
PASCAL–XSC

A short introduction

to the new language

Numerik Software GmbH
Rettigstr. 6

W-7570 Baden-Baden
Federal Republic of Germany

Tel: +49 (721) 370913
Fax: +49 (721) 370928

email: ae18@dkauni2.bitnet

PASCAL–XSC

A short introduction

to the new language

Abstract

The new programming language PASCAL–XSC is presented with an emphasis on the new concepts
for scientific computation and numerical data processing of the PASCAL–XSC compiler. PASCAL–
XSC is a universal PASCAL extension with extensive standard modules for scientific computation.
It is available for personal computers, workstations, mainframes and supercomputers by means of
an implementation in C.

By using the mathematical modules of PASCAL–XSC, numerical algorithms which de-
liver highly accurate and automatically verified results can be programmed in an easy manner.
PASCAL–XSC simplifies the design of programs in engineering scientific computation by modular
program structure, user-defined operators, overloading of functions, procedures, and operators,
functions and operators with arbitrary result type, dynamic arrays, arithmetic standard modules
for additional numerical data types with operators of highest accuracy, standard functions of high
accuracy and exact evaluation of expressions.

The most important advantage of the new language is that programs written in PASCAL–XSC
are easily readable. This is due to the fact that all operations, even those in the higher mathematical
spaces, have been realized as operators and can be used in conventional mathematical notation.

In addition to PASCAL–XSC a large number of numerical problem-solving routines with au-
tomatic result verification are available. The language supports the development of such routines.

1 Introduction

These days, the elementary arithmetic operations of electronic computers are usu-
ally approximated by floating-point operations of highest accuracy. In particular,
this means that for any choice of operands, the computed result coincides with the
rounded exact result of the operation. See the IEEE Arithmetic Standard [1] as an
example. This arithmetical standard also requires the four basic arithmetic opera-
tions +,−, ∗, and / with directed roundings. A large number of processors already
on the market provide these operations. So far, however, no common programming
language allows access to them.

On the other hand, there has been a noticeable shift in scientific computation
from general purpose computers to vector and parallel computers. These so-called
super-computers provide additional arithmetic operations such as “multiply and
add” and “accumulate” or “multiply and accumulate” (see [7]). These hardware
operations should always deliver a result of highest accuracy, but as of yet, no
processor which fulfills this requirement is available. In some cases, the results of
numerical algorithms computed on vector computers are totally different from the
results computed on a scalar processor (see [9],[25]).

2

Continuous efforts have been made to enhance the power of programming lan-
guages. New powerful languages such as ADA have been designed, and enhancement
of existing languages such as FORTRAN is in constant progress. However, since
these languages still lack a precise definition of their arithmetic, the same program
may produce different results on different processors.

PASCAL–XSC is the result of a long-term venture by a team of scientists to pro-
duce a powerful tool for solving scientific problems. The mathematical definition of
the arithmetic is an intrinsic part of the language including optimal arithmetic oper-
ations with directed roundings which are directly accessable in the language. Further
arithmetic operations for intervals and complex numbers and even vector/matrix op-
erations provided by precompiled arithmetical modules are defined with maximum
accuracy according to the rules of semimorphism (see [19]).

2 The Language PASCAL–XSC

PASCAL–XSC is an eXtension of the programming language PASCAL for Scientific
Computation. A first approach to such an extension (PASCAL–SC) has been avail-
able since 1980. The specification of the extensions has been continuously improved
in recent years by means of essential language concepts, and the new langauge
PASCAL–XSC [14],[15] was developed. It is now available for personal computers,
workstations, mainframes, and supercomputers by means of an implementation in
C. PASCAL–XSC contains the following features:

• Standard PASCAL

• Universal operator concept (user-defined operators)

• Functions and Operators with arbitrary result type

• Overloading of procedures, functions and operators

• Module concept

• Dynamic arrays

• Access to subarrays

• String concept

• Controlled rounding

• Optimal (exact) scalar product

• Standard type dotprecision (a fixed point format to cover the whole range of
floating-point products)

• Additional arithmetic standard types such as complex, interval, rvector,
rmatrix etc.

• Highly accurate arithmetic for all standard types

• Highly accurate standard functions

3

• Exact evaluation of expressions (#-expressions)

The new language features, developed as an extension of PASCAL, will be discussed
in the following sections.

2.1 Standard Data Types, Predefined Operators, and

Functions

In addition to the data types of standard PASCAL, the following numerical data
types are available in PASCAL–XSC:

interval complex cinterval
rvector cvector ivector civector
rmatrix cmatrix imatrix cimatrix

where the prefix letters r, i, and c are abbreviations for real, interval, and complex.
So cinterval means complex interval and, for example, cimatrix denotes complex
interval matrices, whereas rvector specifies real vectors. The vector and matrix
types are defined as dynamic arrays and can be used with arbitrary index ranges.

A large number of operators are predefined for theses types in the arithmetic
modules of PASCAL–XSC (see section 2.8). All of these operators deliver re-
sults with maximum accuracy. In table 1 the 29 predefined standard operators
of PASCAL–XSC are listed according to priority.

Type Priority Operators

monadic 3 monadic +, monadic −, not
(highest)

multiplicative 2 and, div, mod

∗, ∗<, ∗>, /, /<, />, ∗∗

additive 1 or

+,+<,+>,−,−<,−>,+∗

relational 0 in

(lowest) =, <>,<=, <,>=, >,><

Table 1: Precedence of the Built-in Operators

4

Compared to standard PASCAL, there are 11 new operator symbols. These are
the operators ◦< and ◦>, ◦ ∈ {+,−, ∗, /} for operations with downwardly and
also upwardly directed rounding and the operators ∗∗,+∗, >< needed in interval
computations for the intersection, the convex hull, and the disconnectivity test.

Tables 2 and 3 show all predefined arithmetic and relational operators in con-
nection with the possible combinations of operand types.

◗
◗
◗
◗
◗
◗
◗◗

left

operand

right

operand
integer
real

complex

interval
cinterval

rvector
cvector

ivector
civector

rmatrix
cmatrix

imatrix
cimatrix

monadic
1) +,− +,− +,− +,− +,− +,−

integer
real

complex

2)
◦, ◦<, ◦>,

+∗

+,−, ∗, /,
+∗

∗, ∗<, ∗> ∗ ∗, ∗<, ∗> ∗

interval
cinterval

+,−, ∗, /,
+∗

+,−, ∗, /,
+∗, ∗∗

∗ ∗ ∗ ∗

rvector
cvector

∗, ∗<, ∗>,
/, /<, />

∗, /

3)
◦, ◦<, ◦>,

+∗

4)
+,−, ∗,

+∗

ivector
civector

∗, / ∗, /

4)
+,−, ∗,

+∗

4)
+,−, ∗,
+∗, ∗∗

rmatrix
cmatrix

∗, ∗<, ∗>,
/, /<, />

∗, / ∗, ∗<, ∗> ∗

3)
◦, ◦<, ◦>,

+∗

4)
+,−, ∗,

+∗

imatrix
cimatrix

∗, / ∗, / ∗ ∗

4)
+,−, ∗,

+∗

4)
+,−, ∗,
+∗, ∗∗

1) The operators of this row are monadic (i.e. there is no left operand).

2) ◦ ∈ {+,−, ∗, /}

3) ◦ ∈ {+,−, ∗}, where ∗ denotes the scalar or matrix product.

4) ∗ denotes the scalar or matrix product.

+∗ : Interval hull

∗∗ : Interval intersection

Table 2: Predefined Arithmetical Operators

5

Compared with standard PASCAL, PASCAL–XSC provides an extended set of
mathematical standard functions (see table 4). These functions are available for
the types real, complex, interval, and cinterval with a generic name and deliver a
result of maximum accuracy. The functions for the types complex, interval, and
cinterval are provided in the arithmetic modules of PASCAL–XSC.

◗
◗
◗
◗
◗
◗
◗◗

left

operand

right

operand
integer
real

complex

interval
cinterval

rvector
cvector

ivector
civector

rmatrix
cmatrix

imatrix
cimatrix

integer
real

complex

=, <>,
<=, <,
>=, >

in

=, <>

interval
cinterval

=, <>

1)
in, ><,
=, <>,
<=, <,
>=, >

rvector
cvector

=, <>,
<=, <,
>=, >

in

=, <>

ivector
civector

=, <>

1)
in, ><,
=, <>,
<=, <,
>=, >

rmatrix
cmatrix

=, <>,
<=, <,
>=, >

in

=, <>

imatrix
cimatrix

=, <>

1)
in, ><,
=, <>,
<=, <,
>=, >

1) The operators <= and < denote the “subset” relations,
>= and > denote the “superset” relations.

∨ ∈ {=, <>, <, <=, >, >=}

>< : Test on disjointedness for intervals

in :
Test on membership of a point in an interval or test on
strict inclusion of an interval in the interior of an interval

Table 3: Predefined Relational Operators

6

Function Generic Name Argument Type

1 Absolute Value abs ∗

2 Arc Cosine arccos ∗

3 Arc Cotangent arccot ∗

4 Inverse Hyperbolic Cosine arcosh ∗

5 Inverse Hyperbolic Cotangent arcoth ∗

6 Arc Sine arcsin ∗

7 Arc Tangent arctan ∗

8 Inverse Hyperbolic Sine arsinh ∗

9 Inverse Hyperbolic Tangent artanh ∗

10 Cosine cos ∗

11 Cotangent cot ∗

12 Hyperbolic Cosine cosh ∗

13 Hyperbolic Cotangent coth ∗

14 Exponential Function exp ∗

15 Power Function (Base 2) exp2 ∗

16 Power Function (Base 10) exp10 ∗

17 Natural Logarithm (Base e) ln ∗

18 Logarithm (Base 2) log2 ∗

19 Logarithm (Base 10) log10 ∗

20 Sine sin ∗

21 Hyperbolic Sine sinh ∗

22 Square sqr ∗

23 Square Root sqrt ∗

24 Tangent tan ∗

25 Hyperbolic Tangent tanh ∗

Table 4: Mathematical Standard Functions (∗ includes the types
integer, real, complex, interval, and cinterval)

Besides the mathematical standard functions, PASCAL–XSC provides the necessary
type transfer functions intval, inf, sup, compl, re, and im for conversion between the
numerical data types (for scalar and array types).

7

2.2 The General Operator Concept

By a simple example of interval addition, the advantages of a general operator
concept are demonstrated. In the absence of userdefined operators, there are two
ways to implement the addition of two intervals, the latter being declared by

type interval = record inf,sup: real;

One can use a procedure declaration

procedure intadd(a,b: interval; var c: interval);

begin

c.inf := a.inf +<b.inf;

c.sup := a.sup+>b.sup

end;

mathematical notation corresponding program statement

z := a+ b+ c+ d
intadd(a,b,z);
intadd(z,c,z);
intadd(z,d,z);

or a function declaration (only possible in PASCAL–XSC, not in standard PASCAL)

function intadd(a,b: interval): interval;

begin

intadd.inf := a.inf +<b.inf;

intadd.sup := a.sup+>b.sup

end;

mathematical notation corresponding program statement

z := a+ b+ c+ d z := intadd(intadd(intadd(a,b),c),d);

In both cases the description of the mathematical formulas looks rather complicated.
By comparison, if one implements an operator in PASCAL–XSC

operator + (a,b: interval) intadd: interval;

begin

intadd.inf := a.inf +<b.inf;

intadd.sup := a.sup+>b.sup

end;

8

mathematical notation corresponding program statement

z := a+ b+ c+ d z := a + b + c + d;

then a multiple addition of intervals is described in the traditional mathematical
notation. Besides the possibility of overloading operator symbols, you are allowed
to use named operators. Such operators must be preceded by a priority declaration.
There exist four different levels of priority, each represented by its own symbol:

• monadic : ↑ level 3 (highest priority)
• multiplicative : ∗ level 2
• additive : + level 1
• relational : = level 0

For example, an operator for the calculation of the binomial coefficient
(

n
k

)

can be
defined in the following manner

priority choose = ∗; {priority declaration}

operator choose (n,k: integer) binomial: integer;

var i,r : integer;

begin

if k > n div 2 then k := n−k;

r := 1;

for i := 1 to k do

r := r ∗ (n − i + 1) div i;

binomial := r;

end;

mathematical notation corresponding program statement

c :=
(

n
k

)

c := n choose k

The operator concept realized in PASCAL–XSC offers the possibilities of

• defining an arbitrary number of operators

• overloading operator symbols or operator names arbitrary many times

• implementing recursively defined operators

The identification of the suitable operator depends on both the number and the type
of the operands according to the following weighting -rule:

If the actual list of parameters matches the formal list of parameters of

two different operators, then the one which is chosen has the first “better

matching” parameter. “Better matching” means that the types of the

operands must be consistent and not only conforming.

9

Example:

operator +∗ (a: integer; b: real) irres: real;

...

operator +∗ (a: real; b: integer) rires: real;

...

var x : integer;
y, z : real;

...

z := x +∗ y; =⇒ 1. operator

z := y +∗ x; =⇒ 2. operator

z := x +∗ x; =⇒ 1. operator

z := y +∗ y; =⇒ impossible !

Also, PASCAL–XSC offers the possibility to overload the assignment operator :=.
Due to this, the mathematical notation may also be used for assignments:

Example:

var

c : complex;

r : real;

...

operator := (var c: complex; r: real);

begin

c.re := r;

c.im := 0;

end;

...

r := 1.5;

c := r; {complex number with real part 1.5 and imaginary part 0}

2.3 Overloading of Subroutines

Standard PASCAL provides the mathematical standard functions

sin, cos, arctan, exp, ln, sqr, and sqrt

10

for numbers of type real only. In order to implement the sine function for interval
arguments, a function symbol like isin(. . .) must be used, because the redefining of
the standard function name sin is not allowed in standard PASCAL.

By contrast, PASCAL–XSC allows overloading of function and procedure names,
whereby a generic symbol concept is introduced into the language. So the symbols

sin, cos, arctan, exp, ln, sqr, and sqrt

can be used not only for numbers of type real, but also for intervals, complex num-
bers, and other mathematical spaces. To distinguish between overloaded functions
or procedures with the same name, the number, type, and weighting of their argu-
ments are used, similar to the method for operators. The type of the result, however,
is not used.

Example:

procedure rotate (var a,b: real);

procedure rotate (var a,b,c: complex);

procedure rotate (var a,b,c: interval);

The overloading concept also applies to the standard procedures read and write
in a slightly modified way. The first parameter of a new declared input/output
procedure must be a var-parameter of file type and the second parameter represents
the quantity that is to be input or output. All following parameters are interpreted
as format specifications.

Example:

procedure write (var f: text; c: complex; w: integer);
begin

write (f, ’(’, c.re : w, ’,’, c.im : w, ’)’);
end

Calling an overloaded input/output procedure the file parameter may be omitted
corresponding to a call with the standard files input or output. The format parame-
ters must be introduced and seperated by colons. Moreover, several input or output
statements can be combined to a single statement as in standard PASCAL.

Example:

var

r: real;
c: complex;
...

write (r : 10, c : 5, r/5);

11

2.4 The Module Concept

Standard PASCAL basically assumes that a program consists of a single program
text which must be prepared completely before it can be compiled and executed.
In many cases, it is more convenient to prepare a program in several parts, called
modules, which can then be developed and compiled independently of each other.
Moreover, several other programs may use the components of a module without
their being copied into the source code and recompiled.

For this purpose, a module concept has been introduced in PASCAL–XSC. This
new concept offers the possibilities of

• modular programming

• syntax check and semantic analysis beyond the bounds of modules

• implementation of arithmetic packages as standard modules

Three new keywords have been added to the language:

module : starts a new module

global : indicates items to be passed to the outside

use : indicates imported modules

A module is introduced by the keywordmodule followed by a name and a semicolon.
The body is built up quite similarly to that of a normal program with the exception
that the word symbol global can be used directly in front of the keywords const,
type, var, procedure, function, and operator and directly after use and the
equality sign in type declarations.

Thus it is possible to declare anonymous types as well as non-anonymous types.
The structure of an anonymous type is not known outside the declaration module
and can only be influenced by subroutine calls. If, for example, the internal structure
as well as the name of a type is to be made global, then the word symbol global
must be repeated after the equality sign. By means of the declaration

global type complex = global record re, im : real end;

the type complex and its internal structure as a record with components re and im
is made global.

An anonymous type complex could be declared by

global type complex = record re, im: real end;

The user who has imported a module with this anonymous definition cannot refer
to the record components, because the structure of the type is hidden inside the
module.

12

A module is built up according to the following pattern:

module m1;

use < other modules>;

< global and local declarations>

begin

< initialization of the module>

end.

For importing modules with use or use global the following transitivity rules hold

M1 use M2 and M2 use global M3 ⇒ M1 use M3.

but

M1 use M2 and M2 use M3 6⇒ M1 use M3,

Example: Let a module hierarchy be built up by

X Y STANDARDS

A B C

main program

�
�
��

❅
❅

❅❅

◗
◗

◗
◗◗

✑
✑
✑
✑✑

✟✟✟✟✟✟✟

❍❍❍❍❍❍❍

All global objects of the modules A, B, and C are visible in the main program unit,
but there is no access to the global objects of X, Y and STANDARDS. There are
two possibilities to make them visible in the main program, too:

1. to write

use X, Y, STANDARDS

in the main program

2. to write

use global X, Y

in module A and

use global STANDARDS

in module B or C.

13

2.5 Dynamic Arrays

In standard PASCAL there is no way to declare dynamic types or variables. For
instance, program packages with vector and matrix operations can be implemented
with only fixed (maximum) dimension. For this reason, only a part of the allocated
memory is used if the user wants to solve problems with lower dimension only. The
concept of dynamic arrays removes this limitation. In particular, the new concept
can be described by the following characteristics:

• Dynamics insides of procedures and functions

• Automatic allocation and deallocation of local dynamic variables

• Economical employment of storage space

• Row access and column access to dynamic arrays

• Compatibility of static and dynamic arrays

Dynamic arrays must be marked with the word symbol dynamic. The great dis-
advantage of the conformant array schemes available in standard PASCAL is that
they can only be used for parameters and not for variables or function results. There
is no question of this use being fully dynamic.

In PASCAL–XSC, dynamic and static arrays can be used in the same manner.
At the moment, dynamic arrays may not be components of other data structures.
The syntactical meaning of this is that the word symbol dynamic may only be
used directly following the equality sign in a type definition or directly following
the colon in a variable declaration. For instance, dynamic arrays may not be record
components.
A two-dimensional array type can be declared in the following manner:

type matrix = dynamic array[∗,∗] of real;

It is also possible to define different dynamic types with corresponding syntactical
structures. For example, it might be useful in some situations to identify the coeffi-
cients of a polynomial with the components of a vector or vice versa. Since PASCAL
is strictly a type-oriented language, such structurally equivalent arrays may only be
combined if their types have been previously adapted. The following example shows
the definition of a polynomial and of a vector type (note that the type adaptation
functions polynomial(. . .) and vector(. . .) are defined implicitly):

type vector = dynamic array[∗] of real;

type polynomial = dynamic array[∗] of real;

operator + (a,b: vector) res: vector[lbound(a)..ubound(a)];

...

var v : vector[1..n];
p : polynomial[0..n-1];

14

...

v := vector(p);

p := polynomial(v);

v := v + v;

v := vector(p) + v; { but not v := p + v; }

Access to the lower and upper index limits is made possible by the new standard
functions lbound(. . .) and ubound(. . .), which are available with an optional ar-
gument for the index field of the designated dynamic variable. Employing these
functions, the operator mentioned above can be written as

operator + (a,b: vector) res: vector[lbound(a)..ubound(a)];

var i : integer;

begin

for i := lbound(a) to ubound(a) do

res[i] := a[i] + b[lbound(b) + i – lbound(a)]

end;

Introduction of dynamic types requires an extension of the compatibility prerequi-
sites. As in standard PASCAL, two array types are not compatible unless they are
of the same type. Consequently, a dynamic array type is not compatible with a
static type. In PASCAL–XSC value assignments are always possible in the cases
listed in Table 5.

Type of Left Side Type of Right Side Assignment Permitted

anonymous dynamic arbitrary array type if structurally equivalent

known dynamic known dynamic if types are the same

anonymous static arbitrary array type if structurally equivalent

known static known static if types are the same

Table 5: Assignment Compatibilities

In the remaining cases, an assignment is possible only for equivalent qualification of
the right side (see [14] or [15] for details).

In addition to access to each component variable, PASCAL–XSC offers the pos-
sibility of access to entire subarrays. If a component variable contains an ∗ instead
of an index expression, it refers to the subarray with the entire index range in the
corresponding dimension, e. g. via m[∗, j] the j-th column of a two-dimensional array
m is accessed. This example demonstrates access to rows or columns of dynamic
arrays:

15

type vector = dynamic array[∗] of real;

type matrix = dynamic array[∗] of vector;
...

var v : vector[1..n];
m : matrix[1..n,1..n];

...

v := m[i];

m[i] := vector(m[∗, j]);

In the first assignment it is not necessary to use a type adaptation function, since
both the left-hand and the right-hand side are of known dynamic type. A different
case is demonstrated in the second assignment. The left-hand side is of known dy-

namic type, but the right-hand side is of anonymous dynamic type, so it is necessary
to use the intrinsic adaptation function vector(. . .).

A PASCAL–XSC program which uses dynamic arrays should be built up accord-
ing to the following scheme:

program dynprog (input,output);

type

vector = dynamic array[∗] of real;

<different dynamic declarations>

var n : integer;

{ - }

procedure main (dim: integer);

var a,b,c : vector[1..dim];
...

begin

< I/O depending on the value of dim>
...

c := a + b;
...

end;

{ - }

begin {main program}

read(n);

main(n);

end. {main program}

16

It is necessary to frame only the original main program by a procedure (here: main),
which is refered to with the dimension of the dynamic arrays as a transfer parame-
ter.

2.6 Accurate Expressions

The implementation of inclusion algorithms with automatic result verification or
validation (see [12],[18],[22],[27]) makes extensive use of the accurate evaluation of
dot products with the property (see [19])

(RG) a
⊙

b := ©
n

∑

i=1

ai · bi, © ∈ {✷,△,▽}, n ∈ IN .

To evaluate this kind of expression the new datatype dotprecision was introduced.
This datatype accomodates the full floating-point range with double exponents (see
[19],[18]). Based upon this type, so-called accurate expressions (#-expressions), can
be formulated by an accurate symbol (#, #∗, #<, #>, or ##) followed by an exact

expression enclosed in parentheses. The exact expression must have the form of a
dot product expression and is evaluated without any rounding error. The following
standard operations are available for dotprecision:

• conversion of real and integer values to dotprecision (#)

• rounding of dotprecision values to real ; in particular: downwardly directed
rounding (#<), upwardly directed rounding (#>), and rounding to the nearest
(#∗)

• rounding of a dotprecision expression to the smallest enclosing interval (##)

• addition of a real number or the product of two real numbers to a variable of
type dotprecision

• addition of a dot product to a variable of type dotprecision

• addition and subtraction of dotprecision numbers

• monadic minus of a dotprecision number

• the standard function sign returns −1, 0, or +1, depending on the sign of the
dotprecision number

To obtain the unrounded or correctly rounded result of a dot product expression,
the user needs to parenthesize the expression and precede it by the symbol # which
may optionally be followed by a symbol for the rounding mode. Table 6 shows the
possible rounding modes with respect to the dot product expression form (see the
appendix on page 27 for details).

17

Symbol Expression Form Rounding Mode

#∗ scalar, vector or matrix nearest

#< scalar, vector or matrix downwards

#> scalar, vector or matrix upwards

scalar, vector or matrix smallest enclosing interval

scalar only exact, no rounding

Table 6: Rounding Modes for Accurate Expressions

In practice, dot product expressions may contain a large number of terms making
an explicit notation very cumbersome. To alleviate this difficulty in mathematics,
the symbol

∑

is used. If for instance A and B are n-dimensional matrices, then the
evaluation of

n
∑

k=1

A(i, k) ·B(k, j)

represents a dot product expression. PASCAL–XSC provides the equivalent short-
hand notation sum for this purpose. The corresponding PASCAL–XSC statement
for this expression is

D := #(for k:=1 to n sum (A[i,k]∗B[k,j]))

where D is a dotprecision variable.
Dot product expressions or accurate expressions are used mainly in computing

defect expressions. Let, for instance, in case of a linear system Ax = b, A ∈ IRn×n,
x, b ∈ IRn, be Ay≈b. Then an enclosure of the defect is given by ♦(b − Ay) and is
realized in PASCAL–XSC via

##(b − A∗y);

with only one interval rounding operation per component. To get verified inclusions
of linear systems of equations it is necessary to evaluate the defect expression

♦(E − RA)

were R ≈ A−1 and E is the identity matrix. In PASCAL–XSC this expression can
be programmed as

##(id(A) − R∗A);

where an interval matrix is computed with only one rounding operation per compo-
nent. The function id(. . .) is a part of the module for real matrix/vector arithmetic
and generates an identity matrix of appropriate dimension according to the shape
of A (see section 2.8).

18

2.7 The String Concept

The tools provided for handling strings in standard PASCAL do not enable con-
venient text processing. For this reason, a string concept was integrated into the
language definition of PASCAL–XSC which allows a comfortable handling of textual
information and even symbolic computation. With this new data type string, the
user can work with strings of up to 255 characters. Provided a string doesn’t exceed
a certain range, the user can specify the length in the string declaration part. Thus
a string s declared by

var s: string[40];

can be up to 40 characters long. The following standard operations are available:

• concatenation

operator + (a,b: string) conc: string;

• actual length

function length(s: string): integer;

• conversion string → real

function rval(s: string): real;

• conversion string → integer

function ival(s: string): integer;

• conversion real → string

function image(r: real; width,fracs,round: integer): string;

• conversion integer → string

function image(i,len: integer): string;

• extraction of substrings

function substring(s: string; i,j: integer): string;

• position of first appearance

function pos(sub,s: string): integer;

• relational operators <=, <, >=, >, <>, =, and in

19

2.8 Standard Modules

The following standard modules are available:

• interval arithmetic (I ARI)

• complex arithmetic (C ARI)

• complex interval arithmetic (CI ARI)

• real matrix/vector arithmetic (MV ARI)

• interval matrix/vector arithmetic (MVI ARI)

• complex matrix/vector arithmetic (MVC ARI)

• complex interval matrix/vector arithmetic (MVCI ARI)

These modules may be incorporated via the use-statement described in section 2.4.
As an example, table 7 exhibits the operators provided by the module for interval
matrix/vector arithmetic.

◗
◗
◗
◗
◗◗

left
operand

right
operand integer

real
interval rvector ivector rmatrix imatrix

monadic +,− +,−

integer
real

∗ ∗

interval ∗ ∗ ∗ ∗

rvector ∗, / +∗

+∗,
+,−, ∗,

in,=, <>

ivector ∗, / ∗, /
+∗,

+,−, ∗,
=, <>

+∗, ∗∗,
+,−, ∗,

in,=, <>,><,
<=, <,>=, >

rmatrix ∗, / ∗ +∗

+∗,
+,−, ∗,

in,=, <>

imatrix ∗, / ∗, / ∗ ∗

+∗,
+,−, ∗,
=, <>

+∗, ∗∗,
+,−, ∗,

in,=, <>,><,
<=, <,>=, >

Table 7: Predefined Arithmetical and Relational Operators of the
Module MVI ARI

In addition to these operators, the module MVI ARI provides the following generi-
cally named standard operators, functions, and procedures

intval, inf, sup, diam, mid, blow, transp, null, id, read, and write.

The function intval is used to generate interval vectors and matrices respectively,
whereas inf and sup are selection functions for the infimum and supremum of an
interval object. The diameter and the midpoint of interval vectors and matrices are
determined via diam and mid, blow yields an interval inflation and transp is used
to get the transposed of a matrix.

20

Zero vectors and matrices are generated by the function null, while id returns an
identity matrix of appropriate shape. Finally, there are the generic input/output-
procedures read and write, which may be used in connection with all matrix/vector
data types defined in the modules mentioned above.

2.9 Problem-Solving Routines

PASCAL–XSC routines for solving common numerical problems are supplied by
means of an additional module library. The applied methods compute a highly
accurate inclusion of the true solution of the problem and, at the same time, prove
existence and uniqueness of the solution in the given interval. The advantages of
these new routines are listed in the following:

• The solution is computed with maximum or highly, but always controlled
accuracy, even in many ill-conditioned cases.

• The correctness of the result is automatically verified, i. e. an inclusion set
is computed which guarantees existence and uniqueness of the exact solution
within.

• In case no solution exists or the problem is extremely ill-conditioned, an error
message is indicated.

• Since the user has almost no chance to make an error or to misinterpret some-
thing, these routines may also be applied by non-specialists.

Particularly, PASCAL–XSC routines cover the following subjects:

• linear systems of equations

– full systems (real, complex, interval, cinterval)

– matrix inversion (real, complex, interval, cinterval)

– least squares problems (real, complex, interval, cinterval)

– computation of pseudo inverses (real, complex, interval, cinterval)

– band matrices (real)

– sparse matrices (real)

• polynomial evaluation

– in one variable (real, complex, interval, cinterval)

– in several variables (real)

• zeros of polynomials (real, complex, interval, cinterval)

• eigenvalues and eigenvectors

– symmetric matrices (real)

– arbitrary matrices (real, complex, interval, cinterval)

21

• initial and boundary value problems of ordinary differential equations

– linear

– nonlinear

• evaluation of arithmetic expressions

• noninear systems of equations

• numerical quadrature

• integral equations

• automatic differentiation

3 The Implementation of PASCAL–XSC

Since 1976, a PASCAL extension for scientific computation has been in the process
of being defined and developed at the Institute for Applied Mathematics at the Uni-
versity of Karlsruhe. The PASCAL-SC compiler has been implemented on several
computers (Z80, 8088, and 68000 processors) under various operating systems. This
compiler was already in the marketplace for the IBM PC/AT and the ATARI-ST
(see [16], [17]).

The new PASCAL–XSC compiler is now available for personal computers, work-
stations, mainframes, and supercomputers by means of an implementation in C. Via
a PASCAL–XSC-to-C precompiler and a runtime system implemented in C the lan-
guage PASCAL–XSC may be used, among other systems, on all UNIX systems in an
almost identical way. Thus, the user has the possibility to develop his programs for
example on a personal computer and afterwards get them running on a mainframe
via the same compiler.

A complete description of the language PASCAL–XSC and the arithmetic mod-
ules as well as a collection of sample programs is given in [14] and [15].

4 PASCAL–XSC Sample Program

In the following, a complete PASCAL–XSC program is listed, which demonstrates
the use of some of the arithmetic modules. Using the module LIN SOLV, the
solution of a system of linear equations is enclosed in an interval vector by succecsive
interval iterations.

The procedure main, which is called in the body of lin sys, is only used for read-
ing the dimension of the system and for allocation of the dynamic variables. The
numerical method itself is started by the call of procedure linear system solver de-
fined in module LIN SOLV. This procedure may be called with arbitrary dimension
of the used arrays.

For detailed information on iteration methods with automatic result verification
see [12], [18], [22], or [26], for example.

22

Main Program

program lin sys (input,output);

{ Program for verified solution of a linear system of equations. The }
{ matrix A and the right-hand side b of the system are to be read in. }
{ The program delivers either a verified solution or a corresponding }
{ failure message. }

use { lin solv : linear system solver }
lin solv, mv ari, mvi ari; { mv ari : matrix/vector arithmetic }

{ mvi ari : matrix/vector interval arithmetic }
var

n : integer;

{- -}

procedure main (n : integer);

{ The matrix A and the vectors b, x are allocated dynamically with }
{ this subroutine being called. The Matrix A and the right-hand side }
{ b are read in and linear system solver is called. }

var
ok : boolean;
b : rvector[1..n];
x : ivector[1..n];
A : rmatrix[1..n,1..n];

begin

writeln(’Please enter the matrix A:’);
read(A);

writeln(’Please enter the right-hand side b:’);
read(b);

linear system solver(A,b,x,ok);

if ok then

begin

writeln(’The given matrix A is non-singular and the solution ’);
writeln(’of the linear system is contained in:’);
write(x);

end

23

else

writeln(’No solution found !’);

end; {procedure main}

{- -}

begin

write(’Please enter the dimension n of the linear system: ’);
read(n);
main(n);

end. {program lin sys}

24

Module LIN SOLV

module lin solv;

{ Verified solution of the linear system of equations Ax = b. }

use { i ari : interval arithmetic }
i ari, mv ari, mvi ari; { mv ari : matrix/vector arithmetic }

{ mvi ari : matrix/vector interval arithmetic }
priority

inflated = ∗; { priority level 2 }

{- -}

operator inflated (a : ivector; eps : real)infl: ivector[1..ubound(a)];

{ Computes the so-called epsilon inflation of an interval vector. }

var
i : integer;
x : interval;

begin

for i:= 1 to ubound(a) do
begin

x:= a[i];
if (diam(x) <> 0) then

a[i] := (1+eps)∗x − eps∗x
else

a[i] := intval(pred (inf(x)), succ (sup(x)));
end; {for}

infl := a;
end; {operator inflated}

{- -}

25

function approximate inverse (A: rmatrix): rmatrix[1..ubound(A),1..ubound(A)];

{ Computation of an approximate inverse of the (n,n)-Matrix A }
{ by application of the Gaussian elimination method. }

var
i, j, k, n : integer;
factor : real;
R, Inv, E : rmatrix[1..ubound(A),1..ubound(A)];

begin

n := ubound(A); { dimension of A }

E := id(E); { identity matrix }
R := A;

{ Gaussian elimination step with unit vectors as }
{ right-hand sides. Division by R[i,i]=0 indicates }
{ a probably singular matrix A. }

for i:= 1 to n do

for j:= (i+1) to n do

begin

factor := R[j,i]/R[i,i];
for k:= i to n do R[j,k] := #∗(R[j,k] − factor∗R[i,k]);
E[j] := E[j] − factor∗E[i];

end; {for j:= ...}

{ Backward substitution delivers the rows of the inverse of A. }

for i:= n downto 1 do

Inv[i] := #∗(E[i] − for k:= (i+1) to n sum(R[i,k]∗Inv[k]))/R[i,i];

approximate inverse := Inv;
end; {function approximate inverse}

{- -}

26

global procedure linear system solver (A : rmatrix; b : rvector;
var x : ivector; var ok : boolean);

{ Computation of a verified inclusion vector for the solution of the }
{ linear system of equations. If an inclusion is not achieved after }
{ a certain number of iteration steps the algorithm is stopped and }
{ the parameter ok is set to false. }

const
epsilon = 0.25; { Constant for the epsilon inflation }
max steps = 10; { Maximum number of iteration steps }

var
i : integer;
y, z : ivector[1..ubound(A)];
R : rmatrix[1..ubound(A),1..ubound(A)];
C : imatrix[1..ubound(A),1..ubound(A)];

begin

R := approximate inverse(A);

{ R∗b is an approximate solution of the linear system and z is an inclusion }
{ of this vector. However, it does not usually include the true solution. }

z := ##(R∗b);

{ An inclusion of I − R∗A is computed with maximum accuracy. }
{ The (n,n) identity matrix is generated by the function call id(A). }

C := ##(id(A) − R∗A);

x := z; i := 0;
repeat

i := i + 1;

y := x inflated epsilon; { To obtain a true inclusion the interval }
{ vector c is slightly enlarged. }

x := z + C∗y; { The new iterate is computed. }

ok := x in y; { Is c contained in the interior of y? }

until ok or (i = max steps);
end; {procedure linear system solver}

{- -}

end. {module lin solv}

27

Appendix

Review of Real and Complex #-Expressions

Syntax: #-Symbol (Exact Expression)

#-Symbol Result Type Summands Permitted in the Exact Expression

dotprecision

• variables, constants, and special function calls of
type integer, real, or dotprecision

• products of type integer or real

• scalar products of type real

real

• variables, constants, and special function calls of
type integer, real, or dotprecision

• products of type integer or real

• scalar products of type real

complex

• variables, constants, and special function calls of
type integer, real, complex, or dotprecision

• products of type integer, real, or complex

• scalar products of type real or complex

#∗
#<
#>

rvector

• variables and special function calls of type rvector

• products of type rvector (e.g. rmatrix ∗ rvector, real
∗ rvector etc.)

cvector

• variables and special function calls of type rvector or
cvector

• products of type rvector or cvector (e.g. cmatrix ∗
rvector, real ∗ cvector etc.)

rmatrix
• variables and special function calls of type rmatrix

• products of type rmatrix

cmatrix

• variables and special function calls of type rmatrix

or cmatrix

• products of type rmatrix or cmatrix

28

Review of Real and Complex Interval #-Expressions

Syntax: ## (Exact Expression)

#-Symbol Result Type Summands Permitted in the Exact Expression

interval

• variables, constants, and special function calls of
type integer, real, interval, or dotprecision

• products of type integer, real, or interval

• scalar products of type real or interval

cinterval

• variables, constants, and special function calls of
type integer, real, complex, interval, cinterval, or
dotprecision

• products of type integer, real, complex, interval, or
cinterval

• scalar products of type real, complex, interval, or
cinterval

ivector

• variables and special function calls of type rvector or
ivector

• products of type rvector or ivector

civector

• variables and special function calls of type rvector,
cvector, ivector, or civector

• products of type rvector, cvector, ivector, or civector

imatrix

• variables and special function calls of type rmatrix

or imatrix

• products of type rmatrix or imatrix

cimatrix

• variables and special function calls of type rmatrix,
cmatrix, imatrix, or cimatrix

• products of type rmatrix, cmatrix, imatrix, or
cimatrix

29

References

[1] American National Standards Institute / Institute of Electrical and Electronic Engineers: A
Standard for Binary Floating-Point Arithmetic. ANSI/IEEE Std. 754-1985, New York, 1985.

[2] Bleher, J. H., Rump, S. M., Kulisch, U., Metzger, M., Ullrich, Ch., and Walter, W.:
FORTRAN-SC: A Study of a FORTRAN Extension for Engineering/Scientific Computation
with Access to ACRITH. Computing 39, 93 - 110, 1987.

[3] Bohlender, G., Grüner, K., Kaucher, E., Klatte, R., Krämer, W., Kulisch, U., Rump, S.,
Ullrich, Ch., Wolff von Gudenberg, J., and Miranker, W.: PASCAL-SC: A PASCAL for
Contemporary Scientific Computation. Research Report RC 9009, IBM Thomas J. Watson
Research Center, Yorktown Heights, New York, 1981.

[4] Bohlender, G., Grüner, K., Kaucher, E., Klatte, R., Kulisch, U., Neaga, M., Ullrich, Ch., and
Wolff von Gudenberg, J.: PASCAL-SC Language Definition. Internal Report of the Institute
for Applied Mathematics, University of Karlsruhe, 1985.

[5] Bohlender, G., Rall, L., Ullrich, Ch., and Wolff von Gudenberg, J.: PASCAL-SC: A Computer
Language for Scientific Computation. Academic Press, New York, 1987.

[6] Bohlender, G., Rall, L., Ullrich, Ch. und Wolff von Gudenberg, J.: PASCAL-SC –
Wirkungsvoll programmieren, kontrolliert rechnen. Bibliographisches Institut, Mannheim,
1986.

[7] Buchholz, W.: The IBM System/370 Vector Architecture. IBM Systems Journal 25/1, 1986.

[8] Däßler, K. und Sommer, M.: PASCAL, Einführung in die Sprache. Norm Entwurf DIN 66256,
Erläuterungen. Springer, Berlin, 1983.

[9] Hammer, R.: How Reliable is the Arithmetic of Vector Computers? In: [27], 1990.

[10] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). General Information Manual,
GC 33-6163-02, 3rd Edition, 1986.

[11] IBM High-Accuracy Arithmetic Subroutine Library (ACRITH). Program Description and
User’s Guide, SC 33-6164-02, 3rd Edition, 1986.

[12] Kaucher, E., Kulisch, U., and Ullrich, Ch. (Eds.): Computer Arithmetic – Scientific Compu-
tation and Programming Languages. Teubner, Stuttgart, 1987.

[13] Kirchner, R. and Kulisch, U.: Accurate Arithmetic for Vector Processors. Journal of Parallel
and Distributed Computing 5, 250-270, 1988.

[14] Klatte, R., Kulisch, U., Neaga, M., Ratz, D. und Ullrich, Ch.: PASCAL–XSC Sprachbeschrei-
bung mit Beispielen. Springer, Heidelberg, 1991.

[15] Klatte, R., Kulisch, U., Neaga, M., Ratz, D. und Ullrich, Ch.: PASCAL–XSC Language
Reference with Examples. To be published by Springer, Heidelberg, 1991/92.

[16] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation, Informa-
tion Manual and Floppy Disks, Version ATARI ST. Teubner, Stuttgart, 1987.

[17] Kulisch, U. (Ed.): PASCAL-SC: A PASCAL Extension for Scientific Computation, Informa-
tion Manual and Floppy Disks, Version IBM PC/AT (DOS). Teubner, Stuttgart, 1987.

[18] Kulisch, U. (Hrsg.): Wissenschaftliches Rechnen mit Ergebnisverifikation – Eine Einführung.
Akademie Verlag, Ost-Berlin, Vieweg, Wiesbaden, 1989.

[19] Kulisch, U. and Miranker, W. L.: Computer Arithmetic in Theory and Practice. Academic
Press, New York, 1981.

30

[20] Kulisch, U. and Miranker, W. L.: The Arithmetic of the Digital Computer: A New Approach.
SIAM Review, Vol. 28, No. 1, 1986.

[21] Kulisch, U. and Miranker, W. L. (Eds.): A New Approach to Scientific Computation. Aca-
demic Press, New York, 1983.

[22] Kulisch, U. and Stetter, H. J. (Eds.): Scientific Computation with Automatic Result Verifica-
tion. Computing Suppl. 6, Springer, Wien, 1988.

[23] Neaga, M.: Erweiterungen von Programmiersprachen für wissenschaftliches Rechnen und
Erörterung einer Implementierung. Dissertation, Universität Kaiserslautern, 1984.

[24] Neaga, M.: PASCAL-SC – Eine PASCAL-Erweiterung für wissenschaftliches Rechnen. In:
[18], 1989.

[25] Ratz, D.: The Effects of the Arithmetic of Vector Computers on Basic Numerical Methods.
In: [27], 1990.

[26] Rump, S. M.: Solving Algebraic Problems with High Accuracy. In: [21], 1983.

[27] Ullrich, Ch. (Ed.): Contributions to Computer Arithmetic and Self-Validating Numerical
Methods. J. C. Baltzer AG, Scientific Publishing Co., IMACS, 1990.

[28] Wolff von Gudenberg, J.: Einbettung allgemeiner Rechnerarithmetik in PASCAL mittels eines
Operatorkonzeptes und Implementierung der Standardfunktionen mit optimaler Genauigkeit.
Dissertation, Universität Karlsruhe, 1980.

