
Quip, The Fortune Cookie Program From Hell

Quip, The Fortune Cookie Program From Hell ii

COLLABORATORS

TITLE :

Quip, The Fortune Cookie Program From Hell

ACTION NAME DATE SIGNATURE

WRITTEN BY September 19, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

Quip, The Fortune Cookie Program From Hell iii

Contents

1 Quip, The Fortune Cookie Program From Hell 1

1.1 Quip, The Fortune Cookie Program From Hell . 1

1.2 Legal Stuff . 1

1.3 Terms of Use . 2

1.4 Distribution . 2

1.5 Disclaimer . 3

1.6 History Lessons . 4

1.7 Quips History . 4

1.8 Quip One . 5

1.9 Quip Two . 5

1.10 Quip Three . 5

1.11 Quip Four . 6

1.12 Quip Five . 6

1.13 Quip Six and Others . 6

1.14 Quip Seven part One . 6

1.15 Quip Seven part Two . 7

1.16 Quip Seven part Three . 7

1.17 Quip Seven Part Four . 8

1.18 Quip Seven part Five . 8

1.19 Quip Seven part Six . 9

1.20 Cows History . 10

1.21 Pathos . 11

1.22 CLI & WorkBench Usage . 12

1.23 VERSION . 13

1.24 COL . 13

1.25 DATA . 14

1.26 TABLE . 14

1.27 FORMAT .com line. 14

1.28 FFORMAT . 15

1.29 PRE . 15

Quip, The Fortune Cookie Program From Hell iv

1.30 SUF . 15

1.31 MIDDLE .com line. 15

1.32 FPRE . 16

1.33 FSUF . 16

1.34 FMIDDLE . 16

1.35 WHICH . 17

1.36 RANDOM .com line. 17

1.37 DISPLAY .com line. 17

1.38 NUM . 18

1.39 FILES . 18

1.40 REQ .com line. 18

1.41 DELAY .com line. 19

1.42 UPDATE .com line. 19

1.43 ERROR .com line. 19

1.44 RUN .com line. 20

1.45 QuipScript . 20

1.46 QuipScript Lists . 22

1.47 RND . 23

1.48 SEQ . 23

1.49 IN_FILE . 24

1.50 OUT_FILE . 25

1.51 FORMAT . 25

1.52 PREFIX . 26

1.53 SUFFIX . 26

1.54 MIDDLE . 27

1.55 HOWMANY . 27

1.56 RANDOM . 27

1.57 SERIAL . 28

1.58 WHICHQUIP . 28

1.59 MAKETABLE . 29

1.60 DISPLAY . 29

1.61 MAKE_QUIPS . 29

1.62 SCRIPT . 30

1.63 GOTO . 31

1.64 LABEL . 31

1.65 CHANCE . 32

1.66 REQ . 32

1.67 DELAY . 32

1.68 UPDATE . 33

Quip, The Fortune Cookie Program From Hell v

1.69 RESET . 33

1.70 ERROR . 34

1.71 OTHERECHO . 34

1.72 RUN . 34

1.73 FINISHED . 34

1.74 TECHNOTES . 35

1.75 DATAFILES . 35

1.76 SCRIPTFILES . 36

1.77 Random Number Generator . 37

1.78 Requester Library . 38

1.79 CREDITS . 39

1.80 FORMATTING . 40

Quip, The Fortune Cookie Program From Hell 1 / 41

Chapter 1

Quip, The Fortune Cookie Program From Hell

1.1 Quip, The Fortune Cookie Program From Hell

+-------------------------------+
| |
| Quip |
| |
| The Fortune Cookie Program |
| From Hell |
| |
+===============================+
| Joseph Edwards Van Riper III |
+===============================+
| |
| A Cheese Olfactory Workshop |
| Production |
| |
+-------------------------------+

Legal Stuff

History Lessons

CLI & WorkBench Usage

QuipScript

TECHNOTES

CREDITS

FORMATTING

1.2 Legal Stuff

+-------------------------------+

Quip, The Fortune Cookie Program From Hell 2 / 41

| |
| LEGAL STUFF |
| |
+-------------------------------+

As is the way of man, sometimes, you just have to spell stuff out to
people.

Terms of Use

Distribution

Disclaimer

1.3 Terms of Use

You are free to execute this program in any way you want. You may put it
on a disk and fire live rounds from your favorite rifle into it, lick the
diskette you may have picked this up from.. heck, you can even use your
favorite sector editor and write little <00>’s into it.

Of course, you may also use this for your BBS or your home system.

You owe me nothing except perhaps gratitude.. maybe not even that after
you read some of the supplied quips.

Most people call this "Freeware", except I add on other special bonus to
the whole thing... I have included the Source Code! With THIS in mind,
the program should probably be more properly called "Public Domain". I
only ask that you do not claim this work as your own, unless you modify it
significantly, and even then, I ask that you include my name SOMEWHERE in
the credits, by way of respect for the work that went into this frivolous
project.

Otherwise, feel free to enjoy this program in any way that you feel you
can find enjoyment.

1.4 Distribution

If you dare to charge people anything more than what Fred Fish charges for
a disk from his definitive PD/Shareware collection, you will be in
violation of my right to have this product distributed freely to all
peoples who wanted a product like this. That is to say, You Should Be
Ashamed Of Yourself, Where Is Your Mother To Discipline You?

If you are a user, and you happen to come across this work, and you’ve
paid for it, you’ve been ripped off. Please try to get in contact
with some kind of authority in your respective country, to get your
money back, and maybe eat the evil bastard for lunch. At the very least,
you should feel insulted that he thought so little of you as to allow this
remark to remain in the documentation.

Quip, The Fortune Cookie Program From Hell 3 / 41

If you have written a very nice program.. perhaps a BBS or a database or
something, and you wish to include my program with the distribution,
regardless of ShareWare or Commercial fees, you are welcome to include
this program in your distribution, as long as it is made clear that I
(Joseph Van Riper) am the author of Quip. I do not even require a copy of
the registered version of the program be sent to me (although that would
be exceptionally nice <grin>). It should also be made clear that Quip is
a Public Domain program, freely available, and that the user is paying
only for your own product.

1.5 Disclaimer

I, Joseph Edwards Van Riper III, and all peoples working for the Cheese
Olfactory Workshop (in whatever guise), do hereby accept no responsibility
for the results of this program. Since you haven’t paid for it, you
accept full risks for what this program might do. We will not be held
responsible for anything lacking in the documentation, either... you, the
user, are to accept the full risks of running this program.

While we’ve taken great pains to insure that nothing terribly serious
could happen as a result of running this program, we cannot accept
responsibility for this program’s actions, or the documentation’s wording
which may lead you to whatever actions. Enjoy this program, but don’t try
to pin anything on us <grin>.

So, if by some weird fluke, you read something in the documentation that
suggests you try some parameter, and you find yourself in Alpha-Centari,
sipping Methane in a plastic container, wearing naught but a joystick and
several rubber skid-stops, we cannot be held responsible for it. Find
your own way home.

I strongly recommend, however, that the user read the instructions for the
use of this program before running it, in order to minimalize any
potential damage. Please keep in mind, Quip modifies certain files under
certain conditions that are easily predictable. Quip also creates/deletes
certain files according to another file/string’s text... eg:

".profile"

Might become:

".profile.tab" (or) ".profile.0"

while

"RAM:garn.dat"

Could become:

"RAM:garn.0" (or) "RAM:garn.tab"

And

"RAM:blooie"

Quip, The Fortune Cookie Program From Hell 4 / 41

might become

"RAM:blooie.tab" (or) "RAM:blooie.0"

Also, all reported rumours about Quip stealing girlfriends away from men are
completely without base. Even more untrue is the unusual rumour that Quip
will make you impotent, or will reduce your IQ by 5 points with each
invocation. The one about Quip making calls to the serial device is a total
fabrication, and anything about Quip having Artificial Intelligence is
truly overblown.

Read the docs.

1.6 History Lessons

+-------------------------------+
| |
| History Lessons |
| |
+-------------------------------+

A Gilgamesh was the King of Uruk.. no, wait.. you can’t be interested in THAT
subject right now!

But you might be interested in
Quips History
or perhaps
COWs History

.

Quips History

Cows History

1.7 Quips History

+-------------------------------+
| |
| Quip’s History |
| |
+-------------------------------+

Quip has gone through a lot of changes over its time, and I didn’t really
keep a very good handle on all the various changes from version to
version, but I can try to give somewhat of an idea, if you REALLY care
about it.

Quip One

Quip, The Fortune Cookie Program From Hell 5 / 41

Quip Two

Quip Three

Quip Four

Quip Five

Quip Six and Others

Quip Seven part One

Quip Seven part Two

Quip Seven part Three

Quip Seven Part Four

Quip Seven part Five

Quip Seven part Six

1.8 Quip One

Quip 0.01 (perhaps July 1991, Lattice C++)

The very first version of Quip was written because I wanted to see if I
could program a fortune-like program for the Amiga (because I hadn’t seen
any up to that time). I wanted to do it so one wouldn’t have to have an
extra table file hanging around the system. Of course, this meant that
the program would run rather slowly. However, Quip 0.01 was SO incredibly
slow because I hadn’t figured out that Level 1 I/O meant non-buffered, and
thus, I had to wait for disk-movement. Boy was *I* an idiot!

1.9 Quip Two

Quip 0.02

I had discovered that Level 2 I/O would speed things up considerably
<grin>.

1.10 Quip Three

Quip 0.03

I implemented the tablefile, as an option, because I was quite tired of
how slow quip retrieval was. It was pretty cool, suddenly seeing my
little quips pop up almost instantly!

Quip, The Fortune Cookie Program From Hell 6 / 41

1.11 Quip Four

Quip 0.04 (sometime in 1992)

I think I fixed some bugs in this version. I can’t remember what they
were, though. I DO remember that they were SO bothersome that I
completely re-wrote the code, trying to take better advantage of C++’s
object oriented features. This also started the MS-DOS series of Quip
programs, distributed almost exclusively in Charlotte, NC, and Minneapolis.
Prefix and suffix files support started to appear in this version.

1.12 Quip Five

Quip 0.05

More bug-fixes. There were a couple of ’sub-versions’ (like this wasn’t
already a sub-version) that were meant to fix minor problems (such as
reading the filename from the arguments correctly in both Amiga and MS-DOS
versions).

1.13 Quip Six and Others

Quip 0.06 (and incarnations)

Again, more bug-fixes, and some more features (better argument parsing, and
all kinds of nifties). Included with the archive for the Amiga version was
a program that helped Citadel sysops convert archived messages into Quip
datafiles in a nifty little format (handled anonymous messages, networked
messages [although there was a stupid bug I put in it that will make it
generate messages that look pretty dumb.. maybe I fixed this before I sent
it out.. I dunno], time and date stamps, etc). Pretty cool, really. I
also had assembled a rather huge datafile filled with over two thousand
quips in it, and started distributing this file separately. It was at this
time people started complaining about how large the datafiles were, and
could I PLEASE make them smaller somehow. That’s when I started working
on.... (the next version of Quip).

1.14 Quip Seven part One

Quip 0.07 (June-July 1993, Amiga E compilor)

I had had enough of working with the Lattice C++ program. I didn’t have
problems programming in C++, but I had problems with messing around with a
stupid compilor. I sorta copped an attitude against Lattice, ’cause I
felt sorta funny about them charging for technical support when they give
such a crummy manual. I started looking for PD compilors, and stumbled
into g++... which gobbled a full quarter of my humble hard-drive, so I
dumped it in favor of Amiga E. WOW! Talk about a NICE compilor! The
docs are not the greatest, but functional enough for me to get around, and

Quip, The Fortune Cookie Program From Hell 7 / 41

there was one major error in the docs that almost caused me fits when I
first started working in E, but after a while I settled into it, and
voila! Quip!

This version of Quip was meant to be the last version I should have to mess
with. With that in mind, I gave it more features than the average person
should have to mess with. Unfortunately, MS-DOS support had to be dropped
<giggle> since I programmed this in E, but the code size dropped
dramatically, and the functionality of the program has increased beyond
anything one could really have expected in such tiny code. The source code
is roughly 1,300 lines long, and could be tightened up if I bothered. I
finally added icon support, and created the new

QuipScript
"language" for

use by Quip. I changed a few things in the CLI interface to make it more
Amiga-like instead of unix-like. It now uses ReadArgs, allowing me to
avoid having to write a function to handle ’?’ and stuff like that.

1.15 Quip Seven part Two

Quip 0.07a

Oops.. so much for the version to end all versions. I fixed the bug that
caused all quips that were generated from a file not having a tablefile to
have a ’@’ character preceding them... no longer has the ’@’ character.
Super-easy fix... stupid oversight on my part (shoulda tested for this
before sending it out.. to one person <grin>).

Fixed bug that caused it not to release its deathhold on various files
when the user broke out of it (if invoked by icon).

Also fixed another silly bug that would make Quip exit with ridiculously
high error codes, screwing up scripts. Now exits properly (another easy
fix).

Enabled randomized quips for datafiles without tablefiles (thanks to
Lars Magnus Nordeide, who wrote WiseCrack, and gave away the source code
in C.. cute algorythm.. I have no idea why I didn’t see something so
simple myself). Also, using his idea of taking advantage of Nico’s
ReqTools library, I’ve added support for it in the form of the

REQ
tooltype/cli argument. Oddly enough, this was a real bitch to do, ←↩

since
normally I don’t bother to put all the quips in a single variable <sigh>.

1.16 Quip Seven part Three

Quip 0.07b

Created

Quip, The Fortune Cookie Program From Hell 8 / 41

delay
able quips. Now you can use the requesters, and not have

to press ’Quip’ to quit... after a specified amount of time, Quip
will quit on its own. Actually... after an obscene amount of time, Quip
will quit on its own anyway (something like 90000 seconds). Of course, if
you specify the

NUM
keyword, it’ll print NUM quips, one after the other,

waiting the specified amount of time before quipping on.

1.17 Quip Seven Part Four

Quip 0.07c

Added
UPDATE
feature, so tablefiles no longer have to be created from

scratch. Also fixed a bug that caused 40 bytes of memory to disappear each
time Quip was run from CLI (stupid error.. I forgot to FreeDosObject() a
pointer). Quip is now a very CLEAN program <grin>. Quip now actually does
the

WHICH
command, and during roll-over, will not read the ’0’ quip (the

information that comes between the quip-number and the first quip). Within
the scripting language, I created a new option called

RESET
, which allows

you to reset all the various options to their default values. This means I
changed the way I handled the setting/resetting of various values after

MAKE_QUIPS
and
IN_FILE

, too. I also included a new bug that uses the
user’s serial port to log into various nuclear weapons sites and fire
warheads at the state of Georgia. I’ll leave it to you to figure out if I
mean United State’s Georgia, or the country of Georgia...

1.18 Quip Seven part Five

Quip 0.07d

Quip now doesn’t default when given bad arguments.. instead it’ll give you
some kind of idea why the arguments were bad. In fact, all the error texts
for Quip have been changed to be MUCH more informative. Quip now tries to
give you a reason why it couldn’t do what you wanted <grin>. Thank you,
Commodore, for Fault()! Also, you may now specify a file to send error
messages, and anything else that isn’t specifically a quip. That is to say,
using the

ERROR

Quip, The Fortune Cookie Program From Hell 9 / 41

command, you may redirect anything that isn’t
specifically a quip (or isn’t a prefix/suffix/format text, or isn’t a bad
keyword in

QuipScript
) to another file. Could lead to dancing.

Yet another improvement.. Quip now looks for a default script (called
’s:quip.script’). If it finds it, it’ll

QuipScript
the script

automatically, thus allowing you to handle a bunch of stuff by simply
calling ’Quip’. Also, QuipScript files no longer HAVE to put a #

IN_FILE
keyword in the script... QuipScript now defaults to "S:Quip.dat", ←↩

just as
the command-line/icon options do. NOTE: if Quip finds an S:Quip.dat file
to execute, it’ll quit when the script is finished (just like any other
script file). I’ve also changed the code so you can specify a datafile to
work with a particular script.. so if you invoke Quip with a

DATA
parameter, as well as a
SCRIPT
parameter, and the script doesn’t set the

datafile within it, the datafile you specify will be used instead.

I also changed the
FORMAT
command so that, if using a
REQ
or
DELAY

argument, the
FORMAT

ted string will appear in the menu bar, rather than in
the text itself. Something to keep in mind.

1.19 Quip Seven part Six

Quip 0.07e

I fixed a few annoyances with the error-reports. Quip now appends error
messages with a date/time stamp heading the error-report.

QuipScript
ing

now sends #’s with non-commands (normally echoed to stdio while the script
is running, always preceding any quips) in the order that it appears in
the script. Therefore, if you echo something to stdio, then generate
quips, and echo something else to stdio, you’ll see the text before, then
after your quips, instead of always before. You may also use a switch to
toggle whether such messages are sent to stdio or to the error port.

A new
MIDDLE
option was created, to allow text to appear between quips when

Quip, The Fortune Cookie Program From Hell 10 / 41

using the
NUM
option.

Prefix/suffix/middle/format options may now be direct text, or files
specified in the command-line options/tooltypes (or in the QuipScript).

Prefix/Suffix/Format/Middle files/texts may now be whatever size you want
(that the system can handle). The only restriction is that the actual name
of an environment variable may be no more than 80 characters long.
Environment variables may now hold text of any length.

You may now run a command using the filename env:quip.tmp as an argument
from within Quip. This is useful if you want to do things like, uh,
run certain filter programs, or maybe use ’muchmore’ to view your quips from
an icon. Beware, though.. some uglinesses abound (eg: ’type’ doesn’t work
with Quip for some reason).

New
QuipScript
command
FINISHED
lets you end a script at that point.

Could be handy for certain goto statements.

1.20 Cows History

+-------------------------------+
| |
| The Cheese Olfactory |
| Workshop’s |
| History |
| |
+-------------------------------+

It all started with the answering machine. I had to figure out a new
outgoing message, because the old one was stale (you know how it is). In
a sort of desperate attempt to come up with something, I said something
like the following:

"Hello, and welcome to the Cheese Olfactory Workshop. We have all kinds
of cheese available for your nasal needs. Our personal favorite is the
limberger, which we’ve made especially potent with our new patented
Cheese-Odorization formula. Our manager, Mr. Van Riper, is unable to come
to the phone right now, but if you leave your name and number, he’ll be
happy to inundate you with cheese later."

Actually, the original message was far stranger than even that, but I
can’t remember it. I was just thinking about how funny such a name would
sound. Anyway, Piouhgd called, and became entranced with the name as
well, so much so that he suggested I use it for all the programs I write.

Pioughd’s girlfriend (now wife) has a certain affection for cows. She has
a cow-stool (for sitting), billions of cow magnets, cow seatcovers, cow

Quip, The Fortune Cookie Program From Hell 11 / 41

utensils... I’m not entirely sure, but I think she even has a cow dress
somewhere. She refuses to eat cow products (milk and steak are OUT), and
all the rest. We, of course, got somewhat caught up in this, and started
noticing weird things related to cows... eg. my ancestors came to the
United States on a ship called The Spotted Cow. Citadel BBS, our favorite
BBS program, had a ’feature’ where if you typed ’m’ at a certain time you’d
get a ’Moo...’ out of it. Funny stuff like that. We, of course, noticed
quite by accident that the Cheese Olfactory Workshop has COW for it’s
initials, and we went totally nuts over it.

There is a sort of Cheese Olfactory Workshop related
Pathos
that is

always sort of developing, mostly related to my own hyperactive
imagination, excuses as to why this-and-that program doesn’t work right...
perhaps you’ll read about it if you are wasting your time reading this
<grin>.

Pathos

1.21 Pathos

+-------------------------------+
| |
| The Pathos Of COW |
| |
+-------------------------------+

Some of you may become angry at reading this useless tripe in the middle
of a document file somewhere, but I figure it’s just short enough and
entertaining enough that perhaps you won’t mind.

There are many reasons why COW takes so long to develop programs. Mostly,
the problems have to do with our slave programmers. We’ve been trying to
find more concientious slaves, but such things are always difficult to
find.

Much earlier, we had a fairly good batch of slaves working for us, but one
of them got uppity and started a rebellion. In the process of trying to
quell the rebellion, many of the slaves were killed. It took us months to
rebuild our stock of slave programmers, and we could only work the
remaining ones so hard before their minds started to blow.

Then, a second rebellion occured, except it was much more subtle. One of
our slave programmers tried to write something into the code that would
open up a dimensional portal to another place, allowing them to free
themselves. Unfortunately, they hadn’t considered our specialized
compilor trapping, and the portal opened up into a void, sucking fully
half of our slaves into it. We managed to close it before the rest were
taken. But, now we were left with so few programmers it was amazing we
were able to get ANYTHING done.

Now, however, there has been a third rebellion, just before the writing of
this latest version of Quip. Someone tried to hack into one of the US

Quip, The Fortune Cookie Program From Hell 12 / 41

Government’s nuclear weapons’ sites, and train a missile at one of our
headquarters. Unfortunately for them, they got the co-ordinates wrong,
and bombed their own sites, meaning I had to program this puppy all by
myself. That’s why it’s taken over a year for Quip 0.07 to be written
(sigh). I’m still trying to get more slave programmers for COW, but good
slave programmers are SO hard to find.

1.22 CLI & WorkBench Usage

+-------------------------------+
| |
| CLI & Workbench Usage |
| |
+-------------------------------+

Quip has always offered CLI support, however, now Quip uses ReadArgs to
handle the argument parsing. This offers some extra flexibility, although
users of the older versions of Quip will notice that the

FILES
parameter

now only accepts one filename. I apologize for this limitation, but it
was easier to program this way, for the extra improvements added to the
program. If you REALLY want to process more files, try using the script
language. Or you could always import from Mars.

Now, Quip supports icon use. If Quip doesn’t have a need to print anything,
it will not open a window. However, if it must print anything, Quip opens
up it’s own window to the WorkBench (or your own public screen if
Shanghai’d) with a consoled clippable bit of text. Provided there are no
errors, the text will be your quip. Regardless, to close the window, you
need only press RETURN while the window is active.

The tooltypes you may use include all the various arguments used by the
CLI, but you may not use any of the CLI’s shortcuts. Trust me.

VERSION

COL

DATA

TABLE

FORMAT .com line.

FFORMAT

PRE

SUF

MIDDLE .com line.

FPRE

Quip, The Fortune Cookie Program From Hell 13 / 41

FSUF

FMIDDLE

WHICH

RANDOM .com line.

DISPLAY .com line.

NUM

FILES

REQ .com line.

DELAY .com line.

UPDATE .com line.

ERROR .com line.

RUN .com line.

1.23 VERSION

+-------------------------------+
| |
| VERSION |
| |
+-------------------------------+

Just shows what version of Quip you’re running (and displays a quip according
to defaults). The version is not the release version, but the program
version.. something to keep in mind. I’m not following StyleGuide
conventions (totally) with regards to my selection of what version of Quip
you’re running.. my apologies.

1.24 COL

+-------------------------------+
| |
| COL |
| |
+-------------------------------+

This sets the column width of the file to be read as a script. It
defaults to 80 characters, however, if you need more for some reason, this
option lets you have more.

Quip, The Fortune Cookie Program From Hell 14 / 41

1.25 DATA

+-------------------------------+
| |
| DATA |
| |
+-------------------------------+

This lets you specify which file you want to read a quip from. It
defaults to s:quip.dat.

1.26 TABLE

+-------------------------------+
| |
| TABLE |
| |
+-------------------------------+

This tells quip that you want the file specified by
DATA
to have a new

tablefile generated for it.

1.27 FORMAT .com line.

+-------------------------------+
| |
| FORMAT |
| |
+-------------------------------+

FORMAT takes a string holding text you want to appear between any
PRE

and the actual quip itself. The usual
formatting
is done to the contents

of the FORMAT string.

The string specified will appear in the menu bar of the quip if

REQ .com line.
or
DELAY .com line.
was specified.

Quip, The Fortune Cookie Program From Hell 15 / 41

1.28 FFORMAT

+-------------------------------+
| |
| FFORMAT |
| |
+-------------------------------+

This lets you specify a filename holding the text you want to see appear
between the

PRE
and quip. The text in the filename will be subject to

formatting
.

1.29 PRE

+-------------------------------+
| |
| PRE |
| |
+-------------------------------+

This specifies text that will come before the actual quip is written. Subject
to

formatting
.

1.30 SUF

+-------------------------------+
| |
| SUF |
| |
+-------------------------------+

This specifies text that will be appended to whatever quip is generated.
Subject to

formatting
.

1.31 MIDDLE .com line.

+-------------------------------+
| |

Quip, The Fortune Cookie Program From Hell 16 / 41

| MIDDLE |
| |
+-------------------------------+

This specifies text that will appear between quips on stdio. Of course,
this text won’t appear if

NUM
isn’t set to a value other than 1. This is

potentially useful for filtering programs that someone might design, or
perhaps some kind of arcane purpose I haven’t thought of. And, as usual,
the text undergoes

formatting
.

1.32 FPRE

+-------------------------------+
| |
| FPRE |
| |
+-------------------------------+

Specifies a file holding text to prefix before a quip. The text will
undergo

formatting
.

1.33 FSUF

+-------------------------------+
| |
| FSUF |
| |
+-------------------------------+

Specifies a file holding text to append to a quip. The text will undergo

formatting
.

1.34 FMIDDLE

+-------------------------------+
| |
| FMIDDLE |
| |
+-------------------------------+

Quip, The Fortune Cookie Program From Hell 17 / 41

This specifies a file holding text that will be treated as the
MIDDLE (CLI/ICON option. Text undergoes

formatting
.

1.35 WHICH

+-------------------------------+
| |
| WHICH |
| |
+-------------------------------+

This specifies a number which determines which quip will be generated (or
from which quip a series of quips will be generated if the

NUM
argument is

used).

1.36 RANDOM .com line.

+-------------------------------+
| |
| RANDOM |
| |
+-------------------------------+

This is a switch telling Quip that you want your quips generated randomly.
If your

DATA
file doesn’t have an associated
TABLE
file, Quip can now

generate random quips, but cannot tell you which quip it has picked up.
Therefore, if you use

FORMAT .com line.
, and you use the {quip} variable,

you will get a ’0’ instead of the expected result <grin>.

1.37 DISPLAY .com line.

+-------------------------------+
| |
| DISPLAY |
| |
+-------------------------------+

Quip, The Fortune Cookie Program From Hell 18 / 41

This is a switch telling Quip that you want quips being generated by the

FILES
parameter to also be sent to stdio (or a window, for the Icon ←↩

users)
so you can see them. Each quip will appear exactly as they appear in the
file.

1.38 NUM

+-------------------------------+
| |
| NUM |
| |
+-------------------------------+

This specifies how many quips you want to make with this invocation of
Quip. It defaults to 1 quip. It’s especially useful for Citadel sysops
who want to create 60 quips for their BANNER, LONOTICE, NOTICE, or NOCHAT
messages (when using the

FILES
parameter).

1.39 FILES

+-------------------------------+
| |
| FILES |
| |
+-------------------------------+

This specifies a set of filesnames to create with quips in them (mostly
useful for Citadel sysops). The filename will have its name, plus a number
appended to the end of it. So, if you generate two quips (via

NUM
), and

the filename you specify is ’BANNER’, you get:

BANNER.0
BANNER.1

Very useful for Citadel sysops.. perhaps less so for others. Still, you
can redirect stdio output if you really wanted to create only one quip
with a specific filename (eg. Quip >myfilename.txt).

1.40 REQ .com line.

Quip, The Fortune Cookie Program From Hell 19 / 41

+-------------------------------+
| |
| REQ |
| |
+-------------------------------+

This tells Quip that you want it to use Nico François’ reqtools.library to
produce a very nice looking quip on the screen.

1.41 DELAY .com line.

+-------------------------------+
| |
| DELAY |
| |
+-------------------------------+

The number coming after this option tells Quip that you want to use Nico
François’ reqtools.library to produce a nice looking quip (as with the

REQ .com line.
option), but you want it to get rid of the quip after that

number of tens of seconds have passed.

Therefore, if you want the quip to be displayed for no more than 10
seconds, you would use ’DELAY=100’. Of course, the user can type a RETURN
to get rid of the quip before the ten seconds are up.

1.42 UPDATE .com line.

+-------------------------------+
| |
| UPDATE |
| |
+-------------------------------+

The number after this option tells Quip to update the tablefile from that
number quip in the datafile you specify. If you specify ’0’, it’ll assume
you mean the last known quip in the tablefile, and will add the new ones to
the tablefile. This command could save you a LOT of time in updating your
tablefiles, or fixing skewed tablefiles. I had wanted to put this in

Quip Four
, but found it hard to program. I guess I had programmer’s

block at the time. No.. wait, it was that one slave programmer...

1.43 ERROR .com line.

Quip, The Fortune Cookie Program From Hell 20 / 41

+-------------------------------+
| |
| ERROR |
| |
+-------------------------------+

With this option, you specify what file you want error messages to be sent to.
Sick users can use CON:, if they really want to (but the message will
disappear as quickly as it was made, and it’ll always create that CON:
window.. really not a nice option). Some might want to use NIL:.

1.44 RUN .com line.

+-------------------------------+
| |
| RUN |
| |
+-------------------------------+

This option will run a command, passing ’env:quip.tmp’ (a file Quip will
generate holding a quip in it) as an argument. This can be useful for such
things as ’quip run more’ or the like. Quip has no way of finding out the
error code of the returned command, but it may tell you something via
stdout. If used from an icon, a window is created before running the
command, and can be removed by tapping <RETURN> in the window.

EG: ’quip run more’ will generate a quip, put the quip in ’env:quip.tmp’,
then execute a ’more env:quip.tmp’ command.

This option is not too reliable, so always test it first.

1.45 QuipScript

+-------------------------------+
| |
| QuipScripting |
| |
+-------------------------------+

That’s right, folks, Quip can read a script file in its very own language (a
language much easier to master than BASIC, C, ARexx, or darn near anything
else, because it doesn’t have the greatest vocabulary in the world). The
first line in a script is ignored, so always start your scripts with some
comment at the beginning. Don’t worry, you can put comments darn-near
anywhere.. just be careful not to put them within lists, or on the same
line as an option. It would also be safer not to put comments on the same
line as a keyword (although you can usually get away with it.. it’s only
dangerous if your comments happen to collide with any of the other
keywords that exists.. eg: #IN_FILE "I think a good PREFIX file..."

NOTE: Quip defaults to running a script called "S:Quip.script". If it

Quip, The Fortune Cookie Program From Hell 21 / 41

can’t find this script, it’ll run as normal. If it CAN find it, it’ll run
that script. If you specify a script with the SCRIPT option, it’ll
override the default script. If you specify a script file called "NIL:",
it will nullify the default script.

Therefore, if you have a file "S:Quip.script", but you want to run Quip
without running any scripts (including the default script), try:

Quip script NIL:

(all caps on the ’NIL:’).

Also, QuipScript files default to using "s:quip.dat" as the datafile, but
if you specify a different datafile while invoking it, THAT datafile will
be used instead... therefore "quip script boo.script data cookie.dat" will
use the datafile ’cookie.dat’ instead of ’s:quip.dat’, provided
’boo.script’ doesn’t have a #IN_FILE keyword used.

All keywords in QuipScript are in all caps, and start with a ’#’ character
on the beginning of the line, as in:

#KEYWORD

Options for the keyword appear on the next line, are usually
case-sensitive, and are preceded with a space:

#KEYWORD
option

All lines in QuipScript may only be 80 characters long, unless the
COL

command-line option is used to change it. I cannot imagine why ←↩
anyone

would want to use more, but some people are strange <grin>. If it’s really
a problem, try ASSIGNing to paths, or using environment variables.

Here is a listing of all the various keywords that exist in QuipScript:

QuipScript Lists

IN_FILE

OUT_FILE

FORMAT

PREFIX

SUFFIX

MIDDLE

HOWMANY

RANDOM

Quip, The Fortune Cookie Program From Hell 22 / 41

SERIAL

WHICHQUIP

MAKETABLE

DISPLAY

MAKE_QUIPS

SCRIPT

GOTO

LABEL

CHANCE

REQ

DELAY

UPDATE

RESET

ERROR

OTHERECHO

RUN

FINISHED

1.46 QuipScript Lists

Lists are used when you want one selection chosen from a range of ←↩
values.

They are terminated by a ’#’ character appearing at the beginning of a
line (I generally put a ’#END’ at the end, but it’s not looking for the
work ’END’, just the ’#’ character):

#KEYWORD_LIST
option1
option2
option3

#END

There are only two keywords that indicate lists...
RND
and
SEQ

.

Quip, The Fortune Cookie Program From Hell 23 / 41

RND

SEQ

1.47 RND

If ’RND’ appears with the keyword, and a list follows, the script ←↩
will

randomly select one of the options in the list:

#RND KEYWORD
option1
option2
option3

#END

In the above example, option1, option2, or option3 will be selected
randomly and used as a the option for ’KEYWORD’. The only keywords that
allow the use of the RND keyword with them are:

#RND
IN_FILE

#RND
OUT_FILE

#RND
FORMAT
(also FILE_FORMAT)

#RND
PREFIX
(also FILE_PREFIX)

#RND
SUFFIX
(also FILE_SUFFIX)

#RND
MIDDLE
(also FILE_MIDDLE)

#RND
SCRIPT

#RND
GOTO

#RND
CHANCE

#RND
ERROR

#RND
RUN

1.48 SEQ

If ’SEQ’ appears with the keyword, and a list follows, the script ←↩
will

Quip, The Fortune Cookie Program From Hell 24 / 41

sequentially select one of the options in the list:

#SEQ KEYWORD

*option1
option2
option3

#END

In the above example, option1 will be chosen, and the ’*’ will move so
it’s in front of option2. The ’*’ character tells QuipScript which option
to select. If the ’*’ character is on the bottom option, it’ll be set to
the top option (from option3 to option1 in the above example). If you
fail to put the ’*’ in, QuipScript will put it on the top option, and will
also select the top option for the keyword.

The following keywords can be used with the SEQ modifier:

#SEQ
IN_FILE

#SEQ
OUT_FILE

#SEQ
FORMAT
(also FILE_FORMAT)

#SEQ
PREFIX
(also FILE_PREFIX)

#SEQ
SUFFIX
(also FILE_SUFFIX)

#SEQ
MIDDLE
(also FILE_MIDDLE)

#SEQ
SCRIPT

#SEQ
GOTO

#SEQ
CHANCE

#SEQ
ERROR

#SEQ
RUN

1.49 IN_FILE

IN_FILE tells QuipScript what Quip datafile you wish to grab quips from.
If you forget to specify this keyword, QuipScript will assume you want
S:Quip.dat.

#IN_FILE
s:quip.dat

This tells QuipScript that ’s:quip.dat’ will be the file from which you’ll

Quip, The Fortune Cookie Program From Hell 25 / 41

grab quips. A little redundant, but you can do this.

1.50 OUT_FILE

OUT_FILE tells QuipScript what file you want to write quips out to. It’s
important to note, however, that this option is intended to work with
Sysops running a Citadel BBS system (although others might find it
useful). The filename actually used is modified with an ending that has a
number (the first is .0, then .1, .2, .3, and so on up to HOWMANY
ANY"} number
of quips you want to generate [minus one]):

#OUT_FILE
ram:banner.pre

This tells QuipScript to write quips to ram:banner.0, ram:banner.1, etc,
until HOWMANY quips have been created.

1.51 FORMAT

FORMAT lets you sandwhich text between a
PREFIX
and the quip. Note that the

text entered here will undergo some
formatting
to certain conventions.

To specify a file from which to grab this text, use ’FILE_FORMAT’.

Note also that this string will appear in the menu bar of a quip if

REQ
or
DELAY
is specified.

EXAMPLES:

#FORMAT
Quip #{quip}:\n

Prints "Quip #2342:", and a new line, where the actual quip starts. Well,
the number depends on which quip was actually grabbed.

#FILE_FORMAT
s:quip.form

Looks in the file ’s:quip.form’ for the text to put between the PREFIX and quip

#FORMAT
{user}’s personal file #{quip}:\n

Quip, The Fortune Cookie Program From Hell 26 / 41

Prints "Joseph’s personal file #234:" and a new line. Assuming, of
course, that the environment variable ’USER’ was set to ’Joseph’, and that
the 234th quip was selected.

#FORMAT
{date}:\n

Prints ’2-Aug-93:’ and a new line, assuming that you ran the command on
the 2nd of August, 1993.

1.52 PREFIX

PREFIX specifies a filename that holds text that you want printed ←↩
before

each generated quip. This text will be printed before the
FORMAT
string,

too, which may be useful. Note: the prefix will pass through the same

formatting
as
FORMAT

, but specifying {quip} will print ’0’.

To specify a filename, use ’FILE_PREFIX’.

#PREFIX
-------------------\n

The above text would appear just before the Quip, except ’\n’ would be changed
to a new-line character.

#FILE_PREFIX
s:prefix.txt

specifies ’s:prefix.txt’ as a file holding text you want to prefix as above.

1.53 SUFFIX

SUFFIX specifies a filename that holds text that you want printed ←↩
after

each generated quip. The same things regarding
PREFIX
apply to SUFFIX.

Don’t forget about ’FILE_SUFFIX’.

#SUFFIX
--------------------\n

Quip, The Fortune Cookie Program From Hell 27 / 41

The above text is appended to the quip, with an additional newline taking the
place of ’\n’.

#FILE_SUFFIX
s:suffix.txt

Whatever’s in ’s:suffix.txt’ will be sent after the actual quip is sent.

1.54 MIDDLE

MIDDLE lets you specify text to print to stdio between quips when
HOWMANY

is specified. It undergoes
formatting

, and you can specify a filename by
using ’FILE_MIDDLE’.

#MIDDLE
And now.. ANOTHER QUIP!\n

would print the above text between quips, replacing ’\n’ with a newline.

#FILE_MIDDLE
s:middle

would look for the text to put between quips in the file ’s:middle’.

1.55 HOWMANY

HOWMANY lets you decide how many quips to generate at a time. If ←↩
sent to

stdio (the console), each quip will be separated by a newline. If being
sent to files (the

OUT_FILE
keyword), HOWMANY files will be created,

starting from 0 to HOWMANY-1.

#HOWMANY
60

This will create 60 quips. If OUT_FILE is set to ’ram:banner.pre’, 60
files starting at ram:banner.0 and ending with ram:banner.59 will be
created. Great for Citadel sysops.

1.56 RANDOM

Quip, The Fortune Cookie Program From Hell 28 / 41

RANDOM tells QuipScript that you want your quips to be chosen ←↩
randomly.

If you do not have a tablefile for the datafile you specified, RANDOM
cannot display which quip it has picked up, therefore the

FORMAT
command

should will display a ’0’ for the {quip} variable. It’s strongly
recommended you have previously used

MAKETABLE
to create a tablefile for

RANDOM, or the randomness will be severely effected (longer quips will be
less likely to be chosen, and the first quip is less likely to be chosen).

#RANDOM

No need for options.. this is a switch. NOTE: use of this keyword will
cause QuipScript to look for a file called "env:rnd" for a random number
seed. If it doesn’t find the file, it’ll create it, seeding the random
number generator with the clock. If it DOES find it, it’ll overwrite the
first four bytes with a random value that it’ll use next time. I’ve found
that this approach dramatically improves the generation of random numbers.
Future programs by myself will use this same approach to handling random
numbers (same filename, everything) in order to avoid dotting the
hard-drive (for floppy <yikes>) with billions of silly four-byte files. I
ask that other programmers do the same thing.

1.57 SERIAL

SERIAL cancels a
RANDOM
keyword. It causes quips to be selected

sequentially from the datafiles (reading which quip it’s supposed to grab
from the datafile itself, and writing the next quip value to search for
after all the quips have been taken). It is the default method by which
quips are selected.

#SERIAL

No need for options.. this is a switch.

1.58 WHICHQUIP

WHICHQUIP lets you decide which quip to start grabbing quips from. ←↩
If

used with
RANDOM

, the first Quip will be WHICHQUIP, but subsequent
quips will be random. This trick may be useful to avoid changing the next
quip value in the datafile (if all you want to do is read a particular

Quip, The Fortune Cookie Program From Hell 29 / 41

quip, but not change the sequential order in which you want to read that
quip). If

SERIAL
is in use, quips will start from WHICHQUIP, and

continue until
HOWMANY
(or 1) quips are created, then the datafile will

point to HOWMANY+WHICHQUIP quip. Confused yet?

#WHICHQUIP
300

Find the 300th quip in the datafile and print it.

1.59 MAKETABLE

MAKETABLE tells QuipScript to make a tablefile for the datafile.
Tablefiles let you have better randomized quips, and greatly speeds up the
time it takes to find quips. If you edit a datafile, you’ll probably have
to

UPDATE
a new tablefile, as you’ll change where the quips are actually

located in the file <chuckle>. Depending on how huge your datafiles are,
this keyword could take some time to be carried out... I wouldn’t recommend
making a new tablefile each time you want a quip <grin>.

#MAKETABLE

No options.. this is a switch.

1.60 DISPLAY

DISPLAY tells QuipScript to send the quips that are being ←↩
generated to

OUT_FILE
to stdio as well. Normally, quips being sent to files are not

displayed in order to speed the process up. However, if you want to see
them as they are being generated, this option is available.

#DISPLAY

No options.. this is a switch.

1.61 MAKE_QUIPS

Quip, The Fortune Cookie Program From Hell 30 / 41

MAKE_QUIPS actually starts writing all the quips. It takes all ←↩
the

information previously entered, and generates a quip from it. This keyword
MUST be used, if you want any quips to be generated. After using this
keyword, you may use other keywords to modify the settings, and use this
keyword again with the new modifications. Only

RESET
actually changes all

the values to their defaults.

#MAKE_QUIPS

No options.. this is a switch.

1.62 SCRIPT

SCRIPT will temporarily quit reading the current script, and start ←↩
reading

the file you specify, resuming the old script when the SCRIPTed file is
finished. You may nest as many of these as you want, although memory
becomes a consideration <grin>.

#SCRIPT
option.1

The above will quit scripting there, reading ’option.1’ for more quip
stuff, then resume after finishing ’option.1’. Be careful about using
this keyword, as putting it in the wrong place in a script could have
peculiar effects. Also, beware of creating a loop (a SCRIPT that calls
itself, or calls a script that will call the calling script). SCRIPT does
NOT guard against this, to allow for more flexibility in script handling.
Therefore, funky weirdnesses like:

#
RND
SCRIPT

option.1
samefilename
samefilename
samefilename

#END

where ’samefilename’ is the name of the file you’re currently scripting,
could create interesting havoc. And:

#
SEQ
SCRIPT

*option.1
samefilename
samefilename
samefilename

#END

Quip, The Fortune Cookie Program From Hell 31 / 41

would be ugly, indeed. However, perhaps you might find a need for one of
these kinds of constructions.

1.63 GOTO

GOTO will cause the script to continue at the LABEL specified.

#GOTO
option

The script will continue execution from LABEL ’option’. Read
LABEL
for

much more information.

1.64 LABEL

LABEL doesn’t really do much of anything, alone, but serves as a ←↩
marking

place for a script. The
GOTO
keyword will continue execution of the

script from the LABEL keyword, provided they have matching options.

#LABEL
option

If a "#GOTO <linefeed, space> option" were issued somewhere, program
execution would continue from the above keyword. EG:

#LABEL
option

#KEYWORD1
#KEYWORD2
#KEYWORD3
#GOTO
option

would allow KEYWORD1, KEYWORD2, & KEYWORD3 to be executed forever, since
the program would read them, get to the GOTO, leap up to the LABEL, and
continue doing the KEYWORD commands until something harder stops them
(like a truck, maybe).

It is advised to use the GOTO keyword with one of the List keywords, and
even then, with GREAT care. Infinite loops are easy to create with the
GOTO keyword.

Quip, The Fortune Cookie Program From Hell 32 / 41

1.65 CHANCE

CHANCE lets you randomly decide whether a certain command will be
executed, depending on the number given to it. It will generate a random
number between 0 and 999, and if it’s number is less than your number, the
following command will be executed. I chose ’1000’ instead of ’100’ so
you could have more precision for your randomness. Think of it as a
percentage with the decimal moved over one place (that is, 50 percent
chance of having something executed is 500, 75% is 750, 25.7% is 257,
etc).

#CHANCE
230

#KEYWORD
(keyword options)

#KEYWORD has a 23% chance of being executed each time this script is run.

NOTE: you may use the
RND
or
SEQ
list modifiers with your keyword with

this command.. CHANCE is smart enough to handle lists. That is:

#CHANCE
500

#RND KEYWORD
option1
option2
option3

#END

would give a 50% chance of having any one of those options randomly chosen
for KEYWORD. Pretty darned flexible, eh?

1.66 REQ

REQ is a switch letting you print your quips to an information requester
from Nico François’ ’reqtools.library’. As long as the quip fits the
requester, it’s a very beautiful way of looking at your quips, but you
cannot clip text from the requester <grin>.

#REQ

Tells QuipScript to show quips in a Requester. No options.. this is a
switch.

1.67 DELAY

Quip, The Fortune Cookie Program From Hell 33 / 41

DELAY lets you use a reqtools.library requester, as
REQ

, but will only
leave the requester up for a certain amount of time, before taking it down
and moving on.

#DELAY
50

Tells QuipScript to show the quips in a requester, but to take the
requester down after 5 seconds.

1.68 UPDATE

UPDATE lets you update the tablefile for the datafile specified by
IN_FILE

.
If you use a ’0’ for an option, the update will occur from the last known
quip in the tablefile, adding the new quips in the datafile to the
tablefile, allowing you to use all the new quips you may have accumulated.

#UPDATE
643

This will look for the 643rd quip, and start updating the tablefile from
that point in the tablefile, rather than starting at 0, as

MAKETABLE
does.

If there is no 643rd quip (maybe only 20 quips are in the file), it’ll
default to the last known quip.

1.69 RESET

RESET sets all the various settings to their defaults. Normally, ←↩
even

after a
MAKE_QUIPS
command, prefix files, suffix files, outputfile

name, random status.. everything remains intact for the next MAKE_QUIPS
command issued. This allows you to reset everything to their original
default values:

#RESET

This is switch.. no parameters are taken.

Quip, The Fortune Cookie Program From Hell 34 / 41

1.70 ERROR

ERROR causes all error messages (and other, perhaps undesirable stuff) to
be sent to the filename specified. It defaults to a standard error port
(if called from CLI/Shell) or stdout (if called from icon).

#ERROR
NIL:

This will send all error messages to nowhere.

#ERROR
ram:boo.txt

This will put all the error messages in a file called "ram:boo.txt", if
any errors exist at all.

1.71 OTHERECHO

OTHER_ECHO is a toggle switch between sending ’#’ texts that have ←↩
no keywords

to Standard I/O, or whatever is specified by
ERROR

.

Default is standard i/o.

#OTHER_ECHO

No parameters.. this is a toggle switch.

1.72 RUN

RUN will run a command, passing ’env:quip.tmp’ (a file Quip will
generate holding a quip in it) as an argument. This can be useful for such
things as ’quip run more’ or the like. Quip has no way of finding out the
error code of the returned command, but it may tell you something via
stdout. If used from an icon, a window is created before running the
command, and can be removed by tapping <RETURN> in the window.

#RUN
more

Will generate the quip, put the quip in ’env:quip.tmp’, then execute a ’more
env:quip.tmp’ command.

1.73 FINISHED

Quip, The Fortune Cookie Program From Hell 35 / 41

FINISHED causes the QuipScript to end at that exact point. I ←↩
figured it might

be a useful command when used with
GOTO
and
LABEL
commands.

#FINISHED

No options.. quits the script at that point.

1.74 TECHNOTES

+-------------------------------+
| |
| Technical Notes |
| |
+-------------------------------+

For those of you out there who are curious, or want to consider some
advanced stuff to make Quip sing well for you.

DATAFILES

SCRIPTFILES

Random Number Generator

Requester Library

1.75 DATAFILES

+-------------------------------+
| |
| DATAFILES |
| |
+-------------------------------+

If you wish to create your own datafiles, please keep a few things in
mind.

Datafiles start with about 15 or 12 characters designated for holding a
number. This number is used by Quip to figure out which quip it’s
supposed to pick next. I chose to do this as an ASCII number rather than
a binary number so you can change it manually if you want. But, if you
don’t give these 15 or so characters to Quip, it’ll just gobble them up
anyway, trampling on top of whatever information you might have had there

Quip, The Fortune Cookie Program From Hell 36 / 41

in the first place.

After these characters, however, you can put anything you want in the
datafile, but remember that all quips are delimited by ’@’ characters
(something I’m thinking about changing in the future.. maybe to formfeed
characters). Therefore, the actual quips themselves start the moment you
put the first @ character in the file.

You may wish to consider writing scripts in this space:
QuipScript
quits

when it sees the ’@’ character. But I wouldn’t recommend writing anything
big, because when Quip ’rolls over’ (during sequential quips, if the next
quip is larger than the number of quips available, Quip will go back to
the first quip again), it’ll have to read through all that information to
find the first ’@’ character.

As you may have figured out already, each new quip is supposed to start
with a ’@’ character. Otherwise, you may have whatever set of characters,
in whatever combination you want, as you desire, with the exception of the
’NULL’ character (ASCII 0). The NULL character will truncate your quip!
I would have used it to delimit quips, except most people have a difficult
time putting them in with a simple text editor <grin>.

Also, keep in mind that datafiles with tablefiles need to have a new
tablefile create every time the datafile is edited. If you don’t, your
quips may be askewed, or ignored altogether. So, if you add new quips to
a datafile, be sure to create a new tablefile for it.

Beware the write-protection bit... make sure that it is not set on
ANYTHING having to do with Quip. I’m not sure if it’s due to a bug in the
OS, or if it’s because my hard-drive uses OFS instead of FFS (I’ve been
having trouble converting it over to the other format for some stupid
reason), but Quip hasn’t been able to handle write-protection errors
properly... it thinks everything is fine!

Therefore, tablefiles can ge utterly destroyed by Quip if they are
write-protected, and datafiles will not be updated if write-protected
(during any options that call for Quip to write to the file, as in

UPDATE
and
TABLE
commands).

1.76 SCRIPTFILES

+-------------------------------+
| |
| SCRIPTFILES |
| |
+-------------------------------+

When making scriptfiles, your comments may appear pretty well anywhere you

Quip, The Fortune Cookie Program From Hell 37 / 41

want, except on the same lines as a parameter. Be careful, however, about
writing comments in ALL CAPS. You stand a chance of writing a command by
accident.

You may have noticed that lines that are preceded with a ’#’, but don’t
have a proper command after them, are printed to stdio (or to a window, if
invoked from an Icon). This can be used to help trace where your scripts
are, or perhaps as a kind of extra ’prefix/suffix’ "feature". The ’#’
itself is not displayed.

Be careful when creating your scriptfiles.
QuipScript
really isn’t

intended as a full-blown language, so it doesn’t do any kind of checking
to speak of. If you fail to end a

RND
or
SEQ
list with a ’#’ line, weird

things can happen in your scripts. THIS IS EASY TO FORGET! While testing
this, I’ve forgotten the thing myself many times. There is really no way
I can test for it AND keep the flexibility, so I’ll simply assume that
good programmers will read the directions <grinning stupidly, in full
knowlege that I don’t read the directions either>.

Also, there are times when the ’@’ character is not looked for! While
processing lists (!), and during #CHANCE command handling, and while
searching for a matching #

LABEL
from #
GOTO
(!), the ’@’ is not looked for,

so you can use that character within your scripts as part of the options.
BE CAREFUL... if you decide to write a script within a datafile , make sure
your script is working PERFECTLY before actually committing to it, or you
could wind up with a script that hunts through all 10 megs of data before
coming to the realization that something is quite wrong <grin>.

You can do some nifty tricks with QuipScript, if you’re clever (and you
have the inclination). You can set up a label at the end of the file
(say, #LABEL<newline> END), then set up a #

CHANCE
statement, followed by a

#GOTO<newline> END statement, to create a percentage chance of the script
being quit! You can also set up crude ’for/next’ loops using SEQ
statements looped with GOTO statements. Play around with QuipScripting..
you can always press Control-C to get out of Quip at any time.

1.77 Random Number Generator

+-------------------------------+
| |
| Random Number Generation |
| |

Quip, The Fortune Cookie Program From Hell 38 / 41

+-------------------------------+

Quip runs a nifty little routine prior to doing anything. This routine
looks for a file called ’rnd’ in the ENV: directory. If it doesn’t find the
file, it’ll go into the system clock (through proper DOS channels). The
value it’s looking for will be a seed for the program to use for
generating random numbers. When it gets the seed, it then creates a new
one, putting it in ENV:rnd.

The idea is to avoid having billions of different little files running
around with four-byte values used to seed the random number generator,
while still giving you really good random numbers. The reason why using
the clock is out (at least, to me), is because even over a period of an
hour, the numbers are not very random. Since Quip is a short-running
program, calling it each time and borrowing the seed from the clock
doesn’t really yeild a very random number.. especially if you’re running a
BBS and you’re calling it each time a user logs in. The reason I use the
ENV: directory instead of tracking quip’s own directory is because I figure
one centralized place for the random number file, useable by other
programs (maybe even by libraries in the future) is A Good Thing.
Especially since I intend to use this routine in other programs that
require random numbers.

There are, of course, drawbacks. Firstly, it’s just that little bit more
time having to go through the filesystem to find a seed. Although I only
have to do it once, it might be considered annoying. Secondly, to quote
Ulrich Kaufman (author of the XEM standard): "It is against the philosophy
of ENV: to use binary data." Text would be nicer, but it’s easier to work
with four bytes than twelve. Also, unless you run another little program
that creates a value in an ENVARC:rnd file every time you boot up, you
stand a chance of either having the same random numbers popping up (in the
case of an ENVARC:rnd file existing and being written to ENV: each time it
boots, without being change itself), or the system will always have to
rely on the clock for the first generated random number. Not TOO bad, but
I could hope for better <grin>.

All-in-all, though, I think this method works best. Just be aware, you’ll
be four-bytes poorer in your ENV: directory after running Quip <grin>.

1.78 Requester Library

+-------------------------------+
| |
| Requester Library Support |
| |
+-------------------------------+

Quip now takes advantage of Nico François’ reqtools.library. Please keep
in mind that the reqtools.library’s Copyright (c) is owned by Nico
François, who has graciously allowed the rest of us lazy people to write
nice programs using this bit of software.

Inasmuch as it’s wonderful, you should probably try to keep quips that go
into the requester somewhat within the requester’s size limitations.
Quips that are larger than 78 columns (I think) tend to be a little

Quip, The Fortune Cookie Program From Hell 39 / 41

troublesome, and those with billions of lines probably won’t look very
good, either. Otherwise, it’s a very nice, pretty way of looking at your
quips.

Another minor note: as much as I would like to avoid busy-waiting, to some
extent this program has to busy-wait through a DELAYed requester, in order
to tell when the time is up, or when the requester is done. Fortunately,
however, I am using a Delay(5) in there, so it’ll only check every 10th of
a second for a value. So.. while it IS busy-waiting, it’s a kind of
low-impendence busy-wait, so it shouldn’t be as bad. I could have made
the value larger (Delay(50)), but 10th/seconds are a good round measure,
fast enough to keep someone from waiting for the program to finish, but
slow enough to keep resources from going nuts in the multi-tasking.

Also, keep in mind that a
REQ
requester is really a
DELAY

ed requester that
takes 90000 seconds to finish. Therefore, it suffers from the same
busy-wait problem. I did this to save a little extra room in the
programming. My apologies if this is ugly.

1.79 CREDITS

+-------------------------------+
| |
| Credits |
| |
+-------------------------------+

Although I, JEVR3, did all the programming, I couldn’t have done everything
without the help of some very special guin.. er, people, who beta-tested
this version of Quip for me (perhaps uncovering stuff I missed). Some of
these guys were also a great source of moral-strength <grin>. I consider
them a part of the Cheese Olfactory Workshop, for their efforts...

Kevin Thomas - Death Colas, MS-DOS help (in earlier
versions), The Static Quip, and various ideas.

Gay Crumley - Helped out with LD calls in the US, letting me
set up the COW room for discussing Quip and other
assorted things (It’s a Citadel Thing).

Lars Magnus Nordeide - Author of WiseCrack, a program that sorta does
what Quip does (although, not with the same
amount of steroids). I took a couple of his
ideas and put them in Quip, although my code
itself is certainly mine (nothing beyond an
idea was copyed from Mr. Nordeide).

Stephan Sürken - Author of Text2Guide, which was used to help
make these documents (only AFTER I had already
made the AmigaGuide-style by hand <sigh>).

Quip, The Fortune Cookie Program From Hell 40 / 41

Any funkyness you see in this document is there
in order to accomodate some of Text2Guide’s fancies,
and to help accomodate AmigaGuide’s funkyness.
One of these days, I really should send Mr. Sürken
some suggestions for the program (if he cares).

rlang@firebird.newcastle.edu.au
- One of the beta-testers for Quip 0.07.

bhogsett@bix.com - Found a bug I would never have found in my
Quip.guide documentation. Also one of the
beta-testers for Quip 0.07.

ralle@oberon.dinoco.de - One of the beta-testers for Quip 0.07.

1.80 FORMATTING

Prefix, Suffix, Middle, and Format texts/files are run through a
formatting field that may change certain things around, allowing a measure
of flexibility that might be useful.

The following characters in the format strings insert the following
things:

{day} = Day of week, as "Monday" or "Tuesday"
{date} = Date, in dd-mmm-yy format (AmigaDos format)
{idate}= International date, yy-mm-dd
{adate}= American date, mm-dd-yy
{cdate}= Canadian date, dd-mm-yy
{time} = Time, in hh:mm:ss format (sorry, only 24 hour format)
{quip} = The number of the quip that was generated (only works with

FORMAT/FILE_FORMAT commands, otherwise yeilds ’0’)
{[any]}= Text from whatever environment variable you specify.

Great for {user}, {system}, and so on. Looks at local
environment variables first, then global ones. NOTE: make sure you
set the variable with Commodore’s SET or SETENV rather than, say,
csh’s ’set’ command, as QuipScript is using AmigaDos calls to find
this value.

{{} = { character

%% = % character.. a quirk of using RawDoFormat()

\n = New line
\r = Return (same line)
\t = Tab character
\f = Formfeed (clear screen)
\g = Bell characer (ASCII 7)
\e = ESC (ASCII 27)
\ = backlash

Other ’\’ values will be weeded out. Environment variables not set will
be ignored. Be careful not to use RawDoFormat characters while making
prompts (eg. %s, %ld, %c, etc). RawDoFormat is used to generate the number
of the quip that is being generated (parameter {quip}). Therefore, if you
enter a RawDoFormat character sequence, you may create bizarre,

Quip, The Fortune Cookie Program From Hell 41 / 41

unpredictable formats for your quips. Use the double % to produce a %.

I apologize for not providing for binary values, however if you have a
really nice editor, binary values inserted in the line will not be filtered
<grin>.

EXAMPLES:

Quip #{quip}:\n

Prints "Quip #2342:", and a new line, where the actual quip starts. Well,
the number depends on which quip was actually grabbed. Of course, if this
string is being used with anything other than FORMAT, you get "Quip #0:"
and a new line.

{user}’s personal file #{quip}:\n

Prints "Joseph’s personal file #234:" and a new line. Assuming, of
course, that the environment variable ’USER’ was set to ’Joseph’, and that
the 234th quip was selected, and it’s being used in the FORMAT command
(otherwise, it’ll say "Joseph’s personal file #0:" and a new line).

{date}:\n

Prints ’2-Aug-93:’ and a new line, assuming that you ran the command on
the 2nd of August, 1993.

	Quip, The Fortune Cookie Program From Hell
	Quip, The Fortune Cookie Program From Hell
	Legal Stuff
	Terms of Use
	Distribution
	Disclaimer
	History Lessons
	Quips History
	Quip One
	Quip Two
	Quip Three
	Quip Four
	Quip Five
	Quip Six and Others
	Quip Seven part One
	Quip Seven part Two
	Quip Seven part Three
	Quip Seven Part Four
	Quip Seven part Five
	Quip Seven part Six
	Cows History
	Pathos
	CLI & WorkBench Usage
	VERSION
	COL
	DATA
	TABLE
	FORMAT .com line.
	FFORMAT
	PRE
	SUF
	MIDDLE .com line.
	FPRE
	FSUF
	FMIDDLE
	WHICH
	RANDOM .com line.
	DISPLAY .com line.
	NUM
	FILES
	REQ .com line.
	DELAY .com line.
	UPDATE .com line.
	ERROR .com line.
	RUN .com line.
	QuipScript
	QuipScript Lists
	RND
	SEQ
	IN_FILE
	OUT_FILE
	FORMAT
	PREFIX
	SUFFIX
	MIDDLE
	HOWMANY
	RANDOM
	SERIAL
	WHICHQUIP
	MAKETABLE
	DISPLAY
	MAKE_QUIPS
	SCRIPT
	GOTO
	LABEL
	CHANCE
	REQ
	DELAY
	UPDATE
	RESET
	ERROR
	OTHERECHO
	RUN
	FINISHED
	TECHNOTES
	DATAFILES
	SCRIPTFILES
	Random Number Generator
	Requester Library
	CREDITS
	FORMATTING

