

CHAPTER 1 - Installation

This chapter describes the process of installing CT-Shell onto your
computer. It is a very simple process, and because it is much
easier to understand how CT-Shell works if you try out features as
you read about them, these directions are placed first in the
manual. It is strongly suggested that you go ahead and install CT-
Shell before going beyond this chapter.

Because it is expected that CT-Shell will be installed by
novices and experts both, this first chapter is split into two parts:
Expert Installation and Novice Installation. The Expert Installation
part contains brief directions, without a detailed explanation of
the steps that are involved. The Novice Installation part contains
a full explanation of each step.

If you are very familiar with computers and with Windows,
you will want to install CT-Shell according to the Expert Installation
part. If you are new to computers or if you have just recently
started using Windows, you will appreciate the Novice Installation
part.

If you fall somewhere in between, you should start with the
Expert Installation directions, and look to the Novice Installation
part for more details if necessary.

...but first a word about shareware
This version of CT-Shell is not free software, but a kind of software
that has become known as shareware. That means it is
copyrighted material, with all rights reserved by Computer
Training, but that you are granted certain limited rights with
respect to the software.

Specifically, you are permitted to use CT-Shell v1.0 for a
period of 30 days for the purpose of evaluating it, and you are
permitted (even encouraged!) to distribute unmodified copies of
the original distribution archive to others for their evaluation. (So
long as the contents remain original, the archive may be

C:\WINWORD\CTSHTOC.DOT– 1 –

repackaged using any archiving program, such as LHArc, PKZip,
Zoo, etc.)

At the end of the limited 30-day evaluation period, you must
either discontinue using CT-Shell and remove it from your
computer, or you must register your copy and pay the required
fee (for this version, $35.00 US). Payment of the required fee will
provide the following:

1. A clean, original copy of the newest version, including any
incremental improvements since the version you received.

2. A professionally printed, tabulated, laser-typeset, graphically
illustrated manual.

3. A special softkey (a small file) that will remove the
(Unregistered) identification at the top of your CT-Shell window,
and bypass the original sign-on reminder that you're using an
unregistered evaluation copy of the software. Your key will
unlock future incremental upgrades at no additional cost,
allowing you to download new registered versions of the
software when they become available.

4. Voice support by telephone, and a special enhanced level of
access to Computer Training's bulletin board system.

5. The honorable feeling of using the product legally, and the
satisfaction of knowing that you've made the author a much
happier person.

The Computer Training BBS phone numbers (Programmer's
Resource BBS) are:

(206) 823-2831 - 2400 bps
(206) 823-1917 - 9600 Courier HST

The Computer Training main office phone number is:

(206) 820-6859 - in the Pacific time zone

There is a file distributed with this shareware version called
CTREGIST.DOC. That file is a registration/order form in ordinary
80-column ASCII format, that you can easily print (using CT-Shell,
if you want, or just copy it to your printer). Please mail it with
your payment to the address shown on the form.

C:\WINWORD\CTSHTOC.DOT– 2 –

The requisite disclaimer of liability and copyright notice are
located at the end of this document. You may want to print a copy
of this shareware version of the documentation and refer to it as
you explore CT-Shell.

Note that there are several places in this file where reference
is made to illustrations that are not included in the shareware
documentation. They were not left out as incentive to register
and obtain a complete manual - rather the graphic images did not
survive the translation from Word for Windows format to Windows
Write format. Every word of text from the original registered
version of the manual is included in this shareware copy. The
Write format is used for the shareware manual, as everyone who
has Windows has Write.

Be advised that there is also a high level of help available
from the Windows online help system, which you can access
through the Help menu in CT-Shell. Enjoy!

C:\WINWORD\CTSHTOC.DOT– 3 –

Expert Installation
CT-Shell is distributed in a self-extracting archive file named
CTINSTAL.EXE. You can install the program from the DOS
command line or with a RUN command in the Windows Program
Manager or the Windows File Manager. When that archive file is
run, it will copy its contents to the current working directory.

First, change to your Windows "home" directory, to be sure
that your copy of CT-Shell and its configuration file CTSHELL.INI
will end up where they can be found again later! Also, many of
the tutorial examples that are suggested in later sections of this
manual refer to files and directories that everyone should find in
the Windows directory, so it's a good place to be while you're
learning to use CT-Shell.

Installing from DOS
To install the program from the DOS command line, change your
current directory (if you haven't done so already) to the
Windows directory. Then issue the command:

d:CTINSTAL

where d: is the drive where your copy of the program is stored.
Most often it will be on a floppy disk that has been inserted into
drive A:, so the command to install it would be:

A:CTINSTAL

If your CTINSTAL.EXE program is in another drive/directory, such
as on a network path, use an appropriate path in your
command, but be sure your current directory is where you want
the program to end up. Having installed CT-Shell, you can start
Windows and begin a CT-Shell session with a command like:

WIN CTSHELL

Installing from Windows
If you are currently running Windows, and are installing the
program from either the Windows Program Manager or the
Windows File Manager, select the FILE menu, then the entry
named RUN... You'll be presented a dialog box that has a place
to type the command as shown above in the section on
Installing From DOS. When the program has been successfully
installed, simply select the RUN... entry again and give the
command:

C:\WINWORD\CTSHTOC.DOT– 4 –

 CTSHELL

to begin a CT-Shell session. Or, if you are working from the
Windows File Manager, you could select the file named
CTSHELL.EXE and doubleclick the mouse on it, or press
<Enter>. In short, use any of the methods you usually use to
run an .EXE file from within Windows.

When the installation is complete, you will have the following new
files in your Windows directory:

CTABOUT.DOC- ASCII text file telling briefly about CT-Shell
CTREGIST.DOC - registration form
CTSHELL.EXE - the executable program
CTSHELL.INI - sample initialization file
CTSHELL.HLP - help file
CTSHELL.WRI - Windows Write format document file

and possibly

CTREADME - updates to printed manual, included only if needed

Since it is a Windows program, you probably don't need a whole
lot of instruction before you use CT-Shell. In fact, if you know
Windows, you already know most of CT-Shell. It's a good idea,
however, to look over each chapter of this brief manual before you
experiment with the corresponding features of CT-Shell.

Although this program has been designed to be as safe as
possible, and to ask you for confirmation before it does anything
dramatic, by its very nature any DOS shell has the potential for
disaster if misused. Because you can delete an entire directory
full of files with just a few clicks of a mouse, for example, you'll
want to be sure you know what you're doing before you do it.

C:\WINWORD\CTSHTOC.DOT– 5 –

Novice Installation
This section isn't meant to be demeaning, just sympathetic! Not
everyone has worked with Windows for a long time, and not
everyone who uses a computer is a "Power User"... yet. CT-Shell
offers so much to all Windows users that we want to be sure no
one is left confused about installing it.

CT-Shell is distributed in a self-extracting archive file named
CTINSTAL.EXE. That's a kind of file that is like a container for a
collection of other files, stored in a compressed form. You can
extract those files from the archive, and return them to their
original size and condition very easily, just by "running" the
archive file.

When you run CTINSTAL.EXE, it will put several files into the
current working directory, including CTSHELL.EXE, CTSHELL.HLP,
and CTSHELL.INI. Those are the three main parts of CT-Shell - the
program itself, its associated help file, and its initialization file.
You may also find that a file named CTREADME has been included
as well. This file - if it is included - contains additional new
information and perhaps corrections that were discovered after
the manuals were printed.

Before you install CT-Shell, it is a good idea to change to your
Windows "home" directory, to be sure that your copy of CT-Shell
and its configuration file CTSHELL.INI will end up where they can
be found again later! Also, certain optional tutorial exercises that
are suggested later in this manual will assume that you are in that
directory, and will refer to files and directories that everyone
should have there. Therefore, the Windows directory is the best
place to be while learning to use CT-Shell. If you're not already
there, give DOS a command that looks like this:

CD \dirname

where dirname is the name of your Windows directory. Chances
are, you've named it something like \WINDOWS, or another
popular choice is \WIN. If you have installed Windows in the
directory on the current drive called \WIN, then the command to
change to there would be:

CD \WIN

This is a brief explanation, and assumes that you understand what
a directory is, and that you know in which one you installed
Windows. You can find out more about DOS directories in your
DOS owner's manual, if necessary.

C:\WINWORD\CTSHTOC.DOT– 6 –

If you did not install Windows yourself, and are not sure
where its home directory is, you may need to do a bit of detective
work. Starting at your root directory (you can get there with the
command CD \) look for one of the directories mentioned above,
either one named WIN or one called WINDOWS. Change to that
directory, and see if you can locate the file WIN.INI in it. If so,
you've found your Windows home directory, and that's where
you'll probably want to install CT-Shell.

If you have not been able to find your Windows directory at
all, you can still install CT-Shell, but you'll want to be sure you do
it in a directory that lies along your executable DOS path. If you
need more information about the DOS path, refer to your DOS
manual, or perhaps ask for some help from a friend who has
worked longer with PCs.

At this point, it is assumed that you are in your Windows
directory, and ready to install CT-Shell there. It can be installed
from a DOS command line or from within Windows itself, however
installing from DOS is simpler, and the results are exactly the
same, so that's the approach we'll take here.

To install the program from the DOS command line, issue the
command:

d:CTINSTAL

where d: is the drive where your copy of the program is stored.
Most often it will be on a floppy disk that has been inserted into
drive A:, so the command to install it would be:

A:CTINSTAL

Remember that the extracted files from CTINSTAL.EXE will end up
in your current directory, so don't change to the disk where the
installation program is. Be sure that you run CTINSTAL.EXE from
the place where you want the files to end up, by specifying the
drive letter in front of the program name, as described above.

When the installation is complete, you will have the following
new files in your Windows directory:

CTABOUT.DOC- ASCII text file telling briefly about CT-Shell
CTREGIST.DOC - registration form
CTSHELL.EXE - the executable program
CTSHELL.INI - sample initialization file
CTSHELL.HLP - help file
CTSHELL.WRI - Windows Write format document file

C:\WINWORD\CTSHTOC.DOT– 7 –

and possibly

CTREADME - updates to printed manual, included only if needed

You can start Windows and begin a CT-Shell session with this
command at a DOS prompt:

WIN CTSHELL

If you ordinarily start Windows with command-line switches of any
kind, such as /s to start Windows in Standard Mode, you can
include them between WIN and CTSHELL. The next section shows
a way that you can modify your Windows SYSTEM.INI file so that
CT-Shell is automatically started by Windows whenever it starts.

An important word of caution: since it is a Windows program,
you probably don't need a whole lot of instruction before you use
CT-Shell. In fact, if you know Windows, you already know most of
CT-Shell. It's a good idea, however, to look over each chapter of
this brief manual before you experiment with the corresponding
features of CT-Shell.

Although this program has been designed to be as safe as
possible, and to ask you for confirmation before it does anything
dramatic, by its very nature any DOS shell has the potential for
disaster if misused. Because you can delete an entire directory
full of files with just a few clicks of a mouse, for example, you'll
want to be sure you know what you're doing before you do it.

C:\WINWORD\CTSHTOC.DOT– 8 –

Installing As a Shell in SYSTEM.INI
This section will be of interest both to experts and to novices. CT-
Shell makes a wonderful replacement for the Windows Program
Manager, and it can be configured to start automatically, every
time you start Windows. You'll need to make a simple change in
one line near the beginning of your SYSTEM.INI file, which is
located in your Windows directory.

If you have already installed CT-Shell, you'll find it quite
simple to make this change, and the change you'll make is easily
reversible, so everyone is encouraged to give this a try. Although
you'll be trying out some features of CT-Shell that haven't been
explained fully yet, very explicit directions are provided.

What you want to do is really quite simple. You want to
change one line near the beginning of your SYSTEM.INI file so that
instead of reading:

shell=progman.exe

it reads:

shell=ctshell.exe

Here are simple, step-by-step instructions that will show you the
easy way to do that from within CT-Shell, with the assumption that
everyone has the NOTEPAD.EXE editor available (it is included
with Windows). A command to edit your SYSTEM.INI file using the
NOTEPAD.EXE editor is already installed in your CT-Shell menu as
a convenience, since this is a file that you may need to modify
from time to time as you adjust and configure Windows.

1. From the menu at the top of the CT-Shell window, select the
Win menu item. Click on it with the mouse to display the Win
popup menu, or if you prefer to use the keyboard, press the key
combination <Alt-W> to access that menu item, then press
<Enter> to display the popup menu.

2. Using the mouse or the keyboard, select the entry named
SYSTEM.INI File. This menu entry has been designed to start the
NOTEPAD.EXE editor, and tells it to edit the SYSTEM.INI file in your
Windows directory.

3. Use the editor to change the line shown above, so that it
specifies CTSHELL.EXE as the program to run as the Windows
shell, rather than whatever is there now (probably PROGMAN.EXE,

C:\WINWORD\CTSHTOC.DOT– 9 –

as shown). Remember, you can always reverse this procedure by
changing that line back the way it was. An alternative method is
to place a semicolon in front of the original line, changing it to a
comment, then add a line to run CT-Shell as the shell, like this:

;shell = progman.exe
shell = ctshell.exe

That way, you could easily change things back later by changing
the semicolon to the line that runs CT-Shell.

4. Save your file and exit from NOTEPAD, using the Exit command
from the File menu. You don't need to save the file first, as
NOTEPAD will ask you about that before it quits.

The change that you've made will take effect the next time you
start Windows. Instead of starting a session with the Windows
Program Manager, you'll begin your session with CT-Shell.

Note that PROGMAN.EXE is an ordinary executable Windows
program, and you're quite able to run it from CT-Shell, if you ever
want to. In fact, as you'll see in a later chapter, you could easily
add the Windows Program Manager to your CT-Shell menu,
allowing you to select it any time you want it. Most people who
have tried CT-Shell, however, far prefer it to Program Manager.

If you have decided not to install CT-Shell as your Windows
shell at this time, you may want to install it in one of your program
groups within Program Manager, to make it easier to start when
you want it. You'll be able to begin a CT-Shell session just by
clicking on its icon in the group that you've assigned it to.

Multiple Configurations
Note that no matter how or where you start CT-Shell, you may
provide an optional initialization filespec on the command line
after the program name. Rather than looking for its
initialization file, CTSHELL.INI, in any of the places where CT-
Shell would normally expect to find it, CT-Shell will instead use
the name you provide as an initialization filespec. Thus, you
may create multiple configurations, each of which customizes
your CT-Shell session to work a different way.

Once you understand how to add new custom features to
your menus, for example, you might want to create a version of
CTSHELL.INI that is specially designed for programming with a
particular language. Or another version that is designed purely
for word processing projects. Just remember to provide the

C:\WINWORD\CTSHTOC.DOT– 10 –

whole filespec, including its directory path, since CT-Shell
doesn't provide any kind of file name default when you specify
the initialization filespec yourself.

To start a session that is customized for programming, you
might start CT-Shell with a command like this:

CTSHELL c:\win\program.ini

or to start a word processing session with a customized menu,
you might use:

CTSHELL c:\win\wordproc.ini

Of course, either of these would require that you create those
xxx.INI files. You might begin by copying CTSHELL.INI to the
new names, then modifying it to suit your purposes.

This handy feature also makes it easy for multiple people
to use a computer on which CT-Shell is installed. Each of them
can create an initialization file that suits the way they
individually work, and change to it when they're using the
machine.

One last point should be made here. As a Windows
application, multiple instances of CT-Shell may be run at the
same time quite effectively. All the instances share the same
program code, so it is just the data that differs among them.
You will find that the first copy of CT-Shell requires very little
memory to run in, but that a second and third copy require even
less. Don't be afraid to start several at the same time, using
different configurations, if that turns out to be useful to you.

C:\WINWORD\CTSHTOC.DOT– 11 –

 CHAPTER 2 - Overview

This chapter provides a quick summary of CT-Shell's overall
capabilities. Don't be concerned that some topics are introduced
here and not explained fully right away. Later sections of this
manual will provide all the details.

From this point on there will be various comments and
explanations that go beyond what you must know in order to use
CT-Shell effectively, and they are meant to be additional
information for more advanced users. Those comments will be
placed into footnotes, so that the flow of the material is not
impeded.

Generally speaking, you can ignore all footnotes as you read
the rest of this manual, except when you'd like more details about
the particular topic of discussion.

CT-Shell is a DOS shell that was originally developed for use in
advanced programming courses, as a replacement for the DOS 4.x
shell. It allowed programming students to change easily and
quickly to the directories where they were to work, and made it
easy to do their work with routine commands from its menu.

CT-Shell for Windows is still a DOS shell, though it now takes
advantage of the Windows 3.x environment. You can use it to
launch DOS and Windows programs, to copy, move, list and delete
files, and yes, programmers still use it to build programs.
CT-Shell is quite configurable; in fact, every entry in the menu is
defined in the

CTSHELL.INI file, and you can change any of them or add
more entries, all to suit your needs. It is very important for you to
realize that your menu need not stay just the way it is, and that
you can add entries to run all your favorite programs, change to
the various directories where you do your work, and automate
routine tasks such as disk backups, so you can accomplish them
by clicking on a menu entry. However, the fastest way to find out
what the program is all about is to start it using it with the
supplied sample configuration file.

So that CT-Shell can find its initialization file, CTSHELL.INI,
make sure that it is in the same directory as CT-Shell, in the
Windows "home" directory, in the Windows "system" directory, in
any directory along your executable DOS path, or in any directory

C:\WINWORD\CTSHTOC.DOT– 12 –

specified in a network installation. Those are the various places
where CT-Shell will be able to find it without help. To simplify
things, you might just want to keep it in the Windows directory, as
suggested earlier in the chapter on installation.

Two Kinds of Menu Entries
CT-Shell popup menu entries can contain two different kinds of
commands: commands that run programs that are not part of CT-
Shell (such as the programs that you use every day), and
commands that are internal to CT-Shell. The latter are
implemented using a special set of keywords that CT-Shell
recognizes. Most of the entries in the sample CTSHELL.INI file use
the CT-Shell keywords, since they will work exactly the same on
everyone's computer.

However, there are a couple of entries in the sample
CTSHELL.INI file that run external programs, as examples of that
second kind of entry. You may already have used one of them -
the menu entry that used NOTEPAD to edit your SYSTEM.INI file - if
you made the modification to install CT-Shell as your Windows
shell. Using the same techniques, you'll be able to run any of the
programs you use on a day-to-day basis from the menu in CT-
Shell, with much more versatility than you might imagine!

As you can see if you take a look at it, the external programs
in the sample CTSHELL.INI file have been chosen as ones that
every Windows user is likely to have, so they should also work on
nearly all computers. Don't get the impression that you can run
only Windows programs from within CT-Shell. You'll be able to
make any program that you can run from within Windows a part of
your menu, including DOS applications.1

Keep in mind that we're speaking in broad generalities in this
Overview, and that you'll learn much more in later sections about
how to add new entries to your menu. At this point, it is important
for you to understand all that you'll be able to do with CT-Shell.

Besides running programs, CT-Shell makes it easy for you to
change to any directory on your disk drive. There's an example
provided that changes to your Windows "home" directory, and can
take you there from anywhere else on your system. When you've
learned to customize your installation, you might want to install
an entry to take you to your root directory, to a word processing
work directory, to where you work on spreadsheets, and so on.
There's no practical limit to the number of entries you can have in
such a menu!

Your CTSHELL.INI file is an ordinary ASCII text file, and you
can modify it with nearly any editor or word processor, not just

C:\WINWORD\CTSHTOC.DOT– 13 –

with Windows NOTEPAD. In fact, your own personal editor is
probably one of the very first things you'll want to add to your CT-
Shell menu, so you can use it whenever you need to modify a text
file.

C:\WINWORD\CTSHTOC.DOT– 14 –

 CHAPTER 3 -The CT-SHELL Window

This chapter provides a tour of the main CT-Shell window, and the
features that you'll see as you explore it. It is highly
recommended that you start the program using the supplied
sample CTSHELL.INI file, as all these features can be experienced
even before you customize your system.

(Graphic not in shareware Write version of documentation.)

Note that everything you see above should look the same on your
system, except the contents of the files list, the contents of the
path window just above it, and the numbers in the status window
in the lower left corner.

Menu
When CT-Shell is run, at the top of its main window is a menu
that shows several items, such as File, Edit, Dirs, and more.
This menu is based on the entries in the CTSHELL.INI file, and
you will later want to revise the sample file to include your own
program choices. As you add entries to your CTSHELL.INI file,
those new options will appear in the CT-Shell menu, and you'll
be able to select them from within the program.

This manual contains much more information about menu
entries in later sections, with instructions about how you can
customize yours. For now, just realize that you'll have almost
unlimited freedom to create such a menu with selections that
are perfect for your system and what you do with it. Most
routine operations can become entries in your menu, so that a
keypress or a mouse click is all that's needed to accomplish
them.

In the menu that the sample initialization file creates, you'll
find a number of things in the File menu that you can do with
the current file (the one file that's selected with a dotted outline
in the files list window), and a directory that you can change to
in the Dirs menu. The Edit menu contains a number of choices,
one of which you have probably used already to edit your
SYSTEM.INI file. You can also edit your CTSHELL.INI file itself
with the first entry in that menu, after which you can reload the
modified menu by pressing <F7>.

The Shells menu offers an ordinary DOS session, and an
additional CT-Shell window if you ever need a second one (or a

C:\WINWORD\CTSHTOC.DOT– 15 –

third one, for that matter). The menu labeled Tagged Files
contains many of the same options that are provided for the
current file in another menu, but this one applies those options
to a whole list of files that you have tagged, rather than just the
one current file. (The next section will cover file tagging in
much greater detail.)

Utils is where you'll see some utility options. That would
be a good place to add the utility programs that you use daily.
The Help menu provides access to the CT-Shell help system,
and to some other options that provide you with information
about CT-Shell and about your system.

Function Keys
There are pre-assigned meanings for most of the function keys,
but <F9> and <F10> have been kept available for the user to
define. In the sample configuration file, they are assigned to
Solitaire and Configure, as you will see when you edit that file.

Solitaire, of course, is that wonderful Windows diversion
that so many of us need from time to time. It is an example of
how you might configure one of your function keys to run an
external program.

Configure will allow you to set all of the options that have
to do with printing file listings. You may prefer to assign those
two keys to different tasks, such as starting up a database or a
spreadsheet program. Entries in your CTSHELL.INI file make
that possible, as you'll see.

Much of what CT-Shell does with files can be done either
with a current file or with a set of tagged files. When a file is
tagged, its entry in the files list at the right is highlighted,
letting you know that it has been selected for an operation. The
first five function keys are devoted to managing those file
tagging operations.

As you read this explanation of the function keys, feel free
to try them out by tagging and untagging the files in your
current directory. You won't cause anything to happen to those
files just by doing that, and it's easier to understand the process
if you see it happen, rather than just reading about it.

<F1> Toggle Current
Toggles the tagged/untagged condition of the current file. If,
for some reason, you want to be sure that no files are tagged,
you can turn OFF (and back ON) the current file by pressing
<F1>. You might want to do something with all the files in
the directory except the current file, for example. You could

C:\WINWORD\CTSHTOC.DOT– 16 –

do that by selecting the one file you want excluded from the
command, then press <F2> to tag all the files, and finally
press <F1> to untag the current file.

<F2> Tag All
Tags all the files (but not directories or drives) that are in the
files listing to the right. You can perform any number of
operations on a set of tagged files, such as to copy them all
somewhere, delete them all, etc., and this keypress tags
them all.

<F3> Untag All
Untags all the files, regardless of how many were tagged, or
how they got that way.

<F4> Invert Tags
Inverts all the tags. You might want to tag some of the files
in the current directory, copy those tagged files to a floppy
disk in drive A:, then copy the rest of the files in that directory
to somewhere else. <F4> will tag all the previously
untagged files, and untag the ones that were tagged.
If that doesn't sound clear to you, drag the mouse part way
down the list of files (with the left button held down) to tag a
few of the files, then press <F4> several times and see what
happens. You can finish your experiment with <F3>.

<F5> Tag By Name
Tags by name. If you want to copy all the .EXE and .COM files
from the current directory to a floppy disk, you could press
<F5> once, specify *.EXE when CT-Shell asks you for a
wildcard spec, then press <F5> again and specify *.COM.

After you press <F5> you will be presented a dialog box
(a question-and-answer panel) that prompts you to enter a
filespec for tagging. That filespec may include the ordinary
DOS wildcard characters, such as you would use to delete or
copy certain files at the DOS prompt. Both the * and the ?
wildcard characters work here as you would expect them to.2

<F6> Original Path
Returns you to the original path where CT-Shell was first
started. As you work with the program, you will have many
reasons to change to other drives and/or directories. <F6>
will always return you to your starting point. Thus, you will
want to consider starting the program originally in a "main"
directory, such as the one in which you're working on a

C:\WINWORD\CTSHTOC.DOT– 17 –

current project.
If your AUTOEXEC.BAT file automatically starts Windows

for you, you should consider having it do a CD (change
directory) command just prior to starting Windows. Then,
whether CT-Shell is started automatically via your SYSTEM.INI
file, or you start it yourself from Windows, you'll always be
able to press <F6> to return to that starting directory.

There is a CT-Shell keyword called HOME that lets you
change the CT-Shell "home" directory to the current directory.
That way, when you press <F6> you'll return to here, rather
than the directory where you started CT-Shell.

This is a great function key to experiment with! See if
you can find a way to change to a different subdirectory than
the one you started this session in, and press <F6> to
transport you instantly back. If you can't figure out how to do
it just yet, don't get discouraged. We're coming to that part
pretty soon.

<F7> Reload Menu
Reloads the menu. You can easily customize your
CTSHELL.INI file with an ordinary text editor, as mentioned
already. In fact, one of the entries in the default EDIT menu
item uses the Windows NOTEPAD editor to change
CTSHELL.INI. After you make your modifications, you can
simply press <F7> to load the new version, without needing
to exit CT-Shell and restart it.

<F8> Print File(s)
Will print a formatted and line-numbered listing of the current
or tagged files. Note that this description uses the term
listing as it is commonly used in computer jargon, to refer to
a printed (hard-copy) version of the file contents. It does not
mean a list of the files in the directory. If you would like a
printed copy of your Windows xxx.INI files, for example, you
might tag them all using <F5> and specifying *.INI as the file
spec, then press <F8> to print them all - assuming, of
course, that you have a printer connected to your computer.
If you press <F8> without first tagging a set of files, the one
current file will be printed.

Listings are formatted with a left margin that can be
hole-punched. Lines of text can be numbered, as can pages,
and at the top of each page can be a header that identifies
the file, its creation time and date, and the time and date
when it was printed. Refer to two keywords, PRINTER and
CONFIG, which are explained in the CTSHELL.INI Reference

C:\WINWORD\CTSHTOC.DOT– 18 –

Chapter, for more information about setting up your printer
driver and changing the format of your file listings.
<F9> and <F10>
Are reserved for the user. In the sample CTSHELL.INI file they
are assigned to Solitaire and Configure, as mentioned above,
but you can easily reassign them to other tasks that you want
to be able to invoke with a keypress. These options are
explained more fully in later sections of this documentation. 3

<Esc> Parent
The escape key is used to change to the parent directory. So
that the same operation is easy to accomplish with the
mouse, the <Esc> key is represented on the screen along
with the function keys.

The display of these keys at the left of the CT-Shell window
allows you to click on a button with the mouse, to accomplish
the same thing as pressing the keys themselves. Thus,
whether you prefer using the keyboard or prefer using the
mouse, you can have it your way.

Status Display
Below the listing of the function keys is a small window that
displays the current time, the amount of RAM that is available
(including virtual memory if you're running Windows in
Enhanced 386 mode) and how much room is left on the current
disk drive. The latter two measurements are displayed in
megabytes, to the nearest hundredth.

Current Path
Just under the menu bar, and above the files display window, is
the current path. As you navigate around your disk drive, you
can glance here to discover quickly where you are. Watch this
as you press <Esc> to move up in your directory tree, and as
you press <F6> to return to your starting point.

You can also click the mouse on any part of the path that's
displayed, and you'll change immediately to that directory.
Thus, you can move upwards in the directory tree by pressing
<Esc> to move to the parent directory, or jump directly to a
directory that is more than one level higher, by clicking on it in
the path display.

Directory changes made this way are "permanent" in the
sense that CT-Shell will stay, and continue to work, in the new
directory that you've chosen. However, you are still able to

C:\WINWORD\CTSHTOC.DOT– 19 –

press <F6> at any time to go directly to the original drive and
directory where CT-Shell was started.

Files Window
The display of files contains considerable information that is
always conveniently visible. One of the biggest advantages of a
visual shell over an ordinary command line is that so much
more information can be made available at all times.

Rather than trying to remember which file you came here
to copy, you can see which file it was. You can tell this without
needing to issue a DIR command, and unlike a DIR command,
the file names here won't scroll past faster than you can read
them. You can move both upwards and downwards in this list of
files using the keyboard cursor keys, or by clicking the mouse
on the scroll bar to the right of the window.

This section will explain the information that is displayed
here, and tell you how you can change nearly all of it from
within CT-Shell:

(Graphic not in shareware Write version of documentation.)

The largest window contains a display of the files in the current
directory. Information displayed for files includes name,
extension, size in bytes, last modified date, last modified time,
and attributes.

Deleting Files
If you press , the current file or an entire set of tagged
files can be deleted. You are prompted for confirmation
before that happens, of course! There are additional deletion
options, including a CT-Shell keyword called DELDIR. (See
Chapter 4 for a reference to CT-Shell keywords that you can
use in your menu entries.) This keyword is implemented in
the sample CTSHELL.INI file in the File menu item, and called
Kill Dir.

If you are doing disk maintenance and would like to
delete an entire directory full of files (and possibly other
subdirectories within it as well), first make sure that the
current file is the directory you want to delete, then select
this menu entry. You'll be asked to verify deletion of the
directory with a dialog box like this, which is worded to get
your attention:

(Graphic not in shareware Write version of documentation.)

C:\WINWORD\CTSHTOC.DOT– 20 –

If you click on the [NO] button, nothing will happen to the
directory. And because this operation is so potentially
disastrous if it is misused, even if you click on the [Yes] button
you will be asked to verify one more time:

(Graphic not in shareware Write version of documentation.)

The sections that follow each describe one of the components
of a line in the files display window, and what you can do with
that information. In most cases, you are able to change it
(except for the file size), and you'll find directions here for
doing that. With a couple obvious exceptions (such as
deleting a file or directory), you will probably want to try out
the various keywords, commands, and menu options that are
described here, as you read about the files window.

Name
Remember, directory names are displayed in uppercase, to
distinguish them from file names. The filename extension, if
any, is included in this field. In addition, following the
directory and file listings, the name field will display the
various disk drives that are available on the system.

If you would like to change the name of a file or a
directory, you can easily do it with the CT-Shell RENAME
keyword. (See Chapter 4 for a reference to CT-Shell keywords
that you can use in your menu entries.) This keyword is
implemented in the sample CTSHELL.INI file in the File menu
item, and called Rename.

If you invoke this menu item, you will be prompted for a
new name for the file:4

(Graphic not in shareware Write version of documentation.)

Size
The size in bytes of the file is shown here. You are also able
to find out how many total bytes are included in a set of files
that have been tagged, by using one of the special CT-Shell
keywords, TAGGED, which is explained in a later chapter.
This keyword is implemented in the sample CTSHELL.INI file
in the Tagged Files menu item, and called Files Tagged.
Selecting that entry while you have a number of files tagged
presents a display that looks like this:

(Graphic not in shareware Write version of documentation.)
C:\WINWORD\CTSHTOC.DOT– 21 –

You are also able to discover how many subdirectories, files,
and bytes a directory contains, using the CT-Shell DIRSIZE
keyword. This keyword is implemented in the sample
CTSHELL.INI file in the File menu item, and called Size of
Directory. Selecting that entry while a directory is the current
file presents a display that looks like this:5

(Graphic not in shareware Write version of documentation.)

Date
The date when the file was last modified (created or updated)
is shown using the conventional mm/dd/yy format.

Both the time and the date for a file or a group of tagged
files can be changed using the CT-Shell keyword, SETDATE.
This keyword is implemented in the sample CTSHELL.INI file
in the Tagged Files menu item, and called Set File Date/Time.

To change the date/time for any of the files in the current
directory, first tag the one or more that you want to change,
then select the menu item Tagged Files. Click on the entry
named Set File Date/Time to open a dialog box that looks like
this:

(Graphic not in shareware Write version of documentation.)

Input is checked to be sure that you are providing valid date
and time values, and you will not be able to leave the dialog
box with bad values in it by clicking on the [OK] button. If
you want to abandon the operation, however, you can always
click on the [Cancel] button. If you do that, no changes will
be made.

Time
CT-Shell displays the file's creation time in its full resolution,
which is to within two seconds. DOS displays only hours and
minutes when you use its DIR command, although the
number of seconds (to the nearest even number) are stored
by DOS in the disk directory.6

The time applied to a file is of particular importance to programmers who work with a program
maintenance utility called MAKE, or a variation of it. MAKE tests file date/timestamps to determine
whether one type of file is newer than the type of file that is created from it, and rebuilds the target file if
necessary. Sometimes it is important to give a file a date/time that is newer than another file, and there
exists on many systems a small utility program whose only purpose is to change a file's date/time to the
current date/time.

CT-Shell has two keywords that provide this service, called TOUCH (which changes only the current

C:\WINWORD\CTSHTOC.DOT– 22 –

file) and TTOUCH (to update a list of tagged files). They are both assigned to menu entries named Touch,
in the appropriate popup menus in the sample CTSHELL.INI file.

Attributes
The file attributes are displayed as a series of characters
which may include any of the letters RHSDA, for Read/only,
Hidden, System, Directory, and Archive, respectively. These
attributes indicate that a file has certain properties, which
may affect how you and DOS can access and use it.
Following this listing of the attributes are directions showing
how you can use CT-Shell to change file attributes.

Read/only
A file with the read/only attribute cannot be modified,
overwritten or deleted. DOS simply won't allow the
operation to happen, unless the read/only attribute is first
removed.7

Hidden
Hidden means that a file won't show up in an ordinary DIR
command from the DOS command processor, and the DOS
COPY command won't copy a hidden file.8

Note that you can even use CT-Shell to hide an entire
directory, so that others who use the same computer won't
realize it's even there (unless they also use CT-Shell or
another utility that displays hidden files). You can still
change to the hidden directory, execute programs from it,
and edit files in it - by specifying the directory name in
your commands - yet it remains invisible to DOS.

System
System means the file is a special type which is part of
DOS itself. Examples of this type of file include the two
parts of DOS that you'll find in your root directory, named
differently depending on which version of DOS you're
using. CT-Shell will display these two files with the
attribute letters RHS.. (or maybe just .HS.., depending on
your version of DOS) showing that they have two or three
of the attributes explained so far.

As an exercise, you might change to your root
directory as you read this, and identify those files on your
system. This is an attribute that you're not likely to assign
to a file, unless you're a systems programmer who is
writing a replacement for part of the operating system.

C:\WINWORD\CTSHTOC.DOT– 23 –

Still, you should know what it means, and you should be
careful not to delete or accidentally damage any file that
has the system attribute.

Directory
Directory makes the file a subdirectory, rather than a data
file or a program. In the DOS system, subdirectories are
special files that contain information about the files that
are stored under them.

As is the case with other attributes, this one implies
what can and can't be done with a file so identified. For
example, you can change to a directory, but you can't
change to a file. You can TYPE or DEL a file, but you can't
do either with a directory.9

Archive
The archive attribute means that a file has been changed
since the last time it was backed-up. Most backup
programs, such as the DOS BACKUP command and
commercial programs like CPBACKUP from Central Point
Software, Inc., use this attribute to determine which files
need to be processed when a differential backup is done.10

When you glance at your CT-Shell files display, you
can easily see which files have been modified since your
last backup. When a great number of files have the
archive attribute displayed, or whenever particularly
important ones do, you should begin to feel uncomfortable
enough to do another backup!

Changing Attributes
Besides displaying the attributes, CT-Shell makes it easy for
you to change most of them. You can't turn a program into a
directory, but you might want to make a file read/only, for
example, to prevent its being accidentally deleted or
overwritten.
You can alter the attributes for a single file or for a group of
tagged files if your CTSHELL.INI file contains a menu entry
that uses the keyword ATTRIB (see the later section on CT-
Shell keywords for more information about ATTRIB and other
CT-Shell keywords). The sample CTSHELL.INI file contains
entries for both the File and Tagged Files menus that
implement this keyword.

When you invoke that menu entry, CT-Shell will present a
dialog box like the one shown above, that lets you determine
which attributes are to be turned on and which ones are to be

C:\WINWORD\CTSHTOC.DOT– 24 –

turned off.
This would be an excellent time to experiment with this

feature. If you're in your Windows directory still, select the
file 3270.TXT. Use the Attributes entry in the File menu to
change that file to read/only status. Now select 3270.TXT
again and press the <Delete> key to delete it. Go ahead and
confirm the deletion, and see what happens.

Disk Drive Display
At the end of the files listing you'll find entries for all the disk
drives in your system. Each is identified as to type and each
(except floppies) has its current remaining capacity.

The capacity of floppy disks is not displayed, as those
disks are removable, and Windows would report constant disk
errors if CT-Shell kept trying to access empty drives. If you
want to know how much room is left on a floppy disk, simply
change to that drive by doubleclicking on its entry. You can
easily change back to the current drive the same way
afterwards, or by pressing <F6> to return to your starting
drive/directory. CT-Shell always displays the free space on
the current drive, even if it is a floppy disk, so you'll want to
make sure there is a disk in the floppy drive before making
that your current drive.

When you have changed your default drive to a floppy
disk, by the way, that drive's activity light will remain on all
the time, as CT-Shell checks once each second to remain
aware of how much disk space there is. It will appear that
your disk is constantly busy, but that's not actually the case.
It's just that a floppy disk drive doesn't shut off until about
two seconds after its last access.

If you access it once a second, as CT-Shell does to keep
track of remaining space, no matter for how brief a time, the
light will remain on. No harm comes from this. If you open
the drive to change disks, you'll get an error message from
Windows. Just click [Retry] when you're finished changing
disks, and everything will be okay.

Extended Selections
CT-Shell's file window is programmed to allow extended
selections. Thus, you'll find that you can tag multiple files by
holding down the <Shift> or <Ctrl> keys as you tag with the
mouse. <Shift> will allow you to extend a selection to
include contiguous files (a group all together) and <Ctrl> will
let you select any files, even if they are separated by others
that you don't want tagged.

C:\WINWORD\CTSHTOC.DOT– 25 –

You can also mark a series of files using the keyboard.
Press the key combination <Ctrl-Shift> and move the bar up
or down with the keyboard cursor keys. As the highlight bar
moves up or down, the files that it passes over will become
tagged, just as if you'd dragged the mouse over them.

Doubleclicking Entries
Things happen when you doubleclick the mouse on an entry
in the files list! (You may also move the highlight bar to an
entry and press <Enter> to do the same.)
When you do either of these things, what happens will
depend on what kind of file is selected:

Directories
If it is a directory, then you will change to that directory.
This is another of CTShell's "permanent" directory changes,
and it will continue to work in the new directory until you
change again. However, you are still able to return to your
original startup directory by pressing <F6> at any time.

CT-Shell lists all the directories first in the file list, to
make it easier to travel around your drive by clicking on
directory entries. Be reminded that you can use the <Esc>
key to change to the parent directory at any time, and that
you can click the mouse in the path window (just above the
files list) to change to any place in the path above this
directory, up to the root directory.

Executable Files
If it is an executable file (to CT-Shell, that
means .EXE, .COM, .PIF or .BAT) you will execute that file.
This provides a convenient way to run programs that are in
the current directory, and which require no command-line
arguments. Those that reside elsewhere, and those that
do require command-line arguments should be installed as
menu entries instead. See the later sections for more
information about setting up your menu to run programs.

DOS programs (DosApps) that have a .PIF file
(Program Information File) available somewhere in the path
will be executed according to that .PIF file, so if you need to
customize the way your DosApps run, simply create a .PIF
and keep it available in a directory that's part of your DOS
executable path.11
You can use the Windows utility program named
PIFEDIT.EXE to create and edit .PIF files, and your Windows
manual contains more information about these files and

C:\WINWORD\CTSHTOC.DOT– 26 –

how to modify them.
Programs that were designed to be run under

Windows (WinApps), are executed just as they would be
from the Windows Program Manager or the Windows File
Manager.

Known Extensions
CT-Shell checks the [Extensions] profiles in your WIN.INI
file, and can "run" files that are not themselves executable,
but for which you have provided an extension in your
WIN.INI file. Thus, it is likely that if you doubleclick the
mouse on a .WRI file, you'll start up Windows Write and can
edit that file. If you doubleclick on a .CRD file, you'll start
up the Cardfile database program, etc.12

Drive Specifications
If it's one of the entries at the end of the files list that
describes a disk drive in your system, doubleclicking on it
will change to that drive, which will then become the
default, or current, drive. As in many earlier examples, CT-
Shell will continue to work in the new drive/directory until
you change away from it, but you can instantly return to
your original startup directory by pressing <F6>.

Command Line
An extremely important CT-Shell feature is its command line,
with the only visible manifestation of that feature in the main
window a button named [Command Line] that appears just
below the function keys to the left. To access the command line
without using the mouse, simply press the key combination
<Shift-Enter>. Here are some of the important features of the
CT-Shell command line:

DOS Commands
Most common DOS commands like CD, RD, MD, COPY, and
DEL are handled internally in CT-Shell, without using the DOS
command processor at all. Most of the DOS commands that
CT-Shell handles offer an enhancement over their DOS
counterparts. For example, the CD command will allow you
to specify a drive as well as a directory to change to. The
COPY command uses a buffer up to 16 times the size of the
one DOS uses, allowing many files to be copied with only one
disk read and one disk write, for better efficiency.

If you enter a DOS command that CT-Shell cannot handle

C:\WINWORD\CTSHTOC.DOT– 27 –

itself, it will pass that command along to your DOS command
processor for evaluation. Fortunately, all the most-often-used
DOS commands can be dealt with smoothly within CT-Shell,
without involving the DOS command processor at all.

Most users will probably prefer to change working drives
by first scrolling to the listing of drives at the bottom of the
files list and then selecting a drive using the mouse or the
keyboard. However, you are also free to enter a drive letter,
followed by a colon, as a command on the CT-Shell command
line, just as you would at a DOS command line. Such a drive
change is handled internally by CT-Shell.

CT-SHELL Commands
Some additional CT-Shell commands may be issued from this
command line as well:

Find
It often happens that someone needs to edit one of the
many text files that are part of a programming or word
processing project, and can't remember for sure which file
contains the text. The FIND keyword is designed to find a
string (of characters) wherever it may occur within any of
the files in the current directory.
Use quotation marks to enclose strings that include
embedded spaces. This example shows how you might
look through the current directory to find the places where
you have used the function named "wsprintf":

(Graphic not in shareware Write version of documentation.)

Note that the command itself (FIND) is not case-sensitive,
and may be entered in uppercase or lowercase. However,
the string that is being sought is case sensitive. You'll want
to be sure your <CapsLock> is not on when you look for a
string that contains lowercase letters!

If that string is found in any of the files in the current
directory, a list box like the one shown just below will be
created that contains all the matches that were found. All
leading spaces are removed from the lines before adding
them to the list box, so that you can view more of the
significant parts of that line. Up to the first 75 characters
are included (starting with the first non-space character),
which should be enough to help you verify whether that
line is the one you're looking for. The entries are
alphabetical according to file name, and in line-number

C:\WINWORD\CTSHTOC.DOT– 28 –

order within a file.
One of CT-Shell's most useful features is available to

you at this point: if you select one of the entries (using
either the mouse or keyboard methods) that file will be
loaded into your editor automatically. Even better than
that, if your editor is one that will accept a line number on
the command line along with the file name, you can even
load the file and jump directly to the line that contains the
string you asked CT-Shell to find!

For you to edit one of the files that was found this
way, your CTSHELL.INI file must have an entry in its
[EDITOR] section called EDITORNAME that identifies your
editor by name, so CT-Shell will know what program to run.
The sample CTSHELL.INI file contains:

EDITORNAME=NOTEPAD.EXE

as a default, but most serious programmers will prefer to
change that name to another editor.

For CT-Shell to be able to load the file and jump
directly to the line where the string was found, your editor
must be capable of such a feat in the first place, and you
must also include an entry in the [EDITOR] section of
CTSHELL.INI called EDITLINE that shows how to give such a
command to your editor. The sample CTSHELL.INI
contains:

EDITLINE=

which disables the feature, since the default NOTEPAD.EXE
editor can't handle line numbers in this manner. There are
more details and examples in Chapter 4 of this manual,
which is the reference to the entries in CTSHELL.INI.

Move
If you want to move a file quickly from one place to
another, rather than copying it, you can use the CT-Shell
MOVE command. The syntax is just like the ordinary COPY
command, but the move is much faster.

Where
If you want to know where a file is on the disk, you can use
the WHERE command. Start the command line, then issue
the command like this:

C:\WINWORD\CTSHTOC.DOT– 29 –

(Graphic not in shareware Write version of documentation.)

where you type in the name of the file you want to find and
its extension, if any. The customary DOS wildcard
characters are acceptable here, so you could search for
files such as:

where *.dbf

or

where copy??.bak

If you want to locate all the files with a given file name and
any extension, you can simply enter it as FILENAME. If
there is no dot in the name that's entered (and thus no
extension has been used) CT-Shell will automatically
append the .* to the name. If you actually do want to
locate a file named FILENAME that does not have an
extension, you can provide just a dot for an extension.
That tells CT-Shell not to add the .* to the end.

After you've provided the name, the mouse cursor will
change to an hourglass temporarily, letting you know that
CT-Shell is busy as it searches the current disk drive for
that file. CT-Shell will display information in a list box
about all the matching files that it finds:

(Graphic not in shareware Write version of documentation.)

You even have the option to select one of those entries and
go straight to that directory. Just doubleclick on the entry,
or select it with a single mouse click and afterwards click
on the [OK] button. Alternatively, you can select it with the
keyboard cursor keys and press <Enter> to complete the
command. If you have selected an entry and decide
afterwards not to change to that directory, simply click on
the [Cancel] button.

There is some potential for confusion where the FIND and
WHERE commands are concerned. After all, you might think
to use FIND to find a file, and WHERE to locate where a string
is. About the only way to keep them straight is to remember
that the DOS command FIND looks for a string within a group
of files, and CT-Shell's FIND command does the same.

Also, there have been a number of public domain utility
C:\WINWORD\CTSHTOC.DOT– 30 –

programs developed over the years that are named WHERE
or WHEREIS, and are used to locate files on a drive, as does
the CT-Shell WHERE command.

Command Recall
CT-Shell maintains an internal doubly-linked list of previous
commands, and lets you scroll through them to select a
command to issue again. Each command that you type at
the command line is added to the list, and there are three
options for deleting old commands that you no longer want to
scroll through.

(Graphic not in shareware Write version of documentation.)

After one command has been given at the command line,
you'll see a [Delete] button the next time you invoke the
command line. That will allow you to delete the earlier
command. Perhaps you misspelled a file name, and the
command wasn't successful, and you don't want to
accidentally issue that same command again.

After more than one command has been issued, you'll
see options that let you delete from the current command
upwards, from the current command downwards, or just the
current command itself. The default is always to delete just
the current command, so you don't accidentally remove
several that you'd like to use again later.

Whenever you start a CT-Shell command line, you can
use the <Up> and the <Down> keyboard cursor keys to
scroll through the list of past commands. When you've found
the one you want to use, you can press <Enter> to accept it,
or click the [OK] button with your mouse. If you prefer to
select from the list itself, just click the mouse on the small
downwards-pointing arrow to the right of the command line
itself. That will open the associated list box, showing you any
existing commands that are available to be reused. If there
are none, the box will be empty.

C:\WINWORD\CTSHTOC.DOT– 31 –

 CHAPTER 4 - CTSHELL.INI Reference

Some of the power of CT-Shell isn't unleashed until you make a
few simple modifications to your CTSHELL.INI file, to customize it
for your system and for the way you work. This chapter describes
the various areas in that file that can be modified by the user.

Options are recorded there for future sessions, and all the
special menu entries that you create are stored there. As long as
CTSHELL.INI is stored in the current directory, a directory along
your DOS path, or in your Windows "home" directory, CT-Shell will
be able to find it when it needs the file. It is suggested that you
keep CTSHELL.INI in your Windows home directory with your other
important xxx.INI files.

Far from the programming required to customize some
similar products, CT-Shell lets you work with simple objects
(characters like ! and #) that take on special values in your
commands. Even those who have never written a program, a
script, or a macro are encouraged to have a shot at this! It's
really VERY easy to do. Here's what you need to know about the
various sections in your CTSHELL.INI file:

Accessing CTSHELL.INI
Your CTSHELL.INI file is an ordinary ASCII text file that can be
edited with nearly any editor or word processor. Although it
isn't a powerful editor, the Windows NOTEPAD editor is fine for
the light-duty work of customizing your initialization file.

If you followed earlier recommendations, your CTSHELL.INI
file is probably stored in your Windows directory. If that's the
case, you'll be able to edit it quite easily using the CTSHELL.INI
File entry from your Edit menu. If you have stored it
somewhere else, simply change to that directory, select the file,
and select Notepad Editor from the same menu.

In short, do whatever's necessary to edit your file and save
the new copy. You can put your menu entry changes into effect
afterwards by pressing the <F7> function key, or by exiting and
restarting CT-Shell.

The following subsections describe the five parts of your
CTSHELL.INI file, and what changes you might want to make to
each of them:

Editor
C:\WINWORD\CTSHTOC.DOT– 32 –

The first section is marked [EDITOR] and contains two settings
that tell CT-Shell whether you have a text editor and whether it
has a particular capability. These settings are used in
conjunction with the FIND command, and will allow you to edit
the file that contains a string of characters that you have asked
CT-Shell to find for you. These settings look like this in the
sample CTSHELL.INI file:

[EDITOR]
EDITORNAME=NOTEPAD.EXE
EDITLINE=

On the assumption that anyone who has Windows has the
NOTEPAD editor, that's the default, even if this section is
missing from the CTSHELL.INI file. Most programmers use more
of a heavy-duty text editor however, and will want to change
this entry to contain that editor name instead (including its
path, if necessary).

The EDITLINE entry tells CT-Shell two things about your
editor: whether it can start at a line number that is included as
part of its command, and if so, what command-line switch is
used to invoke that feature. If EDITLINE is left empty as in the
sample file, CT-Shell will simply load the selected file into the
editor, but not attempt to start at a particular line number. If
EDITLINE contains any characters, it will be added to the edit
command just before the line number.

Here's an example that would work for the popular QEdit
programming editor (from SemWare, Inc.), which has an
executable file named Q.EXE and which uses the switch -n to
tell it what line number to start on:

[EDITOR]
EDITORNAME=Q.EXE
EDITLINE=-n

When CT-Shell puts together a command to execute your editor,
the actual file name and line number are combined with the
editor name and switch. Assuming a file called FILE.EXT and
assuming that the desired string was found in line 123 of that
file, the command that CT-Shell would create from all this would
look like:

Q.EXE FILE.EXT -n123

If your editor does not offer a way to start on a specified line,
C:\WINWORD\CTSHTOC.DOT– 33 –

just leave EDITLINE blank in your CTSHELL.INI file. If you edit
your CTSHELL.INI file to change these settings, you may use the
<F7> function key to reload your menu, which will also cause
these editor settings to be reloaded from the file.

Options
The [OPTIONS] section provides a place to tell CT-Shell which
disk drives you want it to ignore as it creates the file listings. It
can be convenient for all available drives to be shown in the
listing, as their free capacity is displayed, and the user can
doubleclick on their entries to change to those drives.
However, each time the directory listing is refreshed, those
drives are checked and their information updated if it has
changed.

That takes time, and if there are drives that you do not
frequently change to, and don't care about their remaining
capacity, you can speed up general operations considerably by
telling CT-Shell to ignore them.

You do that with an IgnoreDrives= entry in the [OPTIONS]
section of your
CTSHELL.INI file. This example shows how you would limit the
drives to just A, B, C, D and E, in a system that has many more
available:

[OPTIONS]
IgnoreDrives=FGHIJKLMNOPQRSTUVWXYZ

The drive letters do not need to be in any particular order,
though keeping them
alphabetical makes sense, considering that you may from time
to time add or delete certain letters. In fact, you can easily
change this configuration option during a CT Shell session, by
editing your CTSHELL.INI file and pressing <F7> to reload your
menu and options.

If your network operating system allows the use of other
symbols, such as
numeric digits, to be used as drive designators, you may
include them in the list as well. Most systems allow the use of
drive letters only.

It is important to note that the use of this option in no way
prevents you from
changing to another avaiable drive, even if you have told CT-
Shell to ignore that drive. You may issue a drive-change
command from the CT-Shell command line as usual, and that

C:\WINWORD\CTSHTOC.DOT– 34 –

drive will become the default drive. Its remaining capacity will
be displayed in the status window. For example, to change to
drive L, which has been excluded by the option above, you
could enter the command:

L: <enter>

at the CT-Shell command line, as always. Asking CT-Shell to
ignore this list of drives simply prevents it from displaying
entries in the files list for them, it doesn't affect your using
them in any way.

This section also contains two complete commands for user
options that CT-Shell will execute when the user presses the
<F9> and <F10> function keys, or clicks the mouse on their
representation on the screen. You'll need to be sure there are
10 sets of braces here. They may be left empty if you prefer,
but they must be in the file, or CT-Shell may become confused
by the missing fields.

Here are the entries from the [OPTIONS] section in the
supplied sample CTSHELL.INI file:

[OPTIONS]
user1 {Configure} {} {} {} {config}
user2 {Solitaire} {} {sol.exe} {} {}

As you might be able to tell from this, the user1 task is assigned
to execute a special CT-Shell keyword called "config," which will
display the file listing options you currently have in effect and
let you change them. The user2 task is assigned to run the
Windows Solitaire game. The format of these user entries is the
same as for the menu entries, which are described later in this
chapter.

These commands begin with a name to display on the
screen, such as "Configure" and "Solitaire" as shown here. It
can be followed by the name of a directory to change to, a
program name, and any switches or other options needed when
it is run, or alternatively a CT-Shell keyword in the last field. If
you want, you can use some special characters here to include
additional information in the final command, such as the name
of the current file, the names of all the tagged files, the
contents of an environment variable, or a value provided by the
user in response to a prompt.

C:\WINWORD\CTSHTOC.DOT– 35 –

Color
The [COLOR] section allows you to control the color of the main
window background in CT-Shell. There are three color
components that you can set individually-red, green and blue-
that together make up the one window background color.

Those colors can be assigned values from 0 to 255, and
you'll probably be surprised at some of the combinations that
can result. Would you have believed that red and green
together create yellow? The sample CTSHELL.INI file has a
[COLOR] section that looks like this:

[COLOR]
BKRED=0
BKGREEN=255
BKBLUE=255

That produces a blue-green (cyan) background color that many
people consider pleasant. You will find a command in your Utils
menu that invokes the special CT-Shell keyword COLOR. That
command will reset the colors after you've edited them here,
without reloading anything else from the initialization file.
Alternatively, you can restart CT-Shell.

Printer
The [PRINTER] section controls certain options that affect the
way CT-Shell prints a file (or a list of tagged files) when you
press the <F8> key. It looks like this in the sample CTSHELL.INI
file that is supplied:

[PRINTER]
LINESIZE=80
HEADINGS=1
PAGENUMS=1
24HOUR=0
LINENUMS=1
INDEPENDENT=0
DRAFT=0
TEXTFIXED=1

All of these settings are controlled from within CT-Shell, from a
dialog box that is presented when you execute a popup menu
entry that uses the CT-Shell keyword CONFIG (which is
described later in this chapter). That entry is available in the
Utils menu item in the sample configuration. When you invoke

C:\WINWORD\CTSHTOC.DOT– 36 –

the keyword CONFIG, here's the dialog box that CT-Shell uses to
get your choices:

(Graphic not in shareware Write version of documentation.)

If you click on the [Accept] button, CT-Shell will accept the
settings that are shown. If you have checked the box marked
"Save settings to CTSHELL.INI file," that will be done as well, so
that next time you'll start off with these as default settings.

If you click on the [Reset] button, you will cause CT-Shell to
read in the current settings from the CTSHELL.INI file. They will
replace whatever other settings you had in effect, and will be
displayed immediately.

As usual, if you click on the [Cancel] button, you'll exit from
this dialog box without changing anything. Although you don't
need to edit your CTSHELL.INI file to change these, here's an
explanation of what each one means:

Linesize
The LINESIZE entry will be 80, 110 or 132, if it was entered
from within CT-Shell, and it specifies the width of text file
lines, as you usually work with them. When printing text
files, CT-Shell will choose the largest font that is available for
your printer that will display at least that many characters on
a single line, in addition to allowing room for borders and
optional line numbers.

For example, if you write programs, and always make
sure that your source file lines are 80 characters or less in
length, you can select a line size of 80 and know that your
printed listings will contain all your text between the borders.
If you occasionally write on past the width of your terminal,
you might want to select 110 to ensure that everything will
print. CT-Shell does not provide linewrap, so lines of text that
are too long will be truncated at the edge of your printing
area.

Some people use special video hardware that provides
them with 132-column text displays. They may use that full
width when editing programs, so a selection is available for
that size as well.

Although these three sizes are the most useful, and are
provided for easy selection from within CT-Shell, you may edit
this entry to contain values other than 80, 110 or 132. CT-
Shell will attempt to use your value, providing the closest font
that it can.

Note that there is another special CT-Shell keyword
C:\WINWORD\CTSHTOC.DOT– 37 –

called PRINTER, which is available from your Utils menu, that
will invoke the setup function from the Windows printer driver
for your printer. Depending on the type that you use, you
may be able to change paper size, change orientation from
portrait to landscape, and change other settings that will also
be reflected in CT-Shell's choice of fonts for your listings. As
an example, the next illustration shows what you'd see if you
happen to use a Hewlett-Packard LaserJet Series II printer,
and happen to have it assigned to LPT1.OS2.

(Graphic not in shareware Write version of documentation.)

One other issue related to line size and fonts is your printer's
resolution. Often people are able to specify a graphic
resolution that is less than the maximum possible, thereby
speeding up printing of program listings, with an acceptable
loss of print quality. If your CT-Shell listings take too long to
print, and are of unnecessarily high quality, explore your
options in the printer settings. With a LaserJet, for example,
you might want to select a resolution of 150 dots per inch.
That will still provide crisp, readable listings, but they will
print considerably faster than if the resolution were left at
300 dots per inch.

The rest of the options shown here are simply TRUE/FALSE
values, where the number 1 represents TRUE and 0 represents
FALSE. Inside CT-Shell, your selections will be made by
checking boxes for the options that you want, however in the
CTSHELL.INI file, your choices are stored as 1s and 0s.

Headings
HEADINGS determines whether name/date/time headings will
be printed at the top of your listings. If you enable this
option, each file's name and creation date and time will be
printed at the top left of the page in a bold font, and the date
and time the listing was printed will be at the top right of the
page. Thus it will be easy to compare two listings to see
which is newer. You can print a few additional lines of text on
each page if you turn off this option.

Pagenums
PAGENUMS determines whether your listings will have page
numbers at the bottom of each page. Be sure to see the
closely related INDEPENDENT option below. You can print a
few additional lines of text on each page if you turn off this

C:\WINWORD\CTSHTOC.DOT– 38 –

option.

24Hour
This option lets you determine whether the times displayed in
file listings will be in 24-hour "military" time, or in the
conventional AM and PM format. With this option enabled,
9:30 in the evening displays as 21:30, and with this option
disabled the same time displays as 09:30p.

Linenums
If the file being printed is a program listing, chances are you'll
want the lines to be numbered. This option will cause them
to be numbered from 1 to 99999, and separated from the
text with a > and a space. Thus, such a listing might look in
part like this:

51> if(iLimit > iValue)
52> foobar(iValue);

Turning the line numbering option off would make more sense
when printing a listing of a program documentation file.

Independent
The INDEPENDENT option refers to page-numbering for
multiple-file printing jobs. If you have a series of files tagged
before you press <F8>, all of them will be printed, not just
the current file. If INDEPENDENT is set to TRUE, each file
listing will begin with page 1. If INDEPENDENT is set to
FALSE, the whole series of files will be page-numbered
consecutively, straight through.

If a number of files is all part of a single programming
project, you might prefer setting INDEPENDENT to off.

DRAFT
DRAFT tells Windows whether to try to find a font for high-
quality output or one that will print more quickly, with lower
quality. If DRAFT is TRUE, lower quality will be allowed.

Note that the operational word here is allowed. CT-Shell
does not force Windows to use a lower-quality font, it can
only allow it to do so. How much effect this switch has may
well depend on the kind of printer you use, and the number
of fonts its driver is able to make available.

Depending on the printer type, you may have more
success in changing to a lower quality (and faster printing)
font if you use the CT-Shell keyword PRINTER in a menu

C:\WINWORD\CTSHTOC.DOT– 39 –

entry, to gain access to the printer driver's setup function.
By setting the graphic resolution to a value that is less than
the maximum, you may be able to trade some excess print
quality for a desired increase in printing speed.

TEXTFIXED
Whether the text portion of your printout is printed in a fixed
font or a variable (proportional) font is controlled by this one.
If you need to print program listings, you'll want to set
TEXTFIXED to true, so that spacing is preserved in your
listings.
(This feature does not affect the headings, as there is no
reason to print headings using a fixed font.)

Under other circumstances, you might prefer to turn off
this feature, so that proportional spacing will be used instead.
In particular, you might want to turn this feature off to print
files that were created by a word processor using a
proportional font.

Items
This part of your CTSHELL.INI file determines the contents for
your menu, and the popup menus that its items invoke. There
is no practical limit to the number of menu items, although
most people prefer to keep the number small enough (and the
item names short enough) to make the menu fit on one line.
Likewise, there is no practical limit to the number of entries that
each menu item may contain.

Since the sample CTSHELL.INI file provides so many
examples of menu entries, you shouldn't have any trouble at all
adding the ones you need to customize your system. A good
idea is to add one or two new entries that will run programs you
use often, and try them out. Make sure you're including the
current file in the right place, and that you're changing to the
right directory before executing the programs.

While reading through these following subsections, you
should get plenty of ideas for custom entries. Ask yourself
questions like, "What do I use the computer for most of the
time..." and think what you'd like to be able to do with a click of
the mouse or the press of a couple keys.

Menu Items
Each menu item is distinguished by the special word Item
that appears first on its line, then a set of braces containing
the item name as it should appear in the main menu. Since

C:\WINWORD\CTSHTOC.DOT– 40 –

braces are used as delimiters, the menu entries can contain
quotation marks, if you want, as well as spaces and
punctuation.

item {ItemName}

ItemName
The menu item name may contain embedded spaces, and
it may contain the special ampersand character (&), which
determines a letter that will appear underlined in the menu
itself. So identifying a key letter in the name provides a
way for that menu item to be selected with a combination
of the <Alt> key and that underlined letter.

For example, <Alt+E> typed together would activate
the menu item that was described in the CTSHELL.INI file
as {&Edit}. The ampersand is optional, but provides a
quicker way to invoke this item.

Popup Entries
Each popup entry contains five fields, delimited by braces, of
which only the first is required.

If you haven't yet loaded your CTSHELL.INI file into your
editor to take a look at it, you should do so now. The
following descriptions will be most meaningful if you're
looking at the sample menu entries as you read about their
various parts. These fields determine what action is to be
taken when the user selects that entry from a popup menu:

{EntryName} {DirPath} {ExePath} {Switches}
{Keyword}

Entry Name
The entry name is displayed in the popup menu to allow
the selection of this option. Like the menu item name, the
entry name may contain an ampersand character to
determine the character that will be underlined in the
menu, thus providing easy access to this item with a
keyboard command. The ampersand is optional, but
provides a quicker way to invoke this entry.

Two other special characters may be used here, to
provide separation
from other popup menu entries. If an entry name begins
with a hyphen (-), there will be a horizontal bar in the
menu, separating that item from the ones that preceded.
If there is a plus sign (+) before the name, that entry will

C:\WINWORD\CTSHTOC.DOT– 41 –

begin a new column in the popup menu, with a vertical bar
separating it from the preceding entries.

If you visualize the hyphen as a horizontal bar, and
the plus sign as a
vertical bar that separates two halves of something, it
should be easy to
remember these. There are also a couple of examples in
the sample
CTSHELL.INI file. The Exit entry in the File menu is
separated at the bottom with a horizontal bar, as has
become customary for Microsoft products, and in the Win
menu, the two entries that allow you to edit Windows
xxx.INI files are separated into their own column,
distinguishing them from the Windows utility programs in
the other column.

DirPath
The directory path is an optional field which, when
provided, causes CT-Shell to change either temporarily or
permanently to that directory.

If a directory path field is present and an executable
path field is not, it is assumed that the purpose of this
entry is to change directories permanently. In that case,
CT-Shell will change to the specified directory, and will
begin operating there. An example might look like this,
where you want to be able to change to a word processing
work directory on drive D:

{&WordProc} {d:\winword\letters\personal} { } { } { }

Since the directory field has a content, CT-Shell will change
to that directory when this entry is invoked. Since the
executable field does not have any content, the directory
change will be a permanent one.

If both a directory path field and an executable path
field are provided, it is assumed that the directory change
should be temporary, for the purpose of executing the
command only. Afterwards, CT-Shell will return to the
directory where it was before the command was executed.
Here's an example where the same directory change is
made, but a session with Word for Windows is also started:

{&WordProc} {d:\winword\letters\prsnl} {winword.exe}
{ } { }

C:\WINWORD\CTSHTOC.DOT– 42 –

This time the directory change will be temporary, and CT-
Shell will return to the previous directory when the session
with Word for Windows is finished.

ExePath
As you saw in the previous example, the executable path is
the path name for an executable file which is to be run
when this entry is selected. Because the menu entries are
processed by a command processor that can look
throughout the DOS path for an executable file, programs
whose names end in .EXE and that reside along the DOS
path may be listed here without any qualifying path
information.

However, if the program to be executed does not
reside along the DOS path, you must include the entire
path/file name here. If it has an extension of .COM or .PIF
or .BAT, you must at least include the extension - even if
the file does reside along the DOS path - as CT-Shell will
default to .EXE for a filename with no extension. More
information about path names and the DOS path is
available in your DOS manual.

An example of an executable that lies along your DOS
path is CALC.EXE, assuming that it is in its customary place
in your Windows directory. Here's a menu entry that would
run the Windows calculator utility:

{&Calculator} { } {calc.exe} { } { }

No directory change was required, and in fact, we could
have gotten away without the .EXE extension, since that's
the default. Many people prefer to include it anyway, for
purposes of documentation.

Switches
Programs often require additional information on the
command line when they are run. An editor, for example,
can often be told what file to edit by including the file
name as part of the editor command.

Sometimes too, the way a program runs can be
affected by switches that turn on or off certain features.
For example, the extended copy XCOPY command from
DOS will copy entire directories if you follow the command
with the switch "/s" and will even include empty directories
if you include the switch "/e". If a menu entry were created
to execute the XCOPY command, you might want to include

C:\WINWORD\CTSHTOC.DOT– 43 –

these switches as part of the entry.
The switches field is the one in which the CT-Shell

special field characters are most often used (see below).
Using object-oriented techniques, you are able to include
the current file as part of your command, a list of all the
tagged files, an environment variable, and more. You are
even able to cause CT-Shell to prompt you for one or more
values to be inserted as it runs.

As it operates, CT-Shell combines the switches field
with the executable path field to form a command. Thus, it
doesn't really matter whether a command argument or
switch occurs in one field or the other. However, it is
easier to visualize executable programs as separate from
the arguments and switches that are used with them, so
both fields are provided. If you prefer, you may put all the
necessary entries into the executable path field and leave
the switches field empty, but its braces must be left in
place or, under some circumstances, CT-Shell might
become confused by the missing field.

Here's an example for an XCOPY command that
assumes the current file is a directory, and copies it and
everything in it to the floppy disk in drive A:. Note that
the ! represents the current file, and can be placed in the
command right where the current file name would be
placed if the command were being given at a DOS
command line:

{&CopyDir} { } {xcopy.exe} {! a: /s /e} { }

Keyword
Many of the operations that CT-Shell performs are handled
internally by CT-Shell itself. That's how it is able to improve
on many of the DOS commands, rather than passing the
commands along to DOS. A keyword command is always
used in place of - rather than in addition to - an executable
path. In fact, if there is a keyword in this last field, CT-Shell
will process that keyword first, ignoring any entries that
may be in the executable path or switches fields.

CT-Shell keywords are listed here, along with a brief
description of what they each accomplish. Note that there
are a few keywords that are duplicated for use with single
and with tagged files. If you tag a group of files, for
example, and select Delete from the File menu, you'll only
delete the one current file. If you do the same and select
Delete from the Tagged Files menu, you'll delete them all.

C:\WINWORD\CTSHTOC.DOT– 44 –

Examples of all of these keywords are already
included in menu items in the sample CTSHELL.INI file,
however you may want to rearrange them to suit you:

About
Displays information about CT-Shell, including the
number of the version that you're using.

Attrib
Changes file attributes. Use this keyword in a menu item
to let you change the attributes of the current file. There
is another version listed below that changes the
attributes for a group of tagged files.

Color
Resets the background color based on three color values
stored in your CTSHELL.INI file. You need to modify that
file first, changing the values for the background color,
then execute a menu entry that contains this keyword to
read those values from the file.

Command
Invokes the command processor that is associated with
your COMSPEC environment variable. In most cases this
will be COMMAND.COM, the command processor that is
supplied with MS-DOS and PC-DOS.13

If there is anything at all that you prefer doing at an
ordinary DOS command line rather than from within CT-
Shell, this keyword provides you with the ordinary DOS
session where you can do it.

Config
Configures the file listing options. These are the settings
within CT-Shell that affect how file listings are printed.
See also the PRINTER keyword for access to the printer
driver itself, which can provide even more control over
your installed printer.

Copy
Copies a file to another location. You are prompted for a
destination for the current file, and it will be copied to
that destination. Like the DOS copy command, you may
supply a file name or a directory as a destination. Like
the COPY command that you use at the CT-Shell
command line, this uses a much larger copy buffer than

C:\WINWORD\CTSHTOC.DOT– 45 –

DOS does, for better efficiency.

Deldir
Deletes the currently-selected directory and all files in it.
Be careful! This one is so powerful that there are two
confirmations necessary to make it work (you're asked
twice whether it's okay to delete the directory).

The entire subdirectory will be deleted, including
any files in it and any subdirectories under it, even files
that have the read/only attribute. This is a wonderful
way to remove an outdated or unwanted directory
during disk maintenance, but it requires you to be
careful. Files and directories that have been deleted
with this command cannot usually be undeleted.14

Delete
Deletes a file. This removes a file in a way that cannot
usually be reversed. Be careful, and be sure that you
mean it when you use this keyword. You are asked only
once for confirmation.

DirSize
Displays a listing that shows you how big a directory is.
It shows how many subdirectories it contains, how many
files, and how many bytes they all add up to. This can
give you a very good approximation of how much room
must be available on a destination to which you plan to
copy that directory, or how much additional room will
become available on your drive if you delete it.

Exit
Shuts down CT-Shell. You can also do this by double-
clicking on the system menu box in the upper left corner
of CT-Shell's window, but some people find it easier to
pick an exit command out of a menu. One other
difference is that the menu entry does not ask for
confirmation, giving you a choice as to how you prefer to
handle it.

If you like being asked to confirm exiting, teach
yourself to doubleclick the system menu to leave. If you
prefer to bail out without having to find the [OK] button
to verify your intentions, learn to use the Exit entry in
the File menu instead.

Help
C:\WINWORD\CTSHTOC.DOT– 46 –

Runs the Windows help engine. This provides access to
the online helpfile that explains what all these options
do, and reminds users how to use CT-Shell. You can start
at the index, and select the topic you want to review.
Wherever feasible, the help file contains hyperlinks to
other topics, making it easy for you to find all the
information related to a subject.

Home
Changes the CT-Shell "home" directory to the current
directory, so here is where you'll return when you press
<F6>, rather than the directory in which you started the
program.

Move
Moves a file to another location. This feature changes
the directory information relative to a file without
copying the file itself. Thus, a move takes only part of a
second, no matter how big the file is that is being
moved. No file data needs to be read or written, just the
directory entry for that file.

Printer
Invokes your printer driver setup function. The exact set
of features and options that are offered by this function
depends on the printer driver for your particular printer.
This is probably where you can change from portrait to
landscape mode, determine how high your graphic
resolution should be, download font software, etc.

Rename
Changes the name of a file or directory. This is actually
implemented as the same low-level DOS function that
MOVEs a file, and it can be used for the same purpose.
If you provide a new pathname that includes a different
directory than the current directory, your file will be not
only renamed, but moved to that directory as well.

System
Displays system information. This is the same
information you can get from the Windows Program
Manager by clicking on its HELP/ABOUT option. You can
find out what mode you are running, using what kind of
processor and coprocessor (if any), and whether small-
frame or large-frame EMS operation is in effect (if any).

C:\WINWORD\CTSHTOC.DOT– 47 –

This keyword does not display the amount of memory
available, as CT-Shell displays that at all times anyway.

Tagged
Displays the number and size of tagged files. If you
have tagged a set of files to be copied to a floppy disk,
you might want to check to be sure that the number of
bytes tagged does not exceed the number of bytes that
are free on your disk.
Because of the way disks are sectored, you will actually
need a bit more room than the number of bytes that are
tagged, but you'll never need less room. Use the value
provided here as an approximation.

Here are documented the special keyword versions that
work with a group of tagged files, instead of just the
current file. Note that any of these could be used to
handle a single current file (unless it were explicitly
untagged with <F1>), but the reverse is not true:

SetDate
Changes the date/time stamp that DOS has applied to a
file or a set of files. This operation is easily reversed if
an error is made, so only one version of this keyword is
needed - one that will work for tagged files. Whenever
this keyword is used, the new date and time that the
user provides will be applied to all the tagged files. If
you want to change the date/time for a single file, simply
ensure that it's the only file that is tagged.15

Tattrib
Changes the attributes of tagged files. If you should
want to change all the .EXE and .COM files in a directory
to read/only status, to prevent unnecessary share
violations with a network, you could tag those files, then
use this keyword to give them all a read/only attribute.

Tcopy
Copies a set of files to another location. You must
provide a directory as the destination. CT-Shell does not
support file concatenation (combining several files into
one) by copying multiple files to a single file.

Tdelete
Deletes a set of tagged files. You are prompted for

C:\WINWORD\CTSHTOC.DOT– 48 –

confirmation before the deletion is accomplished.

Tmove
Moves a set of tagged files to another location. Just as
with the single file move keyword, these files are not
physically copied to their new location, just their
directory entries are changed.

These keywords have been provided so that you can have
complete control over how your menus are crafted, rather
than having CT-Shell contain a fixed menu that determines
how you must access these features. For example, one
user might think it makes good sense to have COPY and
MOVE in a menu named Utils, whereas someone else might
think they belong in one named Claudia..

These keywords are not case-sensitive: uppercase and
lowercase work the same way.

Special Field Characters
Many times a command should contain the name of the
current file, or a list of all the tagged files, or other
additional information. Sometimes it is convenient to refer
to an environment variable in the directory path field, so
that the command doesn't need to be changed just
because the directory has been changed. There are a
number of special field characters that allow you to insert
such information into a command in a convenient object-
oriented manner.

The term "object-oriented" here means that you do
not need to write special code using a programming
language, or call a function or procedure to do these
things. Certain objects (characters like ! and #) that you
place in the command automatically take on values that
represent file names or other information.

Here is a listing of all the special field characters that
may be used in CT-Shell popup menu entries. Although
any of them may be used in any of the fields except the
entry name field and the keyword field, you will find that
certain ones are likely to be used in the directory path
field, and other ones are more likely to be of use in the
executable path and switches fields.

In each of the following examples, a DOS command
line is shown, to illustrate how the command would look if
it were entered normally at a DOS prompt. After that, the
CTSHELL.INI entry is shown that would produce that

C:\WINWORD\CTSHTOC.DOT– 49 –

command, substituting current information for the CT-Shell
special characters:

!
The exclamation mark translates into the current file
name. Here's an example that would use the Windows
NOTEPAD.EXE editor to edit the current file:

Command line: notepad.exe filename.ext

CT-Shell entry: {&Edit} { } {notepad.exe} {!} { }

#
The hashmark translates into a list of files that are
tagged, or as many of them as can be squeezed into the
DOS limit of 127 characters on a command line. You
might like to add all of the tagged files to an archive file
named ARCNAME.LZH by using the LHArc program:16

Command line: lha a arcname file1 file2 file3 ...

CT-Shell entry: {&LHArc Add} { } {lha.exe} {a arcname #} { }

??
A pair of question marks surrounds the prompt you want
CT-Shell to display when it asks you for a string of
characters to put in its place. This is how you can supply
variable arguments at the time an entry is executed.

For example, the LHArc command shown above will
always create an archive called ARCNAME.LZH, because
the name ARCNAME has been hard coded, or stated
explicitly, in the command. It will require that the same
archive be created or updated each time this popup
entry is executed, although the currently-tagged file
names may be different each time.

Compare that to this example, where CT-Shell will
ask the user for an archive name each time the
command is executed:

Command line: lha a arcname file1 file2 file3 ...

C:\WINWORD\CTSHTOC.DOT– 50 –

CT-Shell entry: {&LHArc Add} { } {lha.exe} {a ?Arc name? #}
{ }

When this popup entry is executed, CT-Shell will display
a dialog box identifying the needed argument as "Arc
name" and asking the user to supply a name. That
answer will be inserted into the command line, replacing
the ?Arc name? characters.

Although it is usually an error to use the ! or the #
special characters more than one time in a command,
you may want to use several ?? pairs, to ask for multiple
arguments for a command. Since each prompt specifies
what information is needed, the user won't get them
confused.

And since it does no harm to enter a blank answer,
it is even practical to use a prompt for those times when
you might, or might not, need input. If none is needed
for a particular execution of the command, the prompt
can be ignored by clicking on [Cancel] button or simply
entering a blank answer.

%%
A pair of percent signs will cause CT-Shell to insert the
value for a named environment variable into the
command. This is consistent with the way environment
variables can be accessed within a batch file, and the
topic of environment variables is explained fully in your
DOS manual.
Briefly, you set environment variables to a given value
with a SET command like this:

SET ENVAR=contents of variable

Although that can be done at a DOS prompt, it is usually
done in an AUTOEXEC.BAT file instead, so that your
environment variables are established correctly each
time you start your computer. Various programs obtain
various kinds of information from environment variables,
and the documentation for those programs must tell you
how to set them, if any are needed.

It's very common for a language compiler to require
an environment variable named LIB to contain the
directory name where the compiler's runtime libraries -
files that are used in creating programs - are stored.

C:\WINWORD\CTSHTOC.DOT– 51 –

When used in a CT-Shell popup entry, the two percent
signs and the variable name that is between them are
replaced by the value that DOS associates with that
environment variable.

For example, a programmer might want an easy
way to insert object modules that are being created
(parts of programs) into a library named FOO.LIB, and
which is located in the directory pointed to by the LIB
environment variable. It is assumed that the current file
will be an object module, a file ending with the extension
.OBJ. This example assumes that the environment
variable currently contains the value C:\LIB and that the
current file name is BAR.OBJ:

Command line: lib C:\LIB\FOO +BAR.OBJ;

CT-Shell entry: {Add &Module} { } {lib} {%LIB%\FOO +!;} { }

A second example shows how you might use an
environment variable in the directory path field, one of
the rare uses of CT-Shell special characters in that field.
Here a command is created that will change the working
directory to the one in which a programmer's header
files are stored, and pointed to by the environment
variable called INCLUDE:

CT-Shell entry: {Change to &Headers} {%INCLUDE%} { }
{ } { }

Since there is no command to execute in this case, the
directory change will be permanent (although you can
still return to the original starting directory by pressing
<F6>).

Another example shows how you might use the
same environment variable to edit your PRG.H file, which
is assumed to be located in that directory, using the
QEdit editor:

Command line: q.exe C:\MSC600A\INCLUDE\PRG.H

CT-Shell entry: {Edit PRG.H} { } {q.exe} {%INCLUDE%\PRG.H}
{ }

Finally, there's even a special CT-Shell pseudo-
environment-variable called WINDIR that you can use in

C:\WINWORD\CTSHTOC.DOT– 52 –

your command entries wherever you need to refer to the
Windows "home" directory. Although such an
environment variable is never set at DOS (there's no
need for it - Windows already knows where its directory
is, and so do Windows programs), it is used in these
entries in the same way that an environment variable
would be, so it follows the same syntax.

Thus, the sample menu entry that edits your
Windows SYSTEM.INI file using NOTEPAD.EXE is always
able to find it because of the %WINDIR% "environment
variable" that CT-Shell replaces with the actual directory
name. It looks like this:

{SYSTEM.INI File} { } {notepad.exe} {%WINDIR%\system.ini} { }

As in the case of the ?? special characters, it does no
harm to use more than one environment variable in a
command. They may even be used in more than one
field in the same command, if appropriate.

C:\WINWORD\CTSHTOC.DOT– 53 –

1 Of course, experienced users will understand that there are some programs that simply won't run in
Windows at all, in their current versions, perhaps due to memory management conflicts or conventional
memory requirements. CT-Shell is subject to the same limitations that Windows itself is, and it can't work
any special magic with these hard cases. However, it's safe to say that if you've run it from Windows, you
can almost certainly run it from CT-Shell.

Incidentally, CT-Shell has been designed to require as little memory as possible when it runs.
Although the executable file is more than 60K in size, you'll find that the program actually requires about
20K or so to run, depending partly on your system.
2 Be advised that the dialog box you use to enter your file spec will contain a default of *. , to which you
can simply add an extension, if you want. To keep that original part of the prompt from disappearing when
you type your first letter, you need to click the mouse one time where you intend to type, or press one of
the arrow keys on the keyboard. The reverse-image prompt will change to a normal image, letting you add
to it rather than replacing it with your input.

It is probably obvious by now, but if you want to specify a file spec that does not begin with *. ,
you can simply begin typing, and what you enter will replace that default prompt.
3 Windows traps the <F10> key, by the way, and uses it to access the menu, duplicating what the <Alt>
key is usually used for. That is because of IBM mainframe terminals that don't have an <Alt> key. In an
attempt to standardize an interface that can be used across many diverse systems, <F10> was chosen to
be the menu access key that exists on all terminals.

Still, anything you assign to this <F10> key can be executed by clicking the mouse on the screen
representation of the key, as you can with all the others. Since most users will probably access these
commands with the mouse, most of you probably won't notice - or care - that pressing the <F10> key itself
accesses the menus.
4 As a matter of curiosity, this function uses the same low-level DOS function that the CT-Shell MOVE
command uses to move a file from one directory to another on the same drive without copying the
contents of the file. Although it will most often be used for changing the name of a file or a directory
within the current directory, you could also supply a complete path/file name here to move the file
elsewhere. There's no compelling reason to remember this, however, as there is a MOVE keyword
provided as well.
5 Note that there is no guarantee that your directory will copy to a disk that has exactly that much room
free - in fact, it probably won't, because most files require slightly more of a disk allocation than their size
would indicate. (Disks are allocated in terms of clusters, not bytes, and the cluster size of your disk may
be from 1K to 8K or more.) However, this value provides a good approximation of the minimum space that
would be required. Clearly, this directory could not be copied to a disk that has only 2.5 MB free.
6 The reason full seconds are not stored is an interesting matter of simply not enough room in the directory
entry. The creation time is stored in a single 16-bit integer in the DOS directory on the disk. The Hours
field requires 5 bits, to store numbers as high as 23. The Minutes field requires 6 bits, as it must store
numbers as high as 59, and that leaves only 5 bits left for the Seconds field. The best approximation (that
can be stored in 5 bits) is seconds divided by 2, and that's exactly what DOS does.
7 Sometimes network administrators will assign the read/only attribute to executable files that are to be
shared by several users. If such a file is accessed by more than one user at a time, having the read/only
attribute will prevent the DOS SHARE program from complaining about a share violation. Since the files
can't be modified by anyone, SHARE is content to allow multiple users to access it at the same time.
8 Sometimes hidden files are used to provide copy protection for a program: files you can't see and don't
know are there are required for the application to run. Since it displays all file attributes, and you can
easily see that a file has this attribute, CT-Shell displays all hidden files.

CT-Shell, by the way, is not copy protected in any way. Computer Training respects the honesty of
its customers, and doesn't want to make their lives any more complicated than they may already be!
9 Not without using a special command to delete the directory. DOS provides an RD (remove directory)
command, but it won't remove a directory that has any files in it, and in any case, the DEL command
doesn't work with directories at all. CT-Shell has a DELDIR keyword that is documented in the CTSHELL.INI
Reference section, that can be used to delete an entire directory and everything it contains.
10 Because that's really the only purpose of this attribute, a little more explanation seems in order. A
differential backup is one that copies only those files which have been changed since the last full backup,
which cleared this attribute on all the files it copied. A differential backup does not clear the archive
attribute, so you always have just two backup sets - the full set and the differential set. When you do a
restore, there are never more than these two backup sets to replace.

C:\WINWORD\CTSHTOC.DOT– 54 –

Another type of backup, an incremental backup, differs by clearing the archive attribute whenever
files are saved. Thus, with an incremental backup you create a new backup set every time you do a
backup, and it always contains the files that were changed since the last incremental backup. When you
do a restore, you may be required to restore a large number of backup sets.
11 If you honestly want to use an ordinary DOS command like DIR from the CT-Shell command line or from a
menu entry, you'll want to make a PIF file for that command that invokes your command processor and
provides any options that you need. For example, if you run any command from within CT-Shell that
produces screen output that you want to look at before returning, you'll want to be sure that the PIF file for
that command does not have the option checked to close the window automatically when the program is
finished.

The program to run will be your command processor, and you'll probably need to include a /c switch
on its command line, otherwise you'll have started a DOS session with it. (The /c switch tells it you want to
return immediately after executing the command.) Here's how you might handle this in a PIF file that uses
COMMAND.COM to provide a CHKDSK command:

COMMAND.COM /c chkdsk

By the way, with current versions of DOS, it is very unsafe to use the /f switch with CHKDSK, when you're
running under Windows (to "fix" disk errors). The reason is because you may have a number of files open
for programs that you have running, and CHKDSK doesn't understand that. It will think the files are lost
clusters, and will gather them together for deletion. Future versions of DOS will undoubtedly contain
CHKDSK commands that can make this distinction and will be able to be used safely under Windows, but
be sure before you use it!
12 These extensions are automatically installed in your WIN.INI file by Windows during its setup process.
You can also edit that section of your WIN.INI file to add other extensions that would be useful to you. Your
Windows documentation has more information about the [Extensions] section of your WIN.INI file, but here
are some examples that may be enough for you:

C=QFULL.PIF ^.C
SLC=TELIX S^.SLC

The first example shows what CT-Shell should do if you doubleclick a file name that ends in .C (a C
language program source file). This implementation will run the QEdit editor using the Program
Information File named QFULL.PIF, and pass it the current file name (^) and the extension .C as arguments.

The second example shows a way to start up the Telix communication program and pass it the
name of a compiled script to run. Telix's command line may include an optional letter "S" which is followed
by the name of a compiled script. Those scripts end with the extension .SLC.

Any such extensions that you set up in your WIN.INI file can be used both by the Windows File
Manager and by CT-Shell. Be creative with them, and you can save a great deal of work. You can
doubleclick on a database file and automatically start your database manager. You can doubleclick on a
phone directory file and automatically start the communication program that uses it. The possibilities are
nearly endless. This is a VERY powerful feature, and one that experienced users should not let pass by
without experimenting a bit!
13 If you are using a third-party replacement command processor, be sure that you have followed the
manufacturer's directions regarding setting your COMSPEC variable. If you do not set this explicitly to
match your substitute processor, DOS will set COMSPEC to COMMAND.COM in the root directory of the boot
disk, as a default.
14 The UNDELETE command for DOS 5.0, for example, won't find a file that was deleted by CT-Shell. You
may be able to recover a deleted file using another utility, but there is no guarantee at all. It is best to
assume that once CT-Shell has deleted a file, it's going to stay deleted, and to be very careful with this
keyword. The same is true of the DELETE keyword documented next, and the DEL command when used at
the CT-Shell command line.
15 Programmers, in particular, enjoy this feature, because it allows them to follow the convention in which
all the files for the release of a software package have the same datestamp, and have a timestamp that
specifies the version number. Thus, a timestamp of 01:00 would mean the files are part of version 1.00,
and a timestamp of 2:34 would make it version 2.34.

When a file is modified, DOS changes the date and time for that file, so you can easily determine
later whether any of the release files has been modified in any way.
16 LHArc is a popular freeware data compression program that is available from many sources. It creates
archives, or libraries, of files that have been compressed much smaller than their original size. It was used
to create the CTINSTAL.EXE program that you used to install this product. It makes an excellent example
for these special characters, because it gets a lot of information from its command line when it is run.

C:\WINWORD\CTSHTOC.DOT– 55 –

Legalities
This software is copyrighted, and all rights are reserved by
Computer Training. Individual personal users are granted
permission to evaluate CT-Shell v1.00 for a period not to exceed
thirty days, and are permitted to distribute the original archive to
others for the purpose of evaluation. Those individuals who
continue to use CT-Shell beyond the evaluation period become
obligated to pay for the software, thereupon becoming registered
users with all rights and benefits that pertain thereto.

Copying, duplicating, leasing, selling, or otherwise
distributing this software in any other way than specifically stated
above requires express written permission from a principle of
Computer Training. USE OF CT-SHELL BY ANY BUSINESS,
GOVERNMENT AGENCY, OR EDUCATIONAL INSTITUTUON IS NOT
SUBJECT TO AN EVALUATION PERIOD, AND REQUIRES
REGISTRATION IN ALL CASES. Volume users are encouraged to
contact Computer Training for liberal site license terms.

Trademarks
Various product names that are mentioned in this manual are the
trademarks or registered trademarks of their respective
manufacturers. CT-Shell and CT-Shell for Windows are
trademarks of Computer Training.

Limited Warranty
The diskettes and printed materials that are sent to registered
users of CT-Shell are warranted for 90 days against physical
defects. To obtain a replacement for a defective product, return it
to the place of purchase with an explanation of the defect. If your
copy was purchased directly from Computer Training, you may
return it postpaid to:

Computer Training
7016 NE 137 ST

 Kirkland, WA 98034-5010

Not covered by any warranty are materials that have been lost,
stolen, or damaged by accident, misuse, or unauthorized
modification.

COMPUTER TRAINING WILL NOT BE LIABLE FOR ANY SPECIAL,
INCIDENTAL, CONSEQUENTIAL, INDIRECT, OR OTHER SIMILAR

C:\WINWORD\CTSHTOC.DOT– 56 –

DAMAGES, EVEN IF WE OR OUR AGENT HAVE BEEN ADVISED OF
THE POSSIBILITY OF SUCH DAMAGES. ANY LIABILITY IS NOT TO
EXCEED THE ORIGINAL PURCHASE PRICE.

We make no other warranty, express or implied, to you or to
any other person or entity. Specifically, we make no warranty that
the software is fit for a particular purpose. Any implied warranty
of merchantability is expressly and specifically disclaimed.

C:\WINWORD\CTSHTOC.DOT– 57 –

