_H */

#ifdef _AIX

#pragma alloca

#else /* not _AIX */

char *alloca ();

#endif /* not _AIX */

#endif /* not HAVE_ALLOCA_H */

#endif /* not __GNUC__ */

[Macro]AC_GETLOADAVG
Check how to get the system load averages. If the system has the getloadavg func-
tion, this macro defines HAVE_GETLOADAVG, and adds to LIBS any libraries needed to
get that function.

Otherwise, it adds ‘getloadavg.o’ to the make variable LIBOBJS, and possibly defines
several other C preprocessor macros and make variables:

1. It defines SVR4, DGUX, UMAX, or UMAX4_3 if on those systems.

2. If it finds nlist.h, it defines NLIST_STRUCT.

3. If ‘struct nlist’ has an ‘n_un’ member, it defines NLIST_NAME_UNION.

4. If compiling getloadavg.c defines LDAV_PRIVILEGED, programs need to be in-
stalled specially on this system for getloadavg to work, and this macro defines
GETLOADAVG_PRIVILEGED.

5. This macro always defines NEED_SETGID, for make. The value is ‘true’ if special
installation is required, ‘false’ if not. If NEED_SETGID is ‘true’, it sets KMEM_

GROUP to the name of the group that should own the installed program.

[Macro]AC_MMAP
If the mmap function exists and works correctly, define HAVE_MMAP.

Chapter 4: Specific Tests 14

[Macro]AC_SETVBUF_REVERSED
If setvbuf takes the buffering type as its second argument and the buffer pointer as
the third, instead of the other way around, define SETVBUF_REVERSED. This is the
case on System V before release 3.

[Macro]AC_STRCOLL
If the strcoll function exists and works correctly, define HAVE_STRCOLL. This does
a bit more than ‘AC_HAVE_FUNCS(strcoll)’, because some systems have incorrect
definitions of strcoll, which should not be used.

[Macro]AC_UTIME_NULL
If ‘utime(file, NULL)’ sets file’s timestamp to the present, define HAVE_UTIME_

NULL.

[Macro]AC_VFORK
If vfork.h is found, define HAVE_VFORK_H. If a working vfork is not found, define
vfork to be fork. This macro checks for several known errors in implementations
of vfork and considers the system to not have a working vfork if it detects any of
them.

[Macro]AC_VPRINTF
If vprintf is found, define HAVE_VPRINTF. Otherwise, if _doprnt is found, define
HAVE_DOPRNT. (If vprintf is available, you may assume that vfprintf and vsprintf

are also available.)

[Macro]AC_WAIT3
If wait3 is found and fills in the contents of its third argument (a ‘struct rusage

*’), which HP-UX does not do, define HAVE_WAIT3.

4.5 Structures

The following macros check for certain structures or structure members:

[Macro]AC_STAT_MACROS_BROKEN
If the macros S_ISDIR, S_ISREG et al. defined in sys/stat.h do not work properly
(returning false positives), define STAT_MACROS_BROKEN. This is the case on Tektronix
UTekV, Amdahl UTS and Motorola System V/88.

[Macro]AC_ST_BLKSIZE
If struct stat contains an st_blksize member, define HAVE_ST_BLKSIZE.

[Macro]AC_ST_BLOCKS
If struct stat contains an st_blocks member, define HAVE_ST_BLOCKS. Otherwise,
add ‘fileblocks.o’ to the make variable LIBOBJS.

[Macro]AC_ST_RDEV
If struct stat contains an st_rdev member, define HAVE_ST_RDEV.

[Macro]AC_TIME_WITH_SYS_TIME
If a program may include both time.h and sys/time.h, define TIME_WITH_SYS_

TIME. On some older systems, sys/time.h includes time.h, but time.h is not pro-
tected against multiple inclusion, so programs should not explicitly include both files.

Chapter 4: Specific Tests 15

This macro is useful in programs that use, for example, struct timeval or struct
timezone as well as struct tm. It is best used in conjunction with HAVE_SYS_TIME_H.

#ifdef TIME_WITH_SYS_TIME

#include <sys/time.h>

#include <time.h>

#else

#ifdef HAVE_SYS_TIME_H

#include <sys/time.h>

#else

#include <time.h>

#endif

#endif

[Macro]AC_STRUCT_TM
If time.h does not define struct tm, define TM_IN_SYS_TIME, which means that in-
cluding sys/time.h defines struct tm.

[Macro]AC_TIMEZONE
Figure out how to get the current timezone. If struct tm has a tm_zone member,
define HAVE_TM_ZONE. Otherwise, if the external array tzname is found, define HAVE_
TZNAME. This macro calls AC_STRUCT_TM if it hasn’t been called already.

4.6 Compiler Characteristics

The following macros check for C compiler or machine architecture features:

[Macro]AC_ARG_ARRAY
If the address of an argument to a C function can not be used like the start of an
array, define NO_ARG_ARRAY. This ability allows a sequence of arguments with the
same type to be accessed as if they were an array of values.

[Macro]AC_CROSS_CHECK
If the C compiler being used does not produce executables that can run on the system
where configure is being run, set the shell variable cross_compiling to 1. This
information can be used by AC_TEST_PROGRAM to determine whether to take a default
action instead of trying to run a test program (see Section 5.2 [General Feature Tests],
page 20).

[Macro]AC_CHAR_UNSIGNED
If the C type char is unsigned, define __CHAR_UNSIGNED__, unless the C compiler
predefines it.

[Macro]AC_CONST
If the C compiler does not fully support the keyword const, define const to be empty.
Some C compilers that do not define __STDC__ do support const; some compilers
that define __STDC__ do not completely support const. Programs can simply use
const as if every C compiler supported it; for those that don’t, the Makefile or
configuration header file will define it as empty. (If using a configuration header file,
the program should include it before any other header files, to prevent inconsistencies
in declarations.)

Chapter 4: Specific Tests 16

[Macro]AC_INLINE
If the C compiler is a version of GCC that supports the keyword __inline but not
inline (such as some NeXT versions), define inline to be __inline. This macro
calls AC_PROG_CC if it hasn’t been called already.

[Macro]AC_INT_16_BITS
If the C type int is 16 bits wide, define INT_16_BITS. This macro is obsolete; it is
more general to use ‘AC_SIZEOF_TYPE(int)’ instead (see Section 5.2 [General Feature
Tests], page 20).

[Macro]AC_LONG_64_BITS
If the C type long int is 64 bits wide, define LONG_64_BITS. This macro is obsolete;
it is more general to use ‘AC_SIZEOF_TYPE(long)’ instead (see Section 5.2 [General
Feature Tests], page 20).

[Macro]AC_LONG_DOUBLE
If the C compiler supports the long double type, define HAVE_LONG_DOUBLE. Some
C compilers that do not define __STDC__ do support the long double type; some
compilers that define __STDC__ do not support long double.

[Macro]AC_WORDS_BIGENDIAN
If words are stored with the most significant byte first (like Motorola and SPARC,
but not Intel and VAX, CPUs), define WORDS_BIGENDIAN.

4.7 System Services

The following macros check for operating system services:

[Macro]AC_FIND_X
Try to locate the X Window System include files and libraries. Try first by running
xmkmf on a trivial Imakefile and examining the Makefile that it produces. If that
fails (such as if xmkmf is not present), look for them in several directories where they
often reside. If either method is successful, set the shell variables x_includes and
x_libraries to their locations, unless they are in directories the compiler searches
by default.

If both methods fail, or the user gave the command line option ‘--without-x’, set
the shell variable no_x to ‘true’; otherwise set it to the empty string.

The command line options ‘--x-includes=dir’ and ‘--x-libraries=dir’ override
the values chosen by this macro.

[Macro]AC_FIND_XTRA
An enhanced version of AC_FIND_X. Put the C compiler flags that X needs into make

variable X_CFLAGS, and the X linker flags into X_LIBS. If X is not available, put
‘-DX_DISPLAY_MISSING’ into X_CFLAGS.

Also check for special libraries that some systems need in order to compile X programs.
Add any that the system needs to make variable X_EXTRA_LIBS. This macro calls AC_
FIND_X and AC_ISC_POSIX (see Section 4.8 [UNIX Variants], page 17) if they have
not already been called. Because of the macro dependencies, if you call this macro,
you should let it call AC_FIND_X rather than doing that yourself.

Chapter 4: Specific Tests 17

[Macro]AC_HAVE_POUNDBANG (action-if-supported [,
action-if-not-supported])

Check whether the system supports starting shell scripts with a line of the form
‘#!/bin/csh’ to select the shell to use. If ‘#!’ works, execute shell commands action-
if-supported; if not, execute action-if-not-supported.

[Macro]AC_LONG_FILE_NAMES
If the system supports file names longer than 14 characters, define HAVE_LONG_FILE_
NAMES.

[Macro]AC_REMOTE_TAPE
If BSD tape drive ioctls are available, define HAVE_SYS_MTIO_H, and if sockets are
available add rmt to make variable PROGS.

[Macro]AC_RESTARTABLE_SYSCALLS
If the system automatically restarts a system call that is interrupted by a signal,
define HAVE_RESTARTABLE_SYSCALLS.

4.8 UNIX Variants

The following macros check for certain operating systems that need special treatment for
some programs, due to exceptional oddities in their header files or libraries:

[Macro]AC_AIX
If on AIX, define _ALL_SOURCE. Allows the use of some BSD functions. Should be
called before any macros that run the C compiler.

[Macro]AC_DYNIX_SEQ
If on DYNIX/ptx (Sequent UNIX), add ‘-lseq’ to make variable LIBS. Allows use of
some BSD system calls and getmntent.

[Macro]AC_IRIX_SUN
If on IRIX (Silicon Graphics UNIX), add ‘-lsun’ to make variable LIBS. Needed to
get getmntent. At sites using Yellow Pages/NIS, it is also needed to get properly
working gethostby*, getpw*, getgr*, getnetby*, and so on.

[Macro]AC_ISC_POSIX
If on a POSIXized ISC UNIX, define _POSIX_SOURCE and add ‘-posix’ (for the GNU
C compiler) or ‘-Xp’ (for other C compilers) to make variable CC. This allows the use
of POSIX facilities. Must be called after AC_PROG_CC and before any other macros
that run the C compiler.

[Macro]AC_MINIX
If on Minix, define _MINIX and _POSIX_SOURCE and define _POSIX_1_SOURCE to be
2. This allows the use of POSIX facilities. Should be called before any macros that
run the C compiler.

[Macro]AC_SCO_INTL
If on SCO UNIX, add ‘-lintl’ to make variable LIBS. Used to get strftime. It must
be called before checking for strftime.

Chapter 4: Specific Tests 18

[Macro]AC_XENIX_DIR
If on Xenix, define VOID_CLOSEDIR and add ‘-lx’ to make variable LIBS. Also, if
sys/ndir.h is not being used, add ‘-ldir’ to LIBS. Needed when using the directory
reading functions. This macro must be called after AC_DIR_HEADER.

19

5 General Purpose Macros

These macros provide ways for other macros to control the kind of output that Autoconf
produces or to check whether various kinds of features are available. They all take argu-
ments. When calling these macros, there must not be any blank space between the macro
name and the open parentheses.

Arguments to these macros can be more than one line long if they are enclosed within
the m4 quote characters ‘[’ and ‘]’.

Within each section below, the macros are listed in alphabetical order. These macros
are defined in the file acgeneral.m4.

5.1 Controlling Autoconf Setup

The following macros control the kind of output that Autoconf produces.

[Macro]AC_CONFIG_HEADER (header-to-create . . .)
Make AC_OUTPUT create the file(s) in the whitespace-separated list header-to-create
containing C preprocessor #define statements and replace ‘@DEFS@’ in generated files
with ‘-DHAVE_CONFIG_H’ instead of the value of DEFS. This macro should be called
right after AC_INIT. The usual name for header-to-create is config.h.

If header-to-create already exists and its contents are identical to what AC_OUTPUT

would put in it, it is left alone. Doing this allows some changes in configuration
without needlessly causing object files that depend on the header file to be recompiled.

Your distribution should contain a file header-to-create.in that looks as you want
the final header file to look, including comments, with default values in the #define
statements. A default value can be to #undef the variable instead of to define it to a
value, if your code tests for configuration options using #ifdef instead of #if.

You can use the program autoheader to create header-to-create.in (see
Section 3.3 [Invoking autoheader], page 6).

[Macro]AC_INIT (unique-file-in-source-dir)
Process the command-line arguments and find the source code directory. unique-
file-in-source-dir is some file that is in the package’s source directory; configure

checks for this file’s existence to make sure that the directory that it is told contains
the source code in fact does (see Chapter 8 [Invoking configure], page 37, for more
information).

[Macro]AC_OUTPUT ([file. . .] [,extra-cmds])
Create output files (typically one or more Makefiles) and config.status. If AC_
CONFIG_HEADER has been called, also create the header file that was named as its
argument. The argument is a whitespace-separated list of files to create; if it is
omitted, no files are created. AC_OUTPUT creates each file file in the list by copying
file.in, substituting the variable values that have been selected by calling AC_SUBST.
It creates the directory that each file is in if it doesn’t exist (but not the parents
of that directory). A plausible value for the argument to AC_OUTPUT is ‘Makefile
src/Makefile man/Makefile X/Imakefile’.

If you pass extra-cmds, those commands will be inserted into config.status to be
run after all its other processing.

Chapter 5: General Purpose Macros 20

[Macro]AC_PREPARE (unique-file-in-source-dir)
Find the source code directory and set up shell variables necessary for other Autoconf
macros to work. unique-file-in-source-dir is some file that is in the package’s source
directory; configure checks for this file’s existence to make sure that the directory
that it is told contains the source code in fact does (see Chapter 8 [Invoking configure],
page 37, for more information). AC_PREPARE is the last thing done by AC_INIT. Use
AC_PREPARE instead of AC_INIT if you want to do argument parsing yourself; never
use both.

[Macro]AC_PREREQ (version)
Ensure that a recent enough version of Autoconf is being used. If the version of
Autoconf being used to create configure is earlier than version (e.g., ‘1.8’), print an
error message on the standard error output and do not create configure.

This macro is useful if your configure.in relies on non-obvious behavior that changed
between Autoconf releases. If it merely needs recently added macros, then AC_PREREQ

is less useful, because the autoconf program already tells the user which macros are
not found. The same thing happens if configure.in is processed by a version of
Autoconf older than when AC_PREREQ was added.

[Macro]AC_REVISION (revision-info)
Copy revision stamp revision-info into the configure script, with any dollar signs or
double-quotes removed. This macro lets you put a revision stamp from configure.in

into configure without RCS or CVS changing it when you check in configure. That
way, you can determine easily which revision of configure.in a particular configure
corresponds to.

It is a good idea to call this macro before AC_INIT so that the revision number is
near the top of both configure.in and configure. To support doing that, the
AC_REVISION output begins with ‘#!/bin/sh’, like the normal start of a configure

script does.

For example, this line in configure.in:

AC_REVISION($Revision: 1.30 $)dnl

produces this in configure:

#!/bin/sh

From configure.in Revision: 1.30

5.2 Checking for Kinds of Features

These macros are templates that, when called with actual parameters, check for various
kinds of features. Many of these macros handle two cases: what to do if the given condition
is met, and what to do if the condition is not met. In some places you you might want to
do something if a condition is true but do nothing if it’s false, or vice versa. To omit the
true case, pass an empty value for the action-if-found argument to the macro. To omit the
false case, omit the action-if-not-found argument to the macro, including the comma before
it.

One shell programming construction that you should not use in the action arguments
to these macros is ‘var=${var:-value}’. Old BSD shells, including the Ultrix sh,

Chapter 5: General Purpose Macros 21

don’t understand the colon, and complain and die. If you omit the colon, it works fine:
‘var=${var-value}’. Using the form without the colon has one small disadvantage. Users
can not select a default value by giving a variable an empty value, e.g., ‘CC= configure’.
Instead, they must unset the variable, e.g., ‘unset CC; configure’.

See Chapter 6 [Writing Macros], page 29, for more information on how best to use these
macros.

[Macro]AC_COMPILE_CHECK (echo-text, includes, function-body,
action-if-found [, action-if-not-found])

Print ‘checking for echo-text’ to the standard output (using AC_CHECKING, see
Section 5.5 [Printing Messages], page 26). Create a test C program to see whether a
function whose body consists of function-body can be compiled and linked; includes
is any #include statements needed by the code in function-body. If the file compiles
and links successfully, run shell commands action-if-found, otherwise run action-if-
not-found.

[Macro]AC_FUNC_CHECK (function, action-if-found [,
action-if-not-found])

If function is available, run shell commands action-if-found, otherwise action-if-not-
found. If the functions might be in libraries other than the default C library, first
call AC_HAVE_LIBRARY for those libraries. If you just want to define a symbol if the
function is available, consider using AC_HAVE_FUNCS instead.

[Macro]AC_HAVE_FUNCS (function. . .)
For each given function in the whitespace-separated argument list that is available,
define HAVE_function (in all caps). See Chapter 4 [Specific Tests], page 7, for a
precise definition of “define” as it is used here. If the functions might be in libraries
other than the default C library, first call AC_HAVE_LIBRARY for those libraries.

[Macro]AC_HAVE_HEADERS (header-file. . .)
For each given header-file in the whitespace-separated argument list that exists, define
HAVE_header-file (in all caps). See Chapter 4 [Specific Tests], page 7, for a precise
definition of “define” as it is used here.

[Macro]AC_HAVE_LIBRARY (library [, action-if-found [,
action-if-not-found]])

Create a test C program to see whether that program can be linked with the specified
library. action-if-found is a list of shell commands to run if the link succeeds (which
means that the library is present); action-if-not-found is a list of shell commands to
run if the link fails. If action-if-found and action-if-not-found are not specified, the
default action is to add ‘-lfoo’ to LIBS and define ‘HAVE_LIBfoo’ for library ‘foo’.
library can be written as any of ‘foo’, ‘-lfoo’, or ‘libfoo.a’. In all of those cases,
the compiler is passed ‘-lfoo’.

[Macro]AC_HEADER_CHECK (header-file, action-if-found [,
action-if-not-found])

If header-file exists, execute shell commands action-if-found, otherwise execute action-
if-not-found. If you just want to define a symbol if the header file is available, consider
using AC_HAVE_HEADERS instead.

Chapter 5: General Purpose Macros 22

[Macro]AC_HEADER_EGREP (pattern, header-file, action-if-found [,
action-if-not-found])

If the output of running the preprocessor on header-file contains the egrep regular
expression pattern, execute shell commands action-if-found, otherwise execute

This macro calls AC_PROG_CPP or AC_PROG_CXXCPP (depending on which language is
current, see Section 5.6 [Language Choice], page 26), if it hasn’t been called already.
action-if-not-found.

You can not check whether preprocessor symbols are defined this way, because they
get expanded before egrep sees them. But you can almost always detect them by
simply using #ifdef directives in your programs.

[Macro]AC_PROGRAM_CHECK (variable, prog-to-check-for, value-if-found,
value-if-not-found)

Check whether program prog-to-check-for exists in PATH. If it is found, set variable
to value-if-found, otherwise to value-if-not-found. If variable was already set, do
nothing. Calls AC_SUBST for variable.

[Macro]AC_PROGRAM_EGREP (pattern, program, action-if-found [,
action-if-not-found])

program is the text of a C or C++ program, on which shell variable and backquote sub-
stitutions are performed. If the output of running the preprocessor on program con-
tains the egrep regular expression pattern, execute shell commands action-if-found,
otherwise execute action-if-not-found. (It is an unfortunate oversight that we use the
word PROGRAM in Autoconf macro names to sometimes mean C or C++ source code
and sometimes mean a UNIX command.)

This macro calls AC_PROG_CPP or AC_PROG_CXXCPP (depending on which language is
current, see Section 5.6 [Language Choice], page 26), if it hasn’t been called already.

[Macro]AC_PROGRAM_PATH (variable, prog-to-check-for,
value-if-not-found)

Similar to AC_PROGRAM_CHECK, but set variable to the entire path of prog-to-check-for
if found. Otherwise, set variable to the value value-if-not-found and perform no path
checking. If variable was already set, do nothing. Calls AC_SUBST for variable.

[Macro]AC_PROGRAMS_CHECK (variable, progs-to-check-for [,
value-if-not-found])

Check for each program in the whitespace-separated list progs-to-check-for exists in
PATH. If it is found, set variable to the name of that program. Otherwise, continue
checking the next program in the list. If none of the programs in the list are found,
set variable to value-if-not-found; if value-if-not-found is not specified, the value of
variable will not be changed. Calls AC_SUBST for variable.

[Macro]AC_PROGRAMS_PATH (variable, progs-to-check-for [,
value-if-not-found])

Like AC_PROGRAMS_CHECK, but if any of progs-to-check-for are found, set variable to
the entire pathname of the program found.

Chapter 5: General Purpose Macros 23

[Macro]AC_REPLACE_FUNCS (function-name. . .)
For each given function-name in the whitespace-separated argument list that is not
in the C library, add ‘function-name.o’ to the value of the make variable LIBOBJS.
If the functions might be in libraries other than the default C library, first call AC_
HAVE_LIBRARY for those libraries.

[Macro]AC_SIZEOF_TYPE (type)
Define SIZEOF_uctype to be the size in bytes of the C (or C++) builtin type type,
e.g. ‘int’ or ‘char *’. If ‘type’ is unknown to the compiler, gets a size of 0. uctype
is type, with lowercase converted to uppercase, spaces changed to underscores, and
asterisks changed to ‘P’. For example, the call

AC_SIZEOF_TYPE(int *)

defines SIZEOF_INT_P to be 64 on DEC Alpha AXP systems.

[Macro]AC_TEST_PROGRAM (program, action-if-true [, action-if-false [,
action-if-cross-compiling]])

program is the text of a C program, on which shell variable and backquote substitu-
tions are performed. If it compiles and links successfully and returns an exit status of
0 when executed, run shell commands action-if-true. Otherwise run shell commands
action-if-false.

If the optional argument action-if-cross-compiling is given and the C compiler being
used does not produce executables that run on the system where configure is being
run, then the test program is not run. Instead, the shell commands action-if-cross-
compiling are run. If that argument is given, this macro calls AC_CROSS_CHECK if it
has not already been called (see Section 4.6 [Compiler Characteristics], page 15).

[Macro]AC_TEST_CPP (includes, action-if-true [, action-if-false])
includes is C or C++ #include statements and declarations, on which shell variable
and backquote substitutions are performed. (Actually, it can be any C program,
but other statements are probably not useful.) If the preprocessor produces no error
messages while processing it, run shell commands action-if-true. Otherwise run shell
commands action-if-false.

This macro calls AC_PROG_CPP or AC_PROG_CXXCPP (depending on which language is
current, see Section 5.6 [Language Choice], page 26), if it hasn’t been called already.

5.3 Checking Command Line Arguments

These macros check whether the user gave configure various command line arguments.
Like the general feature tests (see Section 5.2 [General Feature Tests], page 20), they may
take an argument to use if the argument was given and one for if it was not given.

[Macro]AC_ENABLE (feature, action-if-true [, action-if-false])
If the user gave configure the option ‘--enable-feature’ or ‘--disable-feature’,
run shell commands action-if-true. Otherwise run shell commands action-if-false. The
name feature should consist only of alphanumeric characters and dashes.

The feature indicates an optional user-level facility. This option allows users to choose
which optional features to build and install. ‘--enable-feature’ options should never

Chapter 5: General Purpose Macros 24

make a feature behave differently or cause one feature to replace another. They should
only cause parts of the program to be built rather than left out.

The user can give an argument by following the feature name with ‘=’ and the ar-
gument. Giving an argument of ‘no’ indicates that the feature is not available. A
feature with an argument looks like ‘--enable-debug=stabs’.

The argument is available to the shell commands action-if-true in the shell vari-
able enableval. If no argument was given to ‘--enable-feature’, enableval is
‘yes’. ‘--disable-feature’ is equivalent to ‘--enable-feature=no’. At present,
arguments containing blanks are not handled correctly; if you need an argument to
contain a list, require the items to be separated by commas instead. (This restriction
might disappear in the future.)

[Macro]AC_PREFIX (program)
If the user did not specify an installation prefix (using the ‘--prefix’ option), guess
a value for it by looking for program in PATH, the way the shell does. If program
is found, set the prefix to the parent of the directory containing program; otherwise
leave the prefix specified in Makefile.in unchanged. For example, if program is gcc
and the PATH contains /usr/local/gnu/bin/gcc, set the prefix to /usr/local/gnu.

[Macro]AC_WITH (package, action-if-true [, action-if-false])
If the user gave configure the option ‘--with-package’ or ‘--without-package’,
run shell commands action-if-true. Otherwise run shell commands action-if-false.
The name package should consist only of alphanumeric characters and dashes.

The package indicates another software package that this program should work with.
For example, ‘--with-gnu-ld’ means work with the GNU linker instead of some other
linker. ‘--with-x11’ means work with X11.

The user can give an argument by following the package name with ‘=’ and the
argument. Giving an argument of ‘no’ is for packages that would be used by default;
it says to not use the package. An argument that is neither ‘yes’ nor ‘no’ could
include a name or number of a version of the other package, to specify more precisely
which other package this program is supposed to work with.

The argument is available to the shell commands action-if-true in the shell vari-
able withval. If no argument was given to ‘--with-package’, withval is ‘yes’.
‘--without-package’ is equivalent to ‘--with-package=no’. At present, arguments
containing blanks are not handled correctly; if you need an argument to contain a
list, require the items to be separated by commas instead. (This restriction might
disappear in the future.)

5.4 Setting Variables

These macros help other macros to define shell and make variables.

[Macro]AC_DEFINE (variable [, value])
Define C preprocessor variable variable. If value is given, set variable to that value,
otherwise set it to 1. To use a shell variable as the value, use AC_DEFINE_UNQUOTED

instead and precede double quotes in the value with backslashes.

Chapter 5: General Purpose Macros 25

This macro adds to the shell variable DEFS. AC_OUTPUT later substitutes the values
in DEFS into the file(s) that it generates (typically Makefile). Alternately, if AC_
CONFIG_HEADER has been called, AC_OUTPUT creates a header file by substituting the
correct values into #define statements in a template file.

For example, suppose your configure.in calls AC_CONFIG_HEADER(conf.h) and AC_

HAVE_HEADERS(unistd.h). You could have code like this in conf.h.in:

/* Define as 1 if you have unistd.h. */

#define HAVE_UNISTD_H 0

On systems that have unistd.h, configure will change the 0 to a 1. On other
systems, it will leave the line unchanged. Alternately, if you prefer to use #ifdef,
your conf.h.in could have code like this:

/* Define if you have unistd.h. */

#undef HAVE_UNISTD_H

On systems that have unistd.h, configure will change the second line to read
‘#define HAVE_UNISTD_H 1’. On other systems, it will comment that line out (in
case the system predefines that symbol).

Due to the syntactical bizarreness of the Bourne shell, do not use semicolons to
separate AC_DEFINE calls from other macro calls or shell code; that can cause syntax
errors in the resulting configure script. Use either spaces or newlines. That is, do
this:

AC_HEADER_CHECK(elf.h, AC_DEFINE(SVR4) LIBS="$LIBS -lelf")

or this:

AC_HEADER_CHECK(elf.h,

AC_DEFINE(SVR4)

LIBS="$LIBS -lelf")

instead of this:

AC_HEADER_CHECK(elf.h, AC_DEFINE(SVR4); LIBS="$LIBS -lelf")

[Macro]AC_DEFINE_UNQUOTED (variable [, value])
Like AC_DEFINE, but it does nothing to quote value from various shell and sed expan-
sions it will undergo. value will be used in many different contexts requiring different
quoting, and it is up to you to make sure it works right. Use this macro instead of
AC_DEFINE when value contains a shell variable. For example:

AC_DEFINE_UNQUOTED(config_machfile, ${machfile})

[Macro]AC_SUBST (variable)
Substitute the variable variable when creating the output files (typically one or more
Makefiles). This means replace instances of ‘@variable@’, e.g. in Makefile.in,
with the current value of the shell variable variable. If this macro were not called,
the value of variable would not be set in the output files, even though configure had
figured out a value for it.

You can set or add to the value of variable in the usual shell way. For example, to
add ‘-ltermcap’ to the value of the variable LIBS:

LIBS="$LIBS -ltermcap"

Chapter 5: General Purpose Macros 26

5.5 Printing Messages

configure scripts need to give users running them several kinds of information. The fol-
lowing macros print messages in ways appropriate for different kinds of information. The
arguments to all of them get enclosed in shell double quotes, so the shell performs variable
and backquote substitution on them.

These macros are all wrappers around the echo shell command. Other macros should
rarely need to run echo directly to print messages for the configure user. Using these
macros makes it easy to change how and when each kind of message is printed; such changes
need only be made to the macro definitions, and all of the callers change automatically.

[Macro]AC_CHECKING (feature-description)
Notify the user that configure is checking for a particular feature. This macro prints
a message that starts with ‘checking ’. It prints nothing if configure is run with
the ‘--silent’ or ‘--quiet’ option. The feature-description should be something like
‘whether the Fortran compiler accepts C++ comments’ or ‘for c89’.

[Macro]AC_ERROR (error-description)
Notify the user of an error that prevents configure from completing. This macro
prints an error message on the standard error stream and exits configure with a
nonzero status. error-description should be something like ‘invalid value $HOME

for \$HOME’.

[Macro]AC_VERBOSE (result-description)
Notify the user of the results of a check. This information is only printed if configure
is run with the ‘--verbose’ option. result-description should be something like
‘setting ADA to $ADA’.

[Macro]AC_WARN (problem-description)
Notify the configure user of a possible problem. This macro prints the message
on the standard error stream; configure continues running afterward, so macros
that call AC_WARN should provide a default (back-up) behavior for the situations
they warn about. problem-description should be something like ‘ln -s seems to make

hard links’.

5.6 Language Choice

Packages that use both C and C++ need to test features of both compilers. Autoconf-
generated configure scripts check for C features by default. The following macros deter-
mine which language’s compiler is used in tests that follow in configure.in.

[Macro]AC_LANG_C
Do compilation tests using CC and CPP and use extension .c for test programs.

This is the initial state.

[Macro]AC_LANG_CPLUSPLUS
Do compilation tests using CXX and CXXCPP and use extension .C for test programs.

Chapter 5: General Purpose Macros 27

[Macro]AC_LANG_RESTORE
Select the language that is saved on the top of the stack, as set by AC_LANG_SAVE,
and remove it from the stack. This macro is equivalent to either AC_LANG_C or AC_
LANG_CPLUSPLUS, whichever had been run most recently when AC_LANG_SAVE was last
called.

Do not call this macro more times than AC_LANG_SAVE.

[Macro]AC_LANG_SAVE
Remember the current language (as set by AC_LANG_C or AC_LANG_CPLUSPLUS) on a
stack. Does not change which language is current. Use this macro and AC_LANG_

RESTORE in macros that need to temporarily switch to a particular language.

[Macro]AC_REQUIRE_CPP
Ensure that whichever preprocessor would currently be used for tests has been found.
Calls AC_REQUIRE (see Section 5.7 [Macro Ordering], page 27) with an argument of
either AC_PROG_CPP or AC_PROG_CXXCPP, depending on which language is current.

5.7 Macro Ordering

These macros provide ways for other macros to make sure that they are called in the correct
order.

[Macro]AC_BEFORE (this-macro-name, called-macro-name)
Make m4 print a warning message on the standard error output if called-macro-name
has already been called. this-macro-name should be the name of the macro that is
calling AC_BEFORE. The macro called-macro-name must contain a call to AC_PROVIDE

to indicate that it has been called.

This macro should be used when one macro makes changes that might affect another
macro, so that the other macro should probably not be called first. For example,
AC_PROG_CPP checks whether the C compiler can run the C preprocessor when given
the ‘-E’ option. It should therefore be called after any macros that change which C
compiler is being used, such as AC_PROG_CC. So AC_PROG_CC contains:

AC_BEFORE([$0], [AC_PROG_CPP])

This warns the user if a call to AC_PROG_CPP has already occurred when AC_PROG_CC

is called.

[Macro]AC_OBSOLETE (this-macro-name [, suggestion])
Make m4 print a message on the standard error output warning that this-macro-name
is obsolete, and giving the file and line number where it was called. this-macro-name
should be the name of the macro that is calling AC_BEFORE. If suggestion is given, it
is printed at the end of the warning message; for example, it can be a suggestion for
what to use instead of this-macro-name.

A sample call is:

AC_OBSOLETE([$0], [; use AC_HAVE_HEADERS(unistd.h) instead])

[Macro]AC_PROVIDE (macro-name)
Set a flag recording that macro-name has been called. The argument should be the
name of the macro that is calling AC_PROVIDE. An easy way to get it is from the m4

builtin variable $0, like this:

Chapter 5: General Purpose Macros 28

AC_PROVIDE([$0])

[Macro]AC_REQUIRE (macro-name)
If the m4 macro macro-name has not already been called, call it (without any argu-
ments). Make sure to quote macro-name with square brackets. The body of macro-
name must contain a call to AC_PROVIDE to indicate that it has been called.

Macros that need some other macro to be called before they are called can use AC_

REQUIRE to ensure that it has been, in case the person who made configure.in

forgot or didn’t know to do it. AC_REQUIRE and AC_PROVIDE together can ensure
that a macro is only called if it is needed, and only called once. See Section 6.3
[Dependencies Between Macros], page 30, for more information.

29

6 Writing Macros

If your package needs to test for some feature that none of the macros supplied with Autoconf
handles, you’ll need to write one or more new Autoconf macros. Here are some suggestions
and some of the rationale behind why the existing macros are written the way they are.
You can also learn a lot about how to write Autoconf macros by looking at the existing
ones. If something goes wrong in one or more of the Autoconf tests, this information can
help you understand why they work the way they do and the assumptions behind them,
which might help you figure out how to best solve the problem.

If you add macros that you think would be useful to other people, or find problems with
the distributed macros, please send electronic mail to bug-gnu-utils@prep.ai.mit.edu,
so we can consider them for future releases of Autoconf. Please include the Autoconf version
number, which you can get by running ‘autoconf --version’.

6.1 Macro Format

Autoconf macros are defined as arguments to the m4 builtin command define. Their overall
structure looks like this:

define(macro-name, [macro-body])dnl

The square brackets here do not indicate optional text: they should literally be present in
the macro definition.

All of the Autoconf macros have names starting with ‘AC_’ to prevent them from acci-
dentally conflicting with other text. All shell variables that they use for internal purposes
have names starting with ‘ac_’. To ensure that your macros don’t conflict with present or
future Autoconf macros, you should prefix your own macro names and any shell variables
they use with some other sequence. Possibilities include your initials, or an abbreviation
for the name of your organization or software package.

The m4 builtin dnl prevents a newline from being inserted in the output where the macro
is defined; without it, the generated configure script would begin with dozens of blank
lines. dnl is also used to introduce comments in m4; it causes m4 to discard the rest of the
input line.

You should quote the entire macro body with square brackets to avoid macro expansion
problems (see Section 6.2 [Quoting], page 29). You can refer to any arguments passed to
the macro as ‘$1’, ‘$2’, etc.

See Section “How to define new macros” in GNU m4, for more complete information on
writing m4 macros.

6.2 Quoting

Macros that are called by other macros are evaluated by m4 several times; each evaluation
might require another layer of quotes to prevent unwanted expansions of macros or m4

builtins, such as ‘define’ and ‘$1’. Quotes are also required around macro arguments that
contain commas, since commas separate the arguments from each other.

Autoconf (in acgeneral.m4) changes the m4 quote characters from the default ‘‘’ and ‘’’
to ‘[’ and ‘]’, because many of the macros use ‘‘’ and ‘’’, mismatched. However, in a few

Chapter 6: Writing Macros 30

places the macros need to use brackets. In those places, they use the m4 builtin command
changequote to temporarily disable quoting before the code that uses brackets, like this:

changequote(,)dnl

Then they turn quoting back on again with another call to changequote:

changequote([,])dnl

When you create a configure script using newly written macros, examine it carefully
to check whether you need to add more quotes in your macros. If one or more words have
disappeared in the m4 output, you need more quotes. When in doubt, quote.

However, it’s also possible to put on too many layers of quotes. If this happens, the
resulting configure script will contain unexpanded macros. The autoconf program checks
for this problem by doing ‘grep AC_ configure’.

6.3 Dependencies Between Macros

Some Autoconf macros depend on other macros having been called first in order to work
correctly. Autoconf provides a way to ensure that certain macros are called if needed and a
way to warn the user if macros are called in an order that might cause incorrect operation.

6.3.1 Prerequisite Macros

A macro that you write might need to use values that have previously been computed
by other macros. For example, if you write a new macro that uses the C preprocessor, it
depends on AC_PROG_CPP having been called first to set the shell variable CPP (see Section 4.1
[Alternative Programs], page 7).

Rather than forcing the user of the macros to keep track of all of the dependencies
between them, you can use the macros AC_PROVIDE and AC_REQUIRE to do it automatically.
See Section 5.7 [Macro Ordering], page 27, for more information on their syntax.

The new macro that runs the C preprocessor should contain, somewhere before CPP is
used, the statement

AC_REQUIRE([AC_PROG_CPP])

and the macro AC_PROG_CPP should contain the statement (anywhere in its body)

AC_PROVIDE([$0])

Then, when the new macro is run, it will invoke AC_PROG_CPP if and only if AC_PROG_CPP
has not already been run.

6.3.2 Suggested Ordering

Some macros should be run before another macro if both are called, but neither requires
the other to be called. For example, a macro like AC_AIX that changes the behavior of the
C compiler (see Section 4.8 [UNIX Variants], page 17) should be called before any macros
that run the C compiler. Many of these dependencies are noted in the documentation.

Autoconf provides a way to warn users when macros with this kind of dependency appear
out of order in a configure.in file. The warning occurs when creating configure from
configure.in, not when running configure. It is not a fatal error; configure is created
as usual.

Chapter 6: Writing Macros 31

The AC_BEFOREmacro causes m4 to print a warning message on the standard error output
when a macro is used before another macro which might change its behavior. The macro
which should come first should contain a call to AC_BEFORE and the macro which should
come later should contain a call to AC_PROVIDE.

For example, AC_AIX contains

AC_BEFORE([$0], [AC_COMPILE_CHECK])

and AC_COMPILE_CHECK contains

AC_PROVIDE([$0])

As a result, if AC_AIX is called after AC_COMPILE_CHECK, it will note that AC_COMPILE_CHECK
has already been called and print a warning message.

6.4 Checking for Files

If you need to check whether a file other than a C header file exists, use ‘test -f filename’.
If you need to make multiple checks using test, combine them with the shell operators ‘&&’
and ‘||’ instead of using the test operators ‘-a’ and ‘-o’. On System V, the precedence of
‘-a’ and ‘-o’ is wrong relative to the unary operators; consequently, POSIX does not specify
them, so using them is nonportable. If you combine ‘&&’ and ‘||’ in the same statement,
keep in mind that they have equal precedence.

Do not use ‘test -x’, because 4.3BSD does not have it. Use ‘test -f’ or ‘test -r’
instead.

6.5 Checking for Symbols

If you need to check whether a symbol is defined in a C header file, you can use AC_HEADER_
EGREP if the symbol is not a C preprocessor macro (see Section 5.2 [General Feature Tests],
page 20), or compile a small test program that includes the file and references the symbol
(see Section 6.6 [Test Programs], page 32). Don’t directly grep for the symbol in the file,
because on some systems it might be defined in another header file that the file you are
checking ‘#include’s.

However, if you need to check for a particular UNIX variant which is distinguished by
having certain text in a certain file, then use grep (or egrep). But don’t use ‘grep -s’
to suppress output, because ‘grep -s’ on System V does not suppress output, only error
messages. Instead, redirect the standard output and standard error (in case the file doesn’t
exist) of grep to /dev/null. Check the exit status of grep to determine whether it found
a match.

To check whether the Autoconf macros have already defined a certain C preprocessor
symbol, you can use a case statement like this:

case "$DEFS" in

HAVE_FOO) ;;

*) LIBOBJS="$LIBOBJS foo.o" ;;

esac

Make sure to enclose the variable name you are checking (usually DEFS) in double quotes,
because otherwise some old versions of bash misinterpret the statement.

Chapter 6: Writing Macros 32

6.6 Test Programs

Autoconf checks for many features by compiling small test programs. To find out whether
a library function is available, Autoconf tries to compile a small program that uses it. This
is unlike Larry Wall’s Metaconfig, which uses nm or ar on the C library to try to figure out
which functions are available. Trying to link with the function is usually a more reliable and
flexible approach because it avoids dealing with the variations in the options and output
formats of nm and ar and in the location of the standard libraries. It also allows configure
to check aspects of the function’s runtime behavior if needed. On the other hand, it is
sometimes slower than scanning the libraries.

If you need to check for a condition other than whether some symbol exists on the system
or has a certain value, then you can’t use AC_COMPILE_CHECK (see Section 5.2 [General
Feature Tests], page 20). You have to write a test program by hand. You can compile and
run it using AC_TEST_PROGRAM (see Section 5.2 [General Feature Tests], page 20).

Try to avoid writing test programs if possible, because using them prevents people from
configuring your package for cross-compiling. If it’s really best that you test for a run-time
behavior, try to provide a default “worst case” value to use when cross-compiling makes
run-time tests impossible. You do this by passing the optional last argument to AC_TEST_

PROGRAM.

6.6.1 Guidelines for Test Programs

Test programs should return 0 if the test succeeds, nonzero otherwise, so that success can
be distinguished easily from a core dump or other failure; segmentation violations and other
failures produce a nonzero exit status. Test programs should exit, not return, from main,
because on some systems the argument to return in main is ignored. They should not write
anything to the standard output.

Test programs can use #if or #ifdef to check the values of preprocessor macros defined
by tests that have already run. For example, if you call AC_STDC_HEADERS, then later
on in configure.in you can have a test program that includes an ANSI C header file
conditionally:

#if STDC_HEADERS

#include <stdlib.h>

#endif

If a test program needs to use or create a data file, give it a name that starts with
conftest, such as conftestdata. The configure script cleans up by running ‘rm -rf

conftest*’ after running test programs and if the script is interrupted.

6.6.2 Tricks for Test Programs

If a test program calls a function with invalid parameters (just to see whether it exists),
organize the program to ensure that it never invokes that function. You can do this by
calling it in another function that is never invoked. You can’t do it by putting it after a
call to exit, because GCC version 2 knows that exit never returns and optimizes out any
code that follows it in the same block.

If you include any header files, make sure to call the functions relevant to them with the
correct number of arguments, even if they are just 0, to avoid compilation errors due to pro-
totypes. GCC version 2 has internal prototypes for several functions that it automatically

Chapter 6: Writing Macros 33

inlines; for example, memcpy. To avoid errors when checking for them, either pass them the
correct number of arguments or redeclare them with a different return type (such as char).

6.7 Multiple Cases

Some operations are accomplished in several possible ways, depending on the UNIX variant.
Checking for them essentially requires a “case statement”. Autoconf does not directly
provide one; however, it is easy to simulate by using a shell variable to keep track of
whether a way to perform the operation has been found yet.

Here is an example excerpted from the configure.in for GNU find. It uses the shell
variable fstype to keep track of whether the remaining cases need to be checked. There
are several more cases which are not shown here but follow the same pattern.

echo checking how to get filesystem type

SVR4.

AC_TEST_CPP([#include <sys/statvfs.h>

#include <sys/fstyp.h>], AC_DEFINE(FSTYPE_STATVFS) fstype=1)

if test -z "$fstype"; then

SVR3.

AC_TEST_CPP([#include <sys/statfs.h>

#include <sys/fstyp.h>], AC_DEFINE(FSTYPE_USG_STATFS) fstype=1)

fi

if test -z "$fstype"; then

AIX.

AC_TEST_CPP([#include <sys/statfs.h>

#include <sys/vmount.h>], AC_DEFINE(FSTYPE_AIX_STATFS) fstype=1)

fi

34

7 Makefiles

Each subdirectory in a distribution should come with a file Makefile.in, from which
configure will produce a Makefile in that directory. Most of the substitutions that
configure does are simple: for each configuration variable that the package uses, it just re-
places occurrences of ‘@variable@’ with the value that configure has determined for that
variable. Any occurrences of ‘@variable@’ for variables that configure does not know
about are passed through unchanged.

There is no point in checking for the correct value to give a variable that is never
used. Every variable that the configure script might set a value for should appear in
a ‘@variable@’ reference in at least one Makefile.in. If AC_CONFIG_HEADER is called,
configure replaces ‘@DEFS@’ with ‘-DHAVE_CONFIG_H’, since the contents of DEFS would be
redundant.

See Section “Makefile Conventions” in The GNU Coding Standards, for more information
on what to put in Makefiles. See Section 9.2 [Sample Makefile.in], page 40, for an example
of a real Makefile.in.

7.1 Predefined Variables

Some make variables are predefined by the Autoconf macros. AC_SUBST is called for them
automatically (see Section 5.4 [Setting Variables], page 24), so in your Makefile.in files
you can get their values by enclosing their names in ‘@’ characters. The variables that are
defined by the general purpose Autoconf macros are:

[Variable]exec_prefix
The installation prefix for architecture-specific files.

[Variable]prefix
The installation prefix for architecture-independent files. See Section 7.2 [Installation
Prefixes], page 35, for an alternate way to set this variable.

[Variable]srcdir
The directory that contains the source code for that Makefile. See Section 7.2
[Installation Prefixes], page 35, for an alternate way to set this variable.

[Variable]top_srcdir
The top-level source code directory for the package. In the top-level directory, this is
the same as srcdir.

[Variable]DEFS
‘-D’ options to pass to the C compiler. If AC_CONFIG_HEADER is called, configure
replaces ‘@DEFS@’ with ‘-DHAVE_CONFIG_H’, since the contents of DEFS would be re-
dundant.

[Variable]LIBS
‘-l’ and ‘-L’ options to pass to the linker.

[Variable]LIBOBJS
Names of object files (ending in .o). Set by AC_REPLACE_FUNCS (see Section 5.2
[General Feature Tests], page 20).

Chapter 7: Makefiles 35

7.2 Installation Prefixes

Autoconf-generated configure scripts support an alternate method for substituting two
particular variables, for compatibility with Cygnus configure. This method is not recom-
mended.

If configure has figured out a value for the installation prefix, either by the user sup-
plying one on the command line (see Chapter 8 [Invoking configure], page 37) or with
AC_PREFIX (see Section 5.2 [General Feature Tests], page 20), then it substitutes that value
in Makefiles that it creates. Wherever a Makefile.in contains lines like

prefix = /usr/local

exec_prefix = ${prefix}

configure substitutes the value it figured out. The substitution only occurs if the word
‘prefix’ or ‘exec_prefix’ is not preceded by any other characters on the line, and
configure has figured out a value for the prefix.

There can be separate installation prefixes for architecture-specific files (exec_prefix)
and architecture-independent files (prefix). See Chapter 8 [Invoking configure], page 37,
for more information on setting them.

Autoconf configure scripts replace these two variables without requiring them to be
enclosed in ‘@’ characters, and only if they have been set, because the Cygnus configure
does so. In retrospect, being compatible in this way was a bad decision, because it created
an inconsistency in Autoconf without giving significant benefits. This wart will be removed
in a future release of Autoconf.

7.3 VPATH Substitutions

You might want to compile a software package in a different directory from the one that
contains the source code. Doing this allows you to compile the package for several archi-
tectures simultaneously from the same copy of the source code and keep multiple sets of
object files on disk.

To support doing this, make uses the VPATH variable to find the files that are in the
source directory. GNU make and most other recent make programs can do this. Older make
programs do not support VPATH; when using them, the source code must be in the same
directory as the object files.

To support VPATH, each Makefile.in should contain two lines that look like:

srcdir = @srcdir@

VPATH = @srcdir@

Do not set VPATH to the value of another variable, for example ‘VPATH = $(srcdir)’,
because some versions of make do not do variable substitutions on the value of VPATH.

configure substitutes in the correct value for srcdir when it produces Makefile.in.

Do not use the make variable $<, which expands to the pathname of the file in the source
directory (found with VPATH), except in implicit rules. (An implicit rule is one such as
‘.c.o’, which tells how to create a .o file from a .c file.) Some versions of make do not set
$< in explicit rules; they expand it to an empty value.

Instead, Makefile command lines should always refer to source files by prefixing them
with ‘$(srcdir)/’. For example:

time.info: time.texinfo

Chapter 7: Makefiles 36

$(MAKEINFO) $(srcdir)/time.texinfo

7.4 Automatic Remaking

You can put rules like the following in the top-level Makefile.in for a package to auto-
matically update the configuration information when you change the configuration files.
This example includes all of the optional files, such as aclocal.m4 and those related to
configuration header files. Omit from the Makefile.in rules any of these files that your
package does not use.

The stamp- files are necessary because the timestamps of config.h.in and config.h

will not be changed if remaking them does not change their contents. This feature avoids
unnecessary recompilation. You should include the file stamp-h.in your package’s distri-
bution, so make will consider config.h.in up to date.

configure: configure.in aclocal.m4

cd ${srcdir} && autoconf

autoheader might not change config.h.in

config.h.in: stamp-h.in

stamp-h.in: configure.in aclocal.m4 acconfig.h config.h.top

cd ${srcdir} && autoheader

touch ${srcdir}/stamp-h.in

config.status might not change config.h

config.h: stamp-h

stamp-h: config.h.in config.status

./config.status

touch stamp-h

Makefile: Makefile.in config.status

./config.status

config.status: configure

./config.status --recheck

See Section 8.2 [Invoking config.status], page 38, for more information on handling
configuration-related dependencies.

37

8 Running configure Scripts

A software package that uses a configure script should be distributed with a file
Makefile.in, but no Makefile; that way, the user has to properly configure the package
for the local system before compiling it. Here is how to configure a package that uses a
configure script.

Normally, you just cd to the directory containing the package’s source code and type
‘./configure’. If you’re using csh on an old version of System V, you might need to type
‘sh configure’ instead to prevent csh from trying to execute configure itself.

Running configure takes awhile. While it is running, it prints some messages that tell
what it is doing. If you don’t want to see any messages, run configure with its standard
output redirected to /dev/null; for example, ‘./configure >/dev/null’.

To compile the package in a different directory from the one containing the source code,
you must use a version of make that supports the VPATH variable, such as GNU make. cd to
the directory where you want the object files and executables to go and run the configure
script. configure automatically checks for the source code in the directory that configure
is in and in ... If for some reason configure is not in the source code directory that you
are configuring, then it will report that it can’t find the source code. In that case, run
configure with the option ‘--srcdir=dir’, where dir is the directory that contains the
source code.

By default, ‘make install’ will install the package’s files in /usr/local/bin,
/usr/local/man, etc. You can specify an installation prefix other than /usr/local by
giving configure the option ‘--prefix=path’. Alternately, you can do so by consistently
giving a value for the ‘prefix’ variable when you run make, e.g.,

make prefix=/usr/gnu

make prefix=/usr/gnu install

You can specify separate installation prefixes for architecture-specific files and
architecture-independent files. If you give configure the option ‘--exec-prefix=path’ or
set the make variable ‘exec_prefix’ to path, the package will use path as the prefix for
installing programs and libraries. Data files and documentation will still use the regular
prefix. Normally, all files are installed using the same prefix.

Some packages pay attention to ‘--with-package’ options to configure, where package
is something like ‘gnu-as’ or ‘x’ (for the X Window System). They may also pay attention
to ‘--enable-feature’ options, where feature indicates an optional part of the package.
The README should mention any ‘--with-’ and ‘--enable-’ options that the package
recognizes.

configure also recognizes the following options:

--help Print a summary of the options to configure, and exit.
--quiet

--silent Do not print messages saying which checks are being made.

--verbose

Print the results of the checks.

--version

Print the version of Autoconf used to generate the configure script, and exit.

Chapter 8: Running configure Scripts 38

--x-includes=dir

X include files are in dir.

--x-libraries=dir

X library files are in dir.

configure also accepts and ignores some other options.

8.1 Overriding variables

On systems that require unusual options for compilation or linking that the package’s
configure script does not know about, you can give configure initial values for vari-
ables by setting them in the environment. In Bourne-compatible shells, you can do that on
the command line like this:

CC=’gcc -traditional’ LIBS=-lposix ./configure

On systems that have the env program, you can do it like this:

env CC=’gcc -traditional’ LIBS=-lposix ./configure

Here are the make variables that you might want to override with environment variables
when running configure.

For these variables, any value given in the environment overrides the value that
configure would choose:

[Variable]CC
C compiler program. The default is cc.

[Variable]INSTALL
Program to use to install files. The default is install if you have it, cp otherwise.

For these variables, any value given in the environment is added to the value that
configure chooses:

[Variable]DEFS
Configuration options, in the form ‘-Dfoo -Dbar...’. Do not use this variable in
packages that create a configuration header file.

[Variable]LIBS
Libraries to link with, in the form ‘-lfoo -lbar...’.

In the long term, most problems requiring manual intervention should be fixed by updat-
ing either the Autoconf macros or the configure.in file for that package. See Chapter 3
[Making configure Scripts], page 4, for a discussion of that subject.

8.2 Recreating a Configuration

The configure script creates a file named config.status which describes which configu-
ration options were specified when the package was last configured. This file is a shell script
which, if run, will recreate the same configuration.

You can give config.status the ‘--recheck’ option to update itself. This option is
useful if you change configure, so that the results of some tests might be different from

Chapter 8: Running configure Scripts 39

the previous run. The ‘--recheck’ option re-runs configure with the same arguments
you used before, plus the ‘--no-create’ option, which prevents configure from running
config.status and creating Makefile and other files. (This is so other Makefile rules
can run config.status when it changes; see Section 7.4 [Automatic Remaking], page 36,
for an example).

config.status also accepts the options ‘--help’, which prints a summary of the options
to config.status, and ‘--version’, which prints the version of Autoconf used to create
the configure script that generated config.status.

config.status checks several optional environment variables that can alter its behavior:

[Variable]CONFIG_SHELL
The shell with which to run configure for the ‘--recheck’ option. The default is
/bin/sh.

The following two variables provide one way for separately distributed packages to share
the values computed by configure. Doing so can be useful if some of the packages need
a superset of the features that one of them, perhaps a common library, does. These vari-
ables allow a config.status file to create files other than the ones that its configure.in
specifies, so it can be used for a different package.

[Variable]CONFIG_FILES
The files in which to perform ‘@variable@’ substitutions. The default is the argu-
ments given to AC_OUTPUT in configure.in.

[Variable]CONFIG_HEADERS
The files in which to substitute C #define statements. The default is the arguments
given to AC_CONFIG_HEADER; if that macro was not called, config.status ignores
this variable.

These variables also allow you to write Makefile rules that regenerate only some of the
files. For example, in the dependencies given above (see Section 7.4 [Automatic Remaking],
page 36), config.status is run twice when configure.in has changed. If that bothers
you, you can make each run only regenerate the files for that rule:

config.status might not change config.h

config.h: stamp-h

stamp-h: config.h.in config.status

CONFIG_FILES= CONFIG_HEADERS=config.h ./config.status

touch stamp-h

Makefile: Makefile.in config.status

CONFIG_FILES=Makefile CONFIG_HEADERS= ./config.status

(If configure.in does not call AC_CONFIG_HEADER, there is no need to set CONFIG_HEADERS
in the make rules.)

40

9 An Example

Here are sample configure.in and Makefile.in files, to give a real illustration of using
Autoconf. They are from the GNU cpio package, which also includes the mt and rmt

programs. This package does not use a configuration header file; it passes ‘-D’ options to
the C compiler on the command line.

9.1 Sample configure.in

Here is configure.in from GNU cpio. The dnl macro after AC_SUBST is suppresses an
extra (though harmless) newline in the generated configure script (because the AC_SUBST
macro does not produce any output where it is called).

dnl Process this file with autoconf to produce a configure script.

AC_INIT(cpio.h)

PROGS="cpio"

AC_SUBST(PROGS)dnl

AC_PROG_CC

AC_PROG_CPP

AC_GCC_TRADITIONAL

AC_PROG_INSTALL

AC_AIX

AC_MINIX

AC_ISC_POSIX

AC_RETSIGTYPE

AC_MAJOR_HEADER

AC_REMOTE_TAPE

test -n "$have_mtio" && PROGS="$PROGS mt"

AC_RSH

AC_CONST

AC_UID_T

AC_STDC_HEADERS

AC_HAVE_HEADERS(string.h fcntl.h utime.h unistd.h sys/io/trioctl.h)

AC_REPLACE_FUNCS(fnmatch bcopy mkdir strdup)

AC_HAVE_FUNCS(strerror lchown)

AC_VPRINTF

AC_ALLOCA

AC_XENIX_DIR

AC_HAVE_LIBRARY(socket, [LIBS="$LIBS -lsocket"])

AC_HAVE_LIBRARY(nsl, [LIBS="$LIBS -lnsl"])

AC_OUTPUT(Makefile)

9.2 Sample Makefile.in

Here is Makefile.in from GNU cpio, with some irrelevant lines omitted, for brevity.

srcdir = @srcdir@

VPATH = @srcdir@

Chapter 9: An Example 41

CC = @CC@

INSTALL = @INSTALL@

INSTALL_PROGRAM = @INSTALL_PROGRAM@

INSTALL_DATA = @INSTALL_DATA@

DEFS = @DEFS@

LIBS = @LIBS@

RTAPELIB = @RTAPELIB@

CFLAGS = -g

LDFLAGS = -g

prefix = /usr/local

exec_prefix = $(prefix)

binprefix =

manprefix =

bindir = $(exec_prefix)/bin

libdir = $(exec_prefix)/lib

mandir = $(prefix)/man/man1

manext = 1

SHELL = /bin/sh

SRCS = copyin.c copyout.c copypass.c defer.c dstring.c global.c \

main.c tar.c util.c error.c getopt.c getopt1.c filemode.c version.c \

rtapelib.c dirname.c idcache.c makepath.c xmalloc.c stripslash.c \

userspec.c xstrdup.c bcopy.c fnmatch.c mkdir.c strdup.c

OBJS = copyin.o copyout.o copypass.o defer.o dstring.o global.o \

main.o tar.o util.o error.o getopt.o getopt1.o filemode.o version.o \

$(RTAPELIB) dirname.o idcache.o makepath.o xmalloc.o stripslash.o \

userspec.o xstrdup.o @LIBOBJS@ @ALLOCA@

mt source files not shared with cpio.

MT_SRCS = mt.c argmatch.c

MT_OBJS = mt.o argmatch.o error.o getopt.o getopt1.o \

xmalloc.o version.o $(RTAPELIB) @ALLOCA@

HDRS = cpio.h cpiohdr.h tar.h tarhdr.h defer.h dstring.h extern.h filetypes.h \

system.h fnmatch.h getopt.h rmt.h

DISTFILES = $(SRCS) $(HDRS) COPYING COPYING.LIB ChangeLog Makefile.in \

README NEWS INSTALL cpio.1 mt.1 makefile.pc makefile.os2 cpio.def \

configure configure.in mkinstalldirs $(MT_SRCS) rmt.c tcexparg.c alloca.c

all: @PROGS@

.c.o:

$(CC) -c $(CPPFLAGS) $(DEFS) -I$(srcdir) $(CFLAGS) $<

Chapter 9: An Example 42

install: installdirs all $(srcdir)/cpio.1 $(srcdir)/mt.1

$(INSTALL_PROGRAM) cpio $(bindir)/$(binprefix)cpio

test ! -f mt || $(INSTALL_PROGRAM) mt $(bindir)/$(binprefix)mt

-test ! -f rmt || $(INSTALL_PROGRAM) rmt $(libdir)/rmt

$(INSTALL_DATA) $(srcdir)/cpio.1 $(mandir)/$(manprefix)cpio.$(manext)

test ! -f mt || \

$(INSTALL_DATA) $(srcdir)/mt.1 $(mandir)/$(manprefix)mt.$(manext)

installdirs:

$(srcdir)/mkinstalldirs $(bindir) $(libdir) $(mandir)

uninstall:

cd $(bindir); rm -f $(binprefix)cpio $(binprefix)mt

-rm -f $(libdir)/rmt

cd $(mandir); rm -f $(manprefix)cpio.$(manext) $(manprefix)mt.$(manext)

check:

@echo No tests are supplied.

cpio: $(OBJS)

$(CC) $(LDFLAGS) -o $@ $(OBJS) $(LIBS)

rmt: rmt.o

$(CC) $(LDFLAGS) -o $@ rmt.o $(LIBS)

mt: $(MT_OBJS)

$(CC) $(LDFLAGS) -o $@ $(MT_OBJS) $(LIBS)

Makefile: Makefile.in config.status

$(SHELL) config.status

config.status: configure

$(SHELL) config.status --recheck

configure: configure.in

cd $(srcdir); autoconf

TAGS: $(SRCS)

etags $(SRCS)

clean:

rm -f cpio rmt mt *.o core

mostlyclean: clean

distclean: clean

rm -f Makefile config.status

Chapter 9: An Example 43

realclean: distclean

rm -f TAGS

dist: $(DISTFILES)

echo cpio-‘sed -e ’/version_string/!d’ \

-e ’s/[^0-9.]*\([0-9.]*\).*/\1/’ -e q version.c‘ > .fname

rm -rf ‘cat .fname‘

mkdir ‘cat .fname‘

-ln $(DISTFILES) ‘cat .fname‘

for file in $(DISTFILES); do \

test -r ‘cat .fname‘/$$file || cp -p $$file ‘cat .fname‘; \

done

tar chzf ‘cat .fname‘.tar.gz ‘cat .fname‘

rm -rf ‘cat .fname‘ .fname

44

Preprocessor Symbol Index

This is an alphabetical list of the C preprocessor symbols that the Autoconf macros define.
To work with Autoconf, C source code needs to use these names in #if directives.

__CHAR_UNSIGNED__ . 15
_ALL_SOURCE . 17
_MINIX . 17
_POSIX_1_SOURCE . 17
_POSIX_SOURCE . 17
_POSIX_VERSION . 11

C
C_ALLOCA . 12
CC . 38
CONFIG_FILES . 39
CONFIG_HEADERS . 39
CONFIG_SHELL . 39
const . 15

D
DEFS . 34, 38
DGUX . 13
DIRENT . 9

E
exec_prefix . 34

G
GETGROUPS_T . 12
GETLODAVG_PRIVILEGED . 13
gid_t . 12

H
HAVE_ALLOCA_H . 12
HAVE_CONFIG_H . 19
HAVE_DOPRNT . 14
HAVE_function . 21
HAVE_header . 21
HAVE_LONG_DOUBLE . 16
HAVE_LONG_FILE_NAMES . 17
HAVE_MMAP . 13
HAVE_NETDB_H . 8
HAVE_RESTARTABLE_SYSCALLS 17
HAVE_ST_BLKSIZE . 14
HAVE_ST_BLOCKS . 14
HAVE_ST_RDEV . 14
HAVE_STRCOLL . 14
HAVE_SYS_MTIO_H . 17
HAVE_TM_ZONE . 15

HAVE_TZNAME . 15
HAVE_UNISTD_H . 11
HAVE_UTIME_NULL . 14
HAVE_VFORK_H . 14
HAVE_VPRINTF . 14
HAVE_WAIT3 . 14

I
inline . 16
INSTALL . 38
INT_16_BITS . 16

L
LIBOBJS . 34
LIBS . 34, 38
LONG_64_BITS . 16

M
MAJOR_IN_MKDEV . 10
MAJOR_IN_SYSMACROS . 10
mode_t . 12

N
NDIR . 9
NEED_MEMORY_H . 10
NEED_SETGID . 13
NLIST_NAME_UNION . 13
NLIST_STRUCT . 13
NO_ARG_ARRAY . 15
NO_MINUS_C_MINUS_O . 7
NO_REMOTE . 8

O
off_t . 12

P
pid_t . 12
prefix . 34

R
RETSIGTYPE . 12

Preprocessor Symbol Index 45

S
SETVBUF_REVERSED . 14

size_t . 12

srcdir . 34

STDC_HEADERS . 10

SVR4 . 13

SYS_SIGLIST_DECLARED . 12

SYSDIR . 9

SYSNDIR . 9

T
TIME_WITH_SYS_TIME . 14

TM_IN_SYS_TIME . 15

top_srcdir . 34

U
uid_t . 12
UMAX . 13
UMAX4_3 . 13
USG . 11

V
vfork . 14
VOID_CLOSEDIR . 9, 18

W
WORDS_BIGENDIAN . 16

Y
YYTEXT_POINTER . 9

46

Macro Index

This is an alphabetical list of the Autoconf macros. To make the list easier to use, the
macros are listed without their preceding ‘AC_’.

A
AIX . 17
ALLOCA . 12
ARG_ARRAY . 15

B
BEFORE . 27

C
CHAR_UNSIGNED . 15
CHECKING . 26
COMPILE_CHECK . 21
CONFIG_HEADER . 19
CONST . 15
CROSS_CHECK . 15

D
DEFINE . 24
DEFINE_UNQUOTED . 25
DIR_HEADER . 9
DYNIX_SEQ . 17

E
ENABLE . 23
ERROR . 26

F
FIND_X . 16
FIND_XTRA . 16
FUNC_CHECK . 21

G
GCC_TRADITIONAL . 7
GETGROUPS_T . 12
GETLOADAVG . 13

H
HAVE_FUNCS . 21
HAVE_HEADERS . 21
HAVE_LIBRARY . 21
HAVE_LONG_DOUBLE . 16
HAVE_POUNDBANG . 17
HEADER_CHECK . 21
HEADER_EGREP . 22

I
INIT . 19

INLINE . 16

INT_16_BITS . 16

IRIX_SUN . 17

ISC_POSIX . 17

L
LANG_C . 26

LANG_CPLUSPLUS . 26

LANG_RESTORE . 27

LANG_SAVE . 27

LN_S . 7

LONG_64_BITS . 16

LONG_FILE_NAMES . 17

M
MAJOR_HEADER . 10

MEMORY_H . 10

MINIX . 17

MINUS_C_MINUS_O . 7

MMAP . 13

MODE_T . 12

O
OBSOLETE . 27

OFF_T . 12

OUTPUT . 19

Macro Index 47

P
PID_T . 12
PREFIX . 24
PREPARE . 20
PREREQ . 20
PROG_AWK . 7
PROG_CC . 7
PROG_CPP . 7
PROG_CXX . 8
PROG_CXXCPP . 8
PROG_INSTALL . 8
PROG_LEX . 8
PROG_RANLIB . 8
PROG_YACC . 8
PROGRAM_CHECK . 22
PROGRAM_EGREP . 22
PROGRAM_PATH . 22
PROGRAMS_CHECK . 22
PROGRAMS_PATH . 22
PROVIDE . 27

R
REMOTE_TAPE . 17
REPLACE_FUNCS . 23
REQUIRE . 28
REQUIRE_CPP . 27
RESTARTABLE_SYSCALLS . 17
RETSIGTYPE . 12
REVISION . 20
RSH . 8

S
SCO_INTL . 17
SET_MAKE . 9
SETVBUF_REVERSED . 14
SIZE_T . 12
SIZEOF_TYPE . 23
ST_BLKSIZE . 14
ST_BLOCKS . 14
ST_RDEV . 14

STAT_MACROS_BROKEN . 14
STDC_HEADERS . 10
STRCOLL . 14
STRUCT_TM . 15
SUBST . 25
SYS_SIGLIST_DECLARED . 12

T
TEST_CPP . 23
TEST_PROGRAM . 23
TIME_WITH_SYS_TIME . 14
TIMEZONE . 15

U
UID_T . 12
UNISTD_H . 11
USG . 11
UTIME_NULL . 14

V
VERBOSE . 26
VFORK . 14
VPRINTF . 14

W
WAIT3 . 14
WARN . 26
WITH . 24
WORDS_BIGENDIAN . 16

X
XENIX_DIR . 18

Y
YYTEXT_POINTER . 9

i

Table of Contents

1 Introduction . 1

2 Distributing Autoconf Output 3

3 Making configure Scripts . 4
3.1 Writing configure.in . 4
3.2 Invoking autoconf . 5
3.3 Invoking autoheader . 6

4 Specific Tests . 7
4.1 Alternative Programs . 7
4.2 Header Files . 9
4.3 Typedefs . 12
4.4 Library Functions . 12
4.5 Structures . 14
4.6 Compiler Characteristics . 15
4.7 System Services . 16
4.8 UNIX Variants . 17

5 General Purpose Macros . 19
5.1 Controlling Autoconf Setup . 19
5.2 Checking for Kinds of Features . 20
5.3 Checking Command Line Arguments . 23
5.4 Setting Variables . 24
5.5 Printing Messages . 26
5.6 Language Choice . 26
5.7 Macro Ordering . 27

6 Writing Macros . 29
6.1 Macro Format . 29
6.2 Quoting . 29
6.3 Dependencies Between Macros . 30

6.3.1 Prerequisite Macros . 30
6.3.2 Suggested Ordering . 30

6.4 Checking for Files . 31
6.5 Checking for Symbols . 31
6.6 Test Programs . 32

6.6.1 Guidelines for Test Programs . 32
6.6.2 Tricks for Test Programs . 32

6.7 Multiple Cases . 33

ii

7 Makefiles . 34
7.1 Predefined Variables . 34
7.2 Installation Prefixes . 35
7.3 VPATH Substitutions . 35
7.4 Automatic Remaking . 36

8 Running configure Scripts . 37
8.1 Overriding variables . 38
8.2 Recreating a Configuration . 38

9 An Example . 40
9.1 Sample configure.in . 40
9.2 Sample Makefile.in . 40

Preprocessor Symbol Index . 44

Macro Index . 46

	1 Introduction
	2 Distributing Autoconf Output
	3 Making configure Scripts
	Writing configure.in
	Invoking autoconf
	Invoking autoheader

	4 Specific Tests
	Alternative Programs
	Header Files
	Typedefs
	Library Functions
	Structures
	Compiler Characteristics
	System Services
	UNIX Variants

	5 General Purpose Macros
	Controlling Autoconf Setup
	Checking for Kinds of Features
	Checking Command Line Arguments
	Setting Variables
	Printing Messages
	Language Choice
	Macro Ordering

	6 Writing Macros
	Macro Format
	Quoting
	Dependencies Between Macros
	Prerequisite Macros
	Suggested Ordering

	Checking for Files
	Checking for Symbols
	Test Programs
	Guidelines for Test Programs
	Tricks for Test Programs

	Multiple Cases

	7 Makefiles
	Predefined Variables
	Installation Prefixes
	VPATH Substitutions
	Automatic Remaking

	8 Running configure Scripts
	Overriding variables
	Recreating a Configuration

	9 An Example
	Sample configure.in
	Sample Makefile.in

	Preprocessor Symbol Index
	Macro Index

