
Clacker Control

Description
This control allows the developer to provide the user with a dynamic menu help system.
The control provides a custom event which defines when the user selects a menu item. The
control can be used for displaying a help phrase for all menus in a program or for any
combination of menus.
Place a CLACKER Control on the form to be monitored for menu selection events. For a
Multiple Document Interface (MDI) program, place the CLACKER control on the menu status
label of the MDI form, not a child form. You cannot place the CLACKER control directly on
the MDI form.
A ClackerClick() event will be issued for each menu that is highlighted. Only ONE control
should be used with each application. A separate help text string array will be needed for
each menu within an application to be monitored. See Hints and Tips for more information.
File Name
CLACKER.VBX
Remarks
When you create and distribute applications that use the CLACKER control you should
install the file CLACKER.VBX in the customer's Microsoft Windows \SYSTEM sub directory. All
of the properties, events, and methods for this control are listed below.    Properties and
events that apply only to this control, or require special consideration when used with it,
are underlined.    They are documented in this help file.    See the Visual Basic Language
Reference or on-line Help for documentation of the remaining properties, events, and
methods.
Properties

Action
hwndForm
CtlName
Index
Left
Top
Tag

Events
ClackerClick

Methods
The Action property is used as a pseudo method.

Typical Problems

Hints and Tips

Typical Problems
The debugging version of CLACKER will most likely resolve the errors encountered when
developing your application. In some circumstances the following faults may result during
development. Some precautions are necessary when using a systems modifying control like
CLACKER.
1. The Visual Basic development environment does not return after terminating the
program under development is generally caused by not properly unhooking the menu after
use and before program unload. Since the development environment and the application
share functions during debug, the system may hang if this condition occurs. A "hardware"
re-boot will be necessary to clear the fault. Check to make sure that when you terminate
the application, either by proper user action or by fault handling the CLACKER control is
ended. If you are using the debug version, a dialog box will display showing proper
termination action.
2. Program under development crashes, leaving the system in an unstable state. After a
GPF a "hardware" re-boot is the only proper way to restore normal operation if the CLACKER
control is being used. See above.
3. When selecting "Debug-End" while in the VISUAL BASIC development environment, the
application under test is not terminated properly, i.e. an abrupt end is issued terminating
all further processing without allowing the application to clean-up. This means that DLLs
and VBXs will be left in an indeterminate state. To reset the DLL/VBX you should either
terminate the application properly, or do a "Hardware-re-boot" after the forced
development environment Debug-End. This will insure the DLL/VBX is reset properly.

Hints and Tips

1. Getting Menu IDs
Most complications with CLACKER are with getting the proper MenuIDs loaded in a MenuID
array to use as indexing into the help text array. Since you want to translate a CLACKER
returned MenuID to a help text position, complications can arise. The key thing to
remember is that the menus are stored sequentially in a linked list structure in Windows. To
get all of the entries, make sure you walk the entire menu list for your application. It is best
to run the MenuSetup() sub in the demo application to see how this works. port this code to
your application and run it to see how many menu items are present. Build your help text
array the size and in the sequence that the MenuSetup() sub returns items. This way
keeping track, searching and matching MenuIDs to help text is easier.
As an aid in helping you set up the MenuID array, experiment with no help text and print
the CLACKER ClackerClick variables to the Menu Status bar. This will allow you to see what
the underlying menu structure for you application looks like.
2. Menu IDs
Each application has unique MenuIDs for all of its menu items. You must build an array of
MenuIDs for each window with a menu that you want to display help text for. All menu
items, including unused separators and hidden menus must have a MenuID entry and a
corresponding entry for help text in the help text array. Otherwise the indexing will not be
proper, and you will display the wrong help text for the menu item.
3. MDI applications
Finding the appropriate point in an applications Init cycle to load CLACKER, and fill the
MenuID array is critical for successful use of dynamic menu help. MDI applications present
a real challenge in this regard because the menu system switching can be confusing to the
designer and the end user. Might explain why users find menu help prompting an
invaluable feature. When MDI applications run, the currently open child window with focus,
substitutes it's menu for the MDI window's menu. CLACKER transparently handles this
switching. When that window is closed, the MDI frame places the next open child window's
menu on the menu bar. The menus can be the same, or they can be unique to each child
window. If there are no open child windows, the MDI frame places the default MDI menu on
the menu bar.
IMPORTANT: Be aware of all the menu switching that is going on. Each child
window has it's own unique set of MenuIDs for that child instance. Therefore
each MDI child window with a menu must have it's own array of MenuIDs for
matching. It may be necessary to experiment with the MenuID array loading to
find a point in the initiation sequence for your application where the menu is
loaded and the MenuIDs are stable. Use the VB DoEvents() function to clear out
the Windows event queue if necessary before loading the MenuID array.
Additionally, you must obtain the MDI MenuIDs when only the MDI menu is
loaded, that is, when no child windows are open.

4. Help Text Arrays
You need only one text array for each child window type. The main MDI window will also
need a MenuID array and a unique help text array. You can determine the active window
type, and therefore the proper help text array to use by using the following pseudo code;

If "NoChildWindowsOpen" Then
...process the MDI menu help text array

elseif TypeOf frmMDI.ActiveForm Is "MyForm" Then
...do search in help text array type1

elseif TypeOf frmMDI.ActiveForm Is "MyForm2
...do search in help text array type1

...
The switching of the menu and returning the proper MenuID is automatic from CLACKER.

hwndForm Property, Clacker Control

Description
Sets the hWnd to notify the Clacker Control of the calling form.
Usage
[form.]CLACKER.hwndForm[= setting %]
Settings
The hwndForm Property settings are:
Setting Description
0 (Default)    Control does not do anything. Setting the Action property has

no effect if a proper hWnd is not registered first.
Form.hWnd The hWnd of the form whose menu is to be monitored for selections.
Data Type
Integer (hWnd)

Action Property, CLACKER Control

Description
Setting the Action property cause the control to attach or detach from the forms menu. The
control must be attached (hooked) to the forms menu before the ClackerClick event can
be provided.
The Form's hWnd that the control is to monitor is sent immediately before the Action call.
Usage
[form.]CLACKER.Action[= setting %]
Settings
The Action property settings are:
Setting Description
ID_START      = 1 Attach to the forms menu.
ID_STOP            = 2 Detach from a Form's menu.
Remarks
The code fragment to begin monitoring the menu for selection events is

Form.Clacker.hwndForm = Form.hWnd
Form.Clacker.Action = ID_START

The code fragment to stop monitoring the menu is,
Form.Clacker.hwndForm = Form.hWnd
Form.Clacker.Action = ID_STOP

Initiate the menu monitoring action in the start up code of the program for each form menu
to be monitored. Terminate the menu monitoring action for each form monitored in the
form's unload event or when the instance of the program terminates. When the program
terminates, each CLACKER control must be terminated separately. Failure to start and stop
the monitoring action properly of each CLACKER control used in an application instance can
result in unpredictable behavior, and may result in an unstable Window's session.
Data Type
Integer

ClackerClick Event, CLACKER Control

Description
This event is generated when the user selects a menu from the system menu or the form's
menus. The event is generated prior to the actual menu choice and does not interfere with
the menu event generation. A normal menu event is generated when the actual menu item
is selected.
Syntax
Sub CLACKER_ClackerClick (hMenu as Long, MenuID as Long, MenuCaption As String)
Remarks
The hMenu is the menu handle of the selected menu. The MenuID is the menu item's ID.
The MenuCaption is the caption of the selected menu item.

In all cases when a menu is selected, a unique MenuID is returned from CLACKER. Windows
uses a linked list for storing menu items, so it is advised that you read the SDK manuals on
menus before making use of the hMenu and MenuCaption parameters.
Usage
The MenuID parameter is normally used as the "key" for searching an array of help text
strings. By storing the MenuID at start-up of the form and then searching the array for a
matching MenuID when the ClackerClick event is generated, the help text can be displayed
in the appropriate way.

See the provided demo program for more information on how to set up and retrieve the
help text. Pay particular attention to the way in which the menu system is interrogated for
the initial MenuID parameters. A recursive lookup function is used to parse the menu linked
list into a linear array of MenuIDs.

