
Yes, Virginia, 
Windows 95 
Does Do 
Unicode!
Creating Unicode 
apps for Windows 
95
by Nadine Kano

Windows NT, an operating system built from the 
ground up, processes characters internally in Unicode.

Windows 95, an operating system that originates from
the code base for Windows 3.x, processes characters 
internally in local character sets—the same character 
sets used by Windows 3.x. (For a description of 
Unicode and other character sets, see “Creating 
software for a global market: Character sets and 
Microsoft Windows,” Microsoft Developer Network 
News, July 1993.)

Therefore, we can safely say that Windows NT does 
Unicode, but Windows 95 does not, right? Not 
exactly.

What does “doing” Unicode mean?
First of all, what does it mean to say that an operating 
system “does” or “doesn’t do” Unicode? Windows 95 
itself does not process strings in Unicode. The Win32 
API on Windows 95 expects all string parameters to 
be encoded in the local character set of the system—
the default local character set changes depending on 
the language edition of Windows 95 (except for the 
five wide character APIs listed below).

For example, Western European editions use the 
ANSI character set (also called code page 1252), 
while the Eastern European editions use code page 
1250, and the Japanese edition uses Shift-JIS (also 
called code page 932). So you can say that Windows 
95, the operating system, does its internal processing 
in local character sets only.



This limitation does not, however, extend to 
applications that run on the operating system. Even 
though Windows 95 doesn’t process strings internally 
using Unicode, applications running on Windows 95 
still can!

If you are dealing with multilingual documents, you 
may prefer to store all your data in Unicode, because 
it provides unambiguous code point values for a wide 
range of characters used in a wide range of languages.
If your application processes Japanese, Chinese, or 
Korean characters, you may find it easier to 
manipulate strings in Unicode, which is a fixed-width 
character set, unlike alternative character sets, which 
are a mixture of one- and two-byte encodings. 
Unicode is also a good means for sharing data with 
other systems.

Translating needed
If you want to base your application on Unicode and 
run it on Windows 95, you need to translate string 
parameters to local character sets before calling API 
functions. (The only wide character APIs that handle 
Unicode on Windows 95 are TextOutW, 
ExtTextOutW, GetCharWidthW, 
GetTextExtentW, and GetTextExtentPointW.)

The API for translating strings from Unicode into the 
system’s default local character set is 
WideCharToMultiByte. When you receive string-
based information from Windows 95, you need to 
translate it into Unicode by calling 
MultiByteToWideChar before working with it.

Obviously translating strings to and from Unicode 
every time you call an API that takes string 
parameters adds overhead to your program. It’s up to 
you to weigh the pros and cons of this approach to suit
your program’s requirements.

Local character sets on Windows NT
Perhaps it makes more sense for your application to 
use local character sets. Unicode’s 16 bits per 
character may be too large to accommodate your 
space constraints, even with compression. You may 
have an existing code base that uses local character 
sets and meets your needs. If your application is based
on a local character set, will it still run correctly on 
Windows NT? Absolutely.

Windows NT supports two flavors of the Win32 API
—‘W’ or wide character entry points, for string 
parameters encoded in Unicode, and ‘A’ or ANSI 
entry points, for string parameters encoded in local 
character sets. If you call the A entry points, Windows
NT will automatically convert the string parameters 
into Unicode before calling the W version of the same



function. For this reason, using local character sets 
while running on Windows NT does add some 
overhead to your application.

Creating a single binary
What if you want to create a single binary that will 
run unchanged on both Windows 95 and Windows 
NT? Is this possible? If so, which character encoding 
should you use?

Because both Windows 95 and Windows NT can 
handle either Unicode or local character sets, you can 
create a single binary to run on both systems and you 
can choose the character encoding that makes the 
most sense for your application. The GetVersionEx 
API function will tell you at run time which operating 
system your application is running on. Based on this 
information, you can take the appropriate steps.

For example, let’s assume that your application is 
based on Unicode. If you determine that it is running 
on Windows NT, you can call the wide character API 
entry points directly. When the same application runs 
on Windows 95, you will have to convert string 
parameters to the system’s local character set with 
WideCharToMultiByte before calling the ANSI-
based API entry points.

Even though W APIs are not implemented on 
Windows 95, their entry points are stubbed. 
Therefore, it is safe to write code that calls the W 
APIs. If your application is based on a local character 
set, simply call the A versions of the Win32 API 
functions—both Windows NT and Windows 95 
support them. (Don’t forget that there are slight 
differences in the API sets for Windows NT and 
Windows 95.)

It’s important to remember that Unicode support on 
Win32 is not a black-and-white, all-or-nothing issue. 
You can create Unicode-based applications for 
Windows 95 even though the system itself isn’t based 
on Unicode. At the same time, just because Windows 
NT is fully Unicode-based internally doesn’t mean 
that your application is required to use Unicode when 
it runs on Windows NT.

Keep in mind that supporting Unicode will not 
automatically make your application “fully 
international.” Unicode is a character encoding—it 
can make software internationalization easier in many 
cases, but it does not help you with culturally accurate
sorting; date, time, or currency formats; input 
methods; user interface translation; text layout; font 
design and selection; or many other elements that 
make up an international program.



There are reasons to choose Unicode as your encoding
and reasons not to. Win32 gives you the Unicode 
option, on both Windows NT and Windows 95. You 
need to decide, based on your users’ needs and your 
development goals and constraints, what will work 
best for your application.

For more information, see chapter 3 in Developing 
International Software for Windows 95 and Windows 
NT published by Microsoft Press. (That’s by me!)

Nadine Kano, a globalization specialist in Microsoft’s
Developer Relations Group, just completed a 768-
page book on software internationalization. Now she 
spends most of her spare time sleeping and dulling her
brain with sleazy tabloid TV shows.


	Yes, Virginia, Windows 95 Does Do Unicode!
	Creating Unicode apps for Windows 95
	What does “doing” Unicode mean?
	Translating needed
	Local character sets on Windows NT
	Creating a single binary



