
About the Elographics Inc. Touchscreen/Mouse Drivers for Microsoft Windows 3.0
10 Dec 1990

Christopher G. Hill
Copyright 1990 All rights reserved

Elographics Inc. Touchscreen/Mouse Drivers
 2
__

The text that follows describes (loosely at first) how the mouse
drivers for Windows were changed to accommodate the use of a
touchscreen as a duplicate pointing device. Some of this
description is specific to problems presented by special DOS mode
device drivers and emulators that fool MOUSE.COM into believing
that input from the touchscreen is really coming from an attached
mouse. The following document was written specifically to get a
systems level programmer up to speed with the drivers as they
existed at the time this was written. It was assumed that he (or she
of course) would already be familiar with the concept of
touchscreens as pointing devices and with the supporting DOS
software as well. Still, for the general reader interested in writing
his own device drivers for Windows, some of the more general
topics covered here may help give a general overview of how a
Windows device driver interacts with Windows and the computer.
The topics that come later in this paper are more specific and much
of them may only be of interest to those who wish to write a driver
for a pointing device, or possibly a communications device. Even
so, there is example code that shows how to instance DOS TSRs
and virtualize their IRQs. This is invaluable no matter what kind of
virtual device driver you happen to be writing. It may even be
useful to those who wish to write TSRs that are compatible with
Windows.

The code in the second half of this paper will be most
meaningful to those who have the Windows DDK since it is derived
from that source. That does not mean that it is useless to those who
do not.

If you have any questions that you think I might be able to
answer, please don’t hesitate to contact me on BIX (user name
CHill).

Christopher G. Hill

Elographics Inc. Touchscreen/Mouse Drivers
 3
__

1.0
1.1 Windows 3.0 support for the Elographics Inc. touchscreen is provided by three DOS drivers and

two Windows drivers. Together, they control the mouse and the touchscreen and allow the
touchscreen to be used in emulation of a mouse. The three DOS drivers are:

3.) MONMOUSE.COM (the "glue" program that makes input from the touchscreen look
like input from the mouse).

The two Windows drivers are:

1.2 Of the three DOS drivers, none are reentrant and normally there is no reason for a DOS
device driver to be reentrant. When Windows 3.0 is run in its 386 Enhanced mode though, DOS
programs that use these devices can defy this strategy since Enhanced mode allows the user to
run multiple DOS sessions at once. Each of these DOS sessions will think it has complete control
of the computer. In fact, each must be allowed to share the system's resources without knowing
about it. This is why Windows 3.0 needs a special mouse and touchscreen device driver just for
the 386 Enhanced mode.

As an aside, Windows has three modes of operation: Real mode, Standard mode,
and Enhanced mode. The 80x86 family of chips also have a number of modes of
operation: real, 16-bit protected, 32-bit protected, and virtual 8086. In order to
reduce confusion, especially between real modes for Windows and the processor,
the mode name will be capitalized if it refers to a Windows mode, and lower case
if it describes a chip mode.

1.3 Windows behaves differently in each of its three modes of operation. In Real mode,
Windows and all its programs operate in the first 640K of memory and can use EMS memory to
store code and data. The system processor always runs in real mode and never protected. Any
program has complete access to any part of memory without restriction. When Windows runs its
"DOS Box" from real mode, it shuts down all background operation and returns the system to its
default DOS state. The user is essentially shelled out to DOS in this case. Just before Windows
starts the DOS box, all Windows device drivers are given a chance to save the state of their
respective device before the DOS session is begun. Once the state of the device is saved, the
driver should reset the device to a default DOS state. Once the DOS session is terminated or
suspended and Windows is reentered from the DOS session, the drivers restore the saved state of
their device.

1.4 In its Standard mode, Windows operates in the processor's protected mode. When Windows'
device drivers first initialize, they must do so in protected mode. This places some restrictions
and difficulties in the way of doing things like communicating with existing DOS device drivers
and even DOS itself. For this reason, Microsoft has added support for Intel's DOS Protected

Elographics Inc. Touchscreen/Mouse Drivers
 4
__

Mode Interface (DPMI) to Windows when it runs in Standard or Enhanced mode. Programs
running in protected mode can do such things as allocate and free LDT entries and change their
attributes. Calls can also be made to DOS software interrupts. By manipulating an LDT entry, a
driver (or Windows program) can access any part of physical memory. And by using the DPMI's
software interrupt emulation, the driver can communicate with DOS and DOS mode programs.
There are some special considerations though. First, if you wish to pass a pointer to a DOS
program, you must consider where that pointer points. Protected mode selector:offset pairs do
not have any correspondence to physical memory. The selector is merely an index into a table of
24 or 32 bit addresses and the offset is measured from the address stored in the table. Memory
that is used in protected mode programs and drivers does not necessarily occur in the first
megabyte of system memory and real mode programs cannot directly address memory anywhere
else. So, your protected mode program will need to ask Windows to allocate it some memory
from the first megabyte in the system. Then it will need to make sure to pass the real mode
address of this memory to the DOS program as a segment:offset pair (NOT selector:offset).
Although there is a DPMI call that allocates memory from a real mode pool, it will always fails
under Windows because Windows grabs all available real mode memory before the DPMI sees
it. Consequently, one must use the Windows API call to allocate real mode memory.

1.5 Window's use of both real mode and protected mode can complicates things for device
drivers if they need to communicate with DOS during their operation. Since the DPMI is only
present in Standard and Enhanced modes and not in Real mode, a Windows driver must have
separate sections for any procedure that must communicate with DOS. The global variable
__WINFLAGS must be used to decide whether or not the DPMI can be used. The constants
WF_PMODE and WF_ENHANCED correspond to appropriate bits in __WINFLAGS and can
be used to determine in which mode Windows is running.

1.6 As the case in point, MONMOUSE.DRV functions as both the mouse and touchscreen
driver for Windows. When it is first initialized, it checks for the existence of a DOS mouse
driver (usually MOUSE.COM). If it does not find it in memory, it operates as a mouse driver
only and looks for a the existence of a mouse anywhere in the system (specifically - a serial, bus,
InPort, PS/2 or HP mouse). If it finds one, it loads code specific to that type of mouse into a
Windows locked segment. If it does not find one, then no mouse support will be available to the
user. On the other hand, if a DOS mouse driver is found, then the Windows driver hooks into it
in the form of an event handler.

1.7 When the DOS mouse driver (MOUSE.COM) receives input from the mouse, it will call the
event handler in Windows and pass it information via the processor's registers. In real mode, this
is a very straight forward process but in protected mode, the story changes a bit. When the mouse
is moved or one of its buttons is clicked, Windows detects that a hardware interrupt has occurred.
In order to handle this interrupt, it will switch out of protected mode and run the real mode code
in MOUSE.COM that handles the mouse's IRQ line. This DOS driver determines what happened
to the mouse and checks to see if the event handler needs to be called. If it does, then a call is
made to the address of the event handler. This address is expected to be a real mode

Elographics Inc. Touchscreen/Mouse Drivers
 5
__

segment:offset pair, not a protected mode selector:offset. To make this work, the Windows driver
must have allocated what is called a real-mode-call-back address. A real-mode-call-back address
is one that can be used by a program running in real mode, but that points to a function that will
execute in protected mode and that can be anywhere in the processor's address space (even its
virtual address space). What the real-mode-call-back address will point to is a DPMI function
that resides in real mode memory and that will switch to protected mode, copy the real mode
program's registers, stack, and return address into protected mode memory, and then call the
protected mode function associated with that call back address. The protected mode function
does what it needs to do and then adjusts a copy of the DOS program's registers and stack (it
doesn't have to be the same copy as the one passed to it by the DPMI), and then returns to the
DPMI function via an IRET. The DPMI function then copies the changed register values back
into the real mode program's registers and returns control to it.

1.8 This is precisely what MONMOUSE.DRV does with its event handler. It registers it with the
DPMI as a real-mode-call-back procedure, and then passes the address given it by the DPMI to
MOUSE.COM. When the event handler is called by MOUSE.COM it informs Windows as to the
mouse's behavior and then makes a return call to MOUSE.COM to clear the motion count
registers. This introduces a complication. Since the event handler is operating in protected mode,
it needs to use the DPMI to make the call to the DOS mouse driver and the DPMI cannot handle
this kind of reentrancy (specifically, it cannot handle an INT 31h DPMI call from within a real-
mode-call-back routine). Fortunately, there is an alternative. The Windows DPMI has support for
not only DOS INT 21h calls, but also for some INT 33h mouse calls. This particular call is one
of those that are supported so it can be called directly. Once the event handler does this, it returns
to MOUSE.COM via the DPMI.

1.9 As was mentioned earlier, when Real mode or Standard mode Windows starts a DOS session,
they allow any Windows driver in the system to save the state of its device and shut down first.
When the DOS session is either suspended or closed, Windows will again call the driver; this
time to restart operation and restore the discontinued state. For the mouse driver, this means
saving its current position, shape, and button state and then calling the hardware reset function. If
MONMOUSE.COM was loaded when Windows started, then MONMOUSE.DRV makes a call
to MONMOUSE.COM's function 00ffh. When the DOS session terminates, a call is made to its
function 01ffh (calls to functions 00feh and 01feh are made when the INT33h initialization and
termination code is called as well, but this only happens when Windows proper is loaded and
terminated, and only in Real and Standard modes - enhanced mode is a whole different matter as
we'll see in a moment).

1.10 The one thing to keep in mind throughout the operation of Windows in Real and Standard
modes, is that there is a distinct separation between the operation of a DOS session and the
operation of Windows. When a DOS session executes, Windows shuts down almost completely
(it only monitors the keyboard for system hotkeys). When the user returns to Windows from a
DOS session via hotkey, the DOS session is completely shut down - no background processing
goes on and no operation in a window is allowed. For this reason, there are no contentions for

Elographics Inc. Touchscreen/Mouse Drivers
 6
__

resources between DOS sessions, or between DOS and Windows, in either Real or Standard
modes.

2.0
2.1 In Enhanced mode, all this changes. Not only can DOS sessions run concurrently with each other

and Windows, but they can be run in a window too. Since DOS programs are selfish, unruly
beasts by nature, the potential for disaster is considerable. Windows must be very careful in how
it lets each DOS session access system resources.

2.2 DOS sessions are run in the special virtual 8086 mode of the 80386 chip. Each DOS session
is given its own virtual address space and virtual system hardware. It is up to the Enhanced mode
device drivers (VxDs) to make sure that virtualization of the hardware and instancing of data
structures and any DOS mode TSRs is done correctly. Each hardware device in the system is
handled by a separate VxD (in this notation, the x gets replaced by a letter representing a
particular device; e.g., VMD=Virtual Mouse Device, VPICD=Virtual PIC Device where
PIC=Priority Interrupt Controller). In the case of most VxDs, this meant they had to virtualize
whatever hardware interrupt their device was attached to and to serialize any requests to that
device on a per-task (Virtual Machine or VM) basis. One of the things unique to the VMD is that
it has to be aware of the MOUSE.COM program. MOUSE.COM is a special problem because it
makes changes in the state of the system mouse and isn't aware of Windows. Since there is only
one mouse per computer, and since each DOS mode program, as well as Windows itself, can use
the mouse in a different mode, changing its shape, on/off status, and position, a single copy of
MOUSE.COM that is shared among all concurrently running DOS programs would be
disastrous. MONMOUSE.DRV only adds to the complexity of this situation because it makes
Windows rely on MOUSE.COM too. The original Windows VMD solved this problem by
making a separate copy of MOUSE.COM for each virtual machine (VM) in the system
(ordinarily, each new VM's low memory is mapped into its address space from the original DOS
pool - a VxD must specifically ask Windows to copy regions of memory rather than map them).
This solution can be extended to the case of MONMOUSE.DRV because Windows itself is run
in a VM and so it will get its own copy of MOUSE.COM in its VM.

2.3 The way that the VMD finds MOUSE.COM in order to instance it, is to look at the address
stored in the interrupt vector table that corresponds to the mouse driver (INT 33h). If that vector
is blank (zeroed out) or points to a single IRET instruction, then it is assumed that
MOUSE.COM is not present. If, however, it is found that the INT 33h vector does point to a
program, then the segment portion of that vector is used to locate the memory block in which the
mouse driver resides. The memory control block (Microsoft uses the term "arena" for this) for
that chunk of memory is then inspected for validity and for the size of the block it controls. The
segment address of the block and its size are then used to copy it into each new VM.

2.4 There are two big assumptions being made by the VMD here. The first is that the DOS
mouse driver is a .COM program. The second is that there is only one program chained into the
INT 33h vector. If either of these two assumptions are wrong, the VMD will not work correctly

Elographics Inc. Touchscreen/Mouse Drivers
 7
__

and will probably crash the system. The first assumption means that the segment pointed to by
the INT 33h vector is the first and only segment owned by that program, and that its first 100h
bytes contain the program's PSP. If this is the case, then the VMD merely has to decrement the
segment value by one to find that memory block's control header. If, on the other hand, the file is
an .EXE type file, then it is possible that the routine pointed to by the vector is in one of many
segments - all within the same memory block, and no guarantee as to which is the first segment
in memory. Even if the entry point was in the first segment of that program, it won't be the first
one in the memory block. Unlike a .COM program, an .EXE program does not have its PSP
stored in a code segment. It is in its own segment, and that segment is the first one in the
memory block. This means that if the code pointed to by the INT 33h vector is the first or only
segment in a that program, then one must decrement that segment's value by 11h instead of 1h in
order to find the control header.

2.5 If MONMOUSE.COM is loaded in memory, the first assumption is invalid. Since
MONMOUSE.COM takes over the INT 33h vector, the VMD instances it but not
MOUSE.COM. This means that if multiple VM's are using the mouse, MOUSE.COM's capacity
to handle input from a single source will be exceeded. In the case that the MONMOUSE.DRV
driver for Windows is being used and Windows is running in Enhanced mode, one mouse-using
VM is always running. That VM is the one that Windows runs in. If a DOS session is then
started, another VM is created. If a program in that new VM tries to access MOUSE.COM,
trouble starts.

2.6 What this means is that the VMD must be rewritten to check for the existence of
MONMOUSE.COM. If it finds it in memory, then MONMOUSE.COM must be queried for
MOUSE.COM's address in memory. Once the this is known, MOUSE.COM can also be
instanced along with MONMOUSE.COM. There is a third part to this though.
MONMOUSE.COM gets its input from ELODEV.EXE and for the same reasons that
MOUSE.COM and MONMOUSE.COM needed to be instanced, so too does ELODEV.EXE.
This brings up assumption number two: the DOS touchscreen driver is an .EXE file. This means
that we need to take extra care in finding its memory block's control header. Fortunately,
ELODEV's entry point is in the physically first segment of the program. ELODEV's PSP
occupies the immediately preceding 256 bytes, and the program's memory control block is the
paragraph right before that. The new VMD (let's call it the VMMD from now on, MM=Monitor
Mouse) must also instance ELODEV.EXE for each new VM created.

2.7 Instancing data is only half of the story for VxDs. The other half is virtualizing any hardware
that it controls. Hardware is virtualized so that each VM will think it has that hardware to itself
exclusively. It also is a way of telling Windows which VM is to handle and IRQ event (otherwise
it will broadcast the event to all VMs). This has the effect of queueing events for the separate
VM's as they occur. When the VxD is notified of an event, it can then decide to which VM's
queue to add it. Typically, the VM that currently has the focus will be given the event. However,
if the focus changes from one VM to another while a critical event is in process, it may be
necessary to continue passing events to the old VM until the critical event is over. This is

Elographics Inc. Touchscreen/Mouse Drivers
 8
__

especially important where the PIC and asynchronous hardware interrupts are concerned. All
mouse and touchscreen events are asynchronous hardware interrupts so this concerns us. The
VMD takes care of this problem for mouse events. Fortunately, touchscreen controllers work
very much like mouse controllers (take this last statement from the programmer's point of view,
not the engineer's please) so we can just duplicate much of the code that already exists for mouse
events, being careful to check for the existence ELODEV.EXE and MONMOUSE.COM in
memory.

2.8 A momentary digression is necessary in order to explain how VxDs work before trying to
explain how the VMMD does what it needs to do. If Windows is not being run in enhanced
mode, it never even bothers with things like VxDs. As a matter of fact, the program WIN.COM
that one invokes to start Windows is just a shell that checks to see what kind of processor is
present and how much memory a computer has. It checks the command line to see if the user
specified a particular mode of Windows to operate in, and then it loads and executes one of three
different kernels. So Real mode Windows, Standard mode Windows and Enhanced mode
Windows are three distinct programs and only the 386 version of Windows loads any VxDs. The
file in the Windows system directory called WIN386.EXE contains a number of default VxDs.
When Windows starts up in Enhanced mode, the SYSTEM.INI file gets read in and any drivers
specified in the [386Enh] section of this file are loaded. Those drivers that start with an asterisk
are internal to the WIN386.EXE file. For example, when you first run setup, it determines what
type of mouse is attached to the computer. If it finds a Microsoft or IBM mouse of any type, it
adds the following entry to the SYSTEM.INI file in the [386Enh] section:

This tells Enhanced mode Windows to associate the internal VMD with the mouse device. If the
asterisk had not preceded the driver name, then Windows would have looked for a driver named
VMD (no extension) in its system directory.

2.9 Enhanced mode Windows loads all VxDs into memory before it executes code or uses data in
any of them. Each VxD can have code in any one of three different segments. The code in each
one of those segments has its data in a separate, associated, data segment. When a VxD is loaded,
its code is combined with other VxD code in the appropriate segments and its data are combined
in a like manner. This is done so that all initialization code and data can be thrown away once the
initialization phase is over. Initialization occurs in four separate phases:

2.10 The first is the real mode initialization. Each driver can have an optional initialization
routine that runs in real mode. This code has easy access to all DOS services (except program
termination - that one is a no-no) and DOS memory. It can check for the existence of TSR's that
need to be instanced. This is its primary function. Information that it can pass on to any protected
mode code is minimal. It is allowed to pass a pointer to a structure that contains addresses and
sizes of memory blocks to be instanced, and it can pass a 32-bit value to protected mode
initialization code via the EDX register. Once all VxDs have executed their real mode
initialization code, that whole segment and the real mode initialization data segment are tossed
out of memory and Windows begins execution in 32-bit protected mode.

Elographics Inc. Touchscreen/Mouse Drivers
 9
__

Note that all VxDs operate in 32-bit protected mode with a privilege level of 0 at
all times while the rest of Windows runs in 16-bit protected mode, and all DOS
VM's operate in virtual 8086 mode. This means that all drivers have access to 4
gigabytes of data, code and stack space (virtual memory not included). Since
Windows 3.0 operates with only one GDT, which doubles for the only LDT as
well, and since all drivers are loaded in a single segment with a base address of
0000h and a size limit of 0ffffffffh (4 gigabytes), any part of physical memory can
be addressed (ES, and DS hold the same selector, and CS is just an alias for that
same segment - for Windows 3.0, the selector for DS/ES is 0030h, and for CS is
0028h)

2.11 Next comes the protected mode initialization. It occurs in three phases. The first is called
the critical initialization phase. The VxD’s critical initialization procedure is called with all
hardware interrupts turned off. For this reason, it should only do what is necessary for the other
initialization code to operate reliably. After each VxD has a chance to execute its critical
initialization code, the next phase of initialization starts.

2.12 The main protected mode initialization phase is where most of the work is done. The
VMMD determines what kind of mouse and touchscreen controllers are attached to the system,
whether ELODEV and MOUSE.COM are loaded in memory, and what resources must be
virtualized. All virtualization takes place here and any VM specific data structures are initialized
here. When this is done, the final phase of initialization begins. This is called the "initialization
complete" phase. It is mostly a cleanup process but here is where the VMMD instances
MOUSE.COM, MONMOUSE.COM and ELODEV.EXE if they are in memory.

2.13 After all of the VxDs have been initialized and all the initialization code and data have been
removed from memory, the hardware device drivers (like MONMOUSE.DRV) are loaded and
initialized. These drivers must be able to run in real mode as well as protected mode as they will
be used by Windows no matter what mode it runs in. Once this phase is finished, Windows
creates a VM for itself, and starts up the system shell (default is the program manager). Any non-
Windows application is given its own VM in which to run.

3.0
3.1 To give you a more concrete idea of what the above means, I'll make a chronological list of what

parts of the VMMD (same for the VMD) are loaded, the functions within that segment that
execute, and just what they do.

3.1.0 VxD_REAL_INIT_SEG

3.1.1 Int33_Real_Init:
This is the real mode initialization procedure. It runs in a 16-bit real mode
segment but can use the 32-bit GP registers since it is guaranteed to be executed

Elographics Inc. Touchscreen/Mouse Drivers
 10
__

on a 386 or better processor. Here is where the VMMD figures out what IRQ
ELODEV is using and whether it is a serial or bus controller. It does the same for
the system mouse. If MOUSE.COM is not in memory, the this code returns
immediately with a double word of zero in EDX. If it is found, then the mouse
type is placed in DX and the upper word of EDX is set to 0ffffh. If MOUSE.COM
is not version 6.0 or better, then zero is placed in DX. Next, this procedure
attempts to find ELODEV. If it is not found, the high word of EDX is left as is. If
it is found, then the high word of EDX is set as follows: The high byte will
contain 0 if a bus touchscreen controller is attached, and 0ffh if a serial controller
is present. The low byte will contain the IRQ in use by the touchscreen.

Note: Ideally, this is where the VMMD should figure out which
programs needing instancing are present in memory. Since the
original VMD does this in the initialization complete phase, we do
it there too. It is harder to do there when MONMOUSE.COM is
present because no INT 33h calls can be made or emulated by the
DPMI in that section of code.

Returns:
if MOUSE.COM not present:

0
if present:

=

if ELODEV not present:

0ffffh

if present:

HIBYTE =

0 if bus controller

0ffh if serial controller

LOBYTE =

IRQ number in use by controller

if MOUSE.COM earlier than 6.00:

Elographics Inc. Touchscreen/Mouse Drivers
 11
__

0

else

DH = mouse type

0 = unknown

1 = bus mouse

2 = serial mouse

3 = InPort mouse

4 = PS/2 mouse

5 = HP mouse

DL = IRQ used

0 = PS/2 mouse

2-5,7 other types of mouse

3.1.2 Int33_Real_Init Code:
BeginProc Int33_Real_Init

; If another mouse driver is loaded then don't load -- Just abort our load
;

bx, Duplicate_From_INT2F OR Duplicate_Device_ID

Int33_RI_Abort_Load

es

ax, 3533h
; Get interrupt vector for

21h
; int 33h through DOS

Elographics Inc. Touchscreen/Mouse Drivers
 12
__

edx, edx

dx, es

dx, bx
; Q: Point to 0:0?

SHORT Int33_RI_Done
; Y: No Int 33h driver

BYTE PTR es:[bx], 0CFh
; Q: Point to an IRET?

SHORT Int33_RI_Get_Type

edx, edx

SHORT Int33_RI_Done
;
; Now get the mouse type
;
Int33_RI_Get_Type:

edx, -1
; edx never 0 if mouse present

ax, 24h
; Mouse get type call

cx, cx
; Zero in case call fails

33h
; Do it

dx, cx
; Pass this info to prot mode

;***

; if Elodev present, use high word of edx to pass data to protected mode
; init so we can virtualize Elodev's resources. (IRQ or comm port)
;

Elographics Inc. Touchscreen/Mouse Drivers
 13
__

ifdef MONMOUSE

ax,65h

bx,bx
;monmouse here?

33h

bx,65h

short RMI_gotmonmouse

RMI_FindElodev

short RMI_mm_exit

short RMI_1
;otherwise Elodev int# returned in dl
RMI_gotmonmouse:

ax,65h

bx,3

33h
RMI_1:

byte ptr [RMI_intcall+1],dl ;elodev int# returned in dl

ax,ax

bx,offset RMI_InfoDataStruc

bx
;Elodev trashes bx on each call

short RMI_intcall
RMI_intcall:

65h
;This only works because we're in real

Elographics Inc. Touchscreen/Mouse Drivers
 14
__

bx
; mode. Don't try this at home kids.

ax,[bx.intrpt]

bx,[bx.comport]

bx,bx

short RMI_2
;if negative, then no comm port

short RMI_2
;if zero, then no comm port

ah,-1
;-1 means serial card
RMI_2:

[RMI_ED_IRQ],ax
RMI_mm_exit:

[RMI_ED_IRQ],0

short RMI_noIRQ

edx,10h
;otherwise put info in high word

dx,[RMI_ED_IRQ]
; for use by Int33_Init procedure

edx,10h
RMI_noIRQ:
endif
;***

Int33_RI_Done:

bx, bx

Elographics Inc. Touchscreen/Mouse Drivers
 15
__

si, si

ax, Device_Load_Ok

es

;
; Another mouse driver exists. Don't load
;
Int33_RI_Abort_Load:

bx, bx

si, si

ax, Abort_Device_Load + No_Fail_Message

es

EndProc Int33_Real_Init

3.2.0 VxD_ICODE_SEG
3.2.1 Int33_Critical_Init:

Here we allocate a real mode call back for the mouse driver. This is necessary for
some of the mouse calls that need to be supported in each DOS VM.

3.2.2 Int33_Critical_Init Code:
BeginProc Int33_Critical_Init, PUBLIC

esi, OFFSET32 Int33_Pmode_Mapper

edx, edx
; no reference data

ecx, eax

ecx, 10h
; CX = CS to set into vector

edx, eax

Elographics Inc. Touchscreen/Mouse Drivers
 16
__

edx, dx
; EDX=EIP to set into vector

eax, 33h
; interrupt number

Set_PM_Int_Vector
EndProc Int33_Critical_Init

3.2.3 Int33_Init:
A check is made in the [386Enh] section of the SYSTEM.INI file for the presence
of the MouseSoftInit string. If it is set to true and the mouse is not a serial type,
then all hardware mouse resets are reflected to mouse function 21h (software
reset). Next, the EDX register is checked (it contains the data passed back to
Windows in EDX in the real initialization phase) and the IRQ's for both the mouse
and touchscreen are virtualized if their respective TSR's are present by calling the
VMD_Set_Mouse_Type function.

3.2.4 Int33_Int Code:
BeginProc Int33_Init, PUBLIC
;
;high word of edx will contain Elodev info if any (-1 if not)

[Mouse_TS_Info],edx

edx, edx
; Q: Any int 33 at all?

SHORT I33_I_Alloc_Data_Area

I33_Exists:

[I33_Installed], True
; Remember we're here

;**********

Elographics Inc. Touchscreen/Mouse Drivers
 17
__

eax,TRUE

edi,OFFSET32 I33_Wait_For_Untouch

esi,esi

Get_Profile_Boolean

al,al

short I33_nowait

[WaitForUntouch],TRUE
I33_nowait:

dh, VMD_Type_Serial
; Q: Is the mouse type serial?

SHORT I33_No_Fake_Init
; N: Don't do this hack
;**********
; Y: Only allow soft inits

eax, TRUE

edi, OFFSET32 I33_Soft_Init_INI

esi, esi
; [386enh] section

al, al
; Q: user want conversion?

short dont_convert_inits

al, 33
; Y: convert call 0's to 33's
dont_convert_inits:

[I33_init_func], al

Elographics Inc. Touchscreen/Mouse Drivers
 18
__

I33_No_Fake_Init:

dh, VMD_Type_Undefined
; Q: Did we get mouse type?

SHORT I33_I_Alloc_Data_Area

dl, dl
; Q: Is it on a valid IRQ

SHORT I33_I_Alloc_Data_Area

eax, dl
; EAX = IRQ number

ecx, dh
; ECX = Mouse type
;***

ifdef MONMOUSE
;The extra info in edx is due to modifications for touchscreen support
;

edx,10h
;test for serial controller

edx,-1
;hi(edx)=-1 if no Elodev

short I33I_GotElodev

edx,edx
;pass 0 in edx if no Elodev
I33I_GotElodev:
;EDX = Elodev info
endif
;***

Elographics Inc. Touchscreen/Mouse Drivers
 19
__

; Tell the mouse driver
I33_I_Alloc_Data_Area:

eax, eax

SHORT I33_Init_Fatal_Error

[Int33_CB_Offset], eax

;***

ifdef WINDOW_STATE

eax,VDD_Set_VMType

esi,OFFSET32 VTSD_Set_VMType

Hook_Device_Service

short
;Huh? It didn't work!

[VDD_VMType_Proc],esi
I33_I_not_hooked:
endif
;***

eax, 33h

esi, OFFSET32 Int33_Soft_Int

esi, OFFSET32 I33_V86_Call_Back

edx, edx

Allocate_V86_Call_Back

[I33_V86_BP_Offset], ax

Elographics Inc. Touchscreen/Mouse Drivers
 20
__

; save offset and...

eax, 16

[I33_V86_BP_Seg], ax
; ...real-mode segment

I33_Init_Fatal_Error:

EndProc Int33_Init

3.2.5 VMD_Set_Mouse_Type:
This procedure does all the virtualizing of the mouse and touchscreen hardware.
Devices attached to a serial port do this by calling the VCD (Virtual Comm
Device) and asking it to globalize that comm port. Devices not attached to a
comm port, (or serial devices if the VCD has not been initialized yet) request to
virtualize their IRQ via the VPICD. In the latter case, the VPICD returns a handle
for that particular IRQ. This handle will be used when the focus changes from one
VM to another.

3.2.6 VMD_Set_Mouse_Type Code:
BeginDoc
;***

; VMD_Set_Mouse_Type
; DESCRIPTION:
; ENTRY:
;
;
;
;
;
;
;
DL = IRQ number
;
If DH = -1 then
;
serial controller

Elographics Inc. Touchscreen/Mouse Drivers
 21
__

;
else (if zero)
;
bus controller
; EXIT:
;
;
;
;
;
;
 00 = Mouse already virtualized
;
 01 = Could not virtualize interrupt
; USES:
;
;
; Called from Int33_Init and also from VMD_API_Proc (called from mouse
; driver via API service function 100h.) This should only execute on
; the first of these calls. Int33_Init will not be called if there is
; no int33h mouse driver in the system.
;==
================
EndDoc

BeginProc VMD_Set_Mouse_Type, Service

[VMD_IRQ_Number], -1

VMD_SMT_2nd_Init

[VMD_Mouse_Type], cl
;==
================
ifdef MONMOUSE

edx,[Mouse_TS_Info]

eax,dl

Elographics Inc. Touchscreen/Mouse Drivers
 22
__

ecx,dh

edx,10h

edx,-1

short VMD_SMT_noElodev

edx,edx
VMD_SMT_noElodev:

edx,edx

short VMD_ts_done
;no DOS mouse driver

eax,dl
;eax = IRQ line

dh,dh
;bus or serial touchscreen controller?

short bus_controller
;if dh=0 then bus controller

[VTSD_IRQ_Number],al

eax

VCD_Get_Version

eax,eax

eax

short bus_controller
serial_controller:

al,5
;convert IRQ# to com port number

Elographics Inc. Touchscreen/Mouse Drivers
 23
__

al
;IRQ4->COM1, IRQ3->COM2

[VTSD_COM_Port],al

eax,al

edx,edx

VCD_Set_Port_Global

short VMD_ts_done

bus_controller:

al,2
;map IRQ2 to IRQ9

short VMD_SMT_1

al,9
VMD_SMT_1:
;
[VMD_Mouse_Type],VMD_Type_PS2
;
short VMD_ts_done

[VTSD_IRQ_Number],al

edi,[VTSD_IRQ_Number]

[VTSD_IRQ_Desc.VID_IRQ_Number],di

edi,offset32 VTSD_IRQ_Desc

VPICD_Virtualize_IRQ

VMD_SMT_Cant_Virt_Int

Elographics Inc. Touchscreen/Mouse Drivers
 24
__

[VTSD_IRQ_Handle],eax

[VTSD_Virt_IRQ],True
VMD_ts_done:

endif

;==
================

eax, eax

SHORT VMD_SMT_Have_IRQ

eax

short VMD_SMT_Cant_Virt_Int
VMD_SMT_Have_IRQ:

al, 2

SHORT VMD_SMT_Valid_IRQ

al, 9
VMD_SMT_Valid_IRQ:

[VMD_IRQ_Number], al

[VMD_Mouse_Type], VMD_Type_PS2

SHORT VMD_SMT_Success

[VMD_Mouse_Type], VMD_Type_Serial

SHORT VMD_SMT_Virt_IRQ

eax

Elographics Inc. Touchscreen/Mouse Drivers
 25
__

eax, eax

eax

SHORT VMD_SMT_Virt_IRQ
;
; Note: This code assumes that COM1 is on IRQ4 and COM2 is on IRQ3.
; It is not possible to have a serial mouse on COM3 or COM4 with this
; code.
;

al, 5
; AL = -1 or -2

al

[VMD_COM_Port], al

eax, al
; EAX = # of COM mouse is on

edx, edx
; Port is globally owned

SHORT VMD_SMT_Success

VMD_SMT_Virt_IRQ:

edi, [VMD_IRQ_Number]

[VMD_IRQ_Desc.VID_IRQ_Number], di

edi, OFFSET32 VMD_IRQ_Desc

SHORT VMD_SMT_Cant_Virt_Int

[VMD_IRQ_Handle], eax

[VMD_Virt_IRQ], True

Elographics Inc. Touchscreen/Mouse Drivers
 26
__

VMD_SMT_Success:

;
; Could not virtualize interrupt. Return error.
;
VMD_SMT_Cant_Virt_Int:

[VMD_IRQ_Number], -1

eax, eax

eax

;
; Mouse already virtualized.
;
VMD_SMT_2nd_Init:

eax, eax

EndProc VMD_Set_Mouse_Type

3.2.7 Get_Mouse_Instance:
This procedure executes in the final phase of initialization. Its primary function is
to instance any related DOS device drivers that it can find. In this particular case
we are concerned with MOUSE.COM, MONMOUSE.COM and ELODEV.EXE.
We search first for MOUSE.COM. If we find a program pointed to by the INT
33h interrupt vector, then we get it's size and location and instance it. In the case
that the program that was just instanced happens to be MONMOUSE.COM and
not MOUSE.COM, we check for a signature at an offset of 18h bytes past the INT
33h entry point. If it matches the string "MONMOUSE" (this is assembly
language folks, no null terminator is implied by the double quotes), then the
immediately following words contain MOUSE.COM's segment in memory and
the address of ELODEV's PSP. If present, these values are used to instance both
MOUSE.COM and ELODEV.EXE. If they are not present, that means that we

Elographics Inc. Touchscreen/Mouse Drivers
 27
__

now have MOUSE.COM present and that we do not have MONMOUSE.COM.
We know nothing about ELODEV yet. In the latter case, we must grovel around
in the interrupt table and DOS memory to find ELODEV. If we find it, then it is
instanced, if not, we quit.

3.2.8 Get_Mouse_Instance Code:
BeginDoc
;***

; Get_Mouse_Instance
;
;
;
;
;
;
;
;
;
(Device call-out API)
;
(VMD_Device_ID)
;
;
; ASSUMES:
;
;
;
;
; ENTRY:
; EXIT:
;
;
; USED: All but EBP
;--
BeginProc Get_Mouse_Instance, PUBLIC

[I33_Installed], True

GMI_Done

Elographics Inc. Touchscreen/Mouse Drivers
 28
__

[ebp.Client_AX], (W386_Int_Multiplex SHL 8) + W386_Device_Broadcast

[ebp.Client_BX], VMD_Device_ID

[ebp.Client_CX], VMD_CO_API_Test_Inst

eax, W386_API_Int
; Int 2Fh

; Ask Mr. VM for info

eax, [ebp.Client_CX]
; Non-zero means instanced

eax, eax

GMI_Done

edi, word ptr ds:[33h*4+2]

eax,edi
; Save in eax

edi
; arena seg

edi,4
; edi points to `driver'

Elographics Inc. Touchscreen/Mouse Drivers
 29
__

[edi].arena_signature, 4dh

GMI_no_TSR_mouse
; N: not TSR mouse

[edi].arena_owner, ax
; Q: correct owner?

GMI_no_TSR_mouse
; N: not TSR mouse

ecx, [edi].arena_size
; get program size

ecx, 4
; size in bytes

edi,10h
; Point back to driver

esi,offset32 TSR_Mouse1_Inst

[esi.InstLinAddr],edi
; Address of item

[esi.InstSize],ecx
; instance whole program

[esi.InstType],ALWAYS_Field

Elographics Inc. Touchscreen/Mouse Drivers
 30
__

eax,eax

GMI_MemErr
;==
================
ifdef MONMOUSE
;If monmouse.com was loaded along with mouse.com, then monmouse.com has been
;instanced instead of mouse.com. We must now instance monmouse.com as well as
;elodev.exe if it is present.
;
;get mouse.com address from monmouse if it's loaded.
;

ebx

ebx,(4*33h)
;get monmouse address (if it's there)

esi,word ptr[ebx+2]

esi,4

eax,word ptr[ebx]

esi,eax

esi,18h
;MonMouse signature from entry point

edi,offset32 MM_ID_Str

ecx,LENGTHMMIDSTR

cmpsb

short NoMonMouse

ebx,eax
;bx=mouse seg, hi(ebx)=elodev psp

;al=elodev int #

Elographics Inc. Touchscreen/Mouse Drivers
 31
__

[ElodevInt],al

eax,bx

edi,eax

edi
;point to arena now

edi,4
;make 32-bit offset

[edi].arena_signature, 4dh

GMI_no_TSR_mouse

; (should never happen here)

[edi].arena_owner, ax

GMI_no_TSR_mouse

ecx, [edi].arena_size

ecx, 4
; convert to size in bytes

edi,10h
; Point back to driver

esi,offset32 TSR_Mouse2_Inst

[esi.InstLinAddr],edi

[esi.InstSize],ecx

[esi.InstType],ALWAYS_Field

ebx,10h

Elographics Inc. Touchscreen/Mouse Drivers
 32
__

;psp is in high word

edi,ebx
;save elodev psp

ebx

_AddInstanceItem,<esi,0>

eax,eax

GMI_MemErr

short mm_has_elodev
NoMonMouse:

ebx
;1st jumped around if no monmouse
; Get elodev address from monmouse.com or memory if mm not loaded
;

[ElodevInt],0

short SkipSearch
; Go grovel around in real mode memory for Elodev vector

FindElodev
;returns with carry set if not found

short NoElodev
;jump around this whole mess if

; we don't find Elodev

[ElodevInt],al
SkipSearch:
;
; We should problably use Elodev's getinfo call to determine it's PSP but...
; What we will hope is that Elodev's PSP is immediately before its code seg
; in memory, and that its memory block arena header is immediately before
; that. Maybe later we will play around with allocating real mode memory
; to pass to Elodev for a getinfo call.

Elographics Inc. Touchscreen/Mouse Drivers
 33
__

;

edi,[ElodevInt]

edi,2

edi,2

edi,word ptr [edi]

edi,10h
;subtract size of the PSP
mm_has_elodev:

eax,edi

edi
;point to arena header

edi,4

[edi].arena_signature,4dh

short NoElodev
; N: not TSR

[edi].arena_owner, ax
; Q: correct owner?

short NoElodev
; N: not TSR mouse

ecx, [edi].arena_size
; get program size

ecx, 4
; size in bytes

Elographics Inc. Touchscreen/Mouse Drivers
 34
__

edi,10h
; Point back to driver

esi,offset32 TSR_Mouse3_Inst

[esi.InstLinAddr],edi

[esi.InstSize],ecx

[esi.InstType],ALWAYS_Field

_AddInstanceItem,<esi,0>

eax,eax

short GMI_MemErr
NoElodev:
endif
;==
================

GMI_Done:

GMI_no_TSR_mouse:

esi,offset32 MS_Driver_Name

IFDEF DEBUG

short GMI10

GMI10:
ENDIF

short GMI_Done

GMI_MemErr:
debug_out "Get_Mouse_Inst Error insuf mem"
VMMCall Fatal_Memory_Error

EndProc Get_Mouse_Instance

Elographics Inc. Touchscreen/Mouse Drivers
 35
__

3.3.0 MOUSE_TEXT
3.3.1 Initialize:

We are now executing code from MONMOUSE.DRV. This is its initialization
phase. In the case of Enhanced mode Windows, this procedure is executed in a
16-bit protected mode segment (this is also true for Standard mode too but for
now we're talking about VMMD's initialization). In a typically redundant
Windows fashion, the mouse driver is checked for again. If a DOS mouse driver is
present, a real mode call back is allocated via the DPMI. The returned address is
passed to the DOS mouse driver as an event handler. If there is no DOS mouse
driver in memory, a systematic check for a mouse is made. If a mouse is found,
then the appropriate driver is copied into a Windows locked segment (one that is
never swapped out of memory nor moved) and a pointer is returned to its enable
and disable procedures. (The same is true in the case of the INT 33h DOS mode
driver). Finally, after the appropriate driver is set up for use, a check is made to
see if the VMD (VMMD in our case) has registered any API procedures. If so, it
makes a call to the mouse API function 100h, passing it the mouse type and IRQ.

3.3.2 Initialize Code:
cProc
cBegin
;---;
;
;
;
;---;

bx,bx
;Current DOS mouse drivers implement

ax,INT33H_GETINFO

MOUSE_SYS_VEC

bh,6
;Major version in bh, started @ 6.??

try_mouse_reset

short sys_mouse_present

try_mouse_reset:

Elographics Inc. Touchscreen/Mouse Drivers
 36
__

ax,ax
;Check for DOS mouse driver

INT33H_RESET

MOUSE_SYS_VEC

ax,ax
;Zero if no mouse installed

check_inport

sys_mouse_present:

mouse_flags,MF_INT33H

[mouse_type],ch

check_I33:

I33_init
;Use the installed mouse driver

short got_mouse

check_inport:

inport_search
;Try to find InPort mouse

check_bus
;InPort mouse wasn't found

check_ps2
;Was found, didn't respond

mouse_type, MT_INPORT
;InPort mouse

short got_mouse
;Was found, responded

check_bus:

Elographics Inc. Touchscreen/Mouse Drivers
 37
__

mouse_type, MT_BUS

bus_search
;Next up, the old bus mouse

got_mouse

check_ps2:

mouse_type, MT_PS2

ps2_search
;PS/2 mouse port?

got_mouse

check_serial:

mouse_type, MT_SERIAL
;Assume serial mouse

serial_search

got_mouse

mouse_type, MT_NO_MOUSE

si,DataOFFSET device_int

short resize_ds

got_mouse:

;
;
;
;

ax

bx

Elographics Inc. Touchscreen/Mouse Drivers
 38
__

di

es

di, di

es, di

ax, 1684h
;Get device API entry point

bx, VMD_DEVICE_ID

2Fh

ax, es

ax, di
;Q: Does VMD have API entry point?

copy_mouse_routines

cs
;Return to here after call to Win386

bx, offset vmd_call_done;virtual mouse driver

bx

es
;Call this SEG:OFF by doing a far

di
;return

ax, 100h
;Set mouse type & int VECTOR API call

bl, mouse_type

Elographics Inc. Touchscreen/Mouse Drivers
 39
__

bh, vector
;
; Hard code this for now. In the future, dx needs to hold Elodev info but
; this must be gotten outside of Int33h routines and VMD needs to Instance
; Elodev outside of Int33 (In case there is no MOUSE.COM driver)
;
;
dx,[ElodevInfo]
;

dx,dx

BogusFarRetProc PROC FAR

;"Return" to VMD's API entry point
BogusFarRetProc ENDP

vmd_call_done:
copy_mouse_routines:

es

di

bx

ax
no_vmd:

mouse_flags,MF_MOUSE_EXISTS

di,DataOFFSET device_int

;
;
;
;
;
;
;

ds

Elographics Inc. Touchscreen/Mouse Drivers
 40
__

;Destination is in Data

es

cs
;Source is in Code

ds

movsb

es

ds

si

di

ds

AllocDStoCSAlias,<ds>

IntCS,ax

ds

di

si

resize_ds:

si

;
;

Elographics Inc. Touchscreen/Mouse Drivers
 41
__

;

ax,1
;Successful initialization
cEnd

3.4.0 VxD_CODE_SEG
3.4.1 VMD_API_Proc:

This procedure is the API entry point for the mouse device. It has only two
functions. The first, function 0, merely returns a non-zero version number in the
client's AX register. The second is function 100h. It serves to register the system's
mouse type and IRQ with the VMD. It does this by calling
VMD_Set_Mouse_Type. This will only have an effect on the system if
MOUSE.COM is not resident in memory since VMD_Set_Mouse_Type will have
already been called during the VMMD initialization phase.

3.4.2 VMD_API_Proc Code:
BeginProc VMD_API_Proc

[ebp.Client_AX], 0

SHORT VMD_API_Test_Set

[ebp.Client_AX], 300h
VMD_API_Worked:

[ebp.Client_Flags], NOT CF_Mask

VMD_API_Test_Set:

[ebp.Client_AX], 100h

SHORT VMD_API_Invalid

eax, [ebp.Client_BH]

eax

ecx, [ebp.Client_BL]

Elographics Inc. Touchscreen/Mouse Drivers
 42
__

;***

ifdef MONMOUSE
;
;

edx,[ebp.Client_DX]
endif
;***

SHORT VMD_API_Worked

VMD_API_Invalid:

[ebp.Client_Flags], CF_Mask

EndProc VMD_API_Proc

3.4.3 VMD_Set_Focus:
VMD_Set_Focus gets called whenever focus is switched from one VM to another.
In the case of a global or mouse specific set_focus call, the appropriate action is
taken to insure system resources are in order before the focus is allowed to
change. This mostly consists of completing any ongoing IRQ handling, and
changing the VM handle to reflect the new VM. If “WaitForUntouch” was set to
TRUE in the [386Enh] section of the SYSTEM.INI file, then a VMM call is made
to mimic a real mode interrupt to MONMOUSE.COM. This will cause the system
to wait until untouch occurs before completing the focus switch. What this does is
to prevent touch events from bleeding through to the new VM. This is useful if
the user is swapping to and from fullscreen DOS VMs from Windows.
“WaitForUntouch” should be set to FALSE or omitted from the [386Enh] section
if the user will be running Windowed DOS VMs or Winodws programs.

3.4.4 VMD_Set_Focus Code:
BeginProc VMD_Set_Focus

edx, edx
; Q: Critial set-focus?

SHORT VMD_SF_Focus_Change

edx, VMD_Device_ID

Elographics Inc. Touchscreen/Mouse Drivers
 43
__

; N: Q: Mouse?

VMD_SF_Exit
;
VMD_SF_Focus_Change:

;************************************
; attempt to wait for untouch here
;
ifdef

[VTSD_IRQ_Number],-1

short VTSD_SF_NoUntouch

ifdef

eax

ebx

ecx

ecx,ebx

eax,ebx
;hold onto current VM handle

Get_Next_VM_Handle

eax,ebx
;only one handle?

short l1
; Y: it must be the System VM

ecx,ebx
; N: hang on to it for later

Elographics Inc. Touchscreen/Mouse Drivers
 44
__

l0:

Get_Next_VM_Handle

ebx,eax
;does it match the system VM?

short l1
; Y: then we're done, ecx has "last"

ecx,ebx
; N: save handle for next loop

short l0
;continue search with next handle
l1:

esi,ecx
;this is the handle we want (I hope)

ecx

ebx

eax

esi,[Int33_CB_Offset]

[esi.I33_CB_Window_State],-1

short VTSD_SF_NoUntouch
endif

[WaitForUntouch],False

short VTSD_SF_NoUntouch

[VMD_SF_Gate],0

Elographics Inc. Touchscreen/Mouse Drivers
 45
__

short VMD_SF_2

[VMD_SF_GATE],1

eax

ebx

eax,65h
;call monmouse

ebx,2
;wait for untouch

33h

ebx

eax

[VMD_SF_GATE],0
VMD_SF_2:

VTSD_SF_NoUntouch:
endif
;
;************************************

ebx, [VMD_Owner]
; Get old/set new owner

[VMD_IRQ_Number], -1
; Q: Mouse virtualized yet?

VMD_SF_Exit
; N: Nothing to do

Int33_Update_State
; Update old owner

ebx

Elographics Inc. Touchscreen/Mouse Drivers
 46
__

ebx, [VMD_Owner]

Int33_Update_State
; Update new owner

ebx
;***

ifdef
;
; Just like the mouse code, but for the touchscreen instead
;

[VTSD_IRQ_Number],-1

short VTSD_SF_Exit_a

esi,[VTSD_COM_Port]

esi,esi

short VTSD_SF_COM_Ctlr
VTSD_SF_1:

[VTSD_Virt_IRQ],True

short VTSD_SF_Exit

eax,[VTSD_IRQ_Handle]

VPICD_Get_Complete_Status

ecx,VPICD_Stat_Virt_Req

short VTSD_SF_Exit

VPICD_Clear_Int_Request

ebx,[VMD_Owner]

VPICD_Set_Int_Request

Elographics Inc. Touchscreen/Mouse Drivers
 47
__

short VTSD_SF_Exit
VTSD_SF_COM_Ctlr:

eax,Set_Device_Focus

edx,VCD_Device_ID

ebx,[VMD_Owner]

System_Control
VTSD_SF_Exit:

VTSD_SF_Exit_a:
endif
;***

esi, [VMD_COM_Port]

esi, esi

SHORT VMD_SF_COM_Mouse

[VMD_Virt_IRQ], True

SHORT VMD_SF_Exit

eax, [VMD_IRQ_Handle]

ecx, VPICD_Stat_Virt_Req

SHORT VMD_SF_Exit
; N: Done!

; Y: Clear old owner's

ebx, [VMD_Owner]
;

Elographics Inc. Touchscreen/Mouse Drivers
 48
__

SHORT VMD_SF_Exit

VMD_SF_COM_Mouse:

eax, Set_Device_Focus

edx, VCD_Device_ID

ebx, [VMD_Owner]

VMD_SF_Exit:

EndProc VMD_Set_Focus

