Long choice lists in OPL

Choice lists in OPL dialogs are limited to a maximum of 255 items. For some applications
this may be considered a problem and there is a mechanism by which this limit may be
circumvented. Consider the following from the SIBO C SDK Introduction to HWIF:

Longer choice lists

In some cases, the list of choices presented in a particular choice list may be too long for a
choice list to be conveniently defined simply by one call to

uAddChoiceList.

The three functions uBeginDCL, uGrowDCL, and uAddDCL exist to help out with these so-called
dynamic choice lists (the name reflects the fact that the contents of the choice list are built up
over a few lines of code, rather than just being defined statically; in some cases, the contents
in the list may change between different invocations of the dialog, to reflect changing run-
time circumstances).

For example, the following routine builds up a choice list whose contents are the twelve
month names:

LOCAL_C INT AddMonthChoiceListtUWORD *pmonno)
{
H_DI_CHOICE ch;
TEXT mon[32];
INT i;

if (uBeginDCL(&ch))
return(-1); /* report failure to caller */
for (i=0; i<12; i++)
{
p_nmmon(&mon[0],i);
if (uGrowDCL(&ch,&mon[0]))
return(-1); /* report failure to caller */

}
return(uAddDCL("Month",pmonno,&ch));

}

Alternatively, the function hSetvarrayincChlist can be used to build up a choice list, especially if
the list might contain more than 255 items.

For example, by modifying the above code, the same effect can be achieved as shown below:

#define C_VASTR 6
#define O_VA_APPEND 7
#define OLIB_CAT 1

LOCAL_C INT AddMonthChoiceList(INT item_no,INT *pmonno)

{

UWORD used = 0;
VOID *pvarray;
TEXT mon[32];
INT i;

if (uAddChoiceList("month",&used,NULL))
return(-1); /* failure */
pvarray = p_new(OLIB_CAT,C_VASTR);
for i=0;i<12;i++)
{

p_nmmon(&mon[0],i);
p_send3(pvarray,O_VA_APPEND,&mon[0]);
}

hSetVarrayInChlist(item_no,(*pmonno),pvarray):

}

Note that error handling in this code is incomplete.

It is entirely possible to emulate this fucntionality in an OPL program and the two OPL
programs which accompany this documentation provide guidance on exactly how this may
be done. The OPL programs are called STRLIST.OPL and FLATLIST.OPL and their names
reflect a subtle variation in the way they operate. The OPL code is extensively commented
and should be read with the following in mind. The basic process is straightforward:

e Create an array which contains the a variable number of records representing the data
of our choice list. We use one of two subclasses of the OLIB class VAROOT: VASTR or
VAFLAT. In the case of a VASTR array, our records are of variable length. In the case
of a VAFLAT array, the records are of a fixed length. Both approaches have their
advantages and disadvantages. Assuming they contain the same 'live' data, VASTR
arrays use less memory than VAFLAT arrays. However, VAFLAT arrays can be
navigated more swiftly than VASTR arrays - this is particularly noticeable when pressing
<Tab> to pop-out the choice list while in a dialog. Consider the following (taken from
the SIBO SDK OLIB Reference):

Usage summary

vAROOT and VAFix are abstract classes. varooT defines a relatively large number of
deferred methods in order to promote polymorphism between the directly usable classes.

The vasTR class is used to create arrays of variable length text records, stored as zero
terminated strings. The storage overhead per string is only one byte, so it is particularly
suitable for storing short strings, of up to, say, several tens of bytes, or for strings with a
wide variation in size (such as file names, which can be any length up to 128 bytes, but
are usually much shorter). Since the whole array is stored in a single allocated cell, the
VASTR class is most suitable for arrays that contain:

e asmall number of records

e amoderately large, but fixed maximum, number of records (for which the
maximum capacity can be allocated in advance)

Because of its suitability for storing file names, the vastr class is used, for example, to
store directory listings. In general, however, the vasTr class not particularly suitable for
arrays which can dynamically grow to a very large size. The resulting repeated calls to
p_realloc are likely to cause heap fragmentation and seriously reduce the effective use of
memory.

The varLAT class is used to create arrays of fixed length records, where the whole array is
stored in a single allocated cell. The preferred usage is as for the vasTR class.

Create a dialog which contains the desired components but don't run it yet. This is done
using the dINIT "title", dCHOICE..., commands.

Call the O_WN_SET method of the DLGBOX class to alter the data elements used by
the dCHOICE. This is clearly marked in the code. Consider the following excerpts (taken
from the SIBO SDK Object Oriented Programming Guide):

WN_SET Setitem by index
VOID wn_set(INT index, VOID *par);

Set one or more data elements in the property of the control associated with the dialog
box item with index number index, by sending a wN_seT message to the control.

The parameter par is assumed to be a pointer to a struct that specifies the data to be set.
The type of struct that is expected depends on the class of the control that is being set; the
various structs are described in the following Dialog Controls chapter.

Setting

A choice list is set by passing a pointer to an SE_CHLIST struct to the wn_set method

typedef struct

{

UWORD set_flags; /* which fields are significant */
PR_VAROOT *data; /* pointer to array containing data */
UWORD nsel; /* index of current item */

} SE_CHLIST;

The property to be set is indicated by oring one or more of the following flags into the
flags field of the above struct.

SE_CHLIST_NSEL the index of the current item is to be set.

SE_CHLIST_DATA the data is to be replaced. The replacement data is a string

array - see variable arrays in the OLIB Reference manual.

RS S data should not be destroyed on destruction of the choice

list control - once set this flag cannot be cleared.

The content of a choice list can be set dynamically, say, from the dialog's di_dyn_init
method. However, changing the content of a choice list once the dialog has become
visible is not recommended, since the width of the dialog box is set on initialisation. If
the choice list content must be replaced, then care should be taken to ensure that the text
does not become too wide for the dialog box to display.

Run the dialog. This is done using the standard DIALOG function.

While viewing the OPL code, bear the following in mind:

DatDialogPtr is a magic static always at location 0x36. System user interface library
code may assume that this location contains a pointer to the current dialog structure.
Otherwise it is free for use by application code. Hence, this value will almost certainly be
NULL until dINIT is complete.

Note the use of ENTERSENDO() to ensure error values are returned appropriately (given
that many of the functions call p_leave() rather than return an error). Using the SEND
function may result in your application panicing unexcpectedly if an error arises.

Note the extensive use of '# as a prefix to variable names. This is done to tell OPL that
the following expression is the address to be used - not a variable whose address is to be
taken.

Note the use of UADD to skip the leading count byte of an OPL string. This ensures that
we do not cause any 'Integer overflow' errors.

	Long choice lists in OPL
	Longer choice lists
	LOCAL_C INT AddMonthChoiceList(UWORD *pmonno) { H_DI_CHOICE ch; TEXT mon[32]; INT i; if (uBeginDCL(&ch)) return(-1); /* report failure to caller */ for (i=0; i<12; i++) { p_nmmon(&mon[0],i); if (uGrowDCL(&ch,&mon[0])) return(-1); /* report failure to caller */ } return(uAddDCL("Month",pmonno,&ch)); }
	#define C_VASTR 6 #define O_VA_APPEND 7 #define OLIB_CAT 1 LOCAL_C INT AddMonthChoiceList(INT item_no,INT *pmonno) { UWORD used = 0; VOID *pvarray; TEXT mon[32]; INT i; if (uAddChoiceList("month",&used,NULL)) return(-1); /* failure */ pvarray = p_new(OLIB_CAT,C_VASTR); for (i = 0; i < 12; i++) { p_nmmon(&mon[0],i); p_send3(pvarray,O_VA_APPEND,&mon[0]); } hSetVarrayInChlist(item_no,(*pmonno),pvarray): }
	
	Usage summary

	WN_SET Set item by index
	VOID wn_set(INT index, VOID *par);
	
	Setting

	typedef struct { UWORD set_flags; /* which fields are significant */ PR_VAROOT *data; /* pointer to array containing data */ UWORD nsel; /* index of current item */ } SE_CHLIST;

