AttrList

AttrList

COLLABORATORS
TITLE :
AttrList
ACTION NAME DATE SIGNATURE
WRITTEN BY September 19, 2022
\ REVISION HISTORY
NUMBER DATE DESCRIPTION NAME

AttrList

i
Contents
1 AttrList 1
1.1 TImplementation NOES v v vt it e e e e e e e e e e e e e e e e e 1
1.2 attrlist 1 . . . o s, 1
1.3 attrlist_ 2 . . . e 2
L4 attrlist 3 . . . e 3

1.5 attrlist_4

AttrList

Chapter 1

AttrList

1.1

Implementation notes

The AttrList class

($Date: 1994/05/09 21:24:49 $)

The AttrList class manages sets of attribute tags which are used extensively
for specification of A++ objects. To the class user these attribute tag sets
correspond to the well known Tagltem arrays used by the Amiga® operating
system.

How to create AttrList objects

How to read and write an AttrList

Higher support methods

Declaring own attribute tags

-> Back to the root menu..

1.2 attrlist_1

A++ classes refer to AttrLists as method parameter with an AttrList reference
as formal parameter:

Class::method (AttrList& attrs);

When calling such a method an AttrList object must be provided either from
reference to an already existing or by creating a temporary object like this:

object.method(AttrList (TAG_TYPEl, 16, TAG_TYPE2, 88, TAG_END));
Don’t forget the braces around your taglist and the ’"AttrList’ in front.

Actually, this way a temporary AttrList object is created from the given
taglist and then given by reference to the invoked method.

AttrList 2/4

There are three constructors to create an AttrList object:

AttrList (struct Tagltemx);
// from a ’'TAG_END’ terminated array

AttrList (Tag tagl, LONG datal, ..., TAG_END);

// create from a ’'TAG_END’ terminated parameter list.

// each "tag’ must match a ’‘data’ parameter!

// Tag values (not Tag data) must have the TAG_USER bit set!

AttrList (const AttrList& copy); // copy constructor
// copy taglist of the given AttrList object (deep copy)

Assignment is also possible:
AttrList al (MY_TAG,23,YOUR_TAG,02,0UR_TAG,1971, TAG_END);
AttrList a2(); // empty AttrList (no memory allocated)

a2 = al; // copy al tags to new allocated memory for a2 (deep copy)

1.3 attrlist_2

There are two Iterator classes provided to access an AttrList object in an
easy and conform way. The AttrIterator is applicable also to const AttrLists.
Always read the attribute tags by creating an AttrIterator:

AttrList &attrs = ...; // somewhere above

AttrIterator next (attrs);
// initialise to read from the head of the taglist

while (next ())
{
switch (next.tag())
{
case MY_TAG : date = next.data(); break;

Since the AttrIterator class also works for const AttrLists the only list

access 1s to read the tag value (’'Tag tval next.tag()’) and the tag data
(" LONG dval = next.data();").

If you want to start scanning the attribute list again use ’'next.reset()’.

In case you don’t want to scan the whole list but find a special tag instead
use:

BOOL AttrIterator::findTagltem(Tag findTaq);
// if "findTag’ was in the AttrList returns TRUE and makes the TagItem

// accessable via ’'next.tag ()’ and ’'next.data()’

The following iteration by calling 'next ()’ sets the iterator to the

AttrList 3/4

successor of the found tag.

To write to an AttrList create an ’'AttrManipulator’ object. Note that this is
only possible for non-const AttrLists. The AttrManipulator adds the following
methods to the AttrIterator class:

void AttrManipulator::writeTag(Tag new);
void AttrManipulator::writeData (LONG new) ;

Example:
AttrManipulator next (attrs);

while (next())
{
switch (next.tag())
{
case WRITE_TAG : next.writeData (0OL); break;
case DELETE_TAG : next.writeTag (TAG_IGNORE); break;

1.4 attrlist 3

There are some methods which supply further powerful means to work on
AttrLists as a whole.

struct Tagltem mapTaglist[] = { PGA_Top , CV_HorizTop,
PGA_Total, CV_HorzTotal,
TAG_END };

ULONG AttrList::mapAttrs((lstruct Tagltem x)&mapTaglist[0]);

AttrList attrs;
ULONG AttrList::mapAttrs(attrs);

..converts attribute tags present in the mapTaglist as tag value to new tags
given as corresponding tag data with deleting tags that are not within the
mapTaglist. Tag values are not touched. mapAttrs () includes filterAttrs():

Tag filterTaglist[] = { PGA_Top, PGA_Total, TAG_END };
ULONG AttrList::filterAttrs(&filterTaglist[0]);

AttrList attrs(PGA_Top, PGA_Total, TAG_END);
ULONG AttrList::filterAttrs(attrs);
..removes all tags that are not appearing in the filterTags list.

Note that filterTags is a pointer to an array of Tags, not TagItems!

Both methods return the number of tags that are still left. So, on a 0 return
no further setAttributes () calls should be necessary.

AttrList

1.5 attrlist 4

A++ introduces a way of making Attribute Tags type-safe. Type checking on
the tag value is achieved by using special defines that shadow a simple
call of a method that only receives the tag value as a specific type and
returns it immediately, using function parameter type checking.

The method

static LONG T::confirm(T xtagValue) { return (LONG)tagValue; }

is usually defined inline for the class that supplies objects being used as
attribute tag values.

Along with that goes a macro that combines the Attribute Tag with this
method:

// the plain Attribute Tag
#define ATT_GiveMeAT (ATT_Dummy+1)

// the corresponding type-safe Attribute Tag, replacing both tag and data
#define ATT_GiveMeATObj (object) ATT_GiveMeAT,T::confirm(object)

For conformity reasons, a type-safe Attribute Tag is named after the
corresponding Tag, concatenated with a ’"0Obj’ suffix.

Note, that for classes being derived, such a type-safe Attribute Tag is
crucial, since derived classes’ objects need to be cast into the requested
base class.

	AttrList
	Implementation notes
	attrlist_1
	attrlist_2
	attrlist_3
	attrlist_4

