
Windows 95
Shell
Extension
Registration,
Debugging,
and Support
by Nancy Winnick Cluts

The Windows 95 shell is extensible. You can access
tools that manipulate objects in the shell name space,
and you can browse through the file system and
networks.

All shell extensions are implemented as Component
Object Model (COM) objects and reside in dynamic-
link libraries (DLLs). Once you grasp the basics of
how to implement COM objects, the additional
information you need to understand to implement a
shell extension should be fairly simple.

The Windows 95 shell supports seven types of shell
extensions (referred to as handlers):

• Context menu handlers. Add menu items to the
context menu for a particular file object. The
context menu is displayed when a user clicks a file
object with the alternate (usually the right) mouse
button. Context menu handlers implement the
IContextMenu and IShellExtInit interfaces.

• Drag-and-drop handlers. Context menu handlers
that are accessed when a user drops an object after
dragging it to a new location. Drag-and-drop
handlers implement the IContextMenu and
IShellExtInit interfaces. The only difference
between a context menu handler and a drag-and-
drop handler is the way it is registered in the
registration database.

• Icon handlers. Add instance-specific icons for file
objects or add icons for specific file classes. Icon
handlers implement the IExtractIcon and
IPersistFile interfaces.

• Property sheet handlers. Add pages to the
property sheet dialog box the shell displays for a

file object. Property sheet handlers implement the
IShellPropSheetExt and IShellExtInit interfaces.

• Copy hook handlers. Prevent a folder or printer
object from being copied, moved, deleted, or
renamed. Copy hook handlers implement the
ICopyHook interface.

• Drop target handler. Controls the action that
occurs when the shell drops objects on other
objects. Drop target handlers implement the
IDropTarget and IPersistFile interfaces.

• Data object handler. Supplies the object when files
are being dragged and dropped or copied and
pasted. Data object handlers implement the
IDataObject and IPersistFile interfaces.

Register now
Like all COM objects, shell extensions must be
registered in the registration database, or they won’t
work. Each extension must register its class ID
(CLSID) under HKEY_CLASSES_ROOT\CLSID in
the registry. Within this key, the extension adds an
InProcServer32 key that gives the location of the
extension’s DLL. The first line in the sample below
registers the CLSID of a property sheet extension
called NancyPropSheet. The second line specifies the
location of the DLL containing the extension and the
threading model.
[HKEY_CLASSES_ROOT\CLSID\{771a9da0-731a-11ce-
 993c-00aa004adb6c}]
 @="NancyPropSheet"
[HKEY_CLASSES_ROOT\CLSID\{771a9da0-731a-11ce-
 993c-00aa004adb6c}\InprocServer32]
 @="c:\\windows\\system\\propext.dll"
 "ThreadingModel"="Apartment"

Your shell extension must also be registered under the
shellex key, which contains the information the shell
uses to associate a shell extension with a file type.
You can map your shell extension to a particular class
of file (based upon the file extension), or you can
specify that the shell extension is valid for files of all
types. In the property sheet extension sample above,
the property sheet was registered specifically for
NWCFile as follows:
[HKEY_CLASSES_ROOT\.NWC]
 @="NWCFile"
[HKEY_CLASSES_ROOT\NWCFile]
 @="Shell Extension file"
[HKEY_CLASSES_ROOT\NWCFile\shellex\
 PropertySheetHandlers]
 @="NWCPage"
[HKEY_CLASSES_ROOT\NWCFile\shellex\
 PropertySheetHandlers\NWCPage]
 @= "{771a9da0-731a-11ce-993c-00aa004adb6c}"

Now say you want all files to reap the benefits of your
special property page. To do this, you specify ‘*’ after

HKEY_CLASSES_ROOT as seen in the following
example:
[HKEY_CLASSES_ROOT*\shellex\
 PropertySheetHandlers]
 @="NWCPage"
[HKEY_CLASSES_ROOT*\shellex\
 PropertySheetHandlers\NWCPage]
 @= "{771a9da0-731a-11ce-993c-00aa004adb6c}"

Initial impressions
Besides registration in the registration database, shell
extensions share the way in which they are initialized.
The shell uses two interfaces to initialize instances of
shell extensions: IShellExtInit and IPersistFile.

The IShellExtInit interface is used to initialize
context menu handlers, drag-and-drop handlers, and
property sheet handlers, while IPersistFile is
employed to initialize instances of icon handlers, data
object handlers, and drop target handlers. (Copy hook
handlers don’t use the IShellExtInit or IPersistFile
interface.)

After implementing the initialization interface for
your shell extension, you need to implement the actual
interface for the particular shell extension you are
writing. For example, if you are writing a property
sheet extension, you will need to implement the
IShellPropSheetExt interface.

Debugging shell extensions
When your shell extension is written and registered,
what do you do if it doesn’t work? It’s not like most
applications, where you can simply include
DebugBreak calls in your code or run the Visual C++
development system in debug mode, set some
breakpoints, and go.

Because shell extensions are loaded at the startup of
the Explorer, you have to find a way to start the
Explorer without loading all of its DLLs. Here’s how:

1. Go into your project settings and, under the Debug
tab, type the path to EXPLORER.EXE in the
Executable For Debug Session edit box.

2. Close all applications you are running, and turn off
your computer.

3. Restart Windows 95 and Visual C++, loading your
shell extension.

4. Click the Start button and choose Shutdown.

5. Now, hold down the CTRL+ALT+SHIFT keys and
simultaneously click No. (Sounds a bit like
playing Twister, doesn’t it?)

6. The desktop will go blank and your heart will start
palpitating, but don’t worry. If you press ALT+TAB
you can get to your instance of Visual C++.

7. At this point you are ready to debug. Set your
breakpoints and go.

If you want to be able to force the shell to unload
DLLs very quickly so you don’t need to exit it to
debug your shell extension, you can do this through a
setting in the registry. Under
HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\
Windows\CurrentVersion\Explorer, add the
AlwaysUnloadDll key and set its value to a number (I
set it to 1 because that’s the kind of gal I am). Adding
this key sets the time-out value for DLLs to a very
small value.

Shell extensions and Windows NT
You may wonder whether your shell extension will
run on the Windows NT operating system. Windows
95 shell extensions can work on Windows NT 3.51.
This version gives a user the option of running
Windows NT 3.51 with the Windows 95 shell. To do
so, however, there is one additional step that your
application must take in its setup process and
registration.

For the Windows NT shell to recognize and run a
shell extension, the handler’s CLSID must also be
listed under a new registry key (in addition to the
registry entries you need to make for Windows 95)
that contains a list of the handlers approved for the
shell to run. By default, this key’s access control
permissions allow only someone with administrator
privileges to modify the list. The CLSID must be
registered under Windows NT at the following
location:

HKEY_LOCAL_MACHINE\Software\Microsoft\
Windows\CurrentVersion\Shell Extensions\Approved

To register the extension, a “named value” should be
added to the Approved key. The name of the value
must be the string form of the CLSID that can be
obtained through the StringFromCLSID function.

For example, to register the property sheet extension
shown above, you can add the following line to your
registration file:
[HKEY_LOCAL_MACHINE\Software\Microsoft\
 Windows\CurrentVersion\Shell Extensions\
 Approved\{771a9da0-731a-11ce-993c-
 00aa004adb6c}] @="NancyPropSheet"

Security questions
If you haven’t written applications for Windows NT,
it may seem odd that your setup application may not
be able to write to this key. The ability to write to the
key depends on the access privileges of the person
installing the application. The setup application
should attempt to open the key described above,

requesting the KEY_SET_VALUE permission. If it
succeeds, the new CLSID can be added to fully
register the corresponding shell extension.

If the request fails due to a security violation, the user
installing the application does not have permission to
register new shell extensions. In this case, the setup
application might warn the user that some application
features will not be available unless an administrator
turns them on (by installing the application, or by
writing the registry keys directly). Or, if the shell
extension is crucial to the application’s functioning,
the setup application might cause the installation to
fail completely, notifying the user that the program
must be installed by an administrator.

The following sample code demonstrates how an
application can register its shell extension under
Windows NT:
// First, attempt to open the registry key
// where approved extensions are listed.
long err;
HKEY hkApproved;

err = RegOpenKeyEx(
 HKEY_LOCAL_MACHINE,
 "Software\\Microsoft\\Windows\\
 CurrentVersion\\Shell Extensions\\Approved",
 0,
 KEY_SET_VALUE,
 &hkApproved);

if (err == ERROR_ACCESS_DENIED)
{
 // The user does not have permissions to add
 // a new value to this key.
.
.
.
}
else if (err == ERROR_FILE_NOT_FOUND)
{
// The key does not exist. This should only
// happen if setup is running on Windows 95
// instead of Windows NT, or if you are
// installing on an older version of either
// operating system that does not have the
// Win95 UI.
.
.
.
}
else if (err != ERROR_SUCCESS)
{
// Some other problem...
}
else
{
 // Assume that lpstrProgID contains our
 // ProgID string.
 LPSTR lpstrProgID = "My Bogus Class";

 // Assume that clsidExtension contains the
 // CLSID struct. The code below creates a
 // string from this CLSID. If a string
 // version of the CLSID is already handy,
 // skip this code.

 CLSID clsidExtension = {0x11111111, 0x1111,
 0x1111, 0x11, 0x11, 0x11, 0x11, 0x11, 0x11,
 0x11, 0x11};
 HRESULT hr;
 LPOLESTR lpolestrCLSID;
 CHAR rgchCLSID[40];
 CoInitialize(NULL);
 hr = StringFromCLSID(clsidExtension,
 &lpolestrCLSID);
 // StringFromCLSID returns a Unicode string,
 // so convert to ANSI for calling the
 // registry. Note that on Windows NT you can
 // call the Unicode version of the registry
 // API instead.
 WideCharToMultiByte(CP_ACP, 0, lpolestrCLSID,
 -1, rgchCLSID, 40, NULL, NULL);
 CoTaskMemFree(lpolestrCLSID);
 CoUninitialize();

 // Now add the new value to the registry.
 err = RegSetValueEx(
 hkApproved,
 rgchCLSID,
 0,
 REG_SZ,
 (const BYTE *)lpstrProgID,
 strlen(lpstrProgID));
 // Finally, close the key.
 err = RegCloseKey(hkApproved);

That’s all there is to it. For more detailed information
about how to implement the different shell extensions,
consult the Microsoft Development Library; some
sample code is also available in the merged Win32
Software Development Kit.

Nancy Winnick Cluts, a writer on the Developer
Network’s DevTech team, retired from a highly
successful career as an international super-model to
write Programming the Windows 95 User Interface, to
be published by Microsoft Press in August.

	Windows 95 Shell Extension Registration, Debugging, and Support
	Register now
	Initial impressions
	Debugging shell extensions
	Shell extensions and Windows NT
	Security questions

