
East Meets East: Common
Input Method Editor System
on Far East Windows
Applications get more control; developers get greater
flexibility
by Nadine Kano

Input method editors (IMEs), also called front-end
processors, are applets that allow users to enter the
thousands of different characters used in Far East
written languages with a standard 101-key keyboard.

An IME consists of an engine that converts keystrokes
into phonetic and ideographic characters, and a
dictionary of commonly used ideographic words. As
the user enters keystrokes, the IME engine attempts to
guess which ideographic character or characters the
keystrokes should be converted into. Conceptually,
IMEs are the same as keyboard drivers—they simply
handle more characters, and Far East systems require
some extra code to handle them. When the IME
program is active, it traps all keyboard events,
including virtual keys.

Far East editions of Windows NT 3.5 and Windows
95 support popular input methods, such as phonetic,
code point, or radical-based input methods. The
Windows NT 3.5 IME model is compatible with the
Windows 3.1 IME model, but both Windows 95 and
Windows NT 3.51 implement a new IME model that
makes application development simpler and more
flexible.

The IME system
The IME module in the Windows operating systems
fits into a larger mechanism. Unless you are writing
an IME package or customizing your IME user
interface (UI), you don’t need to worry about the other
components, but it is still a good idea to understand
what they do.

In Windows NT, the input method profiler (IMP)
keeps track of the IME applets installed in the user’s
system. It stores information about each IME, such as
whether it is currently active. Control Panel calls the
IMP API to add, delete, or activate an individual IME.
More than one IME can be installed on the system,

although with Windows NT 3.5, only one may be
active at a time.

In Windows 95, multiple IMEs are handled through
the multilingual API (instead of by an IMP). Windows
stores information about each IME installed on the
system in the system registry. Users switch IMEs the
same way they would switch among Western
keyboard layouts, by clicking the input language
menu on the taskbar or entering a shortcut key
combination. The change is reflected on the taskbar
indicator.

The input method manager (IMM) manages
communication between IMEs and applications. In
Windows NT 3.5, the IMM API is called almost
exclusively by the system. Applications can call two
IMM functions: WINNLSEnableIME, which enables
or disables an IME, and WINNLSGetEnableStatus,
which returns the enabled or disabled status set by
WINNLSEnableIME. In Windows 95, the IMM is an
extension of USER.EXE, and fully IME-aware
applications can call a number of IMM API functions
to customize the IME UI.

IME support on Windows 95
With Windows NT 3.5, a single IME covers all
subsystems, including Win32, Win16, console, virtual
DOS machines, and OS/2. Implementing support for
IMEs on Windows NT 3.5 involves adding code to
handle a couple of window messages and adding calls
to several APIs.

IME support on Far East editions of Windows 3.1 and
Windows NT 3.5 differed slightly depending on the
target language. The differences were inconvenient
for developers; since IME-related code had to be
customized depending on the target language, sharing
a common code base among Far East editions of an
application required additional work. The designers of
Windows 95 therefore decided to create a common
IME system for Far East editions of Windows 95 to
give applications more control over mechanisms
handled exclusively by the IME module on Windows
3.1.

For example, on Windows 95, applications now have
the option of trapping and responding to messages
before the IME processes them. Applications that
contain code to support Windows 3.1- or Windows
NT 3.5-based IMEs will still run correctly on
Windows 95 (as long as the application executable is
marked as being compatible with Windows NT 3.5 or
an earlier version). But once you become familiar
with the Windows 95-based model, you will probably
want to rework your code to take advantage of the

additional features offered, particularly since
Windows NT 3.51 supports the same model.

Three levels of IME support
There are three discrete levels of IME support for
applications running on Windows 95: no support,
partial support, and fully customized support.

IME-unaware applications basically ignore all IME-
specific window messages. Most applications that
target single-byte languages will be IME-unaware.
IME-unaware applications inherit the default UI of the
active IME through a predefined global class,
appropriately called IME. This global class has the
same characteristics as any other Windows-based
common control. For each thread, Windows 95
automatically creates a window based on the IME
global class; all IME-unaware windows of the thread
share this “default IME window.”

IME-aware applications
IME-aware applications can create their own IME
windows instead of relying on the system default.
hIMEWnd = CreateWindowEx("IME", // IME class.
 NULL, // No window title.
 WS_DISABLED | WS_POPUP, // Disabled window.
 0, 0, 0, 0, // No need to set size.
 hWnd, // Parent window.
 (int)NULL,
 (HINSTACE)GetWindowLong(hWnd,GWL_HINSTANCE),
 NULL);

Applications with partial IME support can use this
“application IME window” to control some IME
behavior. By calling the ImmIsUIMessage function,
applications can pass messages related to the IME’s
UI to the application IME window, where the
application can process them. The following code
would appear in the application IME window’s
window procedure.
 If(ImmIsUIMessage(hIMEWnd, uMsg, wParam,
 lParam)==TRUE) {
 switch(uMsg) {
 case WM_IME_COMPOSITION:
 if(lParam & GCS_RESULTSTR) {
 hIMC=ImmGetContext(hWnd);
 ImmGetCompositionString(hIMC,
 GCS_RESULTSTR, lpBufResult, dwBufLen);
 ImmReleaseContext(hWnd, hIMC);
 }
 break;
 }
 return 0;
 }

The same window procedure could call SendMessage
to reposition the status, composition, or candidate
windows, or to open or close the status window.

Other API functions that allow the application to
change window positions or properties are

ImmSetCandidateWindow,
ImmSetCompositionFont,
ImmSetCompositionString,
ImmSetCompositionWindow, and
ImmSetStatusWindowPos. Applications that contain
partial support for IMEs may use these functions to set
the style and position of the IME UI windows, but the
IME dynamic-link library (DLL) is still responsible
for drawing them.

In contrast, applications that are fully IME-aware take
over responsibility for painting the IME windows (the
status, composition, and candidate windows) from the
IME DLL. These applications can fully customize the
appearance of these windows, including their
positions on the screen and which fonts and font styles
are used to display characters in them. This is
especially convenient for programs such as word
processors that rely heavily on text input and wish to
interact with IMEs in a way that is as natural as
possible for the user. The IME DLL still determines
which characters are displayed in IME composition
and candidate windows, and it handles algorithms for
guessing characters and looking them up in the IME
dictionary. An example of a customized IME UI is
shown in Figure 1

(IMEFIG1.bmp goes here)

Fully IME-aware applications trap IME-related
messages in the following manner:

1. They call GetMessage to retrieve intermediate IME
messages.

2. They process these messages in the application
WindowProc.

3. They call TranslateMessage (part of the IMM) to
pass the messages on to the IME DLL. The IME
needs to remain synchronized, the same way
keyboard drivers need to remain synchronized with
dead keys.

For example, when the user presses a key, the system
generates a keyboard event. USER.EXE checks to see
if the currently active HKL (input language handle)
points to an IME. If so, it passes the keyboard event to
the IMM, which passes the event to the IME. If the
IME wishes to respond to the keyboard event, the IME
will translate the keyboard event into the virtual key,
VK_PROCESSKEY, which it passes back to the
IMM. The IMM then sends this virtual key to the
application.

If the application wishes to customize the IME UI, it
should trap VK_PROCESSKEY. It calls
ImmGetVirtualKey to translate the

VK_PROCESSKEY into a more specific virtual key
value, and responds accordingly.

IMEs on Windows 95 keep track of state information
for each application running on the system. Each IME
stores status information in an internal structure called
an input context. Because Windows 95 creates and
assigns a default input context to each new thread,
individual applications use separate input contexts.
Within an application, each newly created window
inherits the application’s default input context, which
is a shared resource.

It is possible to override the default input context by
creating and maintaining your own input contexts.
The next section describes how to do this.

Customizing IME support in Windows 95
While applications with partial support may reposition
the IME’s UI windows or change the fonts used to
display characters, fully IME-aware applications
create and maintain their own input contexts and draw
the IME’s status, composition, and candidate windows
themselves.

Windows 95 provides a number of API calls for
communicating closely with IMEs. Since IME DLLs
still contain the code that converts keyboard strokes
into characters and determines candidate lists,
applications need to query IMEs for information on
composition strings and candidate lists before they can
draw any windows. Applications also need to ask
IMEs for status information, such as whether the IME
is open or closed and what the current input mode and
sentence mode are.

To get or set IME status information, composition
strings, or window positions, your application needs to
send a handle to an input context to most API calls.
Calling ImmGetContext will retrieve the default
input context that the system has created and
associated with all the windows of a particular thread.
Once you are done with the input context, you need to
release it by calling ImmReleaseContext. Be
forewarned that the system’s default input context is a
shared resource—any changes to it will affect other
windows in the same thread. To avoid this, you can
create a custom input context—changes you make to a
custom input context will only affect those windows
you associate with it.

Before you associate a window with a custom input
context, it’s a good idea to save the window’s default
input context. You may need it later, for example, if
you destroy your custom input context and need to
restore the default.

To create an input context, call ImmCreateContext.
To associate this context with a window, call
ImmAssociateContext. Once you have associated an
input context with a window, the system will
automatically provide the input context when the
window gets the focus. If you make changes to the
input context, you should call ImmNotifyIME so that
the IME can remain synchronized. To destroy the
custom input context before you terminate your
application, call ImmDestroyContext.

Fully IME-aware applications should handle most
WM_IME messages. In general, the WM_IME
messages tell the application that something has
changed and that the application should query the
system to get updated information. For more detailed
information on these messages and the functions that
your application should call in response to them,
consult the FULLIME example that ships with the Far
East Win32 SDK.

With the help of several API functions, you can be
very creative in how you customize the UI for any or
all of the IME windows.

If you plan to customize the candidate or composition
windows, you should familiarize yourself with the
CANDIDATELIST, COMPOSITIONFORM, and
CANDIDATEFORM structures, plus the flags and
style bits associated with these structures and related
functions. The Win32 SDK documentation provides
detailed descriptions.

For example, the ImmGetCompositionString
function can give you a great deal of information
about the string displayed in the composition window.
It can tell you if the string contains the characters the
user has entered, the characters resulting from the
conversion, characters that have been selected but not
yet converted, or characters that have been converted
and are still selected. The function can also tell you
which characters in the string constitute clauses and
what position they hold in the composition string,
where the cursor is positioned, and which characters
the user originally entered.

If your application is very text intensive, it will
probably benefit greatly from the extensive
customization available with the new IME model.
Applications that accept some text input will benefit
from the functionality that Windows 95 and Windows
NT 3.51 provide through partial support. Even
applications that are completely IME-unaware will
automatically inherit some IME functionality from the
system. Developers and users alike will benefit from
this new model—it’s more consistent across all Far
East editions of Windows and is thus easier to
implement. In addition, it allows applications to

integrate IME support in a creative and seamless
fashion, making text input more intuitive for users.

This article is adapted from Developing International
Software for Microsoft Windows by Nadine Kano. It is
being published by Microsoft Press this spring.

Nadine Kano is a globalization guru in the Developer
Relations Group. She has typed her fingers to the bone
writing a guide to developing international software
for Microsoft Press.

Conceptually, input method editors are the same
as keyboard drivers—they simply handle more

characters.

In Windows 95, multiple IMEs are handled
through the multilingual API (instead of by an

IMP).

IMEs on Windows 95 keep track of state
information for each application running on the

system.

	East Meets East: Common Input Method Editor System on Far East Windows
	Applications get more control; developers get greater flexibility
	The IME system
	IME support on Windows 95
	Three levels of IME support
	IME-aware applications
	Customizing IME support in Windows 95

